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Abstract

Convolutional neural networks currently
dominate in optical flow estimation. Neu-
ral network learning methods are catego-
rized to three groups: supervised need-
ing inputs and desired outputs, self-
supervised needing just inputs and semi-
supervised attempting to combine both.

This work proposes a new method
of semi-supervised optical flow learning.
The method formulates the training opti-
mization as constrained gradient descent
on a supervised loss function that in-
cludes self-supervised terms. In the self-
supervised domain, a systematic study of
selected current practices is done. Specif-
ically, three photometric difference mea-
sures are tested - brightness difference,
census transform and structural similar-
ity. Current research suggests that oc-
clusion handling plays a role for self-
supervised learning. Two methods are
tested - forward backward consistenc
occlusion detection from UnFlow [@],
and three-frame occlusion reasoning from
Janai et al. [31]. Apart from these tech-
niques, we also test the training dataset
size effect and forward-backward consis-
tency loss function term [@]

The regarding semi-
supervision show that including the
unsupervised objective with the pro-
posed method significantly improves the
estimation on a distant domain while
maintaining the performance on the
original domain. More specifically, the
error decrease is demonstrated on an
artistic-like Creative Flow+ dataset []
while the model maintain its accuracy on
the popular Sintel dataset [] Surpris-
ingly, the effect is observed even wihtout
using any Creative Flow+ samples.

experiments

The self-supervised training experi-
ments show that learning with census
photometric difference leads to better

vi

accuracy on all tested datasets. Out
of the two occlusion handling methods,
none significantly increases the perfor-
mance. The results suggest that the
methods are unable to accurately detect
occlusions. The experiments show that
a large amount of training data does
not necessarily lead to a performance in-
crease. Surprisingly, training on as little
as eighty frame pairs does not lead to a
catastrophic loss of accuracy.

Keywords: computer vision, optical
flow, self-supervised training,
semi-supervised training

Supervisor:
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prof. Ing. Jifi Matas,



Abstrakt

Konvolu¢ni neuronové sité v soucasnosti
dominuji odhadu optického toku. Metody
uceni neuronovych siti se déli do tii
skupin: uceni s ucitelem, které pouziva
vstupy s pozadovanymi vystupy, uceni
bez ucitele, které vyzaduje pouze vstupy
a kombinace uceni s ucitelem a bez ucitele,
které se pokousi sloucit oboji.

Tato prace navrhuje novou metodu
kombinace uceni s ucitelem a bez ucitele.
Metoda formuluje optimalizaci pri tréno-
vani jako omezeny gradientni sestup na
ztratové funkci zahrnujici termy z uceni
bez ucitele. V doméné ucCeni bez uci-
tele je provedena systematickd studie vy-
branych soucasnych technik. Konkrétné
jsou testovany tifi techniky méreni foto-
metrického rozdilu - rozdil jasu, Census
transformace a structural similarity. Sou-
casny vyzkum ukazuje, Ze zohlednovani
zakrytl hraje roli pfi uceni bez ucitele a
proto jsou otestovany dvé metody - de-
tekce zakryti pomoci zpétné konzistence
z UnFlow [32] a t¥isnimkové zohlednovani
okluzi z Janai et al. [31]. Kromé téchto
technik testujeme také vliv velikosti tré-
novaciho datasetu a term zpétné konzis-
tence ve ztratové funkci [@]

Experimenty ohledné kombinace uceni
s ucitelem a bez ucitele ukazuji, ze pri-
danim cile z uceni bez ucitele pomoci na-
vrhované metody vyrazné zlepsuje odhad
optického toku na vzdalené doméné a pii-
tom zachovava presnost na doméné vy-
chozi. Konkrétnéji je pokles chyby demon-
strovin na_uméleckém Creative Flow+
datasetu [42], pricemz model zachovava
presnost na datasetu Sintel [@] Prekva-
pivé je efekt pozorovian i bez pouziti
snimku z Creative Flow+.

Experimenty s uéenim bez ucitele uka-
zuji, ze uceni s fotometrickym rozdilem
urcovanym pomoci Census transformace
vede k vétsi presnosti na vSech testova-

vii

nych datasetech. Ani jedna z obou testo-
vanych metod pro zohlednovani zakryta
vyrazné nezvétsuje presnost. Vysledky na-
znacuji, ze selhavd schopnost presné na-
jit zékryty. Experimenty ukazuji, ze velké
mnozstvi trénovacich dat nevede ve vSech
pripadech ke zlepseni presnosti. Piekva-
pivé, katastrofalni ubytek presnosti neni
zaznamenan pri trénovani na pouze osm-
desati parech snimki.

Klicova slova: pocitacové vidéni,
opticky tok, uceni bez ucitele,
kombinace uceni s ucitelem a bez ucitele

Preklad nazvu:
bez ucitele

Uceni optického toku
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Chapter 1

Introduction

Supervision is the opium of the Al researcher.

Jitendra Malik, CVPR 2019

The concept of optical flow originates in psychology. It was introduced
by James J. Gibson in the 1940s to describe the visual stimuli provided to
animals moving through the world [43]. Later, the term was adopted by
computer vision to describe a dense motion field between two consecutive
frames in a video. Since the 1980s, many methods were proposed for the
task of optical flow estimation from images. Horn-Schunck [l] and Lucas-
Kanade [2] serve as examples of the first classical methods, but the task is
still a point of intense research.

Like many other areas in computer vision, optical flow estimation is cur-
rently dominated by convolutional neural networks. Neural network training
usually requires a large number of annotated samples. However, acquiring
optical flow ground-truth is a non-trivial task. Fully manual annotation is
extremely time-consuming and uncommon. Some datasets, e.g., KITTT [12,
22], employ sensors like Lidar to capture a 3D structure of a real-world scene
and an IMU to measure ego-motion. The information is then used to de-
termine the optical flow in frames of a calibrated camera. Nevertheless, the
estimated optical flow has a relatively high level of uncertainty, optical flow
on rigid moving objects requires a manual annotation (to fit a 3D model),
and optical flow on non-rigid objects is virtually impossible to obtain.

Currently, the most feasible option to obtain optical flow ground-truth
is to synthesize a scene using computer graphics. This is also how Sintel
[11], one of the most popular optical flow benchmarks, was created. This
approach provides an accurate optical flow and has the potential to create a
large dataset.

A sizeable optical flow dataset FlyingChairs, created by synthesizing scenes
with 3D models of chairs, was the critical element of the first CNN-based opti-
cal flow estimation method FlowNet [19]. This dataset still plays an essential

1



1. Introduction

role during the training of almost all supervised optical flow estimation net-
works. However, as all synthesized datasets, it suffers from an unknown
domain shift between the modeled scenes and real-world optical flow.

Supervised learning, where neural networks are trained by being presented
with examples, including ground-truth annotation, is not the only approach.
Parallel to this class of learning, there are also “unsupervised” methods (also
referred to as “self-supervised”) that formulate the training without the
need of ground-truth.

In the case of optical flow, the basic principle underpinning the unsuper-
vised training is to formulate a loss function that evaluates the photomet-
ric consistency of the given dense correspondences. Additionally, to cope
with local ambiguities and other effects, the loss function includes an optical
flow smoothness term. This principle comes from the Horn-Schunck method,
where a similar objective is optimized for each image pair. Some unsuper-
vised training methods also propose to take occlusions into consideration as
these corrupt the photometric consistency of optical flow - if an area is oc-
cluded in the second frame by being out-of-frame or behind another object
in the scene, it is impossible to measure photometric consistency.

The main advantage of unsupervised optical flow training is that there is
no need for ground-truth. This allows for training on a virtually unlimited
number of data. It opens a possibility to train a wider variety of scenes with
potentially improved accuracy. Furthermore, the training can be done on
a specific domain, where the annotation is not available or is impossible to
obtain.

These advantages motivate the research of unsupervised optical flow train-
ing methods. There are several publications working with the same main
principle, but proposing different variations [31, B2, B4]. They suggest a va-
riety of photometric consistency measures, occlusion handling methods, etc.
Moreover, each is developed under slightly different conditions - diverse net-
work architectures, training datasets, and training protocols. This prevents
a direct comparison of the benefits of individual components.

The first part of this work focuses on the analysis and comparison of some
of the recently proposed ideas in unsupervised optical flow training. The
experiments are done under a single protocol, which allows for a comparison.
Specifically, the following contributions are made regarding the understand-
ing of unsupervised optical flow training.

® Popular photometric difference measures are compared - brightness dif-
ference, census transform, and structural similarity, and the best is se-
lected.

In the context of optical flow, both terms “unsupervised” and “self-supervised” are
used to refer to the same method of training without labeled samples. This work uses both
terms interchangeably.



1. Introduction

® Two occlusion handling methods are analyzed - forward-backward con-
sistency masking [32] and three-frame occlusion reasoning [31] and their
failure-cases are analyzed.

® Proposed forward-backward consistency term [32] in unsupervised loss
function is tested.

® Training dataset size influence is analyzed. A large amount of unlabeled
frame pairs is collected from various sources and used as a training
dataset. On the other hand, an experiment with the dataset size re-
stricted to just 80 samples is performed.

However, evaluation on standard benchmarks like Sintel [L1] or KITTT [22]
shows that unsupervised training currently does note lead to an accuracy
comparable with supervised training. This is most probably caused by the
inability of the unsupervised loss function to fully cope with all commonly
present effects like occlusions, motion blur, local ambiguity, and other.

We thus also focus on combining unsupervised training with supervised
training. This strategy is called “semi-supervised” training. It has the po-
tential to combine the accuracy of supervised training with the theoreti-
cally unlimited training dataset of unsupervised training. This is not a well-
established technique in the optical flow estimation task; the experiments
thus lead to valuable conclusions.

Regarding semi-supervised training, the work contributes in the following
ways.

® A novel method to combine supervised and unsupervised objectives is
presented. The method formulates the training as constrained gradi-
ent descent that takes gradients from loss functions of both objectives;
however, skips all unsupervised samples that lead to worse performance
on the supervised samples, i.e., all unsupervised gradients that have a
negative dot product with the supervised gradient are omitted.

® The method is tested to combine the objectives in three scenarios - fine-
tuning on a single domain, adaptation on a close domain, and distant
domain adaptation.

The structure of the work is the following. First, related work is analyzed in
more detail in Chapter 2, and different novel techniques are highlighted. Sec-
ond, the necessary theoretical foundation for experiments is laid in Chapter
3, and the novel semi-supervision method is introduced. Chapter 4 describes
the conducted experiments and lists all technical details. Lastly, Chapter 5
lists and discusses the results of the experiments.






Chapter 2

Related work

In this chapter, a closer look at major recent unsupervised/self-supervised
and semi-supervised optical flow training methods is provided, and the inno-
vative contributions of each publication are highlighted.

First, various recent unsupervised optical flow training methods are ana-
lyzed. We then focus on a special group of methods that employ the unsu-
pervised training paradigm in a broader way and combine optical flow esti-
mation with other tasks like depth and ego-motion estimation. Afterward,
semi-supervised approaches to optical-flow training are revised.

. 2.1 Unsupervised optical flow methods

First, we explore all major contributions to the field of self-supervised optical
flow training.

Ahmadi et Patras [], Back2Basics [@] and DSTFlow [@] were
arguably the first to introduce the idea of training an optical flow estimator
network using the objective function from Horn-Schunck (H-S) method @]
They all employ the basic brightness constancy assumption for pixel match-
ing, with DSTFlow being the only method that also considers a gradient
constancy. In all cases, the estimator is also trained to produce a smooth
motion field by simple penalization of all spatial discontinuities, the same as
in H-S.

However, some post-Horn-Schunck techniques can also be found. As Sun
et al. [] show, the best practice in classical methods is to use Charbonnier
robust penalty for both brightness and smoothness objective to minimize the
sensitivity to outliers. All mentioned methods apply this practice in the train-
ing loss function. Interestingly enough, Ahmadi et Patras [] employ three
other classical techniques - pyramidal approach with iterative refinement on
each level and median filtering after each iteration.

5



2. Related work

Long et al. [24] propose to build the unsupervised estimator in a different
way. They train a neural network to solve a task connected to optical flow -
frame-interpolation. In a triplet of frames, the network is trained to estimate
the middle frame from the first and last frames. For optical flow estimation,
the network is used to compute gradients of values in the output image with
respect to each input pixel. This is done in order to discover the pixels
in input images that influence the pixel in the output image the most i.e.,
establishing correspondences.

TransFlow [28] introduces an interesting iterative approach - flow esti-
mation is done in two stages by two separate networks. The first network
estimates a homography that approximates coarse camera movements in the
image. The second network then adds just the residual motion. This ap-
proach is, however, not robust - it is crafted especially for driving sequences,
and it is destined to fail with general motion.

UnFlow [32] and Wang et al. [34] were the first methods to introduce
occlusion reasoning into the unsupervised optical flow training process. To

achieve this, both methods work with both forward and backward optical
flow fields.

Wang et al. [34] build on the observation that with ideal optical flow fields,
pixels that are occluded in the second image, do not adhere to any backward
flow (i.e., flow from second to the first image). Based on the backward optical
flow, we label as occluded those pixels in the first image that do not have a
correspondence in the second image (i.e., no vector from the backward flow
field points to them). Photometric term (brightness and gradient constancy
in this case) is then not considered on occluded pixels in the forward flow
loss function, and the presence of occluded pixels is penalized in order to
avoid the all-pizels-occluded solution.

UnFlow [32] takes a slightly different path to determine the occluded pix-
els. Forward-backward optical flow consistency is considered - the basic idea
is that on non-occluded pixels, one should be able to follow the forward opti-
cal flow and then get back to the same pixel with the backward flow. Since
this approach seems to be popular - it is employed also in later works of Liu
et al. [39, 40], we put it under analysis (Section 4.2.2). UnFlow also penal-
izes forward-backward inconsistencies and finds that it significantly improves
results. This finding is also analyzed (Section %4.2.3).

Janai et al.[31] come with a different technique to cope with occlusions.
Instead of using only the future frame to reconstruct the current frame, both
neighboring frames are used (i.e., both past and future) for reconstruction.
This approach assumes that all pixels in the current frame are visible at least
in one of the adjacent frames, which holds in most cases. We investigate the
exact influence of similar reasoning in Section 4.2.2.

DDFlow [39] is a method presenting so-called data distillation approach
to training. The main goal is to train the network to estimate optical flow
correctly, even on occluded pixels. The authors first train a model follow-

6



2.2. Unsupervised training of multiple tasks

ing the main ideas of UnFlow [32] and call it the “teacher” network. While
training secondary, “student” model, some pixels are randomly occluded by
performing crops in the images. However, the prediction of the student net-
work is guided with estimates from the teacher network on original images
providing a clue even for occluded pixels.

This approach is elaborated even further in SelFlow [40]. The main data
distillation idea stays the same, but several features are added. Instead of
creating occlusions by random crops, which will only lead to out-of-frame
occlusions, SelFlow finds superpixels in images and fills them with white
noise. It also extends the network from DDFlow to from two to a three-
frame setting.

Lastly, Lai et al. [38] propose to combine optical flow estimation with
stereo matching. The authors create an optical flow estimation network that
also serves as a disparity estimator. By using stereo pairs, they are able to
add a new loss among the traditional photometric difference between warped
target and source images and smoothness losses. They call it a two-warp
loss, and, as the name suggests, it encourages the similarity of pixels linked
through both the optical flow field and the disparity map. They are able
to achieve competitive results in depth estimation, but not in optical flow
estimation.

. 2.2 Unsupervised training of multiple tasks

The fact that optical flow on static scene objects is linked to depth and camera
motion gave birth to the next two methods. They both combine monocular
depth, ego-motion, and optical flow estimation and train all modules in an
unsupervised fashion.

GeoNet [36] proposes a two-stage architecture. First, ego-motion and
monocular depth estimation are performed. These two estimates are used to
create an optical flow field on the rigid parts of the scene. Flow on moving
parts is then estimated as a residual motion by the so-called ResFlowNet.

The whole architecture is trained in an unsupervised fashion using Struc-
tural similarity [5] and pixel brightness to measure the photometric difference
between the source frame and target frame warped with the output optical
flow. Occlusions are excluded from photometric loss by the same method as
in UnFlow [32].

Competitive collaboration [41] extends the whole idea by adding a net-
work for segmentation of static parts of the scene (i.e. motion segmentation).
Optical flow on static parts is then estimated from outputs of monocular
depth estimation and ego-motion estimation networks together referred to
as R. Flow on moving parts is handled by an optical flow network referred
to as F'.



2. Related work

To train such a complex set of networks in an unsupervised fashion, the
authors first pre-train separately R, F' and motion segmentation network.
Then, they employ a process called Competitive collaboration. The process
has two phases - in the first, R and F' are trained each on the respective
parts of a frame as assigned by the motion segmentation network. In the
second, motion segmentation is trained based on the comparison of optical
flow fields produced by R and F'.

. 2.3 Semi-supervised optical flow

If we do omit cases of unsupervised pre-training and supervised fine-tuning,
there were only a few attempts in the optical flow context to create a combi-
nation of supervised and unsupervised training.

Xiang et al. [35] and Zhai et al. [44] are two consecutive works that
combine the supervised training with some techniques from the unsupervised
world. They simply add the photometric consistency and smoothness regu-
larization terms to the supervised loss and attempt to train the network in
this way. Unfortunately, they base the network on an outdated FlowNet
architecture [19].

Lai et al. [29] present an approach based on a Generative Adversarial
Network. The discriminator is trained to recognize the photometric differ-
ence map between the source and target image back-warped by either ground
truth or estimated optical flow. Further, endpoint error loss is applied along-
side the adversarial loss for all labeled data.

The authors show that this semi-supervised setting can lead to slightly
better results on all major datasets compared to their supervised baseline.
However, the setting assumes that no ground-truth optical flow is available
except for the synthetic FlyingChairs [19] dataset.



Chapter 3

Methods

In this chapter, the necessary theoretical foundation is laid for the experi-
ments in work. First, a notation scheme is presented. Afterward, supervised
learning is introduced, followed by a more profound introduction to unsu-
pervised learning and its aspects. Lastly, a new semi-supervision method
combining the two approaches is proposed.

. 3.1 Notation

Let I, I> be two consecutive frames and fg7,1—2 ground truth forward optical
flow between them.

The goal is to train the parameters © of an optical flow estimation net-
work. This is done by minimizing a loss function L(©). The loss function
usually has multiple different arguments; however, we omit those to ease the
notation.

The architecture used in this work is pyramidal and thus the optical flow
estimates are multi-scale i.e. multiple differently-scaled outputs are obtained.
Let I =1,2...5 denote the flow pyramid scale from the largest to smallest -
Ya, Vs, Y16, V32 and Yea of the input image size.

Let f .., f5 ., be the estimated forward and backward optical flow on scale
l. By I' and f{GT we denote an image and optical flow down-sampled to scale
[ respectively®.

In some sections, flow between three consecutive frames Iy, Is, I3 is con-
sidered. In this case, we consider I5 as the reference frame and call optical
flow from Iy to I the backward flow fé _,; and optical flow from I to I3 the
forward flow £ .

1We use bilinear interpolation for optical flow down-sampling.

9



3. Methods

. 3.2 Supervised training

Supervised training works by directly comparing the estimates to some ground-
truth data in the loss function. For optical flow, the supervised loss is com-
monly defined as a standard L2 endpoint-error loss

sup (fie) = Zal Z Hf{l—ﬂ GT 152(x )H . (3.1)

2
= xeP
where oy is the pyramid scale weight.

Some experiments feature robust loss function as suggested in [@]

) =Y S (B2 — foraat)], +6)" 32)
=1 EP

With the default setting ¢ = 0.01 and ¢ = 0.4 this metric penalizes the
outliers less than the L2 loss.

. 3.3 Unsupervised training

Unsupervised training avoids the need for direct optical flow ground-truth.
Instead, the loss function usually combines multiple terms mainly inspired
by the Horn-Schunck method [Ij,, |. The main terms are the data term
and the regularization term. In short, the data term assures the visual sim-
ilarity of corresponding pixels. On ambiguities, regularization encourages
spatial smoothness. Other terms may be added, such as forward-backward
consistency []

In this section, the unsupervised loss function is first presented as a whole.
Afterward, the data term is explained in more detail, followed by occlusion
reasoning methods. Lastly, smoothness regularization term and forward-
backward consistency term are defined.

Il 3.3.1 Unsupervised loss function

The unsupervised loss consists of multiple terms that are evaluated on all
scales of the network output. In total, in this work, we define four terms.
LZD is the data term encouraging photometric consistency of the optical flow,
LlS is the optical flow smoothness term. In the normal two-frame setting,
forward-backward consistency term LZC is also used.

In the case of three-frame estimation employed solely in experiments with
three-frame occlusion reasoning, LlP, the combination masks M' prior is
active. Note that in this case, the consistency term Llc cannot be used.

10



3.3. Unsupervised training

The total unsupervised loss is defined as a weighted sum over loss terms
and pyramid levels:

5
Lun =Y _oq(L + AsLls + AcLl + ApLb), (3.3)
=1

where ¢ is the pyramid scale weight and Ag, A\c and Ap are weights of the
respective loss terms.

B 3.3.2 Dataterm

The data term encourages the photometric consistency of estimated optical
flow. The definition is based on [32] as follows

LZD(fl1—>27fl2—>1) = Z (1 - Ollaz(x))P(fD(I{(X)a Ié(x + f{1—>2(x)))>+
xeP

(1- Oéﬁl(x))p(fD(Ié(X), Ix + flzﬁl(x)))>+ (3.4)

Ao (Ollﬁ2 (x) + Oé%l(x))u
where p(z) = (2% + €2)7 (default v = 0.45) is the Charbonnier penalty [1§]

that increases robustness to outliers. Function fp measures the photometric
difference between two pixels.

Variables o} _,,(x) and 0b_,;(x) allow to exclude occluded pixels from the
photometric comparison and add a fixed penalty Ao instead (see Section
3.3.3). If no occlusion handling takes place, consider o} _,,(x) = 0b_,;(x) = 0.

Il Photometric difference

The photometric difference function fp can be defined in many ways. The
methods used in this work are presented in the following section.

Brightness difference. The easiest way to measure a photometric dif-
ference is to directly compute per-channel intensities difference as

fhhi(x1), Ia(x2)) = D I5(x2) = Ii(x1)|ln, (3.5)
ce{r.g,b}
where I¢ denotes the color channel ¢ of the image.

However, this naive solution suffers from many pitfalls with the main prob-
lems being local ambiguity, non-robustness to illumination changes, or the
dependence on the scene illumination (e.g., the differences will be lower for
a dark scene compared to a scene using a full brightness range).

Ternary census transform difference. Alternative way to measure the
difference is ternary census transform [3, 4]. However, it has to be formulated
in a differentiable way for a loss function. We use the definition of [32].

11



3. Methods

Let 19 be an image converted to grayscale (single channel). Let us define
a normalized difference between a pixel x and its neighbour x + § as

Y(x+9d)—19(x) ‘
\/(Ig(x +68) — I9(x))° +0.81

D(x,6) = (3.6)

This corresponds to comparing a pixel with its neighbour and assigning a
ternary value based on the sign of the difference in the standard Ternary
census transform.

Let D7 and Dy correspond I7 and I respectively. The census transform
difference is defined as

2
C I(x1), In(x _ (Dl(X1,5)—D2(X2,5>)
fD( 1( 1) 2( 2)) 5§/ (Dl(Xl,(S) — DQ(XQ,(S))Q + 0.1,

where W is a square window of a given size. The above operation corresponds
to calculating a Hamming distance between pixels as with standard Census
transform.

Census photometric difference is robust to additive and multiplicative
changes between two frames since it works with intensities relative to other
pixels in a neighborhood instead of with the absolute intensity of one pixel
as the brightness difference.

Structural similarity. Another option for fp is structural similarity
measure (SSIM) [5] as demonstrated in [36, B8, 41]. It is specifically designed
to measure similarity of two images.

First, let us denote mean and standard deviation of image intensities in a
window W around pixel x computed separately for channel ¢ of image I;.
1

pi (%) = W] A I{(x+9). (3.8)

oi(x) = J \W\l—l 3 (IE(x + 8) — pg(x)’ (3.9)

oeWw

Mean and standard deviation are used to compare luminance and contrast
in the window, respectively. Correlation compares the structural informa-
tion.

1

iy (x1,%2) = e Y (I{(x1+8) — pf (x1)) (I5 (x2 + ) — p5 (x2)) (3.10)
W12

The original SSIM index is then defined as
(204 (x1) 5 (x2) + C1) (055 (x1, %2) + C3)

(1§ (x1)? + 1§ (x2)? + C1) (0§ (x1)? + 05 (x2)? + C2)
(3.11)

SSIM(If(x1), I§(x2)) =

12



3.3. Unsupervised training

where C1 = 0.01%2 and Cy = 0.03? are two constants avoiding instability when
p$ (x1)% + p§(x2)? or o$(x1)? + 05(x2)? is close to zero.

As the aim is to measure the difference between two images instead of
similarity, the negative of SSIM is taken. The differences in each channel are
summed together:

), B(xa)) = > (1= SSIM(If(x1), I5(x2))) (3.12)

ce{r,g,b}

B 3.3.3 Occlusionreasoning in data term

The data term defined in the previous section suffers from a considerable
flaw - pixels from I; that are occluded in I cannot be photo-metrically
compared and vice-versa. Some methods come up with a way to exclude these
pixels from the comparison. In this work, we revise two methods - forward-
backward consistency occlusion detection [@] and three frame masking [@]

Il Occlusion handling by forward-backward consistency

Ideal forward and backward optical flow fields form together a “loop” for
pixels that are visible in both I; and I i.e., they are forward-backward
consistent. However, this generally does not hold for pixels that are occluded
in one of the images.

This approximation suffers from many problems - during estimation, there
is no ideal optical flow, optical flow is not generall aligned to whole pixels,
but it is usually sub-pixel, etc. Nevertheless, E | propose it for occlusion
detection.

In order to allow for small optical flow inaccuracies, a constraint consider-
ing also the flow length is defined to detect the occluded pixels:

e Wfa% )ty )|
(3.13)

> [0+ s o)) 0]

where parameters a; = 0.01 and as = 0.5 define the dynamic and static
inaccuracy sensitivity and [-] is an operator assigning 1/0 if the logical ex-
pression inside is true/false. Thus, o} ,,(x) = 1 if the pixel on position x in
17 is considered occluded in Is.

Likewise, we define a variable ol ,(x) for backward occlusions with the
forward and backward flows swapped in the condition.

13



3. Methods

B Occlusion handling by three frame masking

For general sequences, in three consecutive images I, I, I3 almost all pixels
from Iy are visible in either I1 or I3. This principle is utilized in [B1] to
handle occlusions in the following way.

A pixel-wise occlusion mask M!(x) € (0,1) is introduced as an additional
output of the estimation network. If M'(x) = 1, the pixel I5(x) is considered
visible somewhere in I; and occluded in I3 and the other way around if
M'(x) = 0. For pixels that are visible in all three images M!(x) = 0.5
ideally holds.

In this three-frame setting, the backward optical flow fo_,; is estimated
from Is to I; and forward optical flow fs_ .3 from Is to I3. These flow fields
are utilized to form an estimate of Iy denoted as fg that is created solely
from pixels of I; or I3 and guided by M.

L(x) = M' ()1} (x + 5, (x)) + (1= M) L (x + £ 55(x)). (3.14)

Aftewards, the photometric difference is computed between I and I» as
follows

Lp(fyy1, 5,3 =3 P(fD I5(x), Iy(x ))) (3.15)

xeP

If the prior assumption holds and thus each pixel from Is is visible in at least
one of the neighbouring images, this method elegantly avoids evaluating the
photometric difference for occluded areas.

Furthermore, a prior is introduced, encouraging the mask to be in the
most cases M'(x) = 0.5 i.e., pixel visible in all three images. This is done by
introducing a new term to the loss function

LMYy == M(x)(1 - M'(x)). (3.16)
xeP

l 3.3.4 Smoothness regularization

Following the same principles as in the Horn-Schunck method [1], smoothness
regularization is employed in almost all unsupervised optical flow training
methods. We employ the second-order smoothness constraint as in [32], since
it has been proved to be beneficial in classical flow estimation methods [6]. To
decrease over-smoothing on object edges, we combine it with edge awareness
[B1].

L{g( 123 2—>1 Z Z O-(I{’fll—>27s7xa r)+
x€P (s,r)eN(x) (317)

+U(Ié7 f{2*>1’S7X, I‘),
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3.4. Semi-supervised training

where N(x) contains horizontal, vertical and both diagonal neighborhoods
of x and o measures the edge-aware optical flow smoothness. The edge
awareness is done using first-order spatial difference as the next equation
shows.

o(L,f,s,x,r) =exp (— [I(x) = I(s)]ly) exp (= [1(x) = I(x)]5)-

-p(f(s) — 2f(x) + f(r)). (8.18)

We assume p(-) computes the average over the penalties from x- and y-
components

(p(pz) + p(py))- (3.19)

N

p(p) =

Il 3.3.5 Forward-backward consistency term

As it is already described in Forward-backward consistency occlusion han-
dling part (Section ), forward and backward optical flow fields between
two images f|_,(x) and f5_,;(x) form “loops” if the pixel is visible in both I
and I,. As it is proposed in [@], we can directly encourage this consistency
by adding the following term to the loss function.

Lo(f o8 ) = Zp(f’m(x) —fh i (x+ fl1—>2(x))) (1— o (x))+

xeP

+p(fos1 (%) — £ (x + £, (%)) ) (1 = 0h, (),
(3.20)

where o) _,(x) and 0h_,;(x) allow to exclude occluded pixels if occlusion
masking is active. Otherwise, consider o} ,,(x) = o ,;(x) = 0.

B 34 Semi-supervised training

Semi-supervised training attempts to combine supervised and unsupervised
approaches and obtain the best from both worlds. This section first describes
a naive approach to semi-supervision, then we propose a method that con-
strains the updates from unsupervised loss by a supervised gradient.

B 3.4.1 Naive semi-supervision

The naive semi-supervision is formulated as e.g. in [@] simply as a combi-
nation of supervised and unsupervised terms

Leomp = L2 + Aty Lun, (3.21)

sup

where LE2 is the L2 e@poin‘c—error supervised loss (Eq. Ell), Ly, is the
)

sup
unsupervised loss (Eq. and Ay is the unsupervised loss weight.
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3. Methods

B 3.4.2 Constrained semi-supervision

The previous naive approach may lead to disturbances in training - either
the effect is negligible for small Ay, or we risk losing the performance of
supervised training with high A\y. In order to minimize the disturbances
caused by the introduction of unsupervised loss to the training, we propose
the following approach.

At each iteration during training, the network is evaluated on one pair of
frames with the ground-truth optical flow (supervised sample) and N pairs
without ground-truth (unsupervised samples). Respective supervised and
unsupervised loss functions are evaluated for each sample separately. Then,
by back-propagation, we compute the per-sample network parameter update
gradient.

Afterward, the gradient from the supervised sample is used to pose a con-
straint on the unsupervised gradients. All unsupervised updates that might
increase Lg,;, and thus potentially lead to worse performance are skipped.

For the supervised sample, the gradient is defined as
G = VL,p(0) (3.22)
and for i-th unsupervised sample the gradient is

Gl = VL.(0). (3.23)

G is used as the constraining vector. Positive dot product with the con-
straining vector ensures that the added G), does not have an orientation
opposite to G,. Thus, the parameter update vector is defined as:

G=G,+ >  AuGl, (3.24)
Vi:GY -G >0
where ;s is the unsupervised gradient weight.

Because G is the gradient of L, at © and because we added only such
G;, that fall in a half-space defined by G, by updating the parameters by
—G, the value of L), linearized at © would not rise.
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Chapter 4

Experiments

This chapter describes experiments conducted with unsupervised and semi-
supervised training and introduces technical details. First, the estimation
network architecture is introduced along with the used datasets. Next, we
focus on unsupervised training - starting with a simple photometric difference
measures comparison and then transferring to a more evolved experiments
with occlusion reasoning or dataset size. The gained insight is then utilized
in experiments with semi-supervised training. Lastly, technical details like
evaluation metrics and training parameters are included.

B 4.1 Preliminaries

The popular PWC-Net architecture is selected for the presented experiments
for its competitive performance combined with simplicity. It is described in
this section in more detail. Next, we provide a quick overview of the datasets
used throughout this work.

Il 4.1.1 Network architecture: PWC-Net

PWC-Net [] is a popular optical flow estimation network combining three
main ideas - image features Pyramid, feature Warping and Cost volume -
hence the name PWC. Figure @ shows a diagram of the architecture.

A pyramidal approach is used for optical flow estimation. The individual
levels of the pyramid | = 1,2...5 work with %4 to Y64 of the original image
resolution. The estimation is done gradually, starting with the smallest scale.
Thanks to this approach, coarse movements are detected on smaller scales
and then only refined higher up the pyramid. The optical flow output on
the highest level fi_,, is ¥4 of the input image size and hence has to be
interpolated to the original resolution.
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4. Experiments

Name Train pairs Test pairs
Creative Flow+ [19] 153298 9506
Flying Chairs [19] 22232 640

KITTI 2012 [12] 6572% 194

KITTI 2015 [25] 6800* 200

KITTI raw [25] 95562* -

Sintel Clean [[L1] 781 87

Sintel Final [11] 781 87

Sintel movie [§] 9372% -

Table 4.1 Overview of optical flow datasets used in the experiments. A star (*)
denotes that no ground-truth optical flow for training is available.

As standard in recent neural networks, images on the input are first fed to
an extractor (aka encoder). This is a series of convolutional layers that out-
put so-called image features E' on the corresponding scales. These features
have many channels, ranging from 32 for [ = 1 to 196 for [ = 5. Note that
the same convolution weights are used on I; and Is.

On the smallest scale, [ = 5, image features are correlated, and a cost
volume CV? is produced. This means that for each pixel in E?, a scalar
multiplication (in the channel dimension) with pixels from a corresponding
9 x 9 neighborhood in E3 is done. The resulting cost volume is fed into an op-
tical flow estimator. This block has several layers of convolutions producing
two outputs - so-called optical flow features F° and optical flow 5 ,, itself.
Afterwards, F° and fi_,, are upscaled using deconvolution (aka transposed
convolution) to the next higher scale. Note that the optical flow estimators
on different scales do not share weights.

On the next scale, [ = 4, the upscaled optical flow estimate is used to
warp the extractor features Ej from the second image. Thus, the following
correlation C'V* only refines the coarse flow estimates from the previous level.
The same schematic is repeated, as shown in Figure 4.1. On the largest scale,
there is also a refining module that enhances the optical flow right before the
output.

B 4.1.2 Datasets

This section lists all datasets that are used for training and for testing in the
experiments. Table 4.1 lists a quick overview of the number of train and test
image pairs for each dataset.

Sintel [11] is a current standard benchmark for optical flow evaluation.
The dataset includes forward optical flow ground-truth along with occlusion
ground-truth. It is derived from the open source 3D animated short movie
Sintel [8]. Two render passes are used for testing - basic Clean and Final
that adds motion blur, atmospheric effects and other.
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4. Experiments

To avoid complicated evaluation, a 90-10 split of the publicly-available
data to training and testing parts is created yielding 1562 train and 2 x 87
test samples (separately clean and final pass). In training, both Clean and
Final passes are combined.

Sintel movie. All frames from the original movie [8] were extracted for
unsupervised and semi-supervised training, similarly to [40]. To cope with
compression artifacts, we downscaled the 4K resolution images to 1152 x
648. Cuts between scenes, where no optical flow exists, were avoided with
PySceneDetect [37]. Moreover, too dim (typical for fade-ins/outs) or too
similar consecutive images were detected using pixel-wise brightness resp.
brightness difference and excluded. Altogether, 9372 samples were created.

KITTI is a dataset featuring sequences a from car front camera with
available sparse optical flow ground truth. It comes in two editions: 2012 [12]
and 2015 [22]. The latter includes optical flow on some objects that are
moving in the scene, which increases the complexity. The whole publicly
available annotated parts of the datasets are used for testing. Frames from
the multiview extensions (i.e., frames before/after the annotated pair) are
used for unsupervised /semi-supervised training while excluding both frames
from the annotated pair.

Moreover, KITTI raw [14] collects a large amount of unlabeled data that
was recorded during the creation of the KITTI dataset. In some semi-
supervised experiments, this ca. 95K sample dataset is used.

Creative Flow+ (CF+) [42] is a recently introduced dataset with artistic-
like scenes and ground truth optical flow. The computer rendered scenes
mimic styles found in a variety of animated movies - uniform colored surfaces,
objects with changing texture, different outlines, etc. Tests are done on the
10K sample list provided by the authors. Some of the experiments also utilize
the set of 153K mizamo train frames. Full resolution images (1500 x 1500)
are used. Note that with CF+, it is more meaningful to observe performance
on the foreground areas since optical flow on the background is often not well
defined.

FlyingChairs [19] is a synthetic dataset designed for pre-training optical
flow networks. It features 3D models of chairs performing random move-
ments over a picture background. No illumination changes nor motion blur
is present, making it ideal for pre-training of our unsupervised models.

. 4.2 Unsupervised learning

In this section, we revise the main recently proposed ideas in unsupervised
learning and conduct experiments under a unified setting making the results
comparable. We first focus on photometric difference measures and occlu-
sion reasoning. Forward-backward consistency term experiments then follow.
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Lastly, we examine the connection between the training dataset size and
optical flow estimation accuracy.

Il 4.2.1 Photometric difference measures

In order to compare photometric difference measures, three models are trained
with unsupervised loss Ly, (Eq. ) Starting with a common FlyingChairs
pre-trained model (see Technical details in sec. 4.5.1)), the photometric differ-
ence function fp is set in the further training as either per-channel brightness
difference, ternary census transform difference or structural similarity (see

Section @)

Following [@] the regularization weight with brightness difference is set
to Ag = 3.0 (higher setting was also tested with a negative result). Out
of three tested candidates, the same Ag = 3.0 is also found to perform the
best with census photometric difference. With SSIM, we observe an average
magnitude of the data term and set A\g so that the ratio between data and
regularization terms is similar to the previous experiments i.e., Ag = 0.1.

No other terms besides data and smoothness are active during this series
of experiments. Models are trained on Sintel and KITTT training data until
convergence.

B 4.2.2 Occlusionreasoning

To test the two presented occlusion reasoning methods - occlusion handlin
by forward-backward consistency and three-frame masking (Section @
- a series of experiments is conducted. First, several scenarios are tested
for both methods starting from the common FlyingChairs pre-trained model
(Section ) Afterward, introducing occlusion handling to an already-
trained model from the previous experiment is tested.

Il Occlusion handling by forward-backward consistency

First, the effect of occlusion reasoning by forward-backward consistency check
on the estimated optical flow is examined. As in the previous experiment, we
start with an (unsupervised) FlyingChairs pre-trained model and continue
training with loss function L., (Eq. @) on KITTI and Sintel datasets.
Again, the regularization term is set A\¢ = 3. However, the pixels detected as
occluded (as described in Section @) are masked out. Three A\p penalty
settings are tested A\p = 8, A\p = 35 and Ap = 70.

The per-channel brightness difference is set as fp. Census photometric
difference is only tested with Ao = 8 and Ap = 70, because the experiments
show no significant differences between the individual settings of Ap.
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B Occlusion handling by three-frame masking

Next, the effect of occlusion reasoning by combining images I; and I3 to form
an estimate of I (see Section B.3.3) is explored. Note that in this setting we
compute the backward optical flow £ _y1 from Iy to I; and the forward flow
fl, .. from Ip to I3.

MaskNet integration. In order to produce the combination mask M?,
the internal results in PWC-Net are collected at each scale and fed into our
convolutional neural network called MaskNet, as shown in Figure 4.2. PWC-
Net runs between frames I, [; and Io, I3 simultaneously. At each scale, the
cost volume from each run CV} and C'V} along with warped image features
Eiw and EéW are fed into MaskNet producing M'!. Comparing the cost
volumes leads to a decision if a pixel is occluded in either image I or I3 - the
correlation magnitude will presumably be lower if an occlusion takes place.
Image features EiW and EéW serve as an additional cue.

MaskNet is a simple network consisting of five 3 x 3 convolutional layers,
each followed by the LeakyReLU activation function except for the last one,
which is followed by Softmax function. Thus, the output has two channels -
one is M!, the other (1 — M"). MaskNet convolution weights are shared on
all scales.

Training and testing. The training datasets are changed to work with
three consecutive images instead of two, and thus, the size is slightly de-
creased. Since the tested occlusion reasoning method helps only during train-
ing, optical flow estimation testing is done on the common test frame pairs.
Occlusion estimation is evaluated only on the Sintel dataset, where dense
occlusion ground-truth is available. For this particular evaluation, the test
frame pairs had to be extended with one frame from the training set to form
test triplets.!

Since the occlusion annotation is only available in forward flow i.e., from
15 to I3, the occlusion estimation is tested only in this direction. We assume
that M!(x) = 0.5 designates the ideal situation when the pixel x is visible
in both I; and Is. Thus, only values greater than 0.5 are interpreted as an
occlusion in I3. Two methods are used for the testing. In the first, the M*
values are mapped from interval (0.5, 1) to interval (0, 1) and interpreted as a
probability of occlusion. Precision-recall curve and measure AUC (area under
curve) is then calculated. The other way of testing establishes a threshold -
specifically, we test 0.75 - and considers all pixels M!(x) > 0.75 as occluded.
Precision and recall values are then measured.

Experiments. As in the previous experiments, training starts with the
pre-trained FlyingChairs model and works with the unsupervised loss Ly,
(Eq. B.3). MaskNet weights are initialized randomly. The data term is
calculated according to Eq. B.15, i.e. respecting the three-frame occlusion

!Since the training is unsupervised; we presume that the effect of such mixing is negli-
gible.
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4.2. Unsupervised learning

reasoning. Since the photometric error is measured only between one pair
of images instead of two, the magnitude of the data term is halved and thus
the regularization termE weight has to be halved to Ag = 1.5. Training is
done on the combination of KITTT and Sintel datasets.

Initial experiments are done with brightness difference as the fp photomet-
ric measure with two Ap mask prior settings A\p = 0 and A\p = 5. As these
fail to decrease the test error w.r.t baseline with no occlusion reasoning, fur-
ther experiments are done with census photometric difference measure with
a broader range of Ap settings.
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Figure 4.2 MaskNet integration to the PWC-Net architecture allowing for three-frame
occlusion reasoning. One level of the estimation pyramid is displayed. M allows to
select pixels from I; or I3 that are occluded in occluded in the other image.

2Note that still, two optical flow fields are regularized: fo_,; and f5_,.
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B Fine-tuning with occlusion reasoning

As the previous experiments are unable to bring significant improvement,
a scenario with network fine-tuning is put to the test. We start with a pre-
trained model from the photometric difference measures experiment (Section
1.2.1)) - specifically, the one trained with census photometric difference as it
achieved the best accuracy. Training is continued with the same photometric
measure for another 100 epochs (i.e., ca. 350K iterations) with learning
rate starting at le-5 and halving every 50K iterations. The datasets remain
unchanged - Sintel and KITTI.

However, occlusion reasoning is added. The idea behind is that since the
model already performs well in optical flow estimation, occlusions will also
be estimated better, and thus the occlusion reasoning in data term will have
a more significant effect.

We establish one control experiment with no occlusion reasoning. Two
are set with forward-backward occlusion masking with penalties A\p = 8
and Ao = 70. This setting is chosen based on the results of the previous
experiments. Another two experiments are done with three-frame occlusion
reasoning - one without the mask prior Ap = 0, the other with Ap = 50. The
regularization weight A\g is set as in the respective previous sections.

B 4.2.3 Forward-backward consistency term

To test the effect of forward-backward consistency term (Section B.3.5), two
models are trained with unsupervised loss (Eq. B.3) and Ac = 0.3 (this
setting is presented as the best in [B2]) - one with brightness difference and
the other census difference as fp. Another two models with settings Ao = 0.5
and A¢g = 3.0 are trained only with census difference.

The other settings are shared with the previous experiments - weights are
initialized from FlyingChairs pre-trained model, training is done on Sintel,
and KITTI datasets and smoothness regularization is kept at Ag = 3.

B 4.2.4 Datasetsize experiments

One of the arguments for unsupervised training is that it can work with
virtually unlimited data. Since there is no need for annotation, any video
can be added to the training set.

On the other hand, the unsupervised loss formulates an objective of photo-
consistent and smooth optical flow, which is more universal than a supervised
objective where only output optical flow examples are given. This suggests
that even small dataset might be enough for training the unsupervised ob-
jective, because the underpinning principle is explicitly formulated and does
not have to be searched for in examples.
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In this section, we experiment with the training dataset size. For the
experiments, we use the same setting as in photometric difference measures
experiments (Section 4.2.1) with brightness difference as fp so that it can
serve as the baseline.

Bl Bigdataset

To test whether a large dataset improves results with unsupervised training,
we collect a big number of training samples from publicly available sources.
Table 4.2 lists an overview. The dataset is intended to have two equally
large parts (each ca. 100K pairs) corresponding to the type of test data:
KITTI-like part and a Sintel-like part.

Sequences on a YouTube channel “J Utah” feature many different high-
resolution car front-cam videos. Various locations and scenarios (light and
weather conditions) are captured. We select several of these sequences, as
listed in Table 4.2 and references. They serve as the part similar to the
KITTI dataset.

To construct the Sintel-like part, we include open-source videos from projects
similar to Sintel: Caminandes (all three episodes) [15, [LG, 26], Cosmos laun-
dromat [21], Tears of steel [13]. We also include the Sintel movie dataset
that was already described (Section 4.1.2). Besides, we also add three com-
pilations of movie trailers acquired from YouTube [60-H2]. The genre was
chosen because, unlike whole movies, trailers usually tend to contain scenes
with much more movement.

The presented data are collected at the highest available quality and pro-
cessed in the same way as Sintel movie dataset (Section 4.1.2) - frames are
downscaled to 1152 x 648, cuts between scenes are detected by PySceneDetect
[B7] and too dim or too similar consecutive images are excluded.

To mimic the baseline, training is done with the unsupervised loss (Eq.
3.3), weights are initialized from FlyingChairs pre-trained model, and smooth-
ness regularization is set to Ag = 3. The above-presented dataset is combined
with standard KITTI and Sintel data to form the training set. The learn-
ing rate starts at le-4. Since the standard 100K iterations interval is not
enough to observe a plateau on the training loss, we halve the learning rate
after 250K, 600K, 950K, 1521K, 1571K, and 1621K iterations. Altogether,
1764K iterations (ca. 32 epochs) are performed. Note that the model takes
significantly longer to converge.

Il sSmalldataset

To test how the estimation network behaves when trained with an unsuper-
vised loss on a small amount of data, twenty samples are collected from each
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Name L [ Type [ # samples
J Utah segs. | driving 101783
Caminandes (1-3) [Eﬁ, @, @] animated 5618

Sintel movie [§] animated 9893
Cosmos laundromat [@] animated 12408
Tears of steel [13] anim.+live 13672
Trailers [@7 ] anim.+live 62909

Total 206283

Table 4.2 Summary of collected data for the big dataset experiment.

subset of common training datasets - Sintel clean, Sintel final, KITTI 2015
and KITTI 2012 i.e., 80 frame pairs in total.

For training, the model weights are initialized randomly (i.e., no pre-
training phase). Training takes 912K iterations - roughly the same number
of iterations as pre-training plus main training of the baseline experiment.
The learning rate is initiated at le-4 and halved every 100K iterations. As
in the baseline, brightness photometric difference is used as fp and Ag = 3.

. 4.3 Semi-supervised training on single/close
domain

In this section, we experiment with the proposed semi-supervision method
(See ) on Sintel and KITTI datasets. First, semi-supervised fine-tuning
is tested. We attempt to increase the accuracy of a model supervised on
Sintel by adding unsupervised samples from the Sintel movie dataset. Second,
domain adaptation of the supervised model to KITTTI is tested.

To start with, a model is trained on Sintel with supervised loss function.
We refer to this model as “Sintel supervised model”. It is trained with L2
endpoint-error loss Lstp (Eq. Ell) on the Sintel dataset. The weights are
initialized from the common FlyingChairs pre-trained model (see Section
). The learning rate starts on le-4 and is halved when we observe a
plateau in training loss - after 100K, 170K, 240K iterations. Convergence is

reached after 260K iterations.

B 4.3.1 Semi-supervised fine-tuning

The goal of semi-supervised fine-tuning is to improve the performance of the
“Sintel supervised model” on the Sintel dataset by training on unlabeled data.
We thus start with the “Sintel supervised model” and train with the proposed
constrained gradient semi-supervision method. Sintel dataset serves as the
supervised domain, and frames from the Sintel movie dataset serve as the
unlabeled samples.
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4.4. Semi-supervised training on distant domain

The L2 endpoint error LSLgp stays at the place of the supervised loss. The
unsupervised loss utilizes census transform difference in the data term fp and
sets A\g = 3 as in the previous unsupervised experiments. In one iteration,

six unsupervised samples are fed to the semi-supervision method.

During experiments, we discovered that the switch to semi-supervised
training leads to a small jump in the test error. Two schemes are tested
to cope with the effect. In the first, “short”, the jump is minimized by set-
ting low learning rate and unsupervised gradient weight Ap;. The second,
“long” allows for a higher jump that is compensated with more extended
training.

The “short” scheme sets Ay = 0.1. The learning rate starts with le-5 and
is halved after 20K, 35K, 45K, 50K, 52.5K, and 53.75K iterations. Training
takes 54K iterations. “Long” sets Apy = 0.3. The learning rate is initialized
to 2e-5 and halved after 50K, 75K, 87.5K, and 93.75K iterations. It takes
101K iterations.

B 4.3.2 Semi-supervised domain adaptation

Domain adaptation aims to discover whether the performance on a close
domain can be improved by adding unsupervised samples from a close do-
main. We thus combine supervised samples from Sintel and unsupervised
samples from the KITTI raw dataset with the proposed semi-supervision
method. The experiments are designed similarly to previous fine-tuning sec-
tion - the training starts with the “Sintel supervised model”, combined su-
pervised and unsupervised loss functions are the same and both “short” and
“long” schemes are tested.

. 4.4 Semi-supervised training on distant
domain

In the next experiments, the possibility of semi-supervised distant domain
adaptation is explored. A model is trained with supervision for a certain do-
main, but due to generalization issues, it fails to produce accurate results on
some distant domain. The goal is to improve its performance on the distant
domain while maintaining the performance on the original domain. Ideally,
this is done with no ground-truth optical flow from the distant domain as it
is generally not available.

The recently published Creative Flow+ dataset (CF+) [@] serves as a
good example of a possible distant domain as it features various artistic-like
scenes. The authors show that all Sintel-trained CNN-based estimators fail
to generalize on this domain.
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This section is structured as follows. First, a supervised model is fine-
tuned using the semi-supervision method to combine Sintel and Sintel movie
datasets and the accuracy on CF—+ is observed. Second, the same setting is
repeated, but now featuring frames from CF+ as the unsupervised samples.
Then, to check whether constraining is necessary, the semi-supervision is
posed as a naive unconstrained loss combination (see Section B.4.1). Lastly,
we establish a baseline supervised on both Sintel and CF+ to have a fully-
supervised comparison.

Note that unlike the previous series of experiments (Section 4.3), the semi-
supervision experiments on a distant domain work with pre-trained PWC-
Net model made available by the authors [33]. The model was trained on
FlyingChairs and FlyingThings3D [25] datasets; and then fine-tuned for the
Sintel dataset. It achieves better performance on the Sintel dataset than our
supervised models thanks to a more evolved training process. Let us refer to
the Sintel fine-tuned model as “PWC-Sintel”. To keep the training protocol,
all training staring with the “PWC-Sintel” model works with 768 x 384 image
resolution.

B 4.4.1 Semi-supervision on single domain

In the first experiment, similarly to Section 4.3, a model is trained with the
constrained semi-supervised method combining the supervised samples from
Sintel and unsupervised from Sintel movie.

The training starts with “PWC-Sintel” model. Experiments are done with
both census and brightness photometric differences as fp in the unsupervised
loss. For other unsupervised terms, we pick the best consistently performing
setting A\g = 3.0, \c = 0.3. Both L2 endpoint-error Lngp and robust error
ngg are tested as the supervised loss function. As in the previous semi-
supervised experiments, six unsupervised samples are fed at each iteration.

Again, when the training starts a test error jump is observe. To mini-
mize the effect, we propose the following technique. The optimization is
warmed-up by performing three epochs solely with a supervised loss. They
are followed by 1-2 semi-supervised epochs (depending on the learning rate
schedule) with a small learning rate le-7.

Afterward, two training schemes that are slightly different from previous
experiments are employed. “Short” tries to utilize the observation from the
unsupervised experiments that halving the learning rate leads to a sharp test
error decrease. The schedule is 56K iterations long and halves the learning
rate after 20K, 35K, 45K, 50K, 52.5K, 53.75K, 55K iterations. “Long” sched-
ule takes 135K iterations and the learning rate is halved after 30K, 50K, 70K,
90K, 105K, 120K. Both schedules set Apy = 0.1. We find this setting to be
enough to promote the unsupervised loss and, at the same time, minimize the
test error jump. The initial learning rate is also a point of experimentation
- we test le-5, le-6, and le-7.
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4.4. Semi-supervised training on distant domain

In order to establish a control experiment, we also continue with supervised
training on Sintel using 1.2 endpoint-error LSLUQP. Model weights are initialized
from “PWC-Sintel”, the learning rate starts at le-5 and is halved according

to the “Long” schedule.

B 4.4.2 Semi-supervisionincluding distant domain

Next, the idea of the previous experiment is further developed by including
unlabeled samples from the distant domain. The network is trained in the
same way as in the previous experiment, with the only difference that the
unsupervised samples are taken from the training part of the CF+ dataset
(i.e., frames only, no GT flow).

Based on the results from previous experiments, only brightness difference
is tested as fp as it seems to perform better with CF+. Both “Short” and
“Long” schedules are examined.

B 4.4.3 Unconstrained semi-supervision

To test the need for the constrained semi-supervision method, experiments
without any constraining take place. The loss is naively defined as a combi-
nation of supervised and unsupervised terms, as introduced in Section .

As in previous sections, the experiments start with the “PWC-Sintel”
model. The network is trained with L.y, as a loss function (Eq. )
on the Sintel dataset. We test three settings of Ay; Ay = 0.1, A\y = 1 and
Ay = 2. The parameters of the unsupervised loss remain the same as in
constrained semi-supervision experiments, i.e. Ag = 3.0, A\¢ = 0.3, and a
brightness difference measure is selected as fp.

During all three experiments, a CF+ test error drop occurs in the ca. first
30K iterations. However, the test error then rises even above the control
experiment (supervised training on Sintel, see end of Section ) At the
same time, both terms of the loss Ly, and Ly, steadily decrease during
the whole training. This suggests that L., leads to an over-fitting of the
unsupervised objective on Sintel and prevents to generalize it on CF+. For
each experiment, we state the situation before the CF+ test error rise in the
final results.

B 4.4.4 Supervised training

To establish a fully-supervised comparison, we also fine-tune the “PWC-
Sintel” model for the CF+ dataset using the ground truth optical flow. In
each training epoch, we train on all Sintel training samples and the same
number (i.e., 1562) of randomly chosen CF+ samples. L2 endpoint-error
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L%p is chosen as the supervised loss. Training takes 171K iterations starting

with learning rate le-5 that is gradually halved with a “Long” schedule.

l 4.5 Common technical details

This section lists all the technical details regarding training. All experiments
share the same settings unless stated otherwise. Afterward, the employed
optical flow evaluation metrics are described.

Bl 4.5.1 Training settings

For training, Adam optimizer [17] is used with 5, = 0.9, 52 = 0.999. Batch
size is four. As it is common in other works [32, B9], learning rate is initialized
at le-4 and halved every 100K iterations. The training is always run until a
convergence is observed.

As in original PWC-Net paper [33], the pyramid weights are a; = 0.005,
ag = 0.01, ag = 0.02, ay = 0.08, a5 = 0.32. Network weights are initialized
using He (aka Kaiming) initialization [20].

The resolution of training frames is 896 x 320 - the original frames are
randomly cropped to this size. As of other augmentations, both common
and relative (between frames in a pair/triplet) geometric transforms are used:
random rotation, translation, scale, squeeze and flip. Photometric transforms
are also included: random gamma, brightness, contrast, and relative color
channel brightness changes.

Census photometric difference is computed on different window sizes at
each pyramid scale, from the largest to the smallest scale it is: 7 x 7,7 x
7,5 % 5,3 x 3,3 x3. We found that with Census transform, this progressive
sizing leads to slightly better results than a fixed size of 3 x 3. The structural
similarity is found to work the best with the constant window size of 3 x 3.

Il Pre-trained unsupervised model.

To cope with convergence problems of models? a common pre-trained model
is established. This model serves as initialization for experiments. Training
is done on the FlyingChairs dataset (see Section #.1.2), with unsupervised
loss function L., (Eq. B.3). The setting is kept as simple as possible, and
thus brightness difference is chosen as fp, Ag = 3, A\¢ = 0, and no occlusion
reasoning is active. The convergence is observed after 240K iterations.

3In our first experiments, randomly initialized models did not converge when training
with census photometric difference or with occlusion reasoning.
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B 4.5.2 Optical flow evaluation

EPE refers to an average endpoint error, a standard optical flow error mea-
sure. We calculate it as

>_pes \A Z > Hf1—>2 ng,Hz(X)‘ ,

PGS z€A(P)

, (4.1)

where S is a set of test samples P, A(P) defines the area of interest (whole
image, foreground pixels etc.) and ff _,o is the flow estimated on sample P
scaled to original image size (we use bilinear interpolation).

Fl-all is an error measure proposed for the KITTI dataset, where there is
an uncertainty in optical flow measurements. It is defined as the percentage
of optical flow outliers, i.e., flow end-point error is > 3pzx and > 5%.

Optical flow visualization is done with color-wheel. The vector angle
is coded by hue and its length by saturation of the color. Figure shows
the visualisation key.

Ax

A

Figure 4.3 Optical flow visualization key.
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Chapter 5

Results and discussion

The next chapter presents results from the experiments and provides a discus-
sion. The structure from the previous section is preserved - first, we focus on
unsupervised training and its various aspects. Afterward, semi-supervision
experiments are analyzed.

. 5.1 Unsupervised training

This section revises the results from experiments concerning unsupervised
training. First, photometric difference measures and occlusion reasoning
methods are examined. Next, other aspects are discussed - forward-backward
consistency term and the dataset size.

Bl 5.1.1 Photometric difference measures

The results from the experiments with different photometric measures are
listed in Table 5.1. Census transform seems to behave the best on both Sintel
and KITTT domains. SSIM seems to lie somewhere between brightness and
census measures.

The performance gap between census and brightness difference is signif-
icantly larger on KITTI. The situation depicted in Figure can provide
a potential explanation. Usually, big parts of images in the KITTI dataset
are filled with road texture, which is very ambiguous. As the figure shows,
brightness difference seems to fail on this ambiguity - optical flow outliers
cover a large part of the road. However, since SSIM and Census transform
compare a local structure around the given pixels, the optical flow estimates
on the road surface are much more precise.

In the figure, we can also observe the robustness of Census difference mea-
sure to illumination - whereas SSIM fails in the dim right-bottom corner of
the image, Census is not affected.
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5. Results and discussion

Sintel AEPE [px] KITTI

Clean Final Fl-all [%]
Metric ALL NOC OCC | ALL NOC O0cCcC | 2015 ‘ 2012
Brightness 5.34 3.38 31.65 6.41 4.35 3399 | 41.94 | 29.74
Structural similarity 4.67 2.82 29.44 5.73 3.76  32.13 | 29.72 | 17.39
Census transform 4.08 2.31  27.74 5.24 3.36  30.54 | 26.35 | 13.25

Table 5.1 Photometric difference measures comparison. Average endpoint
error on Sintel and KITTI datasets for the tested photometric difference measures.

ALL/NOC/OCC refer to all/non-occluded/occluded pixels. Fl-all is outlier ratio for
KITTI.

Al Census difference

Figure 5.1 Photometric difference measures comparison. Left: A sample pair
of images I1, I2 from the KITTI dataset and their difference Al2;. Right: Optical
flow error maps for the tested photometric difference measures. Inliers in blue tones,
outliers in red-yellow tones.

B 5.1.2 Occlusion handling

The next section evaluates the experiments with occlusion handling. We ex-
amine both occlusion detection by forward-backward optical flow consistency
and three-frame occlusion reasoning. Table 5.2 shows the optical flow error
for both methods. The experiments from the previous section (Section 5.1.1))
serve as the baseline since they share all settings except occlusion handling.

B Forward-backward consistency occlusion detection

First, the experiments with occlusion handling by forward-backward con-
sistency constraint are evaluated. Table p.3 shows the occlusion detection
accuracy with this method.

Rows 1-4 in Table 5.2 show that with brightness difference as fp, occlusion
detection and masking leads to a decreased error on all datasets. The tested
settings of occlusion penalty Ao perform very similarly. More significant error
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5.1. Unsupervised training

decrease is observed on occluded pixels, which are less included in the data
term and thus less likely to follow an incorrect photo-consistency objective.

As rows 7-9 (Table 5.2) show, the improvement to no occlusion masking is
not as clear with Census difference fp. We observe a small error increase with
Sintel Clean, a small decrease on Sintel Final, and similar error fluctuations
on KITTTI.

Rows 13-15 (Table 5.2) show the experiment, where the occlusion reasoning
is introduced in fine-tuning i.e., after the model is already trained on the
given datasets and produces more precise optical flow estimates. Contrary
to our expectations, this approach does not lead to better results - we observe
higher or similar error on both Sintel and KITTI datasets compared to the
baseline (i.e., fine-tuning with no occlusion reasoning).

Overall, we observe that forward-backward consistency occlusion detection
does not lead to a significantly decreased optical flow error. The reason
most probably lies in the occlusion detection accuracy. As we observe in
Table .3, the precision reaches maximally about 0.45 and recall 0.5, meaning
that more than a half of masked pixels in the data term in fact have a
matching pixel in the second frame. On the other hand, the data term
is still active for about half of occluded pixels. This corrupts the training -
optical flow training on some non-occluded pixels is driven just by smoothness
term, which potentially explains why we observe the increased error on non-
occluded pixels of Sintel Clean.

Occlusion detection is also tested by checking the forward-backward con-
sistency of optical flow produced by a supervised model. Table 5.3 shows
an increase in precision and recall with respect to the unsupervised models.
Nevertheless, the accuracy is still low, suggesting that the proposed detec-
tion method is not robust enough to detect occlusions reliably on the given
optical flow estimates.

B Three-frame occlusion handling

Next, the experiments with the three-frame occlusion reasoning are reviewed.
Table 5.2 shows the optical flow estimation accuracy, Table 5.4 lists the
occlusion detection accuracy measured as described in Section 4.2.2.

As it is shown in Table p.2, the tested occlusion handling scheme leads
to worse results in all cases. In some experiments, error on occluded pixels
is lower than the respective baseline. However, the error on non-occluded
pixels rises in all cases making the overall error always higher.

The potential cause can be observed in Table 5.4 that shows the accuracy of
occlusion detection. The AUC metric is below 0.26 in all cases, meaning that
is is very low. The problem is demonstrated on Figure 5.2. The estimated
occlusion mask with Ap = 0 is very noisy, observe e.g., the hand or dragon’s
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Sintel AEPE [px] KITTI
Clean Final Fl-all [%]
Tr. Met. fp Ao Ap | ALL NOC OCC | ALL NOC OCC | 2015 | 2012
- No B - - 5.34 3.38 31.65| 6.41 4.35 33.99 | 41.94 | 29.74
M FwBw B 8 - 5.35 3.58 29.00 | 6.16 4.28 31.31 | 40.33 | 26.42
M FwBw B 35 - 5.26 3.49 2899 | 6.13 4.25 31.27 | 40.46 | 26.75
M FwBw B 70 - 5.23 3.47 2882 | 6.12 4.24 31.21 | 40.50 | 26.61
M 3 Fr. B - 0 6.04 4.36 2854 | 6.49 4.79 29.22 | 48.02 | 31.87
M 3 Fr. B - 5 6.20 4.49 29.09 | 7.30 5.48 31.70 | 44.31 | 28.22
- No C " | 408 231 27.74| 524 336 30542635 13.25
M FwBw C 8 - | 439 271 26.95| 522 3.46 28.87 | 26.00 | 12.47
M FwBw C 70 - | 426 265 2584| 508 3.37 28.02 | 26.40 | 12.62
M 3 Fr. C - 0 5.19 3.42 2883 | 5.66 3.85  29.92 | 36.98 | 20.99
M 3 Fr. C - 5 4.93 3.17 2855 | 5.64 3.83 29.88 | 34.72 | 19.02
M 3 Fr. C - 50 4.76 2.95 2897 | 5.66 3.70 31.86 | 30.35 | 16.33
- No C " | 4.06 230 27.57] 522 3.35 30.33 | 25.71 | 12.01
FT FwBw C 8 - | 431 258 27.44| 524 345 29.14 | 26.29 | 12.67
FT FwBw C 70 - | 427 256 27.25| 520 3.43 28.95 | 26.27 | 12.67
FT 3 Fr. C - 0 4.54 2.85 27.18 | 5.52 3.68 30.26 | 33.50 | 18.63
FT 3F. C - 50| 434 260 27.65| 551 3.60 31.02|29.03 | 15.36

Table 5.2 Optical flow error with occlusion handling. Optical flow accuracy
on Sintel and KITTI datasets. Column “Tr.” designates when the occlusion handling
was activated - during main training (M), later in fine-tuning (F'T) or never (-). “Met.”
refers to the occlusion handling method - either no handling (No), forward-backward
consistency check (FwBw) or three-frame reasoning (3 Fr.). Tested photometric dif-
ference measures fp are brightness difference (B) and Census difference measure (C).
Occlusion penalty Ao (for fw-bw method) resp. occlusion prior Ap (for three frame
method) is a method-specific setting. Thin line underlines a baseline experiment for
section below a thick line.

Sintel occlusions
Clean Final

Training fp Ao P R F1 P R F1
- B - 0.34 0.51 0.40 | 0.30 0.51 0.38
M B 8 0.34 0.44 0.38 | 0.34 0.44 0.39
M B 35 0.36 0.46 0.40 | 0.35 0.46 0.40
M B 70 0.37 0.44 0.40 | 0.34 0.45 0.39
- C - 0.45 0.50 0.47 | 0.40 0.52 0.45
M C 8 0.44 0.45 045 | 0.41 045 043
M C 70 0.44 0.46 045 | 0.41 046 043
- C - 0.46 0.51 0.48 | 0.40 0.51 0.45
FT C 8 0.45 0.44 0.44 | 0.42 045 043
FT C 70 0.45 0.44 0.44 | 0.42 045 043

Supervised - Sintel 0.56 0.66 0.61 | 0.47 0.67 0.55

Table 5.3 Forward-backward consistency occlusion detection error. Precision
(P), recall (R) and F1 score (F1) for occlusion detection on Sintel. Column “Training”
designates when the occlusion handling was activated - during main training (M),
later in fine-tuning (FT) or never (-). Tested photometric difference measures fp
are brightness difference (B) and Census difference measure (C). Ao refers to the
occlusion penalty. Results for a model trained with supervision (on Sintel) are listed
for comparison.
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face, but the real occlusions are undetected. With higher prior Ap = 50, the
noise gets lower, but the actual occluded areas are still mostly not detected.

This observation suggests that the mask M’ is rather selecting pixels from
either warped I; or warped I3 that happen to be photo-metrically consistent
with the pixels in 5 due to the estimated optical flow fields. When f, ,; or
fl _,5 is incorrect in some pixel, M’ tends to mask the error out and use only
one, correct, direction of flow to fill the pixel in fé.

Alzo Ap =50

Figure 5.2 Three-frame occlusion handling. Left: I> and I5 of a sample triplet
from Sintel (clean) and their difference Alsz. Right: forward occlusion (i.e. from I,
to I3) ground truth and estimates for different mask prior Ap setting. White denotes
pixels occluded in I3.

Sintel occlusions
Clean Final
Thr. 0.75 Thr. 0.75
Training fp Ap | AUC | P R F1|Auc | P R F1
M B 0 0.22 | 0.20 0.45 0.27 0.21 | 0.21 0.43 0.28
M B 5 0.25 | 0.34 0.37 0.35 0.23 | 0.33 0.35 0.34
M C 0 0.16 | 0.16 0.44 0.23 0.17 | 0.17 0.41 0.24
M C 5 0.20 | 0.22 0.39 0.28 0.21 | 0.24 0.37 0.29
M C 50 0.17 | 0.42 0.03 0.05 0.14 | 0.38 0.02 0.04
FT C 0 0.23 | 0.28 0.42 0.34 0.23 | 0.25 0.40 0.31
FT C 50 0.17 | 0.52 0.01 0.02 0.15 | 0.49 0.01 0.02

Table 5.4 Three-frame occlusion detection error. Occlusion detection accuracy
on Sintel - Area under curve (AUC) and precision, recall and F1 score with the given
threshold. Column “Training” denotes when the training with occlusion reasoning is
activated - during main training (M) or fine-tuning (FT). fp denotes the photometric
difference measure (B - brightness difference, C - Census difference measure).
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B 5.1.3 Forward-backward consistency term

Next, the experiments with forward-backward consistency term (see Section
4.2.3) are reviewed. Table b.5 shows the optical flow accuracy on Sintel and
KITTI. Results from the experiments with photometric difference measures
(Section 5.1.1) serve as a baseline since they are performed with the same
settings except for the activated consistency term Lc (Eq. B.20).

As the table shows, Ac = 3 is a too high setting that increases the error
(except for KITTI 2012). For other settings, the error on the Sintel dataset
is slightly decreased except Sintel clean pass with Census photometric differ-
ence, where a small increase is observed. However, a dramatic error decrease
is observed on the KITTI dataset. Thus, we conclude that the consistency
term is beneficial in our setting.

Sintel AEPE [px] KITTI
Clean Final Fl-all [%)]
Ac | ALL NOC OCC | ALL NOC OCC | 2015 | 2012
0 5.34 3.38  31.65 6.41 4.35 3399 | 41.94 | 29.74
0.3 5.23 3.40 29.71 6.18 4.21  32.53 | 39.62 | 26.15
4.08 231 27.74 5.24 3.36 30.54 | 26.35 | 13.25
0.3 4.22 2.56  26.42 5.19 3.38  29.40 | 25.14 | 12.50
0.5 4.17 2.48  26.78 5.18 3.38  29.35 | 25.68 | 12.73
3 4.68 2.92  28.27 5.27 3.46 2942 | 26.87 | 12.78

QaaaalwwF
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Table 5.5 Forward-backward consistency term. Performance on Sintel and
KITTI datasets for different weights of the consistency term Ac. fp denotes photo-
metric difference measure (B - brightness difference, C - Census difference measure).

B 5.1.4 Datasetsize

Table b.6 lists the results from experiments with the training dataset size.
Figure 5.3 shows qualitative assessment on a sample picked from the KITTI
dataset.

The table shows that errors on Sintel are slightly higher with both big and
small training datasets compared to the baseline. However, on KITTI, the
differences get stronger, with both experiments lagging behind the baseline
by a significant amount.

Contrary to the expectations, training on a large amount of data does not
increase the accuracy. This might have two potential reasons. First, despite
our efforts, the added data may not be appropriate for training. Either the
average amount of movement between the added frames lacks behind the
standard datasets, and thus the training becomes less challenging. Alterna-
tively, the scene cut detection failed in too many cases causing a failure in
training.

The second option is that the unsupervised objective does not require
many training samples, and the standard training dataset already saturates
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Sintel AEPE [px] KITTI

Clean Final Fl-all [%]
Dataset | ALL NOC OCC | ALL NOC OCC | 2015 | 2012
Standard | 5.34 338 31.65 | 641 435 33.99 | 41.94 | 29.74
Big 534 337 3174 | 674 454 36.26 | 43.62 | 31.43
Small 579 375 3321 | 6.91 470 36.56 | 46.43 | 34.31

Table 5.6 Dataset size performance. Performance on Sintel and KITTI datasets
for different training dataset sizes. The “Standard” is composed of KITTI and Sintel
samples (ca. 15K), “Big” collects wide range of scenes - see Section 4.2.4 (ca. 221K),
“Small” selects only a few samples from Sintel and KITTI (80 pairs).

the capacity. Indeed, the objective is more universal - it formulates the
optical flow estimation as an optimization of photoconsistency combined with
smoothness. We hypothesize that the network does not need many different
examples to “learn” to follow this objective.

The results from the experiment with a small training dataset partially
back the second option. Despite the clear performance gap, the difference is
not proportional to the dataset reduction - 80 pairs vs. 15000 pairs. Even
the qualitative assessment (Figure 5.3) shows that although the number of
outliers is higher, the results are not substantially different.

To conclude, we observe that the ability to use vast amounts of training
data with unsupervised loss does not necessarily lead to a higher optical flow
accuracy. On the contrary, even small training dataset can lead to compa-
rable results. We hypothesize that this effect is caused by the unsupervised
formulation of the loss function.

- o
Aly Small

Figure 5.3 Dataset size experiments. Left: KITTI sample frames I; and I and
their difference Als;. Right: Optical flow error maps for models trained on different
dataset sizes. Inliers in blue tones, outliers in red-yellow colors. The “Standard”
dataset is composed of KITTT and Sintel samples (ca. 15K), “Big” collects wide range
of scenes - see Section 4.2.4 (ca. 221K), “Small” selects only a few samples from Sintel
and KITTI (80 pairs).
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5. Results and discussion

. 5.2 Semi-supervised training on a single/close
domain

In this section, we present and analyze the results of experiments with semi-
supervised fine-tuning and domain adaptation (Section @) The goal of
this series of experiments is to start with a model trained in a supervised
manner on Sintel and improve its accuracy on either Sintel or KITTI. This
is attempted by introducing the unsupervised samples to the training with
the proposed semi-supervision method. We either try to fine-tune the model
for the Sintel dataset or adapt it for KITTI.

The results from the experiments are listed in Table @ The table includes
results of the initial supervised model and also adds results from an unsuper-
vised experiment (Photometric difference measures - census transform, see
Section ) for comparison.

Bl 5.2.1 Semi-supervised fine-tuning

Semi-supervised fine-tuning attempts to increase the performance on Sintel
by adding unsupervised samples from the Sintel movie.

Rows 3 and 4 of the Table @ show that semi-supervised fine-tuning fails to
improve the performance of the supervised model on Sintel (row 2). On the
contrary, the error becomes more significant. The first two lines of the table
comparing supervised and unsupervised training might indicate the reason.
Since unsupervised training is not able to bring the error on Sintel lower than
supervised training, it is hard to expect that adding it to supervised training
will yield a more accurate optical flow estimation.

Il 5.2.2 Semi-supervised domain adaptation

Semi-supervised domain adaptation for KITTI also gives unsuccessful results
as rows 5 and 6 (Table @3 show. By adding unsupervised KITTI raw
samples to the training, the error on KITTTI significantly rises. Figure
shows the comparison of supervised and semi-supervised training on KITTI.
We see that with semi-supervision, the optical flow becomes much smoother
and stops respecting the edges of moving objects.

This result gives us the following insight. Estimating optical flow with the
supervised objective and unsupervised objective are two different tasks from
the point of the network. By presenting Sintel samples with the supervised
loss and KITTI samples with the unsupervised loss, the network learns (to
a certain degree) to solve the two domains with the respective objectives.
This may explain why with domain adaptation, only a small error rise is
observed on Sintel, whereas the accuracy on KITTI deteriorates significantly.
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5.2. Semi-supervised training on a single/close domain

The models start to use the unsupervised objective on KITTI; however, the
training is not long enough to achieve the performance of the unsupervised
method.

Sintel AEPE [px] KITTI

Clean Final Fl-all [%]
Experiment TS | ALL NOC OCC | ALL NOC OCC | 2015 | 2012
Unsup: (K+S) - 4.08 231 2774 | 524 3.36  30.54 | 26.35 | 13.25
Sup: (S) - 2.16 1.19 15.15 2.74 1.76  15.89 | 25.55 | 12.38
Semi: (S—Sm) S 2.32 1.26 16.42 2.92 1.86 17.21 | 26.41 | 12.79
Semi: (S—Sm) L 2.30 1.25 16.41 3.11 1.95 18.56 | 27.02 | 12.77
Semi: (S—Kr) S 2.24 1.23 15.74 2.93 1.87 17.10 | 29.84 | 15.69
Semi: (S—Kr) L 2.14 1.16  15.29 2.89 1.84 16.97 | 29.51 | 15.27

Table 5.7 Semi-supervised training on single/close domain. Performance on
Sintel and KITTI datasets for experiments with the proposed semi-supervision method.
Column “Experiment” refers to the training method (supervised/unsupervised/semi-
supervised) and the training datasets in brackets - S: Sintel, Sm: Sintel movie, K:
KITTI, Kr: KITTI raw. “TS” refers to training scheme - S: short or L: long (see
experiments - Section 4.3). Arrow “—” separates supervised and unsupervised datasets
by semi-supervision. The unsupervised experiment (Photometric difference measures
- census transform, see Section 5.1.1) is listed for a comparison.

A121 f?z:Z

Sup: (S)

l"““

Semi: (S—Kr), TS: S

Figure 5.4 Semi-supervised training on single/close domain. First row:
KITTI sample frames I; and I». Second row: Frames difference Alz; and ground-
truth (sparse) optical flow f¢7,. Next rows: Endpoint-error map - inliers in blue
tones, outliers in red-yellow colors (left) and optical flow estimates (right) for super-
vised and semi-supervised models. The abbreviation Sup/Semi refers to the training
method supervised resp. semi-supervised with the training datasets in brackets - S:
Sintel, Kr: KITTI raw. Arrow “—” separates supervised and unsupervised datasets
by semi-supervision. “T'S: S” refers to the short training scheme
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5. Results and discussion

. 5.3 Semi-supervised training on a distant
domain

Next, we focus on experiments with semi-supervised training for a distant
domain adaptation (Section @) The goal is to make the estimation network
combine supervised and unsupervised objectives so that it performs close to
the unsupervised methods on data from a distant domain while maintaining
the performance on the labeled domain.

The main results are listed in Table @ Results of parameter search
experiments for constrained semi-supervision are in Table , highlighted
lines are selected for the general comparison in the main results table.

Let us first discuss the general results and then focus on constrained semi-
supervision parameter settings.

B 5.3.1 General observations

In this section, we compare the performance of classical methods, supervised,
unsupervised, and semi-supervised models, as Table @ shows. The main
focus is on the decrease of error on CF+ and the maintenance of performance
on the Sintel dataset. Note that with CF+, it is more meaningful to observe
performance on the foreground areas since optical flow on the background is
often not well defined.

Il Classical methods

Rows 1-3 of Table @ show that Horn-Schunck and other classical methods
even with no fine-tuning generalize better on the CF+ dataset compared
to the Sintel-supervised neural networks. However, when considering Sintel
accuracy, they stay far behind. This gives us the motivation to achieve the
performance of classical methods on CF+ while at the same time be more
accurate on Sintel.

Il Supervised methods

Rows 4 and 5 of Table @ (Sup: (C,T) and Sup: (C,T,S)) list two models
made available by PWC-Net authors [@] that are trained on FlyingChairs
and FlyingThings3D [@] datasets resp. also including Sintel. Row 6 (Sup:
(C,T,S) - cont.) shows a model that starts with weights of Sup: (C,T,S) and
the training is continued on Sintel using supervised loss.

Overall, we observe that the supervised methods trained on Sintel or Fly-
ingThings3D fail on the CF+ dataset (Table @, rows 4-6). Figure @ (see
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5.3. Semi-supervised training on a distant domain

row 5) indicates abruptly outlying estimates on constant intensity regions.
Problems also occur on object texture changes. This finding is in line with

2.

Interestingly, row 6 shows that continued supervised training seems to de-
crease the error on CF+. It is most likely caused by differences in training to
the original model, probably because we skip additive white noise augmen-
tation in our setting. This shows that the distant domain transfer ability of
supervised methods to CF+ is sensitive to the precise setting of training.

B Unsupervised models

Table , rows 7 and 8 show the performance of unsupervised methods
on CF+. These are picked for comparison from Section - Forward-
backward consistency term because the unsupervised loss in semi-supervised
experiments uses the same setting.

The test errors on Sintel and KITTT dataset stay far behind the supervised
methods. However, they do not suffer from distant domain transfer issues as
the supervised models - the performance on the CF+ dataset is significantly
better. Figure (row 6) shows that the estimated flow field is smoother,
with no abrupt outliers.

We hypothesize that although the unsupervised objective is unable to prop-
erly handle the effects of occlusions, motion blur, local ambiguities, etc., yet,
it is more universal than a supervised objective on a single domain. Therefore,
we expect it to perform better on a distant domain.

B Constrained semi-supervision on a single domain

With semi-supervision combining Sintel and Sintel movie (Table @, row 10),
the test error on CF+ significantly drops while the error on Sintel changes
just slightly. We attribute this result partially to the better-performing su-
pervised training. However, semi-supervision leads to a more significant
decrease, suggesting that adding the unsupervised loss with the proposed
method makes the model perform closer to unsupervised methods with only
minor changes on the Sintel domain.

B Constrained semi-supervision including the distant domain

When the semi-supervised model is explicitly presented with the samples
from CF+, the error on this distant domain drops significantly to the level
of the unsupervised methods (see row 11 of Table @3 Note that the error
is also significantly below the semi-supervision on a single domain. Again,
the error on Sintel stays virtually the same.

43



5. Results and discussion

We hypothesize that since the images from the other domain are presented,
the network starts to recognize it and optimize the unsupervised criterion
specifically on these samples. However, the supervised constraint prevented
to apply the same criterion on the supervised samples.

Il Unconstrained semi-supervision

The results of all experiments with unconstrained semi-supervision are listed
separately in Table 5.9. The performance on CF+ is similar for all settings,
especially on the foreground regions. With low Ay, the accuracy on Sintel
and KITTI are maintained with respect to the initial model; however, a
significant error rise is observed with higher Ay .

Table 5.8 (row 9) shows the comparison of Ay = 0.1 experiment with
constrained semi-supervision. Error on Sintel is similar, but the improvement
in CF+ test error is not as significant as with the proposed constraining.

The observations correspond to the expectations - with small unsupervised
term weight, the training is not able to introduce the unsupervised objective
to the model. When we attempt to promote it more with higher Ay, the
accuracy on the supervised domain is lost. Also note the over-fitting behavior
during the training as described in the experiments section (Sec. 4.4.3) that
was not observed with the constraining.

Overall, this experiment suggests that the proposed gradient constraining
method combines the supervised and unsupervised training more effectively
than naive semi-supervision.

Bl Supervised CF training

The model supervised on CF+ was able to improve on the dataset while
maintaining the performance on Sintel (see Table 5.8, last row). Evaluated
on whole frames, it does not surpass constrained semi-supervision. However,
as it was already mentioned, the background flow is often not well defined;
thus, this metric is not as relevant.

The performance margin to a constrained semi-supervision on the fore-
ground areas is not as large as, e.g., the margin between supervised and
unsupervised methods on Sintel, suggesting that CF+ features complicated
scenes that are hard to solve even with supervision.

B Errorincrease on KITTI

We observe that the test error on KITTI rises for both semi-supervised and
supervised experiments by some amount. Again, this effect seems to be
mostly connected to our modified supervision method. In the experiments,
we also observe that it depends on the number of training iterations.
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5.3. Semi-supervised training on a distant domain

CF+ AEPE [px] Sintel AEPE | KITTI 2015
median [px] [%]

Experiment ALL ALL FG Clean Final Fl-all

Horn-Schunck [[1] 8.34 3.49 1217 8.73x  9.61x —

Classic+NLfast [9] 13.35 7.05  9.27 9.12+«  10.08x -

Brox2011 [[7] 9.05 3.27 8.28 7.56%  9.11x —
Sup: (C,T) 66.97 41.88 22.77 2.44 3.82 34.26
Sup: (C,T,S) 74.23 33.54 18.21 1.78 2.41 10.56
Sup: (C,T,S) - cont. 30.44 14.73 11.30 1.69 2.22 14.73
Unsup [Br]: (C,K+S) | 10.60 180 799 | 523 6.8 30.62
Unsup [Ce]: (C,K+S) | 15.06 9.05 865| 422 519 25.14
Unconstr. semi: (S) 25.76 15.19  10.63 1.79 2.19 12.22
Semi: (S—Sm) 17.36 8.41 8.91 1.81 2.49 16.88
Semi: (S—CF) 7.88 3.79 6.65 1.79 2.25 18.89
Sup: (C,T,5,51CF) 8.19 354 5062 181 224 17.37

Table 5.8 Semi-supervision on a distant domain - main results. Performance
on Creative Flow+, Sintel and KITTI datasets. “Experiment” denotes the training
setup - supervised (Sup), unsupervised (Unsup, [fp]) or semi-supervised (Semi). Train-
ing datasets in brackets - C: FlyingChairs, T: FlyingThings3D [25], S: Sintel, Sm:
Sintel movie, K: KITTI, CF: Creative Flow+. Arrow “—” separates supervised and
unsupervised datasets. All numbers except columns marked median and Fl-all, are
mean endpoint errors over all test samples. Median is computed across individual
sample average EPEs. For classical methods (first 3 rows), we list the results from
[42]. Results marked with a star (*) come from the official test benchmark instead of
own train/test split.

Il 5.3.2 Parameter selection discussion

Let us first discuss the results the experiments with various parameter setting
(Table 5.10). We make the following observations.

Robust supervised loss. (row 2) Although it leads to a significant error
decrease on CF+ compared to the other experiments, error on the Sintel
dataset rises. We hypothesize that this behavior is linked to constraining
during semi-supervision - as robust supervised loss decreases the influence
of outliers, it allows for more substantial changes in network parameters
towards unsupervised criterion compared to L2 loss. This, however, also
leads to performance loss on Sintel.

Census photometric difference (rows 5 and 9) seems to behave slightly
worse than the brightness difference on CF+ with no significant differences
on the Sintel dataset.

Learning rate setting of le-7 seems to restrict the training too much since
the error on CF+ stays high. The other values le-5 and le-6 lead to com-
parable results on Sintel. On CF+, the higher setting in combination with
the long training schedule seems to perform better, but on the other hand,
it also allows for a more significant rise of the error on KITTI.

Based on the observations, the experiments highlighted in Table 5.10 are
selected for the main comparison.
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Figure 5.5 Semi-supervision on a distant domain - qualitative assessment.
Input images (first two rows) with a color coded difference visualization (third row);
the ground truth flow and flow estimates for selected methods (following rows).
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5.3. Semi-supervised training on a distant domain

CF+ Sintel KITTI
AEPE [px] AEPE [px] Fl-all [%]
Au All Fg Clean Final | 2015 2012

0.1 25.76 10.63 1.79 2.19 | 12.22 7.30
1 24.91 9.95 2.54 3.10 | 22.02 11.50
2 24.07  10.12 2.95 3.63 29.25 17.32

Table 5.9 Unconstrained semi-supervision. Performance on CF+, Sintel and
KITTI datasets for experiments with unconstrained (naive) semi-supervision. Ay is the
unsupervised loss weight. As explained in Section #.4.3, the experiments are evaluated
before error rise on CF+. Bold typeface marks the experiment selected for the final
evaluation.

CF+ Sintel KITTI
AEPE [px] | AEPE [px] Fl-all [%]
Experiment TS fp Ls.,w LR All Fg | Clean Final | 2015 2012

L2 1e-7 | 30.98 11.38 1.82 232 12.76 7.54
L2 1e6 | 1935 9.23 1.83 232| 1297 7.71

L2 1e-6 9.59 7.18 1.84  2.26 | 15.26 8.92
L2 1e-6 9.14 7.07 1.83 2.24| 15.46 9.09
L2 1le-5| 7.88 6.65 1.79 2.25|18.89 10.89

Semi: (S—CF)

B L2 1e6 | 1997 9.04 1.86  2.39| 13.05 7.80
B R le-6 | 14.47 8.18 2.07  2.78 | 15.88 8.55
S B L2 1leb5 | 2081 9.67 1.84 2.40| 15.65 8.68
B L2 1le7 | 30.74 11.38 1.83 231 13.15 7.66
Semi: (S—Sm) C L2 1le6| 2220 9.32 1.83 2.35| 12.86 7.60
B L2 1le6| 2024 9.27 1.85 2.42| 13.61 7.93
L B L2 1e-5|17.36 8.91 1.81 2.49|16.88 8.98
B
C
B
B
B

Table 5.10 Semi-supervision on a distant domain - parameter comparison.
Performance on CF+ (whole images/foreground), Sintel and KITTI datasets for exper-
iments with semi-supervision. Column “Experiment” refers to the dataset combination
- S: Sintel, Sm: Sintel movie, CF: Creative Flow+. Arrow “—” separates supervised
and unsupervised datasets. “TS” refers to training scheme - S: short or L: long (see
experiments - Section {.4.1). fp marks the type of photometric difference function
- B: brightness, C: census. Lsyp is the supervised error L2 or R: robust. LR refers
to the initial learning rate. Bold typeface marks experiments selected for the final
evaluation.
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Chapter 6

Conclusions

The thesis has two main contributions. First, a number of current techniques
in unsupervised optical flow training are analyzed, and a direct comparison
is established. Second, a new semi-supervision method based on constrained
gradient descent is proposed, and its potential benefits are demonstrated.

In the unsupervised training analysis, we make the following conclusions.

® Brightness difference, census transform, and structural similarity are
tested as photometric difference measures as the results are compared.
We show that the census transform consistently leads to more accurate
results on all tested datasets.

8 Forward-backward consistency occlusion detection is implemented and
tested in both main training and fine-tuning. In the experiments, it
does not lead to a significant improvement. Poor detection accuracy is
presumed to be the main culprit.

8 Three-frame occlusion reasoning is also integrated and tested. In both
main training and fine-tuning it leads to an error increase compared to
the respective baselines. The observations suggest that the training pro-
cess is corrupted because instead of occlusions, optical flow estimation
errors are being detected.

® The effect of forward-backward consistency loss term is tested. Experi-
ments suggest it can contribute to more accurate optical flow estimates
with specific weight settings.

B Training dataset size influence is analyzed. Curiously, the experiments
show that a large amount of training data does not necessarily lead to
a performance increase. Even more interestingly, training on an extra
small number of samples does not lead to a catastrophic loss of accu-
racy. This suggests that the popular rule from the supervised training;:
“CNN training needs a large amount of data” might not fully apply to
unsupervised training.
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6. Conclusions

Contributions regarding semi-supervised training are the following.

® A novel method combining supervised and unsupervised objectives is
presented. The training is formulated as constrained gradient descent
on a loss function that includes terms from unsupervised training.

® The method is tested on supervised and unsupervised objectives in a sin-
gle domain of Sintel i.e. for semi-supervised fine-tuning combining Sintel
dataset and Sintel movie unlabeled samples. No accuracy improvement
in optical flow estimation was observed in the experiment.

® Semi-supervised domain adaptation for a close unlabeled domain using
the proposed method is tested. Specifically, Sintel fine-tuned model is
presented with unlabeled KITTI raw frames. This approach does not
lead an accuracy increase on KITTI.

B Semi-supervision is tested for an adaptation to an unlabeled distant
domain, where supervised training leads to abrupt estimates. Sintel fine-
tuned model is adapted to Creative Flow+ domain. Experiments show
that the proposed semi-supervised training helps to improve results on
Creative Flow+ significantly. At the same time, the model performance
on Sintel does not drop. Moreover, this effect is even observed without
using any samples from Creative Flow+. Upon introducing the images
from the distant domain (with no GT), we are able to bring the error
on the distant domain even lower.

The points of the assignment were elaborated as follows.

®m A detailed analysis of state-of-the-art self-supervised optical flow train-
ing methods was performed. The major methods were described in
Section P2.

® PWC-Net [33] was selected as a recent well-performing optical flow es-
timation method. The selected PWC-Net neural network architecture
is described in more detail in Section 4.1.1 and is used throughout the
whole work.

® A new method for semi-supervised training (i.e., partly self-supervised)
is proposed in Section B.4.2. The unsupervised objective in this method
uses the conclusions of a preceding detailed analysis of techniques in
unsupervised training (Section 4.2).

® The method is evaluated in different scenarios on suitable datasets (Sec-
tion 4) and the results are discussed in Section 5.
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Appendix A

CD contents

The description of each directory on the CD is written in table IEI

Directory name Description
sources Software source code
thesis This thesis in pdf format

Table A.1 Table describing the contents of the root directory on the CD.

o7



	Introduction
	Related work
	Unsupervised optical flow methods
	Unsupervised training of multiple tasks
	Semi-supervised optical flow

	Methods
	Notation
	Supervised training
	Unsupervised training
	Unsupervised loss function
	Data term
	Occlusion reasoning in data term
	Smoothness regularization
	Forward-backward consistency term

	Semi-supervised training
	Naive semi-supervision
	Constrained semi-supervision


	Experiments
	Preliminaries
	Network architecture: PWC-Net
	Datasets

	Unsupervised learning
	Photometric difference measures
	Occlusion reasoning
	Forward-backward consistency term
	Dataset size experiments

	Semi-supervised training on single/close domain
	Semi-supervised fine-tuning
	Semi-supervised domain adaptation

	Semi-supervised training on distant domain
	Semi-supervision on single domain
	Semi-supervision including distant domain
	Unconstrained semi-supervision
	Supervised training

	Common technical details
	Training settings
	Optical flow evaluation


	Results and discussion
	Unsupervised training
	Photometric difference measures
	Occlusion handling
	Forward-backward consistency term
	Dataset size

	Semi-supervised training on a single/close domain
	Semi-supervised fine-tuning
	Semi-supervised domain adaptation

	Semi-supervised training on a distant domain
	General observations
	Parameter selection discussion


	Conclusions
	Bibliography
	CD contents

