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Abstract

The introduction of Vulkan [13], a low-
level graphics API, in 2016 has presented
an opportunity for developers to leverage
the rendering and compute capabilities of
modern graphics cards in a high perfor-
mance, cross-platform manner. However,
its use comes at significantly higher devel-
opment costs compared to its high-level
predecessor, OpenGL. This thesis presents
an interface which aims to reduce those
costs while maintaining the advantages
of Vulkan, striking a balance in the level
of abstraction it exposes. Building upon
Vulkan to send commands to the graph-
ics device, its goal is to allow the user to
express intent without superfluous details
and yet not stand in the way between the
code and the hardware when high per-
formance and control are needed. This
interface has been designed, implemented
and evaluated against both OpenGL and
Vulkan in terms of performance, memory
use and verbosity of code.

Keywords: Tephra, Vulkan, Computer
Graphics, Graphics API, GPU

Supervisor: Ing. Jaroslav Sloup

Abstrakt

Příchod grafického, nízko-úrovňového gra-
fického rozhraní Vulkan [13] v roce 2016
přinesl pro developery příležitost využít
vykreslovací a výpočetní schopnosti dneš-
ních grafických karet na mnoha platfor-
mách a s vysokým výkonem. Pro jeho po-
užití je ovšem třeba vynaložit značně větší
úsilí, než pro jeho předchůdce OpenGL.
Tato práce předkládá rozhraní, které zjed-
nodušuje vývoj v porovnání s rozhraním
Vulkan, pro které je nadstavbou, ale zá-
roveň se snaží zachovávat jeho výhody.
Jeho cíl je umožnit uživatelům vyjádřit
svůj záměr bez přebytečných detailů, ale
tak, aby nestálo v cestě mezi kódem a
grafickým zařízením když je vysoký vý-
kon a kontrola za potřebí. Toto rozhraní
bylo navrženo, naimplementováno a po-
rovnáno oproti OpenGL a Vulkan z hle-
diska výkonu, paměťových nároků a veli-
kosti kódu.

Klíčová slova: Tephra, Vulkan,
Počítačová grafika, grafické API, GPU

Překlad názvu: Návrh moderního
vysoko-úrovňového grafického API
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Chapter 1

Introduction

While consumer graphics hardware and the demands put on it have been
evolving significantly over the past 25 years, both growing more and more
complex, the graphics APIs had a hard time catching up without break-
ing compatibility and abandoning their previous design philosophies. Over
time, GPU drivers have accumulated additional layers that through various
heuristics and guesswork attempted to translate the high-level commands as
received through the aging APIs into performant low-level instructions for
the modern GPU architectures. This involuntary level of indirection makes
it difficult for the user to see what is really happening, causes non-obvious
performance issues and requires the user to learn what the “fast paths” are in
the API for modern architectures. Even then the interface itself might be the
limiting factor, due to the lack of multithreading support and other features.

This has recently changed, with the introduction of the Vulkan API [13],
allowing the user to communicate with the underlying hardware much more
directly, without the driver and oddities of the API getting in the way.
While the performance has improved and the interface is smaller compared
to the previous APIs, being this low level has its disadvantages, too. The
implementation of even the simplest example is very verbose, especially if it
needs to work well on all platforms. Several areas previously handled by the
driver now practically require the user to write an abstraction for themselves,
rather than using the API directly, such as for memory allocation. Various
concepts like synchronization and image layout transitions are difficult to
grasp and easy to make errors in, but are also possible to be automated, given
enough information from the user.
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1. Introduction .....................................
While this thesis presents a brief introduction of the relevant concepts in

Vulkan, a quick overview of the main features of the Vulkan API can be found
at https://renderdoc.org/vulkan-in-30-minutes.html.

This project aims to design a high-level graphics and computing API
with modern GPU architectures and use cases in mind, while avoiding the
disadvantages of the existing APIs. This is only possible thanks to Vulkan
providing a performant low-level interface that can be built upon freely. It
is not meant to replace Vulkan for uses where its explicitness and level of
control are paramount, neither is it supposed to replace OpenGL, where fast
prototyping and an already established community outweigh its downfalls.
Instead, its aim is to fill the hole somewhere in the middle, for the projects
that require a high performance solution, but whose developers wish to
avoid the steep learning curve and large time investment associated with the
Vulkan API. Since this library stems from Vulkan and wishes to make its
concepts accessible to a wider audience, it has been aptly named “Tephra,”
the geological name for “rock fragments and particles ejected by a volcanic
eruption.”

2
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Chapter 2

Related work

Several graphics libraries that form an abstraction layer around Vulkan have
been written already. To be able to compare between them and point out
their advantages and shortcomings, we first need to consider the reasons why
we might want to use an abstraction library over Vulkan in the first place,
rather than use the API itself. On the other hand of the spectrum, we should
also recognize the benefits Vulkan has over an API like OpenGL. An ideal
abstraction would preserve all of Vulkan’s benefits while resolving all the
issues it currently has.

2.1 Benefits of Vulkan over OpenGL

Vulkan, as a low level API, resides closer to the hardware, exposing its
functionality more directly and with less abstractions than previous interfaces.
This means the driver implementations are simple and thin, generally offering
lower CPU overhead. Due to the interface being designed in a way that
provides the driver all the information it needs to know, the drivers can avoid
relying on various heuristics to guess what the user’s intents are and what
they will do in the future. Thanks to explicit synchronization and defining
constructs ahead of time, less work needs to be done by the driver during
actual rendering. It features an optional validation layer that can be turned
off when the product is shipped, saving the implementation from checking
whether all arguments passed to the API calls are correct at that time. The
explicit API design makes it more obvious what the hardware is actually doing
and what operations are slow. There are no hidden copies or synchronization
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2. Related work.....................................
points. In some ways it is also more straightforward than OpenGL. Things
can generally only be accomplished one way. For example, there are only 4
drawing functions in Vulkan, as opposed to 19 in OpenGL.

The API is designed with multithreading support in mind, not having
monolithic objects that keep state and restrict parallelism where it’s im-
portant, notably for pipeline compilation and preparing command buffers,
both of which are time intensive and easily parallelizable. Before shaders
get compiled in pipeline state objects, they need to be pre-compiled into the
SPIR-V bytecode, which is easier and faster to parse than human readable
GLSL code. Pipeline state is created ahead of time and explicitly. This
prevents sudden framerate drops when previously unseen shaders and pipeline
state combinations get used for rendering. In OpenGL, they have to be
automatically compiled by the driver just in time before the rendering of the
frame takes place.

Explicit memory management means related resources can reside in the
same memory allocation. Images and buffers with non-overlapping usage can
even share the same memory space, leading to a reduced memory footprint.
The user of the API also knows how much GPU memory is used by the appli-
cation. OpenGL sometimes duplicates resources to maintain the illusion of an
immediate API. Thanks to explicit management of resources like command
buffers, synchronization primitives and descriptor sets, their instances can be
repurposed once not in use without an unnecessary destroy-create cycle. An
increasing number of GPU architectures use tiled rendering, the advantages
of which can be leveraged through render passes, allowing large reductions in
memory bandwidth in such architectures through pixel-local storage.

2.2 Benefits of high-level abstraction libraries
around Vulkan

There are several reasons why using an abstraction library over Vulkan is
beneficial. Vulkan is a very verbose API and even simple demos often require
more than a thousand lines of code. Some of its concepts are also hard
to learn and understand, as evidenced by the frequent questions asked in
the community. For those reasons, for anything more complex than demos
and simple applications, it has become very common and even mandatory
to implement abstractions over some parts of Vulkan. Most notably, the
handling of synchronization, inserting barriers and image layout transitions
where necessary. All of those require knowledge of previous and upcoming
commands as well as deep understanding of the synchronization principles in
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............................... 2.3. A look at existing libraries

Vulkan. Using it directly is hard to get correct and error prone to maintain.
Suballocating memory from larger chunks is needed for performance reasons,
which often leads to using a general purpose heap allocator. Wrappers and
handlers around the Vulkan API as a whole have its merit as well, reducing
the amount of code that needs to be written, simplifying debugging, enabling
easier platform support and ensuring the proper lifetime of Vulkan handles.

As is often said, no size fits all. Every project would benefit from writing
its own abstraction around Vulkan aimed specifically for its own use of the
API. That is not time efficient in practice, however. Many projects are better
off using a general abstraction over Vulkan than using Vulkan directly, even if
it does not suit its needs perfectly. Several such abstraction libraries already
exist at varying levels of scale, focus and stages of development.

2.3 A look at existing libraries

V-EZ [3] is an abstraction library around Vulkan developed by AMD, signifi-
cantly simplified in an effort to make Vulkan more accessible. Many parts
of Vulkan are completely hidden, serving as a good starting point for people
to learn the basics of the API and has its use for simple applications. It is,
however, still a C API and requires explicit resource lifetime management
without RAII concepts. The simplification doesn’t come without sacrifices
either. Descriptor sets and pipelines are created on the fly, potentially lead-
ing to unexpected delays during rendering. Image layout transitions and
barriers are not optimal due to missing ways for the user to communicate
future accesses to resources. Various resource pools are abstracted away,
causing unexpected locking in multithreaded code. It exposes no concept
of render passes, resulting in reduced performance on tiled renderers. It is
also automatically resolving multisampled images, rather than letting the
user pick the right moment for it. Overall, this library loses many of the
performance benefits of Vulkan, while the deceptively simplified API still
leaves some non-obvious responsibilities to the user. It also doesn’t ask the
user for useful information, leading to less than optimal execution on the
device as well. The value was put more on ease of use, willing to sacrifice
performance to achieve it.

DiligentEngine [6] provides a low level abstraction around all the main
graphics APIs with a focus on the modern, low level APIs. Even then it had
to make several sacrifices to be able to do so, targeting the lowest common
denominator of multiple graphics APIs. This manifests mostly as a loss of
control, specifically over how and where resources are created and where
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2. Related work.....................................
workloads are executed. For example asynchronous compute doesn’t seem to
be implicitly supported. Due to the differences in shader interface between
APIs, you can’t layout descriptor sets and constant buffer blocks arbitrarily.
Pipeline compilation can only be single threaded. Similarly to V-EZ, it does
not expose render passes and does not ask the user enough information about
future usage to insert barriers efficiently. Its automatic barrier insertion can
be selectively disabled in exchange for being able to record commands in
parallel, since resource state is tracked globally, so one has to choose one or
the other. DiligentEngine is a well made and useful library, especially when
also targeting platforms that do not support Vulkan. When the user can
afford to focus only on platforms that support Vulkan as an API, there is
still room for improvement.

Several other libraries exist, which aim to make using Vulkan easier without
providing any high level abstractions. Vulkan-Hpp [12], Anvil [1] and Vpp [9]
are examples of such. They are low level APIs on their own, building upon
Vulkan only through thin layers. Where this is desirable and high levels of
control is required, these libraries provide at least some comfort over using
Vulkan directly, with very little compromises. However, the scope of this
project is to design a high level API, so it is not comparable.

There are many other libraries in the Vulkan ecosystem, but they mostly
focus on individual areas of Vulkan, rather than providing a wrapper around it
as a whole and therefore weren’t included here. Only two libraries mentioned
provide a significant enough abstraction around Vulkan to alleviate most
of its issues with usability. In some areas, however, they overshoot in their
design, sacrificing some of the benefits Vulkan has over other APIs in the
first place.
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Chapter 3

Interface design

3.1 General concepts

As is apparent from the previous chapter, there is still a place for an API that
does not sacrifice performance or control for the sake of ease of use, while
still providing a rich, but unobstructive set of abstractions specific to Vulkan.
This chapter will provide an overview of such a design. Some general design
practices and goals need to be laid out, first.

There are certain aspects any abstract programming interface should have.
Its design should be intuitive, separated into logical parts that can be reasoned
about individually. The most obvious path towards a goal should also be the
correct path, and the correct path should be easy to use. Its components
need to be consistent and easy to discover. It should be well documented,
but the user shouldn’t need to look up its documentation at every step to
get things done. It should allow for the common tasks to be done easily and
without any friction, but it should be able to handle most of the rare edge
cases as well.

For an abstraction library around Vulkan in particular, a strong focus needs
to be put on performance. Some small sacrifices may be made there, but only
if other aspects of the API benefit from it enough and if the performance
lost is in areas that are not used often. It shouldn’t incorporate too thick
abstractions and heuristics that make it non-obvious for somebody familiar
with graphics programming to know what is happening behind the scenes.

7



3. Interface design....................................
This explicitness is valuable for debugging and making it clear what operations
are expensive on the GPU.

The library must have high levels of interoperability with Vulkan itself.
That means accepting Vulkan objects as well as exposing them in its own
abstractions. This is necessary both because of the rich ecosystem of existing
libraries and tools around Vulkan that the user may wish to use, as well as
their own code, but also because of the many extensions available, not all of
which may be implemented in Tephra.

3.1.1 Object lifetime

One of the important design decisions relates to object lifetime. In Vulkan,
all objects are created and destroyed explicitly. Since Tephra is a C++ API,
it uses RAII concepts for managing the lifetime of resources and ensuring
they get automatically freed after their handler’s destructors are called. A
relevant design aspect is that once a workload has been submitted to the
device, it should be difficult to accidentally affect it afterwards. This is
not true for Vulkan in general, where many objects are required to be kept
around while the workload is executing. Such a design is not desirable when
the destruction of objects is implicit as in RAII. Therefore, Tephra ensures
that the destruction of Vulkan objects is deferred until it is safe to do so.
This is done by maintaining a list of objects to be released or destroyed for
every submitted workload after it and all previous workloads finish executing.
This guarantees that all already submitted workloads are not affected. The
resources are garbage collected through an explicit call or at various points
during the API usage.

Already submitted workloads can be unintentionally affected by other ways
than hasty destruction of Vulkan objects. Data can be visible by both the
host and the device at the same time, creating hazards. This is especially
dangerous for developers used to OpenGL, where, for example, creating one
uniform buffer and overwriting its contents every frame is common, despite
the device still accessing the old contents of the previous frame. OpenGL
handles this by silently creating multiple uniform buffers. Doing the same in
Tephra would violate explicitness, so it instead encourages the use of transient
resources whose lifetime is limited to a single workload, making the user
request every “fresh” buffer. To the user it may then look like a new uniform
buffer is being created every frame, but instead the old buffers are reused
once they are no longer being accessed by the device. This can be handled
efficiently through the job system described in later chapters. It improves
upon what OpenGL does by making this creation explicit, even though the
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................................... 3.1. General concepts

buffers are still managed by the implementation.

3.1.2 Handling of arrays

Due to the effort in Vulkan to minimize API calls and context switches, many
functions accept and return arrays of values. As a general C API, Vulkan
exposes this by asking the user for pointer and count pairs, while functions
that return arrays are expected to be called multiple times, first returning
the number of elements to be returned and then filling an array prepared by
the user.

A C++ API can do better and, for example, allow the user to pass in a
temporary array through the means of an initializer list, but also easily pass
existing arrays of various form. Overloading the functions is one possibility,
but for functions that accept multiple arrays this leads to combinatorial
explosion of overloads. Since the array often needs to be contiguous anyway,
a simple class that represents a contiguous view of an array is provided,
ArrayView. It can be constructed from a pointer and count pair, or converted
by the global view() function from iterator pairs, standard library vectors
or C arrays. Such a general purpose array view must not be constructable
from temporary arrays such as initializer lists, however, because it does not
own the data and merely points to it. To enable temporary arrays to be
passed to functions, a second array view class is provided, ArrayParameter.
This one is expected to have a temporary storage and unlike ArrayView is
directly constructible from initializer lists, as well as from regular ArrayViews.
Where a temporary storage is not permissible, like as members of structs,
Tephra asks for an ArrayView instead. For convenience, rangeView() function
is also defined, creating a view of only a specific range of the passed array
and viewOne(), creating a single element view out of a reference.

Listing 3.1: ArrayView usage example
tp : : Pipeline∗ compiledPipelines [ 2 ] = { &pipelineA , &pipelineB } ;
device−>compileComputePipelines (

{ &pipelineSetupA , &pipelineSetupB } ,
pipelineCache ,
tp : : view ( compiledPipelines )

) ;

9



3. Interface design....................................
3.1.3 Threading behavior

Another aspect of a modern graphics API is supporting multithreaded usage.
There are several key areas that require multithreading to be efficient: Building
pipelines, which involves compiling shaders, and recording commands for the
GPU. Both need to support parallelization well enough. While designing
such an API, every object should take one of the following stances: Either it
can be used from multiple threads at the same time, in which case the object
is said to be internally synchronized, or it is left to the user to make sure
only a single thread accesses the object at one time in a way that modifies
its state. Then it is externally synchronized. In Vulkan, all objects with the
exception of the pipeline cache are externally synchronized.

In Tephra, the Application, Device and PipelineCache objects are inter-
nally synchronized, the rest externally. The reasoning for this decision is
that in a multithreaded application, all threads need to interface with these
objects and can’t just create their own instances, unlike, for example, various
resource pools, which are not thread safe and is up to the application to
decide whether to synchronize this access or simply make sure only one thread
accesses each instance at a time.

Every job and command list can only be built by one thread at a time. The
parallelism is mainly achieved by being able to execute multiple command
lists within a job, each recorded by a different thread. Building jobs can be
parallelized as well, but that may somewhat limit the usefulness of jobs if
they are unnecessarily split up. Submitting jobs can only be done in parallel
if they are being submitted to different queues.

3.1.4 Validation and debugging

Validation and debugging is well designed in Vulkan. By default, very little
error checking and input validation is performed, but optionally, validation
layers can be inserted in between the API front and the driver that check for
correct API usages and provide debug information. Such information should
be retained and still make sense to the user, while being augmented with the
library’s own valid usage checks. For that purpose, many Tephra function
implementations come with toggleable validation checks and together with
the debug system provide the user with information what function call caused
the debug message to be displayed. Additionally, almost every object can
be assigned with a name to identify objects of the same type between each
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..................................... 3.2. Initialization

other. The naming is also transmitted to Vulkan objects through its own
debug naming extension that can then be used by 3D graphics debuggers
such as RenderDoc [5].

3.2 Initialization

In Vulkan, several steps are necessary before any meaningful work can be
done with it. The first catch comes right away: The Vulkan header provides
static pointers to the API functions defined by the loader. The loader then
dispatches the calls to the underlying instance and device implementations
of the driver. Because there can be multiple devices and versions present,
the loader must choose the correct implementation to use on every API call.
To avoid this overhead, Vulkan provides a capability to load the function
pointers dynamically, specific to the actual driver and device that will be
used. This is, however, less convenient to the user.

The next step is to create a VkInstance object, used to store any kind of
application-wide state. During creation, this provides an opportunity for the
user to specify a list of layers. Layers in Vulkan are able to hook up to the
API calls the application makes and provide new functionality, like capturing
screenshots, or offer debugging utilities and usage validation. The application
also specifies its name and version, allowing the driver developers to detect it
and inject application dependent optimizations.

An instance object then provides a way to query the list of Vulkan sup-
porting physical devices present in the environment. Various properties of
each device are exposed to the application, like a list of supported extensions,
features, formats, memory properties and more. The role of the application
at this stage is to choose one or multiple physical devices, along with the
extensions, features and queues that are to be enabled. The VkDevice object,
created out of a single physical device or a group of compatible devices, then
represents a logical device and will be used for the rest of the API calls.

Finally, the VKSwapchainKHR is an optional object, a part of an extension
rather than the core API. It is nevertheless essential for presenting images
to the screen. It provides a way for the OS specific surface to provide GPU
images to the application to draw to and facilitates presenting them to the
surface. Rather than a single swapBuffers() function, Vulkan splits it into two
separate operations: vkAcquireNextImageKHR(), which waits for a swapchain
image to become available for drawing a new frame. vkQueuePresent() then
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3. Interface design....................................
submits the image back to the swapchain, ready to be displayed on the screen.
The number of images in the swapchain is controllable by the user, as well as
the presentation mode.

In previous APIs, instance, device and swapchain objects have been ab-
stracted into a single Context object. That approach, however, does not
allow the user to select a specific device from multiple available ones, or using
more devices at once at all, unless they are able to be linked into a single
device group. Compute only workloads also don’t require a swapchain or
a window to render to. Creating a windowless context in OpenGL can be
difficult. For that reason keeping the context split into instance, device and
swapchain objects is beneficial. The extra steps needed are only a one time
cost at initialization. Even still, querying the extensions, features, formats,
queues and memory types of all physical devices and choosing the right one
that meets all requirements can take a lot of work if it is to be done properly,
so there is room for abstraction there.

Besides exposing interface for querying the capabilities of every physical
device directly, Tephra introduces the DeviceProfile object. This object
contains a collection of all capabilities and features a device can have. Specified
by the user, it can represent the application’s requirements for the kind of
device it is supposed to run on. In the library it is used in several ways.
A physical device can be queried to support the specified DeviceProfile,
offering a simple way to find a device that meets the minimum requirements.
The DeviceProfile object is then used for constructing a Device object from
the chosen PhysicalDevice, with the library enabling only the extensions and
features present in the profile object. Finally, in debug mode, it can provide
validation that the application does not exceed the capabilities declared in
the profile, even though the actual device supports them. This makes it easier
to write applications that support many different devices and are able to
recover from missing capabilities as early as possible.

Listing 3.2: Initialization usage example
// Debug repor t handler l o g s debug messages from Vulkan and Tephra
auto debugHandler = tp : : StandardReportHandler ( std : : cout ) ;

auto appSetup = tp : : ApplicationSetup (
{ "Example app " , tp : : Version (0 , 1 , 0) } ,
&debugHandler

) ;
auto app = tp : : Application : : createApplication ( appSetup ) ;

// Set r equ i r ed dev i ce c a p a b i l i t i e s
tp : : DeviceProfile profile {} ;
profile . extensions . add ({

tp : : DeviceExtension : : GraphicsJobs } ) ;

12



..........................3.3. Shader interface and descriptor layout

// Pick the f i r s t dev i c e that meets the requi rements
const tp : : PhysicalDevice∗ physicalDevice = nullptr ;
for ( auto& device : app−>getPhysicalDevices ( ) ) {

if ( device . supportsProfile ( profile ) ) {
physicalDevice = &device ;
break ;

}
}
if ( physicalDevice == nullptr ) {

std : : cerr << "No graph i c s dev i ce i s p re sent " << std : : endl ;
exit ( 1 ) ;

}

// Add any op t i ona l c a p a b i l i t i e s
if ( physicalDevice−>features . contains (

tp : : DeviceFeature : : GeometryShader ) ) {
profile . features . add (tp : : DeviceFeature : : GeometryShader ) ;

}

auto device = app−>createDevice (∗ physicalDevice , profile ) ;

3.3 Shader interface and descriptor layout

Vulkan accepts shader programs only in the SPIR-V intermediate represen-
tation format. Compilation of GLSL and HLSL programs into SPIR-V is
handled by third party utilities (glslangValidator) separate from the graphics
API itself. At runtime, SPIR-V shader modules are then used to build pipeline
objects. A pipeline object can consist of multiple shader modules, each for
one of the different programmable pipeline stages, such as vertex, fragment
or compute stages. They are further described in the following chapter.

An important aspect of an application is interfacing host code with shaders
executed on the device. Images and buffers need to be bound to become
accessible from within the shader. Unlike in OpenGL, binding resources to
symbols is not done through their name in Vulkan, but instead they need to
be assigned a binding number in the shader code explicitly. The resources
are then bound through descriptors to those numbers. But because binding
them individually would incur too much overhead and does not translate well
to actual hardware, they are bound at once in descriptor sets, created ahead
of time.

Before that, however, the application needs to provide the descriptor set

13



3. Interface design....................................
layout, defining the interface through which resources are bound as descriptor
sets. It is a collection of descriptor bindings, containing the descriptor type,
binding number within the set, array count and a set of shader stages that
can access it. Descriptor set layouts then need to be provided alongside the
shader modules when building a pipeline, and the same descriptor set layout
then needs to be used for creating the descriptor sets that finally assign
resources to descriptors.

The available descriptor types in Vulkan, and by extension in Tephra, are:. Sampler describes the parameters for sampling a sampled image, such as
the filtering used.. SampledImage is a readonly image that can be accessed in combination
with a sampler.. CombinedImageSampler is a sampled image and a sampler bound together
in a single descriptor. It is provided by Vulkan for GLSL convenience
and it is said that some platforms may benefit from using combined
image samplers.. StorageImage is a read/write image that is addressed directly with load,
store and atomic operations instead of through a sampler.. UniformBuffer is a read-only buffer of limited size. Used for efficiently
passing uniformly accessed, constant data to shaders.. StorageBuffer is a general purpose read/write buffer that offers load,
store and atomic operations to arbitrarily structured data.. UniformTexelBuffer and StorageTexelBuffer are general purpose read-
only and read/write buffers accessed through an associated format in the
same way as for an image. In Tephra, UniformTexelBuffer is renamed to
TexelBuffer to avoid confusion, since it doesn’t behave like a formatted
UniformBuffer, as the name would otherwise suggest.. InputAttachment is used for framebuffer-local read operations. Explained
in detail in a later chapter.

For buffers, the starting offset and size can be provided when creating a
descriptor set. This allows the user to combine data of similar purpose into
large buffers and bind individual parts of them, a practice that is encouraged
in Vulkan. Additionally, uniform and storage buffers can be marked as
dynamic, allowing the offset and size of the binding to be passed dynamically
at a time when the descriptor set is being bound, rather than during its
creation.

Multiple descriptor sets can be bound at the same time and they are
identified between each other by their set number. The order of descriptor
sets is hierarchical. When a descriptor set gets bound to a set number, the
descriptor set currently bound to that number or higher becomes unbound.
Similarly, when a pipeline created with the same descriptor set layouts as the
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currently bound descriptor sets up to some set number, then all descriptor sets
above that number get unbound. The intent of this is to have descriptors that
change often between draws in a set with a high set number, but descriptors
that are common for all draws in a frame would have a low set number, with
all the pipelines used compatible with it. This allows such descriptor sets to
be bound much less frequently, improving performance.

This presents somewhat of a shift in the way shader interface is handled.
In OpenGL, it is common practice to rely on shader code reflection, letting
the application adapt to changes in the shader code. It does not matter when
different shaders have a different interface, but in Vulkan, it is important
for optimal performance to have shaders share the same interface, defined
in the application through descriptor set layouts. In fact, Vulkan offers no
reflection capabilities for the layout of descriptors itself, but there exist third
party libraries like SPIRV-Cross that provide it, as it is necessary for some
use cases. Ideally, however, to avoid bugs with descriptors and other interface
mismatching, they would be defined in separate files and used both by the
application and shader modules. Such a library is beyond the scope of this
project, though.

Besides uniform buffers, per-draw uniform data can also be passed to the
shaders through push constants. These enable to pass limited amount of
information to the shader at the time the draw call is being made, without
storing them in an additional buffer and binding descriptor sets. For con-
structing a pipeline, only the size and offset into a user provided pointer need
to be provided, as well as the set of stages they can be accessed in.

Passing additional data to shaders through buffers or push constants can
be tricky. The layout needs to follow the std140 and std430 layout standards,
respectively. Because of these requirements, one cannot just define an identical
looking structure in C++ code and expect the binary interface to match the
memory layout in the shader. Therefore providing a simple compile-time
interface and auto-layout functionality for std140 and std430 would be useful.
The user can then define the shader structure with identical layout in C++,
decorated with some additional macros and types, and then be able to use
it directly for writing data to uniform buffer memory. Such a compile-time
layout definition would be the fastest way to write aligned data, but the data
structure might not always be known during the compilation. Additional
runtime functions for querying the alignment of individual types could be
provided as well for that purpose.
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Listing 3.3: Pipeline layout example

const tp : : DescriptorBinding firstSetBindings [ ] = {
// Global uniform b u f f e r in s e t #0, b inding #0
{ 0 , tp : : DescriptorType : : UniformBuffer ,

tp : : ShaderStage : : Vertex | tp : : ShaderStage : : Fragment } ,
// Shadow map in s e t #0, b inding #1
{ 1 , tp : : DescriptorType : : SampledImage ,

tp : : ShaderStage : : Fragment } } ;
const tp : : DescriptorBinding secondSetBindings [ ] = {

// Mater ia l s p e c i f i c texture , s e t #1, b inding #0
{ 0 , tp : : DescriptorType : : SampledImage ,

tp : : ShaderStage : : Fragment } } ;
// Object s p e c i f i c push constant data
tp : : PushConstantRange pushConstants = {

tp : : ShaderStage : : Vertex , 0 , sizeof ( glm : : mat4x4 ) } ;

auto firstSetLayout = device−>createDescriptorSetLayout (
0 , tp : : view ( firstSetBindings ) ) ;

auto secondSetLayout = device−>createDescriptorSetLayout (
1 , tp : : view ( secondSetBindings ) ) ;

auto pipelineLayout = device−>createGraphicsPipelineLayout (
{ &firstSetLayout , &secondSetLayout } ,
{ pushConstants } ) ;

3.4 Pipelines

What was previously managed as a global state in OpenGL is now contained
in a pipeline state object that is created ahead of time and then bound as
needed. In Tephra, the pipeline state object is composed of:. Shader modules for all active programmable pipeline stages. Reference to a pipeline layout containing the layout of descriptor sets

and push constants. The layout of vertex input bindings. The render pass and subpass the pipeline will be executing in. They
contain information about the format and sample count of the framebuffer
attachments that the shader will be rendering into and pixel local storage
layout for tiled architectures.. Rasterization primitive (points/lines/triangles) and input geometry topol-
ogy (triangle list/strip/fan). Number of viewports in a multi-viewport setup. Depth and face orientation culling, stencil culling.Multisampling and alpha-to-coverage. Blending state
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All of this information should be possible for the user to reason about
ahead of the actual rendering and define it as a monolithic state. This allows
the driver to perform any optimizations needed for that particular setup.
Some parts of the pipeline state can be also set dynamically, like the blending
constants and stencil reference values. In fact, Tephra leverages this in the
background. Vulkan, by default, asks for the full viewport and scissor test
states that depend on the resolution of the framebuffer. This can hardly be
predicted ahead of time without recompiling pipelines every time the window
size changes. Luckily, Vulkan allows these to be set dynamically, leaving only
the number of viewports to be specified when creating a pipeline.

Another major simplification Tephra makes here is in the render pass.
As will be described in the following chapter, render passes also specify
the synchronization and image layout transitions, which depend on what
commands are executed before and after the render pass. This is also difficult
to predict ahead of time. Tephra leverages Vulkan’s concept of compatible
render passes that allows a pipeline to be used with a different, but compatible
render pass from the one it was created with. It only asks of the user of only
the compatible subset at this time, called RenderPassLayout.

Even in Vulkan, creating pipelines is slow. It often involves compiling the
shader stages and potentially baking pipeline state into the shader instructions.
For that purpose, Vulkan provides pipeline cache objects for speeding up the
pipeline compilation phase and even allows saving this opaque, driver defined
data structure to disk, so it can be read back on the next application run.
Pipeline caches are one of the few thread-safe objects in Vulkan, so that they
can be used for pipeline compilation in multiple threads. Additionally, to let
the driver reuse resources between pipelines as much as possible, they are
compiled in batches.

Creating pipeline objects can get especially verbose in Vulkan due to all the
state that is required to be set. Tephra simplifies this by introducing sensible
defaults that leave most features, like geometry shaders, multisampling,
blending and others disabled, unless explicitly requested. All of the state that
is required for the pipeline and that has no sensible defaults has to be provided
in the constructor, so that the setup is always valid. Compilation happens
by the virtue of compileGraphicsPipelines() and compileComputePipelines()
device functions that take an array of pipelines to compile and a pipeline
cache object to use. The compilation happens in a single thread, but the
user is allowed and encouraged to split the work into multiple threads, each
calling these functions for its own batch.
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3. Interface design....................................
Listing 3.4: Pipeline setup example

tp : : ShaderStageSetup vShaderSetup = { &vertexModule , "main " } ;
tp : : ShaderStageSetup fShaderSetup = { &fragmentModule , "main " } ;

tp : : VertexInputAttribute inputAttributes [ ] = {
// Vertex a t t r i b u t e #0 − Pos i t ion , 16 bytes
{ 0 , tp : : Format : : COL128_R32G32B32A32_SFLOAT , 0 } ,
// Vertex a t t r i b u t e #1 − Normal , 8 bytes
{ 1 , tp : : Format : : COL64_R16G16B16A16_SFLOAT , 16 } } ;

tp : : VertexInputBinding vertexInput = {
// Vertex binding #0, 16 + 8 byte s t r i d e
0 , tp : : view ( inputAttributes ) , 24 , tp : : VertexInputRate : : Vertex } ;

tp : : GraphicsPipelineSetup pipelineSetup = {
&pipelineLayout , &renderPassLayout , 0 ,
{ vertexInput } ,
vShaderSetup , fShaderSetup } ;

pipelineSetup . enableFaceCulling ( false , true ) ;
pipelineSetup . enableMultisampling (tp : : MultisampleLevel : : x4 ) ;
pipelineSetup . enableDepthTest (tp : : CompareOp : : LessOrEqual ) ;
// Enable alpha blending
tp : : AttachmentBlendState blendState = {

tp : : BlendState (
tp : : BlendFactor : : SrcAlpha ,
tp : : BlendFactor : : OneMinusSrcAlpha ) ,

tp : : BlendState : : noBlend ( ) } ;
pipelineSetup . setColorAttachmentBlendStates ({ blendState } ) ;

tp : : Pipeline pipeline ;
device−>compileGraphicsPipelines (

{ &pipelineSetup } , &pipelineCache , { &pipeline } ) ;

3.5 Render passes

In recent years, there has been an increasing number of GPU architectures
leveraging the tiled rendering method [11], in which the rendering viewport is
subdivided by a regular grid into tiles. Each tile is then rendered separately
with the geometry that intersects it. This is unlike traditional rendering
processes, where the entire image is rendered at once. The advantages of this
stem from reducing the storage required for the render process. This can
allow the GPU to use the much faster on-chip buffers for storing intermediate
results, rather than communicating to memory, reducing bandwidth usage
and improving performance. Products that use tiled rendering include Nvidia
GPUs since the Maxwell architecture and many mobile and embedded GPUs
from manufacturers such as ARM (Mali), Qualcomm (Adreno) and Imagina-
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.................................... 3.5. Render passes

tion Technologies (PowerVR 5/6/7 series). All of these support Vulkan as a
graphics API.

Current graphics APIs with the exception of Vulkan and OpenGL ES, are
however not well fitted for driving tiled architectures. The application might
want to implement deferred rendering and draw various attributes of the
scene geometry to temporary buffers in one pass, followed by one or more
passes that, for each pixel, read these attributes and calculate lighting for the
pixel. On a tiled architecture, it would be possible to store the attributes in
an on-chip memory, sending data from one pass to another without involving
external memory. This is only possible if each pixel in the later pass only
accesses data from a pixel in the same tile that was written in a previous pass.
The problem is that the application cannot communicate that combining
such passes together is possible, leaving it up to guesswork for the driver.
Worse still, combining passes may require the shaders used in them to be
compiled differently and that may bring stalls or reduced performance if
it has to be done at runtime. OpenGL ES handles this problem simply
by providing an extension that allows the user to write specialized shaders
that write to and read from what’s called pixel local storage that persists
in between compatible passes. The downside is exactly that - the use of
pixel local storage requires its own shader as well as significant changes to
the rendering code, increasing development efforts to support both styles of
rendering architectures efficiently. Vulkan, despite being a much lower level
API, resolves this with a relatively high-level abstraction. The user creates
RenderPass objects that mainly provide the following information to the
implementation:. The format and sample count of each framebuffer attachment (render

target image) used.. A number of subpasses, each of them containing information about the
indices of attachment used as depth/color/input images for the subpass.. How the subpasses depend on each other.

Each subpass represents a single rendering pass that reads and writes to a
subset of the given attachment images. The dependencies between subpasses
inside of a single render pass then let the driver know how the passes depend
on each other and how the rendering is going to go ahead of time, during
pipeline creation. This makes it possible to defer the appropriate layout of
pixel local storage and let the driver implementation compile shaders to be
as efficient for tiled architectures as possible. Even other architectures may
benefit from the additional information that was previously known to the
driver only after the rendering takes place.

During rendering, render passes are used through the self-explaining com-
mands VkCmdBeginRenderPass, VkCmdNextSubpass and VkCmdEndRenderPass. The
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first of which assigns matching resources to the attachments and begins the
recording of the commands belonging to the first subpass of the render pass.
All pipelines bound at this point must be compiled for this subpass or one
compatible with it. The following commands simply advance to the next
subpass in the render pass or exit the recording altogether.

Since render passes are themselves quite high-level constructs, Tephra only
simplifies their use in several ways. The first is by utilizing the Vulkan concept
of compatible render passes, where one render pass can be substituted by
another if they only differ in a certain subset of attributes. Letting the user
only specify information outside of this subset removes the need to define
the load and store operations as well as external dependencies, which are
often difficult for the user to predict ahead of time. This also decreases the
number of pipelines that need to be created that would only differ in those
details. The compatible subset of render passes can then be used both to
construct pipeline layouts and actual render passes at runtime. It is, therefore,
appropriate to call it RenderPassLayout.

Another way the complexity can be reduced is by realizing that the most
commonly used render passes only have a single subpass and the ones that
have multiple mostly only depend on each other through the framebuffer
attachments. These dependencies can be easily deduced by the API and
the user only needs to specify which subpasses depend on each other, rather
than filling out a long structure describing the details of the dependency. For
advanced use cases, where different subpasses or parts of the pipeline depend
on each other through non-attachment resources such as storage images and
buffers, the user can supply additional dependencies manually.

The use of render passes during rendering is not too different in Tephra.
Together with the RenderPassLayout, the user specifies which images to assign
to each attachment, along with the load and store operations. Unlike the
stateful begin and end render pass commands, however, the user submits
render lists that contain the draw commands for each subpass. These lists
allow for efficient recording of commands with minimal overhead. That means,
while it is often not necessary, that the user may sometimes need to provide
information about what resources will be used in the render pass so the library
can synchronize it properly. This will all be talked about in more detail later.
The important aspect is that similar concept applies to compute operations
as well. Tephra, unlike Vulkan, also has compute passes that accept compute
lists in a similar fashion as render passes accept render lists. The difference
is that in a compute pass, there are no attachments and there is only one
subpass.
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Listing 3.5: RenderPassLayout setup example with multisampling
const tp : : AttachmentDescription attachments [ ] = {

{ tp : : Format : : DEPTH32_D32_SFLOAT , tp : : MultisampleLevel : : x4 } ,
{ tp : : Format : : COL32_R16G16_SFLOAT , tp : : MultisampleLevel : : x4 } ,
// Resolve attachment
{ tp : : Format : : COL32_R16G16_SFLOAT , tp : : MultisampleLevel : : x1 } } ;

const tp : : AttachmentBinding bindings [ ] = {
{ tp : : AttachmentBindPoint : : DepthStencil ( ) , 0 } ,
{ tp : : AttachmentBindPoint : : Color ( 0 ) , 1 } ,
// Resolve attachment ge t s f i l l e d with r e s o l v ed samples
// from the 0 th c o l o r attachment
{ tp : : AttachmentBindPoint : : ResolveFromColor ( 0 ) , 2 } } ;

// S i n g l e subpass RenderPass
tp : : SubpassLayout subpass{ tp : : view ( bindings ) , {} } ;
tp : : RenderPassLayout renderPass = device−>createRenderPassLayout (

tp : : view ( attachments ) , { subpass } ) ;

Listing 3.6: RenderPassLayout setup example for deferred rendering
const tp : : AttachmentDescription attachments [ ] = {

// G−Buf f e r attachments
{ tp : : Format : : DEPTH32_D32_SFLOAT } ,
{ tp : : Format : : COL32_R8G8B8A8_SRGB } ,
{ tp : : Format : : COL32_R16G16_SFLOAT } ,
// Light ing b u f f e r
{ tp : : Format : : COL64_R16G16B16A16_SFLOAT } } ;

const tp : : AttachmentBinding gBufferBindings [ ] = {
{ tp : : AttachmentBindPoint : : DepthStencil ( ) , 0 } ,
{ tp : : AttachmentBindPoint : : Color ( 0 ) , 1 } ,
{ tp : : AttachmentBindPoint : : Color ( 1 ) , 2 } } ;

const tp : : AttachmentBinding lightingBindings [ ] = {
// 0 th f ramebu f f e r attachment bound both as a readonly
// depth&s t e n c i l attachment , but a l s o as an input
// attachment that can be read from in the shader
{ tp : : AttachmentBindPoint : : DepthStencil ( true ) , 0 } ,
{ tp : : AttachmentBindPoint : : Input ( 0 ) , 0 } ,
{ tp : : AttachmentBindPoint : : Input ( 1 ) , 1 } ,
{ tp : : AttachmentBindPoint : : Input ( 2 ) , 2 } ,
{ tp : : AttachmentBindPoint : : Color ( 0 ) , 3 } } ;

tp : : SubpassLayout gBufferSubpass{
tp : : view ( gBufferBindings ) , {} } ;

tp : : SubpassDependency gBufferDependency{ 0 } ;
tp : : SubpassLayout lightingSubpass{

tp : : view ( lightingBindings ) ,
// Depends on the G−Buf f e r pass
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tp : : viewOne ( gBufferDependency ) } ;

tp : : RenderPassLayout renderPass = device−>createRenderPassLayout (
tp : : view ( attachments ) , { gBufferSubpass , lightingSubpass } ) ;

3.6 Memory management

Where previous APIs have handled memory allocation on the GPU automat-
ically, Vulkan leaves everything in the hands of the user. While it can be
as easy as allocating a separate block of memory for every resource, doing
so is not efficient, because the memory is allocated directly through the OS,
which can be an expensive operation. In fact, the recommended size of an
allocation is in the range of 128-256 MB. This makes it almost a requirement
for the user to implement their own sub-allocation strategy or use an existing
library such as the Vulkan Memory Allocator [2] developed by AMD. Tephra
also makes use of this library internally, however it provides its own memory
allocation interface.

One way resources can be categorized is by their lifetime. Long lived (also
called persistent) resources such as textures, vertex buffers and other data,
are allocated once and live throughout many frames and work submissions.
Short lived resources, on the other hand, are only required as temporary
storage for intermediate results and are often immediately consumed with
their data discarded. Examples would be framebuffer images and staging
buffers for data transfers between the CPU and GPU. This is an important
distinction in Tephra. Short lived resources are mostly managed by the job
system described in a later chapter and the user does not have to allocate
them manually.

Vulkan exposes up to 11 different memory types to allocate from. In
practice, however, they can be grouped into 5 main types:.Device local memory for efficient read/write access by the GPU, but

most likely inaccessible to the CPU. Most resources will probably live
here. This type is always available.. Host memory without CPU caching for fast writes by the CPU. This
memory is still accessible by the GPU, but at a slower pace. Their
main purpose is to host staging buffers that temporarily store data to
be copied to GPU memory. It can also be used for reasonably fast direct
access by the GPU, but only if it’s read once and can fit into the GPU
cache. This type is always available.
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. Host memory with CPU caching for fast reads by the CPU. Ideal for
moving data from GPU to CPU, however GPU reads from this memory
might be slower than from the previous type..Device local memory types that are also visible by the CPU, with or
without caching. This type supersedes the previous ones in performance,
but on desktop cards it might not exist or be limited in size. On integrated
GPUs and other devices with unified memory architecture, memory of
this type is prevalent, on the other hand.

If choosing the appropriate memory type wasn’t tricky enough, resources
of different type may only be able to reside in specific memory types. This
makes code highly platform dependent, not just for the choice of memory
type itself, but depending on the memory location a transfer between host
and device might or might not need a staging buffer and an extra copy. The
selection of a memory type can be both automatic and explicit, if the user
specifies a progression of memory types that should be considered for that
resource, starting from the most preferred types. The library then iterates
over that sequence until it finds a valid memory location for that resource or
reaches the end, throwing a memory allocation error. The memory type the
resource ended up allocated in can be queried afterwards.

Because there are several common use cases, Tephra offers several predefined
memory progressions that should cover most use cases:

. Device - Only device local memory will be allocated, otherwise memory
allocation error is thrown. Device-local memory is required when allocat-
ing images and should be used for resources accessed by the GPU often
enough that not being in device local memory should be avoided for per-
formance reasons. Progression: DeviceLocal → DeviceLocalHostVisible
→ DeviceLocalHostCached. Host - Used for resources that should live in host memory. Meant for
large data that is being read by the GPU infrequently and shouldn’t be
wasting the potentially limited device local, host visible memory. This is
the best progression for staging buffers to then copy data from to device
local memory. Progression: HostCached → HostVisible. UploadStream - Used for resources that are written to by the CPU often
enough that a copy from a staging buffer should be avoided. Progression:
DeviceLocalHostVisible → DeviceLocalHostCached → HostVisible →
HostCached. ReadbackStream - Used for reading back data from the GPU without
a staging copy. Progression: DeviceLocalHostCached → HostCached →
DeviceLocalHostVisible → HostVisible
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3.7 Images and buffers

There are two main types of resources that can be created in Vulkan. Buffers
host only one dimensional data, while images are also able to support 2D
and 3D data with filtering and mipmapping as well as cubemaps and image
arrays. Images store data in a given format, while buffers can store data
arbitrarily and do not have a format associated with them, unless accessed
by a buffer view or as a vertex buffer. While buffers are mostly used for
providing uniform data to shaders or describing geometry with vertex and
index buffers, images store the textures that are sampled from or framebuffer
attachments that are rendered into. All buffers can be created in either host
or device memory, but images can only be created in device memory and
cannot be directly accessed by the host.

There are several stages of resource creation in Vulkan. First, the resource
itself needs to be created according to the selected size and format and
intended usage. Then, its memory requirements need to be queried and
the resource bound to a memory location that matches those requirements.
Separating resource creation and memory binding in this way helps the user
choose the right memory in Vulkan, but it becomes less useful when the
process of selecting the memory is automated. Other than that, resource
creation is straightforward enough in Vulkan and mostly unchanged here.
Like with other objects in Tephra, the lifetime of resources is extended when
they are destroyed so that all already submitted workloads using it finish
successfully.

During creation, the user must specify how the resources are going to
be used. Images that are meant to be render targets might be allocated
differently from sampled textures. Additionally, in Vulkan, images have a
state associated with them, their layout. The layout further limits how the
image can currently be accessed, but is able to be changed at runtime when
needed through an image layout transition operation, which is a part of
synchronization barriers. In practice, this might mean that, for example, a
render target gets decompressed when its transitioned from being a render
target to a texture to be sampled. Tephra resolves image layouts automatically,
as will be described in later chapters.

Image resources are usually not accessed directly, but through ImageView
objects. These select a range of the image’s subresources (array elements,
mip levels, depth/stencil aspects) and optionally interpret 2D image arrays
as sides of a cubemap, or 3D images as an array of 2D slices. They can also
remap the components or interpret the data as a different, but compatible
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format. BufferView objects offer the same thing for a buffer, representing a
contiguous range of its contents, optionally interpreted with a given format.

Listing 3.7: Image setup example
// Create a cubemap image as an array o f 6 2D l a y e r s
tp : : ImageSetup imageSetup {

tp : : ImageType : : Image2DCubeCompatible ,
tp : : ImageUsage : : ColorAttachment | tp : : ImageUsage : : SampledImage ,
tp : : Format : : COL32_R8G8B8A8_SRGB ,
tp : : Extent3D (256 , 256) ,
9 , 6 } ;

auto image = device−>allocateImage (
imageSetup , tp : : MemoryPreference : : Device ) ;

// Create the cubemap view that can be used in shaders
tp : : ImageViewSetup viewSetup {

tp : : ImageViewType : : ViewCube ,
image−>getWholeSubresourceRange ( ) } ;

auto cubeView = image−>createView ( viewSetup ) ;

3.8 Descriptor sets

Descriptor sets were mentioned in one of the previous chapters, but it hasn’t
been described how they are actually created and used. In Vulkan, they aren’t
created individually, but instead are allocated from descriptor set pools for
performance reasons. However, they are fixed in size, so the user needs to know
the maximum number of various types of descriptors that will be allocated
from it ahead of time, an information that is rarely known. Tephra’s descriptor
set pools instead automatically grow as needed, by creating additional Vulkan
pools. As with other pools in Tephra, their behavior is configurable to fit the
application’s needs.

In Vulkan, descriptor sets are mutable. They are allocated in an uninitial-
ized state and can be written to any amount of times. However, because they
are updated from the host and used by the device, care must be taken to not
update a descriptor set that is still in use. Exposing this would be in violation
of the principle that no host operations should affect workloads that have
already been submitted to the device. The intent of mutable descriptor sets
is reusing resources from past workloads instead of allocating new descriptor
sets every time. In Tephra, resources with a short lifetime are managed by the
job system as will be discussed in later chapters. As a consequence, descriptor
sets are immutable once created and they are immediately initialized with
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data during their creation, since they can be assumed to have a longer lifetime.

There is one use case where mutable descriptor sets are necessary and
that is the “bind everything” method. It relies on binding one very large
descriptor set with descriptor arrays that contain every resource that will be
accessed during the workload. This avoids the overhead of binding descriptor
sets between draw calls as this large descriptor set can only be bound once.
Rebuilding such a large set from scratch every time would be inefficient in
that case. Since this is still only practical in Vulkan with the use of a fairly
recent extension, supporting this use case is not a priority yet.

Listing 3.8: Descriptor set example
// Create d e f a u l t d e s c r i p t o r pool
auto descriptorPool = device−>createDescriptorPool ( { } ) ;

// Al l o ca t e d e s c r i p t o r s e t f o r the layout de f ined
// in prev ious chapter s .
tp : : Descriptor descriptors [ ] {

{ uniformBuffer−>getDefaultView ( ) } ,
{ shadowmap−>getDefaultView ( ) }

} ;
tp : : DescriptorSetSetup setup {

firstSetLayout , tp : : view ( descriptors ) } ;
tp : : DescriptorSet firstSet ;
descriptorPool−>allocateDescriptorSets (

{ setup } , tp : : viewOne ( firstSet ) ) ;
// . . .
list . cmdBindDescriptorSets (

pipelineLayout , { firstSet , secondSet } ) ;

3.9 Execution model in Vulkan

In previous generation APIs, commands are generally submitted one at a
time and there are guarantees that the following command will be able to see
the results of all commands submitted previously, so no synchronization by
the user is needed. In Vulkan, however, commands are first recorded into a
command buffer and submitted in bulk later into one of the device’s queues.
Commands and queue submissions also need to be synchronized between each
other to get correct results. This is what helps Vulkan enable multithreaded
use.

Each device exposes one or multiple queues split into queue families by
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their capabilities. Commands submitted to different queues may be able
to run in parallel on the device, but that does not have to be the case.
Generally graphics commands will be sequential, but compute commands
may run in parallel with each other and with graphics commands. That is
only useful if one of the commands does not have full occupancy of the GPU’s
resources, otherwise it can actually degrade performance. Therefore, it should
only be used together with careful profiling. The more useful command-wide
parallelism is provided by queues that only support transfer operations. Those
are generally DMA units able to copy memory asynchronously with other
commands, but not necessarily as fast as the more capable queues.

Because queue families and the queues in them vary heavily from device to
device, in Tephra, queues are specified by the intent of the user. There will
always be a queue family that supports all available operations on device and
is exposed as the main queue. Additional queues are exposed as a number
of compute only and transfer only queues. They are guaranteed to support
their respective operations, but they might not actually come from a different
queue family and might even be the same as the main queue. This eases the
effort in writing multi-platform code. The Vulkan queue actually used can
be queried by the API or directly provided instead.

In Vulkan, commands are recorded into a command buffer instead of being
submitted directly. There are primary and secondary command buffers. Only
primary ones can be submitted to a queue, while secondary ones can only
be executed from a primary command buffer. Render pass commands can
only be used in a primary command buffer, but secondary command buffers
can be executed inside of a render pass, inheriting it. Command buffers
are allocated from a command buffer pool in Vulkan and can be potentially
reused. Reusing command buffers is generally of limited usefulness, however,
and you are expected to re-record them every frame.

3.9.1 Synchronization

Synchronization between commands also needs to be handled manually in
Vulkan by explicitly defining dependencies between two sets of commands.
There are two kinds of dependencies. An execution dependency guarantees
commands from the first set will be performed before commands from the
second set. A memory dependency builds upon that, guaranteeing that any
memory operations performed by the first set will be visible by commands
from the second set. In GPUs, this presumably corresponds with cache and
pipeline flushes.
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There is another way to characterize dependencies by the operations per-

formed by the two sets and how they translate to execution and memory
dependencies:

. Read-after-read dependency - Not actually a dependency, can happen in
any order.. Read-after-write dependency - Translates to both an execution and a
memory dependency..Write-after-read dependency - Translates to an execution dependency
only. The read operation needs to finish before the memory can be
overwritten..Write-after-write dependency - Translates to both an execution and a
memory dependency. Just execution dependency is not enough, because
it alone does not guarantee the order in which write operations happen.

Dependencies are expressed in multiple ways in Vulkan. Pipeline barrier
commands are the most common way, defining an execution and optionally
a memory dependency between all commands that come before it and all
commands that come after. They can also express an image layout transition.
Semaphores are used to synchronize between queue submissions to different
queues, forming both an execution and a memory dependency. Fences can
be used to add a dependency between the device and the host. They can
be waited on by the host or their state can be checked. The most general
form of dependency expression are events. Events can be both signalled
and queried by the host, and the device can also signal them and wait on
them, down to the level of individual commands, but they cannot be used for
synchronization between different queues.

A recent extension to Vulkan introduces another synchronization primitive
- Timelines [8]. The issue with semaphores is that they are single use only and
require a one-to-one correspondence. That is, exactly one queue submission
signals a semaphore and exactly one submission waits on it. This can get
rather inconvenient, especially for modular application designs that don’t
always have full knowledge about who the producer or consumer of their
work is. Timelines solve this by keeping track of a single, monotonically
increasing integer value. A queue submission or the CPU can both increment
this value and wait until it reaches or surpasses a given value. There are
also no restrictions to how many queue submissions can signal or wait on a
timeline. It is easy to understand and convenient enough that Tephra exposes
timelines in its API. As a KHR Vulkan extension, it is expected that most if
not all drivers will support it, as it will eventually be merged into the core
Vulkan API.
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3.9.2 Frame graphs

The challenging part of Vulkan’s synchronization is not only its complexity,
but also the way it’s exposed. Pipeline barriers synchronize two sets of
commands. This is troublesome as it requires knowledge about what was
executed before and what will be executed later. Keeping track of it manually
is error prone and making a system like this modular is difficult. Improper
synchronization results in either incorrect results or reduced performance.
Overreaching or unnecessary pipeline barriers are the leading cause of poor
performance over high-level APIs.

One solution for a modular synchronization system are frame graphs as
described in a talk by Yuriy O’Donnell [10] and implemented in a third party
library for Vulkan [4]. In short, they split up the rendering into individual
passes, effectively extending subpasses in Vulkan’s render passes. They take
a data oriented approach towards the passes. Each pass is a standalone
block, using virtual resource handles as inputs and outputs and defines which
operations are going to be performed inside of it. Dependencies are then not
expressed between passes themselves, but between resources. An input of
one pass is either an output of some other pass or an imported permanent
resource external to the frame graph. Transient resources, which exist only
within the frame graph’s scope, can also be created.

The user describes this frame graph ahead of time, giving the library high-
level knowledge of the render process, allowing it to insert synchronization
and assign memory to the virtual resources. Granite’s render graph reorders
the passes to minimize the number of barriers, while Frostbite’s frame graphs
follow the order they are defined in. An important part of both is aliasing
of transient resources. Since they have limited lifetime which is known in
advance, resources with disjoint lifetime can be aliased to the same memory.
This can result in significant savings of memory usage. After the frame graph
description is built by the user and compiled by the library, callbacks populate
it with the actual device commands.

The downside of frame graphs is that such a description of the rendering
process can be too involved and may lead to overspecification, providing
more information than what is actually needed. It forces the user to split
up code into passes according to synchronization concerns, rather than into
logical blocks. Each pass is required to use a different set of virtual resources,
which then need to be tied together. Finally, since the user only defines
dependencies between passes, the actual order in which they are submitted
can be arbitrary, for passes that do not depend on each other. The most
efficient order is hard to determine and may depend on factors not easily
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known to the API implementation and therefore should be left up to the user.

3.10 Jobs

Tephra presents its own system for submitting commands with correct syn-
chronization to the GPU. Jobs represent units of execution that the user
wants to submit at the same time to the device - a workload. That might
correspond to an entire frame in a rendering application, or even just a copy
operation for uploading a resource. Jobs solve the same problem as frame
graphs described in the previous chapter, but instead of the user defining a
graph structure with passes and dependencies between them, commands are
instead recorded into a flat list, similarly to all other graphics APIs. The
dependencies are inferred based on the accesses the commands recorded into
it make. However, the key difference from previous graphics APIs is that this
automatic synchronization is limited in scope. The user is asked for additional
information that is needed for correct synchronization but that cannot be
easily inferred from the job alone, like how the resource is going to be used
inside command lists and in shaders, or to synchronize jobs submitted to
different queues.

Figuring out accesses for copy commands and other work that does not
involve programmable shaders is easy enough. But not only do shaders access
resources through descriptor sets, making it difficult to directly track, most
importantly they are unpredictable. It can be quite common that a resource
is bound to a descriptor set, but isn’t actually used by the shader. It could
be determined, albeit not easily, whether a resource is used statically through
shader program reflection, but next to impossible if its usage is determined
dynamically, like by a value read from a buffer. So therefore Tephra requires
the user to specify what accesses are being made during shader passes.

It would be tedious to specify all accesses on every draw command, though.
Considering the common case of rendering the geometry of the scene through
many draw calls into the same render target, several observations can be made.
Most of the accesses, except for the render target, are read only. Many of
them are textures and various vertex or index buffers that have been written
to once and read the same way since then. A good way to exploit that is
to allow the user to specify, after the resource has been written to, that it
will be accessed as read-only in a given way. In Tephra, this is done through
an cmdExportResource() command. A pipeline barrier can be inserted at that
point to synchronize against a combination of future read accesses right away
and any such reads will not need to be communicated to the API, since they
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have already been handled. However, if the resource needs to be modified
again or read in another way, that needs to be specified by the user. Any new
unexpected accesses invalidate the effects of the previous export operation.

Additionally, where its necessary to specify accesses inside a shader, rather
than doing it more or less identically for every draw call, it can be specified
on the level of render and compute passes, collectively called command passes.
In the uncommon case where commands within a command pass need explicit
synchronization between each other, the user can either insert a pipeline
barrier manually or split the commands into multiple passes.

The accesses recorded into the job also define the image layouts an im-
age should be in at any point, making the insertion of image layout tran-
sition fairly straightforward. Vulkan includes an undefined image layout,
which can be transitioned from whenever the contents of the resource don’t
need to be preserved, instead of its actual layout. This is exposed as a
cmdDiscardImageContents() command, which makes Tephra internally over-
ride the current image subresource region’s layout to the undefined one.

3.10.1 Command lists

The automatic synchronization that the job offers is really only useful for the
high-level commands, rather than for the individual draw calls that often don’t
require any explicit synchronization between each other. Those commands
also make up the bulk of all commands that are submitted, in most cases. For
that reason Tephra provides command lists that record commands directly to
a Vulkan command buffer with minimal overhead. They can also be recorded
in parallel, allowing the recording of a job to be multithreaded.

The commands available in command lists are limited. This is both
because of them being implemented as secondary command buffers as well
as the fact that high-level commands like copy operations benefit greatly
from automatic synchronization and the command overhead for them is very
rarely a bottleneck. Also, because being inside or outside a Vulkan’s render
pass further restricts the commands available, command lists in Tephra are
split into RenderList and ComputeList, each supporting only the relevant
commands. Furthermore, rather than providing two different ways to do
the same thing, along with a way to describe shader accesses for individual
commands in a job, all of these compute and render commands can only be
used in their respective command lists, not in jobs.
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cmdExportResource Job
cmdDiscardImageContents Job
cmdCopy∗, cmdClear∗, cmdFill∗ Job
cmdBlitImage Job
cmdResolveImage Job
cmdExecuteComputePass Job
cmdExecuteRenderPass Job
cmdDispatch∗ CommandList
cmdDraw∗ RenderList
cmdClearAttachments RenderList
cmdBindIndexBuffer RenderList
cmdBindVertexBuffers RenderList
cmdSet∗ (pipeline state) RenderList
cmdBindPipeline RenderList, CommandList
cmdBindDescriptorSets RenderList, CommandList
cmdPushConstants RenderList, CommandList
cmdPipelineBarrier RenderList, CommandList
cmdResetQueryPool Job
cmdCopyQueryPoolResults Job
cmdBeginQuery, cmdEndQuery Job, RenderList, CommandList
cmdWriteTimestamp Job, RenderList, CommandList

Table 3.1: Availability of commands in Tephra

3.10.2 Transient resources and aliasing

Jobs also benefit from using transient resources, which are accessible only
during the time the job is executing. This allows for more efficient allocation
strategies, since all of these job-local resources will be released at the same
time. It also makes it possible to automatically reuse memory if similar
non-overlapping jobs are submitted after each other, e.g. once per frame.
Transient images and buffers are requested by a Job call that takes an image
or buffer setup structure instead of an already created resource. Not only
images and buffers can be transient, but descriptor sets also often have a
lifetime limited to a single job, since they can contain transient resources.

Similarly to frame graphs, it is possible to determine the first and last
use of all resources within the job, allowing for memory aliasing of transient
resources in the same way. Since commands are not being reordered in any
way, the aliasing layout can be determined by walking through the recorded
commands at job build time, allocating memory for the resource just in time
for its first use and freeing it after the last. Extra synchronization may be
needed between two different uses of the same region of memory.
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Because the first and last use of transient, job-local resources can only be
known after the job has finished recording, the actual allocation of resources
has to happen after that point. That means that a resource view is returned
that does not actually view an actual resource yet. It will still need to be
accepted by the recorded commands and get assigned to the actual resource
after the job has been recorded.

One special case are host initialized, job-local buffers. These buffers have
their lifetime extended, starting not at the point the job is executing, but
once it has finished recording. This is useful for uploading data from the CPU
to the GPU, where the host can write into this job-local buffer before the job
is submitted. The extended lifetime is necessary to ensure the memory is not
being used by any previous jobs at the time the data is being written by the
host. This requires a different allocation strategy as well.

3.10.3 Job lifetime and synchronization

Jobs are created from a JobResourcePool object that manages all of its
resources. It assumes that jobs created from it will execute on the same queue
and therefore in order. This allows it to assign the same memory to each job
created from it as long as the resulting memory dependencies are handled.
Pools don’t free unused resources on their own, but unlike other pools, it is
not a very viable strategy to free up those resources simply by recreating it
in this case. The reason is that doing so makes a spike in memory usage,
where old resources still have to be kept around and cannot be reused by the
new JobResourcePool. Therefore, it provides a trim() method, that frees up
resources that haven’t been used since the last N calls of trim(), where N is
an integer passed to the method. This is intended to be called before or after
every frame or job submission, continuously freeing only those resources that
are no longer in use.

Job objects go through several stages in their lifetime. They are created
from a JobResourcePool object in a recording state, ready to accept commands
to be executed. In this state they can be enqueued to a device queue, at
which point the user is giving up access to the job and can no longer record
commands into it. This is when all of the job-local resources are allocated
and ready to be used. Preinitialized buffers can be mapped and written to
and command lists can be recorded into compute and render passes. The
user can then submit all of the jobs that have been enqueued into a queue as
a single workload. After this point modifying any resources used by the job
is an undefined operation, but they can be safely freed.
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Jobs need to be synchronized between each other. Memory dependencies

are implicit through access to resources. Execution dependencies between
jobs submitted to the same queue are implicit as well on the level of Vulkan.
Execution dependencies between jobs in different queues need to be specified
by the user through timeline semaphores. One job should signal the semaphore
by incrementing its value and another job that depends on it can wait until a
specified value is reached. The second job will wait for the first by the virtue
of an execution barrier even after it’s been enqueued and submitted. The
host can also directly wait on or query the execution of submitted workloads,
using the handle returned by the submitQueuedJobs() call.

3.10.4 Job examples

Listing 3.9: Job to upload data through staging buffer example
auto jobPool = device−>createJobResourcePool (

tp : : QueueType : : AsyncTransfer , { } ) ;

// Upload data to the ver tex b u f f e r through a p r e i n i t i a l i z e d
// s tag ing b u f f e r
auto stagingJob = jobPool−>createJob ( ) ;
tp : : BufferSetup stagingBufferSetup{

vertexBuffer−>getSize ( ) ,
tp : : BufferUsage : : TransferSrc } ;

tp : : BufferView stagingBuffer = stagingJob−>acquireLocalBuffer (
stagingBufferSetup , tp : : MemoryPreference : : Host , true ) ;

stagingJob−>cmdCopyBuffer ( stagingBuffer ,
vertexBuffer−>getDefaultView ( ) ,
{ tp : : BufferCopyInfo (0 , 0 , vertexBuffer−>getSize ( ) ) } ) ;

// Export r e s ou r c e f o r fu tu r e usage
stagingJob−>cmdExportResource (

vertexBuffer−>getDefaultView ( ) , tp : : ReadAccess : : DrawVertex ) ;
// Enqueueing the job i n i t i a l i z e s i t s r e s o u r c e s
device−>enqueueJob (

tp : : QueueType : : AsyncTransfer , std : : move ( stagingJob ) ) ;

// Copy data to the s tag ing b u f f e r
{

auto mappedMemory = stagingBuffer . mapForHostAccess (
tp : : MemoryAccess : : WriteOnly ) ;

std : : copy (
vertexData . begin ( ) , vertexData . end ( ) ,
mappedMemory . get<glm : : vec4 ∗>()) ;

}
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// Submit the job f o r execut ion now
device−>submitQueuedJobs (tp : : QueueType : : AsyncTransfer ) ;

Listing 3.10: Job with a render pass drawing an object
auto job = jobPool−>createJob ( ) ;
// Render pass wr i t e s c o l o r to swapchain image
tp : : FramebufferAttachment framebuffers [ 2 ] {

tp : : FramebufferAttachment (
swapchainImage−>getDefaultView ( ) ,
tp : : AttachmentLoadOp : : Clear ,
tp : : AttachmentStoreOp : : Store ,
tp : : ClearValue : : ColorFloat ( 0 . 0 f , 0 . 0f , 0 . 0f , 0 . 0 f ) ) ,

tp : : FramebufferAttachment (
depthBuffer−>getDefaultView ( ) ,
tp : : AttachmentLoadOp : : Clear ,
tp : : AttachmentStoreOp : : DontCare ,
tp : : ClearValue : : DepthStencil ( 1 . 0 f , 0 ) )

} ;

tp : : RenderPassSetup renderPassSetup{
renderPassLayout , tp : : view ( framebuffers ) , {} , {}} ;

tp : : RenderPass∗ renderPass = job−>cmdExecuteRenderPass (
renderPassSetup ) ;

// Record the render pass commands i n l i n e . The func t i on w i l l run
// when the job i s submitted .
renderPass−>recordInline (0 , [ this ] ( tp : : RenderList& renderList ) {

tp : : Rect2D viewportRect = tp : : Rect2D ({ 0 , 0 } , {
swapchainImage−>getExtent ( ) . width ,
swapchainImage−>getExtent ( ) . height } ) ;

renderList . cmdSetViewport ({ tp : : Viewport ( viewportRect ) } ) ;
renderList . cmdSetScissor ({ viewportRect } ) ;
renderList . cmdBindGraphicsPipeline ( pipeline ) ;
renderList . cmdBindDescriptorSets (

pipelineLayout , { &descriptorSet } ) ;

renderList . cmdBindVertexBuffers (
{ vertexBuffer−>getDefaultView ( ) } ) ;

renderList . cmdDraw ( vertexCount ) ;
} ) ;

job−>cmdExportForPresent ( swapchain , frameIndex ) ;
device−>enqueueJob (tp : : QueueType : : Main , std : : move ( job ) ) ;
device−>submitQueuedJobs (tp : : QueueType : : Main ) ;
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3.11 Surface and swapchain

The final piece of the puzzle in a graphics API is displaying the rendering
results on the screen. The display target can be a physical display in its
entirety or just a window, owned by the window manager of the operating
system. It is called a surface in Vulkan and is acquired through platform
specific means. Physical devices also aren’t guaranteed to support presenting
to every surface through all of their queues.

From a surface, a swapchain object can be created that manages the
process of continuously presenting frames to the surface. It allows some level
of control by letting the user specify the presentation mode and number of
swapchain images that will be created. These affect whether the presentation
operation will be tied to the refresh rate of the monitor, if screen tearing can
be observed and the display latency of the rendered images. The best settings
depend on the kind of application and how much it values low latency, power
usage and screen tearing.

The user does not own the swapchain images, but can use them after they
are acquired. Acquiring the next image in the swapchain can block, depending
on the swapchain settings and implementation. The acquire operation alone
does not guarantee that the image can be used immediately, but it can signal
a fence or a semaphore, so that commands that depend on it being accessible
can be submitted as soon as possible. The queue submission that renders
the current frame then signals another semaphore, which a separate present
operation waits on. This operation finally queues the image to be displayed on
the surface. Therefore unlike other APIs, the interaction with the swapchain
is split into separate acquire and present operations, allowing better control
over the rendering process by the application.

The platform specific part of creating a presentable surface is better left to
dedicated third party libraries like GLFW. Instead, Tephra only abstracts
around the Vulkan swapchain, expecting an already created Vulkan surface
object on creation. It also offers an easy way to query surface support
of a physical device. The Tephra swapchain object handles the necessary
synchronization more or less automatically, issuing the necessary semaphores
with only an extra bit of information from the user about the particular queue
that an acquired image will be used in.
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Chapter 4

Implementation details

The implementation of the interface is designed to be easily extendable and
modular. It spreads to over 100 files and 200 classes. Heavyweight objects like
Device are implemented as containers of specialized components, handling
a specific part of the functionality. The Device container, for example, is
composed of a logical device that wraps around Vulkan’s logical device,
a physical device storing the properties of the logical device, a memory
allocator wrapper around VMA, a workload tracker for tracking submitted
workloads and issuing callbacks when they finish, a deferred destructor
ensuring resources get freed only when its safe to, a global command buffer
pool and a synchronization state for each queue. The container itself only
implements getters for the components and has very little functionality of its
own.

This detail is completely hidden from the user of the API. Most classes of the
interface use static polymorphism to dispatch calls to their implementation
class that inherits from the interface class. There is a layer of dispatch
methods that do nothing more than issue calls to the implementation class.
This presents a good place to add validation to check whether the API is
being used correctly, failing early and in an obvious manner. All API calls
that can issue debug messages or throw an exception are wrapped in a debug
context that is able to log the name of the function and the class where
the warning or error took place. This is useful when they originate from
Vulkan, making it easier to see what Tephra calls caused it without the use
of breakpoints. Most class implementations in Tephra contain a DebugTarget
object that references the user provided debug handler, the type and name of
the object and the type and name of the parent object it was created from.
All of these features can be disabled through compile flags, leaving minimal
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to no overhead when not needed.

Listing 4.1: Example of a dispatch method implementing Device interface
Workload Device : : submitQueuedJobs ( DeviceQueue queue ) {

auto deviceImpl = static_cast<DeviceContainer∗>(this ) ;
TEPHRA_DEBUG_SET_CONTEXT (

deviceImpl−>getDebugTarget ( ) ,
" submitQueuedJobs ( " + queue . getName ( ) + " ) "

) ;

QueueState∗ queueState = deviceImpl−>getQueueState ( queue ) ;

#ifdef TEPHRA_ENABLE_DEBUG_TEPHRA_VALIDATION
if ( queueState == nullptr ) {

reportValidationError (
" ’ queue ’ i s an i n v a l i d DeviceQueue handle . "

) ;
}

#endif

return queueState−>submitQueuedJobs ( ) ;
}

To prevent freeing of Vulkan objects before it’s legal to do so, most Vulkan
handles are wrapped in a handle lifeguard object. When this object is
destroyed, it either releases the handle directly or queues it for deferred
destruction, depending on the type of the object. The deferred destructor
keeps a queue of handles to release of each type. When a new workload is
submitted, the current queue of handles is stored to be released once the
workload and all workloads submitted before it finish executing. Resource
demanding objects like buffers and images are an exception. Those keep track
of the last workload they’ve been actually used in to minimize the wait time
until destruction. The implementation does not actively wait for the fences
associated with each workload to notice they are done. Instead, the workload
tracker’s update() method is called during key moments, like when a job gets
enqueued or before memory allocations. It can also be triggered manually
through Device−>updateWorkloadCallbacks().
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4.1 Jobs and job-local resources

Jobs need to be able to record commands into its own format to be then
later recorded into a Vulkan command buffer once all the resources used are
created and known. For efficiency, the memory for commands is allocated
from a list of large blocks of memory that the commands fill in a linear
fashion. When a command is to be recorded, a CommandMetadata structure
is stored at the next available space, containing the type of the command
and pointer to CommandMetadata of the next command, initially set to nullptr.
The last command’s pointer is updated to the new one, forming a linked list of
commands. The command is then able to record the details of the command
to a command type specific structure into the immediately following memory
in the buffer. Variable sized arrays that some commands accept as parameters
can also be stored within the buffer.

Figure 4.1: Data layout of recorded job commands in linear memory

Job-local resources need to be used in commands before they are even
created. This requires an extra class that implements most of the Buffer or
Image interfaces, redirecting the calls to the underlying resource when it’s
present, or throwing an error when it’s not. It needs to be able to hold onto
the parameters for creating the underlying resource until the moment it can
be created. The API returns the same resource view for both persistent and
job-local resources, so that this is handled transparently to the user. Resource
views therefore store a flag that says what implementation they are a view of
and the dispatch function dynamically chooses which implementation to use.

Resource views often depend on the corresponding Vulkan view handle,
which can also only be created after the underlying resource has been as-
signed. Because the underlying resources are meant to be reusable between
multiple jobs, creating identical views of them for every job would be wasteful.
Therefore, persistent resource implementations that are used as underlying
resources contain a cache of the Vulkan view handles created so far, reusing
them whenever possible. Care must be taken to ensure all of the offsets are
correct due to the amount of indirections. Resource views can refer to a
range of a job-local resource, which in turn refers to a range of its underlying
persistent resource, kept by the JobResourcePool.
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4.1.1 Job-local resource allocation

To reduce the number of created resources and enable better reuse of memory
between jobs, job-local resources are suballocated from larger persistent
resources. This is especially the case for buffers. When the user allocates
several smaller job-local buffers of the same type and memory preference,
only a single underlying buffer is created to host all of them. This buffer is
then reused in the following jobs. A large part of these suballocators is the
automatic aliasing of memory. When two buffers are known not to be used at
the same time, they can be assigned to the same range of the underlying buffer,
reducing the memory footprint. During the time commands are recorded,
the implementation keeps track of the indices of the first and last commands
each resource was used in.

Once the job-local buffer allocator has a list of buffers to allocate, it
can sort them into groups by compatibility, depending on the usage and
memory preference. Once sorted, these buffers need to be assigned to a list of
existing underlying buffers, each of a fixed size. Any leftover buffers will be
accommodated by a single new persistent buffer. For the aliasing suballocator,
we can arrive at the following simplified formulation. Each buffer of index
i = 1, ..., n to be allocated can be represented by bi ∈ N; ei ∈ N; bi ≤ ei being
the beginning and end of its usage respectively, and si ∈ N as its size in
memory. The goal is to then find oi ∈ N representing the offset in memory
that the buffer will be assigned to, such that no two buffers with overlapping
usage also overlap in memory. Given those requirements, the total size of the
underlying buffer S = max

1≤i≤n
(oi + si) is to be minimized.

A simple algorithm for finding an approximate solution to the problem
in a reasonable time was found. It is a greedy incremental algorithm that
assigns the best possible spot to each buffer one at a time. For each such
buffer, it iterates over all already assigned buffers for ones with overlapping
usage. Starting with oi = 0, an already assigned buffer then splits the viable
offset search space into two halves, one to the left and one to the right. If
the assigned buffers are sorted by their starting offset, then we are able to
tell whether the current buffer will fit into the space to the left, that is,
oi + si ≤ oj , since we know all buffers with a smaller offset have already been
visited. In that case the buffer can be assigned to an offset oi. Otherwise,
we set oi = oj + sj where j is the index of the already assigned buffer and
continue with the offset search space [oi,∞).

This algorithm gives the best results when the input buffers are sorted
by their size, largest first. This is because smaller buffers are more likely
to fit to the left of the already assigned, and therefore larger, ones. When
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working with an underlying buffer of a fixed size, we also check whether a
new buffer fits to the right. If it doesn’t, then it cannot be assigned at all.
Additional slight complexity comes from memory alignment requirements,
where the offset needs to be a multiple of some amount of bytes, depending
on the usage.

For job-local images this reuse is greatly limited. A backing image is
compatible with a requested one only if they share the same type, usage, extent,
mip level count, sample level count, creation flags and format compatibility
class. Even then, opportunities for reuse can arise between various render
targets. The allocator is able to assign multiple single layer images into
a backing image with multiple layers using the same suballocator as job-
local buffers, except operating on layers rather than byte offsets. There
is a possibility in the future to reuse the underlying memory by creating
multiple otherwise incompatible images that alias to the same memory range.
However, many platforms observe lower performance when images used as
render targets do not have their own dedicated memory allocation.

4.1.2 Preinitialized buffer allocation

Because the preinitialized buffers is not limited to the execution of the job,
but extends before it, it cannot be allocated using the existing job-local
resource allocator. If multiple consecutive jobs are submitted, each of them
having their own preinitialized resources, they can’t occupy the same region of
memory, unlike other job-local resources. Because jobs created from the same
resource pool will execute sequentially, this calls for a ring buffer allocator.
One issue is that we do not know the required size of the ring buffer ahead of
time and it needs to be able to grow with usage requirements.

This growable ring buffer was implemented using a collection of fixed size
ring buffers for storage. When a new allocation is to be made, the last ring
buffer that has been allocated from is checked if it has enough free space. If
it doesn’t, other buffers are checked in a circular fashion. In a way it becomes
a ring buffer of ring buffers. The one scenario where the space isn’t used
optimally is when the head offset is near the end of the buffer, but the new
allocation does not fit and has to be allocated at the beginning of the buffer.
Then the space at the end is treated as used even though a smaller allocation
could fit. The impact of this has been minimized by sorting the allocations
by size in an increasing order, similarly to how other job-local buffers are
sorted in a decreasing one.
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4.1.3 Descriptor set allocation

Similarly to other resources, job-local descriptor sets are created after the job is
enqueued, once all job-local resources it refers to are allocated. DescriptorSet
objects act like views of resources in the way that they are just pointers to real
handles stored in a DescriptorPool. Job-local descriptor sets simply point
to a handle that will get assigned a handle at a later point. The job-local
descriptor set allocator does nothing more than stores the descriptor setups
and allocates all of the descriptor sets at once using the job resource pool’s
descriptor pool.

The persistent descriptor pool allocator itself is a little more interesting.
Since, unlike Vulkan’s descriptor pools, it needs to be able to hold arbitrary
amount of descriptors of each type, it must be able to grow as needed, as
well as reuse previously freed descriptor sets. When new descriptor sets are
to be allocated, a list of free descriptor sets of the same layout are checked
first and reused by updating their contents. For the leftover sets, a new
Vulkan descriptor pool is created to fit them. Descriptor sets are updated
through Vulkan update templates, which offer a more efficient way to do so,
directly from the descriptor setups provided by the user, so that the amount
of copying of data is minimized.

4.2 Automatic synchronization

Synchronization in Vulkan can be solved by keeping a track of accesses to
memory. A dependency can then be formed between a new access and all
previous accesses of overlapping memory regions. These accesses can either
be inferred directly from the commands submitted to the job, or from the
ones specified by the user through export operations or in command passes.
Once a dependency is identified, a good way to insert a barrier needs to be
found to synchronize that dependency.

The first implementation that worked only on buffers was inserting global
memory barriers, which synchronized two types of accesses against all of
memory. This is said to have less overhead than using many resource specific
buffer and image barriers. However, once images were introduced, that was
no longer possible, because image layout transitions require image barriers
and are limited to a particular subresource range of the image.
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The current implementation uses only resource specific memory barriers
for synchronization. It is split into two parts according to the process
described in the first paragraph. There is an access map, which for a single
resource maintains a map of past accesses, using them to define a dependency.
The barrier list then serves to synchronize these dependencies, searching
through the already inserted barriers for an optimal spot to synchronize the
dependency.

4.2.1 Buffer access maps

Several observations can be made to help the access map find dependencies
efficiently. Let’s consider a simplified case where all accesses happen on
the same subresource range. A new access only forms a dependency to all
previous accesses since (and including) the last write access. This is thanks
to dependency chaining. The last write access must have already had a
dependency formed to all previous accesses. Therefore, a dependency to
this last write access also implies a similar dependency against all previous
accesses. This is true for read only accesses as well, but an execution only
dependency against it only implies execution dependency against the previous
accesses, which is not enough to synchronize against a previous write access.

So, this means that the synchronisation state for such an indivisible sub-
resource range can be fully represented by storing the last write access as
well as the mask of all read only accesses that happened since. An additional
read access that is not yet included in the mask forms an execution and
memory dependency against the last write access. A new write access forms
an execution and memory dependency against the last write access and an
execution dependency against the read accesses. It can then overwrite the
write access and reset the read accesses.

Extending this for buffers where the subresource range can be any con-
tiguous region in the buffer means implementing a range map, where each
point in the buffer is mapped to at most one entry, describing the current
synchronization state for that point. An efficient implementation of range
maps can be a simple sorted list. The entry that a given point belongs to
can then be found in O(log n) time. Finding all intersecting ranges for a new
range then involves looking up the range containing its two end points. The
intersecting ranges are all the ranges between those two in the sorted list.

The process of inserting a new access differs from whether the access is read
only or not. If it is a write access, it replaces all other accesses that are fully

43



4. Implementation details.................................
covered by it in the access map. Partially covered accesses are clipped. This
ensures that after insertion each point is still only covered by a single access
entry. Read accesses would ideally split any existing accesses and extend only
the range they actually cover, but that could quickly lead to too many entries
in the access map. Instead, the implementation simply extends the read
masks of all intersecting access ranges, so that read accesses have very little
overhead. This can sometimes lead to false write-after-read dependencies, but
it should be rare enough to be worth the savings in storage and performance.

4.2.2 Image access maps

Image access maps are similar to their buffer counterparts. The accesses also
store the current layout of the image subresource. Image layout transition,
when needed, is defined to be a memory operation in Vulkan. Therefore an
otherwise read-only access will need to be synchronized as if it is also a write
access if the dependency it forms includes a layout transition. Additional
complexity stems from the fact that image subresource ranges are defined by
two independent values, the array layers and mip levels. Since the number of
mip levels is limited (less than 16), the array layers are used for purposes of
the range map. Intersection tests still consider the mip levels of the access,
however.

This means a single layer in the resource can be covered by multiple
subresource ranges, even if they do not overlap in their mip levels. This
is not problematic for the sorted list implementation as long as all of the
overlapping ranges are identical in the range of array layers they cover. To
reduce the number of image subresource ranges that need to be stored, the
mip levels are stored as a bit mask, lifting the usual requirement of the range
being contiguous for mip levels. Upon processing a new access, the algorithm
first finds all potentially intersecting ranges through the range map and filters
out all of those that do not intersect in the mip levels.

Any resulting dependencies by read-only accesses that require a layout
transition are handled separately. Layout transition happens before the
actual access, as a write operation. It therefore "promotes" the dependency to
previous accesses as if the destination access was a write access. This layout
transition is then recorded as a special write access followed by the original
read access. The rest is handled similarly to the buffer access map.

44



...............................4.2. Automatic synchronization

4.2.3 Queue state

These access maps need to persist in between jobs, so they have to be stored
in some way. In Vulkan, resources are owned by a single queue family that
has exclusive access to it unless transitioned. Tephra extends this concept
by letting individual queues own resources, with the transition operations
being exports. This allows resource accesses to be stored on a per-queue
basis, allowing multiple threads to submit commands to different queues in
parallel without the need for any locks, as long as they don’t use the same
subresource ranges at the same time. The queue state is not only responsible
for keeping access maps for each resource, but also handles the queueing and
compilation of jobs as a whole as well as communication with other queues
through timeline semaphores and export operations.

4.2.4 Barrier list

The second part of the process is translating the dependencies found by the
access map into barriers. Dependencies operate over a contiguous range, the
intersection of the source and destination accesses. A buffer or image memory
barrier can be used in a pipeline barrier to synchronize that dependency. The
goal here is to minimize the number of memory barriers and pipeline barriers,
while synchronizing the dependency as late as possible.

This is achieved by keeping a simple list of barriers to be inserted into the
command stream. When a new dependency is to be synchronized, it needs to
know what the index of the first barrier to be reused is. This is stored in the
access map entry as the index of the barrier immediately following the last
write or read access. The barrier list is then iterated over from that index,
looking for the optimal barrier.

The ideal candidate is a pipeline barrier that already has a memory barrier
that covers the new dependency. Since the access map has knowledge of the
relevant memory accesses and how they have been synchronized, the access
entry can also store the reference to this specific memory barrier. This is
useful when multiple different read accesses follow a write access. They can
then reuse the same memory barrier to synchronize both of the read accesses
at once.

Where a new memory barrier needs to be inserted and has multiple existing
pipeline barriers to choose from, it should choose one that already satisfies
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its execution dependency, prioritizing the last one if there are more. Such
a pipeline barrier only needs to be extended by a memory barrier, without
introducing any new sync points. If no pipeline barrier has the right exe-
cution dependency, the latest existing pipeline barrier is extended to cover
it. Whether this is better than inserting a new barrier at a later point is
arguable. On one hand it serves to minimize the amount of barriers, but it
might insert a dependency sooner than it is really needed. Further research
and profiling would be beneficial.

4.2.5 Job compilation and submission

We can now piece together the whole process of submitting a list of enqueued
jobs. This is better shown with the following pseudocode:

Listing 4.2: Pseudocode of the process of submitting a list of enqueued jobs
QueueSyncState& syncState = getSyncState ( queue ) ;
for ( auto job : queuedJobs ) {

VkCommandBuffer cmdBuffer = commandPool−>acquireCommandBuffer ( ) ;

// Update sync s t a t e and form b a r r i e r s
BarrierList barriers ;
for ( auto command : job . commands ) {

std : : vector<Accesses> accesses = identifyAccesses ( command ) ;

// F i r s t synchron ize with prev ious a c c e s s e s
for ( auto access : accesses ) {

AccessMap& accessMap = syncState [ access . resource ] ;
syncState . synchronizeAccess ( access , &barriers ) ;

}

// Then i n s e r t the a c c e s s e s f o r the f o l l o w i n g commands
// to synchron ize aga in s t .
for ( auto access : accesses ) {

AccessMap& accessMap = syncState [ access . resource ] ;
syncState . insertAccess ( access ) ;

}
}

// Record the Vulkan command b u f f e r
for ( auto command : job . commands ) {

while ( barriers . front ( ) . commandIndex <= command . index ) {
recordBarrier ( barriers . front ( ) , &cmdBuffer ) ;
barriers . pop_front ( ) ;

}

// Convert Job command b u f f e r to Vulkan ’ s , r e s o l v i n g
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// r e sou r c e views to ac tua l Vulkan handles
recordCommand ( command , &cmdBuffer ) ;

}

submitInfo . append ( cmdBuffer ) ;
}
Workload workloadHandle = deviceImpl−>submit ( queue , submitInfo ) ;

This is skipping over details like handling export commands, which insert
"fake" read accesses right before the next point where exported resources can
be used outside of the job. That is, before command pass execution and at
the end of the job. DiscardImageContents commands set the current layout
of all overlapping accesses in the access map with an undefined layout. The
cached barrier references inside the affect map also need to be reset after a
job submission.

4.2.6 Render pass synchronization

Some synchronization already needs to be resolved at the time the Tephra
render pass layout is created. Vulkan expects an explicit description of
dependencies between subpasses, even if that dependency is formed by the
attachments themselves. The actual stage and access masks as well as
the image layouts are therefore inferred by the library according to the
information about the usage of attachments during each subpass. It follows
rules described by Vulkan specification as for what layouts are permitted
when a single attachment is used as, for example both an input and a read
only depth attachment at the same time.

There are two aspects in render passes that differentiate it from other
commands from the perspective of the job compiler. Both stem from the fact
that in Vulkan, render passes themselves do some amount of synchronization.
Individual subpasses can use the attachments differently and can even perform
image layout transitions. Therefore, its attachment accesses have to be
synchronized as two sets of accesses. The first set is the first usage of
each attachment in the render pass and it is what past accesses need to be
synchronized against. The second set are the last usages, which is what future
accesses will depend on.

The other aspect is that a render pass can act as a barrier with its external
dependencies. They, however, behave only like global memory barriers for non-
attachment images, so there will be scenarios where regular pipeline barriers
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will need to be inserted alongside the render pass anyway. For now, Tephra
simply ignores this aspect, leaving external dependencies empty and relying
only on the more powerful pipeline barriers. However, in the future adding
the support for leveraging external subpass dependencies where possible may
provide some benefit, since the driver might be able to implement them more
efficiently.
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Chapter 5

Evaluation

It is difficult to objectively measure many qualities of an interface, like ease
of use, consistency and how intuitive its design is. Only time will tell how
well it integrates into existing engines and how quickly users without prior
experience are able to become familiar with the library and its best practices.
One aspect that can be analyzed is the number of lines of code needed to
implement the same program as compared to different APIs. Even though it
is a very rough measure, it should be telling of how much information the
interface asks of its user and therefore roughly how "low level" it is. Something
as simple as rendering a triangle can be expressed in a few tens of lines in
OpenGL, but the same example can get close to a thousand lines of code in
Vulkan.

What can be measured directly is the performance. The overhead as
compared to using Vulkan directly should be as small as possible. A small
memory footprint is welcome, too. Finally, we can take a closer look at the
synchronization primitives automatically inserted by the library and discuss
how close they are to an optimal setup.

5.1 The tests

For the sake of comparison, the same demos need to be implemented in
OpenGL, Vulkan and Tephra with identical results. A third party test suite
[7] comparing the performance of OpenGL and Vulkan-Hpp [12] was used as
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the basis. It was then extended to include a Tephra implementation for a
three way comparison. Some additional modifications to the test scenes were
also made to further focus on specific areas of the APIs.

The first scene is a static scene made up of a number of randomly colored
low-poly balls. It is meant to highlight the overhead of the API calls. For
that reason the demo does not use instancing. The low triangle count and
small size on the screen ensures the performance will be limited by how fast
the CPU can generate the commands. The scene is first rendered with a
small number of balls (1000) to measure the flat overhead of each API when
drawing a mostly empty scene. The second test draws the scene with a million
balls, such that the vast majority of the time will be spent on the individual
draw calls in all APIs. This test is run both with a single threaded and
multithreaded implementation for Vulkan and Tephra. OpenGL The original
test suite has a multithreaded OpenGL implementation as well, however the
threading is only applied to the position updates, which doesn’t run in this
static version.

Figure 5.1: Screenshot of scene #2

The second scene draws dynamic geometry of a terrain with an adaptive
level of detail. It’s rendered as a wireframe with each fragment colored
according to its height. This is scene is largely CPU bound as well due to
each segment being a separate draw call. The traversal of the quad tree has a
considerable cost as well, irrespective of the API used. In the sample, Vulkan
has a multithreaded version for this scene, but we did not notice a significant
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enough improvement on any platform.

Figure 5.2: Screenshot of scene #3

The third and final scene is a more complex render, closer to a real use
case. It first renders a shadowmap of the scene made up of a few hundred
boxes and a sphere, which is then used for shading during the draw pass from
the perspective of a camera rotating around the scene. This is mostly a GPU
bound scene and therefore tests the efficiency of barriers and render passes.
It is used for two tests, one with a shadowmap resolution of 4096x4096 pixels
and the other with 1024x1024 pixels.

For the performance tests, each of them was run for a period of 60 seconds
to capture the average frame time. The first second of data was discarded
to stabilize the frame rate after initialization. The initial results of the first
scene showed Tephra 10-15% faster than Vulkan-Hpp. Short investigation
revealed that was because the implementation in the original sample uses
static pointers for the API functions, whereas Tephra always retrieves them
dynamically for the particular device they will be used on, reducing overhead.
For the sake of fairness, the Vulkan-Hpp implementation was extended to use
dynamic pointers as well. Besides that, it is expected that the performance
overhead of Vulkan-Hpp is very low compared to using the Vulkan API
directly. All of the tests were ran on three different computers with details
described in the following table:
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Name Operating system GPU
GB of memory CPU [# of cores / threads]

Nvidia laptop Windows 7 Nvidia GT 650M
8 GB Intel Core i5-4200M @ 3.1 Ghz [2/4]

AMD desktop Windows 7 AMD Radeon RX 580
16 GB AMD Ryzen 5 1600 @ 3.5 Ghz [6/12]

Nvidia desktop Windows 10 NVIDIA RTX 2080
32 GB Intel Core 15-5600K @ 3.7 Ghz [6/6]

Table 5.1: Tested platforms

5.2 The results

Vulkan-Hpp OpenGL Tephra
Scene #1 with 1 000 objects, single threaded

Nvidia laptop 0.599 ms 0.840 ms (140%) 0.671 ms (112%)
AMD desktop 0.223 ms 0.827 ms (371%) 0.251 ms (113%)
Nvidia desktop 0.268 ms 0.321 ms (120%) 0.288 ms (107%)

Scene #1 with 1 000 000 objects, single threaded
Nvidia laptop 73.6 ms 228 ms (310%) 73.9 ms (100%)
AMD desktop 136 ms 665 ms (489%) 149 ms (110%)
Nvidia desktop 43.9 ms 163 ms (371%) 25.8 ms (59%)

Scene #1 with 1 000 000 objects, multithreaded
Nvidia laptop 73.5 ms N/A 73.6 ms (100%)
AMD desktop 151 ms N/A 151 ms (100%)
Nvidia desktop 11.0 ms N/A 11.2 ms (102%)

Scene #2
Nvidia laptop 8.41 ms 11.9 ms (141%) 8.47 ms (101%)
AMD desktop 11.7 ms 25.6 ms (219%) 11.7 ms (100%)
Nvidia desktop 7.13 ms 8.99 ms (126%) 7.08 ms (99%)

Scene #3 with a 4096x4096 shadowmap
Nvidia laptop 8.97 ms 4.02 ms (45%) 8.57 ms (96%)
AMD desktop 1.58 ms 2.60 ms (165%) 0.839 ms (53%)
Nvidia desktop 0.611 ms 0.563 ms (92%) 0.627 ms (103%)

Scene #3 with a 1024x1024 shadowmap
Nvidia laptop 3.34 ms 2.43 ms (73%) 2.81 ms (84%)
AMD desktop 0.854 ms 2.54 ms (297%) 0.618 ms (72%)
Nvidia desktop 0.444 ms 0.565 ms (127%) 0.475 ms (107%)

Table 5.2: Frame times in milliseconds for each test, platform and API

52



..................................... 5.2. The results

As was mentioned, the first test that draws 1 000 static objects in scene
#1 reveals the API overhead for each frame, independent on the number of
draw calls. Tephra is here consistently around 10% slower than Vulkan on all
platforms. Caching the render pass and framebuffer objects so that they are
not recreated every frame may help in this area. Moving on to a million draw
calls, the per-draw call overhead starts to dominate. Tephra’s performance
in this test is rather inconsistent on different computers, showing even an
unexpected significant speedup over Vulkan in one case. What is consistent,
however, is the much higher overhead of OpenGL, with the scene taking 3 to
5 times longer to render.

The same scene with multithreading removes these inconsistencies, making
Tephra just as fast as Vulkan in this test. Of note is the fact that Vulkan
does not benefit from multithreading on Windows 7, making only one of the
tested systems show improved frame times over the previous test.

Next up is the second scene, with Tephra’s performance staying close to
that of Vulkan, while OpenGL trails behind. Another observation unrelated
to the APIs is that the CPU cost of draw calls is higher for AMD drivers,
since the tests show lower frame rates on these tests than on the Nvidia
laptop, despite the AMD system’s CPU being more powerful.

The third scene shows a scenario where the GPU is more likely to be
the bottleneck. Here the results are once again inconsistent. It seems that
OpenGL is limited by the CPU instead on two of the platforms, where
reducing the resolution of the shadowmap has little effect. Tephra, however,
tends to perform better than the Vulkan implementation, especially on the
AMD system. This can be because of synchronization being set up differently,
as will be investigated in the following section, or due to the vertex data being
suballocated from a single Vulkan buffer, rather than one for each render
object.
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Vulkan-Hpp OpenGL Tephra

Scene #1 56.3 MB 93.9 MB (167%) 61.6 MB (109%)1 000 objects
Scene #1 358.7 MB 95.4 MB (27%) 465.2 MB (130%)1 000 000 objects
Scene #2 232.9 MB 259.6 MB (111%) 298.5 MB (128%)
Scene #3 59.1 MB 93.6 MB (158%) 65.3 MB (110%)4096x4096 shadowmap
Scene #3 59.3 MB 73.9 MB (125%) 65.3 MB (110%)1024x1024 shadowmap
Average 100% 119% 117%

Table 5.3: Process CPU memory usage

Vulkan-Hpp OpenGL Tephra
Scene #1 13.3 MB 26.4 MB (198%) 13.6 MB (102%)1 000 objects
Scene #1 13.8 MB 26.4 MB (191%) 14.1 MB (102%)1 000 000 objects
Scene #2 61.2 MB 72.3 MB (118%) 61.3 MB (100%)
Scene #3 85.5 MB 91.4 MB (107%) 83.2 MB (97%)4096x4096 shadowmap
Scene #3 24.6 MB 30.5 MB (124%) 22.3 MB (91%)1024x1024 shadowmap
Average 100% 148% 98%

Table 5.4: Dedicated GPU memory usage

Both CPU and GPU memory usage of the process was also measured
for all scenes on the same system. Several interesting observations can be
made about the differences between how the Vulkan and OpenGL drivers
use memory, but of more importance is the overhead of Tephra compared
to Vulkan. For the purpose of these tests, the Vulkan Memory Allocator
for Tephra was disallowed from pre-allocating large blocks, so that the GPU
memory usage of the process as reported by the Windows Process Explorer is
more accurate. In the results, Tephra ended up balancing between 110% and
130% of the CPU memory usage of the Vulkan-Hpp implementation. Its GPU
memory usage stayed very similar, except for the last scene, where Tephra has
a slight lead. This is most likely due to the suballocation of vertex data from
a single buffer, therefore caused by a difference in the scene implementation
rather than the API itself.
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Vulkan-Hpp OpenGL Tephra
Common setup 180 76 (42%) 97 (54%)
Scene #1 130 31 (24%) 61 (47%)
Scene #1 163 N/A 77 (47%)multithreaded
Scene #2 140 35 (25%) 80 (57%)
Scene #3 312 71 (23%) 135 (43%)
Average 100% 28% 49%

Table 5.5: Logical lines of code for each scene and API

Another measured aspect is the number of lines of code needed for the
implementations of the test scenes for each API, as a rough measure of how
high level they are. Using Vulkan-Hpp over the C Vulkan API arguably makes
for a better comparison against Tephra, since they are both C++ interfaces
leveraging modern language features to reduce the amount of boilerplate code,
making the major difference in line count the result of how much information
is being asked of the user.

To account for the differences in coding styles, the measured metric is the
number of logical lines of code, rather than the actual number of lines of
source code. Only the lines of code that directly interface with the API are
counted, formatted to a maximum of 120 characters per line. Lines without
code, class and function definitions, non-API function calls, timing and error
handling code are all discarded and are not a part of the measured code count.
This is all to get the best measure of how much code is needed to work with
each of the interfaces.

The common setup code includes initialization, creating the context and
a window for OpenGL and the instance, device, surface and swapchain for
Vulkan and Tephra. This setup is shared among all of the scenes. Looking at
the results, both OpenGL and Tephra require about half as much code for
initialization as Vulkan-Hpp. The scenes themselves have a lot less code for
OpenGL at about a quarter of what Vulkan-Hpp needs, while Tephra still
hovers around the 50% mark. Calculating a weighted average of these results
nets OpenGL 28% and Tephra 49% of the Vulkan-Hpp amount of code. If
the setup code is included in each of the scenes as if they were standalone
applications, it gives us 33% for OpenGL and 50% for Tephra.
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5.3 Synchronization analysis

Analysing the results of the automatic synchronization is rather tricky.
Vulkan’s validation layers should issue a warning when something is amiss,
but they don’t have close to full coverage. Even then, there are no warnings
for unnecessary barriers. Evaluating the results depends on the knowledge
and understanding of what should be the optimal way of synchronization for
each scenario, knowledge that I don’t believe I fully possess due to the many
caveats.

The correctness of the automatic synchronization help confirm several tests
that are a part of Tephra. They show example scenarios with consideration
of how pipeline barriers should optimally be placed and confirms that is how
the library inserts them. Here is one such example along with comments
explaining the purpose of each command. The test checks whether exactly
two pipeline barriers were inserted as specified.

Listing 5.1: Synchronization test confirming no needless barriers get inserted
job−>cmdFillBuffer ( bufferA , 0 , bufferSize , . . . ) ;
// Test that only one read a f t e r wr i t e b a r r i e r g e t s i n s e r t e d
// f o r mu l t ip l e non−over lapp ing reads ( Bar r i e r #1)
job−>cmdCopyBuffer ( bufferA , bufferB , { . . . } ) ;
job−>cmdCopyBuffer ( bufferA , bufferB , { . . . } ) ;
// Test read a f t e r read non−dependency
job−>cmdCopyBuffer ( bufferA , bufferC , { . . . } ) ;
// Test non−over lapp ing r e g i o n s non−dependency
job−>cmdFillBuffer ( bufferC , bufferSize / 2 , bufferSize / 4 , . . . ) ;
job−>cmdFillBuffer ( bufferC , 3 ∗ bufferSize / 4 , bufferSize / 4 , . . . ) ;
// Do put wr i t e a f t e r read execut ion b a r r i e r here ( Bar r i e r #2)
job−>cmdFillBuffer ( bufferA , 0 , bufferSize / 2 , . . . ) ;
// Augment the prev ious b a r r i e r with another wr i t e a f t e r read memory
// b a r r i e r without i n s e r t i n g a new one
job−>cmdCopyBuffer ( bufferA , bufferA , { . . . } ) ;
// Also augment the prev ious b a r r i e r to synchron ize a copy between
// two unre la t ed b u f f e r s
job−>cmdCopyBuffer ( bufferB , bufferC , { . . . } ) ;

The third scene in the comparison suite can also be investigated. The
Vulkan-Hpp implementation of the scene as done by the author does not
synchronize optimally. Unlike Tephra, it uses external subpass dependencies
for synchronization, however they are overreaching and each render pass is
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flushing the entire pipeline, which may be the cause of its reduced performance
on some platforms. Additionally, it still inserts a manual pipeline barrier in
between the render passes despite the dependency being able to be expressed
by the external subpass dependencies.

Tephra handles it entirely through manual pipeline barriers. The first
barrier comes before the shadowmap pass. It synchronizes the previous
frame’s shader read of the shadowmap to this frame’s depth write. It also
inserts a similar one that acts on the depth image of the render pass here
rather than in the following barriers because this barrier already forms the
appropriate execution barrier. Doing it later could stall the pipeline more. The
second barrier lies in between the render passes and ensures the shadowmap
becomes visible from the shader. It also transitions the swapchain image to a
layout optimal for color attachments after it’s been presenting on the screen.
The final barrier after the render pass simply does the opposite, preparing
the image for presentation.

An optimal synchronization setup would rely on external render pass
dependencies here as it should be possible to do so without using any pipeline
barriers. However, the actual dependencies expressed would most likely stay
the same as with the pipeline barriers, so the benefit depends only on how
much more efficient this style of synchronization is. This part deserves more
testing in the future.
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Chapter 6

Conclusion

In this thesis, it has been shown that there is still a place for a modern,
high-level graphics API. Key design elements have been established along
with the requirements and qualities such an interface should have. This
design has been realized in detail to create a general-purpose graphics API
called "Tephra" and then implemented using the low level Vulkan API to
communicate with the GPU.

This implementation underwent testing and comparison against an estab-
lished high-level graphics API, OpenGL, as well as Vulkan itself through
a thin abstraction library. All of the tests implemented using Tephra re-
quired half as much code compared to the low-level Vulkan library, while
only incurring less than 10% of performance overhead. It also maintains
other advantages of Vulkan besides the low draw call overhead, such as the
ability to scale well with multithreading and more control than what OpenGL
provides. At the same time it does not require the user to learn the rules of
synchronization and pipeline barriers like Vulkan does. This can lead to a
Tephra implementation showing a higher performance than a hand written
Vulkan implementation, as was the case in one of the test scenes.

There are still improvements that can be made, however, both to the
automatic synchronization as well as yet unimplemented features. This is an
ongoing effort with the goal of producing a polished, well tested and feature
complete graphics API that is able to present itself as a serious candidate for
the graphics API of choice for many applications, bridging the gap between
the aging last generation APIs and their difficult-to-master successors. We
feel this work has been successful in approaching that goal.
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Appendix B

Contents of the included CD..1. readme.txt - The readme file containing further details for using the
CD contents...2. Tephra.sln - The Microsoft Visual Studio C++ solution file for the
Tephra library...3. Tephra/interface/ - The Tephra interface files to be included...4. Tephra/impl/ - The Tephra implementation files...5. Tephra/documentation/ - The Doxygen source and html documen-
tation...6. Tephra/examples/ - An example project using Tephra...7. Tephra/tests/ - Integration test project...8. GL_vs_VK/ - A comparison suite between OpenGL and Vulkan
extended to test Tephra as well...9. GL_vs_VK/run_tephra.bat - A batch file that runs the prebuilt
x64 binary with Tephra implementation....10. Thesis/src/ - Latex source files for the thesis....11. Thesis/Tephra.pdf - This thesis in PDF.
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