
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science

Diploma Thesis

Profiling and Detection of IoT Attacks in Telnet
Traffic

Bc. Simona Musilová

Supervisor: Ing. Sebastián García, Ph.D.

Study program: Open Informatics

Specialisation: Cyber Security

January 2020

sodSega annum Iazest soso.asaoamsd.a.iras
sraoEEEE.seEoz8oBpEEaso

I

eerie

soso.aaosaamahrrae.es asthma
mmatmahdma.AM

t.EEEEE

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

In Prague on January 03, 2020 .

iii

iv

Acknowledgements
I would like to thank my supervisor Sebastian Garcia for regularly pushing me outside of

my comfort zone. I would also like to express my deepest appreciation to all the teachers and
classmates for sharing their knowledge and selfless help. I cannot leave CTU without men-
tioning my colleagues Anna and Michal, who provided me with unwavering support while
writing this thesis.

Furthermore, I am extremely grateful to my partner Jan for his never-ending support
through-out my studies, as well as our four-legged fluffy princesses for listening to my code.
The completion of this thesis would not have been possible without the support of my best
friends Mery, Vanda and Adam.

Last but not least, I also wish to thank my family and friends for their support and
profound belief in my abilities even though I am sure none of them had any idea what I was
usually talking about.

Thank you all for joining me on this extraordinary journey!

v

vi

Abstract

The Internet of Things devices are getting more popular in everyday life. They can be found
not only in smart homes but also in a variety of industries, from factories to health care.
Many of those devices are using the Telnet protocol, which doesn’t provide any encryption
of the sent data. If the user’s login credentials got compromised, there is no protection for
the user. In the first part of this thesis, we created a method that can read and understand
the Telnet traffic to provide an insight into all the connections coming to the Telnet server.
In the second part of this thesis, we propose a method to create a new profile for every
user connecting to the Telnet server. Based on comparing the key features of the client’s
behaviour, including the network-based keystroke dynamics, the proposed method can detect
if a new connection is coming from a different user than the connections before. Based on
this comparison, we can provide a new layer of security for every Telnet device connected to
the Internet.

Abstrakt

IoT („Internet of Things“, internet věcí) se v běžném životě stává stále více populární. Na-
jdeme jej nejenom v chytrých domácnostech, ale i v dalších odvětvích — od průmyslu po
zdravotnictví. Mnoho těchto přístrojů využívá Telnet protokol, který nepodporuje žádné
šifrování zasílaných dat. Jsou-li přihlašovací údaje kompromitovány, neexistuje žádná do-
datečná uživatelská ochrana. V první části této práce jsme vytvořili metodu, pomocí které je
možné číst telnetový provoz, porozumět mu a poskytnout náhled na všechna spojení, která
přichází na telnetový server. V druhé části této práce navrhujeme metodu, jež vytvoří nový
profil pro každého uživatele, který se připojí k telnetovému serveru. Na základě porovnání
klíčových charakteristik chování klienta, včetně metody „keystroke dynamics“ v síti, dokáže
navrhovaná metoda rozeznat, zda nové spojení přichází od jiného uživatele než předchozí
spojení. Na základě tohoto porovnání můžeme poskytnout novou vrstvu ochrany pro každé
zařízení připojené na internet a využívající Telnet.

vii

viii

Contents

1 Introduction 1

2 Related work 5
2.1 The security of the Telnet protocol . 5
2.2 Detection of IoT attacks . 6
2.3 User authentication based on typing characteristics 7
2.4 Profiling users in the network . 7

3 Introduction to Telnet protocol 9
3.1 The usage of Telnet . 9
3.2 Understanding Telnet bytes . 11

3.2.1 Negotiation bytes . 11
3.2.2 User data bytes . 12

3.3 Parsing Telnet payload . 13
3.3.1 TCP protocol . 13
3.3.2 Telnet protocol . 15

3.4 Restoring user commands . 15
3.4.1 Typographical errors . 15
3.4.2 Auto-completion . 16

3.5 Interpretation of user data . 17
3.5.1 Credentials . 18
3.5.2 Commands . 18

4 Proposed method 21
4.1 Create a new Telnet session . 22

4.1.1 Connections statistics from all Telnet clients 23
4.2 Create a new user profile . 24

4.2.1 Payload analysis . 24
4.2.2 Session information . 26
4.2.3 Bot detection . 26

4.3 Compare two profiles . 27
4.3.1 Distance between two profiles . 27
4.3.2 Distance between individual profile feature 28
4.3.3 Final distance between two profiles . 32

ix

5 Results 35
5.1 Experiments setup . 35
5.2 Analysis of IP addresses from every client . 36

5.2.1 Analysis of sessions . 38
5.3 Analysis of credentials . 38
5.4 Creating new profiles . 40

5.4.1 Differentiate bots from humans . 42
5.4.2 Comparison between profiles . 42

6 Conclusion 45

A The usage of credentials 51

B Guidelines for user testing 55
B.1 Data we capture . 55
B.2 Instructions . 55
B.3 Assignments . 56

x

List of Figures

3.1 The number of attacks against honeypots in Q2/2018 [35] 10
3.2 The number of devices with opened Telnet port on the Internet 10
3.3 The structure of the Telnet negotiation bytes 12
3.4 The structure of the Telnet subnegotiation bytes 12
3.5 Telnet echo bytes . 13
3.6 The stream of all bytes in the Telnet communication 14
3.7 The stream of bytes with detected negotiation bytes 15
3.8 The stream of bytes parsed by a new line byte 15
3.9 An example of a typographical error . 16
3.10 Using the TAB key to auto-complete the mkdir command 17
3.11 An example of auto-completion of bytes . 17
3.12 Login prompts from the Telnet server . 18
3.13 Used terminology of commands . 19

4.1 Design of the proposed method to profile and detect attacks in Telnet traffic . 21
4.2 Typing times captured from one command . 25

5.1 The infrastructure to capture data . 36
5.2 The number of unique IP addresses interacting with the Telnet port 37
5.3 The number of unique IP addresses sending only TCP traffic and sending also

Telnet traffic . 37
5.4 The number of IP addresses sending only the Telnet negotiation bytes and

sending the user data bytes in 24 hours . 37
5.5 A strange behaviour of the Telnet server . 39
5.6 A HTTP request received on Telnet port . 40
5.7 Strings captured as credentials with unknown meaning 40

xi

xii

List of Tables

3.1 The number of Telnet devices in the Internet 11
3.2 The TCP/IP model of the Internet . 14

4.1 The minimum and maximum values of each normalized feature in a profile . . 28
4.2 The weights used for each feature to compute the final distance 33

5.1 The number of sessions per 24 hours . 38
5.2 The number of sessions per IP address . 38
5.3 The most used credential combinations to login to the Telnet server in 70 days 39
5.4 The user profiles generated by the proposed Telnet analyser 41
5.5 The average distance between profiles of each user 43
5.6 The confusion matrix . 43
5.7 The final measures computed from the confusion matrix 44

A.1 The most used credentials to log in to the Telnet server 51

xiii

xiv

Chapter 1

Introduction

”Cybersecurity is a shared responsibility, and it boils down
to this: in cybersecurity, the more systems we secure, the
more secure we all are.”

—Jeh Johnson
US Secretary of Homeland Security

The popularity of Internet of Things (IoT) devices has been rising dramatically in the
previous years [9], reaching 26.66 billion IoT devices active on the Internet in 2019 [21].
IoT devices are getting more popular thanks to the range of services they can provide and
their decreasing price. Every second, 127 new IoT devices are connected to the Internet
worldwide [41].

When people think about IoT devices, they usually imagine a home equipped with smart
voice assistants, light bulbs, door locks, coffee machines or other smart home devices. How-
ever, there are many more areas where IoT is used. New cars manufactured nowadays are
connected to the Internet to receive updates of all the systems they are using; industrial
IoT devices are used in many factories; also towns and cities are getting connected to the
Internet. For example, in Zlín, a town in southeastern Moravia in the Czech Republic, the
city mayor installed trash bins that can send a text message when they are full [37]. The
health industry was also impacted by IoT devices having, for example, a patient’s pacemaker
connected to the Internet all the time.

Despite being ubiquitous, IoT devices suffer from many security problems. Maybe the
most important of which is that most IoT devices are shipped with the same default cre-
dentials from the manufacturer. After delivering to the customer without enough knowledge
of networking and security, the default credentials are never changed. Therefore, all those
IoT devices are exposed to attacks on the Internet without almost any protection. This
vulnerability is more important if we consider that the hardware of IoT devices can not be
updated, and that firmware upgrades are difficult to do.

One of the most important caveats of IoT is the use of simple and old protocols for
communication. One such system is Telnet, the remote terminal program, which is being

1

CHAPTER 1. INTRODUCTION

used for the simplicity of its implementation. Many IoT devices use the Telnet protocol with
default login credentials for accessing its system. This is a huge problem and the source of
many of the attacks seen in the IoT world. In an attempt to know how many Internet-facing
Telnet servers were opened to the Internet we conducted small monitoring for 16 months (see
Section 3.1), concluding that currently there are approximately 5 million devices with opened
Telnet port connected to the Internet. The total amount of Telnet servers may be higher
since many devices are located behind a firewall and therefore are not directly reachable
from the Internet. However, these hidden devices can still be infected from another device
in the internal network.

Despite being implemented since 1969 and being used in many devices, the Telnet pro-
tocol is not thoroughly processed and understood by most Intrusion Detection Systems and
network analysers. It is not clear why most systems can not understand Telnet protocol, but
it may be because the resurgence of Telnet was due to IoT devices, and the problem of IoT
security is very recent. It may also be because most IDS focus on business networks that are
usually correctly configured not to use the Telnet protocol. However, since most IoT devices
are left unprotected and vulnerable to attacks, there is a need for a tool that can understand
and process the Telnet protocol.

The need for a Telnet protocol analyser and security detector is large since so far there was
no way to tell if there was any attempt to login to a Telnet server by automatically analysing
the network traffic. No tool so far could extract used credentials from login attempts, and
therefore any automated analysis of the Telnet sessions was impossible. The only known
way to monitor attacks against Telnet was by controlling the Telnet device itself.

In addition to the lack of Telnet analysers, there was no protection for users who never
changed the default credentials and for users whose credentials were compromised. There
was no way to protect a Telnet server and to detect that an unauthorised person logged in
to the Telnet server.

The aim of this thesis is to create a new layer of security for Telnet devices in the network
that can (1) understand the Telnet protocol from the network packets, (2) profile the users
and Telnet sessions, (3) detect when the logged-in user is not the owner of the account,
(4) provide statistics about the connections and sessions. Our new approach can provide
enough data for monitoring Telnet attacks and the behaviour of attackers without the need
of controlling the Telnet devices themselves.

The first part of this thesis is to create a new analyser for the Telnet protocol from traffic
captured in the network. The results should provide information about every IP address
connecting to a Telnet server, including the distribution of used credentials. It is necessary
to open every captured packet, understand the TCP protocol, the Telnet protocol, and then
extract all the information to provide statistics about the sessions.

The second part of this thesis aims to profile Telnet users based on their behaviour. The
features are based on the regular time and place of connection to the device and all the
commands used in the communication. Apart from the sent data, the proposed method also
captures how the user is typing on the keyboard, implementing a network-based keystroke
dynamics method. The goal is to detect if the current typing user is the real logged-in user

2

in the device or not, in order to protect users in situations where their credentials were
compromised.

The idea of our proposed method and its partial results were presented on two IT con-
ferences. On 31 October 2019, the research was introduced on the OWASP Czech Chapter
meeting [13] in Prague, Czech Republic. Later on 9 November 2019, the research was pre-
sented on DevFest 2019 [8] in Libčice nad Vltavou, Czech Republic. On both events, the
study was presented with a title When A Password Is Not Enough: Developing A New Way
Of Protecting Smart Homes. On 10 December 2019, the research was briefly introduced at
the IoT Lab Hackaton organised by the Avast IoT Lab. The title of the talk at this event
was Detection of IoT Attacks in Telnet Traffic.

The rest of this document is organised as follows: Chapter 2 provides a review of previous
work in related problems solved in this thesis. This chapter focuses on 4 different problems:
the security of the Telnet protocol, attack detection on IoT devices, user authentication based
on keystroke dynamics techniques and user profiling in the network. Chapter 3 provides all
the information that the reader should know about the Telnet protocol, starting with the
usage of this protocol and the meaning of all bytes in the communication. Next, the methods
of parsing, restoring and interpreting the commands are presented. Chapter 4 describes the
methods of analysing the Telnet traffic, as well as the statistics provided by the proposed
method from the fast analysis of client’s IP addresses, to the more complex analysis of
sessions and used credentials, to the behavioural analysis of the users. Chapter 5 presents
results obtained by using this method on the Telnet traffic captured in 70 consecutive days.
Lastly, Chapter 6 concludes this thesis and discuss future remarks.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Related work

This Chapter provides a review of previous work done in all the topics included in this
thesis. The first section focuses on the Telnet protocol, its security, and ways of protecting
the data of the Telnet user are presented. The second Section introduces some approaches to
the analysis of IoT attacks. Different methods use different input data captured at various
places in the network. The next section provides a review of user authentication methods
based on the characteristics of a user’s typing. The input data for these methods are either
coming from the host computer or from the captured network traffic. Finally, the last Section
reviews profile-based methods to detect attacks on any device in the network.

2.1 The security of the Telnet protocol

Telnet, also called the mother of all application layer protocol, has been used on the
Internet for more than 50 years [31]. Back in the time, the aim was to connect two com-
puters together to allow bi-directional terminal communication between them. At that time
computer science specialists didn’t worry about encrypting the data sent over the Internet.

The first Internet standard defining the Telnet protocol was RFC 854 and it is dated on
May 1983 [42]. In this document all the specifications of the Telnet protocol were described
along with the basic information about options that can be used in the communication.
More details about the options are described in the following documents from the same year,
specifically in RFC 855 [42], RFC 856 [42], RFC 857 [42], RFC 858 [42], RFC 859 [42],
RFC 860 [42] and RFC 861 [42]. None of these Internet standards provides any encryption
of sent data or any other protection of user’s credentials.

The first Internet standard about securing the communication between client and server
came in January 1993 with the RFC 1409 [23], shortly obsoleted by RFC 1416 [24]. They
came with a new Telnet option for user authentication without the need of typing and
sending a password in clear text to the Telnet server. This methodology was based on using
other technologies like Kerberos protocol for authenticating the server and the client or RSA
algorithm for encrypting the payload. This Internet standard was obsoleted later in 2000

5

CHAPTER 2. RELATED WORK

by RFC 2941 [46] where more technologies for securing user’s data were implemented, for
example, the SSL protocol.

The security of the Telnet protocol was not researched only to create a new Internet stan-
dard. In 2003 Mahmood [38] came with a new method to secure data sent over the Internet.
They developed a new prototype system called SecTel which works on the Transport layer
of the TCP/IP model. This new security layer encrypts the Telnet communication on the
Transport layer by using a SecTel service before the client logs in to the Telnet server. To
use this system, it is necessary to install the SecTel_Client service on the client’s computer
and the SecTel_Server service on the Telnet server.

Later in time, the researchers focused on creating a new secure protocol instead of securing
the Telnet protocol. In January 2006 a new encrypted protocol called Secure Shell (SSH)
was introduced with the RFC 4250 [36]. Therefore the Telnet protocol was being replaced
by SSH on the computers and server. But as the IoT devices are getting more popular, the
Telnet protocol is being redeployed and used again on the Internet. Many small IoT chips
have only a small amount of resources, and therefore the Telnet protocol is being used again
because of its simplicity [34].

2.2 Detection of IoT attacks

The research in the field of detection of IoT attacks and IoT malware has started relatively
recently with the increasing number of IoT devices connected to the Internet. The preferred
method to learn about the IoT attacks on the Internet is to set up honeypots and monitor all
the traffic coming to them. Based on this approach, researchers can understand the attack
vectors of different malware families and observe how the trends are changing in time [26].

In 2019 Vishwakarma et al. proposed a method to recognize which malware family is
attacking an IoT device [48]. They set up honeypots to capture real attacks on the Inter-
net to collect log files containing the characteristics of the attack. Based on the behaviour
characteristics of the attack, they can recognize a (known or yet unknown) malware family
spreading across the Internet. Their method also provides a machine learning-based frame-
work that can categorize the malware in real-time.

Most of the available statistics about IoT malware come from the data collected on
the honeypots. There is a lack of available options to detect IoT malware only from the
captured network traffic. The well-known intrusion detection systems, for example Zeek
(formerly Bro) [20], Suricata [19] or Snort [18] can detect traffic going to the Telnet port.
Still, they don’t provide any additional details about the attack itself.

In 2019 Kumar et al. proposed a new method to detect IoT attacks based on their network
activity [33]. They studied the characteristics of the IoT malware families and implemented
a method to categorize them by using machine learning techniques. Their research focused
on the three categories: the malware attacking the Telnet port, the malware using the HTTP
GET request and the malware using the HTTP POST request to infect an IoT device.

6

2.3. USER AUTHENTICATION BASED ON TYPING CHARACTERISTICS

2.3 User authentication based on typing characteristics

The researchers soon realised that using only the username and password for user authen-
tication may not be enough to protect any system. Many methods enhancing the security
of such devices were proposed and implemented in real life. One of them is based on the
behavioural characteristics of a user’s typing, called the keystroke dynamics method [39].
These characteristics are based on the rhythm and pattern or user’s typing, and they are
unique for each individual.

Over time many researchers focused on developing methods using the keystroke dynamics
to create a new layer of security for systems. These methods aim to determine if the user
using the system now is the same individual as the real user of the system [39]. The decision
is made based on comparing typing characteristics of the user connected now to the server
and the previously stored characteristics of the real user.

Two users can be compared based on different extracted features. Douhou et al. created
a comparing method using only two features: the duration that the key is pressed and
the duration between keystrokes [27]. Other authors used more features to obtain better
results. Jadhav et al. proposed a method that extracts more keystroke dynamics features,
for example, duration between releasing a key and releasing the following key [29]. Vinayak
in his work extracted also the number of times the user pressed SHIFT, BACKSPACE and
CAPS LOCK keys [47].

The decision methods mentioned above are all based on statistical tests. They provide the
probability of new values coming from the same distribution as the stored values [27][29][47].
Another approach using Support Vector Machines was introduced by Sawant et al.[43]. All
these methods capture data from users using an application running on the users’ computers,
for example, a web page with a login form. Based on this fact, the researchers could collect
detailed typing characteristics.

Song et al. analysed the possibility of understanding the data send using the SSH proto-
col [44]. If the SSH is in the interactive mode, every key typed by the user is sent encrypted
to the server right after typing it. Based on their research, the keystroke dynamics charac-
teristics are preserved when bytes are sent to the network. They captured the traffic in the
network and proved that it is possible to understand the user data.

2.4 Profiling users in the network

The analysis of characteristics of the user’s typing is an efficient way to detect any
unauthorised access to the user’s account. Although it is still hard to identify those attempts
only by reading the network traffic. The research on this topic is relatively new.

A new method to detect abnormal behaviour of the user in the network traffic was
introduced by Kasimov in his master’s thesis [30]. His method focused on analysing the
Argus flows [16] in given time windows. This approach is based on high-level behaviour
analysis of users and detecting any unusual changes in the user’s behaviour.

7

CHAPTER 2. RELATED WORK

Kubeša introduced a new method focusing on identifying users based on their behaviour
in the network [32]. This method is also using the Argus flows [16] as input data. A new
profile is created for each user in the network traffic. The user profiles are not based only
on the IP address of the device or the payload data, but on a dozen of features in total.

Another method based on detection behaviour anomalies was presented by Tahir et
al. [45]. Their method is also using the Argus flows [16] as input data to create user profiles
in time windows. Every user’s profile is compared with the user’s activity in the past. The
proposed method is detecting any behavioural abnormalities in the user’s behaviour.

Profiling users is getting known also in the commercial sphere. Cisco developed a tool
called FireSIGHT [1] to detect any anomaly behaviour. The tool needs to be set up manually
to create a user profile in a specified time window. This profile is later used to be compared
with any other activity. The FireSIGHT can trigger alerts to a user to notify him about any
anomalies, although the rules to trigger these alerts need to be set up manually beforehand.

8

Chapter 3

Introduction to Telnet protocol

The Telnet protocol is one of the oldest application layer protocols in the TCP/IP
model. It was developed in 1969, starting with RFC 15 [25]. The Telnet protocol pro-
vides bi-directional communication between two terminals over the Internet, usually using
port 23/TCP or 2323/TCP. All the payload sent over the Telnet protocol is sent in clear text
without any encryption. This fact allows anyone to read all the user data easily, including
the credentials.

3.1 The usage of Telnet

The Telnet protocol is more than 50 years old, but it is still being used nowadays, mostly
in the cheap and unsecured Internet of Things devices. According to the McKinsey Global
Institute, there are 127 new IoT devices connected to the Internet every second [41]. Some
of those devices are left with default credentials and exposed to the Internet waiting to be
attacked.

One of the very well-known botnets spreading over the Internet is the Mirai botnet. Mirai
was first found in August 2016 [4] attacking the Telnet ports 23/TCP and 2323/TCP. To gain
access to the attacked device, Mirai used a list of 68 default usernames and passwords [3]. The
Mirai botnet is also responsible for a massive DDoS attack against the KrebsOnSecurity’s
servers in September 2016 [2].

In 2018 Kaspersky Lab published statistics about attacks against their honeypots. In the
Q2 of 2018, more than 75% of all attacks against the Kaspersky Lab honeypots were on the
Telnet port. On the SSH port, there were 11.6% of all attacks and the remaining 13% of the
attacks were against all other ports [35]. The attack distribution can be seen in Figure 3.1.

The number of attacks and connection attempts is indicating that there is a lot of devices
with Telnet port opened connected to the Internet. To get a better idea about the real usage
of the Telnet protocol, we were capturing the number of devices with Telnet port 23/TCP
or 2323/TCP port opened to the Internet. From 12 September 2018 to 25 December 2019,

9

CHAPTER 3. INTRODUCTION TO TELNET PROTOCOL

Figure 3.1: The number of attacks against honeypots in Q2/2018 [35]

we were capturing the number of devices with opened Telnet port from the Shodan search
engine [17]. We requested the number of those devices every hour, and we stored the result.

The number of Telnet devices with port 23/TCP opened can be seen in Figure 3.2a, the
number of devices with port 2323/TCP opened can be seen in Figure 3.2b. During the time
we were capturing the data, we noticed a significant spike in the number of Telnet devices
in summer 2019 on both ports, 23/TCP and 2323/TCP. From 30 July 2019, the number of
Telnet devices was rapidly increasing, reaching its maximum on 11 August 2019. During the
very same day, in only 6 hours the number of Telnet devices rapidly decreased to less than
half of the previous value. From that moment, the number of Telnet devices was increasing
again until it got back into a stable state. This spike is shown in Figure 3.2a and Figure 3.2b
below in the grey dashed line. The number of captured devices can be seen in Table 3.1.

(a) Port 23 (b) Port2323

Figure 3.2: The number of devices with opened Telnet port on the Internet

Shortly after capturing this unexpected spike in the number of Telnet devices on the
Internet, we contacted the Shodan representatives. We believed there must have been some
problem with their service. They confirmed that the unusual values were caused by switching
the search index clusters in their servers, so for a short time, the results could contain
duplicate values. The time frame when the spike occurred matches this event.

10

3.2. UNDERSTANDING TELNET BYTES

Date Port 23 Port 2323

30 July, 2019 5 million 200 000

11 August, 2019 7.6 million 300 000

11 August, 2019 3.6 million 148 000

Table 3.1: The number of Telnet devices in the Internet

3.2 Understanding Telnet bytes

Since the Telnet protocol is not encrypting the payload, it is easy to read all the com-
munication between devices from the network traffic. All bytes in the Telnet protocol can
be divided into two groups:

• Negotiation bytes: Dedicated non-printable bytes used to configure the two termi-
nals and to exchange information about each other. Most of the negotiation bytes are
transmitted at the beginning of the communication, but they can also be sent later at
any time in the communication.

• User data: Every other byte in the Telnet communication that is not the negotiation
byte. These bytes contain everything the user typed on the keyboard, and all the data
user can see in their terminal.

3.2.1 Negotiation bytes

The negotiation process contains three bytes. The first byte is always 0xFF, which indi-
cates the start of the negotiation bytes. This byte is called Interpret As Command (IAC)
byte.

The second byte is the option code indicating the desire to begin or stop performing a
given option. The third byte is the option byte which specifies a function or setting of the
terminal. In the negotiation process, four different bytes can be used to turn on or off an
option [42]:

• 0xFE: Demand to stop using specified option (DON’T)

• 0xFD: Request to start using specified option (DO)

• 0xFC: Reject the proposed option (WON’T)

• 0xFB: Accept the proposed option (WILL)

11

CHAPTER 3. INTRODUCTION TO TELNET PROTOCOL

Figure 3.3: The structure of the Telnet negotiation bytes

The specified option is turned on only if both devices agree on using it. Any device can
propose to use any option by sending the 0xFD byte, also called the DO byte to the other
device. If the other device wants to use this option, it sends back the 0xFB byte, also called
the WILL byte to accept the proposed option. If this device wants to reject the proposed
option, it sends the 0xFC byte, the WON’T byte. Any device can demand to turn off any
previously agreed upon option by sending the 0xFE byte, also called the DON’T byte to the
client. This has to be confirmed by the other device that sends the 0xFC byte, the WON’T
byte to stop using the option. The negotiation bytes can be seen in Figure 3.3.

When the specified option is turned on, the subnegotiation process can start. In this
process, the terminals exchange detailed information or settings about each other. The
subnegotiation process always starts with the 0xFF byte followed by the 0xFA byte indicating
the start of the subnegotiation bytes. The following byte is the specified option that was
previously turned on, followed by any number of bytes. The meaning of those bytes depends
on the specified option. The subnegotiation bytes always end with the 0xFF byte followed
by the 0xF0 byte. The negotiation bytes can be seen on Figure 3.4.

Figure 3.4: The structure of the Telnet subnegotiation bytes

The most of the negotiation and subnegotiation bytes can be found at the very beginning
of the connection, between the TCP 3-way handshake and the login prompt from the Telnet
server. Although some negotiation and subnegotiation bytes can appear at any moment
during the session.

3.2.2 User data bytes

All the bytes that do not belong to the negotiation or subnegotiation byte structure
are the user data bytes, which is the interaction between two hosts. Among those bytes
in the server-client oriented connection, we can find everything the user on the client-side

12

3.3. PARSING TELNET PAYLOAD

was typing on the keyboard, editing the text and sending it to the server, as well as all the
answers from the server.

In the server-client oriented communication, the user on the client-side is interacting with
the server by typing commands in the command line. Every key that the user typed on the
keyboard is sent to the server to process. Most of the sent bytes are returned back to the
client and only after they are delivered to the client, they are displayed on the screen of the
user’s terminal window, see Figure 3.5. All those returned bytes are called the echo bytes.
This is the reason why when a user is connected to a server far away from their location, the
user can experience a delay between pressing a key and seeing the character on the terminal
screen. There are some exceptions when the server is not sending back the echo bytes, for
example, while typing a password or when sending special bytes.

Figure 3.5: Telnet echo bytes

3.3 Parsing Telnet payload

There are a lot of Telnet libraries providing a function to create a new Telnet server or to
connect to a Telnet server. But no library can open the Telnet communication, understand
it, extract the credentials and commands from the network and extract other characteristics
of the user. For this reason, we started with building our own method for parsing Telnet
traffic and understanding what the client was doing.

As input data, we use traffic captured to the device in the middle of the two communi-
cating devices. The analysis starts with reading and analysing every single packet coming
from the network. If the source or destination port of a packet in not 23/TCP or 2323/TCP,
the packet is ignored.

The Telnet protocol is an application layer protocol in the TCP/IP model, see Table 3.2.
To find out what was sent in the payload, it is necessary to understand how the TCP protocol
on the transport layer works. Only after that, the analysis of the Telnet protocol is possible.

3.3.1 TCP protocol

The main difference between the TCP and UDP protocol is that the TCP protocol
guarantees the delivery and the order of packets sent to the Internet. This is done by using
a sequence and acknowledge numbers in the TCP header of packets.

The sequence number is randomly generated at the beginning of each connection. Both
client and server generate their own sequence number during the TCP 3-way handshake.

13

CHAPTER 3. INTRODUCTION TO TELNET PROTOCOL

Layer Protocol

Application Telnet

Transport TCP

Internet IP

Network Access Ethernet

Table 3.2: The TCP/IP model of the Internet

With each new packet sent, the sequence number increases by the length of the payload sent
in the packet. In other words, the sequence number is not unique only for the packets sent
to the network, it is unique and increasing with every new byte sent to the other host. This
means that based on the sequence number, it is possible to put all captured bytes in the
correct order.

The acknowledge number is sent by the receiving device back to the originator. It is set
to the largest sequence number that was received without any missing byte before it. The
acknowledge number is telling the originator if the previously sent bytes were delivered or
not. If some bytes were not delivered to the receiving device, the originator sends them again
with the same sequence number. This process is called the retransmission of bytes.

Ordering the bytes based on the sequence number solves some of the TCP issues. When
a packet gets lost in the network, it is sent again by the source device. Since the input data
for this method are packets sniffed on one place on the Internet, there may be duplicated
bytes or packets in the capture. By ordering all bytes by the sequence number the duplicated
bytes can be detected and ignored.

The method proposed in this thesis extracts the payload bytes and the sequence number
of each byte from captured packets. The list of sent bytes is kept separate for the client and
the server. For each byte, the time of capturing the byte is also stored for extracting user’s
typing characteristics later.

After analysing the TCP protocol values, the method creates a byte stream of all bytes
sent to the Internet by a device. For each device, there is a separate stream of sent bytes.
The beginning of communication coming from a client to the server can be seen in Figure
3.6.

Figure 3.6: The stream of all bytes in the Telnet communication

14

3.4. RESTORING USER COMMANDS

3.3.2 Telnet protocol

As mentioned in Section 3.2, there are two types of Telnet bytes: the negotiation bytes
and the user data bytes. The negotiation bytes are easy to parse since they are in a given
format, see RFC 854 [42]. However, those bytes don’t characterise the user at all so they can
be ignored, see Figure 3.7. Most of the Telnet negotiation bytes occur at the very beginning
of the connection. But in general, negotiation bytes can be sent at any time during the
communication.

Figure 3.7: The stream of bytes with detected negotiation bytes

The rest of the data in the byte stream are byte representation of all the keys the user
was typing on the keyboard. The byte stream can be split by the new line bytes which are
used to send anything the user has typed to the command line to the server to process it.
The split byte stream can be seen in Figure 3.8.

Figure 3.8: The stream of bytes parsed by a new line byte

3.4 Restoring user commands

Byte representation of all pressed keys can be seen in Figure 3.8. Since there is a person
sitting behind the keyboard, those bytes may be different from what was sent to the server
as a command. There are two reasons for this: the users can make mistakes while typing
and the users can use auto-completion to make their interaction with the server easier and
faster.

3.4.1 Typographical errors

Every user typing on the keyboard makes typographical mistakes, also known as typos,
from time to time. To correct a misspelt text the user has to delete the error by using the
BACKSPACE or DELETE key and type the required text again.

15

CHAPTER 3. INTRODUCTION TO TELNET PROTOCOL

An example of a user correcting a typo can be seen in Figure 3.9. First, the user typed
0x6c 0x6c bytes, characters ll when converted from hex representation to ASCII. Then the
user realized this mistake and hit the BACKSPACE key that can be seen in the network as
0x7f byte. After deleting the last character, the user typed 0x73 byte that is character s in
ASCII. The command that was sent to interact with the server is ls.

All four bytes which the user typed can be seen on the left part of Figure 3.9. The
command that was used to interact with the server can be seen on the right side of this
Figure.

Figure 3.9: An example of a typographical error

3.4.2 Auto-completion

While interacting with the Telnet server, the user can use the auto-completion feature of
the server. This feature helps users to move faster around the system without the need of
remembering the complete file system architecture and all filenames.

There are two different ways of using auto-completion. The first way is using the TAB
key while typing a command. After pressing the TAB key for the first time, the server
completes anything that the user is typing, providing as many characters as possible. The
auto-completed part of the command is then appended to anything the user has written
before pressing the TAB key. If there are more options which can be auto-completed, the
server does not complete anything. Only when the user presses the TAB key for the second
time, the server provides all the possibilities that can be auto-completed.

The second way of using the auto-completion is by using arrows. By pressing arrow up
or down the user can browse through the history of commands. When a user presses an
arrow up key, the server replaces everything that was written in the command line by the
previous command sent to the server.

All the bytes that were auto-completed by the server were not typed by the client. To get
the auto-completed bytes, it is necessary to understand how the server-client communication
works. Most of the bytes sent from the client to the server are echoed back by the server.
Only after receiving those bytes on the client’s side, they are displayed on the terminal screen
(see Section 3.2.2). The exception when the echo bytes are different from what was sent is
the auto-completion. The idea is the same for pressing the TAB key and arrows up or down.
On the example below the auto-completion processes after pressing TAB key is illustrated.

After pressing the TAB key, the 0x09 byte is sent to the server. In most situation, the
server would send back the very same byte as an echo byte. But for this byte, the server
understands the command and replies to the client the completion of what the user was
typing.

16

3.5. INTERPRETATION OF USER DATA

Figure 3.10: Using the TAB key to auto-complete the mkdir command

On the Figure 3.10 the client wants to create a new folder using the mkdir command.
The user typed the m character, which is echoed back by the server. The same happens for
the k character. Then the user pressed the TAB key. The server responds with dir that
completes the command the user wants to use.

Both ways of auto-completion can be seen in Figure 3.11 where on the left side are all
the bytes as the user typed them on the keyboard. The highlighted bytes are the TAB key
(0x09) and the arrow up key (0x5b 0x41). On the right side of the image are the completed
bytes as the user sent them to the server to interact with it.

Figure 3.11: An example of auto-completion of bytes

3.5 Interpretation of user data

Obtaining all the bytes that the user typed and bytes that the user sent to the server is
not providing any information about what credentials the user used. To separate credentials
from the rest of the commands, it is necessary to understand when the user is typing the
username and the password.

When the user connects to the server, it may ask for a username and/or password. The
user provides that information only when the server asks for them, see Figure 3.12. If the
provided credentials are not correct, the user is asked again to log in. If the credentials are
correct, the user is successfully logged in and can interact with the server.

17

CHAPTER 3. INTRODUCTION TO TELNET PROTOCOL

Figure 3.12: Login prompts from the Telnet server

3.5.1 Credentials

The only method of separating the user’s credentials from commands is by reading and
understanding what is the server asking for. Since we know the timeline of the complete
connection, we can easily identify all the credentials used in the communication. The server
can ask for a username using different keyword, the most used are: Username, username,
Login, login, Account, account. To ask for a password, the server is usually asking for
Password or password.

3.5.2 Commands

When correct credentials are provided, the user is successfully logged in and can interact
with the server. Once the user is logged in, the server can send a welcome message with
information about the date of the previous login. The server also sends a command-line
prompt which is usually a characteristic symbol, for example $, > or #.

After identifying all the commands used by the user, we can process them. For the
purpose of this thesis, we will use the following terminology when talking about commands
used to interact with the server:

• Command: The complete line of text sent from the user to the server.

• Program: The executable part of the command, usually at the first place in the text
sent to the server.

• Options: Additional specification how to run the program, usually starts with one
dash or two dashes.

• Parameters: Any additional type of information given to the program, for example,
a file to read, a file to write to and more.

18

3.5. INTERPRETATION OF USER DATA

The used terminology can be also seen in Figure 3.13.

Figure 3.13: Used terminology of commands

19

CHAPTER 3. INTRODUCTION TO TELNET PROTOCOL

20

Chapter 4

Proposed method

The method proposed in this thesis focuses on profiling Telnet users and detection of the
attacks. The algorithm is divided into four consecutive steps. First, to analyse every captured
Telnet packet in order to reconstruct the Telnet protocol, as mentioned in Chapter 3. Second,
to create a new Telnet session object in the python code using the combination of IP addresses
and ports as a key to identify each of the sessions. Third, to extract the characteristics of the
typing patterns of the user, containing the used commands and the time it took the user to
type them on the keyboard. Fourth, to build the user profile based on all the data extracted
from the network in order to compare them.

The input data for the proposed method are files with the pcap format containing the
captured network traffic. These captured packets have first to be processed to create Telnet
sessions in order to be analysed. The method provides three different types of analysis based
on how much information is extracted from the packets. The fastest analysis of captured
traffic provides information about each IP address and its behaviour. The second analysis
focuses on every session captured in the network and extracts all credentials used in login
attempts. The most complex analysis provides a behavioural analysis of each user. The
design of the method can be seen in Figure 4.1.

Figure 4.1: Design of the proposed method to profile and detect attacks in Telnet traffic

21

CHAPTER 4. PROPOSED METHOD

4.1 Create a new Telnet session

The primary data that this method works with is a network packet. Each packet is
processed in order to reconstruct the TCP session and then the Telnet session. This decision
was taken because there are no Telnet libraries that can provide the preprocessed data.
Each TCP session is identified by the two IP addresses and the two ports using a unique
key: [client IP, client port, server IP, server port]. Based on the source port
numbers (client port) used in the communication, it is possible to identify each of the unique
destination IP addresses of the Telnet server without specifying it anywhere in the program
beforehand. This approach also allows the method to protect more than one Telnet device
in the network. The destination port number of the server would mostly be 23/TCP or
2323/TCP (or any specified Telnet port in the program). At the same time, the client would
usually use a source port defined by its operating system and that doesn’t belong to the
well-known or registered range of ports.

For each newly created session, the proposed method analyses all the packets that be-
long in it. From all the captured packets, the following information is extracted and later
processed to analyse characteristics of the client’s behaviour in its profile.

• Server IP address and server port: The identification of a Telnet server is based on
its destination IP address (server IP) and destination port (server port). The proposed
method can protect more than one Telnet server in the network, and based on different
IP addresses of the devices, it is possible to differentiate them.

• Client IP address and client port: The client IP address and client port can be
used to identify the client connecting to this Telnet server. If a client is connecting to
a Telnet server multiple times, the source port number would, in most cases, change
with every new session.

• Start time of the session: The date and time when the very first packet of the
session was captured.

• End time of the session: The date and time of the last packet of the session.

• Packet length: The size of each packet in the session.

• Telnet payload: After preprocessing the Telnet protocol packets as it was explained
in Section 3.3, it is possible to store details about the Telnet payload. This includes
any data sent from one host to the other using the Telnet protocol. This is the most
important piece of data since it gives all the details about used credentials and pressed
keys.

One of the main problems of analyzing Telnet traffic in IoT data is that most malware
generates thousand of Telnet connections per minute, making it very difficult to perform a
quick analysis of the Telnet sessions. It can take a long time only to analyze if the Telnet
connections were successful or not. Therefore different analysis schemes were proposed to
speed up the results based on the number of monitored features.

22

4.1. CREATE A NEW TELNET SESSION

The first and fastest analysis focuses on gathering statistics about all the unique client
IP addresses that contacted the Telnet server. The method also provides an insight into the
number of sessions per each unique IP address. The second, more in-depth analysis provides
statistics about all the credentials used in the login attempts. This method creates a new
user profile for each session, however, gathers only the credentials used in the login attempts.
Commands and keystroke dynamics characteristics are not monitored. The last and most
complex analysis focuses on behavioural characteristics of each successfully logged-in client
to the server. For each session with a successful login, a new user profile is created and
compared with the administrator’s profile to detect any anomalous behaviour.

4.1.1 Connections statistics from all Telnet clients

The first step in the analysis of Telnet traffic is to get a high-level view of how other
hosts are interacting with the Telnet server. The fastest analysis can be done by analysing
all sessions coming from a single client IP address and extracting some characteristics of the
payload sent in the packets. Based on the analysed data, each IP address belongs to any of
these three categories:

1. Connection to Telnet port: There is at least one packet coming from a client to
the port 23/TCP or 2323/TCP of the Telnet server in the network traffic.

2. Sent payload: The client has sent any payload to the Telnet server in at least one
packet. The meaning of the payload in this part is not important. The payload may
contain only the Telnet negotiation bytes, as well as login brute force attempts or any
other user data.

3. Interaction with the server: The payload sent from a client to the Telnet server
is analysed, and all Telnet negotiation bytes are identified and removed (see Section
3.2.1). If any bytes are not part of the negotiation bytes, the IP address of the client
belongs to this category.

The results of this analysis are three lists containing IP addresses, one list for each
category mentioned above. By design, any IP address that belongs to a category also belongs
to all previous categories. That means that an IP address of a client that tried to log in to
the Telnet server would be captured in all three lists. The comparison results of these there
analysis can be seen in Figure 5.2.

Another statistics providing a better understanding of the behaviour of Telnet clients is
the number of sessions. In most cases, every new session from the same client is coming from
a different source port. Based on the number of different ports, it is possible to count the
number of sessions coming from one IP address. From the earlier analysis of the malware
network traffic, we know that some hosts are connecting to the Telnet server always from
the very same port number. This port number is hard-coded in the malware source code. In
this case, the only way how to capture the number of sessions is to detect when a new session
starts with the TCP 3-way handshake and when it ends with the TCP 4-way handshake or
by sending a packet with the RST bit on in the TCP header.

23

CHAPTER 4. PROPOSED METHOD

4.2 Create a new user profile

A new user profile is based on extracted information from a Telnet session. The stored
information provides characteristics of what and how the user was typing on the keyboard.
The profile stores all credentials and commands used by the user with all typographical errors,
as well as the actual credentials used in the login attempt. After the client is successfully
logged in to the server, they can control the device by typing commands in the command
line and sending them to the server. We can create a unique profile for the each client
by reading the payloads from the network, then parsing them (see Section 3.3), restoring
the send payload (see Section 3.3) and understanding the meaning of the bytes sent (see
Section 3.4). While processing and understanding the sent payload, the profile also extracts
and stores all the special bytes used in the communication as well as typing times of all
programs and commands. Moreover, the profile contains all the digraphs of typed keys on
the keyboard with its time. Last but not least, the user profile contains information about
when and where the session took place as well as its length and duration.

4.2.1 Payload analysis

Credentials

The user profile contains all the credentials used by the client to log in. During the login
process, the user profile is filled with a list of the used usernames, another list for the used
passwords, and a third list for the combination of username and password used for a single
login attempt. For each of these groups, the profile contains the order in which the usernames
and passwords were used and their histogram. Another captured credential feature is how
the user was typing the credentials. The profile contains the raw bytes as they came from
the network with all typographical errors as well as restored credentials that were really used
for the login attempt (see Section 3.4.1).

Commands

Once the client is logged in, everything they type is considered as a command to interact
with the server. Therefore the profile has the whole commands sent to the Telnet server
as well as an interpretation of the executable functions, called programs (see Section 3.5.2).
Similarly, as for the credentials, the order in which the commands and programs were used
is stored, but not the histogram. Also, the profile contains all the raw bytes coming from the
network, including every typographical error, auto-completion process and any other special
byte. Finally, the profile also contains all the commands and programs interpreted as they
were sent to the server.

Since our method also focuses on the characteristics of the typing patterns of users
(keystroke dynamics), we tried to take advantage of this during our evaluation process.
In the evaluation process with humans, we asked them to create text files in the Telnet
server and to type into them. For this reason, it was necessary to implement a method to

24

4.2. CREATE A NEW USER PROFILE

detect when the user enters and quits text editors. All the keys typed in the text editor
are considered for the keystroke dynamics. Moreover, since most text editors allow the
execution of commands in the operating system, it was necessary to track these commands.
The commands used in the text editor were also used as part of the commands executed by
the user in the session. In the current version of the tool, the method can detect the VI text
editor only. The detection of nano program or any other text editor was not implemented
yet.

Typing times

For every captured byte from the network, we store the time when it was captured. Based
on this data, we can extract additional characteristics of the user’s typing. We implemented
a keystroke dynamics method focusing on the time between typing two consecutive keys
without the need of understanding the meaning of the keys. After processing all the sent
payload, we store two types of times: the time of typing the whole commands, e.g. ls -al,
and the time of typing only the program name, e.g. ls.

An example of all extracted values can be seen in Figure 4.2, where all the bytes were
converted from the hex representation to ASCII. The non-printable 0x09 byte is displayed
as [TAB] to show its meaning. From the raw bytes coming from the network (see Figure
4.2a), we store the time difference between capturing every two consecutive bytes. In this
example, we have 10 new values. From the bytes that were sent to the server (see Figure
4.2b), we store the typing time of the command and the typing time of the program.

(a) Two consecutive bytes (b) Command and program

Figure 4.2: Typing times captured from one command

Bytes with special meaning

One of the most essential implementations done in the proposed method is the interpre-
tation of the special meaning of specific keys. Apart from all the standard printable keys,
there are some non-printable bytes that have special meaning in the terminal. They can be
divided into several groups:

• Typographical errors: A user can correct a typographical error by pressing the
BACKSPACE or DELETE keys to remove the last typed character.

• Auto-completion: A user can auto-complete any text by pressing the TAB key.
Another way of quick auto-completion is to scroll through the history of commands by
using the UP and DOWN arrows keys.

25

CHAPTER 4. PROPOSED METHOD

• New line bytes: The number of times the user pressed ENTER in the whole session.
This is a unique feature that was proposed for the first time in this thesis and that its
believed to be useful in separating the sessions of users.

• Other bytes: The rest of the special keys, such as ESC used especially in the VI
editor, ∧C (CTRL-C) to stop commands or ∧D (CTRL-D) to logout from sessions.
The specific actions of these keys can be accomplished in a different way which creates
an opportunity to differentiate users.

The number of times a user pressed each key with a special meaning provides a charac-
teristic of how the user interacts with the server. The different captured values characterise
how many typographical mistakes the user did, how much the user is using auto-completion,
and also what is the user doing while thinking about the next command. Based on the user
data, we know that some users are pressing ENTER or ESC key in between two commands
while thinking about the next step.

4.2.2 Session information

Apart from all the bytes the client sent to the network, the user profile also contains
information about the Telnet session itself. The session information stores the IP addresses
and ports of both the server and the client. Based on the source IP address, the method can
determine the geographical location of the client by using the geoIP2 library that provides
an offline database [10].

From the time of capturing the very first packet in the communication, the profile stores
the exact time and date of when the client logged in. The profile also stores the duration of
the session estimated form the time of capturing the first and the last packet. This type of
information is considered metadata of the Telnet session.

Another stored characteristic is the state of the Telnet session, which characterises how
the client interacted with the Telnet server. The state value can differentiate between suc-
cessful and unsuccessful logins by interpreting and understanding the prompts coming from
the server. The state value also stores information about how the session was ended - either
by following the TCP 4-way handshake or by sending a TCP packet with the RST bit on.

The last stored characteristic of the session is its total size in bytes. This value is obtained
by the sum of the length of every packet captured in the network. Every captured packet
is counted in this characteristic regardless if it’s carrying any payload or not, or if it was
re-transmitted or not.

4.2.3 Bot detection

The proposed method can also differentiate if the client of a Telnet session was an auto-
mated tool or a human user. The algorithm to find this difference is based on the analysis
of times while typing two consecutive bytes. This analysis is also done for programs and
commands sent by the client.

26

4.3. COMPARE TWO PROFILES

Every key that the client types on the keyboard in the Telnet communication is imme-
diately sent to the server. Therefore, if the client is a person typing on the keyboard, the
typing times for two consecutive bytes are bigger than 0. The typing times of the commands
and programs are at least in some cases bigger than 0 as well. There is one particular case of
times between bytes being zero, and that is when the user is pasting the text into the com-
mand line or if they use the auto-completion features, such as scrolling through the history
of commands.

On the other hand, a bot executes predefined commands and all the bytes are sent
together in one packet. Therefore, all the typing times are equal to 0. Moreover, since all
the commands were predefined, they don’t contain any typographical errors or corrections.

4.3 Compare two profiles

After the method creates a new profile for each new session, its possible to compare all
the profiles between each other. Each profile contains several data structures which need to
be processed in a different way depending on the meaning of the stored information. Each
type of structure needs a different kind of comparison. In user profiles, there are different
types of structure:

• Integer, float number: The size of each session and the day when it started are
stored as integers. The duration of a session is stored as a float, as well as the time of
when the session started.

• String: The IP addresses of both hosts in the session are extracted from the packets
and stored as string data structure.

• List of strings: All usernames, password and commands are extracted as string
structures and stored in a list following the order in which they were sent to the
network.

• Python counter: After processing all data sent to the network, the profile stores
a histogram of all usernames and passwords used in login attempts, as well as the
combination of username and password. The counter data structure is also used to
store characteristics about the usage of special bytes.

• Python dictionary: Each command and program used in the communication is
added to a dictionary data structure as a key with a list of typing times as a value.
The keystroke dynamics statistics are also stored as dictionary with two consecutive
bytes as the key and list of typing times as the value.

4.3.1 Distance between two profiles

Once that the different type of structures inside the profile were explained it is possible
to show how each of these structures is compared. The general algorithm to compare two
profiles is the following. For each feature in the profiles:

27

CHAPTER 4. PROPOSED METHOD

1. Get the value of that features for both profiles

2. Compute a distance between the features, according to the type of the feature (integer,
string, list of strings, etc.)

3. Normalize the distance between features using the Min-Max scaling method.

4. Apply weight to each feature comparison according to a heuristic training.

5. Sum all the weighted distances into a final distance between the profiles.

The Min-Max scaling method is defined as:

xnorm =
x− xmin

xmax − xmin
(4.1)

where xmin is the minimum value a feature can take and xmax is the maximum value a
feature can take. The xmax and xmin values used for each individual feature are described
below and in Table 4.1.

Instead of computing the similarity between profiles, the proposed method computes the
distance between each feature between two profiles. If the normalized value for any distance
of any feature equals 0, it means that this feature is the most similar between these two
profiles. If the normalized value equals 1, the feature is the most distant. The same concept
applies to the final distance between profiles. A distance of 0 means that both profiles are
the most similar, and a distance of 1 means that both profiles are the most different.

Feature xmin xmax Description

Session size 0 5 000 000 = 4.7 MB

Session length 0 9 000 = 2.5 hours

Login day of year 0 365 = 1 year

Login day in month 0 30 ≈ 1 month

Time in a day 0 86 400 = 24 hours

IP address 0 4 294 967 295 = 232 − 1

Table 4.1: The minimum and maximum values of each normalized feature in a profile

4.3.2 Distance between individual profile feature

This section describes how each feature was compared in order to obtain the final distance
between user profiles. Each part includes the algorithm of how the features were compared
along with the details of the comparison algorithm.

28

4.3. COMPARE TWO PROFILES

Session size and length

The size of the session is defined as the sum of sizes of each packet in the session. This
value is computed and stored in bytes and considers all packets sent in the communication
regardless of their meaning. The length of the session is calculated as the time difference
between the last and first packet captured in the session.

Both of these values are stored in the profiles as numbers. The difference between them
is calculated as the absolute of subtracting the value from each profile:

xdist = |x1 − x2|,

where x1 is the stored value in one profile, x2 is the stored value in the other profile and
xdist is the final distance.

The minimum value for computing the normalized distance of the session size is 0, mean-
ing that the size of the two sessions is the same. The maximum value is set up to 5 000 000
bytes (= 4,77 MB). For calculating the normalized value of session length, the minimum
value is also equal to 0, meaning that the length of the two sessions is the same. The max-
imum value is 9 000 seconds (= 2,5 hours). The values for the maximum of these features
was heuristically selected based on expert information on common Telnet usage.

Day and time of login

Each profile stores the information about the day and time of a successful login as two
separate values. Profiles stores the day in a year of a successful login as a separate value
from the time of the login on that day. The distance of this feature between two profiles can
be computed by using the following equation:

xdist = |x1 − x2|,

where x1 is the stored value in one profile, x2 is the stored value in the other profile and
xdist is the final distance.

To calculate the normalized value for the difference in which day of the year the user
logged in, the minimum value is set to 0, meaning the two sessions took place on the very
same day. The maximum value is set up to 365 days, that is equal to 1 year. The method
uses the following formula to obtain an approximate day in a month when the user logged
in:

xmonth ≡ xyear (mod 30),

where xyear is the absolute difference between the login day and xmonth is the difference
between the login day in a month.

29

CHAPTER 4. PROPOSED METHOD

The difference in the time of login in a day is calculated in seconds. The minimum value
is 0, meaning the two sessions started at the very same time in a day. The maximum value
is set up to 86 400 seconds (= 24 hours).

Client IP address

Since the proposed method can analyse all packets in the network, including the ones
coming from the Internet, it is necessary to understand if the client is connecting from a
local network or not. For this purpose, the method can analyse each IP address and deter-
mine if it belongs to the internal private range of IP addresses (10.0.0.0/8, 172.16.0.0./12,
192.168.0.0/16) or not.

While comparing the IP addresses of two Telnet sessions, if only one IP address is a
private IP and the second one is a public IP address, then the comparing method returns
the maximum distance between these two IP addresses. But if both IP addresses are public,
or both are private, the method returns as a distance the number of IP addresses in between
these two.

To calculate the normalised distance between two IP addresses, the method uses 0 as
the minimum value, meaning the client is connecting from the very same IP address. The
maximum value is set up to 4 294 967 295, which is the total number of IPv4 addresses.

Used commands

All the commands that the client used in the communication are stored in a python list.
The profile stores all the commands as they came directly from the network as well as the
processed and restored commands after interpretation. To compare such lists, the proposed
method is using two different comparing algorithms.

The first comparing method is the sequence matcher [11] algorithm used for comparing
pairs of sequences of any type. The algorithm is based on the Ratcliff/Obershelp pattern
recognition [6] which searches for the longest contiguous common sub-sequence present in
both lists.

The second method used to compare two lists of strings is the algorithm of computing the
Levenshtein similarity ratio based on the Levenshtein distance. The Levenshtein distance
computes the number of single-character edits required to change one string to the other.
These changes are insertion, substitutions and deletions. [22] To compute the similarity
ration, our proposed method uses the python-Levenshtein library [5] providing the similarity
between two lists.

Both methods compute the similarity between two lists in the range of 〈0, 1〉. To get the
distance between two lists, we compute the complement of the similarity value

xdist = 1− xsim,

30

4.3. COMPARE TWO PROFILES

where xsim is the similarity ratio between two lists of strings and the xdist is the final
distance value.

The usage of special bytes

Each profile contains a counter to keep the histogram of special characters used in the
communication. The key in this counter is any unprintable character used in the communi-
cation or any recognised byte combination with any special meaning, for example, the arrow
UP key.

To compare counters from two profiles, we compute the distance based on the cosine
similarity [28]. This method is based on measuring the cosine of the angle between two
vectors and returns the similarity in the range 〈0, 1〉. The cosine similarity of two counters
A and B can be computed as

cos(A,B) =

∑
i∈A∩B aibi√∑

i∈A a2i

√∑
i∈B b2i

,

where ai ∈ A, bi ∈ B, and A, B are dictionaries to be compared. To obtain the distance
between two counters, we compute the complement to the cosine similarity

xdiff = 1− cos(A,B).

Typing times

To capture the typing times, the profile contains three separate dictionaries, one for the
typing times of commands, the second one for typing times of programs and the last one for
typing times between each pair of pressed keys. Each dictionary contains the sent command
(or program or two consecutive bytes) as a key and a list of typing times for each time that
the key was used. For example, if the key pair AD was pressed three times, the values for
the key ’AD’ may be [0.34, 0.11, 0.56].

The comparison algorithm is based on the Student’s t-test statistical test. For each list
of typing times from the dictionaries stored in the profile, the method uses the Student’s
t-test to estimate the probability that the two lists of values came from the same probability
distribution. [15][40]

The null hypothesis that is being tested is: Both lists of typing times were created by the
same user. After running the test, the calculated p-value is considered as a distance between
the two lists and used for computing the final distance between two profiles.

If one profile contains only one typing time for a key while the other profiles contain more
than one time value, the method will perform the one-sample t-test. This method compares
the mean of a group of data to a single known value. [14]

31

CHAPTER 4. PROPOSED METHOD

In case that there is only one captured time value for the same key in each profile,
the Student’s t-test cannot be used. The difference between them can be computed as the
complement of their ratio.

pi = 1− min(a0, b0)

max(a0, b0)
,

where a0 and b0 are the time values from each profile for the same key i and pi is the
distance between them. The final distance between two dictionaries is then computed as a
product of all partial distances.

xdist =
∏
i

pi

4.3.3 Final distance between two profiles

The total distance between two profiles can be computed as a weighted linear combina-
tion of distances between each feature. The total distance between the two profiles can be
computed as follows:

d =
∑
i

wixi, (4.2)

where wi is the weight for feature i and xi is the distance between feature i. The weights
used for this algorithm can be seen in Table 4.2. All the weights were set up heuristically
by experts (see Chapter 5).

32

4.3. COMPARE TWO PROFILES

Feature i Algorithm Weight wi

Duration difference 0.02702702703

Length difference 0.05405405405

IP address difference 0.02702702703

Start time difference 0.09459459459

Day in a year difference 0.1351351351

Day in a month difference 0.1351351351

Raw commands Sequence matcher 0.06756756757

Raw commands Levenshtein distance 0.05405405405

Processed commands Sequence matcher 0.06756756757

Processed commands Levenshtein distance 0.05405405405

Special bytes Cosine distance 0.08108108108

Typing times of commands t-test 0.06756756757

Typing times of programs t-test 0.06756756757

Typing times of two consecu-
tive bytes

t-test 0.06756756757

∑
iwi 1.0

Table 4.2: The weights used for each feature to compute the final distance

33

CHAPTER 4. PROPOSED METHOD

34

Chapter 5

Results

This chapter provides the results of the proposed method on the captured Telnet traffic
going to a monitored Telnet server. The server was running for a total of 70 days, from
17 October 2019 to 25 December 2019 and the traffic was monitored and stored all the
time. In the first section, we describe how we created a monitored infrastructure with the
Telnet server. The following section provides results from the quick analysis of the Telnet
traffic, focusing on the behaviour of unique IP addresses and all the sessions in the captured
traffic. The next section analyses all the credentials used by clients to tried to log in into the
monitored Telnet server. The following section describes the creation of all the user profiles
created for the purposes of this thesis. The last section provides the results of comparing
the user profiles and the distances computed between them.

5.1 Experiments setup

To create accurate datasets to test the proposed method, we set up a Telnet server in a
monitored infrastructure. The Telnet server was running on a Raspberry Pi 3B+ computer
with installed HypriotOS [12]. There were two opened ports in the device, the Telnet port
23/TCP and the SSH port 22/TCP. The SSH port was used to set up a Telnet server
and to prepare user account for testing the proposed method. The default credentials of
the HypriotOS were changed in order to prevent any infection getting into this device and
possibly compromise the results.

The Raspberry Pi was part of the infrastructure created and maintained by the Aposemat
research group [7], which focuses on the analysis of IoT malware. As part of their research,
they infect devices with different IoT malware families to observe their behaviour. For this
reason, the Internet speed in the monitored network is limited to a maximum of 500 kbps
per each device. The maximum speed for all the connected devices together is limited to
10 Mbps. The number of connected and active devices in the monitored network varies
according to the ongoing research of the Aposemat research group.

The infrastructure of the Telnet server connection can be seen in Figure 5.1. The Telnet
server is connected to a switch with a port mirroring option turned on. Every packet going

35

CHAPTER 5. RESULTS

through this switch is mirrored to a different port where it is captured into a *.pcap file.
This switch is connected to a router with a static public IP address providing the Internet
connection. All the traffic going to this public IP address on port 23/TCP is redirected
to the Telnet server. This router is located at the edge of the monitored network, and the
bandwidth limitation is set up in it.

Figure 5.1: The infrastructure to capture data

The traffic going to and from the Telnet server is continuously monitored and stored into
*.pcap file. A new *.pcap file is created and saved to the storage every 24 hours. In order
to organize all the *.pcap files, the name of each of them consists of the date and time of
starting the 24-hour monitoring and the internal IP address of the monitored Telnet server.

5.2 Analysis of IP addresses from every client

A high-level understanding of the network traffic can be done by analysing the behaviour
of every unique IP address connecting to the Telnet server. The proposed method keeps
statistics of the individual IP addresses in each provided *.pcap file. All the results described
below comes from the analysis of the network traffic captured in 24-hour time windows. The
change in the number of unique IP addresses can be seen in Figure 5.2.

The total number of unique IP addresses that connected to the Telnet server in 70 days
is 10 384. In every 24 hours, the Telnet server was on average contacted by a new unique
IP address 178 times. In other words, the Telnet server was approached by a new unique IP
address every 8 minutes. In this group of IP addresses are all the hosts that sent at least
one packet to the Telnet server, including the Internet scanners.

Out of all the IP addresses contacting the Telnet server, there is on average 54% of
them reaching the server only on the Transport layer. All those IP addresses never sent
any payload and therefore never interacted with the server on the Application layer. The
remaining 46% of all IP addresses sent some payload to the Telnet server in order to interact
with it.

Further analysis of the payload coming from each IP address provides an insight into
how each IP address interacted with the Telnet server. In the group of IP addresses sending
some payload, there is 49% of them sending only the Telnet negotiation bytes. All these
hosts were real Telnet clients that followed the Telnet protocol, but they never send any

36

5.2. ANALYSIS OF IP ADDRESSES FROM EVERY CLIENT

other user data. The additional 51% of IP addresses sent bytes that were not part of the
Telnet negotiation bytes. This payload interacted with the server by entering the credentials
or sending commands.

Figure 5.2: The number of unique IP addresses interacting with the Telnet port

Figure 5.3: The number of unique IP ad-
dresses sending only TCP traffic and sending
also Telnet traffic

Figure 5.4: The number of IP addresses send-
ing only the Telnet negotiation bytes and
sending the user data bytes in 24 hours

37

CHAPTER 5. RESULTS

5.2.1 Analysis of sessions

A better view on how many times the Telnet server was contacted provides the number
of sessions started with the server. The average number of sessions in a 24-hour time window
was 1400. The number of sessions reached a minimum of 698 on 17 December 2019 and the
maximum of 2868 on 5 November 2019. The median of all measured values was 1292. The
results of the analysis can be seen in Table 5.1.

Min 698

Max 2 868

Mean 1 400

Median 1 292

Table 5.1: The number of sessions per 24 hours

More interesting statistics provide the number of sessions per unique IP address captured
from the network. On 5 November 2019, we captured the maximum number of sessions orig-
inating from a single IP address. There were 1 237 sessions coming from the 104.248.49.211
IP address registered to DigitalOcean, LLC hosting cloud services. This outlier caused the
average number of sessions per IP address to be 9. Although the median is 2, which means
that at least half of all the IP addresses made at most 2 individual sessions to the Telnet
server during the monitored time. The results are shown in Table 5.2

Min 1

Max 1 237

Mean 9

Median 2

Table 5.2: The number of sessions per IP address

5.3 Analysis of credentials

From all the captured traffic, the method can extract credentials used for login attempts.
During the whole capturing time, we recognised 294 unique combinations of user and pass-
words sent to the Telnet server during the login process. On average there were 2 260 login
attempts in 24 hours.

The method can process all the username and password combinations and provide their
histogram. The list of most used credential combinations can be seen in Table 5.3, more
detailed list can be seen in Appendix A. Out of all the used username and password com-
bination, in 44.65% of all cases, the client used a username root with no password. After

38

5.3. ANALYSIS OF CREDENTIALS

Username Password Usage Usage %

root 70 853 44.76%

admin 1234 1 941 1.23%

root aquario 1 940 1.23%

ubnt ubnt 1 146 0.72%

root root 1 052 0.66%

admin admin 1 017 0.64%

Table 5.3: The most used credential combinations to login to the Telnet server in 70 days

closer investigation of the Telnet traffic, we discovered a strange behaviour of the Telnet
server.

For most of the session, the Telnet server is first asking for the username of the client. All
the bytes sent by a client are sent back to the client as echo bytes. Then, the Telnet server
asks for a password. Any bytes the client sends to the server are not echoed back. When the
provided credentials are incorrect, the server informs the client, and the login process starts
again until the maximum number of attempts is reached.

Figure 5.5: A strange behaviour of the Telnet server

In the 44.76% of all login attempts, the Telnet server first asks for a username. The client
sends the username root and the server echoes the username back. But in the next step, the
Telnet server didn’t ask for a password. Instead, it sent the Login incorrect information and
restarted the login process. The behaviour is shown on the Figure 5.5, where the missing
password prompt is displayed in dashed line in grey colour.

We manually researched sessions where the password prompt is missing to understand
what happened. Based on the sequence numbers in the TCP header of each packet, we
know that we captured all the traffic between the client and the server. We also know that
the root user in Telnet server is not blocked in any way, since we can see other credential
combinations with root as a username and some password, for example root\aquario or

39

CHAPTER 5. RESULTS

root\root. Based on our investigation we couldn’t understand why we see this strange
behaviour of the Telnet server, and we couldn’t replicate this behaviour. Therefore the
reason why we see this anomalous behaviour is unknown.

The histogram of all used credentials can also provide an insight into other attacks against
the Telnet server that are not based on brute-forcing the username and the password. In this
category of send payload are commands which are relevant to be sent to the Telnet server,
for example shell, sh or enable. Those commands try to interact with the Telnet server
and they would be successful if the Telnet server was accessible without any credentials. The
fact that we captured those attempts indicates that there are Telnet devices connected to
the Internet without any username and password protection.

In the group of the least used credentials, we can also find attacks against other services.
An example of such an attack can be seen in Figure 5.6, where a client is sending an HTTP
GET request to port 23/TCP. This kind of payload is not really unexpected since the ad-
ministrator of the server can run any service on any port. Therefore it is normal to see for
example HTTP request on Telnet port.

Figure 5.6: A HTTP request received on Telnet port

The last category of the least used credentials are strings with no apparent meaning.
An example of those strings converted from hex representation to ASCII can be seen in
Figure 5.7.

Figure 5.7: Strings captured as credentials with unknown meaning

5.4 Creating new profiles

To create datasets for testing the proposed method, we asked several users to participate
in user testing. Each user was given the same credentials for the Telnet server and some
tasks to do in the server. The tasks and guidelines are shown in Appendix B. To make sure

40

5.4. CREATING NEW PROFILES

that we capture enough data for user profiling, we asked users to log everything they find
while working on the tasks into a text file.

The tasks that were given to the users were meant as guidelines to make sure that users
create a long enough profile. The user could work on the given tasks in any order using any
commands. This testing was not meant to be an examination of the user’s skills. Therefore
users were allowed to use any source to find out a correct answer, including asking a colleague
or searching on-line.

In each task, the user was asked to create a new folder with a given name. In case that
this folder already existed in the server, the users were encouraged to improvise. Some users
created a new file or folder with a similar name, some users created a new file or folder with
a completely new name, and some users didn’t create anything and worked with what was
already in the server.

Apart from following the given guidelines, the users were allowed to do arbitrary actions
in the server. To prevent any malicious activity, we asked users not to infect or attack any
device in the network, internal or external. The full guidelines that were given to each user
can be found in Appendix B.

Since the decision making of this method is not based on the used credentials, we decided
to use all the captured sessions in the datasets. In the Telnet server were two user accounts,
one used for the users to work on the given tasks and the other account for administrating
the device.

After running the proposed method on all the captured traffic, the tool recognised and
stored 32 different user profiles. The dataset contained 27 profiles created by 4 different
users. The remaining 5 user profiles that were generated were not created from a successful
login session. The distribution of datasets can be seen in Table 5.4.

Number of
profiles

Description

14 Profiles of user 1

5 Profiles of user 2

7 Profiles of user 3

1 Profile of user 4

4 Profile containing data with unknown meaning

1 An empty profile

Table 5.4: The user profiles generated by the proposed Telnet analyser

We asked computer science students and professionals to participate in the experiment.
The goal was to find users who are skilled in typing on the computer keyboard and fluent
in English. However, the users had a different experience in working with the terminal and
connecting to the Telnet server. All users used their own computers to work on the given
assignments, and therefore we expect them to be used to typing on their keyboard.

41

CHAPTER 5. RESULTS

In 4 cases the method falsely generated a user profile for a bot sending some data to the
server. The last stored user profile did not contain any data. All these profiles were created
because of a bug in the source code, and therefore they can be dismissed.

5.4.1 Differentiate bots from humans

The correct username and password for logging in to the Telnet server were on purpose
set up to non-trivial ones. Our goal was to prevent anyone from infecting the device and to
capture only the relevant user profiles. However, this prevention doesn’t necessarily mean
that an unauthorised user didn’t try to log in to the Telnet server by manually brute-forcing
the credentials.

A simple algorithm based on capturing the typing times can differentiate between a
person typing on the keyboard and an automated bot. In all the network traffic we captured
in 70 days, there were only log in attempts made by users we asked to participate in our
research and the automated bots that are active on the Internet. No other person tried to
log in to our Telnet server.

The simple algorithm of separating bots from humans has its limitations. The humans can
be detected only if they type on the keyboard. If the human would prepare all the commands
before connecting to the server and then copying them and pasting to the terminal, the
method would not detect them. An automated tool may pretend to be a human being if
it would imitate the typing on the keyboard. The analysis of known malware proves that
the design of the malicious code is very simple. Therefore nowadays we don’t expect such
advanced malware to be spreading over the Internet.

5.4.2 Comparison between profiles

A new user profile is created for each session that contains a successful login; however, not
all the profiles can be used in our method. From all the profiles created from the method,
two user profiles had to be discarded. One profile of the user 1 contains the credentials
and only one command, and one profile of the user 2 contains the credentials and only two
commands. Both those profiles do not contain enough information to make a decision about
the user. For that reason, the proposed method would only inform the administrator of the
network, and discard the profiles.

After discarding all the unimportant profiles from our dataset, there were 25 profiles of
4 different users left. We compare each of them with all the other user profiles. The total
number of comparisons was 310. Every user profile used in the comparison was labelled with
the identification number of the user.

Since there are several users, the comparisons between profiles can be of two types:
the profiles came from the same user, or the profiles came from different users. When the
profiles came from the same user, the proposed method should give a small distance. When
the profiles came from different users, the proposed method should give a large distance.

42

5.4. CREATING NEW PROFILES

To calculate the final distance between every pair of user profiles, we used the method
described in Section 4.3.3. We sorted all user profiles pairs in descending order by their
distances. The final distances for all the comparisons are in the range from 0.1340104555
to 0.6276173244. In the sorted list of all compared pairs of user profiles, we could see that
the distances between two user profiles of the very same user are lower than the distances
between two user profiles of two different users. The average distances between users can
be seen in Table 5.5. Since the user 4 provided only one Telnet session containing all the
testing scenarios, all the distances between this user and all the other users are based only
on one comparison.

User 1 User 2 User 3 User 4

User 1 0.348492 0.413170 0.413376 0.389913

User 2 0.413170 0.291622 0.436204 0.347900

User 3 0.413376 0.436204 0.279553 0.356700

User 4 0.389913 0.347900 0.356700 0

Table 5.5: The average distance between profiles of each user

Based on all the computed distances, we could set up a distance that would separate the
user profiles that were created by the very same users from the user profiles created by two
different users. We set up this boundary distance to 0.3060, where any final distance lower
than this value means that the two profiles were created by the very same user. If the final
distance between the two profiles is larger than this distance, we can conclude that the two
profiles were created by two different users.

The number of user profile pair that were created by the very same user and they were
correctly classified was 49, the number of user profiles pairs classified incorrectly was 13. On
the other hand, the number of correctly classified user profiles created by two different users
was 186, and the number of incorrectly classified pairs was 62. The confusion matrix can be
seen in Table 5.6.

True Positive True Negative

Predicted Positive 49 13

Predicted Negative 62 186

Table 5.6: The confusion matrix

Data from the confusion matrix can be used to compute additional measures of the
proposed method. The computed values can be seen in Table 5.7.

The measured data proves that the authentication method based on the user’s behaviour
is possible under certain conditions. There are plenty of circumstances to take into account,
but the differences can be large enough to be useful. The proposed method in this thesis can
be improved by using a better approach and better algorithms to set up weights of features

43

CHAPTER 5. RESULTS

used for computing the final distance.

Measure Value

True positive rate 0.441441

False positive rate 0.065326

Precision 0.790323

Accuracy 0.758065

F1 score 0.566474

Table 5.7: The final measures computed from the confusion matrix

44

Chapter 6

Conclusion

The problem of the amount of devices with weak or default credentials connected to the
Internet is getting bigger. All those devices are vulnerable to any attack, and usually, it
doesn’t take long until they get infected. Many of these devices are the IoT devices that
are getting more popular in everyone’s home. Many of the cheap devices that users can buy
nowadays are using the Telnet protocol. Even when the Telnet protocol is still being used,
there was no automatic tool that would analyse the Telnet traffic captured from the network.

The first part of this thesis focused on understanding the Telnet protocol and finding a
way how to extract the communication automatically. This part provided all the compli-
cations that the method has to deal with and the solutions to those problems. The second
part focused on creating a tool that can extract and analyse all the payload send between
devices.

The proposed method was introduced with different levels of analysis. The tool can
provide statistics about the number of IP addresses and the number of sessions connecting
in a *.pcap file. From the Telnet payload, the tool can extract all the credentials and
commands used by the client. Based on the behaviour of the client, the method introduced
a way of how to create a user’s profile, compare the behaviour of two clients and decide if
the user is the same or not.

In the future, the method can be extended to read the network traffic in real-time directly
from an interface instead of processing only the *.pcap files. The technique would then be
able to notify the administrator of the network about any anomalies in the network as soon
as they get detected. The method may be later further extended to create a continuous
authentication of a user and provide better protection for every user.

The results of the provided method proved that it is possible to create user profiles and
compare them in order to authenticate the client. We created user profiles of 4 different
users connecting to our Telnet server 27 times in total. The proposed method works with
a precision of 0.79, accuracy 0.76, FPR 0.07, TPR 0.44 and F1 score 0.57. We believe that
the decision algorithm can be improved by further analysis of the clients’ behaviour.

In the next version of the tool, we would like to achieve better time and space complexity

45

CHAPTER 6. CONCLUSION

of the implementation. This step would require reimplementation of the important parts of
the systems and changing most of the architecture of the system. Therefore this action is
left for future work.

In the proposed method, we have implemented many functions for reading and analysing
the Telnet traffic directly from the network. We would like to share this part of the tool to
the community as a Python library for Telnet analysis.

Based on our research, in most of all cases, the devices connected to the Internet are
being attacked by guessing the correct credentials. After all, we can still see the Mirai
botnet spreading over the Internet. The brute-forcing method will be effective until all users
become aware of the security of their network devices. Only after people stop using default
or easy to guess credentials, the security of every device in the network will increase.

46

Bibliography

[1] ’Creating Traffic Profiles’. https://www.cisco.com/c/en/us/td/docs/
security/firesight/541/user-guide/FireSIGHT-System-UserGuide-v5401/
Traffic-Profiles.pdf. Accessed: 2019-11-17.

[2] KrebsOnSecurity Hit With Record DDoS. https://krebsonsecurity.com/2016/09/
krebsonsecurity-hit-with-record-ddos/, 2016. Accessed: 2019-10-22.

[3] Who Makes the IoT Things Under Attack? https://krebsonsecurity.com/2016/10/
who-makes-the-iot-things-under-attack/, 2016. Accessed: 2019-10-22.

[4] MMD-0056-2016 - Linux/Mirai, how an old ELF malcode is recycled.. https://blog.
malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html, 2016. Ac-
cessed: 2019-10-22.

[5] Python-Levenshtein library. https://pypi.org/project/python-Levenshtein/
#documentation, . Accessed: 2019-12-12.

[6] Ratcliff/Obershelp Pattern Recognition. https://xlinux.nist.gov/dads/HTML/
ratcliffObershelp.html, . Accessed: 2019-12-12.

[7] Aposemat Project. https://www.stratosphereips.org/aposemat. Accessed: 2019-
11-13.

[8] DevFest.cz 2019. https://2019.devfest.cz/home. Accessed: 2019-11-17.

[9] Internet of Things Forecast. https://www.ericsson.com/en/mobility-report/
internet-of-things-forecast. Accessed: 2019-11-17.

[10] GeoIP2. https://dev.maxmind.com/geoip/geoip2/, . Accessed: 2019-11-26.

[11] difflib. https://docs.python.org/3/library/difflib.html, . Accessed: 2019-12-12.

[12] Hypriot. https://blog.hypriot.com/. Accessed: 2019-11-30.

[13] OWASP Czech Republic. https://www.owasp.org/index.php/Czech_Republic. Ac-
cessed: 2019-11-17.

[14] One Sample T Test: How to Run It, Step by Step. https://www.statisticshowto.
datasciencecentral.com/one-sample-t-test/, . Accessed: 2019-12-14.

47

https://www.cisco.com/c/en/us/td/docs/security/firesight/541/user-guide/FireSIGHT-System-UserGuide-v5401/Traffic-Profiles.pdf
https://www.cisco.com/c/en/us/td/docs/security/firesight/541/user-guide/FireSIGHT-System-UserGuide-v5401/Traffic-Profiles.pdf
https://www.cisco.com/c/en/us/td/docs/security/firesight/541/user-guide/FireSIGHT-System-UserGuide-v5401/Traffic-Profiles.pdf
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://pypi.org/project/python-Levenshtein/#documentation
https://pypi.org/project/python-Levenshtein/#documentation
https://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html
https://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html
https://www.stratosphereips.org/aposemat
https://2019.devfest.cz/home
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://dev.maxmind.com/geoip/geoip2/
https://docs.python.org/3/library/difflib.html
https://blog.hypriot.com/
https://www.owasp.org/index.php/Czech_Republic
https://www.statisticshowto.datasciencecentral.com/one-sample-t-test/
https://www.statisticshowto.datasciencecentral.com/one-sample-t-test/

BIBLIOGRAPHY

[15] T-test using Python and Numpy. https://towardsdatascience.com/
inferential-statistics-series-t-test-using-numpy-2718f8f9bf2f, . Accessed:
2019-12-14.

[16] Argus. https://openargus.org/, . Accessed: 2019-11-19.

[17] Shodan. https://www.shodan.io/, . Accessed: 2019-11-19.

[18] Snort - Network Intrusion Detection & Prevention System. https://www.snort.org/,
. Accessed: 2019-11-19.

[19] Suricata - Open Source IDS/IPS/NMS engine. https://suricata-ids.org/, . Ac-
cessed: 2019-11-19.

[20] The Zeek Network Security Monitor. https://www.zeek.org/, . Accessed: 2019-11-19.

[21] BERA, A. 80 IoT statistics. https://safeatlast.co/blog/iot-statistics/, 2019.
Accessed: 2019-11-13.

[22] BEREZOVSKY, M. – MARIKK, R. Pokrocila algoritmizace, Text Search, 2012.

[23] BORMAN, D. Telnet Authentication Option. RFC 1409, RFC Editor, January 1993.
Dostupné z: https://www.rfc-editor.org/rfc/rfc1409.txt.

[24] BORMAN, D. Telnet Authentication Option. RFC 1416, RFC Editor, February 1993.
Dostupné z: https://www.rfc-editor.org/rfc/rfc1416.txt.

[25] CARR, C. S. Network Subsystem for Time Sharing Hosts. RFC 15, RFC Editor,
September 1969. Dostupné z: https://www.rfc-editor.org/rfc/rfc15.txt.

[26] DEMETER, D. – PREUSS, M. – SHMELEV, Y. IoT: a malware story. https://
securelist.com/iot-a-malware-story/94451/, 2019. Accessed: 2019-11-19.

[27] DOUHOU, S. – MAGNUS, J. R. The reliability of user authentication through keystroke
dynamics. Statistica Neerlandica. 2009, 63, 4, s. 432–449.

[28] HAN, J. – PEI, J. Cosine Similarity. Data Mining: Third Edition. 2012.

[29] JADHAV, C. et al. Biometric authentication using keystroke dynamics. In 2017 Interna-
tional Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC),
s. 870–875. IEEE, 2017.

[30] KASIMOV, Y. Anomaly detection of host roles in computer networks. Master’s thesis,
Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, 160 00 Prague,
Czech Republic, 2018.

[31] KHARE, R. Telnet: the mother of all (application) protocols. IEEE Internet Comput-
ing. 1998, 2, 3, s. 88–91.

[32] KUBESA, D. Identification of network users by profiling their behavior. Master’s thesis,
Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, 160 00 Prague,
Czech Republic, 2018.

48

https://towardsdatascience.com/inferential-statistics-series-t-test-using-numpy-2718f8f9bf2f
https://towardsdatascience.com/inferential-statistics-series-t-test-using-numpy-2718f8f9bf2f
https://openargus.org/
https://www.shodan.io/
https://www.snort.org/
https://suricata-ids.org/
https://www.zeek.org/
https://safeatlast.co/blog/iot-statistics/
https://www.rfc-editor.org/rfc/rfc1409.txt
https://www.rfc-editor.org/rfc/rfc1416.txt
https://www.rfc-editor.org/rfc/rfc15.txt
https://securelist.com/iot-a-malware-story/94451/
https://securelist.com/iot-a-malware-story/94451/

BIBLIOGRAPHY

[33] KUMAR, A. – LIM, T. J. EDIMA: Early Detection of IoT Malware Network Activity
Using Machine Learning Techniques. arXiv preprint arXiv:1906.09715. 2019.

[34] KUMAR, D. et al. All things considered: an analysis of IoT devices on home networks.
In 28th {USENIX} Security Symposium ({USENIX} Security 19), s. 1169–1185, 2019.

[35] KUZIN, M. – SHMELEV, Y. – KUSKOV, V. New trends in the world of IoT
threats. https://securelist.com/new-trends-in-the-world-of-iot-threats/
87991/, 2018. Accessed: 2019-10-22.

[36] LEHTINEN, S. – C. LONVICK, E. The Secure Shell (SSH) Protocol Assigned Numbers.
RFC 4250, RFC Editor, January 2006. Dostupné z: https://www.rfc-editor.org/
rfc/rfc4250.txt.

[37] LIBIGER, M. Zlín pořídil chytré odpadkové koše. Mají lis a
samy ohlásí, že jsou plné. https://www.idnes.cz/zlin/zpravy/
odpadkove-kose-lis-komunikace-naplnenost-zlin.A191107_512684_
zlin-zpravy_ras, 2019. Accessed: 2019-11-13.

[38] MAHMOOD, H. B. Transport layer security protocol in Telnet. In 9th Asia-Pacific
Conference on Communications (IEEE Cat. No. 03EX732), 3, s. 1033–1037. IEEE,
2003.

[39] MONROSE, F. – RUBIN, A. Authentication via keystroke dynamics. In Proceedings of
the 4th ACM conference on Computer and communications security, s. 48–56. Citeseer,
1997.

[40] NAVARA, M. Pravděpodobnost a matematická statistika. České vysoké učení v Praze,
2007.

[41] PATEL, M. – SHANGKUAN, J. – THOMAS, C. What’s new with the internet of
things? https://www.mckinsey.com/industries/semiconductors/our-insights/
whats-new-with-the-internet-of-things, 2017. Accessed: 2019-10-22.

[42] POSTEL, J. – REYNOLDS, J. TELNET PROTOCOL SPECIFICATION. RFC 854,
RFC Editor, May 1983. Dostupné z: https://www.rfc-editor.org/rfc/rfc854.txt.

[43] SAWANT, M. M. – KINAGE, K. S. User Authentication Using Keystroke Latency. In
iPGCON 2014, STES’s, SKNCOE. 2014.

[44] SONG, D. X. – WAGNER, D. A. – TIAN, X. Timing analysis of keystrokes and timing
attacks on ssh. In USENIX Security Symposium, 2001, 2001.

[45] TAHIR, M. et al. A novel network user behaviors and profile testing based on anomaly
detection techniques. International Journal of Advanced Computer Science and Appli-
cations. 2019, 10, 6, s. 305–324.

[46] TS’O, T. – ALTMAN, J. Telnet Authentication Option. RFC 2941, RFC Editor,
September 2000. Dostupné z: https://www.rfc-editor.org/rfc/rfc2941.txt.

[47] VINAYAK, R. User Authentification Using Advanced Keystroke Analysis. 2015.

49

https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://www.rfc-editor.org/rfc/rfc4250.txt
https://www.rfc-editor.org/rfc/rfc4250.txt
https://www.idnes.cz/zlin/zpravy/odpadkove-kose-lis-komunikace-naplnenost-zlin.A191107_512684_zlin-zpravy_ras
https://www.idnes.cz/zlin/zpravy/odpadkove-kose-lis-komunikace-naplnenost-zlin.A191107_512684_zlin-zpravy_ras
https://www.idnes.cz/zlin/zpravy/odpadkove-kose-lis-komunikace-naplnenost-zlin.A191107_512684_zlin-zpravy_ras
https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-of-things
https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-of-things
https://www.rfc-editor.org/rfc/rfc854.txt
https://www.rfc-editor.org/rfc/rfc2941.txt

BIBLIOGRAPHY

[48] VISHWAKARMA, R. – JAIN, A. K. A Honeypot with Machine Learning based De-
tection Framework for defending IoT based Botnet DDoS Attacks. In 2019 3rd Inter-
national Conference on Trends in Electronics and Informatics (ICOEI), s. 1019–1024.
IEEE, 2019.

50

Appendix A

The usage of credentials

The usage of credentials in all login attempts to the Telnet server with a public IP address
in 70 days. The network traffic was captured from 17 October 2019 to 25 December 2019.
The total number of logins attempts was 158 295.

Table A.1: The most used credentials to log in to the Telnet server

Username Password Usage Usage in %

root 70 853 44.76009981

admin 1234 1 941 1.226191604

root aquario 1 940 1.225559872

ubnt ubnt 1 146 0.7239647494

root root 1 052 0.6645819514

admin admin 1 017 0.6424713352

Admin 5up 978 0.6178337913

guest guest 978 0.6178337913

root 666666 978 0.6178337913

root hi3518 978 0.6178337913

admin smcadmin 977 0.6172020594

admin vertex25ektks123 977 0.6172020594

guest friend 977 0.6172020594

root user 977 0.6172020594

root vizxv 977 0.6172020594

Continued on next page

51

APPENDIX A. THE USAGE OF CREDENTIALS

Table A.1 – Continued from previous page

Username Password Usage Usage in %

root xc3511 977 0.6172020594

tech tech 977 0.6172020594

admin 54321 976 1.116168432

root 1234567890 976 1.116168432

root 888888 976 1.116168432

root oelinux123 976 1.116168432

root pass 976 1.116168432

support support 976 1.116168432

admin 12345 975 1.115024816

admin 1234567890 975 1.115024816

guest 12345 975 1.115024816

root 1234 975 1.115024816

root 54321 975 1.115024816

root ttnet 975 1.115024816

user user 975 1.115024816

666666 666666 974 1.113881201

888888 888888 974 1.113881201

admin 1111 974 1.113881201

admin 7ujMko0admin 974 1.113881201

admin ipcam_rt5350 974 1.113881201

admin pass 974 1.113881201

admin Win1doW$ 974 1.113881201

root 00000000 974 1.113881201

root anko 974 1.113881201

root dreambox 974 1.113881201

root system 974 1.113881201

root Zte521 974 1.113881201

service service 974 1.113881201

supervisor zyad1234 974 1.113881201

Continued on next page

52

Table A.1 – Continued from previous page

Username Password Usage Usage in %

admin 123456 973 1.112737586

admin 1988 973 1.112737586

admin1 password 973 1.112737586

root 1001chin 973 1.112737586

root 1111 973 1.112737586

root 123456 973 1.112737586

root 7ujMko0admin 973 1.112737586

root alpine 973 1.112737586

root hunt5759 973 1.112737586

admin meinsm 972 1.111593971

Administrator admin 972 1.111593971

root 12345 972 1.111593971

root default 972 1.111593971

root founder88 972 1.111593971

root ikwb 972 1.111593971

root juantech 972 1.111593971

root Win1doW$ 972 1.111593971

root zsun1188 972 1.111593971

admin admin1234 971 1.110450356

administrator 1234 971 1.110450356

mother fucker 971 1.110450356

root jvbzd 971 1.110450356

root klv123 971 1.110450356

root xmhdipc 971 1.110450356

root zlxx. 971 1.110450356

admin password 970 1.10930674

root 1234qwer 970 1.10930674

root GM8182 970 1.10930674

root password 970 1.10930674

Continued on next page

53

APPENDIX A. THE USAGE OF CREDENTIALS

Table A.1 – Continued from previous page

Username Password Usage Usage in %

supervisor supervisor 970 1.10930674

admin 1111111 969 1.108163125

root 123123 969 1.108163125

root 5up 969 1.108163125

root 7ujMko0vizxv 969 1.108163125

root admin 969 1.108163125

root ivdev 968 1.10701951

root oelinux1234 968 1.10701951

root realtek 968 1.10701951

admin zhongxing 967 1.105875895

default antslq 967 1.105875895

root klv1234 967 1.105875895

root qazxsw 966 1.10473228

root cat1029 924 1.056700441

admin 827 0.9457697674

admin cat1029 46 0.02905966708

54

Appendix B

Guidelines for user testing

Thank you for participating in the user testing of the Telnet profiling tool. Our research
focuses on profiling users in the Telnet traffic based on what and how they type. We capture
and process every single packet going from your computer to our Telnet server and back. You
will be given credentials to log in and set of questions which we would like you to answer.

If at any moment (during or after the experiment) you decide you don’t want to partic-
ipate in this testing, please let us know and we will delete all the captured data related to
you.

B.1 Data we capture

• The public IP address from which you access the Telnet server. This data is used to
compare where the login came from. If you want to hide your identity more, you can
use a VPN or any public WiFi access point.

• Everything you type in the command line after you log in to the Telnet server. Since
Telnet protocol is not encrypted, please keep in mind that we can read everything you
write (even the commands you delete and don’t send to the server). Because of this,
don’t use any personal information that may identify you - your name, username, email
address, . . .

• Our method is based on the characteristics of one’s typing - the keystroke dynamics
method. We will store the profile of how you type. This profile will be stored with a
user’s ID number without any identification of yourself.

B.2 Instructions

• In each session, you will be given a set of question which we ask you to answer. The
order of how you answer the question is not fixed, you can start with any of them.

55

APPENDIX B. GUIDELINES FOR USER TESTING

• Each session is very short, working on each of them should not take you longer than 10
minutes. If you know most of the commands, you will finish each session even faster.

• The answer to all questions should be marked into a log file in the Telnet server. Create
and edit the log files only if your home folder. For logging information, please use the
VI program. Basic commands can be found at the end of this document.

• Make sure that each set of questions and answers to them is in its own session, meaning
you need to log in before you start working on the questions and log out after finishing
the assignment.

• Please answer each question in sentences/longer text rather than just a number as an
answer. Our goal is to learn the characteristics of you typing, so the more you type,
the better.

• Do not use any of your personal information - your name, username, email or any other
information. The session that you created is going to be labelled with your user ID
which will be chosen randomly.

• You can make those assignments at any time of day, any day of the week. You can
make all of them at once, just keep in mind that each assignment needs to be in a
different session (don’t forget to log out and log in after each scenario).

• Make sure you finish each assignment at least once. If you have time and you want to
help us more with this research, you can go and make each assignment multiple times.
The only rule here is not to work on the same assignment over and over again in a
short period of time to prevent bias from learning the commands.

• Thank you if you decide to work on each assignment more than once. You can use
the same log file for each attempt. You can append new information to the log file or
create a new log file (please, do not delete any of log files on the server).

• During the tests, you are allowed to search for any commands that you need using any
source of information (Internet, books, notes, asking someone - in this case, you should
be the one who is typing the command). You are also allowed (sometimes required) to
install tools you may need.

• This is not an exam. Please try to be as natural as possible while working in the
command line. Please do not delete everything from the Telnet server and do not
attack other devices.

B.3 Assignments

Assignment 1

• Log in to the server using given credentials.

56

B.3. ASSIGNMENTS

• In the home folder create a folder named /̃noitamrofni/sresu-gig/. In this folder,
create a log file. Choose the name of the log file longer than 10 characters.

• Log in the start date and time of this assignment to the created log file.

Answer the following questions in any order you wish:

• From which IP addresses did your user logged in previously? List all of them.

• Which users has access to the Telnet server?

• When was the last time your user logged in?

• Which users are logged in to the Telnet server right now?

• What were the last 10 commands used by your user?

• For how long was your user logged in during last three logins?

• What is the usage of disk space in the device?

Assignment 2

• Log in to the server using given credentials.

• In the home folder create a folder named /̃mentlopvede/ecived-deq/. In this folder,
create a log file. Choose the name of the log file longer than 10 characters.

• Log in the start date and time of this assignment to the created log file.

Answer the following questions in any order you wish:

• Which processor is the server running on?

• What is the size of the memory available memory in the Raspberry Pi?

• Which model of the Raspberry Pi is the server running on?

• How many cores does the processor have?

• How much of free memory is available in the server?

• How many tasks are scheduled in the crontab of the device?

• When are scripts in crontab executed?

57

APPENDIX B. GUIDELINES FOR USER TESTING

Assignment 3

• Log in to the server using given credentials.

• In the home folder create a folder named /̃krownfoinras/leewhop-ten/. In this folder,
create a log file. Choose the name of the log file longer than 10 characters.

• Log in the start date and time of this assignment to the created log file.

Answer the following questions in any order you wish:

• For how long is the server running?

• What is the IP address of the server?

• What other devices are in the internal network?

• Which ports are opened in the server?

• Which ports are opened in the rest of the devices in the internal network?

• Which interfaces are in the device? What are the MAC addresses?

Assignment 4

• Log in to the server using given credentials.

• In the home folder create a folder named /̃solving-quizzes/. In this folder, create a
log file. Choose the name of the log file longer than 10 characters.

• Log in the start date and time of this assignment to the created log file.

Answer the following questions in any order you wish:

• Which files were modified in the past 48 hours?

• How much of available disk space is in the device?

• What is the location of the topsecret.txt file?

• Move the topsecret.txt file to your home folder into the very-secret folder.

• Answer questions in the secret file to the log file.

58

	Introduction
	Related work
	The security of the Telnet protocol
	Detection of IoT attacks
	User authentication based on typing characteristics
	Profiling users in the network

	Introduction to Telnet protocol
	The usage of Telnet
	Understanding Telnet bytes
	Negotiation bytes
	User data bytes

	Parsing Telnet payload
	TCP protocol
	Telnet protocol

	Restoring user commands
	Typographical errors
	Auto-completion

	Interpretation of user data
	Credentials
	Commands

	Proposed method
	Create a new Telnet session
	Connections statistics from all Telnet clients

	Create a new user profile
	Payload analysis
	Session information
	Bot detection

	Compare two profiles
	Distance between two profiles
	Distance between individual profile feature
	Final distance between two profiles

	Results
	Experiments setup
	Analysis of IP addresses from every client
	Analysis of sessions

	Analysis of credentials
	Creating new profiles
	Differentiate bots from humans
	Comparison between profiles

	Conclusion
	The usage of credentials
	Guidelines for user testing
	Data we capture
	Instructions
	Assignments

