
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

Computation scheduling
in neural network inference
on embedded hardware

Eldar Iosip

January 2020
Supervisor: Ing. Michal Sojka, Ph.D.

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

406391Osobní číslo:EldarJméno:IosipPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Rozvrhování výpočtů inference neuronových sítí na vestavném hardware

Název diplomové práce anglicky:

Computation scheduling in neural network inference on embedded hardware

Pokyny pro vypracování:
1. Seznamte se s problematikou neuronových sítí a jejich aplikacemi pro
autonomní vozidla (např. detekce chodců, rozpoznávání objektů na silnici
apod.). Dále se seznamte s existujícími knihovnami a již natrénovanými
sítěmi (modely) pro zmiňované aplikace.
2. Vytvořte data flow diagram (graf) výpočtů prováděných během inference
natrénované neuronové sítě tak, aby tento graf šel použít jako vstup
algoritmu pro rozvrhování výpočtů. Vytvořte a porovnejte tyto grafy několika
různých modelů a knihoven.
3. Rozšiřte implementaci aspoň dvou různých knihoven o podporu rozvrhování
běhu jednotlivých výpočtů. Ve spolupráci s vedoucím vytvořte různé rozvrhy
běhu výpočtů.
4. Vytvořte jednoduchý framework pro experimentální měření níže uvedených
veličin při inferenci neuronových sítí na embedded HW (např. NVIDIA Tegra
X2). Implementujte podporu minimálně pro následující veličiny:
a) celkovou dobu běhu výpočtu,
b) rozdíl mezi nejpomalejším a nejrychlejším během se stejným rozvrhem,
tzv. execution-time jitter (bude záviset na využiti hardwarových
komponent a na kolizích v přístupu k nim) a
c) spotřebu energie a tepelný profil čipů (CPU, GPU, DRAM).

Seznam doporučené literatury:
[1] Recognition of road scene elements using deep neural networks: Monograph
[2] Zins, P., & Dagenais, M. (2019). Tracing and Profiling Machine Learning
Dataflow Applications on GPU. International Journal of Parallel Programming,
1-41.
[3] Mayer, Ruben & Mayer, Christian & Laich, Larissa. (2017). The TensorFlow
Partitioning and Scheduling Problem: It's the Critical Path!.
10.1145/3154842.3154843.
[4] Keras: Custom C++ and CUDA extensions
[5] Open Neural Network Exchange Format [onnx.ai]

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Michal Sojka, Ph.D., vestavěné systémy CIIRC

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 07.01.2020Datum zadání diplomové práce: 09.07.2019

Platnost zadání diplomové práce: 19.02.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Michal Sojka, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to thank my supervisor
Ing. Michal Sojka, Ph.D. for his patient
guidance and consultations. I would al-
so like to thank to my family for their
support.

I declare that I elaborated this thesis
on my own and that I mentioned all the
information sources and literature that
have been used in accordance with the
Guideline for adhering to ethical princi-
ples in the course of elaborating an aca-
demic final thesis.

Prague, 7th January 2020

. .

v

Abstrakt / Abstract

Cílem této práce je prozkoumat state-
of-the-art způsoby detekce objektů po-
mocí konvolučních neuronových sítí,
využívaných v oblasti autonomního
řízení. Proto aby běh na vestavěných
systémech byl dostatečně optimalizo-
ván, je nutné rozumět struktuře sítě
a způsobu, jak se provádí její výpočet
pomocí konkrétní knihovny. Hlavním
cílem této práce je porovnat něko-
lik dostupných knihoven pro oblast
strojového učení a popsat nezdokumen-
tovanou vnitřní architekturu knihovny
TensorFlow, aby bylo možné na základě
těchto znalostí upravovat vykonávané
části kódu za účelem lepšího rozvrho-
vání jednotlivých procesů. Aby bylo
možné porovnávat výsledky budoucích
optimalizací na cílové platformě NVI-
DIA Jetson Tegra X2, je představen
jednoduchý benchmark a je popsán
postup, jak vyčítat spotřebu energie a
tepelný profil čipů na desce.

Klíčová slova: neuronové sítě, vesta-
věné systémy, inference, tensorflow, yo-
lov3, edge computing, jetson tx2

Překlad titulu: Rozvrhování výpočtů
inference neuronových sítí na vestavném
hardware

This thesis aims to examine the
state-of-the-art solution of using con-
volutional neural networks to address
the problem of object detection, during
the autonomous driving. The effective
execution of these solutions involves an
in-depth understanding of used frame-
work architectures. The main goal of
the thesis is to compare several ma-
chine learning frameworks and provide
a comprehensive description of the
nondocumented internal architecture
of the TensorFlow machine learning
framework to allow future researches
to introduce modifications regarding
scheduling mechanisms. To properly
evaluate future modifications on the
target platform NVIDIA Tegra X2, the
thesis introduces the benchmark and
provides an instruction how to read
power consumption and temperature of
board components.

Keywords: neural networks, em-
bedded systems, inference, tensorflow,
yolov3, edge computing, jetson tx2

vi

Contents /

1 Introduction .1
2 Related Work .3
3 Artificial Neural Network5
3.1 Architecture .5
3.2 Training and Inference.6
3.3 Convolutional Neural Network . .6

3.3.1 Architecture7
3.3.2 Convolutional Layer8
3.3.3 Pooling Layer8
3.3.4 Fully Connected Layer.9
3.3.5 Object Detectors9

3.4 Machine Learning Frame-
works . 11

4 TensorFlow . 13
4.1 Overview . 13
4.2 Device Manager 15
4.3 Thread Pool . 15
4.4 Graph . 15
4.5 Session. 16
4.6 Grappler . 19
4.7 Kernel Op . 19
4.8 Executor. 20

4.8.1 CPU Compute 21
4.8.2 GPU Compute 21

4.9 Data Transmission 21
4.10 Execution . 21
4.11 Collective Execution 22
5 TensorFlow Serving 23
5.1 High-Level View 23
5.2 Initialization 24
5.3 Prediction . 24
5.4 Deployment . 25

6 Implementation 27
6.1 Setup . 27

6.1.1 Bazel . 28
6.1.2 TensorFlow Serving 28
6.1.3 TensorBoard 28
6.1.4 Jetson TX2. 29

6.2 Dataflow Graph 30
6.2.1 Initial State 30
6.2.2 Optimization Stages 30

6.3 Benchmark Framework 31
6.3.1 Input Data 32
6.3.2 Total Execution Time . . . 32
6.3.3 Execution-Time Jitter . . . 35
6.3.4 Hardware Statistics 35

7 Conclusion . 37
8 Future Work . 39
A Acronyms . 41
B CD Content . 43
C DarkNet-53 . 45

References . 47

vii

Tables / Figures

6.1. NVP Models . 29
6.2. Video files used during the

benchmark . 32

3.1. Similarity between ANN and
biological neural system5

3.2. Architecture of the CNN.7
3.3. The convolution process on

the input image8
3.4. The MaxPool operation.9
3.5. Two-stage CNN architectures . . .9
3.6. One-stage CNN architectures . . 10
3.7. NVIDIA TensorRT pipeline . . . 11
4.1. TensorFlow architecture 13
4.2. TensorFlow Session run

overview . 14
4.3. TensorFlow computational

graph schema 16
4.4. Computational graph before

partitioning . 17
4.5. Computational graph after

partitioning . 17
4.6. Computational graph parti-

tioning result 18
4.7. TensorFlow Grappler 19
5.1. TensorFlow Serving architec-

ture . 23
5.2. TensorFlow Serving Docker

image distribution 25
6.1. NVIDIA Jetson products 27
6.2. TensorBoard during the

training . 29
6.3. Part of the dataflow graph of

model YOLOv3 (DarkNet-53) . 31
6.4. Estimation of execution in-

dependent state 33
6.5. Estimation of execution in-

dependent state for video 33
6.6. Estimation of execution inde-

pendent state for TensorFlow
2 . 34

6.7. Frameworks comparison 34
B.1. CD Content . 43
C.2. DarkNet-53 architecture 45

viii

Chapter 1
Introduction

Nowadays, car manufacturers are striving to achieve a leading position in the market
by improving the autonomous driving of their vehicles. To be able to reach this goal, a
car has to decide how to behave in different situations during the drive, the same way
as human does. As the vehicle is not capable of this feature without knowing about the
situation around, various sensors such as video cameras, LiDARs, radars, are adding a
level of vision to the vehicle. Based on such input data from sensors, the software is
capable of making essential decisions using a machine learning approach [1]. To be able
to process the data from sensors, especially image data from in-vehicle cameras, the
state-of-the-art solution is to use CNN. These networks are trained and used to detect
unique features that one would like to observe and put into further processing. As
the speed and quality of the detection could be dependant on the quality of the image
and also on the hardware configuration, neural network models are trying to balance
the amount of computational overhead and correctness of the detected result by their
structure and capabilities. The architecture of the artificial neural networks and their
state-of-the-art representants in a field of object detection introduces Section 3.

The objective of this thesis is to describe the internal architecture and internal
scheduling and optimization processes of the open-source machine learning framework
TensorFlow, to allow future researchers to introduce modifications and improve the
performance of the artificial neural network inference on the embedded hardware —
NVIDIA Jetson TX2.

The NVIDIA Jetson TX2 is a target platform for this thesis; it is an SoC platform
with a shared DRAM memory between CPU and GPU units [2], which can reduce
overall performance in crucial moments during the autonomous driving. However, on
the other hand, it reduces the cost of the whole solution and makes it more power-
efficient, as it requires less power to store information inside memory banks.

To introduce a future scheduling mechanism, Section 4 describes the internal pro-
cesses executed during the model inference. Every network inside the TensorFlow frame-
work represents the dataflow graph (Section 6.2) that the framework, during the prepa-
ration phases, optimizes and partitions between available accelerators (CPU, GPU,
TPU, and others). This dataflow graph and its structure is a valuable input to the
future scheduling algorithm to analyze network operations and prioritize them by the
defined rules.

As the model needs to receive the input data, the TensorFlow Serving framework
exposes an API over the TensorFlow framework. The API handles the communication
between client requests and the configured model. From the point of the development,
the compilation process is less demanding on the computational resources and provides
a reliable way how to serve models on the production environment.

1

1. Introduction .
Section 6.3 introduces a simple benchmark framework suited, especially for the

NVIDIA TX2 platform. The framework is capable of measuring the execution time,
execution-time jitter, and provide information about the state of hardware components
installed on the target platform.

2

Chapter 2
Related Work

Many automotive companies, such as Tesla, Google, Uber, and others, are investing
in the research of autonomous driving, significantly shifting the quality of their final
product. Despite the recent advancements, the vehicle is still a constrained environ-
ment. It needs to be efficient in terms of the speed of taking actions. Passengers must
arrive at their destination safely, concerning the consumption of power, emitted heat,
and storage capacity of the vehicle. It is necessary to define such constraints, and how
to measure overall performance, to be able to have a predictable system, concerning
the selected hardware, that would comply with the autonomous driving guidelines.

Considering previous facts it is important to understand the principle of autonomous
driving and environment around, during the drive. Ami Woo et al., 2019 [3] described in
their research the state-of-the-art autonomous driving pipeline of a production-ready
solution. The pipeline consists of an object detection mechanism, followed by the
tracker, which tracks the motion of nearby objects and localizer, which finds the current
position of the vehicle by analyzing nearby objects. Built-in cameras provide an image
input to each stage. By analyzing information gathered from sensors, the planner
component is executing the next action for a vehicle. Mostly, DNNs are used in object
detection (YOLO [4]) and object tracking (GOTURN [5]) components as they need to
process image data. These components are capable of identifing objects of the interest
— such as cars, pedestrians, bicycles, and other entities, the vehicle can reach during
its operation.

Mihir Mody, 2016, [6] stressed the selection of image resolution and frame rate for
front monocular camera for the ADAS. The research aims that it’s crucial to react to
situations around the vehicle in time, to prevent unnecessary consequences. It implies
that the validation process needs to take the stopping distance and the vehicle speed
into consideration. Additionally, the frame rate of the camera recording needs to be
proportional to vehicle speed, to preserve lower stopping distance. Simon Thorpe et
al., 1996 [7] found that human’s fastest action during the drive takes under 150 ms. It
means that the system as a whole has to be responsive for each incoming frame to be
able to take action. In general, faster than a human does, to make the journey safe and
predictable.

Shih-Chieh Lin et al., 2018 [8] depicted constraints of autonomous driving and intro-
duced tail latency. It captures existing non-determinism, during the end-to-end perfor-
mance evaluation of such a system, comparing to the mean latency used in usual bench-
marks. Paper benchmarks showed that the tail latency of quantile 99.99th-percentile
is always higher than mean latency. Admitting this fact, it seems mostly as the cor-
rect metric during the evaluation of the autonomous system. Additionally, power and
heat constraints were estimated. System with 1 CPU and 3 GPU units reduces the
driving range by 6%, which is a significant number, considering current restrictions in
the battery capacity of electric vehicles. The heat produced by the device during the
calculation should not change climate settings in the cabin. As a result of the research,

3

2. Related Work .
the cuDNN1 library was used on a GPU unit to speed up the computation. It allowed
the system to achieve significant tail latency reduction and comply with the required
maximum latency, determined as 100 ms. During the testing, ASIC device performed
better or equal to the GPU unit in the object detection stage. ASIC device had better
characteristics in terms of power consumption by a factor of 7, comparing to the same
task on GPU.

Lingyuan Wang et al., 2011 [9] observed that NVIDIA’s GPU scheduling algorithm is
different depending on how the CPU submits work to the GPU. The first case is when
the CPU is executing OS threads having common address space. The second case is
when OS processes have different address spaces. Tanya Amert et al., 2017 [10] focused
on the scheduling behavior of the Jetson TX2 platform. As NVIDIA is not publicly
disclosing any details about the implemented scheduling algorithm, the research uses
the black-box method to deduct the behavior. The research shows that during the sub-
mission via the first case, GPU uses hierarchical FIFO scheduling, and it is capable of
real-time schedulability analysis. However, during the second case, the scheduling pro-
cess is less deterministic as GPU uses time slicing and ignores stream priorities, during
parallel computations. The second case adds significant overhead and also variation to
the execution-time benchmark.

Wagar Ali and Heechul Yun, 2017 [11] studied the worst case of shared memory
between CPU and GPU architecture. They estimated a 3x slowdown when CPU is ex-
ecuting processes during computations on the GPU. To be able to achieve an increase in
performance, they designed a mechanism called BWLOCK++ (bandwidth lock), which
locks the memory when GPU intensive kernels of some critical process are running. It
means that less priority tasks get fewer resources at the time of running the critical
process. The implementation of such a mechanism is a modification of the OS kernel
provided by the NVIDIA. The presented mechanism achieved the result close to the
situation when the critical process runs on its own. During the co-run of the critical
and secondary processes, the BWLOCK++ version always achieved a better result.

1 https://developer.nvidia.com/cudnn

4

Chapter 3
Artificial Neural Network

Nowadays, artificial intelligence is experiencing impressive growth as it targets to get
closer to the border between human and machine capabilities. One of its significant
fields is a field of neural networks. It is inspired by the simplified version of a human
biological neural system, which consists of basic computational units, called neurons[12].
Synapses connect neurons, and such a combination forms a network. Each neuron
receives signals from its dendrites and passes the output to its axon, which is often
connected to other neurons via its terminal. Such a terminal behaves as an input to
other neurons that can receive a processed signal. The artificial neural network is based
on this knowledge. The high-level difference between biological and artificial networks
depicts Figure 3.

Figure 3.1. Similarity between biological and artificial neural networks [13]. The left col-
umn shows units of biological NN, where the right column shows the artificial NN alterna-
tive. The top-left image depicts the internal structure of a neuron. The bottom-left image
shows the connection between two neurons defined as a synapse. The top-right image
depicts that neuron is a function, which is applied to its inputs. The bottom-right image
shows neurones that form connected layers — input layer on the left, output on the right

and hidden layers in-between.

3.1 Architecture
The architecture of ANN is a directed, acyclic, weighted graph, where neurons are
nodes and edges pass the output of one node to the input of another node. Each node
performs a dot product of its inputs along with their weights. The weight defines the
strength of the connection when it contributes to the final result. Each node, along with

5

3. Artificial Neural Network .
its inputs, receives a bias. Bias is a constant that helps the model to fit the data better.
After multiplications within the node are complete, the activation function determines
if the node will contribute by its output to the final network result (introduces non-
linearity). There are various types of commonly used activation functions — Sigmoid,
Tanh, ReLU, Leaky ReLU, Maxout [14]. The following block introduces some of them:

. ReLU (Rectified Linear Unit) — f(x) = max(x, 0). The activation function, often
used in a field of Computer Vision due to its simple structure. It activates when the
input x is greater than 0, meaning it outputs the same data as received at its input.
The downside is a fragileness of its operation during the training process, as it may
never activate again which leads to a partially active network and decrease of the
performance.. Leaky ReLU — f(x) = ι(x < 0)(αx) + ι(x >= 0)(x), where α is a constant of
some small value. The activation function is a modification of ReLU. It solves the
issue of inactive nodes as it extends the range of ReLU by modifying the value of
negative x to a near-zero value. The disadvantage of such modification is introduced
inconsistency in results [14].. Maxout — max(w1x + b1, w2x + b2). It’s a generalized version of ReLU and leaky
ReLU, which returns the maximum of its inputs. The drawback is, as it doubles the
number of parameters for each node [15].

Nodes within the network are organized into layers, that represent a unique set of
disconnected nodes. The most common type of layer organization is a fully-connected
layer when each node in one layer is connected with each node in the adjacent layer.
Layer’s names are often labeled as input, hidden, or output. Only the hidden type is
allowed to have more than one instance.

3.2 Training and Inference
The Artificial Neural Network is an algorithm, but it does not strictly define how many
nodes and edges must be present in the network to provide satisfactory results. In
general, the process of finding the optimal number of layers, the amount of nodes in
each layer, their activation functions is a part of the network building process, and
the weights of edges are a part of the training process. More extensive networks can
represent more sophisticated functions, but they are prone to overfitting. Overfitting
is a situation when the model fits a noise in data, instead of the underlying relation-
ship [14]. During the training process, a significant amount of data forwards through
the network, and it may lead to compute-intensive tasks. Training data, in case of
supervised learning, is different from the real data in terms of knowing the correct re-
sult beforehand. This knowledge helps to modify the values of weights basing on the
error value — backpropagation process. After the training process, the network is ca-
pable of processing new input data without any training steps involved. This process is
called inference. During the inference, often, the network is optimized to exclude some
parts useful for training or merge operations into larger blocks to use all underlying
accelerator capabilities. The following sections describe the inference process in more
detail.

3.3 Convolutional Neural Network
There are many types and multiple applications of artificial neural networks. One of
the most popular networks in computer vision tasks is convolutional neural networks or

6

. 3.3 Convolutional Neural Network

CNNs, as these tasks are based on data with a grid-like topology, such as images. The
word convolutional in the name of the network implies the use of linear mathematical
operation called convolution [12]. The following text will present a general overview of
levels and operations involved in the CNN and describe the process of running inference.

Before diving into the details about the convolutional neural networks, it’s necessary
to understand how the machine interprets an image. Image is a w ∗ h ∗ d grid, where
w is the width and h is the height in pixels, and d is the depth, which represents the
number of channels. As an example, the RGB image has three channels — Red, Green,
and Blue. Each cell of the grid defines a triple of 8-bit integers with the value from 0
to 255, respectively. Each number establishes the intensity of the particular color. By
visualizing the described grid to a human, it can capture the image by its eyes. Then,
the information is subsequentially passing the neural network in the brain. The brain
can categorize objects by previous observations and human experiences, gained during
life. On the other hand, the machine does not have such an ability out-of-the-box. For
the machine, it’s just a grid of numbers, without any particular meaning. Computer
vision is striving to achieve the most accurate interpretation of such a grid by simulating
the same processes as a human brain does.

3.3.1 Architecture

Convolutional neural network consists of two main stages: the convolution/pooling and
the fully connected layer. The first stage divides the input image into smaller blocks
and analyzes them for the presence of pretrained features. The second stage, a fully
connected layer, takes the output of the first stage and classifies detected features. The
overall output of the network is a set of probabilities (class scores) for each trained
label. These stages are visualized on the Figure 3.2.

The difference between the fully connected layer and fully connected network, intro-
duced in Section 3.1, is that CNN uses a fully connected layer only during its second
stage. Comparing to the regular neural networks, this architecture scales well for full
images. It uses pre-processing and reduces the overall number of parameters in the
network, that would in normal situation lead to overfitting. The following subsections
describe the individual types of layers involved in the architecture of CNN.

Figure 3.2. Visualization of CNN architecture [16].

7

3. Artificial Neural Network .
3.3.2 Convolutional Layer

The input matrix, representing the input image, is passed to a layer that consists of a
set of kernels — the convolutional layer. The kernel, or also the filter as an alternative
name, is a small matrix of fixed size, and it consists of values that represent pixels of
a predefined structure called feature. During the forward pass, each kernel matrix is
shifted around the input matrix (Figure 3) and it computes the dot product with the
selected area. The result of this computation is an activation map that holds the kernel
result for each position in the input. In other words, the process is searching the input
image and trying to find known patterns, the same as human does, when it looks on
the picture. The convolutional layer outputs a volume with all activation maps stacked
in the depth dimension. As an example, having the input image of size 224x224x3 and
32 kernels the layer outputs a volume of size 224x224x32.

Figure 3.3. The convolution process [17]. Given the three channel image of fixed size, the
kernel of size 3x3 is slides (convolves) for each position and image channel and computes

the dot product.

3.3.3 Pooling Layer
After the convolutional layer processes the input matrix, the output volume may pro-
ceed to another convolutional layer or a pooling layer. The pooling layer takes each item
from the input volume and decreases its dimensions by the specified pooling function.
Pooling helps to reduce the number of parameters and improve computation perfor-
mance as it preserves important information and discards irrelevant details. It is the
reason why pooling is also called downsampling, as it resizes the input image and makes
features lose their detail but be more resistant to small changes [12].

The actual process consists of a matrix of lower dimensions sliding over the input
matrix and performing one of the several types of operations — average, maximum,
L2-norm pooling. The most usual operation is a maximum pooling when the matrix
selects the maximum value from a rectangular neighborhood at each pooling step.

8

. 3.3 Convolutional Neural Network

Figure 3.4. The MaxPool Operation.

3.3.4 Fully Connected Layer
Each node from the output of the previous layer connects with the second stage of CNN
called a fully connected layer. This layer converts the input data to a single vector It
performs the classification, and the principle of computations is the same as for regular
ANNs described in Section 3.1.

3.3.5 Object Detectors
One of the stages of the autonomous driving pipeline, as described in Section ??, is an
object detection mechanism, where CNNs are applied. The selection of particular de-
tector is always dependant on the trade-off between accuracy and speed [18]. Currently,
there are two major categories of detectors: two-stage and one-stage detectors.

Two-stage detectors (Figure 3.5), as the name suggests, are divided into two parts.
The first part generates a set of proposals for possible object regions presented in the
image. The second part takes created proposals as an input and classifies each region.
During benchmarks, this separation leads to state-of-the-art accuracy results, but in
terms of the inference speed, they generally fall short.

Figure 3.5. Two-stage CNN architectures [19].

9

3. Artificial Neural Network .
The second category, one-stage detectors (Figure 3.6), assumes that an instance of

an object could be in any region of the input image, so each region is taken as a
proposal. During the classification of proposals, it also estimates the bounding box of
each classified object. The lack of the preprocessing stage in the one-stage detectors is
an advantage for realtime applications, where the speed matters the most.

Figure 3.6. One-stage CNN architectures [19].

Recent advances in object detection [20] shows the evolving process of improving
modern object detectors and their backbones (networks used for feature extraction).
For the fast and low power detection, researches are constantly optimizing detector algo-
rithms to minimize resource demanding tasks and increase accuracy. It was shown [21]
that the speedup is achieved by introducing more lightweight network architecture. The
following points present networks most relevant to a realtime processing:

. YOLOv3 — predicts class scores and bounding boxes within a single evaluation,
which makes it fast for realtime processing. Network is originally built on top of
Darknet-53 (Figure C.2) backbone.. CornerNet-Squeeze — offers a new approach by predicting top-left and bottom-right
corners of the bounding box. Network is built on top of Hourglass-54 backbone.. CenterNet — it uses key-point estimation to find the center of an object and further
regress to object properties.. SqueezeDet — small, fully convolutional neural network, built especially for au-
tonomous driving [22].

10

. 3.4 Machine Learning Frameworks

3.4 Machine Learning Frameworks
This section presents several machine learning frameworks used nowadays to model,
train, and inference neural network models. Besides the implementation details, during
the inference, they all receive a model definition, load trained weights, and, depending
on the order of operations, execute defined functions by using frameworks available on
a particular platform. The model definition is often serializable for easy distribution,
TensorFlow1 uses own SavedModel2 format and frameworks such as Caffe23, PyTorch4,
MXNet use ONNX5 format.

Frameworks are often able to run on different platforms:

. CPU (x86 and ARM). GPU. FPGA. ASIC

Different accelerators are available, such as TPU and NPE, that add a more efficient
computations of matrix multiplication and other related operations.

Most of the platforms offer custom compilers that are capable of optimizing the
training process and model during inference. One of the most suitable, concerning the
Jetson platform, is NVIDIA, which provides the TensorRT library. TensorRT loads the
provided model and applies several optimization steps that are not described in detail
to a public audience [23]. It makes it hard to measure and introduce new optimizations
from the side of the community. Figure 3.7 visualizes a pipeline of the TensorRT library.

Figure 3.7. NVIDIA TensorRT Pipeline [23].

Mentioned frameworks provide very similar functionality, and every framework has
its positive and negative parts. Some of the properties are presented in the following
points:

1 https://www.tensorflow.org
2 https://www.tensorflow.org/guide/saved model
3 https://caffe2.ai
4 https://pytorch.org
5 https://mxnet.apache.org

11

3. Artificial Neural Network .
. Caffe2 - lightweight framework that supports CNN’s and has optimized inference.

Recently the framework was merged into a PyTorch 1.0.. PyTorch - a production-ready framework developed by Facebook. It uses the Python
programming language as its frontend. Large community.. Darknet1 - the framework popularized by the YOLO model, where it was imple-
mented. It supports convolutional neural networks and is very similar to Caffe. The
popular fork2 is used nowadays as it is improving the detection speed, and the repos-
itory is still supported.. TensorFlow - currently, an extensive framework for machine learning in general. It
has a large community, extensive documentation, and several support tools such as
TensorBoard and TensorFlow Serving.

1 https://pjreddie.com/darknet
2 https://github.com/AlexeyAB/darknet

12

Chapter 4
TensorFlow

TensorFlow is a popular machine learning framework developed by Google for its in-
ternal purposes and subsequently open-sourced to the community. The framework is
provided as a public GitHub repository. It provides tools for training machine learning
models and includes several features used for an efficient prediction. It also has support
for distributed computation. During the past years, there was only one major version
that had several drawbacks observed by the community, most importantly, a hardness
to use. In October 2019, long-awaited version 2.0 of the framework is reaching its stable
state and adds new components for effective development. In the time of writing this
thesis, version 2.1 is in release candidate branch, providing the unification of the code-
base for CPU and GPU code, which is now used to be separated into two builds. This
section aims to provide a detailed explanation of the TensorFlow internal functionality,
in its current stable version — version 2.0.

4.1 Overview
TensorFlow framework consists of two major parts — frontend and backend. The
frontend part is a language-specific wrapper that is provided to the developer (e.g.,
Python, Java, C++, etc.) for building dataflow graphs and their execution. The
backend part is a C++ codebase, that handles the execution logic and provides the
connector for mentioned frontends. The backend engine uses accelerators to compute
operations efficiently. Figure 4.1 visualizes these components.

Figure 4.1. Tensorflow architecture [24]. The top three levels of the scheme visualizes
components used for training. TensorFlow backend is a multiplatform execution engine
written in C++. It handles the framework logic and provides the client API to language-
specific frontends (written in Python, Java, Go, etc.). Available accelerators, depending
on the target platform, are handling the execution of operations from the dataflow graph
provided by the execution engine. XLA framework is a level of abstraction that uses

heuristics to distribute work to the underlying accelerators, such as CPU, GPU, etc.

13

4. TensorFlow .
TensorFlow is based on several main principles introduced in this section and ex-

plained in more detail in the following sections. The computation process is starting at
the dataflow graph and client process. The graph consists of nodes, representing oper-
ations, and edges, representing the data flow. Edges are immutable multidimensional
arrays of predefined types (int32, string or a custom shape), called Tensors. The client
process executes the provided dataflow graph using the available accelerators (CPU,
GPU, TPU). The aim of the execution process is to get the result in the most effi-
cient way. The execution process is handled by an object called Session. It registers
available devices, optimizes the graph in several passes and divides the graph into sev-
eral subgraphs, to parallelize an assigned work. Each graph definition that TensorFlow
requires as an input, need to include its structure, signature of the graph input and
output, and also weights. These items are serializable into SavedModel format, defined
by the protocol buffers schema1. It allows the easy distribution of the trained model.
SavedModel format is used primarily for the TensorFlow Serving framework, which
Section 5 introduces and also for the visualization process in TensorBoard introduced
in Section 6.1.3.

By skipping the dataflow graph building and training procedures, as it is not the
aim of the thesis, it’s necessary to analyze the internal components triggered during
the dataflow graph evaluation process. Figure 4.2 depicts each element involved in this
process, and the following sections provide such insight.

Figure 4.2. TensorFlow Session Run Overview.
1 https://developers.google.com/protocol-buffers/docs/overview

14

. 4.2 Device Manager

4.2 Device Manager
The device manager manages available computational resources. Devices in TensorFlow
are identified as follows:

. /device:CPU:0 — The CPU unit of the current machine.. /device:GPU:0 — The first GPU visible to TensorFlow.

Additional resources of the same type increments the number on the end of the
identification string. GPU units are detected from the CUDA environment variable
CUDA VISIBLE DEVICES.

During the initialization of the GPU device, TensorFlow allocates almost all available
GPU memory to reduce memory fragmentation. This behavior could be modified by
creating a new virtual GPU and specifying the memory limit parameter to a desired
value. The CPU device is always registered as a client device, meaning the device from
which the computation starts. It prepares and passes the input tensors for the graph
and receives the output tensors as a result.

Single operation in TensorFlow may have an implementation for CPU and also for
the GPU. In this case, the implicit placement is on the GPU; otherwise, it should be
mapped explicitly to the CPU1.

4.3 Thread Pool
TensorFlow is capable of using multiple CPU threads to parallelize assigned tasks. By
default, it picks an appropriate configuration depending on the available resources.
Several configuration options could modify the default behavior, and it’s verified that
such a modification can improve the serving time [25]. It’s necessary to highlight a part
of configuration, described in more detail in the source code of ConfigProto2:

. intra op parallelism threads — specifies how many threads from the thread pool are
available for use during the task parallelization. It controls the maximum parallel
speedup of a single task.. inter op parallelism threads — specifies how many threads from the thread pool are
available for computation of independent tasks, meaning their execution order. Func-
tions that are executed within this thread pool and are capable of parallelization,
share threads from this thread pool. Passing the negative value limits the execution
only to the caller thread.. session inter op thread pool — specifies the thread pool to use during the execution.
Depending on the situation, it may be useful for executing high-priority tasks in a
larger thread pool. Low-priority tasks may use a smaller thread pool and use lower
intra-op parallelism. This configuration is especially useful during the model serving.

After the thread pool creation, processes are allowed to pass functions for the execu-
tion, by submitting them via function ThreadPool::Schedule.

4.4 Graph
The core component of the TensorFlow is a dataflow graph. The dataflow graph is a type
of DAG, which represents the computation and dependencies between each operation
1 https://www.tensorflow.org/guide/gpu
2 tensorflow/core/protobuf/config.proto

15

4. TensorFlow .

Figure 4.3. Schematic example of the TensorFlow computational graph. The graph repre-
sents a function f(x, y) = x2y + y + 5.

defined as a node. The graph is required to have a source and sink nodes, to be able
to plan the execution and make further optimizations on a graph1.

4.5 Session
Session is a major TensorFlow component that encapsulates the evaluation of the
dataflow graph by using accelerators available from the device manager.

There are several implementation types of the Session2: distributed and common.
The distributed type is represented by the instance of the MasterSession3 and Work-
erSession4. It organizes the cluster of machines by the Master node and uses other
machines as Worker nodes. The master device distributes tasks queued for the compu-
tation to workers. It is advantageous in the environments where the hardware limitation
is negligible, or the training process demands powerful resources to complete the com-
putation. The common type is represented by the instance of the DirectSession5. It
operates on the devices, available locally through the device manager, by partitioning
the dataflow graph between them. The device manager is introduced in Section 4.2.

Each instance of a session allows its custom configuration via the protocol buffer
message ConfigProto6. This configuration sets important parameters connected with
the computation phase, such as settings for the thread pools, introduced in Section 4.3.

Session::Run is an entry point to the session evaluation. It creates executors, in-
troduced in Section 4.8, and caches them by the signature of their graph inputs and
outputs. After, session setups a call frame, described in Section 4.9 and triggers the
1 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/graph/graph.h
2 tensorflow/core/public/session.h
3 tensorflow/core/distributed runtime/master session.h
4 tensorflow/core/distributed runtime/worker session.h
5 tensorflow/core/common runtime/direct session.h
6 tensorflow/core/protobuf/config.proto

16

. 4.5 Session

execution process by calling a function Session::RunInternal, described in detail in Sec-
tion 4.10. At the end of a run, the output is retrieved from the call frame and returned
to the client process.

Before executors are created, there are few steps that involve dataflow graph pruning
and partitioning processes.

During the first run, the TensorFlow session optimizes the dataflow graph by pruning.
Pruning is the process of GraphExecutionState::BuildGraph function. It receives the
graph (Figure 4.4) with the instance of FunctionLibraryDefinition, representing all its
functions, and starts the optimization process.

Figure 4.4. Computational Graph Before Partitioning. The graph applies weights w to a
feature vector x, adds a bias term b and saves the result in a variable s [26].

The MetaOptimizer of the Grappler component handles optimization. The opti-
mization steps of MetaOptimizer are described in Section 4.6. These steps may add or
remove functions of a graph as it includes common subexpression elimination and con-
stant propagation. In a situation when the optimization is not possible, the graph and
the function library are restored to the initial state. The library definition is updated
accordingly to graph changes.

After the pruning process, partitioning is taking place. The partitioning process
divides operations that are capable of running on the available devices and creates one
subgraph per each device (Figure 4.5).

Figure 4.5. Computational Graph After Partitioning. The variable x is copied to the
Device B, including some operations, that are optimized on a given device.

17

4. TensorFlow .
Due to this separation between the devices, some edges between the nodes in the

original graph may disappear. To solve this, Send/Recv functions are added to a graph
for each node operation that it requires (Figure 4.6), and FunctionLibraryDefinition is
updated with these new operations. The unique key, named rendezvous key, handles
the pairing between these two functions. The described partitioning step is illustrated
in Figure 4.6. As the subgraph now has several Recv nodes, they behave the same as
root nodes.

Figure 4.6. Computational Graph Partitioning Result. Colored components are created as
value-copy operations between the separated subgraphs.

Each device has an opportunity to optionally modify an assigned subgraph by imple-
menting Device::MaybeRewriteGraph function. After the described optimizations, the
created graph is cached for future accesses to add speedup during the future prediction
process. Each device received the subgraph is now allowed to execute it by using the
local device executor from Section 4.8.

18

. 4.6 Grappler

4.6 Grappler

Grappler is an optimization library that performs several optimization techniques on
the provided computational graph (Figure 4.7). It takes the original Graph, converts it
to the GraphDef1, which now contains a serialized computational graph and creates a
mutable instance called GrapplerItem. Within this item, Grappler performs arithmetic,
dependency, function, loop, and memory optimizations. It also provides a function to
register custom optimizations, that implements the CustomGraphOptimizer interface.
The tensorflow/core/grappler/optimizers directory holds all pre-defined optimization
stages. After the particular optimization, the library counts the number of nodes and
edges, added or removed during the process. It allows Grappler to measure the outcome
of each optimization stage.

Figure 4.7. Position of the Grappler inside the TensorFlow Architecture [27].

Grappler uses several cost metrics to predict the behavior of future computations.
As an example, the memory metric estimates the worst case of memory efficiency for
the provided graph as it knows the hardware capabilities and sizes of the inputs and
outputs of each layer of the model. It’s worth to mention that by enabling logging
to level 1 and setting TF DUMP GRAPH PREFIX environment variable to a specific
directory saves the GraphDef after each optimization stage to a file. It might be useful
for visualizing final operations planned to execute on the particular devices, during the
development process.

4.7 Kernel Op

The OpKernel2 defines an operation that is optimized to run on a particular device.
Each kernel defines a function Compute(); multiple executors further execute that.
The kernel execution must be thread-safe as multiple executions are allowed to execute
multiple instances of the same operation asynchronously (end of the Section4.8).

The usage of cuDNN library is preferred as it can provide an efficient implementation
of selected kernels.

1 tensorflow/core/framework/graph.proto
2 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/op kernel.h

19

4. TensorFlow .

4.8 Executor
Section 4.5 describes how Session::Run process creates particular executors and com-
putes the dataflow graph, by involving available devices. This section aims to follow
the idea to describe the creation process of such executor and how it handles the com-
putation.

During the session execution process, the default TensorFlow executor1 is created
and intialized by a call to a function Executor::NewLocalExecutor.

The initialization process consists of the conversion of the input graph (the subgraph
of the dataflow graph) to a version optimized for the execution. An optimized graph is
an immutable copy of the original graph that includes the memory alignments of the
graph nodes.

After the graph conversion, the graph is iterated by BFS traversal and builds frames
by detecting enter and exit operators of the control flow, described in [28]. Next, the
process traverses the graph once more time and creates a OpKernel (Section 4.7) for
each node. During the iteration, it counts the number of inputs for each node and
detects the type of the control flow operator.

After the initialization, the executor is ready to process the graph and awaits for
the call of its RunAsync function. Also, it provides a Run function, to execute in a
synchronous manner. These functions are built on the principle double dispatch and
they pass their instance by ExecutorState::RunAsync function.

ExecutorState::RunAsync function, fills a context map for the provided graph de-
pending on the device the executor is created for. The context map just stores the
device context to each graph node. Usually, this function does nothing. For example,
the implementation of the function BaseGPUDevice::FillContextMap holds some code,
but in case the maximum amount of streams is one (hardcoded default value), it just
returns. The reason for this is, that the TensorFlow team initially planned to use mul-
tiple streams for the execution, but this idea is considered as unmaintained and it is
already removed in version 2.1 RC2.

Next, the ExecutorState::RunAsync function creates a queue called Ready. Ready
queue consists of nodes of type TaggedNode, that holds a reference to a node, its frame,
and information if it’s dead. The dead state is used for distributed computations to
indicate empty tensor which takes an inactive branch in the conditional statement. At
first, root nodes are added to the queue and scheduled to run within the thread pool,
by calling ExecutorState::ScheduleReady.

The function ExecutorState::ScheduleReady uses runner, created previously during
the thread pool creation in Section 4.3. The runner uses the provided thread pool and
calls a function ExecutorState::Process for each root node added to the ready queue
previously. The called function ExecutorState::Process creates another queue and adds
there a node from the argument. Each node receives its input and call frame, holding
its context. After it, the process is starting the computation of each node from the
queue.

Depending on the definition of kernel, if it’s synchronous or asynchronous, context
for computations is created. For asynchronous its an ExecutorState::AsyncState object
and for synchronous its an OpKernelContext object. Every operation could identify
itself as an expensive. The synchronous execution traces the cost of such operations
and stores the number of cycles needed for getting the result.

1 tensorflow/core/common runtime/executor.cc
2 https://github.com/tensorflow/tensorflow/commit/223c8bdf8963fef00cd9a1ec0fa10a3fb47fda1e

20

. 4.9 Data Transmission

Next, the created context and node are passed to the device function Compute or
ComputeAsync respectively. As the implementation of these functions is dependant on
the underlying device (CPU, GPU, CUDA, XLA, or SYCL), the details are separated
by appropriate sections. CUDA device is just a one-to-one wrapper over the GPU
device. XLA and SYCL devices are out of the scope of this thesis.

4.8.1 CPU Compute
Computation of the kernel operation on the CPU is handled by the immediate execution
or by queueing on a thread pool (thread pool and runner configuration in Section 4.10).
Edges in a graph define the dependency between these nodes (operations). It means
that given an edge from node i to node j, the execution of a node j will wait until
node i finishes its execution. The CPU version calls a Device::ComputeAsync or De-
vice::Compute respectively, and the call is passed to the computational function of the
kernel operation.

4.8.2 GPU Compute
Computation of operations on a GPU is handled by making the requests to the
StreamExecutor1, which is an abstract wrapper over the underlying platform (CUDA,
OpenCL). TensorFlow uses a single stream for computation operations on the GPU
device. Multi-stream code is present, but due to the reason described earlier in this
section, is now planned to be removed.

There are two functions BaseGPUDevice::ComputeAsync and BaseGPUDe-
vice::Compute, that initiates the execution of the kernel operation. If the kernel
operation context is present it is used instead of the device context. It allows the kernel
operation to use multiple streams during its execution.

As it was stated earlier in this section, root nodes are initially a part of the ready
queue. All these nodes are iterated and scheduled on the device. After their completion
and during the postprocessing in ExecutorState::NodeDone, they are removed from the
queue and added to inline ready queue. It means, that they have some output. Next,
the successors of inline ready nodes in the computational graph are added to the ready
queue. The further computations iterate in this order, by updating both queues. Frame
(Section 4.9) is constantly updated during this process by the definition of control flow
operations (Section ??).

4.9 Data Transmission
The FunctionCallFrame is a data structure that is used to pass arguments to functions
and retrieve their results. Each value of the argument is represented as a Tensor object.
Session uses such a frame to exchange model input with the created executors. After
executors finish computing their graphs, the frame is used to read the results and return
them to a client.

4.10 Execution
The DirectSession::RunInternal function manages the session execution process. It re-
ceives several arguments. The step id is an identification of the session run (or any API
call in general). The executor and keys object, holding previously created and assigned
1 tensorflow/stream executor/stream executor pimpl.h

21

4. TensorFlow .
executors. The call frame, created to exchange data with executors (Section 4.9). Sec-
tion 4.11 describes components for the distributed computation, that are involved in
the process but are not executed.

Execution is started by creating ExecutorBarrier, which helps to run executors in
parallel and ensures that all executors finish their work at some point. The barrier
provides information about the executor’s status using the mutex lock. In the next
step, configurations of the thread pool, graph options, and some general configuration
are handled and stored as an instance of Executor::Args. Depending on the setting
of inter op * configurations, described in Section 4.3, the execution process determines
which thread pool to use — device or local. Execution allows to run executor process in
the caller thread (and overall run synchronously) only when there is a single executor
defined, otherwise, the first thread from the thread pool is selected. Device can specify
its own thread pool by a call to function set tensorflow device thread pool. The exam-
ple of a device thread pool setting is available in BaseGPUDevice::Init. This function,
depending on the configuration, assigns the thread pool for a GPU device.

Next, the execution iterates through available executors and start them asyn-
chronously, providing the reference to the barrier, defined earlier. The barrier manages
the completion of all executors and after they reach its point, several processes are
initiated. First, the output tensors are fetched from the executors. Second, the cost
model of the graph is updated, depending on the frequency, previously set in the
configuration (as it may increase the overhead of prediction). Optionally, partitioned
graph definitions are outputted.

4.11 Collective Execution
The term collective indicates the usage of distributed computation between several ma-
chines. It’s used mostly for training, but the distributed prediction is also supported1.
The difference between the normal graph and distributed graph, that distributed ver-
sion uses CollectiveOps such as broadcast, all-reduce, etc. The graph is identified by
the presence of collective graph key.

1 https://www.tensorflow.org/guide/distributed training

22

Chapter 5
TensorFlow Serving

Tensorflow Serving is a framework that provides a reliable solution for inference on
trained models. Figure 5.1 visualizes the general structure of the framework. The
framework is targeting to the effective management and serving of provided trained
models. Models can have several versions that are available to the clients. Clients are
incoming requests, carrying the input data. Computations on a graph are part of the
TensorFlow servable, which uses the general TensorFlow framework as a library and
encapsulates the internal computations. The following sections aim to describe each
execution stage in detail, to be able to understand the overall architecture and allow
to identify parts of the TensorFlow used during the computation.

Figure 5.1. TensorFlow Serving architecture1. The client is submitting his request to the
model server, which can handle multiple versions of the same model. The TensorFlow
framework processes calculations on a model available on the filesystem. The result is

returned to the client.

5.1 High-Level View

The entry point of the prediction service is an HTTP/gRPC2 based server. During its
start, it parses the provided configuration, reads hardware capabilities of the underlying
platform, and creates a protocol buffers message GraphDef from the provided model
in SavedModel format, introduced in Section 4.1. Before the serving is available to
the client, TensorFlow creates a Session object, introduced in Section 4.5. During the
creation process, it optimizes the model by modifying the granularity of operations and

2 https://github.com/grpc/grpc

23

5. TensorFlow Serving .
their order. The optimization leads to a more efficient usage of the provided resources.
After preparation steps, the framework listens to the incoming requests from clients,
and when the input data get available, it triggers the session execution. Additionally,
the polling mechanism, running in the background, is detecting changes in the model
and eventually reload the configuration of the server.

Serving handles the communication with TensorFlow by the C API1, which Ten-
sorFlow framework provides. It is a level of abstraction between internal framework
functionality and language-specific wrappers such as Python, Java, C++.

The server is capable of two types of communication, HTTP and gRPC. The
second type is faster as it doesn’t have a protocol overhead and data serializa-
tion/deserialization processes, due to the fact, that HTTP type is calling the gRPC
underneath2. Custom benchmark for 30 executions and ten repetitions estimated that
gRPC version is faster than HTTP by 63% ± 4% assuming 95% confidence interval.
On the other hand, it requires additional libraries. It may be a restriction in some
environments where clients execute.

5.2 Initialization
Server is instantiated in ‘model servers/main.cc‘. Hardware capabilities are read by a
call to a function tensorflow::port::InitMain3, which is separated by the OS architecture
(e.g., POSIX, Windows, Cloud, etc.) for portability reasons. It stores the information
about the available RAM, number of processors, and hardware layout for planning
future computations. The server is built on top of the class ServerCore4. It is a platform
and language independent part of the code that holds the state and the settings of the
provided model and manages the efficient serving.

After the server startup, Model5 and Prediction6 services are employed. Model service
listens to requests regarding the structure and state of the model, where the Prediction
service handles input data and initiates the computation process. Before the prediction
is taking place, the Grappler, introduced in Section 4.6, optimizes the model graph
definition from the input. The following section describes the Prediction service in
detail.

5.3 Prediction
Prediction service consists of several servable types — classification, regression, predic-
tion, and multi-inference7. Depending on the attribute ’method name’ in the signature
of the saved model, an appropriate servable is selected and used for the upcoming com-
putations8. Since the base model of this thesis defines the ’prediction’ servable type,
the following text will stress it in detail.

Prediction is handled by the class TensorflowPredictor9, registered earlier during the
initialization of server core. Entrypoint is the Predict function that uses SavedModel-
1 tensorflow/c/c api.h
2 tensorflow serving/model servers/prediction service impl.cc
3 tensorflow/core/platform/init main.h
4 model servers/server core.h
5 model servers/model service impl.h
6 model servers/prediction service impl.h
7 Directory servables/tensorflow
8 https://www.tensorflow.org/tfx/serving/signature defs
9 servables/tensorflow/predict impl.h

24

. 5.4 Deployment

Bundle1 to wrap GraphDef and Session objects. After SavedModel instance is created,
function RunPredict2 is called. RunPredict validates metadata and sizes of the input
and output tensors. After, the prediction is started by creating and running the in-
stance of a DirectSession3. The execution stages of the DirectSession are explained in
detail in Section 4.8.

After the completion of the session run, the result is available for the response to
the client. TensorFlow Serving awaits the next request from the client and checks the
model for changes in periodic intervals.

5.4 Deployment

TensorFlow Serving supports the execution inside Docker container (Figure 5.2). In-
ternally, during the creation of Docker image, Dockerfile of the TensorFlow Serving
downloads all required system libraries, installs Bazel4, and builds TensorFlow Serving
from source. It is a preferred way to distribute application into edge environments via
Docker Registry5.

Figure 5.2. TensorFlow Serving Docker Support6.

1 tensorflow/cc/saved model/loader.h
2 servables/tensorflow/predict util.h
3 tensorflow/core/common runtime/direct session.h
4 https://bazel.build
5 https://docs.docker.com/registry/

25

5. TensorFlow Serving .
As a consequence of this architecture, the application can use Docker layers to cache

the image efficiently. During the distribution, it is separated by the layers defined in
a Dockerfile, and during the download from the repository, it downloads only changed
parts. It improves the deployment process of the devices located in the edge environ-
ment.

26

Chapter 6
Implementation

Section 3.3.5 describes the state-of-the-art CNN called YOLOv3 and its advantages
compared to other convolutional neural networks. This section uses the mentioned
model for describing the installation and implementation details of the benchmark
framework, created for purposes of comparing inference time of TensorFlow models.

6.1 Setup

The target platform for the algorithm evaluation is an NVIDIA Jetson TX2. It is a
power-efficient device created especially for embedded AI computations. The Jetson
TX2 module (Figure 6.1) drives the quad-core ARM Cortex-A57 MPCore CPU and
256-core NVIDIA Pascal GPU, both sharing the 8GB LPDDR4 RAM1. NVIDIA SDK
Manager is handling the flashing process of the OS image and NVIDIA libraries included
in the appropriate JetPack2 release.

Figure 6.1. NVIDIA Jetson Products [29]. Third column in the table represents the target
device.

1 https://developer.nvidia.com/embedded/jetson-tx2
2 https://developer.nvidia.com/embedded/jetpack

27

6. Implementation .
6.1.1 Bazel

Bazel is a Java-based tool developed by Google for building and testing large codebases.
TensorFlow and TensorFlow Serving are using this tool as their primary mechanism for
code compilation. At the root of each project, there is a BUILD file containing rules for
compiling particular software code and its dependencies. Bazel requires a decent amount
of available RAM that, in some environments, is not available, and its shortage may lead
to an unexpected crash. The build parameter local resources is limiting the usage of
CPU and GPU resources1 and overcomes a possible crash. During the build on a device,
it is possible to create a cache that Bazel will store to the remote storage, such as Google
Cloud Storage2 or local disk. This cache is useful during the compilation on different
devices and during the switch of a code branch. It shares already compiled parts and
speeds up the whole process, in situations when the available network bandwidth allows
it.

6.1.2 TensorFlow Serving

During the compilation, TensorFlow Serving downloads TensorFlow source code from
publicly available GitHub repository3. It allows to change commit hash of the down-
loaded commit, but it does not allow to change the repository origin. To overcome this
restriction, it is necessary to modify a repo.bzl file and change the path for the Ten-
sorFlow repository from the original origin to a created fork. After it, the compilation
process could start.

6.1.3 TensorBoard

To visualize models, previously created in TensorFlow, it might be helpful to use a Ten-
sorBoard4. It is a tool, written in Python and JavaScript languages, created primarily
for visualization and analysis of machine learning tasks. The advantage of using it is
that it can visualize the dataflow graph of the TensorFlow model and provide all the
details about the particular layers and operations executed inside. Also, it provides
extensive functionality for the training process and supports the creation of custom
graphs.

To import the TensorFlow model, previously serialized into a SavedModel format, it
is necessary to execute script ’import pb to tensorboard.py’, that loads the graph defi-
nition and outputs its summary by the logging mechanism into a file. The TensorBoard
start script awaits the name of the created file, and instantiates a TensorBoard server,
that opens as a web page in a system browser.

1 https://docs.bazel.build/versions/0.21.0/command-line-reference.html
2 https://cloud.google.com/storage/
3 https://github.com/tensorflow/tensorflow
4 https://www.tensorflow.org/tensorboard/get started

28

. 6.1 Setup

Figure 6.2. TensorBoard during the training process.

6.1.4 Jetson TX2

The Jetson TX2 developer board consists of an Ubuntu 18.04 OS and preinstalled
developer tools - CUDA, cuDNN, OpenCV, Docker, and several others. To use the
most up-to-date system for this platform, NVIDIA offers the JetPack SDK manager1,
that can flash the board with a new kernel and update the preinstalled libraries to
their newer versions. To fulfill the minimum requirements of CUDA version 10.0 for
the TensorFlow 2 framework, the JetPack in version 4.2.2 has to be installed. After the
successful setup, it is necessary to turn off the GUI of the OS to reduce the amount of
allocated memory.

A kernel of the TX2 provides several modes of the performance acceleration, by
running the command ’nvpmodel’. Except for the CPU 0, which runs the OS, it can
modify the frequencies of particular cores to achieve the energy consumption require-
ments. The Table 6.1 lists available modes, where the lower mode number means higher
performance and higher power consumption.

Mode Denver 2 Freq. ARM A57 Freq. GPU Freq.
0 2 2.0 GHz 4 2.0 GHz 1.30 Ghz
1 0 4 1.2 Ghz 0.85 Ghz
2 2 1.4 GHz 4 1.4 GHz 1.12 Ghz
3 0 4 2.0 GHz 1.12 Ghz
4 1 2.0 GHz 1 2.0 GHz 1.12 Ghz

Table 6.1. NVP Models.

1 https://developer.nvidia.com/embedded/jetpack

29

6. Implementation .

6.2 Dataflow Graph
Section 4.4 introduces a component named as the dataflow graph, used for the repre-
sentation of computations in the network. This section aims to visualize this graph
and its different variants during the optimization and partitioning stages (Section 4.5).
The visualization is handled by the TensorBoard (Section 6.1.3) framework as it is an
official visualizer for the TensorFlow models.

6.2.1 Initial State
To generate the graph visualization, it is necessary to load the file containing
a saved model to the TensorFlow and generate a summary log. The summary
log contains information about the graph, including the structure of its nodes
that TensorBoard uses during its startup and further run. Usually, the script
’import pb to tensorboard.py’ is used, but in version 2.0 of the TensorFlow, it
does not work, and it throws the ’DecodeError’ exception. To solve this, the
file is modified to use function ’saved model utils.get meta graph def’ instead of
’graph pb2.GraphDef().ParseFromString’ to properly load the graph definition from a
model file. With the introduced change, the script can generate a summary log to a
provided destination, and TensorBoard is now able to parse it.

After the TensorBoard start, the provided URL contains a view of the graph. Un-
fortunately, it can visualize the graph but without the edges. It seems like an internal
incompatibility between the TensorFlow and TensorBoard versions. As there is no sim-
ple solution to this problem, the assumption that operations in the graph are ordered
from the bottom to the top could partially solve the issue. The Figure 6.3 shows a part
of the generated graph of the YOLOv3 model with the DarkNet-53 backbone.

6.2.2 Optimization Stages
Section 4.5 describes the process of input graph optimizations before the start
of the graph execution. After each optimization stage, TensorFlow can output
a file in a SavedModel format into the provided path via environment variable
’TF DUMP GRAPH PREFIX’. This file could be further processed by an import
script ’import pb to tensorboard.py’ and visualized in the TensorBoard. Unfortu-
nately, the file that TensorFlow saves an optimized graph in a text format with
extension ’.pbtxt’. To solve this, the script ’import pbtxt to tensorboard.py’ is created
and modified, to address this issue and parse it correctly. The process of visualizing is
the same as in the previous section.

30

. 6.3 Benchmark Framework

Figure 6.3. Visualization of YOLOv3 (DarkNet-53) architecture. Graph consists of four
major parts. Lowest node ’yolo darknet’ is a backbone network DarkNet-53 used for feature
extraction and upper levels are feature maps used for bounding box prediction of small,

medium and large objects.

6.3 Benchmark Framework
During the network inference, many factors could affect the overall performance. It
might be dependant on the selected network architecture, machine learning framework,
algorithm for computation, hardware specification, and also on processes running in
the machine OS. Also, after the introduced modification in at least one component
from the previous list, it might be useful to measure the change in performance. To
meet this requirement, the following sections describe the benchmark framework that
is capable of running on the developer machine and also on the NVIDIA Tegra X2
platform. Especially Tegra X2 platform is a valuable indicator, as it is a SoC platform
where memory collisions and inefficient heat management could significantly decrease
the performance.

31

6. Implementation .
6.3.1 Input Data

To properly set up the benchmark, it is necessary to define how fast new data will ar-
rive at the object detection neural network. Since, during autonomous driving, onboard
cameras are regularly sending image data to the object detection endpoint, the bench-
mark cannot measure only the execution time of a particular frame, but it also needs
to include the time between detection request and start of the execution. It means that
each frame is processed asynchronously, with the rate dependant on the FPS settings
of the hypothetical onboard camera.

By using video files instead of live video from the camera during the benchmark
process, the benchmark can return a reproducible results. The Table 6.2 represents
sample videos used during the benchmark.

Filename Resolution FPS Duration (s)
video-1.mp4 640x360 30 30
video-2.mp4 1280x720 24 20
video-3.mp4 960x540 25 20

Table 6.2. Sample videos used during the benchmark.

6.3.2 Total Execution Time

The execution time of the prediction is measured as a time difference between prediction
request and prediction response. Each measurement is stored in the ’State’ component
to be further processed by a histogram.

The overall histogram is generated by the library HdrHistogram1 and shows the
latency by the percentile scores. As it was stated in [8], to meet the performance pre-
dictability, the most important indicator is the 99.99th-percentile latency. The output
provides this information as well as mean latency.

Before the execution of the benchmark, the number of excluded detections, a warmup
period, is estimated manually (Figure 6.4).

Figure 6.5 shows the difference between 31 and 46 frame in warmup state during the
benchmark of the video

After the estimation of the warmup period, values prior this number are always
excluded.

Figure 6.7 represents the result of the benchmark with 30 executions and 10 repeti-
tions that compares Darknet, TensorFlow 1.x, TensorFlow 2.x and TensorFlow Serving
frameworks on YOLOv3 (DarkNet-53) model. The mean of execution time is estimated
within the 95% confidence interval [30].

1 http://hdrhistogram.org/

32

. 6.3 Benchmark Framework

Figure 6.4. Estimation of Execution Independent State. Benchmark of the Darknet frame-
work executed on a short video and image to estimate the warmup period. The estimated

period of the warmup is 16 iterations.

Figure 6.5. Estimation of Execution Independent State for Video. Comparison between
TF 1.14 and TF 2.0-b1 built with GPU support.

33

6. Implementation .

Figure 6.6. Estimation of Execution Independent State for Video and Image for Tensor-
Flow 2. The difference in the inference times presents the difference between creating a
new Session or reusing the previous one. Video frames are reusing, where image is always

creating a new one.

Figure 6.7. Comparison of Darknet, TensorFlow 1.x, TensorFlow 2.x and TensorFlow Serv-
ing. The Darknet framework achieves the best performance comparing to the others. TF
1.14 and TF Serving with TF 2.0-rc0 are slower due to the more general architecture.
TF 2.0-rc0 has a visible error rate, that is caused by separate execution of the backbone
and classifier stages. By executing the model as a static graph, the result is close to the

TensorFlow Serving.

34

. 6.3 Benchmark Framework

6.3.3 Execution-Time Jitter

The execution-time jitter is the largest difference between the execution times of any
job within the specified task. The analysis of execution-time jitter is valuable for real-
time control systems to determine the variations in sampling-actuation delays of control
tasks [31].

Measuring is handled by saving each record to the State object. Each recorded value
is stored either to minimum or maximum variable and in the end the difference is
returned as a result.

6.3.4 Hardware Statistics

As the target platform for the benchmark is an NVIDIA Tegra X2, it seems as the
most optimal way to use ’tegrastats’1 command available on all NVIDIA Tegra series
devices. It allows to fetch the information about each hardware component available
on board. Example output for maximum performance mode with the temperature of
the environment 23 ◦C:

RAM 329/7860MB (lfb 1744x4MB)
SWAP 0/3930MB (cached 0MB)
CPU [0\%@2035,0\%@2035,0\%@2035,0\%@2035,0\%@2035,0\%@2035]
EMC_FREQ 0\%
GR3D_FREQ 0\%
PLL@31C
MCPU@31C
PMIC@100C
Tboard@26C
GPU@29.5C
BCPU@31C
thermal@30.1C
Tdiode@27.25C
VDD_SYS_GPU 459/459
VDD_SYS_SOC 765/765
VDD_4V0_WIFI 0/0
VDD_IN 3444/3445
VDD_SYS_CPU 229/229
VDD_SYS_DDR 1113/1112

For the experimental measurements, the benchmark reads the following values for
temparature:

. MCPU@xC — x is a temperature in degrees Celsius of the CPU chip. BCPU@xC — x is a temperature in degrees Celsius of the CPU board. GPU@xC — x is a temperature in degrees Celsius of the GPU chip. Tboard@xC — x is a temperature in degrees Celsius of the board

1 https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%2520Linux%2520Driver%2520Package%2520Development%2520Guide%2FAppendixTegraStats.html

35

6. Implementation .
And for the power consumptions, the benchmark reads the following values:

. VDD SYS CPU x/y — x (current) / y (average) power consumption in milliwatts
of CPU chip. VDD SYS GPU x/y — x (current) / y (average) power consumption in milliwatts
of GPU chip. VDD SYS DDR x/y — x (current) / y (average) power consumption in milliwatts
of DRAM

36

Chapter 7
Conclusion

During the last decade, the advance in the hardware design and new software capabil-
ities improved the embedded hardware; nowadays, used for resource-consuming tasks
such as image processing or neural network inference within the target environments.
These environments are mostly called edge. Many low-powered SoC platforms (Google
Coral1, NVIDIA Jetson2, Ambarella3, and others) provide an option to execute trained
models using popular machine learning frameworks such as PyTorch4, Caffe5, Tensor-
Flow (Lite6) and other widely used titles. Before the execution, the network models are
mostly pruned and quantized to perform better on the hardware significantly slower
than used for the training of such networks. Many mobile backbone networks exist,
and their simple architecture minimizes the number of computations required to get
the result. As a downside, the accuracy of the detection is lower compared to more
massive network architectures. The field for optimization, on the mentioned platforms,
is very extensive and brings researchers to new ideas to find an improvement in a ratio
of speed and accuracy.

Section 3 introduced a state-of-the-art approach of applying convolutional neural
networks in a field of object detection. The selected networks were inferred by sev-
eral frameworks to estimate the performance difference (Section 3.4). As a result, a
framework for the initial execution analysis, a popular fork7 of the Darknet framework8

was selected. Additional logging was introduced to get closer to the principle of its
functioning, but unfortunately, it was not selected as a target framework for possible
scheduling optimizations, as the code is heavily aimed at performance that reduces its
readability.

As an alternative, open-source framework TensorFlow was selected. At the time of
the analysis, there was already available a release candidate for the next major version,
that was preferred, as it might introduce significant changes influencing internal mech-
anisms. Section 4 described these mechanisms in order to understand the underlying
architecture and introduce modifications in code. Sequence diagrams were created to
visualize the connection between processes, to support the readability of the description.

Section 6.2 introduced different variations of the dataflow graph (Section 4.4) that
represents computations during network inference. It was observed that the initial
graph is transformed several times, and each step can be visualized by the TensorBoard
framework (Section 6.1.3).

TensorFlow provides an additional library TensorFlow Serving (Section 5) that was
selected as a mechanism to provide API for the benchmark, introduced in Section 6.3.

1 https://coral.ai/products/dev-board/
2 https://developer.nvidia.com/embedded-computing
3 https://www.ambarella.com/technology/
4 https://pytorch.org/get-started/locally/
5 https://caffe.berkeleyvision.org
6 https://www.tensorflow.org/lite
7 https://github.com/AlexeyAB/darknet
8 https://pjreddie.com/darknet/

37

7. Conclusion .
According to Kalibera et al., 2013 [30] independent state was found after the first
iteration, when optimizations on the model graph are being executed. The mean of the
execution time was estimated with the 95% confidence interval by executing created
benchmark on a selected set of videos and images.

Before the analysis, the Jetson TX2 board was flashed with the latest kernel L4T
32.2.1, in order to install the CUDA framework in its version 10.0. The TensorFlow
framework was compiled from source and executed several times on a target platform.
This process allows to introduce future modifications and install them on a target
platform.

38

Chapter 8
Future Work

Optimization of the neural network inference implies a deep understanding of the frame-
work underlying architecture that will compute the final result. This thesis aimed to
provide this knowledge and summarize tools that are involved in the process of predic-
tion.

In future research, the graph partitions, created from the dataflow graph, may get
separated in a more suitable form by taking into account a device SoC architecture.
The suitable scheduling mechanism can be a part of the optimization stage, executed
during the graph construction, as it receives the graph definition as an input and can
reorganize the structure of the final graph, which will proceed further for computation.
Also, during the partitioning stage, created partition could change the allocation of
particular operations by assigning them to another accelerator device.

The disadvantage of full version machine learning libraries is that they consume
many resources during the recompilation process, and the lack of support from NVIDIA
regarding the cross-compilation prolongs the whole process of development. CUDA and
cuDNN libraries that are the prerequisites for almost all accelerated code in the machine
learning frameworks are provided only via Jetson SDK manager, without any further
documentation.

On the other hand, the TensorFlow framework supports cross-compilation only for
the TensorFlow Lite library, but it does not support aarch64 architecture with GPU,
this is what Jetson TX2 is. It means that custom Bazel build configuration must be
created, and all required libraries must be mapped. The article from the online source1

described the modification needed for cross-compilation of the TensorFlow, but it seems
outdated, as during the experiments it did not lead to the solution.

The ARM architecture brings a big challenge for compiling significant codebases in
the target system itself. Bazel, introduced in Section ??, supports local and remote
caching. It speedups the whole process (in case of fast connectivity), but it introduces
additional overhead during the development, as it requires local server or remote GCP
Storage2 instance.

For the future reference, the advantage of the introduced Docker container runtime
may solve a problem, in case of providing the NVIDIA libraries via Docker volumes
and creating the image on the host device, capable of more computational power.

1 https://jany.st/post/2018-02-05-cross-compiling-tensorflow-for-jetson-tx1-with-bazel.html
2 https://cloud.google.com/storage/

39

8. Future Work .
The benchmark created in this thesis can rely on general public datasets, such as

MS COCO1, KITTI2, VOC20123 to introduce comparable results with other available
benchmarks. The measurement of the video benchmark could be improved by calcu-
lation of each frame as an independent image and, at the end, computing the average
across all frames. The ImageNet VID challenge utilizes this schema4

1 http://cocodataset.org/#home
2 http://www.cvlibs.net/datasets/kitti/
3 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
4 http://image-net.org/challenges/LSVRC/2017/

40

Appendix A
Acronyms

ADAS . Advanced Driver Assistance System
ANN . Artificial Neural Network
ASIC . Application-Specific Integrated Circuit
BFS . Breadth-First Search
CNN . Convolutional Neural Network
DAG . Directed Acyclic Graph
DNN . Deep Neural Network
FPGA . Field Programmable Gate Array
FPS . Frames Per Second
GUI . Graphic User Interface
HTTP . Hypertext Transfer Protocol
NPU . Neural Processing Unit
OS . Operational System
SDK . Software Development Kit
SoC . System-on-Chip
TPU . Tensor Processing Unit

41

Appendix B
CD Content

Figure B.1. Content of the attached CD.

43

Appendix C
DarkNet-53

Figure C.2. DarkNet-53 [4].

45

References

[1] J. Kim , D. S. Han , and B. Senouci . Radar and Vision Sensor Fusion for Ob-
ject Detection in Autonomous Vehicle Surroundings. In: 2018 Tenth International
Conference on Ubiquitous and Future Networks (ICUFN). 2018. 76-78.

[2] Dustin Franklin. NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge.
2018.
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/.

[3] Ami Woo, Baris Fidan, and William W. Melek. Localization for Autonomous Driv-
ing. 2019.
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119434610.ch29.

[4] Joseph Redmon, and Ali Farhadi. YOLOv3: An Incremental Improvement. CoRR.
2018, abs/1804.02767

[5] David Held, Sebastian Thrun, and Silvio Savarese. Learning to Track at 100 FPS
with Deep Regression Networks. CoRR. 2016, abs/1604.01802

[6] Mihir Mody. ADAS Front Camera: Demystifying Resolution and Frame-Rate.
2016.

[7] Simon Thorpe, Denis Fize, and Catherine Marlot. Speed of Processing in the Hu-
man Visual System. Nature. 1996, 381 520-2. DOI 10.1038/381520a0.

[8] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E. Haque,
Lingjia Tang, and Jason Mars. The Architectural Implications of Autonomous
Driving: Constraints and Acceleration. SIGPLAN Not.. 2018, 53 (2), 751–766.
DOI 10.1145/3296957.3173191.

[9] L. Wang , M. Huang , and T. El-Ghazawi . Exploiting concurrent kernel ex-
ecution on graphic processing units. In: 2011 International Conference on High
Performance Computing Simulation. 2011. 24-32.

[10] T. Amert , N. Otterness , M. Yang , J. H. Anderson , and F. D. Smith .
GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed. In: 2017 IEEE
Real-Time Systems Symposium (RTSS). 2017. 104-115.

[11] Waqar Ali, and Heechul Yun. Protecting Real-Time GPU Applications on Inte-
grated CPU-GPU SoC Platforms. 2017,

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.
http://www.deeplearningbook.org .

[13] hadican. Similarity between biological and artificial neural networks. 2019,
[14] Stanford Course: Convolutional Neural Networks for Visual Recognition.

http://cs231n.github.io/neural-networks-1/.
[15] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua

Bengio. Maxout Networks. 2013.

47

https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119434610.ch29
http://dx.doi.org/10.1038/381520a0
http://dx.doi.org/10.1145/3296957.3173191
 http://www.deeplearningbook.org
http://cs231n.github.io/neural-networks-1/

References .
[16] A Framework for Designing the Architectures of Deep Convolutional Neural Net-

works. Entropy. 2017, 19 (6), 242. DOI 10.3390/e19060242.
[17] Matthijs Hollemans. The process of convolution on the image. 2016,
[18] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,

Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and
Kevin Murphy. Speed/accuracy trade-offs for modern convolutional object detec-
tors. 2016.

[19] Xiongwei Wu, Doyen Sahoo, and Steven C. H. Hoi. Recent Advances in Deep
Learning for Object Detection. 2019.

[20] Shivang Agarwal, Jean Ogier Du Terrail, and Frédéric Jurie. Recent Advances in
Object Detection in the Age of Deep Convolutional Neural Networks. 2018.

[21] Zuoxin Li, and Fuqiang Zhou. FSSD: Feature Fusion Single Shot Multibox Detec-
tor . 2017.

[22] Bichen Wu, Alvin Wan, Forrest Iandola, Peter H. Jin, and Kurt Keutzer.
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for
Real-Time Object Detection for Autonomous Driving. 2016.

[23] NVIDIA TensorRT. NVIDIA TensorRT. 2019,
[24] Sophia Turol. A Broad Spectrum of TensorFlow APIs Inside and Outside the

Project. 2017,
[25] Yu Emma Wang, Carole-Jean Wu, Xiaodong Wang, Kim Hazelwood, and David

Brooks. Exploiting Parallelism Opportunities with Deep Learning Frameworks.
2019.

[26] TensorFlow 1.x distributed architecture. 2019.
https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/extend/
architecture.md.

[27] RM Larsen. TensorFlow Graph Optimizations. 2019,
[28] TensorFlow developers. Implementation of Control Flow in TensorFlow.. 2016,
[29] fastcompression. Hardware comparison of Jetson modules. 2019.
[30] Tomas Kalibera, and Richard Jones. Rigorous Benchmarking in Reasonable Time.

In: 2013.
[31] Reinder Bril, Gerhard Fohler, and WFJ Verhaegh. Execution times and execution

jitter analysis of real-time tasks under fixed-priority pre-emptive scheduling. 2008,

48

http://dx.doi.org/10.3390/e19060242
https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/extend/architecture.md
https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/extend/architecture.md

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Related Work
	Artificial Neural Network
	Architecture
	Training and Inference
	Convolutional Neural Network
	Architecture
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer
	Object Detectors

	Machine Learning Frameworks

	TensorFlow
	Overview
	Device Manager
	Thread Pool
	Graph
	Session
	Grappler
	Kernel Op
	Executor
	CPU Compute
	GPU Compute

	Data Transmission
	Execution
	Collective Execution

	TensorFlow Serving
	High-Level View
	Initialization
	Prediction
	Deployment

	Implementation
	Setup
	Bazel
	TensorFlow Serving
	TensorBoard
	Jetson TX2

	Dataflow Graph
	Initial State
	Optimization Stages

	Benchmark Framework
	Input Data
	Total Execution Time
	Execution-Time Jitter
	Hardware Statistics

	Conclusion
	Future Work
	Acronyms
	CD Content
	DarkNet-53
	References

