
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Telecommunications Engineering

Machine Learning-based Dynamic Resource Allocation
for 5G Services

Master’s thesis

Bc. Aida Madelkhanova

Study program: Electronics and Communications
Branch of study: Communication Systems and Networks

Supervisor: Doc. Ing. Zdeněk Bečvá̌r, Ph.D.
Co-supervisors: Navid Nikaein, Thrasyvoulos Spyropoulos (EURECOM)

Prague, January 2020

Declaration

I hereby declare that I have completed this thesis on my own and that I have only used
the cited sources. I have no objection to use of this work in compliance with the act ”§60
Zákon č.121/2000 Sb.” (copyright law), and with the rights connected with the copyright
act including the changes in the act.

Prague, 6 January 2020

..
Bc.Aida Madelkhanova

III

cTu
CZECH TE(HtrICAI
uÈtvEnstlY
Itr PRACUE

l. Personal and study details

ll. Master's thesis details

MASTER'S THESIS ASSIGNMENT

Student's name: Madelkhanova Aida Personal lD number:

Faculty / lnstitute: Faculty of Electrical Engineering

Department/ lnstitute: Department of Telecommunications Engineering

Studyprogram: ElectronicsandGommunications

Branch of study: Communication Systems and Networks

434977

Master's thesis title in English:

Machine Learning-based Dynamic Resource Allocation for 5G Services

Master's thesis title in Czech:

Dynamickâ alokace prostiedkù zaloâenâ na strojovém uéeni pro sluZby 5G siti

Guidelines:

Study resource allocation in a software virtualized architecture with network slicing as a key flexibility enabler towards
future service-oriented 5G networks. The resource allocation in such virtualized environmentwith slices is NP-hard problem,

and thus it is important to find an optimal way to satisfy the resource requirement of all slices with even unpredictable
traffic for some of them. The objective of this thesis is to investigate the allocation of multi-type resources (bandwidth,
computing, storage, etc.) from the end-to-end perspective, spanning both the core network and radio access network
where users reside and consume 5G services. Consider the real case where users and/or slices enter and leave the
system at any time. Furthermore, investigate machine learning-type algorithms and improve or propose new machine
learning-based algorithms for the dynamic allocations of multi-type resources with a dynamic arrival and departure of the
users and slices. The proposed algorithm should be validated both with simulation and real data-set.

Bibliography / sources:

[1] M. Leconte, G. S. Paschos, P. Mertikopoulos, U. C. Kozat, A resource allocationframework for network slicing,' IEEE
INFOCOM 2018, pp. 2177-2185, April2018.
[2] G. Wang, G. Feng, W. Tan, S. Qin, R. Wen, S. Sun, 'Resource Allocation for Network Slices in 5G with Network
Resource Pricing,' IEEE Global Communications Conference, December 2017 -

[3] R. S. Sutton, A. G. Barto, 'Reinforcement learning - an lntroduction,'Adaptive computation and machine learning, MIT
Press, 1998.

Name and workplace of master's thesis supervisor:

doc. lng. Zdenèk Beëvâi, Ph.D., Department of Telecommunications Engineering,

Name and workplace of second master's thesis supervisor or consultant:

Superuisor's signature

Date of master's thesis assignment: 05.08.2019 Deadline for maste/s thesis submission

Assignment valid until: 19.02.2021

doc. Ing. Zdenëk Beëvâi, Ph.D. Head of departmenfs signature

FEE

Petr , Ph.D.
Dean's signature

cvur-cz-ztP-2015.1 o ÔVUT v Praze, Design: ÔVUt v Praze, vlC

Date of assignment receipt Studentfs signature

lll. Assignment receipt

cwr-cz-zDP-2015.1 @ Ôvut v Praze, Design: ëVUt v Praze, VIC

Abstrakt

Rychle rostoućı počet technologíı páté generace 5G vyžaduje zkoumáńı nových strategíı
správy śı̌tových prostředk̊u. Datově ř́ızené strojové učeńı umožňuje př́ıstupy vyvinuté k
dosažeńı výkonu s dostupnou výpočetńı složitost́ı. Zpětnovazebńı učeńı je považováno pro
budoućı inteligentńı śıtě. V této práci jsou uvažovány př́ıstupy zpětnovazebńıho učeńı a
hlubokého zpětnovazebńıho učeńı pro přidělováńı rádiových zdroj̊u v śıti 5G. Jsou stu-
dovány čtyři algoritmy zpětnovazebńıho učeńı,na základě kterých se dále vyv́ıj́ı konkrétńı
design. Zanalyzována výkonnost každého vzdělávaćıho rámce a poskytováno porovnáńı (z
hlediska pr̊uměrné odměny) mezi nimi. Hodnoceńı prokazuje obecnou použitelnost pop-
saných koncept̊u. Výsledky simulaćı ukazuj́ı, že techniky hlubokého zpětnovazebńıho učeńı
předč́ı jednoduché Q učeńı.

Kĺıčová slova : 5G, Zpětnovazebńı Učeńı, Q-učeńı

Abstract

The rapidly increasing number of 5G technologies forces an investigation of new network
resource management strategies. Recently, the data-driven Machine Learning (ML) en-
abled approaches developed to obtain optimal performance with affordable computational
complexity. Reinforcement Learning (RL) is regarded for future intelligent networks. In
this thesis RL and Deep Reinforcement Learning (DRL) approaches are considered for
radio resource allocation in 5G network. We study four state-of-the-art RL algorithms,
based on this, the concrete RL design is further developed. We analyze the performance
of each learning framework and provide comparisons (in terms of the average reward) be-
tween them. The evaluation proves the general applicability of the described concepts.
Simulations results show that DRL techniques outperform the simple Q learning.

Keywords: 5G, Reinforcement Learning, Q learning

VII

List of Figures

4.1 ML types. 7
4.2 The basic RL scheme . 8
4.3 Q-learning architecture . 11

5.1 Feed-forward Neureal Network (NN) architecture 13
5.2 Actor-critic architecture [1] . 16

6.1 Both utilities follow a sigmoid utility function. In the case of (a) a maximum
value is achieved above a maximum resource block (RB) threshold, whereas
in the case of (b) a maximum value is achieved below a minimum delay
threshold. 19

7.1 The considered scenario with transmissions to a common base station (BS)
from devices using the three generic fifth generation (5G) services. 22

7.2 Q-learning performance for resource allocation task in first scenario 24
7.3 Q-learning performance for resource allocation task in second scenario . . . 25
7.4 Q-learning performance for resource allocation task in third scenario 26
7.5 Deep Q Network (DQN) and Double Deep Q Network (D-DQN) architecture 28
7.6 DQN performance for resource allocation task in first scenario 29
7.7 DQN performance for resource allocation task in second scenario 30
7.8 DQN performance for resource allocation task in third scenario 31
7.9 D-DQN performance for resource allocation task in first scenario 32
7.10 D-DQN performance for resource allocation task in second scenario 33
7.11 D-DQN performance for resource allocation task in third scenario 34
7.12 Structure of the actor-critic DRL agent [1] 35
7.13 Actor-Critic (AC) performance for resource allocation task in first scenario 36
7.14 AC performance for resource allocation task in second scenario 37
7.15 AC performance for resource allocation task in third scenario 38
7.16 A comparison of the final reward curve of all four trained agents with inde-

pendent and identically distributed (IID) traffic 40
7.17 A comparison of the final reward curve of all four trained agents with IID

traffic different over slices . 41
7.18 A comparison of the final reward curve of all four trained agents with time-

varying traffic . 42

VIII

List of Acronyms

5G fifth generation. VIII, 1–3, 5, 17, 22, 43

AC Actor-Critic. VIII, 4, 21, 35–38, 40–43

AI Artificial Intelligence. 3

BS base station. VIII, 20, 22

CSI channel state information. 4

D-DQN Double Deep Q Network. VIII, XII, 1, 4, 15, 21, 27, 28, 32–34, 37, 40–43

DL Deep Learning. 1, 3, 43

DNN Deep Neureal Network. 13, 35, 39, 43

DQL Deep Q Learning. 3, 4, 12, 14

DQN Deep Q Network. VIII, 1, 4, 14, 15, 21, 27–32, 40–43

DRL Deep Reinforcement Learning. VII, VIII, 1–4, 13, 35, 36, 43

DRQN Deep Recurrent Q-Network. 4

eMBB Extreme Mobile Broadband. 5, 22

IID independent and identically distributed. VIII, 23, 30, 33, 36, 40, 41, 43

IoT Internet of Things. 6

LSTM Long Short-Term Memory. 4

MDP Markov Decision Process. 7, 10, 11, 13

ML Machine Learning. VII, VIII, 1, 3, 7

mMTC Massive Machine Type Communication. 5, 6, 22

NN Neureal Network. VIII, 13, 21, 39, 43

NS network slice. 1

NSP Network Service Provider. 17

PER packet error rate. 5, 6

IX

List of Acronyms

QoS Quality-of-Service. 1, 3–5

RAN Radio Access Network. 5, 17

RB resource block. VIII, 17–20, 22, 24, 37

RL Reinforcement Learning. VII, VIII, 1–4, 7–11, 13, 20, 43

RNN Recurrent Neural Network. 4, 43

SE Spectrum Efficiency. 5

SL supervised learning. 7, 8

SMDP Semi-Markov Decision Process. 3

TD Temporal Difference. 16

URLLC Ultra-reliable and low-latency communications. 5, 6, 22

USL unsupervised learning. 7

V2V vehicle to vehicle. 3

X

Contents

List of Figures VIII

List of Acronyms IX

Contents XI

1 Introduction 1

2 Related Work 3

3 5G Network Slicing 5

4 Reinforcement Learning 7
4.1 Introduction to Reinforcement Learning . 8

4.1.1 Elements of Reinforcement Learning 8
4.1.2 ε-greedy policy . 9

4.2 Reinforcement Learning types . 10
4.3 Markov Decision Process . 10
4.4 Q-learning . 11

5 Deep Reinforcement Learning 13
5.1 Neural Networks . 13
5.2 Deep Q-Network . 14

5.2.1 Double DQN . 15
5.3 Actor-Critic . 15

6 System Model 17
6.1 Model Parameters . 17
6.2 Monetary gain function . 18
6.3 Problem formulation . 20
6.4 Implementation Details . 21

7 Experiments and Results 22
7.1 Simulation Configuration . 22
7.2 Tabular Q learning . 24
7.3 Deep Q-learning . 27

7.3.1 Test 2 . 30

XI

Contents

7.4 D-DQN . 32
7.5 Actor-Critic . 35
7.6 Comparison . 39

8 Conclusion 43

XII

1 Introduction

A whole new era of mobile communications, i.e., the 5G of mobile communication systems
has been introduced to satisfy the explosive growth in capacity and coverage demands. The
5G mobile networks are designed to support a wide variety of innovative services, which
require different needs in terms of latency, bandwidth, reliability, and flexibility [2]. Net-
work resource management becomes an increasingly challenging step that requires proper
design to advance network performance. In this situation, network slicing is a promising
technology for 5G networks to provide services customized to the unique Quality-of-Service
(QoS) specifications of users. Driven by the increased wireless data traffic from various
application scenarios, efficient resource allocation schemes should be used to enhance the
flexibility of network resource allocation and capacity of 5G networks based on network
slicing. The aim of slicing is to allow simplicity and better use of network resources by pro-
viding only the required network resources to meet the specifications of the slices enabled
in the system.

How to make efficient utilization of radio resources in 5G technologies is a brand-new
challenge. Existing approaches used for previous generations are not capable to provide
optimized resource allocation for reliable communication in 5G systems due to . In last
few years some studies have shown an increased interest of integrating ML methodologies
to learn the optimal network resource management strategies [3]. Since the accurate
information and the complete model of the environments in mobile communications are
unknown, the RL framework is a good match to solve optimization problems in wireless
networks. Recently in the fields of RL promising results have been shown, owing much to
developments in ML and Deep Learning (DL) [4, 5].

The key contributions of this thesis are summarized as follows:
— We thoroughly study different RL and DRL [6] techniques and investigate the use

cases of DRL agents.
— We formulate the network slice (NS)s resource allocation problem and employ RL

techniques to solve it. Four state of the art RL agents are trained and deployed
to this model: Tabular Q-learning, DQN, D-DQN, Actor-Critic. Each technique is
evaluated in terms of efficiency and feasibility. Simulations results show that DRL
algorithms outperform the simple Q learning.

1

CHAPTER 1. INTRODUCTION

The structure of the thesis is as follows. The next chapter gives an overview of works
related to the topic of this thesis. Chapter 3 focuses on the specifications of 5G networks
and concludes the chapter by explaining the need for an integrated approach to effective
network resource management. Then, Chapters 4 and 5 describes on the theory behind
RL and DRL in detail. We focus on applied algorithms and how the resource allocation
problem can be solved. In Chapter 6 we describe our system model designed for network
management including environment structure and reward functions. The results from
the experiments and modeling are presented in Chapter 7, where the performance of the
methods is investigated. We discuss issues related to our learning methods in Chapter 8
and also provide potential extensions for future work. Finally, we give a brief summary of
the entire work of the thesis and make some final remarks.

2

2 Related Work

Mobile networking and ML tasks are mostly studied separately. Crossings between DL
[7] and wireless networking appeared only recently [3–5, 8, 9]. In [4] and [8], the authors
present a comprehensive survey on the crossover between DL and mobile and wireless
networking, where they provide an overview of DL-based communication and networking
applications categorized by different domains.

One of the most critical ML research paths that has a major impact on the Artificial
Intelligence (AI) development is RL [1]. The learning agent in RL is partially inspired by
the psychology of human learning. The agent focuses on interaction with the environment
by trying different actions and reinforcing actions with more rewarding results. Several
works apply RL techniques for network management. A RL-based resource management
scheme for clouds robotic was proposed in [10]. In this paper the scheduling problem was
formulated as Semi-Markov Decision Process (SMDP) with the aim of allocating cloud
computing resources for the robots’ efficient service in the system. Q-learning algorithm
was implemented in [11] for autonomic cloud resource management. In this work the au-
thors solve the convergence problem by providing a good initial estimate for the Q-function,
which speedups learning convergence throughout the training phases. A significant amount
of research work has been done on network slicing management and orchestration using RL
methods. [12] presents a Q-learning-based dynamic resource adjustment algorithm that
aims at maximizing the profit of tenants while ensuring the QoS requirements of end-users.

Nonetheless, RL faces some difficulties in dealing with large state space as it is hard to go
through each state and a value function for each state-action pair. Therefor combination of
RL with DL [7], referred to as DRL [6], has attracted much attention in recent years. The
DRL techniques are capable of providing a good approximation of the objective value while
dealing with very large state and action spaces. A variety of projects applying DRL, such
as the Go game [13] and Atari video games [14], have achieved an amazing performance.

The DRL is widely implemented in different communication scenarios, such as cellular
networks [15], network slicing [16–18], edge computing [19] and vehicle to vehicle (V2V)
communications [20]. The Deep Q Learning (DQL) has been used in [18] to solve a
standard resource management network slicing scenario, which involves radio resource
slicing and core network slicing. In [21] a distributed dynamic power allocation scheme is
developed on the basis of model-free DRL technique. In [16] the authors propose a two-
level framework for radio resource virtualization and allocation in 5G. In this paper, the
RL algorithm autonomously adjusts the assigned resource to slice based on feedback from
the users’ average QoS utility and average resource usage. In [19] the authors design an

3

CHAPTER 2. RELATED WORK

intelligent DQL agent at the edge computing node to develop a real-time adaptive policy
for computational resource allocation for offloaded tasks of multiple users.

Inspired by the achievements of DRL in solving control problems, there has been increased
interest in applying advanced DRL frameworks for problems in wireless communication.
Different multi-agent RL scenarios are studied in [21, 22]. In [21] the authors are focused on
a multi-agent scenario where each transmitter collects channel state information (CSI) and
QoS information from several neighbors and adjusts its own transmit power accordingly.
The objective is to maximize a weighted sum-rate utility function [21].

Following the initial success of the DQN [23], a number of improved models have been
published successively. The D-DQN was suggested in [24] to eliminate overestimation by
adding a target Q network. The Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM) have been shown to be efficient in the processing of sequence data with
partially observable states [25]. In [26] the authors replaced the last layer in the DQN
with an LSTM layer, refereed as Deep Recurrent Q-Network (DRQN). They evaluated the
performance of DRQN on standard Atari games.

Other typical DRL framework is the AC method [27]. The AC method is studied in [28–30].
For instance, in [30] the authors propose AC based framework for dynamic multichannel
access. They consider both single and multi-user scenarios, where the proposed framework
is employed as a single agent in the single-user case, and is extended to a decentralized
multi-agent framework in the multi-user case. The AC-based algorithm was suggested in
[28] in order to improve the performance of resource allocation in optical networks. The
paper implements the AC algorithm in order to find the optimal policy for user scheduling
and resource allocation in HetNets [31].

4

3 5G Network Slicing

This chapter is a short introduction to 5G and Network Slicing. We provide a comprehen-
sive summary of 5G services’ classification and requirements.

The rapidly increasing number of mobile devices, causing the explosive growth in capacity,
coverage and higher data rates demands, are pushing the evolution of the current mobile
communication systems to new generation, i.e. 5G. 5G is bringing many benefits to both
customers and service providers. The 5G technology is expected to meet various user QoS
requirements in different application scenarios, in terms of data transmission rate and
latency. 5G-linked technologies are revolutionary in terms of their effect on the commu-
nications network: extreme mobile broadband, wide range of frequency bands, ultra-low
latency, wide-area coverage and sliceability. A network slice is defined as a logical (virtual)
network, which is built on top of a common infrastructure layer and based on a network
resource sharing. Network slicing aims to split the entire network into different parts, each
consisting of an end-to-end composition of network resources tailed to meet the customized
performance and economic service or customer application requirements.

However, resource management on network slices involves more challenging technical is-
sues, since for Radio Access Network (RAN) it is critical to guarantee the Spectrum
Efficiency (SE), while for core network, virtualized functionalities are limited by comput-
ing resources. 5G networks should be able to provide dense wide-area coverage with high
capacity under the constraints of low power consumption and low cost per device. Ex-
tremely low latency and high reliability of 5G networks are required to support a variety
of use cases and application scenarios. Therefore, nowadays network slicing is an emerging
business to operators and allows them to sell the customized network slices to various
tenants at different prices.

According to a global commitment, 5G wireless systems will support three generic ser-
vices with extremely heterogeneous requirements: Extreme Mobile Broadband (eMBB),
Massive Machine Type Communication (mMTC) and Ultra-reliable and low-latency com-
munications (URLLC) [32]. The specifications of the three services are listed in more
detail below.

The eMBB service requires both high data rate secure connections with low latency in
some area, as well as reliable broadband access over large areas. It is characterized by
large payloads and by device activation pattern that remains stable over an extended
period of time. The eMBB service aims to maximize the data rate while maintaining a
steady reliability with a packet error rate (PER) in the order of 10−3 [32].

5

CHAPTER 3. 5G NETWORK SLICING

mMTC supports a large number of Internet of Things (IoT) devices, that are only active
intermittently and send small payloads of data. mMTC services require wireless connec-
tivity for massive device deployment. mMTC devices typically use low transmission rates
in the uplink. At a given time only an unknown(random) number of mMTC devices con-
nected to a given base station (BS) may become active and attempt to send their data.
In this case individual resource allocation is infeasible, instead, it is necessary to provide
resources that can be shared through random access. Usually the target PER of a single
mMTC transmission is low, e.g., in the order of 10−1 [32] .

URLLC covers all services requiring ultra-low latency transmissions of small payloads
with certain level of reliability from a limited set of terminals. URLLC transmissions are
also intermittent, but the number of potentially active URLLC devices is much smaller
than for mMTC. Supporting intermittent URLLC transmissions requires a combination of
scheduling, so as to ensure a certain amount of predictability in the available resources and
thus support high reliability; as well as random access, in order to avoid that too many
resources being idle due to the intermittent traffic. Due to the low latency requirements,
a URLLC transmission should be localized in time. Diversity, which is critical to achieve
high reliability, can hence be achieved only using multiple frequency or spatial resources.
The URLLC transmission rate is relatively low, and the main requirement is to guarantee
a high level of reliability, with the PER typically below 10−5 [32].

Based on the fact that the same physical infrastructure, agile and programmable network
architecture is not capable of supporting all three types of services; each service should
have a tailor-made network instance to fulfill its requirements.

6

4 Reinforcement Learning

This section is a comprehensive summary of some basic RL theory. We first present
an overview of ML types. We continue with fundamental knowledge of RL and Markov
Decision Process (MDP), which are important branches of ML theory. Afterwords we
discuss the Q learning technique, that is implemented in our work.

 no output categories or labels based on
which the algorithm can try to model

relationships. Try to use techniques on
the input data to mine for rules, detect

patterns, and summarize and group
the data points which help in

deriving meaningful insights and
describe the data better to the users

agent learns from the previous experience
in the absence of the training data set;
balance between exploration for the

random actions and exploitation of current
knowledge, i.e., exploration-exploitation

trade-off.

Classification
algorithm

Regression
algorithm

Clustering
algorithm

Dimensionality
reduction

Self Training

Low density
separation

models

Graph based
algorithms

Value-iteration
based

Policy-iteration
based

● Linear Regression
Pros: is straightforward
to understand and explain,
can be regularized to avoid
overfitting; can be updated
easily with new data.
Cons: performs poorly with
non-linear relationships; not
flexible enough to capture
more complex patterns,
adding the right interaction
can be tricky and
time-consuming
● Decision Trees
Pros: can learn non-linear
Relationships; fairly robust
to outliers; perform very
well in practice.
Cons: unconstrained,
individual trees are prone
to overfitting because they
can keep branching until they
memorize the training data
● Neural Networks
● Deep NNs

● Support Vector Machine
Pros: non-linear decision
boundaries; many kernels to
choose from; fairly robust
against overfitting, especially
in high-dimensional space.
Cons: memory intensive,
trickier to tune due to the
importance of picking the
right kernel, don't scale well
to larger datasets
● Discriminant Analysis
● Naive Bayes
Pros:perform well in practice;
easy to implement and can
scale with your dataset.
Cons: too simple, are often
beaten by models properly
Trained and tuned.-
● Nearest Neighbor

● Monte-Carlo based
● Policy Gradient
● Temporal difference
● methods (SARSA)
● Actor Critic

● Auto-associative NN
● Isometric Feature
 Mapping (ISOMAP)
● Local linear embedding

● K-Means, K-Medoids,
Fuzzy C-Means
Pros: the most popular
clustering algorithm;
fast, simple, and flexible.
Cons: user must specify
number of clusters; if the
true underlying clusters are
not globular, K-Means
will produce poor clusters.
● Hierarchical
Pros: the clusters are not
assumed to be globular;
scales well to large datasets.
Cons: user must choose the
number of clusters (i.e. the
level of the hierarchy to
"keep" after the algorithm
completes)
● Gaussian Mixture
● Neural Networks
● Hidden Markov Mode

● Q-learning
Pros: requires low
computational resources for
Implementation; does not
require the knowledge of the
model of the environment.
Cons: poor performance
with large state-action space
● Variations of Q-learning
 (collaborative, adaptive,

 modular,...)

ML types

Unsupervised learning
(descriptive model, pattern
detection, "unlabeled" data)

Semi-supervised learning
(mixture of "labeled" and

"unlabeled" data)

Reinforcement learning
(algorithm learns to react

 on environment)

requires training data to be
 labeled and the output of the
algorithm needs to be already

fed to the machine. Being aware
of the output, the learning agent
builds a model to move from the

input to the output guided by
the input training set

Supervised learning
(predictive model,

"labeled" data)

Figure 4.1 – ML types.

Recently, ML techniques have been used in a wide variety of applications, such as computer
vision, networking and data mining. ML algorithms are able to learn to make decisions
directly from data without using explicit instructions. As it’s shown on Figure 4.1, existing
ML algorithms can be grouped into four categories: supervised learning (SL), unsupervised
learning (USL), semi-supervised learning and RL.

7

CHAPTER 4. REINFORCEMENT LEARNING

4.1 Introduction to Reinforcement Learning

In RL an agent learns to interact with an unknown environment with the goal to maximize
the final cumulative reward. The reward is the feedback from the environment resulting
from the action made at each step. The agent is not told which actions to take, instead
it learns to act and optimize its behavior from the reward obtained from its actions. The
learner must figure out which actions produce the most reward by trying them.

Figure 4.2 shows a general architecture of RL that illustrates agent-environment interac-
tion. The agent takes an action at based on the current state st and policy π, resulting the
shift to the next state of the environment st+1. Subsequently, the environment responses
to the taken action in the form of a reward. The reward can either be positive or negative.
An agent continuously receives a new state st+1 and reward rt+1 every time step t and
gradually learns to evaluate the policy and to take the best action.

Figure 4.2 – The basic RL scheme

Unlike to SL, RL algorithms are self-learning, they do not need labelled output to learn the
model. The goal of RL is to train a smart agent so that it can determine the best actions
from its own experience. One of the main challenges of learning is to trade-off between
the exploration and the exploitation. In order to achieve a high long term reward, the
agent should alternate between exploiting the current knowledge of the environment to
maximize the rewards (take greedy actions), and gain new knowledge to discover better
action selections (exploring actions).

4.1.1 Elements of Reinforcement Learning

There are four main elements of RL system: a policy, a reward function, a value function
and a model of the environment.

The policy is stochastic mapping from perceived states of the environment to actions to
be taken when in those states. The policy is the core of a RL agent in the sense that the
learning behavior is dictated by the policy selected by the agent. In some cases, the policy
may be a simple function or a lookup table, and in others it may require comprehensive
computing.

The reward function defines the goal in a reinforcement learning problem. It is a map-

8

CHAPTER 4. REINFORCEMENT LEARNING

ping of each state–action pair of the environment to a single numerical reward. The
function should differentiate between good and bad events for the agent. It indicates the
immediate reward for actions. It is very convenient to change the optimization goal just by
changing the reward function in the learning model, which is impossible with a traditional
heuristic algorithm. In general, reward functions may be stochastic.

The value function represents the value of a state for an agent to be in. While a reward
function shows what is good in the immediate sense, a value function determines long-term
payoff of a state. It is equal to expected accumulated future reward for an agent starting
from state s. A state with a low immediate reward may still have a high value because
other states that offer high rewards may follow it. The value function depends on the
policy by which the agent chooses actions to be performed.

There are two types of RL techniques: model-free and model-based. The model
represents the behavior of the environment. For example, the model could predict the
resulting next state and next reward given a current state and action. Models are used for
planning, where any way of choosing a course of actions is made by considering possible
future situations. The model of the system is represented with transition probabilities
between all states and the reward function for each of the states. Model-free learning
techniques, such as Q-learning, learn the state value function and obtain an optimal policy
without the need of any model (directly from experience).

4.1.2 ε-greedy policy

Exploration vs exploitation dilemma is crucial in RL. To converge to the optimum policy,
the learning algorithm must try out all possible alternatives. This includes both explo-
ration and exploitation. Exploitation means taking action that appears best according to
the knowledge already learned, while exploration means trying new things out in the hope
that better actions will be found. To maximize the reword, the agent has to exploit and
choose the best action he knows. However,the exploitation doesn’t guarantee the optimal
solution in the long run because the actions chosen may not be the best ones, and there
can be other unexplored actions that result in better long-term reward. The agent must
do a trade-off between acting optimally in the context of current knowledge and acting
to obtain more knowledge. The ε-greedy approach provides a solution to this problem
by using ε to determine the randomness in action selections and control the amount of
exploration. Usually ε is is in range of 0 and 1. The agent chooses the best action with
probability ε, and otherwise, it chooses the actions randomly:

at =

{
maxaQ(st, a) with probability ε

random action otherwise
(4.1)

At the beginning of the training, the agent does only exploration (ε = 1), and as the
training advances, we reduce ε so the agent exploits learned information and uses more its
policy.

9

CHAPTER 4. REINFORCEMENT LEARNING

4.2 Reinforcement Learning types

There are three types of RL algorithms: policy-based, value-based, and actor-critic meth-
ods. Policy-based methods, such as REINFORCE family, directly parameterize the pol-
icy π(a|s; θ) with parameter θ, which is updated to improve E[Rt] for maximum return.
Policy-based approaches can find stochastic optimal policies efficiently and have better
convergence properties. Typically, however, they converge to the local optimum, and it
is ineffective and has large variance to evaluate a policy. Value-based methods, such as
Q-learning, SARSA, generally use temporaral difference iteration to estimate a policy’s ex-
pected rewards and select action with the highest value function. Value-based approaches
usually quantize the continuous action space and add quantization noise, which can lead
to oscillations or non-convergence when conducting this process iteratively, and thus they
are unable to find the true optimal policy for problems with the continuous-valued action
space.

Therefore, actor-critic RL algorithms are proposed to combine the process of policy-based
and value-based methods. We will discuss actor-critic methods later.

4.3 Markov Decision Process

In a typical RL problem the learner and decision-maker is called the agent. The surround-
ing it interacts with, including everything outside the agent, is called the environment. In
return, the environment provides rewards and a new state based on the agent’s actions.
After considering the design of the problem, we can move into the mathematical framework
to solve the RL problem. This is where the MDP [1] comes in. MDP is a mathematical
model of a system defined by its state and action sets and by the one-step dynamics of the
environment. MDP can be formulated by a 5-tuple as M = [S,A, p(s′|s, a), r, γ], where S
denotes a finite state space, A stands for an action set, p(s′|s, a) indicates the probability
of each possible next state s′ given any state and action, s and a, r is an immediate and
γ ∈ [0, 1] is a discount factor reflecting the decreasing value of current reward on future
ones.
Given any current state s, action a and next state s′, the expected value of the next reward
is:

r(s, a, s′) = E[Rt+1|St = s,At = a, St+1 = s′] (4.2)

Similarly, the transition probability can be defined as:

p(s′|s, a) = Pr[St+1 = s′|St = s,At = a] (4.3)

In RL the agent’s goal is to find a policy π(s, a) ∈ Π, so as to optimize the state-value
function V π(s) : S → R such that:

V π(s) = E[

∞∑
k=0

γkrt+k|st = s, π] (4.4)

10

CHAPTER 4. REINFORCEMENT LEARNING

In addition to the V-value function, there is another valuable measure, which indicates
how good the current state and an action performed in that state given that policy. This
is known as the action-value function, Qπ(s, a) : S ×A→ R given by:

Qπ(s, a) = E[
∞∑
k=0

γkrt+k|st = s, at = a, π] (4.5)

By combining Qπ and V π we can calculate how good the action a is, as compared to the
expected return when following the policy π. It is also possible to define the advantage
function:

Aπ(s, a) = Qπ(s, a)− V π(s) (4.6)

MDP provides a good starting point for addressing and investigating the RL problem.
Even though the actual environment do not comply with all requirements, it is often a
good approximation. The developer attempts in practice to adjust the problem to suit the
MDP framework.

4.4 Q-learning

Q-learning is a greatly used model-free RL algorithm where action-value function Q(s, a)
is iteratively updated and is preserved in a lookup table one entry for every state-action
pair. The action-value function estimates the expected utility of taking an action in a
given state. The Q-learning algorithm uses the Bellman equation to learn the optimal
Q-value function:

Q(st, at)← Q(st, at) + α[st+1 + γmax
a

Q(st+1, a)−Q(st, at)] (4.7)

where rj is the reward received when moving from state sj to the state sj+1, and α is a
learning rate (0 < α ≤ 1), γ is a discount factor. γ is a value between 0 and 1, and has the
effect of valuing rewards received earlier higher than those received later. The Q learning
architecture is presented on Figure 4.3.

Figure 4.3 – Q-learning architecture

11

CHAPTER 4. REINFORCEMENT LEARNING

Algorithm 1 Q-learning based on [1]

1: Initialize Q(s, a) arbitrarily

2: for episode = 1 to M do
3: Initialize s
4: for step t = 1 to T do
5: Choose at from st using policy derived from Q
6: Take action at , observe rt , st+1

7: Q(st, at)← Q(st, at) + α[st+1 + γmaxaQ(st+1, a)−Q(st, at)]
8: st ← st+1

9: end for
10: end for

This approach is often not feasible in real applications due to the high-dimensional (pos-
sibly continuous) state-action space. In this context, use of function approximations is a
common approach to the limitations of tabular methods. One example is to represent the
Q-function with a function approximation Q(s, a, θ), as in the case of DQL, where θ refers
to a weight vector defining the parameterized function.

12

5 Deep Reinforcement Learning

Many networking problems can be formulated as MDP, where RL can play a key role.
Nevertheless, some of these problems include high-dimensional inputs, reducing the appli-
cability of conventional RL algorithms. The DRL-based techniques can solve this issue by
training deep NNs-based Therefore, the application of DRL promises to address network
management and control issues in complex mobile environments. This chapter starts with
a section about NNs and their basic properties. It will continue with a description of DRL
algorithms, including the algorithms applied in this thesis.

5.1 Neural Networks

The structure of the NN is similar to the process of perception in a brain where, given
the current context, a specific set of units is triggered, affecting the performance of the
neural network model. The key objective of Deep Neureal Network (DNN)s is to approxi-
mate complex functions by composing simple and pre-defined unit (or neuron) operations.
Depending on the model structure, the operations performed are usually defined by a
weighted combination of a specific group of hidden neurons organized in layers with a
non-linear activation function. The most basic NN is the Feed-forward NN. This implies
that the neurons are arranged into layers, where every neuron of one layer is connected to
every unit of the next layer only in one direction, from the input layer to the output layer
as shown on Figure 5.1. Every neuron receiving multiple inputs takes a weighted sum of
them, passes it through an activation function, and responds with an output. Usually,
there are no connections in a single layer between neurons.

Figure 5.1 – Feed-forward NN architecture

Deep feed-forward NNs with multiple hidden layers between input and output layer are
capable of performing a generalization task and reducing the complexity of the state space.

13

CHAPTER 5. DEEP REINFORCEMENT LEARNING

5.2 Deep Q-Network

Calculating the Q-value of each state-action pair, as discussed above, becomes computa-
tionally infeasible as the complexity of the environment (and thus the spaces of state and
action) increases. To address this issue, we can use a framework of machine learning to
serve as a Q-value function approximator. A neural network parameterizes the Q-values,
the weights and biases of which are implied in the new Q-value:

Q∗(s, a) ≈ Q(s, a; θ) (5.1)

Neural networks have been shown to be effective for function approximation in learning
tasks.

Nevertheless, DQN’s performance does not rely solely on the use of a neural network
approximator function. There are some learning stability problems, that prevent neu-
ral networks as nonlinear function approximators from converging. The DQN method
introduces a target Q-network to stabilize learning and reduce the variance of the approx-
imated function. Target Q-network only copies the parameters from the original trained
Q-network after hundreds or thousand training steps and therefore does not change quickly
and allows the algorithm to learn stable long term dependencies (Mnih, Kavukcuoglu, Sil-
ver, Rusu, et al. 2015). With parameters θ̂ of the target network, the square loss function
can be represented as:

LDQN (st, at, rt+1, θ, θ̂) = (rt+1 + γmax
a

Q(st+1, a; θ̂)−Q(st, at; θ))
2 (5.2)

In DQL the state can be provided as an input to the Q-network and a different output
is given for each of the possible actions. This provides an efficient structure that has the
advantage of obtaining the computation of maxa′ Q(s′, a′; θi) in a single forward pass in
the neural network for a given state. Unfortunately, due to the inherent structure of the
learned data, simple gradient descent on the loss function with the target network can still
result in high variance of the function estimator. The use of experience replay is one of
the key concepts brought by Mnih work [23]. This method stores the agent’s experience
(transitions between states in the past, and the corresponding actions and rewards) at
each recorded time step et = [st, at, rt, st+1] in a replay memory in order to be able to
calculate the loss correctly in the future at any time step. Mini-batches of experiences are
then sampled at random and used to perform the weight updates for the DQN training.
Q-learning with experience replay offered many advantages over Q-learning’s usual form.
This makes it possible for the network to use every stored experience for many updates,
which makes the learning process more efficient. Experience replay reduced the variance
of the updates by eliminating the correlation between these samples. It has been shown
that this mechanism improves the stability of the training.

14

CHAPTER 5. DEEP REINFORCEMENT LEARNING

Algorithm 2 DQN and D-DQN algorithms based on [1]

1: Initialize replay memory D
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with random weights θ̂ = θ
4: for episode = 1 to M do do
5: Initialize s1
6: for step t = 1 to T do

7: at =

{
maxaQ(st, a; θ) with probability ε

random action otherwise

8:

9: Take action at, observe rt, st+1

10: Set st = st+1

11: Store transition (st, at, rt, st+1) in D
12: // sample from experience replay memory

13: Sample random minibatch of transitions (st, at, rt, st+1) from D

14: Perform a gradient descent step on (rt+1 + γmaxaQ(st+1, a; θ̂) − Q(st, at; θ))
2

w.r.t. to the network parameters θ
15: // update target network

16: Every K steps reset Q̂ = Q, set θ̂ = θ
17: end for
18: end for

5.2.1 Double DQN

Many new improvements have been made since DQN was introduced, which show better
learning properties. The D-DQN is one of the most significant enhancements.

D-DQN as proposed in [24] is able to improve the performance of DQN applied to Atari
games by a minor modification of the training target. Q-learning max operation uses the
same values for selecting and evaluating an action. So in case of inaccuracies or noise,
Q-learning algorithm tends to overestimate Q-values, resulting in overoptimistic action
value estimates. The use of two networks in DQN leads to less overestimation of the Q-
learning values. The loss function with target network given in equation 5.2 is considered
problematic, because it still tends to overestimate the future action values. Both the
selection and evaluation of future actions depend on the parameters of the target network
θ̂. The loss function used by D-DQN disentangles the action selection from the evaluation
of the selected action by using the trained parameters θ to select future actions instead of
those of the target network:

LD−DQN (st, at, rt+1, θ, θ̂) = (rt+1 + γQ(st+1,aQ(st+1, a; θ̂); θ̂)−Q(st, at; θ))
2 (5.3)

5.3 Actor-Critic

All of the approaches we have considered so far have learned the values of state–action
pairs, and then used those values explicitly to implement the policy and choose actions.

15

CHAPTER 5. DEEP REINFORCEMENT LEARNING

All methods of this form can be called action-value methods. Now we explore methods
that are not action-value methods.

Techniques that learn approximations to both policy and value functions are often referred
to as actor-critical techniques, where ’ actor ’ is a reference to the policy learned, and ’
critic ’ refers to the learned value function. Actor – critic methods are methods with a
separate memory structure to represent the parametrized policy independently from the
value function. The actor is the function estimator, which is used to select actions. The
critic is an estimated value function, it criticizes the actions made by the actor. Learning
is always on-policy: the critic needs to learn and criticize whatever policy the actor is
currently pursuing. Both parts can be modeled by neural networks.

Figure 5.2 – Actor-critic architecture [1]

Figure 5.2 shows the interactions of the two function estimators. The critique takes the
form of a TD error. This scalar signal is the sole output of the critic and drives all learning
in both actor and critic. Typically, the critic is a state-value function. After each action
selection, the agent will execute it in the environment and send the current observation
along with the feedback from the environment to the critic. The feedback includes the
reward and the next time instant observation. Then, the critic calculates the Temporal
Difference (TD) error:

δt = Rt+1 + γV (St+1)− V (St) (5.4)

where V is the current value function implemented by the critic. The critic is updated
by minimizing the least squares temporal difference. After the critic updates the value
function approximation and its parameters, the actor uses the the output of critique to
update it’s policy. TD error evaluates the learning process and drives all learning in both
actor and critic. It is used to adjust both the actor and the critics in the direction that
would mostly minimize the error. Therefore, actor-critic methods typically have good
convergence properties [1].

16

6 System Model

In this section, we describe our system model and the basics of the proposed resource
allocation framework.

6.1 Model Parameters

The Table 6.1 summarizes the notation adopted in this work. Let I be a set of services
running over the resources of a 5G Network Service Provider (NSP). Every service is offered
over a separate network slice , i.e. a virtual network composed by a subset of virtual and
physical resources of the NSP including routers, switches and bandwidth resources in both
the core network and the RAN segments controlled by the NSP. Let tj be the j-th time
frame for which the resource scheduler of the NSP tries to distribute its resources to its
client slices.

I set of service slices

N number of slices

x̄i(j) the actual RB’ demand of slice i

x′i(j) the actual allocation of RB

x̂i(j) the estimated RB’ demand

x′i,min
the guaranteed resources for the slice i (reflected by the Service Level
Agreement (SLA) of the slice)/ minimum allowed allocation

ȳi(j) the actual demand of processing power

y′i(j) the actual allocation of processing power

NRB total number of available RB

Li maximum allowed delay for slice i

Di(j) computed delay caused by the allocation of resources

T number of time slots

w power to RB ratio

Table 6.1 – Parameters used in the model

For further system description we need to define difference values between number of
demanded and allocated resources:

∆xi(j) = x̄i(j)− x′i(j) ≥ 0 (6.1)

∆yi(j) = ȳi(j)− y′i(j) ≥ 0 (6.2)

17

CHAPTER 6. SYSTEM MODEL

To simplify the system model we’re introducing w as a power to bandwidth (RB) ratio:

y′i(j) = w × x′i(j) :

n∑
i=1

y′i(j) ≤ 1 (6.3)

n∑
i=1

y′i(j) =
n∑
i=1

w × x′i(j) ≤ w ×B (6.4)

For time slot j the estimated demand is computed from previous demands using:

x̂i(j) = θx̄i(j − 1) + (1− θ) 1

j − 2

j−2∑
n=1

x̄i(n) (6.5)

where θ is a number between 0 and 1, and has the effect of valuing resources’ demand
received earlier higher than those received later. We used θ = 0.9.

6.2 Monetary gain function

Let the total monetary gain Ti for a slice instance i be

Ti(x
′
i, x̄i, y

′
i) = Mi(x

′
i)− Φi(x

′
i, x̄i)− Γi(x

′
i, x̄i, y

′
i) (6.6)

where Mi(x
′
i) ≥ 0 is the monetary RB fee; Φi(x

′
i, x̄i) ≥ 0 is the RB-related penalty that it is

positive in case the x′i < x̄i, whereas Φi(x
′
i, x̄i) = 0 ⇐⇒ x′i ≥ x̄i (recall that x′i ≤ x̄i based

on (6.1)); and Γi(x
′
i, x̄i, y

′
i) ≥ 0 is the delay-related penalty for the delay caused due to

allocated x′i relative to x̄i, and the allocated processing power y′i. Thus, the optimization
goal can be defined as the maximization of the total monetary gain, i.e:

max

n∑
i=1

Ti(x
′
i, x̄i, y

′
i) (6.7)

with RB’ and power constraints:

n∑
i=1

x′i(j) ≤ NRB (6.8)

n∑
i=1

y′i(j) ≤ 1 (6.9)

Based on (6.6) and for a slice instance i, we consider the following:

— The monetary gain fee is a linear function of the allocated RB x′i, using a linear
factor µi: Mi(x

′
i) ≡ µi × x′i.

18

CHAPTER 6. SYSTEM MODEL

— The RB penalty is quadratic: Φi(x
′
i, x̄i) ≡ φi ×∆x2i = φi × (x̄i − x′i)2, where φ ≥ 0

is a linear penalty factor.
— The delay penalty is also quadratic and defined as:

Γi(x
′
i, y
′
i, j) ≡

{
0, if Di(j) ≤ Li
γi × (Di(j)− Li)2 ≥ 0 otherwise,

(6.10)

where γi ≥ is linear factor; Li is the maximum allowed delay ,above which there
would be service degradation, for slice i; and Di(j) ≡ Di(y

′
i(j), x

′
i(j)) is the delay

caused by the allocation of processing y′i(j) and RB x′i(j) resources, which we define
as

Di(y
′
i(j), x

′
i(j)) = exp(−y′i(j)) + g(x′i(j)), (6.11)

Notice that both penalties, namely, Φi(x
′
i, x̄i) and Γi(x

′
i, x̄i, y

′
i), are convex functions (due

being quadratic functions), having a global minimum that is equal to zero.

Utility function-based monetary gain and penalties

Bandwidth

U

(a) RB utility

Delay

U

(b) Delay Utility

Figure 6.1 – Both utilities follow a sigmoid utility function. In the case of (a) a maximum
value is achieved above a maximum RB threshold, whereas in the case of (b)
a maximum value is achieved below a minimum delay threshold.

The values of a utility function expresses the satisfaction level of the slice service for a
given RB input to the service. Likewise, there can be a different utility function for the
related delay. In this context, let us assume RB and delay utility functions Ux and Ud, as
shown in fig. 6.1(a) and fig. 6.1(b), respectively.

19

CHAPTER 6. SYSTEM MODEL

We may consider utility functions for the monetary gain and both penalties, assuming
that the maximum utility value is Umaxx = Ux(x̄i) ≥ Ux(x′i) =⇒ Ux(x̄i)− Ux(x′i) ≥ 0 for
the above utilities.

— The RB monetary gain is defined as a linear function of the allocated RB utility
Mi(x

′
i) ≡ µi × Ux(x′).

— The RB penalty is defined as: Φi(x
′
i, x̄i) ≡ φi × (Ux(x̄)− Ux(x′)), where φ ≥ 0 is a

linear penalty factor.
— Assume that Ud is defined by the inverse sigmoid of fig. 6.1(b).

Assume again (6.11), i.e. that delay di is due to the allocated processing power and
RB for slice i, as captured by di = Di(y

′
i(j), x

′
i(j)) = exp(−y′i(j)) + g(x′i(j)), and

that Umaxd = Ud(Li) ≥ Ud(di) =⇒ Ud(Li)− Ud(di) ≥ 0 for some acceptable delay
Li.
Then, the delay penalty can be defined as Γi(x

′
i, x̄i, y

′
i) ≡ γi× (Ud(Li)−Ud(di)) ≥ 0,

where γ ≥ 0 is a linear penalty factor.

6.3 Problem formulation

The agent designs an action to perform resource allocation. The goal is to learn a policy,
which chooses one action with highest reward for all slices. There are three key elements
in the RL, namely state, action, and reward:

State: The state in RL is a space to reflect the situation of the environment. The state
consists of N -size vector (x̄1(j), x̄2(j), ..., x̄N (j)), which are the demanded amounts of
bandwidth/RBs per each slice. The states are defined as all possible combinations of
demanded number of RB for N slices. Then number of states for Q-table are calculated
as: Nstates = NN

RB.

Action: The objective of an agent is to map the space of states to the space of actions. In
this system, the action is a N -size vector (x′1(j), x

′
2(j), ..., x

′
N (j)), which are the amounts

of bandwidth/RBs that the BS allocates to each user. The actions space consists of all
possible allocation combinations for N users - combinatorial action space. Then we try to
reduce number of actions by putting constraints, such as: sum of allocated RB must be
less than number of available RB; x′i,min - minimum allocation implementation. After this
number of possible actions is much smaller than number of states. It significantly reduces
computational time of program.

Reward: Based on current state and action, the agent obtains a reward from the envi-
ronment. The reward function of our system is defined in Section 6.2.

20

CHAPTER 6. SYSTEM MODEL

6.4 Implementation Details

All implementations purely consist of python code, while numpy is used for general data
processing. The agents were tuned and trained on the model using the python framework
TensorFlow [33]. We use TensorFlow for neural network training and to build the archi-
tecture of the respective networks. For drawing plots and statistics we rely on matplotlib.
The choice of optimizer plays an important role in achieving good learning properties due
to the highly non-convex problem of optimizing the weights in a NN. Finding the right
optimizer and tuning of it can be the difference between getting stuck in a local minima or
not, and can also have a major effect on the number of iterations that is required before
converging to a good solution.

The Adam step size optimizer introduced in [34] works close to regular stochastic gradient
descent/ascent but with an adaptive step size. It ensures the gradient-based weights
update adapts to the gradient’s characteristics. In particular, the Adam optimizes the
step size based on estimates of the gradient’s first and second moment. This leads to lower
risk of getting stuck in a local optimum when updating the weights. In this thesis, the
Adam step optimizer showed good results and was used in the implementation of DQN,
D-DQN and AC.

21

7 Experiments and Results

In this chapter the results of the thesis, based on the implementation described in the
previous chapter, are presented, discussed and evaluated. The evaluation focuses on the
agents applied on the model with respect to convergence rate, robustness/generalization
of policies and the reward.

7.1 Simulation Configuration

We consider a scenario, in which a set of eMBB, mMTC and URLLC devices are connected
to a common BS, as shown in Figure 7.1. For all simulations we use synthetic data, which
were generated using Poisson, Gaussian and Uniform distributions. Number of available
RB is set to 40. Each simulation is 50000 time slots long. In order to analyse the scheme
performance for each scenario we computed the final reward values over all time slots.

Figure 7.1 – The considered scenario with transmissions to a common BS from devices
using the three generic 5G services.

22

CHAPTER 7. EXPERIMENTS AND RESULTS

For all four trained agents we run three different simulations. In each case we consider
three slices. We first consider a simple scenario (Test 1), when the traffic per slice is IID
from slot to slot. the amount of demanded resources is slightly higher than the number
of available resources. The traffic is simulated with Gaussian (normal) distribution. The
mean (“centre”) of the distribution is equal to 14 and the standard deviation (spread or
“width”) of the distribution is 0,5.

In the second scenario (Test 2) the traffic per slice is IID, but different between slices.
The traffic of first slice is simulated as Gaussian distribution with the mean of 14 and the
standard deviation is 0,5. The second slice’s demand is presented as the Uniform distri-
bution with samples uniformly distributed over the half-open boundaries of the output
interval [10, 12). And the third slice is simulated as Poisson distribution with the mean
of 17.

The third scenario (Test 3) accounts with the varying traffic patterns. In other words, how
traffic demand can change for each slice over time.We address a time-varying environment
to identify the adaptive ability of the proposed frameworks. For this case we run the
simulation of 100000 time slots long. In this case the traffic demand is simulated randomly.
In the end we compare performance of all techniques for every single simulation scenario.

23

CHAPTER 7. EXPERIMENTS AND RESULTS

7.2 Tabular Q learning

The Q learning algorithm is discussed in Section 4.4. The number of rows in the Q-table
corresponds to the number of states and the number of columns is equal to the number of
all possible actions.

Test 1

In this scenario all slices have the same traffic pattern. It’s a simple scenario, where
we can guess the expected performance. From Figure 7.2(a) we observe that Q learning
algorithm tends to allocate the same number of RBs to all slices. The allocation curve
at the beginning is highly fluctuating, which is due to training and exploration period.
Nevertheless, the algorithm is gradually converging to a fixed allocation.

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.2 – Q-learning performance for resource allocation task in first scenario

24

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 2

In this scenario the traffic is different between slices. The Q learning algorithm learns a
fixed allocation with a small variance over time. Highly varying traffic of slice 3 explains
fluctuations in resource utilisation and reward curves.

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.3 – Q-learning performance for resource allocation task in second scenario

25

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 3

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.4 – Q-learning performance for resource allocation task in third scenario

In Figure 7.4 we can see that Q learning based framework adapts to the time-varying
environment, but shows a big variance in both resource utilisation and gained reward over
time.

26

CHAPTER 7. EXPERIMENTS AND RESULTS

7.3 Deep Q-learning

We design a DQN by following the Deep Q-learning with Experience Replay Algorithm
[23] and implement it in TensorFlow [33]. The structure of our DQN is finalized as a fully
connected neural network with each of the two hidden layers containing 75 neurons. The
activation function of each neuron is Rectified Linear Unit (ReLU), which computes the
function f(x) = max(x, 0). The state of the DQN is defined as the combination of previous
observations over previous M time slots, which serves as the input to the DQN. A vector of
length N is used to represent the observation at a time slot, where each item in the vector
indicates the bandwidth demand of the corresponding slice. The output of the DQN is a
vector of length equal to the number of actions (possible allocations), where the ith item
represents the Q value of a given state if action i is selected. We apply the ε-greedy policy
with increasing ε to balance the exploration and exploitation, i.e., with probability 1 − ε
the agent selects uniformly a random action, and with probability ε the agent chooses the
action that maximizes the Q value of a given state. A technique called Experience Replay
breaks correlations among data samples and make the training stable and convergent. At
each time slot t during training, when an action at is taken given the state is st , the
user gains a corresponding reward rt and the state is updated to st+1, a piece of record
(st, at, rt, st+1) is stored into a place called replay memory as shown on Figure 7.5. When
updating the weights θ of the DQN, a minibatch of 32 samples are randomly selected
from the replay memory to compute the loss function, and then a recently proposed Adam
algorithm [34] is used to conduct the stochastic gradient descent to update the weights.

Table 7.1 – Parameter setting for DQN and D-DQN

Parameter Value

Q-network [75, 75] ReLU

Memory size D 2000

Minibatch size Mj 32

Discount factor γ 0.8

Learning rate α 0.01

The period of replacing target Q network k 300

Epsilon start ε 0

Epsilon end εend 1

Epsilon increase ∆ε 0.0001

27

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.5 – DQN and D-DQN architecture

28

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 1

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.6 – DQN performance for resource allocation task in first scenario

In Figure 7.6 we can see, that the DQN algorithm tries to allocate resources fairly, which
is expected. However small fluctuations of allocation curves show that the algorithm is
learning noise. It should learn not to have memory or state, i.e. the optimal action should
be independent of state.

29

CHAPTER 7. EXPERIMENTS AND RESULTS

7.3.1 Test 2

For the case with different IID traffic patterns the DQN algorithm converges to a fixed
allocation. The only issue is a long training period, which has a significant impact on the
performance of dynamic allocation. On Figure 7.7(c) the reward curve of slice 3 is highly
fluctuated comparing with other two slices, which is due to time-varying traffic.

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.7 – DQN performance for resource allocation task in second scenario

30

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 3

Figure 7.8 shows that DQN learning based framework adapts to the time-varying environ-
ment. We can observe a significant performance improvement comparing with Q learning
on Figure 7.4.

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.8 – DQN performance for resource allocation task in third scenario

31

CHAPTER 7. EXPERIMENTS AND RESULTS

7.4 D-DQN

The D-DQN algorithm was discussed in Section 5.2. The network architecture (Figure 7.5)
and parameters set (Table 7.5) for simulations are same as for DQN.

Test 1

Figure 7.9 shows that D-DQN algorithm is still learning noise. However there is a small
improvement comparing to DQN, the allocation curve is less fluctuated.

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.9 – D-DQN performance for resource allocation task in first scenario

32

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 2

For different IID traffic between slices the D-DQN algorithm converges to a fixed allocation
relatively fast. Comparing to a basic DQN technique the learning period is almost two
times shorter, from which we can conclude that D-DQN algorithm is better for dynamic
resource allocation.

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.10 – D-DQN performance for resource allocation task in second scenario

33

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 3

Here we can observe that D-DQN learning based framework adapts to the time-varying
environment. Comparing to a basic DQN technique there is a significant improvement in
learning period.

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.11 – D-DQN performance for resource allocation task in third scenario

34

CHAPTER 7. EXPERIMENTS AND RESULTS

7.5 Actor-Critic

The AC architecture consists of two neural networks: actor and critic. The structure of
the actor-critic DRL agent is depicted in Figure 7.12. The actor is employed to explore
a policy π, that maps the agent’s observation to the action space. Since the action space
is discrete, we use softmax function at the output layer of the actor network so that we
can obtain the scores of each actions. The scores sum up to 1 and can be regarded as the
probabilities to obtain a good reward by choosing the corresponding actions.

Figure 7.12 – Structure of the actor-critic DRL agent [1]

Based on the reward, the current observation space and the observation space for the
next time slot, the critic network calculates the TD-error. And finally the critic and actor
networks will be updated based on the TD-error. Table 7.2 depicts the parameter setting
and DNN architecture of AC agent. The Actor network consists of two hidden layers,
while the Critic network contains only one hidden layer.

Table 7.2 – Parameter setting for AC agent

Parameter Value

Actor network [75, 75] ReLU

Critic network 75, ReLU

Discount factor γ 0.1

Learning rate for actor αa 0.001

Learning rate for critic αc 0.01

35

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 1

Figure 7.13 proves that AC method has the best performance for IID traffic. The algorithm
is not learning noise, it does not have memory. Comparing to other agents, the training
period is relatively short. On DRL(c) we can observe that rewards for all three slices are
equal, which again confirms the action independence.

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.13 – AC performance for resource allocation task in first scenario

36

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 2

Here we can see a significant improvement in a learning period comparing to D-DQN. The
AC-based algorithm converges to a fixed allocation. If we carefully study Figure 7.14 (a),
we can notice that AC algorithm allocates more RBs to slice 3 with a highly time-varying
pattern. In a real situation it is preferable to over-allocate traffic to the slice with the
most unpredictable demand.

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.14 – AC performance for resource allocation task in second scenario

37

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 3

(a) Demand vs. Allocation (b) Resource utilisation

(c) Rewards (d) Final reward

Figure 7.15 – AC performance for resource allocation task in third scenario

Figure 7.15 shows that AC-based framework doesn’t adapt to the time-varying environ-
ment. Comparing to other tested techniques, AC has the worst performance.

38

CHAPTER 7. EXPERIMENTS AND RESULTS

7.6 Comparison

In this section we compare proposed frameworks. For each simulation scenario we plot
final reward over time and compute average reward over all time steps. In Table 7.3 the
architectures of all DNNs and the hyper-parameter settings are listed in detail. The left
and right parts of the layer are activation function and neuron number, respectively.

Table 7.3 – Parameter setting and DNN architecture

Parameter Q learning DQN D-DQN
AC

Actor Critic

Learning rate α 0.01 0.01 0.01 0.001 0.01

Output layer - linear linear softmax linear

Hidden layer -
ReLU 75 ReLU 75 ReLU 75

ReLU 75
ReLU 75 ReLU 75 ReLU 75

Input layer - linear linear linear linear

The DNN architecture plays important role in learning. High number of hidden layers
and neurons can slow down the learning process, which is crucial for dynamic scheduling.
On the other hand, agent with a very simple DNN architecture may not converge to the
optimal action. In this thesis we design agents NN by running different simulations and
evaluating each networks performance.

39

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 1

Figure 7.16 – A comparison of the final reward curve of all four trained agents with IID
traffic

Table 7.4 – A comparison of the rewards for Test 1

Technique Average reword over all steps [-]

Q learning 0.180

DQN 0.190

D-DQN 0.245

AC 0.283

In Figure 7.17 we can see that all the agents converge at approximately 30000 timesteps.
The best performance shows AC-based framework. The DQN framework does not bring
any improvement in the learning period and average reward.

40

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 2

Figure 7.17 – A comparison of the final reward curve of all four trained agents with IID
traffic different over slices

We can conclude that AC have the fastest initial increase in reward. It is also interesting
to see that DQN does not reduce the variance compared to Q learning and does not bring
any improvement in the average reward. D-DQN on the other hand shows quite a big
improvement when applying with higher reward and a smaller variance.

Table 7.5 – A comparison of the rewards for Test 2

Technique Average reword over all steps [-]

Q learning -0.057

DQN -0.069

D-DQN 0.061

AC 0.043

41

CHAPTER 7. EXPERIMENTS AND RESULTS

Test 3

Figure 7.18 – A comparison of the final reward curve of all four trained agents with time-
varying traffic

Table 7.6 – A comparison of the rewards for Test 3

Technique Average reword over all steps [-]

Q learning -0.274

DQN -0.156

D-DQN -0.133

AC -0.239

Based on the average reward in Figure 7.18 and Table 7.6 we can conclude that DQN and
D-DQN show very similar results and that they have the highest converged reward among
the agents. Both algorithms adapt to the time-varying environment.

42

8 Conclusion

In this work, we have considered the dynamic resource allocation problem in 5G. To
effectively find the scheduling policy, we have proposed and implemented RL and DRL-
based frameworks. We have studied four state-of-the-art RL algorithms, based on this,
the concrete algorithm design is further developed, and Q learning, DQN, D-DQN and AC
algorithms are proposed. Simulations results show that DRL techniques outperform the
simple tabular Q learning. However simple DQN algorithm didn’t show any improvement
in first two simulations. To highlight the adaptive ability, we have run simulations in a
time-varying environment and demonstrated that the proposed frameworks learn the new
patterns effectively in a relatively short period of time. The AC method shows the best
performance for IID traffic resource scheduling, but it does not adapt to the time-varying
environment. In the first simulation AC agent gains the highest reward of 0.283, when
Q-learning agent has the lowest reward of 0.180. The D-DQN-based technique has the
highest reward in most of the cases, for example, for the second and the third simulation
the improvement in average reward is equal to 0.118 and 0.141 respectively comparing
with Q-learning.

In this thesis we prove that implementation of DRL for resource scheduling is effective and
the performance of the network is improved. However, it’s not recommended to apply DL
techniques in simple tasks. The DRL, is a promising technique for future intelligent net-
works, and proposed algorithms can be applied to general tasks with discrete/continuous
state/action space and joint optimization problems of multiple variables. In particular,
the algorithm can be implemented in different networking tasks such as user scheduling,
channel management and network planning. Apart from this, there is a room for extension
in many possible ways in the future. The DRL algorithms performance can be improved
by modifying the DNNs architecture, for example, by using RNNs instead of Feed-forward
NNs. The other research direction may be investigation of further DRL algorithms expan-
sion, such as, for example, asynchronous DRL methods.

43

Bibliography

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[2] R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang. Intelligent 5g:
When cellular networks meet artificial intelligence. IEEE Wireless Communications,
24(5):175–183, October 2017.

[3] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang. Machine learning for networking:
Workflow, advances and opportunities. IEEE Network, 32(2):92–99, March 2018.

[4] C. Zhang, P. Patras, and H. Haddadi. Deep learning in mobile and wireless network-
ing: A survey. IEEE Communications Surveys Tutorials, 21(3):2224–2287, thirdquar-
ter 2019.

[5] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang, and D. I. Kim.
Applications of deep reinforcement learning in communications and networking: A
survey. IEEE Communications Surveys Tutorials, 21(4):3133–3174, Fourthquarter
2019.

[6] Yuxi Li. Deep reinforcement learning. CoRR, abs/1810.06339, 2018.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[8] Q. Mao, F. Hu, and Q. Hao. Deep learning for intelligent wireless networks: A
comprehensive survey. IEEE Communications Surveys Tutorials, 20(4):2595–2621,
Fourthquarter 2018.

[9] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani.
State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s in-
telligent network traffic control systems. IEEE Communications Surveys Tutorials,
19(4):2432–2455, Fourthquarter 2017.

[10] H. Liu, S. Liu, and K. Zheng. A reinforcement learning-based resource allocation
scheme for cloud robotics. IEEE Access, 6:17215–17222, 2018.

[11] Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nicolas Riv-
ierre, and Isis Truck. Using reinforcement learning for autonomic resource allocation
in clouds: Towards a fully automated workflow. 05 2011.

44

Bibliography

[12] Yohan Kim, Sunyong Kim, and Hyuk Lim. Reinforcement learning based resource
management for network slicing. Applied Sciences, 9:2361, 06 2019.

[13] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian
Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore
Graepel, and Demis Hassabis. Mastering the game of go without human knowledge.
Nature, 550:354–, October 2017.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, February
2015.

[15] Y. Zhang, C. Kang, T. Ma, Y. Teng, and D. Guo. Power allocation in multi-cell
networks using deep reinforcement learning. In 2018 IEEE 88th Vehicular Technology
Conference (VTC-Fall), pages 1–6, Aug 2018.

[16] G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah, and W. Jiang. Dy-
namic reservation and deep reinforcement learning based autonomous resource slicing
for virtualized radio access networks. IEEE Access, 7:45758–45772, 2019.

[17] S. de Bast, R. Torrea-Duran, A. Chiumento, S. Pollin, and H. Gacanin. Deep re-
inforcement learning for dynamic network slicing in ieee 802.11 networks. In IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 264–269, April 2019.

[18] R. Li, Z. Zhao, Q. Sun, C. I, C. Yang, X. Chen, M. Zhao, and H. Zhang. Deep
reinforcement learning for resource management in network slicing. IEEE Access,
6:74429–74441, 2018.

[19] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink, and R. Mathar. Deep reinforcement
learning based resource allocation in low latency edge computing networks. In 2018
15th International Symposium on Wireless Communication Systems (ISWCS), pages
1–5, Aug 2018.

[20] H. Ye and G. Y. Li. Deep reinforcement learning for resource allocation in v2v
communications. In 2018 IEEE International Conference on Communications (ICC),
pages 1–6, May 2018.

[21] Yasar Nasir and Dongning Guo. Multi-agent deep reinforcement learning for dynamic
power allocation in wireless networks. IEEE Journal on Selected Areas in Communi-
cations, PP:1–1, 08 2019.

45

Bibliography

[22] Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforce-
ment learning for large-scale traffic signal control. CoRR, abs/1903.04527, 2019.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013.

[24] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, pages 2094–2100. AAAI Press, 2016.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997.

[26] Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially
observable mdps. CoRR, abs/1507.06527, 2015.

[27] Vijay R. Konda and John N. Tsitsiklis. Actor-critic algorithms. In S. A. Solla, T. K.
Leen, and K. Müller, editors, Advances in Neural Information Processing Systems 12,
pages 1008–1014. MIT Press, 2000.

[28] Boyuan Yan, Yongli Zhao, Yajie Li, Xiaosong Yu, Jie Zhang, Ying Wang, Longchun
Yan, and Sabidur Rahman. Actor-critic-based resource allocation for multi-modal
optical networks. 2018 IEEE Globecom Workshops (GC Wkshps), pages 1–6, 2018.

[29] Yan Zhang and Michael M. Zavlanos. Distributed off-policy actor-critic reinforcement
learning with policy consensus. CoRR, abs/1903.09255, 2019.

[30] C. Zhong, Z. Lu, M. C. Gursoy, and S. Velipasalar. A deep actor-critic reinforcement
learning framework for dynamic multichannel access. IEEE Transactions on Cognitive
Communications and Networking, 5(4):1125–1139, Dec 2019.

[31] Y. Wei, F. R. Yu, M. Song, and Z. Han. User scheduling and resource allocation in
hetnets with hybrid energy supply: An actor-critic reinforcement learning approach.
IEEE Transactions on Wireless Communications, 17(1):680–692, Jan 2018.

[32] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi. 5g wireless network
slicing for embb, urllc, and mmtc: A communication-theoretic view. IEEE Access,
6:55765–55779, 2018.

[33] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kud-
lur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit
Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zhang. Tensorflow: A system for large-scale machine learning. CoRR,
abs/1605.08695, 2016.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

46

