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Abstract

Training a Convolutional Neural Network
(CNN) for the task of age prediction from
face images requires large amounts of
training data. As the freely available
datasets are underrepresented for certain
age categories, the CNNs cannot learn to
recognize them well enough. We propose
a solution to this problem by introduc-
ing a method for synthesis of new face
images — of virtual identities. It creates
new examples by merging appearance and
shape of several compatible face parts to-
gether. Since the face parts always come
from faces of the same age and gender,
the synthetic example retains these at-
tributes. We evaluate our method using
a CNN and on the MORPH dataset. We
try to find the best hyper-parameters of
our method by performing an exhaustive
search. Then, we train and evaluate the
CNN in various settings, while measur-
ing its performance using several metrics.
Sadly, we observe no significant improve-
ment using our augmentation method.
We hypothesize that CNNs are able to
learn themselves that the correlation be-
tween face parts can be safely ignored for
the age recognition task. Hence synthetic
examples obtained by permutation of face
parts already contained in the training
data do not improve generalization of the
CNN.

Keywords: dataset augmentation, face
synthesis, age prediction, CNN, poisson
image editing
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Abstrakt

Pro trénovani konvoluéni neuronové sité
(CNN) pro odhad véku z obrazku tvari je
potfeba velké mnozstvi trénovacich dat.
Protoze volné dostupné datové sady maji
urcité vékové kategorie nedostatecné za-
stoupené, konvolucni sité se je nemohou
nauéit odhadovat dostatecné dobre. Jed-
nim z feseni tohoto problému by mohla
byt nase metoda pro syntézu novych ob-
razku tvari — novych identit. Nové pri-
klady tvori kombinovanim vzhledu a tvaru
nékolika ¢asti kompatibilnich tvari. Vzhle-
dem k tomu, ze takovéto Casti vzdy po-
chézi z tvari stejného véku a pohlavi, vy-
tvorena syntetickd tvar si tyto atributy
zachovava. Nasi metodu hodnotime po-
moci konvoluéni neuronové sité a na da-
tasetu MORPH. Pomoci hrubé sily se
pak pokousime najit nejvhodnéjsi hyper-
parametry nasi metody. Nasledné sledu-
jeme hodnoty nékolika metrik konvoluéni
sité trénované a vyhodnocované v ruznych
podminkach. NanesStésti se nam nedari
pozorovat vyznamné zlepseni, zapricinéné
nasi metodou. Nasi hypotézou je, ze kon-
voluéni neuronové sité se v tiloze odhado-
vani véku nauci ignorovat korelace mezi
¢astmi obliceji. Z toho divodu syntetické
priklady ziskané permutaci Casti tvari z
jiz pritomnych trénovacich dat nezlepsuji
konvolucni siti schopnost zobecnovat na
nové identity.

Klicova slova: rozsiteni datové
mnoziny, syntéza tvare, odhad véku,
CNN, poisson image editing

Pteklad nazvu: Syntéza lidské tvare
pro rozsiteni trénovaci mnoziny
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Chapter 1

Introduction

Age prediction is both theoretically interesting and practical problem with
increasing number of commercial applications. For example, age-based re-
striction limiting virtual or even physical access to certain premises, websites,
or even denying the purchase of certain goods (such as alcoholic beverages) is
a one use-case. Others include customer age estimation in retail and forensic
science.

The current state-of-the-art in age prediction is based on CNNs learned
from vast amounts of examples. Collecting facial images with annotated age
is difficult. A common approach to enlarge the training dataset is based
on generating synthetic examples. In most cases, the synthetic examples
are obtained by applying a set of geometrical or photometric transforms on
the source annotated image. This approach helps to make the trained CNN
more robust against changes in pose, rotation, scale and lighting conditions.
However, it has a little impact on generalization to unseen identities. It has
been observed that adding examples of new identities improves accuracy of
face-verification systems more than adding new examples of identities already
contained in the training set.

In this work we propose a method to generate synthetic examples of new
identities. We try to accomplish this by merging appearance and shape of
several indentities together. The whole process consists of several steps. First,
we estimate position of the facial landmarks. From these we further estimate
other important characteristics, such as the face pose and the (simplified) face
expression. Then, we find tuples of compatible faces to be merged together.
Finally, while controlling the shape and appearance transfer, we stitch certain
face parts together using affine transformations. We use the seamless cloning
algorithm [31] as a post-processing step to improve the overall image quality
after stitching.

We evaluate the capabilities of the proposed method using a CNN model,
which is trained and evaluated in various settings on the MORPH dataset [32].
While we verify that the generated examples are indeed different from the
original ones and mostly indistinguishable from real faces, they unfortunately
do not seem to provide any new useful information for the CNN to train from.
Hence, we observe no significant accuracy improvement when the training
dataset is extended by the synthetic examples. We hypothesize that CNNs



1. Introduction

are able to learn that for the age recognition task, the correlation of face parts
can be safely ignored. Therefore, synthetic examples obtained by permutation
of face parts that have been already contained in the training set bring no
new information for learning the CNN.

This thesis is structured into five chapters. Chapter 2| introduces related
methods both for the age prediction task, and for the general and face-
specific dataset augmentation. It also gives further motivation for this work.
Chapter 3| introduces our proposed method in detail. Chapter [4] explains
all the details and results of the conducted experiments. Finally, Chapter |5
concludes this thesis.



Chapter 2
Related methods

Age estimation is a long standing and still unsolved problem. Before the deep
learning revolution occurred, methods based on local appearance descriptors
such as HOG [7], texture descriptors such as LBP [28] and SURF [3], and
others were relatively successfully applied. For example [19] examines the
usage of the mentioned features together before applying the Canonical
Correlation Analysis (CCA) [18] for the final age estimation. This approach
yields the MAE of 4.25 on the MORPH dataset.

As deep learning became more widespread, convolutional neural networks
found their way into the age estimation problem. They were useful even as a
mere feature extractor for the final age predictor [36] [13], e.g. achieving MAE
of 4.77 on the MORPH dataset.

Further works usually employ the end-to-end training regime of CNNis,
i.e. training the CNN to predict the age directly (using some encoding)
[23, 10, 19) 24] 2, 1 27, 22], B4, 29], achieving MAE on the MORPH dataset
as low as 1.96 [I5]. The main differences between the referenced works consist
of:

® the input structure and its preprocessing (e.g. multiple aligned patches
of face as the input, registration, etc.),

® the architecture of the model, and

B the output age encoding and the training loss function.

B 2.1 Labeled data scarcity

One of the reasons why the deep learning approach hasn’t improved upon the
previous results instantly is the scarcity of labeled training data. Moreover,
the labels are often noisy and heavily unevenly distributed. Figures[2.1]and
show the age distributions for various available datasets, and Table gives
a summary of age range present, the overall example counts and a measure
of their non-uniformness.

The target ages are usually either manually assigned based on the appear-
ance (so called the apparent age) as is the case for the APPA-REAL and
Chal.earnAge datasets, or automatically assigned e.g. based on the known

3



2. Related methods

Dataset name age range # examples Dxky,(pmf || 4{0,100})
AgeDB [26] 1-100 16488 0.387
APPA-REAL [11] 1-100 7591 0.491
UTKFace [37] 1-100 23468 0.552
IMDB-WIKI [33] 0 - 100 520717 0.641
CACD2000 [6] 14 — 62 163446 0.810
ChaLearnAge [12] 2 - 87 3611 0.837
FG-NET [21] 0—-69 978 0.900
MORPH [32] 16 — 77 55095 0.933
total 0 - 100 791394 0.628

Table 2.1: Summary of available datasets for age estimation, sorted by their
non-uniformness

date of birth and the date of capture of the photograph (IMDB-WIKI and
UTKFace datasets). In case of the automatic procedure, the error comes e.g.
from incorrect identity assignment.

—— APPA-REAL
—— AgeDB
2000 7 —— ChalearnAge

—— FG-NET
—— MORPH

., 1500 —— UTKFace

Q@

Q.

€

©

X

2 1000 A

o

#*

500 A

0_
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
age

Figure 2.1: The histogram of various datasets for the age estimation task

B 22 a survey of methods used to generate
synthetic examples

In the supervised learning setting, the dataset augmentation is a method of
expanding the training dataset by creating new training examples with known
label. When the input data happen to be images, a whole list of augmentation
methods becomes available for use. Such methods simply transform the input
image into a different one while preserving the label.

Modern deep learning frameworks such as PyTorch [30] often provide a
way of performing such augmentations on the fly, even in parallel with the

4
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Figure 2.2: The histogram of various datasets for the age estimation task

training itself, which is often done on a GPU. Therefore, it is possible to
randomize the whole augmentation process each time a new training example
is fetched. One can, for example, apply augmentations with some probability,
alter the order of the augmentations, or even randomize their parameters (if
any). This potentially leads to vast amount of variations in the augmented
data.

B 2.2.1 Geometrical transformations

A commonly used geometrical transforms include cropping and various affine
transformations, such as: rotation, translation, scaling, shearing and the
vertical flip (reflection). Other, less used transformations are for example:
perspective transformations and other elastic transforms.

When the transformation is used with reasonable parameters, the trans-
formed image keeps its original label as demonstrated in Figure [2.3

The reason behind using such transformation is to enhance variation in
location, scale, etc. which occurs naturally in the data, but might not be
captured (enough) in the training data.

(a): original  (b): rotation (c): translation  (d): shear (e): flip

Figure 2.3: Examples of various geometrical transformations
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B 2.2.2 Photometric transformations

The photometric transformations apply various functions to the pixel values.
Color jittering is one example. One can for example alter brightness, contrast,
saturation and/or even hue (Figures 2.4b-2.4¢)).

A different approach is taken in the random erasing [38] augmentation,
which occludes random parts (rectangles) of the input image by replacing its
pixel values with unit gaussian noise (Figure .

Other approaches include adding (gaussian) noise to the whole image

(Figure , salt and pepper noise, blurring (gaussian in Figure motion,
..) and even applying jpeg compression.

(e): hue (f): erasing (g): noise (h): blur

Figure 2.4: Examples of various photometric transformations

B 2.2.3 Face-specific transformations

While tackling the problem of Unconstrained Face Recognition, the authors
of [25] developed a face-specific augmentation, which takes into consideration
the 3D shape and appearance of faces. Using this information they are able
to generate multiple views on a person’s face in many yaw angles and even
with different 3D face shapes. See Figure for generated examples.

Their method greatly improves the variability of the training examples,
thus either improving the accuracy of the trained model or reducing the
needed number of training examples to achieve the same accuracy. It is also
complementary to the above presented generic image augmentations.

B 2.2.4 Mixup augmentation

Mixup augmentation is based on the prior knowledge that linear interpo-
lations of the input feature vectors should lead to linear interpolations of
the associated targets [17]. Therefore, it is applicable only for classification
tasks. It creates training examples online, each time from exactly two existing
examples by linearly interpolating them and their targets. For every pair there

6



2.3. Comparison to our method

(b): Examples of rendered faces with different yaw angle and shape

Figure 2.5: Examples generated from a single picture [25]

is a new interpolation coefficient sampled from the Beta distribution with
its parameters a = 3, where « is the hyperparameter. For o = 1 the Beta
distribution becomes uniform distribution ¢/(0, 1), while values a € [0.1, 0.4]
which favour sampled values closer to 0 or 1 are suggested.

Employing this augmentation method encourages the model to behave
linearly in-between training examples. See Figure [2.6| shows an augmented
example together with its two original examples.

B 23 Comparison to our method

Our method is a face-specific method. It aims at guiding the model to be
identity-invariant. It does so by stitching together several parts of people’s
faces, i.e. it is a many-to-one augmentation method. The following section
explains it in detail.
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(a): age 44: 100% (b): age 44: 40 %, 23: (c): age 23: 100 %
60 %

Figure 2.6: Example of a mixup-augmented image @, together with its two
source images @ and linearly interpolated with coefficient of 0.4



Chapter 3
Proposed method

This chapter presents in detail the proposed method for human face synthesis.
The goal of the method is to augment datasets of faces with known age and
gender, e.g. to inflate underrepresented categories.

Each new synthetic image is created by stitching together face parts from
selected annotated images. The assumption is that if the input faces are of
the same age, gender, have similar pose and expression, then the resulting
synthetic face will appear realistically and will preserve the age and gender
attributes.

For example, the input can consist of four face images of people with
different identities, all having the same age, gender and similar pose. The
output will be a single face with a non-existent identity which borrowed eyes
from the first input face, mouth from the second, the rest of the face from
the third and its hair together with the background from the fourth.

The method works in several steps. First, we estimate location of the
face together with its facial landmarks within each image. Then, from the
position of the facial landmarks we estimate the pose (i.e. the yaw and the
pitch angles) and the expression of the face.

Preprocessing Synthesis

Original images | »  Face localization > Grouping

Stitching

Y
A

Landmarks detection

Pose and expression Seamless cloning Synthetic images
estimation

Figure 3.1: An overview of the processing pipeline

Having the preprocessing steps completed, we can proceed further to the
next step — the grouping of images. In this step we create tuples of compatible

9



3. Proposed method

images, i.e. faces of the same age and gender, similar pose and expression.
These tuples of images are then in the last two steps iteratively transformed
into the final new, synthetic image.

FEach step will be discussed in detail in the following sections, Figure |3.1
shows an overview of the method and Figure [3.7] shows a concrete example of
four faces being stitched together.

. 3.1 Face localization

The first step of the whole pipeline is the face localization within the image
at hand. Given an input image I a localization algorithm L; will output a
rectangular bounding box B within the image I, which surrounds the face
present in the image:

Ly: I — B, where B surrounds face in [

We use a Waldboost-based commerciaﬂ face detector [35]. Once a rectan-
gular bounding box is known, the next step is to locate a predefined set of
facial landmarks within the face.

. 3.2 Facial landmarks detection

The proposed method is based on swapping semantically same parts of several
face images. The face parts are defined with respect to a set of fixed facial
landmarks, detection of which is described below. The detected landmarks
are also used for the pose and expression estimation as described in the next
section.

Given an image I and a bounding box B, a facial landmarks detection
algorithm L, returns a predefined set of facial landmarks F":

L,:(I,B)— F, whereF € {(x;,y;)|i€[0..67]}

In particular, we use a set of 68 landmarks. Please refer to Figure for an
overview of facial landmarks.
We use 2D Face alignment library [5] to solve this task.

B 3.3 Pose and expression estimation

When creating the synthetic face, we want to stitch together parts of faces
with similar pose and expression. This section describes how the pose and
expression are estimated.

LCourtesy of Eyedea recognition, Ltd. http://www.eyedea.com

10
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(a): The complete set of 68 facial (b): An example of a successful
landmarks landmarks detection

Figure 3.2: Facial landmarks

Bl 3.3.1 Estimating the pose

Out of the three angles (yaw, pitch and roll) which fully describe the face
pose in 3D, we use only yaw and pitch as it’s easy to correct for roll difference
between two faces e.g. by rotating the image of one of them.

We model each face by a single 3D shape obtained by averaging 3D shapes
of a large number of faces. As we have already detected the 2D landmarks
(in Section 3.2)) and we have a 3D average shape of them as well, we obtain
the desired angles by solving the Perspective-n-Point problem [I4].

The PnP problem finds a 3D pose (p € R3, (¢, 0,1) € R?) of a perspective
camera, such that the projection of the 3D shape into 2D would return the
detected 2D landmarks. See Figure |3.3|for visualization of the problem setup.

Since we know the pose of the 3D shape, the estimated angles ¢, 0,1 of
the camera describe the pose of the face captured by the 2D landmarks.

Bl 3.3.2 Estimating the expression

The most significant difference in expression which the stitching algorithm
wasn’t able to correct for is the mouth openness. Mouth openness is calculated
from detected facial points F"

O :F — [0,1] (3.1)
| F61—For ||+ Fo2—Fos| 4| Fo3—Fes |

3
e || F21 — Fs[+|| Foo — F|| (3'2)
2

It is the average distance between inner points marking the lips normalized
by the height of the face, which is calculated as the average distance between
the lowest chin point and innermost eyebrows points. The bigger the value,
the more is the mouth opened.
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Figure 3.3: The PuP problem setup [4]

3.4 Images grouping

This preprocessing step creates (K + 1)-tuples of faces whose parts will be
stitched together to create the new synthetic face. Each tuple consists of

one

destination face and K source faces. Grouping of the faces into the

(K + 1)-tuples is driven by the following criteria/restrictions:

Small bounding box relative size difference between each source face and
the destination face.

Similarly, the yaw, pitch and mouth openness (i.e. the pose and expres-
sion) of each source face must be close to the pose and expression of the
destination face.

Each face part can be used only limited number of times.
No source face part can be used more than once in each destination face.

We want to generate N new examples, which utilize the available original
faces as uniformly as possible.

When creating synthetic images we use a list of K schemes which influence
the grouping and govern the stitching process; i-th source face in each (K +1)-
tuple corresponds to the i-th scheme. More specifically, each scheme defines
the following:

the face part (and its boundary) which will be transferred,

whether mouth openness of the source face is checked against the desti-
nation face, and

other stitching process parameters, which are discussed further in Sec-
tion [3.6.

12



3.5. Stitching

Our greedy algorithm for finding the (K + 1)-tuples has two core steps.
First, it creates a set of all compatible source faces for each destination face
and each scheme. Then, it greedily tries to create (K +1)-tuples while meeting
the requirements and restrictions.

Algorithm [1/shows pseudocode of our algorithm, which further call functions
in Algorithm [2| and [3|

B 35 Stitching

The final step in creation of the synthetic face is the face stitching algorithm. It
is responsible for transferring face parts from source images to the destination
image. In short, having a (K + 1)-tuple of images, the stitching algorithm for
each source face and the destination face iteratively performs the following
steps:

1. From the faces’ landmarks it computes corresponding face part points.

2. On the pointwise averaged face part points it computes Delaunay trian-
gulation [8] and imposes it back on the original points.

3. It transfers corresponding triangles from the source face to destination
face by applying affine transform on each.

4. Tt applies seamless cloning [3I] to blend the inserted part into the
destination face.

The mentioned steps are further discussed below.

B 3.5.1 Computing face part points

A face part is described by a set of points calculated from the 68 facial
landmarks. It consists of two parts:

® A set of new points, where each point is defined as a convex combination
of three facial landmarks. These three facial landmarks form an enclosing
triangle in the Delounay triangulation performed on an average 2D face
shape.

® A subset of original landmarks contained within the convex hull of the
newly added points.

Fach scheme defines its own coefficients for the convex combinations and
the subset of the original landmarks (i.e. defines its own face part and the
boundary of the face part).

We defined the face parts manually. Figure 3.4 shows a mouth part specified
within the editor.

2Defined as average of the width and the height of the bounding box
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Algorithm 1 Grouping algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:

14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

function GROUPING(J, ¢, 0, T, n, K, N)
Input
§;  size of the i-th face bounding box?
¢; yaw of the i-th image

0; pitch of the i-th image
Ts coefficient for the bounding box size threshold
Ty yaw difference threshold
To pitch difference threshold
7, mouth openness difference threshold
T. usage count threshold
n  number of input images
K number of schemes
N number of desired generated images
Output
@ set of (K+1)-tuples of image indices
Q<+ 0
I+ {1..n}
C,J + In1T(d, ¢, 0, T, n, K)
while |I| > 0 do > while there is any destination face
for i € I do
T < TrRYFINDSOURCEFACES(i, 7., C, K, J)
if ) ¢ T then > all K source faces set
To <1 > set the destination face
Q<+ QuU{T}
if |Q| = N then
return Q) > NN tuples created
end if
for k=0..K do
C’éﬁk — Cﬁ +1 > increment usage counters
if £ > 0 then

JF « JF\{T}} © forbid usage of these source face
parts again for i-th destination face
end if
end for
end if
if ) €T or Coozﬁthen
I+ T1\{i}
end if
end for
end while
return Q) > less than IV tuples created
end function
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3.5. Stitching

Algorithm 2 Init function of the grouping algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:

22:
23:
24:

25:
26:
27:
28:

Input
0

function INIT(d, ¢, 6, T, n, K)

size of the i-th face bounding box

¢; vyaw of the i-th image

f; pitch of the i-th image

Ts coefficient for the bounding box size threshold

Ts yaw difference threshold

To pitch difference threshold

7, mouth openness difference threshold

T. usage count threshold

n  number of input images

K number of schemes
Output

C  counters

J  sets of image indices for j-th image and k-th scheme
fori=1..ndo

CY 0

for k=1..K do

CF+0

Jﬁe{j:l..n‘z’?ﬁj, (1—7:5)6i§5j§(1+7:3)5i}
JEe T =1 ] 16— 6| > T}

JEe T\ {i=1. 0] 10— 05 > T}

if k-th scheme applies the mouth openness threshold then

Jf%{]@k\{jzl..n"Mz‘_ﬂj‘>77i}
end if

end for
end for
return C, J
29: end function

Coefficients w1, x2, x3 € R are found for each new point p € R? by solving
the following quadratic program:

arg min x3 + l’% + :1:%
r1,r2,23€ER

s.t. ria + x0b+ 3¢ =P (3.3)
1 +a2+a3=1

x1,x2,23 >0

where a, b, c € R? are the vertices of the enclosing triangle.
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3. Proposed method

Algorithm 3 Tries to create tuple of K source faces for i-th destination face

1: function TRYFINDSOURCEFACES(i, T¢, K, J)

2 Input

3 i the destination face index

4: T. usage count threshold

5: C  counters

6 K number of schemes

7 J  sets of image indices for j-th image and k-th scheme
8 Output

9: T  (K)-tuple of source face indices
10: for k=1..K do
11: T, < 0
12: for j € Jik do
13: if j ¢ T and C'j‘!f < 7. then
14: T <~ j > j is the k-th source face
15: break
16: end if
17: end for
18: end for
19: return T

20: end function

S

2z
Ay ¥4

\A

1500 A

1000 ~

500 ~

0 500 1000 1500 2000 2500

Figure 3.4: Average 2D facial landmarks with their Delaunay triangulation (in
blue) with a mouth part (new points in green, subset of original landmarks in
red)
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3.5. Stitching

B 3.5.2 Computing joint triangulation

We need to calculate a joint triangulation on two sets of points in a 2D-
plane [9] to have a set of corresponding triangles, which can be later used
for image transfer. Note that triangulation of a set of points is not unique.
Note also that a triangulation found for one set of points might not be a
triangulation on another set of points in general (due to overlapping triangles).

Since we are dealing only with faces with similar pose and expression,
the relative location of detected landmarks is similar as well. Therefore,
we simplify the problem of joint triangulation by performing the Delaunay
triangulation only on the pointwise averaged face part points (see Figure 3.5c))
and posing the triangulation back on the two original sets. Additionally,
we remove all triangles which happen to cover area outside of the face part
boundary. We find triangles outside of the boundary when the boundary
happens to be non-convex, e.g. for the mouth part when a person is smiling.

See Figure 3.5| for visualization of the whole process.

B 3.5.3 Transferring corresponding triangles

To transfer a face part from the source face to the destination face we transfer
(and transform) the corresponding triangles obtained in the previous step.

Two corresponding triangles give us 3 pairs of corresponding points, which
uniquely define an affine transform. This affine transform is then used to
transform the source triangle to match the shape of the destination triangle
and to replace its bitmap.

This process is repeated for all triangles of the current face part and hence
transferring the bitmap of the source part to the destination part. Figure[3.6c
illustrates this on a mouth part.

B 3.5.4 Seamless cloning

Due to various differences e.g. in the skin tone, skin texture, lighting conditions,
etc., the resulting stitched face almost always actually appears stitched, i.e.
the stitched parts can be easily seen and distinguished.

To alleviate this, we apply the seamless cloning, which is an algorithm
based on the Poisson Image Editing [31]. It ensures the compliance of source
and destination boundaries, while preserving the bitmap intensities’ gradient
of the inner part, thus eliminating visibility of the boundary and making the
stitched part blend in.

Compare Figures [3.6¢c/ and [3.6d| to see the effect of seamless cloning. The
boundary becomes indistinguishable and the stitched part blends with the
rest of the image. However, the lighting might look unnatural in the context
of the scene.

17
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(c): Source face landmarks (blue) affinely transformed
(minimizing squares error) to match the destination face
landmarks (green) and their pointwise average with the
corresponding Delaunay triangulation (red)
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(d): Source face landmarks with im- (e): Destination face landmarks with
posed triangulation imposed triangulation

Figure 3.5: The process of obtaining the joint triangulation on two corresponding
sets of points. (&) and (b) show source and destination face part landmarks,
shows the found triangulation and @ and @ shows the found triangulation
posed back on the original source and destination points
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3.6. Additional stitching parameters

(a): Source (b): Destination

(c): After stitching (d): After seamless cloning

Figure 3.6: Transferring the mouth part

B 3.6 Additional stitching parameters

There are two additional stitching parameters specified for each scheme. They
control how much of the source bitmap and the source shape is transferred
to the destination. Figure [3.8 explains the effect of varying both parameter
values.

Bl 3.6.1 Controlling the shape transfer

It is not necessary to preserve the shape of the destination face part. Only
the boundary points must remain to ensure the transferred face part gets
stitched into the right place. Otherwise, the rest of the points can potentially
be altered as long as they stay within the boundary.

Therefore, the 5 € [0, 1] parameter is introduced. It controls linear interpo-
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Whole face region

Seamless
cloning

Eyes region

Seamless
cloning

Mouth region

Seamless
cloning

Figure 3.7: A simplified overview of the process of creating a synthetic face from
three source faces (left) with the destination image at the top and the result at
the bottom
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3.6. Additional stitching parameters

lation from the original destination shape to the new source shape. l.e. after
the affine transformation of the source part points to the destination face
part points (minimizing squares error of the corresponding boundary points),
each new destination shape point within boundary is calculated as:

pdstinew = 5psrc + (1 - 5)pdst’ ﬁ € [07 1] (34)

Bl 3.6.2 Controlling the bitmap transfer

Another option is to transfer the bitmap partially. The « € [0, 1] controls
the linear interpolation between the original destination bitmap to the new
stitched bitmap. Each resulting pixel ¢ € [0..255]3:

Cres = OCstitched T+ (1 - a)coriginah o€ [07 1]' (35)

In such a case when o < 1 and 5 > 0 (i.e. the bitmap is not transferred
fully and the destination shape has been altered), the above Equation (3.5)
cannot be applied as the altered face part points do not align. Therefore,
there is an additional stitching step which alters the destination face part
from its original shape to the new shape. Only after that the bitmap linear
interpolation is performed.
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source destination

Figure 3.8: The result of transferring the whole face with different o and
parameter values
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Chapter 4

Experiments

In this chapter we go over several experiments we conducted to evaluate the
proposed method. First we present the used datasets in more detail, we also
visually analyze the synthetized faces. Then we introduce the metrics used to
evaluate the performance of the trained models, the architecture of the used
model, we shortly describe how it was trained and evaluated, and finally we
present the experimental results.

. 4.1 Datasets used

The experiments were conducted using two versions of the MORPH [32]
dataset: the full one (morph) and a subsampled one (morph300). See Fig-
ure 4.1 for illustration of their respective distributions of examples for ages.

As the morph dataset in many cases contains several photos of a single
individual, it is split into 10 non-overlapping folders, where no two folders
contain a photo of the same individual. Therefore, one can easily split the
dataset into training, validation, and testing parts without photos of the same
individual leaking from the training part into the rest.

The subsampled version (morph300) contains only three folders (preserving
the above mentioned properties), while adding the property that the distri-
bution of examples across ages is uniform — exactly 300 per age category in
each fold. A dataset with a uniform distribution reduces the complexity of
the evaluation process.

B a2 Synthetized examples

The grouping process proposes tuples of faces which are eligible for new face
synthesis under the defined conditions, such as: same age, gender, similar
pose, etc. Unfortunately, there are still many reasons why the synthesis might
fail and produce a new face with artifacts that are easily noticeable by a
human eye. Too different skin tone/lighting, dissimilar face part shape or
hair/glasses intrusion at the boundary of a face part are the most common
ones. Figure 4.2 shows examples of such failures happening when synthetizing
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Figure 4.1: Distributions across ages for the full and subsampled morph datasets

images from the morph dataset, while Figure shows successful examples
even in more challenging situations.

B a3 Age Estimation Task

We frame the age estimation problem as a standard classification task. Given a
grayscale input image x € [—1, 1]54*%4 we use CNN to estimate the conditional
probability distribution Pr(y | x), y € C, where C is a set of all possible ages.
Having the conditional probability Pr(y | «), the age is estimated by the
plug-in Bayes rule

g=argminR(y | x) (4.1)
y
where
Ry lz) =D Pr(y | @) Lprea(y’,y) (4.2)
y'ey

is the conditional risk, and

Lpred(y/a y) = ’y, - y| (4'3)

is the target loss function, i.e. we aim to minimize the absolute error.

. 4.4 Evaluation metrics

In our experiments we use two evaluation metrics common in age predic-
tion: the Mean Absolute Error (MAE), and the Cumulative Score at 5
(CS5). We also use a modification of the MAE: the Per Class Mean Abso-
lute Error (PCMAE) which we introduce to compensate for a highly non-
uniform age distribution present in the datasets. Given an evaluation set
S ={(yi, i) | i € [1..n]} of n pairs (y;,9;) of ground truth age (y;) and the
predicted age (9;), we further describe the evaluation metrics more in detail.
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4.4. Evaluation metrics

(c): Hair intrusion at the boundary of a face part

Figure 4.2: Examples of different types of failure cases. The synthetic face is
generated by the proposed method from 4-tuples of images, from left to right:
source images for the (whole face part, eyes part, mouth part), the synthetized
image (in GREEN), and the destination image

B 4.4.1 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) metric captures the mean absolute difference
between the predicted and the ground truth age:

1 & .
i=1

In other words, we obtain an estimate on how much off our prediction would
be (on average), if we were to draw new examples from the same distribution
as was used for the evaluation.

B 4.4.2 Cumulative Score 5 (CS5)

Another common evaluation metric is the Cumulative Score at 5 (CS5). This
metric is equal to the percentage of examples whose predicted age is at most
5 years away from the ground truth age:

085(8) = £ 3" — il < 3], (45)
1=1
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(c): Large yaw angle, different skin tones

Figure 4.3: Success cases in more challenging scenarios, from left to right: source
images for the (whole face part, eyes part, mouth part), the synthetized image
(in GREEN), and the destination image

where [A] is the Iverson bracket which is 1 if A is true and 0 otherwise.
Intuitively, it is the percentage of faces on which the prediction is satisfactory.
Similarly to the MAE, this metric also depends on the age distribution of the
evaluation dataset.

B 4.4.3 Per Class Mean Absolute Error (PCMAE)

Since the age distributions of the examples in the datasets we experimented
with are often concentrated around middle ages and other categories are
poorly represented, we came up with a modification of the MAE metric which
tries to compensate for that. We named it the Per Class Mean Absolute
Error (PCMAE). To calculate its value, one has to partition the evaluation
set into |C| partitions S, where C' is the set of all age categories:
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4.5. Model architecture

Using S, partitions, one can calculate the PCMAE metric:

1
PCMAE(S) = cl > MAE(S,) (4.7)
ceC
S|
1 1
C| 2 Syl

It is computed as an average of MAEs calculated for each S. (eq. (4.7)),
which turns out to be a weighted MAE (eq. (4.8)). When the distribution
of examples among classes is uniform, i.e. |S1| = |S2| = --- = [S|¢|, then all
weights become equal and MAE(S) = PCMAE(S). Unlike MAE and CS5,
the PCMAE is a metric which does not dependent on the age distribution.

. 4.5 Model architecture

We experimented with several CNN architectures, including fairly simple
custom CNN architectures, as well as the well known ResNet [16] architectures.

The advantage of more complex and deep models is their higher expressivity.
They are able to accomplish various hard, image-related tasks with great
performance. However, this doesn’t come for free. Such models require vast
amounts of data and computation time to train, especially when trained from
scratch.

As we don’t have the necessary amount of data to train such models
properly, they ended up overfitting the training dataset. Therefore, we also
experimented with using pretrained models and only fine-tuning them, e.g.
by replacing the last layer to meet our needs and training only last [ layers
with decreased learning rate. This approach yielded better baseline results,
however it also introduced influence from the pretraining dataset and other
variables which might affect our experiments.

Therefore, we decided to use only a simpler CNN architecture which empir-
ically works well for age prediction task and is not that resource consuming to
train. This simpler architecture still has over 2 million trainable parameters.
Table [4.1! lists all its details.

B a6 Image preprocessing and augmentation

As described in the previous Section, our model expects a fixed-size grayscale
image on its input with a centered face. To achieve this, we first fit a
rectangular boundary so that it tightly encapsulates the detected facial
landmarks. Then, we symetrically enlarge the shorter side to make the
boundary square. Once it is square, we inflate it by 25 %, crop the image to
it and resize the cropped image to the desired size (64 x 64). Finally, the
image gets converted to grayscale and its pixel values get normalized from
[0..255] to [—1,1].
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Layer type ‘ Configuration

Input ‘ 64 x 64 grayscale image
Conv+BN+ReLLU ‘ filters: 32, kernel: 3 x 3, stride: 1, padding: 0
Conv+BN+ReLLU ‘ filters: 32, kernel: 3 x 3, stride: 1, padding: 0
MaxPool ‘
Conv+BN+ReLU ‘ filters: 64, kernel: 3 x 3, stride: 1, padding: 0
MaxPool ‘
Conv+BN+ReLU ‘ filters: 64, kernel: 3 x 3, stride: 1, padding: 0

Dropout ‘ p=0.5
MaxPool ‘
Conv+BN+ReLLU ‘ filters: 128, kernel: 3 x 3, stride: 1, padding: 0

Dropout ‘ p=0.5

Conv+BN+ReLU ‘ filters: 256, kernel: 3 x 3, stride: 1, padding: 0
Dropout ‘ p=0.5
(Flatten) ‘

FC+BN+Relu | input: 256, output: 1024
FC+BN+Relu | input: 1024, output: 1024
FC+Softmax ‘ input: 1024, output: 31 (morph300) or 62 (morph)

Table 4.1: The used CNN architecture, the output dimensionality is either 31
(for morph300 dataset) or 62 (for morph dataset)

B 4.7 Model training

We train parameters of the CNN using the standard cross-entropy loss which
corresponds to the maximum-likelihood estimate of the conditional probabili-
ties Pr(y | ). We use the Adam optimizer [20] with its default settings (i.e.
learning rate = 0.001).

The dataset is always split into three (training, validation, and testing)
parts for training. That way we can monitor the performance of the model
on unseen data during training. Specifically, we calculate the PCMAE metric
on the validation set after each epoch and keep the best performing model.
We (early-)stop the training process when the validation PCMAE does not
improve for 75 consecutive epochs.

To utilize the available data better, we apply some of the common aug-
mentation methods. Specifically, during training each image gets randomly
rotated by up to £10°, randomly translated by up to +3px both horizontally
and vertically, and horizontally flipped with 50 % probability.
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B 4.8 Evaluation protocol

As described more in detail in Section [4.1, both the morph and the morph300
datasets consist of several folders. To have a better estimation of the resulting
metrics, we perform a version of the K-fold cross-validation in our experiments.
We perform 3-fold cross-validation on the morph300 dataset and 10-fold cross-
validation on the morph dataset in all experiments. Table |4.2 summarizes
this in more detail.

dataset training folders validation folders testing folders # folds

morph300 1 1 1 3
morph 7 2 1 10

Table 4.2: Cross-validation folds

B a9 Varying the number of training examples

We aimed to verify that increasing the number of training examples improves
the model’s performance and that it would benefit from using additional,
possibly synthetically generated, training examples. We subsampled the
training dataset at various fractions to simulate the effect of adding real
training examples. The subsampling preserves the age distribution of the
full training dataset of each folder. This experiment was performed on both
datasets.

Unfortunately, the MORPH dataset in many cases contains multiple photos
of the same individual. Hence, subsampling at various fractions of the number
of training examples doesn’t necessarily lead to the same fraction of identities
present, i.e. adding plenty of training examples might lead to adding only a
few new identities.

As our method aims at producing examples of new synthetically generated
identities, we decided to conduct a different version of this experiment, which
ensures that with adding new training examples the number of identities
increases as well. Instead of subsampling, we vary the number of folders the
training dataset is made of. This is not possible for the morph300 dataset, as
there are not enough folders to work with (see Table 4.2).

Tables 4.3 and 4.4 summarize the average number of training examples the
model was trained with when the training dataset was subsampled using the
fractions and folders methods, respectively.

10% 15.8% 251% 39.8% 63.1% 100 %

morph300 930 1474 2336 3702 5868 9300
morph (£6.3%) 3856.7 6112.3 9687.4 15353.6 24333.8 38566.5

Table 4.3: Average training dataset sizes at various fractions; size of the morph
dataset varies across folds, hence the standard deviation
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# of folders morph

1 5509.5 + 21.9 %
2 11019.0 +£18.2%
3 16528.5 + 14.7%
4 22038.0 £12.3%
) 27547.5 £10.2%
6
7

33057.0+£8.2%
38566.5 + 6.3 %

Table 4.4: Average training dataset sizes at increasing number of folders

Both Figures |4.4] and 4.5/ show improving prediction error as the number
of examples increases. Moreover, the endings of the trends suggest that the
model would benefit from having even more training examples. Note that the
error values are incomparable between the morph300 and the morph datasets,
as they have different age ranges.

We also see from Figure [4.5 that if we have two equally-sized training
datasets, the model trained on the one which contains more identities will
have more acurate predictions on the testing data. In other words, adding
examples of novel identities helps more than adding examples of the identities
already present.

—&— train

—a— test

2’10 2’11 2’12 2’13
# training examples

Figure 4.4: Training and testing MAE achieved on the subsampled morph300
dataset

. 4.10 Grid search

As discussed in Chapter [3, our method has multiple parameters which affect
how new faces are synthetized — one can choose which face part(s) will be
transferred, control the bitmap transfer parameter («) and the shape transfer
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—&— train (fractions)
2.0 —#&— train (folders)
' —&— test (fractions)
—&— test (folders)
3.5 1
w
<30
2.5 A
2.0 A

12 513 Jl4 215
# training examples

Figure 4.5: Training and testing MAE achieved on the subsampled morph
dataset using two methods of subsampling (fractions and folders); fractions
corresponds to adding new examples of identities that might have already been
in the training set, and on the other hand, folders corresponds to adding examples
of new identities, none of which have been in the training set

parameter (). No less important variable is the number of training examples
generated.

We decided to perform an exhaustive evaluation of all combinations of
parameter values (i.e. a grid search) to analyze how they influence the model’s
performance and to ultimately find the best one for our setting.

Thanks to its uniform distribution and manageable computation demands,
only the morph300 dataset was used in this experiment. In total we generated
over 3 million synthetic images for this experiment.

B 4.10.1 Face parts

We defined three face parts for this grid search: the Whole Face (W) part,
the Eyes (E) part, and the Mouth (M) part. As the naming suggests,
the Whole Face part transfers the whole face, i.e. the inner region defined
by the outermost points. The Eyes and the Mouth part both transfer the
corresponding face part extended by some margin. Figures|4.6al, 4.6b, and [4.6¢|
show the respective face parts.

All possible combinations of the face parts were tried in the grid search.

B 4.10.2 Bitmap and shape transfer parameters

Both parameters have limited interval of possible values: «, 3 € [0, 1], where
values closer to 0 mean smaller change in the resulting image. All the
combinations under and including the antidiagonal shown in Figure |3.8 were
tried in the grid search.
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(a): Eyes part (b): Mouth part (c): Whole Face part

Figure 4.6: All defined face parts for the grid search

B 4.10.3 Number of examples generated

As Figure 4.4 suggests, it is necessary to at least double the number of training
examples to obtain measurable improvements. Therefore, we tried doubling
and tripling the training dataset size in the grid search.

B 4.10.4 Results

Table 4.5 summarizes all the values tried in the grid search.

Unfortunately, the results in Table [4.6/suggest that there is no configuration
of parameters which would give us a significant improvement over the baseline.
In other words, no matter how we generate synthetic examples using our
method, adding them to the training dataset has no or very little effect on
the model’s performance.

We chose one scheme (face parts = W+M, a« = 1, § = 1; in Table 4.6
highlighted in blue) which we examine further in the subsequent experiments.
Extending the training dataset using synthetic examples generated using this
scheme has one of the highest improvements on both the validation and on
the testing MAE when the standard deviation is taken into account. More
specifically, the MAE dropped on the validation set by 0.067 + 0.034 and on
the testing set by 0.061 + 0.032, which is roughly a 2% improvement.

As the morph300 dataset is uniform in the age distribution, the PCMAE
values are equal to the MAE values and are thus omitted. We also delay
showing CS5 values to further experiments.

Parameter name possible values
Face parts E; M; W; E+M; W+E; W+M; WH+E+M
o, (0,1); (1,0); (0.5,0.5); (0.5,1); (1,0.5); (1,1)

Amount of data generated 100 %; 200 %

Table 4.5: Grid-searched parameters together with their searched values
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4.10. Grid search

Face parts « 153 % train MAE val MAE test MAE

morph300 — — — 2.23 £ 0.11 3.14 +£ 0.04 3.16 £ 0.01
E 0.0 1.0 100 —-0.12 &+ 0.20 —0.00 =+ 0.06 —0.01 £ 0.02
E 0.0 1.0 200 —0.13 £+ 0.26 0.02 £ 0.06 0.02 £ 0.02
E 0.5 0.5 100 —0.25 &+ 0.16 —0.00 £ 0.08 —0.01 &+ 0.03
E 0.5 0.5 200 —0.12 + 0.16 —0.01 + 0.07 0.00 = 0.02
E 0.5 1.0 100 —-0.12 &+ 0.17 —-0.01 =+ 0.06 —0.02 £+ 0.03
E 0.5 1.0 200 —0.17 £ 0.14 0.02 £ 0.07 —0.00 &= 0.04
E 1.0 0.0 100 0.01 &+ 0.17 0.01 £ 0.05 —0.01 & 0.03
E 1.0 0.0 200 —0.17 £ 0.11 0.00 £ 0.06 0.00 £ 0.06
E 1.0 0.5 100 —-0.09 &+ 0.12 —-0.02 + 0.06 —0.01 £ 0.04
E 1.0 0.5 200 —0.09 + 0.22 0.01 £ 0.08 —0.00 &= 0.06
E 1.0 1.0 100 —-0.03 = 0.11 —0.01 + 0.06 —0.02 £+ 0.03
E 1.0 1.0 200 —0.10 £ 0.12 —0.01 £ 0.07 0.01 £ 0.05
M 0.0 1.0 100 —0.08 = 0.14 —0.01 = 0.05 —0.03 £ 0.05
M 0.0 1.0 200 —0.14 £ 0.11 —-0.00 &+ 0.06 —0.01 &+ 0.02
M 0.5 0.5 100 —0.14 £ 0.17 —0.03 £ 0.06 —0.03 = 0.07
M 0.5 0.5 200 —0.19 £ 0.17 —-0.02 &= 0.08 —0.03 &+ 0.07
M 0.5 1.0 100 —0.08 &+ 0.20 —0.01 £ 0.06 —0.02 + 0.01
M 0.5 1.0 200 —0.16 £ 0.17 —0.02 &+ 0.08 —0.03 £ 0.04
M 1.0 0.0 100 —0.07 &+ 0.15 —0.01 = 0.06 —0.02 £+ 0.04
M 1.0 0.0 200 —0.23 + 0.12 —0.01 &+ 0.06 —0.02 £ 0.04
M 1.0 0.5 100 —0.20 &+ 0.13 —0.02 £ 0.06 —0.03 = 0.04
M 1.0 0.5 200 —0.17 £ 0.14 —-0.02 &+ 0.06 —0.03 &= 0.03
M 1.0 1.0 100 —0.10 &£ 0.11 —0.03 £ 0.08 —0.02 + 0.03
M 1.0 1.0 200 —0.13 £ 0.11 —-0.03 &£ 0.04 —-0.02 = 0.07
W 0.0 1.0 100 —0.09 &+ 0.12 —0.04 £ 0.05 —0.03 + 0.05
W% 0.0 1.0 200 —0.00 = 0.13 0.01 £ 0.06 —0.03 &+ 0.04
A% 0.5 0.5 100 —-0.22 + 0.12 —-0.01 &+ 0.05 —0.03 &+ 0.04
W 0.5 0.5 200 —0.24 + 0.13 —-0.02 + 0.05 —0.01 &+ 0.03
W% 0.5 1.0 100 —0.10 &£ 0.16 —0.03 £ 0.06 —0.04 + 0.02
A% 0.5 1.0 200 —0.09 &+ 0.17 —0.02 £ 0.07 —0.03 £ 0.04
W 1.0 0.0 100 —0.02 &+ 0.16 —0.03 £ 0.05 —0.06 + 0.02
W% 1.0 0.0 200 0.07 £ 0.11 —0.04 &+ 0.06 —0.06 £ 0.02
A% 1.0 0.5 100 —-0.01 + 0.16 —0.04 = 0.06 —0.06 &= 0.03
W 1.0 0.5 200 0.04 + 0.25 —0.05 &+ 0.07 —0.06 £ 0.03
W 1.0 1.0 100 —0.01 &£ 0.12 —0.05 £ 0.06 —0.06 = 0.02
%% 1.0 1.0 200 —0.01 £ 0.11 —-0.07 &£ 0.06 —0.09 &+ 0.04
E+M 0.0 1.0 100 —-0.12 &+ 0.14 —-0.00 =+ 0.05 —0.01 £ 0.02
E+M 0.0 1.0 200 —0.14 £+ 0.12 —0.01 £ 0.07 —0.03 £ 0.04
E+M 0.5 0.5 100 —-0.11 &+ 0.11 —-0.01 =+ 0.05 —0.02 £+ 0.02
E+M 0.5 0.5 200 —0.23 £ 0.12 —-0.02 &£ 0.06 —0.04 &= 0.01
E+M 0.5 1.0 100 —0.07 = 0.14 —0.01 £ 0.06 —0.03 = 0.04
E4+M 0.5 1.0 200 —0.17 £ 0.16 —0.01 + 0.06 —0.03 & 0.02
E+M 1.0 0.0 100 —0.00 &= 0.12 —0.03 £ 0.05 —0.03 &+ 0.03
E+M 1.0 0.0 200 —0.10 £ 0.13 —0.03 + 0.05 —0.03 + 0.02
E4+M 1.0 0.5 100 —0.04 &+ 0.12 —0.04 £ 0.06 —0.06 = 0.04
E+M 1.0 0.5 200 —0.04 £ 0.12 —0.02 + 0.07 —0.04 & 0.03
E+M 1.0 1.0 100 —0.06 = 0.12 —0.04 £ 0.08 —0.03 + 0.03
E4+M 1.0 1.0 200 —0.13 £ 0.22 —-0.02 + 0.06 —0.04 + 0.05
W+E 0.0 1.0 100 —0.10 &+ 0.14 —0.03 £ 0.06 —0.03 + 0.03
W+E 0.0 1.0 200 —0.14 £ 0.12 —-0.03 &+ 0.09 —0.03 &+ 0.05
W+E 0.5 0.5 100 —0.19 &£ 0.15 —0.00 £ 0.07 —0.02 + 0.05
W+E 0.5 0.5 200 —0.21 £ 0.11 —0.00 + 0.06 —0.00 &= 0.02
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4. Experiments

Face parts « B % train MAE val MAE test MAE

morph300 - - - 2.23 £ 0.11 3.14 £ 0.04 3.16 &= 0.01
W+E 0.5 1.0 100 —0.11 £ 0.17 —0.02 £ 0.06 —0.03 £ 0.02
W+E 0.5 1.0 200 —0.18 £ 0.17 —0.02 £ 0.08 —0.02 £ 0.02
W+E 1.0 0.0 100 0.02 £ 0.15 —0.04 £ 0.06 —0.05 £ 0.04
W+E 1.0 0.0 200 0.07 £ 0.19 —0.03 £ 0.06 —0.05 £ 0.04
W+E 1.0 0.5 100 —0.01 £ 0.19 —0.05 £ 0.05 —0.03 &= 0.06
W+E 1.0 0.5 200 —0.07 + 0.16 —0.05 + 0.07 —0.06 + 0.05
W+E 1.0 1.0 100 —0.04 £ 0.17 —0.07 £ 0.05 —0.04 £ 0.02
W+E 1.0 1.0 200 —0.06 = 0.29 —0.05 £ 0.06 —0.09 £ 0.02
W+E+M 0.0 100.0 1 —0.09 £ 0.12 —-0.03 £ 0.07 —0.03 £ 0.03
W+E+M 0.0 100.0 2 —0.11 £ 0.12 —0.00 &+ 0.07 —0.02 £ 0.04
W+E4+M 0.5 000.5 1 —0.20 £ 0.14 —-0.03 £ 0.05 —0.02 £ 0.05
W+E+M 0.5 000.5 2 —0.18 £ 0.12 —0.01 £ 0.07 0.00 £ 0.04
W+E+M 0.5 100.0 1 —0.14 £ 0.12 —-0.02 + 0.06 —0.03 £ 0.07
W+E+M 0.5 100.0 2 —0.22 £ 0.14 —-0.01 £ 0.08 —0.05 £ 0.04
W+E+M 1.0 000.0 1 0.06 £ 0.11 —0.04 £ 0.08 —0.05 £ 0.04
W+E+M 1.0 000.0 2 —0.01 £ 0.12 —-0.04 + 0.08 —0.05 £ 0.04
W+E+M 1.0 000.5 1 —0.05 £ 0.15 —0.03 £ 0.07 —0.04 £ 0.02
W+E+M 1.0 000.5 2 —0.06 £ 0.14 —0.05 £ 0.06 —0.07 £ 0.03
W+E+M 1.0 100.0 1 0.08 +£ 0.11 —0.04 £ 0.06 —0.04 £ 0.02
W+E+M 1.0 100.0 2 0.01 £ 0.22 —-0.04 £ 0.07 —0.06 £ 0.06
W+M 0.0 1.0 100 —0.03 £ 0.21 —0.01 £ 0.07 —0.03 £ 0.01
W+M 0.0 1.0 200 —0.10 + 0.19 —0.02 &+ 0.06 —0.03 + 0.04
W+M 0.5 0.5 100 —0.08 £ 0.12 —0.02 £ 0.07 —0.03 £ 0.04
W+M 0.5 0.5 200 —0.07 = 0.13 —0.00 = 0.06 —0.01 + 0.02
W+M 0.5 1.0 100 —0.16 + 0.19 —0.02 &+ 0.06 —0.04 £+ 0.02
W+M 0.5 1.0 200 —0.12 + 0.17 —0.00 = 0.07 —0.02 + 0.03
W+M 1.0 0.0 100 0.09 £ 0.15 —0.04 £ 0.07 —0.04 £ 0.03
W+M 1.0 0.0 200 0.03 +£ 0.11 —0.03 &+ 0.08 —0.04 £ 0.06
W+M 1.0 0.5 100 0.05 £ 0.20 —0.03 £ 0.08 —0.06 £ 0.05
W+M 1.0 0.5 200 —0.01 = 0.14 —0.04 = 0.06 —0.04 + 0.03
W+M 1.0 1.0 100 0.02 - 0.19 —0.04 - 0.06 —0.04 - 0.03
W+M 1.0 1.0 200 —0.01 - 0.16 —0.07 - 0.05 —0.06 - 0.03

Table 4.6: Grid search on morph300 and the resulting MAE values; E = Eyes,
M = Mouth, and W = Whole face; the chosen scheme for further experiments
is in blue; standard deviations of the difference rows were calculated assuming
independency of the subtracted variables

B a1 Extending the morph dataset

In the previous experiment we found the most promising scheme to use when
generating synthetic images from the morph300 dataset. In this experiment
we take the same scheme and use it for generating synthetic examples from
the morph dataset.
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4.11. Extending the morph dataset

B 4.11.1 Training data

Again, we tried to double and triple the amount of training data. Figure 4.7
shows the average age distribution of the training datasets. Note we were not
able to exactly triple the amount of training data as there were not enough
suitable 3-tuples in some age categories.

—&— train (morph)
#— train (morph + 100 % synthetic)
—#— train (morph + 200 % synthetic)

4000 A

3000 A

2000 1*

# of examples

1000 A

18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75
age

Figure 4.7: Age distributions of the (extended) morph dataset

B 4.11.2 Results

To assess the achieved model’s performance, we plot all three measured
metrics (MAE, CS5, and PCMAE) with varying number of training examples
(shown in Figures |4.8al, |4.8b| and 4.8c, respectively). There, each curve starts
off as a solid line. In this part the training dataset consists entirely of real
examples. Once all of the available real training data is used up, the curve
switches to a dashed style to signify the training datataset is extended by
synthetic examples. This way, the Figures compare the model’s performance
on the extended datasets against the original morph dataset in the context of
how the values developed when real training examples were added.

Unfortunately, the results are very similar to what the exhaustive search
already suggested. All the curves of metrics evaluated on the testing datasets
flatten once the dataset is extended with synthetic examples. Put differ-
ently, the model’s overall performance seems unchanged by adding synthetic
examples generated by our method.

B 4.11.3 Evaluation of MAE per age category

The measured metrics suggest the model does not change its performance
overall. However, evaluation of a model’s performance based on just a few
numbers hides a lot of details and it still might be the case that the models
behave differently e.g. for certain age categories, and that such differences
cancel out when calculating the metrics.
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4. Experiments

Therefore, we decompose the overall (PC)MAE value by plotting MAE per
each ground truth age category in Figure to examine this.

Once again, even such fine-grained analysis tells the same story — the results
of a model trained on the morph dataset is indistinguishable from the models
trained on the extended ones.
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Figure 4.8: Training and testing performance achieved by extending the morph
dataset using synthetic training examples (in dashed lines)

N 212 Examining the differences between real and
synthetic examples

It seems to be the case that adding synthetic training examples generated
by our method does not bring any new useful information to train from.
To determine whether there is actually any difference from the model’s
perspective between real and synthetic examples, we performed the following
experiment: instead of mixing together real and synthetic examples, we
generated a full counterpart to the morph dataset made entirely of synthetic
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4.12. Examining the differences between real and synthetic examples

—— test (morph)
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Figure 4.9: Comparison of MAE decomposition of baseline morph against morph
with 100 % or 200 % synthetic training examples added

examples. Then, we trained our model the same way as before, both on the
morph and this new, synthetic dataset. Once trained, we evaluated each
model on both datasets again, thus obtaining four different evaluations to
compare.

It is important to realize that while the synthetic dataset is different from
the morph dataset, per se, examples present in it are still just combinations
of the examples from the morph dataset. So, even though the model trained
on the morph training dataset has never seen any of the synthetic training
data, it has seen all the images the synthetic ones are stitched from. This is
probably the reason, why the training and testing MAE values differ in row
two of Table |4.7.

This is not always true in the opposite direction. It may happen that there
are same images, which are not used as the source image (for some of the
face parts) or as the destination image. In fact, in our setting it happens that
there is only about 66 % of the morph images used as the source image for
a face part, and about 97.5% of the morph images used as the destination
image. Therefore, there is always approximately 34 % of morph faces, which
the model trained on the synthetic examples has never seen.

Having all the described steps performed, we can evaluate (through the
model’s performance) how the synthetic examples compare to the original ones.
Table 4.7] summarizes the evaluation results. This time we also show the Mean
Conditional Risk (MCR), which is just the conditional risk defined in eq. (4.2)
averaged over examples from given dataset. The MCR can be interpreted as
the model’s prediction of the MAE it will achieve. Figures |4.10al, and [4.10b
show the MAE decomposition for training and testing data, respectively.

In the following subsections we discuss the results of the described experi-
ment.
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4. Experiments

train eval train MAE test MAE train MCR, test MCR

morph morph 2.69+ 0.07 3.13+ 0.07 3.04 £ 0.07 3.07+ 0.06
morph synthetic 3.33+ 0.05 3.51+ 0.08 3.214+ 0.06 3.22+ 0.06
synthetic morph 3.24+ 0.08 3.39+ 0.08 297+ 0.10 299+ 0.12
synthetic  synthetic 2.63 £ 0.08 297+ 0.07 2.99+ 0.10 3.01 £+ 0.11

Table 4.7: Evaluation results on four combinations of training and evaluation
datasets; for example, the second row means the model was trained using the
training (and validation) sets of the morph data, while the evaluation of the
training and testing metrics was done using the respective training and testing
sets of the synthetic data

2l — train (train data: morph, eval data: morph)
train (train data: morph, eval data: synthetic)
181 train (train data: synthetic, eval data: morph)
—— train (train data: synthetic, eval data: synthetic)
154 =" age/10+1
2124
=
9 -
6 -
3
0 T T T T T T T T T T T T T T T T T T T T
18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75
age
(a): train
—— test (train data: morph, eval data: morph)
21 A X .
test (train data: morph, eval data: synthetic) \
181 — test (train data: synthetic, eval data: morph)
—— test (train data: synthetic, eval data: synthetic)
154 =" age/10+1

(b): test

Figure 4.10: Comparison of MAE decomposition of the four combinations of
training and evaluation datasets; the solid lines correspond to row in Table
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4.12. Examining the differences between real and synthetic examples

B 4.12.1 Scenarios where training and evaluation datasets are
the same

These are the two scenarios where the model is trained and than evaluated
on data coming from the same distribution, i.e. the usual way how model
evaluation is done. More concretely, we are comparing the first and the last
rows from Table 4.7

Comparable, but still consistently lower MAE and MCR values achieved on
the synthetic dataset tell us that the model is able to predict the synthetic data
a bit more accurately and is ever so slightly more sure about its predictions.
This in turn suggests that the synthetic data are somehow slightly easier to
fit and to predict.

We supposed the reason for this might be lower variation of face poses in
the synthetic dataset, caused by the necessity to find tuples of images with
similar pose (as described in Section [3.4)). However, it turned out that the
variation of face poses is only slightly lower and even artificially reducing the
variability of face poses in the morph dataset so that it matches kept the
results nearly unchanged.

B 4.12.2 Evaluation data change perspective

In this subsection we compare how the metrics change when the training data
remains fixed and the evaluation data varies, i.e. we keep the model and vary
the evaluation data.

train eval train MAE test MAE train MCR, test MCR
morph morph 2.69 = 0.07 3.13 = 0.07 3.04 = 0.07 3.07 = 0.06
morph synthetic + 0.09 +40.38 £ 0.10 +0.17 £ 0.09 +0.15 = 0.08

synthetic  synthetic 2.63 = 0.08 2.97 + 0.07 2.99 + 0.10 3.01 £ 0.11
synthetic  morph + 0.11 +043 £ 0.11 -0.01 £ 0.14 —-0.02 £ 0.16

Table 4.8: Differences in MAE and MCR caused by changing the evaluation
dataset; rows one and three come from the Table 4.7, rows two and four are
recalculated to show the difference against their respective rows above; standard
deviations in the difference rows were calculated assuming independency of the
subtracted variables; values in green are desired, values in red are undesired (we
would like them to be as close to 0 as possible)

We see in Table [4.8] a desired increase in the training MAE when the
evaluation dataset is different from the one the model was trained on (in
green). This suggests that the synthetic data differ from the original ones
(even though they are synthetised from them).

Unfortunately, we also see an (undesired, in red) increase in the testing
MAE. This suggests the synthetic data are too different from the original ones.
This might by one of the reasons why adding synthetic training examples
does not help.

It is also worth noting, that the advantage of seeing all the original images
the synthetic images are created from of the model trained on the morph
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dataset does not result in lower training MAE increase. There are probably
more factors at play.

We see a significant increase of MCR values for both training and testing
data of the model coming from the morph data to the synthetic data. We
hypothesize that it is this case, because there is some number of synthetic
images with obvious artifacts. These might make the model more unsure as
it was not presented with anything alike during training.

On the contrary, the MCR values of the model coming from the synthetic
data to the morph data remain practically unchanged. We hypothesize
the model retains its confidence, since there exists plenty of successfully
synthesized images with appearance unrecognizable from the original images.

B 4.12.3 Training data change perspective

For the sake of completeness, we shortly discuss also the other perspective, in
which we fix the evaluation data and change the training data. Please refer
to Table |4.9.

train eval train MAE test MAE train MCR test MCR

morph morph 2.69 + 0.07 3.13 £ 0.07 3.04 £ 0.07 3.07 £ 0.06
synthetic ~morph +0.54 £ 0.11 +40.26 £ 0.11 -0.07 =+ 0.12 —-0.08 &+ 0.13

synthetic  synthetic 2.63 + 0.08 2.97 £ 0.07 2.99 + 0.10 3.01 £ 0.11
morph synthetic +0.71 £ 0.09 +0.54 + 0.10 +40.22 + 0.11 +0.21 £+ 0.12

Table 4.9: Differences in MAE and MCR caused by changing the training
dataset; rows one and three come from the Table 4.7, rows two and four are
recalculated to show the difference against their respective rows above; standard
deviations in the difference rows were calculated assuming independency of the
subtracted variables; values in red are undesired (we would like them to be as
close to 0 as possible)

Most importantly, we see in Table 4.9 an undesired (in red) increase of
the testing MAE when the model is trained on the synthetic data (when
compared to the model trained on the morph data).

Overall we see the model trained on the synthetic data being slightly more
sure about its predictions. We are not sure why this is the case.
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Chapter 5

Conclusions and future work

This work was motivated by the observation that adding new identities to
the training dataset improves accuracy of the face recognition systems. In
particular, this phenomenon is well known from learning identity recognition
systems. We have seen the same effect when training age prediction models
(Figure 4.5). This led us to the idea of generating new identities by combining
face parts of different individuals with the hope that the generated examples
will improve accuracy of age predicting models.

To this end, we introduced a novel face-specific augmentation method.
The proposed method generates face images of virtual identities by stitching
together face parts from a tuple of compatible photos, while controlling
the shape and the appearance transfer. The result of the stitching is post-
processed by Poisson editing [31] to achieve seamless, realistically looking
face images. The generated images capture faces of a virtual identities of the
same age (and gender) as the identities they were created from. The method
was used to generate face images of virtual identities with known age from
the MORPH database. The effect of using the generated faces in training and
evaluation of the age predicting CNN was assessed in a series of experiments
which have led to several surprising findings.

The main finding is that enhancing training dataset by synthetically gener-
ated identities does not improve accuracy of the age prediction system. It
suggests that CNNs are able to learn that for the age prediction task, the
correlations between face parts can be safely ignored. Hence synthetic exam-
ples obtained by permutation of face parts that have been already contained
in the training set bring no new information for learning the CNN.

Other experiments (Section 4.12)) suggest that distribution of the syntheti-
cally generated and the real faces are to a large extent replaceable when the
faces are used for training and evaluation of the age predicting CNN. The
differences observed when swapping training and evaluation set are slightly
above the measurement error.

The most interesting research question is whether the same behaviour, i.e.
that distribution of synthetically generated and real faces is replaceable, will
be observed in case of other face recognition tasks. In particular, in case of
tasks related to identity recognition, where the permutation of face parts
should play an important role.
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5. Conclusions and future work

Other output of this thesis is an open source library written in Python
for for generation of synthetic faces by seamless combination of face parts of
different individuals. It utilizes several libraries for its inner workings, such
as the Waldboost-based face detector [35], the 2D Face alignment library [5],
and the OpenCV library [4]. The proposed approach is an alternative to
nowadays popular GANs based face generators and as such we envision the
community will find it useful in a number of applications.
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Appendix A
Contents of the CD

® DP_MN.pdf — a pdf version of this thesis
® DP_MN.zip — a zip of source files of this thesis

® src/ — a folder containing all the source codes used in this thesis
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