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Abstract
We present implementation of multiple instance learning (MIL) frame-
work based on Markov networks with optimization methods of batch
gradient descent, inference based SVM and propose new approach
with the use of linear programming. In this paper we successfully
validated our implementation on common multiple instance learning
datasets and used it for classifying cancer metastases on sets of precal-
culated descriptors, which were generated from images of histological
lymph node sections. Manual classification of individual images by
pathologist is a lengthy process and using multiple instance learning
to provide another diagnostic tool for classification could increase ac-
curacy and speed of classification which is vital. The results measured
on Camelyon dataset with batch gradient descent method were com-
parable to state-of-art methods.

Keywords: multiple instance learning, supervised learning, machine
learning, Markov networks

Abstrakt
Tato práce pojednává implementaci multiple instance learning frame-
worku použ́ıvaj́ıćı metody Markovských śıt́ı s optimalizačńımi meto-
dami batch gradient descent, inference based SVM a naš́ı metodou
linearńıho programováńı. Úspešně jsme ověřili naš́ı implementaci na
multiple instance learning datasetech, kterou jsme následně použili
pro klasifikaci buněk rakoviny z předpoč́ıtaných deskriptor̊u, které
byly vygenerovány z histologických fotek lymfatických uzlin. Manuálńı
klasifikace individuálńıch fotek je prováděna patology, nicméně se
jedná o zlouhavý proces a použit́ı metody multiple instance learn-
ing, jakožto daľśıho diagnostického nástroje pro klasifikaci rakoviny,
který by zvýšil přesnost a rychlost klasificace je vitálńı. Výsledky,
které byly naměřeny na Camelyon datasetu s optimalizačńı metodou
batch gradient decent byly srovnatelné se state-of-art metodami.

Kĺıčová slova: multiple instance learning, supervised learning, stro-
jové učeńı, Markovské sitě
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1 Introduction

In classical supervised learning the classifier is being trained on pre-
labeled training instances. More training data usually means more
accurate prediction, but the preparation of the dataset to train data
on can be arduous, since someone beforehand needs to go through all
the data and check, if all data points are correctly labeled to their
corresponding classes, which can be a limiting factor.

Multiple instance learning is a variation to classical supervised
learning, being able to learn on weakly supervised data by batch-
ing a group of unlabeled individual data points (i.e. descriptors) into
sets called bags with known label.

Multiple instance learning has been introduced by Dietterich [1]
who used Multiple instance learning approach for classification of aro-
matic molecules. Each molecule is called Musk (aromatic) if at least
one of its molecular shapes binds to a specific receptor, otherwise it
is non-Musk molecule. Other applications of multiple instance learn-
ing can be found in an stock prediction [2], where each positive bag
contains 100 individual stocks (i.e. instances), which yielded high-
est return and negative bag contains 5 the worst performing stocks.
Another application include video annotation [3], where each video is
transformed into bag, in which instance denotes single frame of the
video. Last but not least multiple instance applications can be found
in region based image annotation [4], online object tracking [5], text
categorization[6] and recognition of handwriting and speech[7].

1.1 Problem definition

Multiple instance learning methods deal with weakly supervised
data, which consist of sets of instances, called bags. The label of a
bag is known, where as labels of individual instances are not.

The aim of multiple instance learning is to infer patterns from train-
ing dataset and to train mapping function (i.e. classifier), which as-
signs correct class label Y ∈ {−1, 1} to testing bag X containing some
arbitrary count of precalculated descriptors x.

The importance of multiple instance learning lies in ability to learn
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from weakly supervised data, which is useful in some computer and
medicine applications, where it is sometimes too expensive or border-
line impossible to annotate dataset.

Detecting presence of cancer cells from histological images of breast
lymph nodes is a delicate process in which groups of trained patholo-
gists search through hyper resolution images for signs of cancer cells.
This method is slow and inefficient due to time and training require-
ments needed to perform individual classification, which led to cre-
ation of Camelyon dataset[8] containing a multitude of weakly anno-
tated histological images.

Considering the nature of the problem, in which even small counts
of cancer cells can signify presence of cancer and inability to label
individual pixels, we have decided to use multiple instance learning
framework described [9], which is able to not only learn from individ-
ual data points, but also to learn on aggregations of cardinality (i.e.
count) of positive instances in training bags.

Providing efficient and accurate framework, would be able to de-
crease the amount of time and resources spent on individual classifi-
cation, which would lead to faster diagnosis and treatment.

1.2 Scope of thesis

The aim of this thesis is to implement multiple instance learning
framework based on Markov networks, optimization methods of in-
ference based SVM and batch gradient descent and newly proposed
method, which uses linear programming. Last aim of our thesis is to
validate implemented methods and explore performance of our imple-
mentation on Camelyon and multiple instance learning datasets.

1.3 Thesis structure

This thesis is organized as follows: In next section we provide intro-
duction to supervised learning, and overview of categories of multiple
instance learning methods. Section 3 is used for description of frame-
work proposed in [9]. In section 4 we describe optimization methods
of batch gradient descent, inference based SVM and propose new op-
timization method with the use of linear programming. Followed by
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description of multiple instance learning datasets, which we used to
validate and evaluate performance of our implementation in section
5. Last but not least we describe results we measured in section 6 and
end with a conclusion.
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2 Theoretical background

This section is used to briefly overview some techniques which are
necessary for understanding multiple instance learning and our thesis.
We start by briefly introducing supervised and various categories of
multiple instance learning.

2.1 Supervised learning

Supervised learning is one of the types of machine learning. In super-
vised learning training dataset contains pairs (xi, yi) ∈ Rd x {−1, 1}.
Each pair consists of data point xi with corresponding label yi.
The task of supervised learning is to observe and infer patterns from
training dataset and to find mapping function (i.e. classifier), which
correctly assigns label y to data point x from testing dataset.

2.2 Multiple instance learning

In this subsection we review different categories of multiple instance
learning and provide examples of state-of-art methods for each of
them.

2.2.1 Multiple instance assumptions

Standard multiple instance assumption was introduced by Dietterich
[1] and defines positive bag as set containing at least 1 positive in-
stance and negative bag as set containing only negative instances.
Dietterich’s proposed method called APR uses axis-parallel hyper-
rectangles to allocate area, containing at least 1 positive instance from
each positive bag and no instances from negative bags.
While this assumption naturally describes problem of aromatic molecules,
it is unable to model cardinality based aggregations in bag, which
might be crucial in predicting correct bag label. Other methods, which
use standard multiple instance assumption are Diverse density[10], mi-
SVM[6] and MI-SVM[6]
Ratio-constrained assumption softens standard assumption by de-
scribing positive bag as set, in which ratio of positive instances to
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all instances exceeds threshold value ρ. Methods, which used non-
standard multiple instance assumption in their approach are AL-
SVM[11], ALP-SVM[11]. Work proposed in [12], introduced general
multiple instance assumption represented cardinality potential. The
concept of generalized multiple instance assumption is also used in
[9].

2.2.2 Instance space methods

Instance space methods aim to solve problem of multiple instance
learning by training instance-based classifier on individual instances
from bag and combining multiple instance learning assumptions to
create bag-based classifier. One example of instance based methods
are diverse density algorithm introduced in [2], which tries to solve
multiple instance learning problem by finding point in space, which
measures how many positive instances from positive bags are nearby
and how far are all instances from negative bags. Other examples of
instance based methods are modified SVM-like algorithms mi-SVM[6],
MI-SVM[6] and MICA[13].

2.2.3 Bag space methods

Different way of solving multiple instance learning problem provides
bag space approach, in which whole bag is considered an object,
from which global representations or discriminative information is
extracted[9].
The main approach is to calculate descriptors from entire bags, which
are then used to train traditional instance-based classifier. Some ex-
amples of bag-space methods are MI-Kernel[14], MI-Graph[15] and
EM-DD[10].
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3 Method

This section is being used for description of already existing method
of Markov networks proposed in [9].
We start by introducing formal notation and follow by describing
framework based on Markov networks.

3.1 Notation

Similar notation is being used as in [9] for easier orientation in equa-
tions.
Let Rd denote instance space of our dataset. Training set consists of
pairs {(X1, Y1), . . . , (Xn, Yn), . . . , (XN , YN)}. Each pair is composed
of set of instances called bag Xn = {x̃n1, . . . , x̃ni, . . . , x̃nmn

} (mn de-
notes count of instances in n-th bag) and its corresponding bag label,
Yn ∈ {−1, 1}. Every instance x̃ni ∈ Xn is represented by instance
feature vectors xni ∈ Rd

In the model of Markov networks every instance x̃ni also contains
hidden instance label hni ∈ {0, 1}. Collection of all hidden instance
labels in bag Xn is denoted as hn = (hn1, . . . , hni, . . . , hnmn

).

3.2 Scoring function

We use scoring function, which has been introduced in [9] and depicts
cost of classification for bag X, instance labels h and bag label Y . This
is done by combining instance potential φIw and cardinality potential
σc.
The scoring function is defined as:

fw(X,h, Y ) =
m∑
i=1

φIw(xi, hi) + σc(h, Y ) (1)

where m denotes count of instances in X.
Both of these potentials are represented as linear functions of weights.
Instance potential is parameterized by vector of weights w∈ Rd and
intercept point b, while cardniality weights w+

c \w−c parameterize car-
dinality potential.
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3.3 Instance potential

Instance potential[9] defines compatibility between instance descrip-
tors xi, instance label hi, vector of weights w and intercept point
b.

φw(xi, hi) = hi(w
Txi + b) (2)

3.4 Cardinality potential

Cardinality potential defines compatibility between count of instance
labels h and bag label Y [9].

σc(h, Y ) =

{
C+

w(m+,m) if: Y = 1

C−w(m+,m) if: Y = −1
(3)

m+ =
m∑
i=1

hi

Where Cw is a function describing relations between bag label and
count of positive and negative instances.

3.4.1 MIMN

Multiple Instance Markov Network uses standard MIL assumption. If
at least 1 instance in a bag is labeled as positive, then the whole bag
is considered positive. On the other hand the bag is negative only if
all of its instances are negative.
This corresponds to:

C+
w (m+,m) =

{
−∞ if: m+ = 0

w+
c if: m+ 6= 0

C−w (m+,m) =

{
−∞ if: m+ 6= 0

w−c if: m+ = 0

(4)

3.4.2 RMIMN

Ratio-constrained multiple instance Markov network[9] is a more ro-
bust version of previous definition, since not all MIL problems can
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be efficiently described with MIMN definition of the bag, e.g. pre-
calculated descriptors in negative bags can be contaminated by noise,
which can be mistaken for positive pattern, which can lead to a lot
false positives while testing. In RMIMN definition the ratio of posi-
tive to all instances inside of an bag has to be smaller than ρ if the
bag is negative and bigger than ρ if bag is positive.

C+
w(m+,m) =

{
−∞ if: 0 ≤ m+

m ≤ ρ

w+
c if: ρ ≤ m+

m ≤ 1

C−w(m+,m) =

{
−∞ if: ρ ≤ m+

m ≤ 1

w−c if: 0 ≤ m+

m ≤ ρ

(5)

3.4.3 GMIMN

Generalized multiple instance Markov network[9] increases the num-
ber of cardinality parameters used to map number of positive instances
inside the bag by creating κ positive and negative cardinality weights,
which act as a bins in histogram for cardinality aggregations.
Using notation from [9]:

C+
w(m+,m) =


−∞ if: m+ = 0
κ∑
k=1

w+
ck1
(k − 1

κ
<
m+

m
≤ k

κ

)
if: m+ ∈ {1, . . . ,m}

C−w(m+,m) =


−∞ if: m−m+ = 0
κ∑
k=1

w−ck1
(k − 1

κ
≤ m+

m
<
k

κ

)
if: m+ ∈ {0, . . . ,m− 1}

(6)

In this thesis we define positive and negative vector of cardinality
weights as w+

c = (w+
c1, . . . , w

+
ck, . . . , w

+
cκ) and w−c = (w−c1, . . . , w

−
ck, . . . , w

−
cκ)

for simplification purposes, since RMIMN and MIMN are special cases
of this notation for κ = 1.

3.5 Inference

”The inference problem is to find the best set of instance labels h∗

given observed values from the bag X and the bag label Y.”[9]
The inference algorithm is used to find a vector of instance labels h∗,
which maximizes scoring function of the bag.
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Inference algorithm with cardinality-based potentials have been in-
troduced in [16],[12] and have been proven to be exact in maximizing
score of cardinality and instance aggregations based models.
The mathematical definition of inference can be written as:

h∗(X, Y ) = argmax
h

m∑
i=1

φIw(xi,hi) + σc(h, Y ) (7)

The pseudo-code for binary inference algorithm is shown below:

Algorithm 1 Inference algorithm for binary classification

procedure Inference for binary case
Initialize X, Y
Calculate instance potential φw(xi, 1) using (eq. 2) for every instance feature vector.
Set φw = (φw(x1, 1),. . ., φw(xm, 1))

Set φ
s(i)
w as sorted φIw in decreasing order

if Y=1 then

Find upper limit of summation t ≤ m for which
∑m
i=1 φ

s(i)
w C+

w(i,m− i) is maximized

using (Equation 7)

if Y=-1 then

Find upper limit of summation t ≤ m for which
∑m
i=1 φ

s(i)
w + C−w(i,m−i) is maximized

using (Equation 7)

Set hs(i) = 1 (∀s(i) ≤ t) and hs(i) = 0 (∀s(i) > t)

Output:Instance labels h

3.6 Learning

This subsection is being used to explain the learning procedure on
training dataset {(X1, Y1), . . . , (Xn, Yn), . . . , (XN , YN)}.

The optimization process (i.e. learning) is done by minimizing loss
criterion with respect to classifier’s weights w, intercept point b and
positive/negative cardinality weights w+

c /w
−
c , while maximizing scor-

ing function for correctly classified bags.
In the next few equations we demonstrate deriving final form of hinge-
like loss criterion defined in [9]:
Let h+

n be an output of inference algorithm run on bag Xn and its bag
label Yn and h−n be an output of inference algorithm run on opposite
polarity of Yn.
For simplification purposes we create variable:

∆hni = h−ni − h+
ni (8)
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Which denotes difference of instance labels found by inference algo-
rithm for different polarities of Yn.
We also define variable ζn for each training bag Xn in dataset:

ζn = max

{
0

1 + fw(Xn,hn,−Yn)− fw(Xn,hn, Yn)
(9)

which is equivalent to:

ζn = max

{
0

1 +
∑mn

i=1 φw(xni,∆hni) + σC(h−n ,−Yn)− σC(h+
n , Yn)

(10)

where ζn denotes a slack variable, which measures difference between
scoring functions for incorrectly labeled bag and correctly labeled bag.
If
∑N

n=1 ζn is equal to 0, scoring function of each correctly labeled bag
achieved higher cost then scoring function of incorrectly labeled bag.
We then rewritte original loss function defined in [9] into:

min
w,b,w+

c ,w
−
c

J = min
w,b,w+

c ,w
−
c

N∑
n=1

ζn +
λ

2
‖w‖2 (11)

Where ‖w‖ denotes `2 regularization norm, which forces optimization
algorithms to iteratively decrease values of weights w.

3.7 Classification

The process of assigning bag label Y to a bag X is called classifica-
tion and is done by finding hidden instance labels h with inference
algorithm for both classes and using them to calculate score function
(using eq. 1) of bag X for corresponding Y . Bag label Y is determined
by choosing label, for which score function achieved the highest value.
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4 Optimization

This section describes various optimization algorithms we used to min-
imize loss function J defined in eq. 11.

4.1 inference based SVM

We implemented inference based SVM method described in [9] the
performance of which should be comparable to mi-SVM[6]. Learn-
ing(i.e. optimizing) the classifier is done by altering between finding
optimal instance labels h∗ using inference algorithm across all training
bags and calculating w∗, b∗ on all pairs comprised of feature instance
vector x and its corresponding instance label h∗. This is done until
maximum number of iterations has been reached, or until collection
of all instance labels h∗ stops changing between iterations. During
training of the classifier cardinality weights w+

c /w
−
c are set to 0 and

not trained.

Algorithm 2 Inference based SVM

procedure Inference based binary SVM
Initialize w as random vector with size d
Set b ← 0
while labels have changed and iteration < max iterations do

for each n ∈ N do
Use inference algorithm (eq. 7) with Xn, Yn to find h∗n

Calculate SVM solution across all pairs (Xn,h
∗
n)

Let w∗, b∗ be an output of SVM
Let w ← w∗ and b ← b∗

Output:Optimized weights w̃ and intercept point b

4.2 Batch gradient descent with momentum

Batch gradient descent is an iterative algorithm used for optimizing
differentiable objective functions by iteratively optimizing classifier’s
variables . Minimization of loss function J is done by moving with
a step size η in an opposite direction of the objective function J ’s
gradient. We use momentum variation of gradient descent for faster
minimization of loss function J .
For simplification purposes, we introduce vector z, created by con-
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catenating all classifier’s variables as follows:

z
1×(d+1+2κ)

= (w, b,w+
c ,w

−
c ) (12)

Which we then use in batch gradient descent method with momentum

vτ+1 = αvτ − η∇J(zτ)

zτ+1 = zτ + vτ+1 (13)

Where vτ+1 is a momentum vector calculated in τ iteration, zτ+1

contains solution of τ iteration, η is a step size, α is momentum pa-
rameter, which we used a cross-validation parameter and ∇J denotes
gradient of objective function:

∇J =
( ∂J
∂w1

,
∂J

∂w2
, . . . ,

∂J

∂wd
,
∂J

∂b
,
∂J

∂w+
c

,
∂J

∂w−c

)
Partial derivations of the objective function J are listed below:

∂J

∂wj
= λwj +

N∑
n=1

∂ζn
∂wj

∂ζn
∂wj

=

{
0 if: ζn ≤ 0∑mn

i=1 ∆ynixnij if: ζn > 0
(14)

∂ζn
∂b

=

{
0 if: ζn ≤ 0∑mn

i=1 ∆yni if: ζn > 0
(15)

where xnij denotes j-th element from i-th instance feature vector of
bag Xn and mn denotes count of instances in the same bag.

∂ζn
∂w+

ck

=


1 if: Y n = −1 ∧ ζn > 0 ∧ 1

(
k−1
κ <

∑mn
i h−ni
mn

≤ k
κ

)
−1 if: Y n = 1 ∧ ζn > 0 ∧ 1

(
k−1
κ <

∑mn
i h+ni
mn

≤ k
κ

)
0 if: ζn ≤ 0

(16)

∂ζn
∂w−ck

=


−1 if: Y n = −1 ∧ ζn > 0 ∧ 1

(
k−1
κ <

∑mn
i h+ni
mn

≤ k
κ

)
1 if: Y n = 1 ∧ ζn > 0 ∧ 1

(
k−1
κ <

∑mn
i h−ni
mn

≤ k
κ

)
0 if: ζn ≤ 0

(17)

κ denotes size of vector w+
c /w−c (for RMIMN and MIMN definitions

of cardinality potential κ = 1), h+
ni, resp. h−ni denotes i-th instance
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label in found with inference algorithm on bag Xn with label Y n,
resp. −Y n.
Pseudo-code for BGD is described below.

Algorithm 3 Batch gradient descent

procedure BGD
Initialize last loss ← ∞
Initialize w as random vector with size d
Set b ← 0
Set v as zero vector with size d
Set w−c ← 0

Set w+
c ← 0

while iteration ≤ max iterations and last loss < 1 do
Initialize total loss ← 0
for Every n ∈ N do

Calculate bag loss ζn with eq. 10
if ζn > 0 then

total loss ← total loss + ζn
Calculate partial derivatives of loss function J with respect to
its weights w using eq. 14, intercept point b using eq. 15,

positive cardinality weights w+
c using eq. 16 and

negative cardinality weights w−c using eq. 17
Concatenate all partial derivatives into vector z defined in
eq. 12

Multiply each element of w by regularization parameter λ and add
the result to corresponding element in z
if last loss ≤ total loss then:

Calculate v,w, b, w+
c , w

−
c using eq. 13

Set last loss ← total loss
else

Set η ← η
10

Output:w, b,w+
c ,w

−
c

4.3 Linear programming

We propose new approach for optimizing eq. 11 with the use of linear
programming. We change regularization norm from `2 to `1, which
transforms original loss function into:

min
w,b,w+

c ,w
−
c ,ζ1,...,ζn

λ

2

d∑
j=1

|wj|+
N∑
n=1

ζn

s.t. ∆hni(w
T · xni + b) + σ−c − σ+

c − ζn ≤ 1

ζn ≥ 0

∀n = 1, . . . , N ∀i = 1, . . . ,mn

(18)
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Where ∆hni denotes result of eq. 8, σ−c /σ+
c denotes cardinality poten-

tial defined in eq. 3.
We rewrite eq. 18 into matrix form:

min
z̃

cT z̃

s.t. Gz̃ ≤ a
(19)

where:
z̃ = (w, b,wc,wc, ζ1, . . . , ζN , t)

t is a variable used as a substitute for |w| in objective function.
Mathematically:

tj =
∣∣wj∣∣

s.t. tj ≥ wj

tj ≥ −wj
∀j ≤ d

This substitution trick transforms originally non-linear objective func-
tion into linear form, which can be solved with linear programming
methods.
We define following vector:

cT
1×(2d+1+2κ+n)

=
(

0
1×(d+1+2κ)

1
1×(n+d)

)
(20)

where κ denotes length of cardinality weights w+
c \w−c .

We then rewrite first constraint from eq. 18 into vector Qn:

Qn
1×(2+1+2κ)

=

(∑mn

i ∆hnixni1 . . .
∑mn

i ∆hnixnid
∑mn

i ∆hni u+
n

1×κ
u−n
1×κ

)
(21)

(
u+
n

)
κ×1

T

=



Y n1
(

0 <
∑mn

i h+ni
mn

≤ 1
κ

)
...

Y n1
(
k−1
κ <

∑mn
i h+ni
mn

≤ k
κ

)
...

Y n1
(
κ−1
κ <

∑mn
i h+ni
mn

≤ 1
)
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(
u−n

)
κ×1

T

=



−Y n1
(

0 ≤
∑mn

i h−ni
mn

< 1
κ

)
...

−Y n1
(
k−1
κ ≤

∑mn
i h−ni
mn

< k
κ

)
...

−Y n1
(
κ−1
κ ≤

∑mn
i h−ni
mn

< 1
)


For RMIMN and MIMN cardinality potentials(κ=1) vectors u+ and
u− will transform into scalar values Yn and −Yn.
We then compose constraint matrices G and a:

G
(2n)×(2d+1+2κ+n)

=



Q
n×(d+1+2κ)

diag( -1
n×n

) 0
n×d

0
n×(d+1+2κ)

diag( -1
n×n

) 0
n×d

diag( 1
d×d

) 0
d×(1+2κ+n)

diag( -1
d×d

)

diag( -1
d×d

) 0
d×(1+2κ+n)

diag( -1
d×d

)


(22)

QT

(2d+1+κ+n)×n
= (Q1 Q2 . . . Qn)

aT
1×(2n+2d)

= ( -1
1×n

0
1×(n+2d)

) (23)
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We formulate the pseudo-code for linear programming method as fol-
lows:

Algorithm 4 Linear programming optimization method

procedure Linear programming

Initialize w, b, w+
c , w+

c and learning rate η
Let best loss ← ∞
while iteration < max iterations and best loss < 1 do

Let z denote classifier’s variables
Let total loss ← 0
for each pair (Xn, Y n) in training dataset do

Find instance labels h+
n , h−n using Equation 7

Calculate ∆hn with eq. 8
Append matrix Qn calculated using eq. 21

Calculate c, G, a using eq. 20, eq. 22 and eq. 23
Calculate solution for z with matrices c, G, h

Let z̃τ+1 be an output of linear programming solver
Calculate last loss function using objective function in eq. 18
if best loss ≤ last loss then:

Set z̃best ← z̃τ+1

Set last loss ← best loss

Output:Vector of optimized classifier’s variables z̃best
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5 Datasets

This section is used for description of training datasets, which we
used for validating and evaluating performance of our framework’s
implementation and optimization algorithms.

5.1 Synthetic datasets

Synthetic datasets were generated for purposes of validation and vi-
sualization of inference and optimization algorithms.

5.1.1 Gaussian noise dataset

We generated 2 versions of Gaussian noise synthetic dataset. First
simpler version of noise dataset was created from data points gener-
ated as 2 two-dimensional noises, with y-axis mean in both Gaussian
noises being positive and x-axis mean having opposite polarity. Sec-
ond, more complex version was created using data points generated
from 4 two-dimensional Gaussian noises (this dataset has been intro-
duced in [17]), with each Gaussian noise having its means situated in
different corner of centered square with length of its side equal to 2
(Scatter plot of signals can be seen in Figure 1).
All data points with positive mean in both axes were set to be positive
and rest as negative. Synthetic multiple instance learning datasets
were created by batching individual data points into bags by ran-
domly sampling our artificial dataset. As in noisy image dataset we
created MIMN and RMIMN versions for both complexities of our
dataset. RMIMN version of noise dataset defines positive bag as a set
containing at least 50% positive data points. Both datasets consists
of 100 positive and 100 negative bags, with 10 instances in each bag.
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(a) Simple version (b) Complex version

Figure 1: Gaussian noise dataset (yellow denotes positive instances, blue denotes negative in-
stances)

5.1.2 Noisy image dataset

We generated a 200 of a noisy 10x10 images(bags), with green primary
color set to 0 for each pixel(instance feature vector x denotes RGB
values of pixel and hidden instance label h denotes label of individual
pixel). Positive bag is created by drawing green square in the middle
of image. We experiment with both versions of noisy image dataset
using MIMN definition(If at least 1 pixel is green, whole image is
labeled positive) and RMIMN definition, in which ratio of green pixels
in image must be over 50% for bag to be labeled positive.

(a) negative image (b) negative image (c) positive image

Figure 2: Visualization of (a)MIMN and (b)RMIMN((ρ=0.49) version of negative image. Example
of positive image can be seen in (c)

5.2 Image datasets

In this subsection we describe 3 feature sets created by[6], which were
used to evaluate binary multiple instance learning classifier in im-
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age annotation task. The images were taken from Corel dataset and
transformed into segments of descriptors describing color, texture and
shape of an image. Generated features sets are respectively called Fox,
Elephant and Tiger. Image sets contain 100 positive and 100 nega-
tive bags and are highly dimensional (instance is described as 230
dimensional instance feature vector).

5.3 Musk datasets

As in almost any multiple instance learning approach Musk1 and
Musk2 are benchmark datasets used to evaluate accuracy of the clas-
sifier. Every bag contains 6 instances on average in Musk1 and 60 in
Musk2, where every instance is described by a 166 dimensional vector.
Molecule is labeled as musk if at least 1 of low energy conformations
is labeled as positive and non-musk if all conformations are labeled as
negative. Further details of Musk1 and Musk2 datasets can be found
in [1].

5.4 Camelyon dataset

We provide a brief description of Camelyon dataset introduced in
[8] and from which we received generated descriptors, that we used
for evaluating performance of our optimization algorithms. Came-
lyon dataset has been created for detection of cancer metastases from
histological images. In our version of the dataset, every histological
image(bag) has been sliced into on average 5695 patches(i.e instances)
and from each patch neural network generated instance consisting of
32 descriptors.
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6 Results

The purpose of this sections is to discuss results received from valida-
tion of inference algorithm as well as evaluation of various optimiza-
tion algorithms on binary multiple instance learning datasets dataset.

6.1 Hyper parameter tuning and testing procedure

K-fold cross validation was used to estimate optimal values for hyper
parameters used in our classifier. This was done by running k-fold
cross validation across table of possible hyper parameter values and
choosing parameter for which classifier achieved highest accuracy on,
while other hyper parameters are constant.
Before measuring final performance of our classifier, we used k-fold
cross validation on training dataset for finding optimal set of hyper
parameters. We were sequentially optimizing parameters in following
order: learning rate η, for batch gradient descent momentum param-
eter α, regularization parameter λ, resp.C and parameters ρ, resp.κ
for RMIMN, resp. GMIMN cardinality potentials. After finding op-
timal set of hyper parameters, we trained classifier with tuned hyper
parameters on entire training dataset and measured accuracy on test-
ing dataset. We repeated this process 5 times for different shuffled
common multiple instance learning datasets with 75\ 25 training to
testing split and calculated overall accuracy and uncertainty. The
results from k-fold cross validation can be found in Appendix C.

6.2 Inference validation

Validation process of inference algorithm was done by training instance-
based classifier(linear SVM from [18]) on individual data points and
their labels on all versions of synthetic datasets, followed by reusing
newly found weights w and intercept point b in our implementation for
predicting bag label using inference algorithm on unseen bags. This
process was repeated for RMIMN and MIMN versions of synthetic
dataset. In RMIMN versions of synthetic datasets we used RMIMN
cardinality potential with ρ value set to optimal value. Results can
be seen in Table 1.
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Synthetic dataset Accuracy of instance-based classifier[%]
complex MIMN Noise 1.000 ± 0.0

complex RMIMN Noise 1.000 ± 0.0
simple MIMN Noise 1.000 ± 0.0

simple RMIMN Noise 1.000 ± 0.0
MIMN Image 1.000 ± 0.0

RMIMN Image 1.000 ± 0.0

Table 1: Inference validation results on MIMN version of synthetic datasets

From results we can see, that with prior knowledge of count based
aggregations in training dataset, inference algorithm is able to find
correct patterns in training dataset. We visualize instance labels as-
signed with inference algorithm in Appendix B.

6.3 Validation of optimization methods

We validated implemented optimization algorithms defined in sec-
tion 4 for learning on synthetic datasets. The results of validation
can be seen in Table 2, Table 3 and Table 4.

Optimization method simple Noise MIMN simple Noise RMIMN
batch gradient descent 1.000 ± 0.0 1.000 ± 0.0
inference based SVM 1.000 ± 0.0 1.000 ± 0.0
linear programming 1.000 ± 0.0 1.000 ± 0.0

Table 2: Comparison of accuracies measured with different optimization methods on simple Noise
dataset

Optimization method complex Noise MIMN Complex noise RMIMN
batch gradient descent 1.000 ± 0.0 1.000 ± 0.0
inference based SVM 1.000 ± 0.0 1.000 ± 0.0
linear programming 1.000 ± 0.0 1.000 ± 0.0

Table 3: Comparison of accuracies measured with different optimization methods on complex
Noise dataset
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Optimization method Image MIMN Image RMIMN
batch gradient descent 1.000 ± 0.0 1.000 ± 0.0
inference based SVM 1.000 ± 0.0 1.000 ± 0.0
linear programming 1.000 ± 0.0 1.000 ± 0.0

Table 4: Comparison of accuracies measured with different optimization methods on Image dataset

6.4 Estimating cardinality hyper parameters

Synthetic datasets and k-fold cross validation were used to estimate
ratio of positive instance inside a bag. We did this by fixing all hyper
parameters of our classifier, with the exception of ρ for RMIMN poten-
tial. We measured overall accuracy, which classifier achieved during
k-fold cross validation for particular ρ\κ value and at the end we chose
hyper parameter value for which classifier scored highest overall accu-
racy. We visualized accuracy of all optimization algorithms, which we
used in our implementation for multiple ρ values on RMIMN version
of synthetic datasets. The plots of accuracy measured on synthetic
datasets for ρ values can be seen in Figure 3. Visualization of hyper
parameters estimation for RMIMN and GMIMN potentials done on
multiple instance learning datasets can be found in Appendix C.

(a) simple Noise dataset (b) complex Noise dataset (c) image dataset

Figure 3: Results of cross validation on multiple values of hyper parameter ρ measured on synthetic
datasets with different optimization algorithms

6.5 Inference based SVM

With the use of liblinear’s[18] implementation of linear SVM we suc-
cessfully evaluated performance of mi-SVM-like optimization algo-
rithm. Measured results of our implementation are slightly worse
to similar methods and can be found in Table 5.
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SVM Method Musk1 Musk2 Tiger Elephant Fox
MIMN 0.826 ± 0.081 0.646 ± 0.131 0.744 ± 0.053 0.757 ± 0.051 0.564 ± 0.045

RMIMN 0.739 ± 0.075 0.738 ± 0.050 0.760 ± 0.040 0.824 ± 0.0357 0.564 ± 0.079
mi-SVM[6] 0.874 0.836 0.784 0.822 0.582
MI-SVM[6] 0.779 0.843 0.840 0.814 0.578

Table 5: Comparison of mi-SVM and inference based SVM on MIL datasets

6.6 Batch gradient descent

We implemented batch gradient descent method and evaluated its per-
formance on multiple instance binary datasets and Camelyon dataset.
We validated ability of batch gradient descent to train on weakly su-
pervised data and to estimate value of cardinality parameters ρ and
κ. We compare performance of batch gradient descent to state-of-art
classification methods in Table 7.

6.7 Linear programming

We were able to implement linear programming method by using al-
ready implemented linear programming solver in lpsolvers library im-
plemented with cvxopt[19] package. We ran cross-validation on com-
mon binary multiple instance learning datasets for maximum of 20
iterations per validation run. Results generated with linear program-
ming were comparable to other state of art method, while accuracy
achieved using GMIMN potential was worse than RMIMN across all
datasets. We were not able to measure performance of linear pro-
gramming approach on Camelyon dataset, due to inability of linear
programming solver to find feasible solutions during training.

6.8 Camelyon results

We used predefined training set to estimate hyper parameters of our
optimization methods with 5-fold cross validation. We then ran 5-
fold cross validation on entire dataset and averaged results of those
runs, which can be seen in Table 6. We had to set maximum num-
ber of iterations to 100 for both optimization methods, due to size
of dataset, in which calculating 1 iteration for our optimization al-
gorithms took around 1 hour. From results we can see, that MIMN
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version of batch gradient descent outperformed all other optimization
approaches. Resulting score achieved by batch gradient descent with
MIMN cardinality potential is comparable to state-of-art methods.

Optimization method Accuracy
inference based SVM MIMN 0.768 ± 0.102

inference based SVM RMIMN 0.645 ± 0.079
BGD MIMN 0.899 ± 0.032

BGD RMIMN 0.7143 ± 0.018

Table 6: Comparison of results measured on Camelyon datasets

6.9 Summary of results

Summary of results we measured on common binary multiple instance
learning datasets and comparison to other state-of-art methods can
be seen in Table 7.
We can see that the best results of batch gradient descent and linear
programming are comparable to state-of-art methods, while RMIMN
cardinality potential outperforms the MIMN and GMIMN cardinality
potentials by a small margin, which might be due to low amount of
values of κ we tested on GMIMN potential and smaller amount of
cross-validation runs, which resulted in higher standard deviation of
our tests.

Method Fox Tiger Elephant Musk1 Musk2
Inference based SVM MIMN 0.504 ± 0.047 0.74 ± 0.092 0.736 ± 0.065 0.692 ± 0.097 0.636 ± 0.131

Inference based SVM RMIMN 0.547 ± 0.054 0.708 ± 0.064 0.816 ± 0.038 0.660 ± 0.180 0.576 ± 0.081
BGD MIMN 0.580 ± 0.081 0.836 ± 0.029 0.828 ± 0.041 0.817 ± 0.047 0.7 ± 0.139

BGD RMIMN 0.576 ± 0.043 0.844 ± 0.03 0.856 ± 0.053 0.860 ± 0.036 0.707 ± 0.058
BGD GMIMN 0.548 ± 0.062 0.756 ± 0.043 0.712 ± 0.076 0.739 ± 0.03 0.739 ± 0.03

LP MIMN 0.576 ± 0.043 0.796 ± 0.035 0.840 ± 0.05 0.739 ± 0.092 0.692 ± 0.076
LP RMIMN 0.616 ± 0.079 0.764 ± 0.058 0.856 ± 0.053 0.834 ± 0.083 0.746 ± 0.132
LP GMIMN 0.548 ± 0.062 0.72 ± 0.05 0.736 ± 0.035 0.773 ± 0.089 0.669 ± 0.069
mi-SVM[6] 0.582 0.784 0.822 0.874 0.836
MI-SVM[6] 0.590 0.840 0.810 0.779 0.843
EM-DD[10] 0.561 0.721 0.783 0.848 0.849

AW-SVM[11] 0.640 0.830 0.820 0.860 0.840
AL-SVM[11] 0.630 0.780 0.790 0.860 0.830

ALP-SVM[11] 0.660 0.860 0.835 0.863 0.862
MICA[13] 0.587 0.826 0.805 0.844 0.905

MI-Kernel[14] 0.603 0.842 0.843 0.880 0.893
MI-Graph[15] 0.612 0.819 0.851 0.900 0.900
mi-Graph[15] 0.616 0.860 0.868 0.889 0.903

Table 7: Averaged accuracies of various state-of-art methods and comparison to performance
achieved with our optimization algorithms
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7 Conclusion

In this thesis we implemented framework of Markov networks intro-
duced in [9]. We successfully validated optimization methods of batch
gradient descent, inference based SVM and new method using linear
programming on multiple instance learning datasets. Performance of
our optimization algorithms was satisfactory, but still not compara-
ble to state-of-art multiple instance learning methods. We measured
accuracy of batch gradient descent and inference based SVM method
on Camelyon dataset, in which MIMN definition of cardinality poten-
tial significantly outperformed non-standard multiple instance learn-
ing assumptions. This can be a consequence of extremely high number
of instances inside a bag (ρ value 0.1 would mean that at least 569
instances on average have to be labeled as positive) , but further test-
ing would be needed. From results on Camelyon dataset, we saw
that performance of BGD using MIMN cardinality potential rivals
90% accuracy which is close to performance achieved by state-of-art
optimization algorithms on histological images.

7.1 Future work

At the end of our thesis we propose few ideas for future work. First
would be to find more robust linear programming solver and evalu-
ate linear programming method on Camelyon dataset. Second would
be to implement different kernels and non-convex optimization al-
gorithms, so we can compare performance of our implementation to
original paper. Last but not least would be to implement stochastic
gradient descent method to reduce problem of lengthy iterations.
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Appendices

A Python framework

In this section we provide tables of possible arguments with descrip-
tions and general guide on how to set-up and run our framework.

A.1 Setting up

We provide link for our github1 account, where anyone can download
framework described in [9], which we reproduced in python3. We also
provide quick set up guide on our github page.

A.2 Running framework

After following installations steps described on github page, we can
run our program with command:

$> python3 main . py <s p l i t> <kerne l> <dataset> <pot en t i a l>

1https://github.com/branislav-doubek/multiple-instance-learning
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A.3 Parameteres and keywords

We present tables of parameters and keywords used in our implemen-
tation of [9]’s framework in python3

Split type Description
train Trains the classifier
test Loads trained classifier and evaluates its performance
cv Runs cross-validation mode
run Trains the classifier and tests its performance
validate Runs 1 fold of cross-validation
Kernel type Description
bgd Batch gradient descent
svm Mi-SVM defined in [6]
lp Linear programming
Dataset Description
noise gaussian noise dataset
image noise image dataset
fox
tiger
elephant
musk1
musk2
Cardinality potential Description
MIMN defined in Equation 4
RMIMN defined in Equation 5
GMIMN defined in Equation 6
Parameters Description
-ro used in rmimn potential as a constraint
-c sets parameter C
-iterations sets maximum number of permitted iterations
-k used in gmimn potential as a constraint
-rs random seed
-v visualize
-cv cross-validate on hyperparameter
-lr learning rate
-valid_iter Selects fold used as a testing dataset in validation
-norm regularization norm [1, 2] (Only for bgd)

Table 8: List of framework keywords and parameters
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A.4 Cross-validation mode

If we use ’cv’ split type, we run k-fold cross validation across array of
possible values of tunable hyper parameters on training dataset. We
publish list of tunable parameters in table below.

Tunable parameters List of values Description
η {1e-5, 1e-4, 1e-3} learning rate
α {0.3, 0.5, 0.7} momentum parameter
C {0.001, 0.01, 0.1, 1, 10, 1000} regularisation parameter
κ {3,5,7,10} parameter used in GMIMN potential
ρ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} parameter used in RMIMN potential

Table 9: List of cross-validation parameters
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B Inference algorithm visualization

This appendix section is used for visualizing results of inference al-
gorithm trained with batch gradient descent, inference based SVM
and linear programming optimization algorithms on complex version
of Noise dataset and RMIMN and MIMN definition of image dataset.

B.1 Noise dataset

We visualized few exemplary predictions in Figure 4 made on complex
Noise dataset along with minimization of loss function in Figure 5
and Figure 6 during training to compare performances and valiity of
inference based SVM, batch gradient descent and linear programming.

(a) True positive prediction (b) True negative prediction

(c) False negative prediction (d) False positive prediction

Figure 4: Visualization of predicted bag labels using inference algorithm on Noise dataset

B.2 Image dataset

We visualized few examples of classification done on RMIMN and
MIMN versions of synthetic datasets, which should provide some con-
text on how the inference algorithm assigns instance labels to instance
feature vectors. Resulting plots provide a proof, that we were able to
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(a) inference based SVM (b) BGD (c) linear programming

Figure 5: Visualization of minimization of loss function J for different optimization algorithms on
MIMN version of complex Noise dataset

(a) inference based SVM (b) BGD (c) linear programming

Figure 6: Visualization of minimization of loss function J for different optimization algorithms on
RMIMN version of complex Noise dataset

successfully find optimal solution for MIMN and RMIMN versions of
Image dataset.

(a) True positive prediction (b) True negative prediction

Figure 7: Visualization of predicted bag labels using inference algorithm on MIMN definition of
Image dataset

From Figure 8 example (c) we can see, that inference algorithm
was able to find all positive instances inside a bag, but due to ratio
of positive instances inside negative bag, which is close to ρ denoting
classifier’s RMIMN cardinality potential threshold. Classifier misclas-
sifies bag as a result.
In Figure 9 and Figure 10 we visualized minimization of loss function
over training epochs.
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(a) True positive prediction (b) True negative prediction

(c) False positive prediction

Figure 8: Visualization of predicted bag labels using inference algorithm on RMIMN definition of
Image dataset

(a) inference based SVM (b) BGD (c) linear programming

Figure 9: Visualization of minimization of loss function J for different optimization algorithms on
MIMN version of Image dataset

(a) inference based SVM (b) BGD (c) linear programming

Figure 10: Visualization of minimization of loss function J for different optimization algorithms
on RMIMN version of Image dataset
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C Results of cross validation

In this section we present results of k-fold cross validation on multiple
instance learning datasets with various optimization algorithms. We
visualize dependency on cardinality parameters ρ and κ for RMIMN
and GMIMN potentials and present parameters, which we used in final
evaluation along with averaged accuracy we measured on 5 differently
seeded runs.
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C.1 Tiger dataset

Method α Cardinality potential η C ρ κ Accuracy[%]
BGD 0.7 MIMN 1e-3 0.1 x x 0.836 ± 0.029
SVM x MIMN x 1 x x 0.74 ± 0.092
LP x MIMN x 10 x x 0.796 ± 0.035

BGD 0.7 RMIMN 1e-3 0.1 0.1 x 0.844 ± 0.03
SVM x RMIMN x 1 0.8 x 0.708 ± 0.064
LP x RMIMN x 10 0.4 x 0.764 ± 0.058

BGD 0.7 GMIMN 1e-3 0.1 x 5 0.756 ± 0.043
LP x GMIMN x 10 x 5 0.72 ± 0.05

Table 10: Results of cross-validation on Tiger dataset

Figure 11: Comparison of accuracy based on RMIMN potential parameters on Tiger dataset

Figure 12: Comparison of accuracy based on GMIMN potential parameters on Tiger dataset

33



C.2 Fox dataset

Method α Cardinality potential η C ρ κ Accuracy[%]
BGD 0.7 MIMN 1e-3 1 x x 0.580 ± 0.081
SVM x MIMN x 0.01 x x 0.504 ± 0.047
LP x MIMN x 1000 x x 0.576 ± 0.049

BGD 0.7 RMIMN 1e-3 1 1.0 x 0.576 ± 0.043
SVM x RMIMN x 0.01 1.0 x 0.547 ± 0.054
LP x RMIMN x 1000 0.8 x 0.616 ± 0.079

BGD 0.7 GMIMN 1e-3 1 x 10 0.548 ± 0.062
LP x GMIMN x 1000 x 3 0.548 ± 0.062

Table 11: Results of cross-validation on Fox dataset

Figure 13: Comparison of accuracy based on RMIMN potential parameters on Fox dataset

Figure 14: Comparison of accuracy based on GMIMN potential parameters on Fox dataset
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C.3 Elephant dataset

Method α Cardinality potential η C ρ κ Accuracy[%]
BGD 0.7 MIMN 1e-3 0.1 x x 0.828 ± 0.041
SVM x MIMN x 1 x x 0.736 ± 0.065
LP x MIMN x 1 x x 0.840 ± 0.050

BGD 0.7 RMIMN 1e-3 0.1 1.0 x 0.856 ± 0.053
SVM x RMIMN x 1 0.9 x 0.816 ± 0.038
LP x RMIMN x 1 1.0 x 0.856 ± 0.053

BGD 0.7 GMIMN 1e-4 0.1 x 3 0.712 ± 0.076
LP x GMIMN x 1 x 3 0.736 ± 0.035

Table 12: Results of cross-validation on Elephant dataset

Figure 15: Comparison of accuracy based on RMIMN potential parameters on Elephant dataset

Figure 16: Comparison of accuracy based on GMIMN potential parameters on Elephant dataset
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C.4 Musk1 dataset

Method α Cardinality potential η C ρ κ Accuracy[%]
BGD 0.7 MIMN 1e-3 10 x x 0.817 ± 0.047
SVM x MIMN x 0.1 x x 0.692 ± 0.097
LP x MIMN x 10 x x 0.739 ± 0.092

BGD 0.7 RMIMN 1e-3 10 0.2 x 0.860 ± 0.036
SVM x RMIMN x 0.1 0.6 x 0.660 ± 0.180
LP x RMIMN x 10 0.7 x 0.834 ± 0.083

BGD 0.7 GMIMN 1e-3 10 x 3 0.739 ± 0.03
LP x GMIMN x 10 x 3 0.773 ± 0.089

Table 13: Results of cross-validation on Musk1 dataset

Figure 17: Comparison of accuracy based on RMIMN potential parameters on Musk1 dataset

Figure 18: Comparison of accuracy based on GMIMN potential parameters on Musk1 dataset
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C.5 Musk2 dataset

Method α Cardinality potential η C ρ κ Accuracy[%]
BGD 0.7 MIMN 1e-4 0.01 x x 0.7 ± 0.139
SVM x MIMN x 0.01 x x 0.636 ± 0.131
LP x MIMN x 1 x x 0.692 ± 0.076

BGD 0.7 RMIMN 1e-4 0.01 1.0 x 0.707 ± 0.058
SVM x RMIMN x 0.01 0.4 x 0.576 ± 0.081
LP x RMIMN x 1 0.4 x 0.746 ± 0.132

BGD 0.7 GMIMN 1e-4 0.01 x 3 0.630 ± 0.096
LP x GMIMN x 1 x 5 0.669 ± 0.069

Table 14: Results of cross-validation on Musk2 dataset

Figure 19: Comparison of accuracy based on RMIMN potential parameters on Musk2 dataset

Figure 20: Comparison of accuracy based on GMIMN potential parameters on Musk2 dataset

37



C.6 Camelyon dataset

Method α Cardinality potential η C ρ κ Accuracy[%]
BGD 0.7 MIMN 1e-6 10 x x 0.899 ± 0.032
SVM x MIMN x 1000 x x 0.768 ± 0.102
BGD 0.7 RMIMN 1e-6 10 0.1 x 0.7143 ± 0.018
SVM x RMIMN x 1000 x 0.1 0.0.645 ± 0.079

Table 15: Results of cross-validation on Camelyon dataset

Figure 21: Comparison of accuracy based on RMIMN potential parameters on Camelyon dataset
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D List of attachments

1x CD containing implementation of multiple instance learning frame-
work
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