
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Learning Classical Planning Transition Functions by Deep
Neural Networks

Master’s thesis

Michaela Urbanovská

Master programme: Open Informatics
Field of study: Artificial Intelligence

Supervisor: Ing. Antońın Komenda, Ph.D.

Prague, January 2020

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

434664Personal ID number:Urbanovská MichaelaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Learning Classical Planning Transition Functions by Deep Neural Networks

Master’s thesis title in Czech:

Učení přechodových funkcí v klasickém plánování pomocí hlubokých neuronových sítí

Guidelines:
The student will implement a Deep Neural Network (DNN) which will work as a transition function in the execution of a
Classical Planning (CP) algorithm. Image of current state and all reachable states will be used as training data for the
network. DNNwill be trained and tested with data from possible domains such as mazes, Sokoban puzzle and/or multiagent
version of mazes. Another implemented DNN will work as a heuristic function. The DNN will learn from costs of already
known plans.
1) Study cases of Deep Learning applications to CP, suitable type of a DNN and CP algorithm and Multi-agent planning
2) techniques (incl. privacy preserving planning).
3) Implement the input generator for a chosen DNN and planning algorithm.
4) Implement the DNN which will work as the transition function in the planner.
5) Implement DNN which will work as the heuristic function in the planner.
6) Test implementation of the DNN in the planner on several problem instances of the target planning domains.
7) Evaluate experimentally efficiency of the proposed solution and compare it to existing techniques used for transition
functions in classical planners.

Bibliography / sources:
Ian J. Goodfellow, Yoshua Bengio, Aaron C. Courville: Deep Learning. Adaptive computation and machine learning, MIT
Press 2016, ISBN 978-0-262-03561-3, pp. 1-775
Masataro Asai, Alex Fukunaga: Classical Planning in Deep Latent Space: Bridging the Subsymbolic-Symbolic Boundary.
AAAI 2018: 6094-6101
Michal Stolba, Jan Tozicka, Antonín Komenda: Quantifying Privacy Leakage in Multi-Agent Planning. ACM Trans. Internet
Techn. 18(3): 28:1-28:21 (2018)
Christopher M. Bishop, Nasser M. Nasrabadi: Pattern Recognition and Machine Learning. J. Electronic Imaging 16(4):
049901 (2007)

Name and workplace of master’s thesis supervisor:

Ing. Antonín Komenda, Ph.D., Department of Computer Science, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 07.01.2020Date of master’s thesis assignment: 28.01.2019

Assignment valid until: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
Head of department’s signatureIng. Antonín Komenda, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Declaration

I hereby declare I have written this thesis independently and quoted all the sources of
information used in accordance with methodological instructions on ethical principles for
writing an academic thesis.

In Prague, January 2020

..
Michaela Urbanovská

v

vi

Abstract

Abstract

There are currently two strong research directions in the area of artificial intelligence (AI),
namely, machine learning and symbolic AI. Recently, there have been several attempts to
bridge these two research directions. Namely, we focus on the connections between deep
learning and classical planning. Deep learning provides strong techniques for extracting
information from large datasets, while classical planning provides algorithms for general
problem solving. Complementarity of these two techniques is therefore natural, and com-
bining these two approaches is a step towards autonomously learning intelligent machines.
In this work, we implement a technique combining classical planning and deep learning.
Namely, we replace key parts of planning algorithms by solutions devised based on the
deep learning paradigm. We provide experimental evaluation to compare the implemented
techniques with methods used in classical planning.

Keywords: Classical planning, deep learning, transition function, heuristic function.

Abstrakt

V současné době existuj́ı dva silné směry v oblasti umělé inteligence, a to strojové učeńı
a symbolická umělá inteligence. V nedávné době se objevilo několik pokus̊u o propo-
jeńı těchto dvou vědeckých směr̊u. Konkrétně spojeńım hlubokého učeńı a klasického
plánováńı. Hluboké učeńı poskytuje silné nástroje pro źıskáváńı znalost́ı z velkého množstv́ı
dat, zat́ımco klasické plánováńı poskytuje algoritmy pro obecné řešeńı problémů. Tyto
směry se tedy přirozeně doplňuj́ı a jejich kombinace je krokem k vytvořeńı autonomńı
umělé inteligence. V této práci jsme vytvořili techniku kombinováńı klasického plánováńı
a hlubokého učeńı. Doćılili jsme toho nahrazeńım kĺıčových část́ı plánovaćıch algoritmů
řešeńımi, která jsou založena na paradigmatu hlubokého učeńı. Dále jsme ukázali expe-
rimentálńı evaluaci, která porovnává implementované metody s postupy, které se běžně
použ́ıvaj́ı v klasickém plánováńı.

Kĺıčová slova: Klasické plánováńı, hluboké učeńı, přechodová funkce, heuristická funkce.

vii

viii

Acknowledgements

First, I would like to thank my supervisor Ing. Antońın Komenda, Ph.D. for the support
and help during my work on this thesis. Next, I would like to thank colleagues from the
faculty, namely Ing. Jan B́ım, Ph.D. and doc. Ing. Tomáš Pevný, Ph.D., who provided
very helpful discussion and feedback. And last but not least, I would like to thank my
family for their never ending support and love.

ix

x

List of Tables

4.1 Expansion network evaluation for maze domains 40
4.2 Expansion network evaluation for Sokoban 41
4.3 Heuristic network evaluation for maze domain 42
4.4 Heuristic network evaluation for multi-goal maze domain 44
4.5 Heuristic network evaluation for multi-agent maze domain 44
4.6 Heuristic network evaluation for Sokoban domain 45
4.7 Planning experiments for maze domain . 47
4.8 Planning experiments for multi-goal maze domain 48
4.9 Planning experiments for multi-agent maze domain 49
4.10 Planning experiments for Sokoban maze domain 49

xi

List of Figures

2.1 HFF algorithm for Fast Forward heuristic computation taken from [5] . . . 10
2.2 Example of a simple neural network . 13
2.3 Example of convolution taken from [20] . 16
2.4 Recurrent network example with no outputs [15] 17
2.5 Block diagram of LSTM cell [15] . 18
2.6 MAC cell [25] . 18

3.1 Examples of generated mazes . 20
3.2 Examples of handwritten mazes . 21
3.3 Examples of generated multi-goal mazes 22
3.4 Examples of generated multi-agent mazes 22
3.5 Examples of generated solvable Sokoban levels 24
3.6 Expansion network architecture . 28
3.7 Attention block diagram . 34
3.8 Heuristic network architecture using one attention block 34
3.9 Heuristic network architecture using five attention blocks 35

4.1 Example of visualization of heuristic network output for maze domain . . . 50
4.2 Example of visualization of heuristic network output for multi-goal maze

domain . 51
4.3 Attention mask visualization for maze domain 52
4.4 Attention mask visualization for multi-goal maze domain 52
4.5 Attention mask visualization for multi-agent maze domain 53
4.6 Attention mask visualization for Sokoban domain 53

xii

Contents

Abstract vii

Acknowledgements ix

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Specification of Goals . 1

2 Background 3
2.1 Classical Planning . 3
2.2 Satisficing Planning . 6

2.2.1 Best-first Search . 6
2.2.2 History-considering Best-first Search 8
2.2.3 Multi-heuristic Search . 9
2.2.4 Used Heuristic Functions . 10

2.3 Neural Networks . 12
2.3.1 Backpropagation . 14
2.3.2 Stochastic Gradient Descent . 14
2.3.3 Convolutional Neural Networks . 15
2.3.4 Attention . 16
2.3.5 Recurrent Neural Networks . 16

3 Proposed Solutions 19
3.1 Used Problem Domains . 19

3.1.1 Maze Domain . 20
3.1.2 Multi-goal and Multi-agent Maze Domains 21
3.1.3 Sokoban Domain . 23
3.1.4 Sokoban Data for the Expansion Network 24
3.1.5 Sokoban Data for the Heuristic Network 25
3.1.6 Label Generation . 25

3.2 Planner Implementation . 26
3.3 Expansion Network . 27

3.3.1 Loss Function . 29
3.3.2 Expanding to Multi-mazes . 29
3.3.3 Expanding to Sokoban . 30

3.4 Heuristic Network . 30

xiii

CONTENTS xiv

3.4.1 Loss Function and Generating Batches 31
3.4.2 Architecture Design . 32
3.4.3 Expanding to Multi-mazes . 35
3.4.4 Expanding to Sokoban . 35

4 Experiments 37
4.1 Network Evaluation . 37

4.1.1 Expansion Network Evaluation . 37
4.1.2 Heuristic Network Evaluation . 38

4.2 Training the Expansion Networks . 39
4.2.1 Expansion Network for Maze Domains 39
4.2.2 Expansion Network for Sokoban . 40

4.3 Training the Heuristic Networks . 41
4.3.1 Heuristic Network for Maze Domain 41
4.3.2 Heuristic Network for Multi-goal Maze Domain 43
4.3.3 Heuristic Network for Multi-agent Maze Domain 44
4.3.4 Heuristic Network for Sokoban Domain 45

4.4 Planning Experiments . 45
4.4.1 Planning Experiments for Maze Domain 46
4.4.2 Planning Experiments for Multi-goal Maze Domain 47
4.4.3 Planning Experiments for Multi-agent Maze Domain 48
4.4.4 Planning Experiments for Sokoban Domain 48

5 Result Discussion 54

6 Conclusion 56

A Attachments 57

Bibliography 61

Chapter 1

Introduction

The main focus of this thesis is to analyze the possibilities and limitation of using deep

learning in combination with classical planning. Instead of replacing the planning process

as a whole and trying to make the network learn a search algorithm, we decided to focus

on partial replacement of two components involved in many standard planning algorithms,

namely, the transition and heuristic functions.

Classical planning provides great methods for general problem solving. Unfortunately,

these methods can struggle in large unstructured domains. On the other hand, deep

learning methods have been demonstrated to work well on many domains without a clear

structure. Therefore, combining both of these methods may lead us to a possible improve-

ment. There have been several works showing, that combination of classical planning and

machine learning can be beneficial and can bring better results.

For example, Nasataro Asai in [1] and [2] connected deep learning and classical plan-

ning by creating LatPlan, which is a system, that takes in initial and goal state of a

problem instance and returns a visualised plan execution. The image on the input is

transformed and processed in order to generate a standardized problem representation,

which can be then solved by classical planning methods.

A different example is [3], which uses machine learning techniques to create heuristic

function to improve the search algorithm. And also one of the newer papers [4], which is

learning search policies for the search.

1.1 Specification of Goals

In planning, a transition function takes a current state and a possible action, which

can be taken by an agent, and returns a successor state. The first goal of this thesis

is implementing a replacement of this function by using techniques from deep learning.

Namely, we train a neural network, which will take a visual representation of the current

1

CHAPTER 1. INTRODUCTION 2

state on the input and outputs all possible successor states. By doing so, we do not have

to create a symbolic representation of the state in order to generate the successor states.

In order to decrease the time and resources needed to solve a problem, we often use

heuristic functions, which help us prune the state space and reach defined goal faster.

Heuristic function gives us the estimate of a distance from the current state to a goal

state. In order to compute it, we usually require a simplified version of the problem,

which is constructed via relaxation [5]. The second goal of this thesis is implementing a

neural network to replace a heuristic function. By taking a visual representation of the

current state on the input, giving the heuristic value for the given state on the output. One

advantage of this approach is, that we do not have to create the symbolic representation

and we do not have to simplify the problem in order to speed up the heuristic computation.

Having the transition network and the heuristic network, we aim to use both of them

in an implemented planner. By doing so, we can then compare them with regularly used

transition and heuristic functions and compare their performance. That way, we will

be able to tell, if an improvement can be achieved by combining the two approaches.

There are several metrics for comparing quality of the search and for heuristics, but

since the neural networks tend to be much slower than already implemented heuristic

functions, we will not focus on time-based comparisons, mostly because the state-of-

the-art planners are highly optimized and well designed software projects, which are

specifically implemented to compete against other planners. Everything we used in this

research has been implemented in Julia, since it is a language used for different applications

including neural networks, in particular we used Flux library. In order to make the

compatibility of the networks and the planners possible, everything else was implemented

from scratch.

In planning, there are many different problem domains, which can be used in order to

evaluate the implemented algorithms. Since we want to use the visual representation of

the inputs, we selected domains, which are easily visualized and have grid-like structure.

This representation is also easy to process with any neural network and provides us with

a well readable input and output as well. The problem domains we use in this work are

single-agent maze, multi-goal maze, multi-agent maze and Sokoban puzzle.

Chapter 2

Background

In this chapter, we focus on description of all base aspects important for our work. Starting

with the very beginning, which is the classical planning we are trying to improve. We need

to define the functions we aim to replace and give an overview on its important parts.

Next, we look into history and description of neural networks, describing fundamentals

and most important parts, which are currently the state of the art.

2.1 Classical Planning

As we already mentioned, we aim to improve classical planning and in order to do that,

we need to properly explain the basics of it. First, we will look at STRIPS planning task

[6], which is a definition providing the symbolic representation of any problem instance.

Later in this thesis, we use deep learning to avoid this exact representation.

Definition 2.1.1 (STRIPS Planning Task) STRIPS planning task Π is a tuple

Π = 〈F,O, si, sg, c〉

where F = {f1, f2, ..., fn} is a set of facts, O = {o1, o2, ..., om} is a set of operators, si

is the initial state, which consists of facts, which hold in the initial state, sg is a goal

state condition, which contains facts, which must hold in every goal state and c is a cost

function c(o) : o −→ R which gives each operator a cost.

Every operator o ∈ O is a triple o = 〈pre(o), add(o), del(o)〉 where pre(o) ⊆ F is a

set of preconditions, which are facts, that have to hold in a state in order to apply the

operator o in the state, add(o) ⊆ F is a set of facts, which are added to the state after

applying the operator o in s and del(o) ⊆ F are delete effects, which are facts that are no

longer true after using the operator o.

3

CHAPTER 2. BACKGROUND 4

We say, that operator o is applicable in state s ⊆ F , if pre(o) ⊆ s. After applying the

operator o in state s, we get state s′, which is defined as s′ = (s \ del(o)) ∪ add(o).

Now, that we defined a planning task, let’s define the state transition system.

Definition 2.1.2 (State-Transition System) State transition system is a tuple Σ =

〈S,A, γ, c〉, where

• S is a finite set of states

• A is a finite set of actions

• γ : S × A −→ S is a state-transition function. γ(s, a) is defined iff a is applicable in

s, with γ(s, a) being the predicted outcome.

• cost : A −→ [0,∞) is a cost function assigning a value to each action. The cost

value can have various meanings, for example time, price or anything we want to

optimize.

To complete the definition, we must add so called classical planning assumptions as

stated in [5] together with this definition, which is a set of restrictive assumptions. We

are dealing with static environment, which changes only as a result of taking an action.

There is no time defined and everything is happening in discrete sequence of states and

actions. And lastly, we are in deterministic world, so there is not uncertainty in taking

possible actions, we always know the outcome.

Any problem Π defined as STRIPS by Definition 2.1.1 can be translated to a state-

transition system Σ and solved by the means of search algorithms. To do so, we create

set of actions A from Σ by taking set of all operators O from Π. To create the set of

states S, we have to create them by using possible combinations of facts from F . The

cost function remains and the state-transition function γ is defined based on actions in

A.

A solution to such defined planning problem Π is a plan [5] represented by a path in

the related state-transition system Σ. In case we are trying to minimize the cost of the

plan, we are looking for an optimal plan [5]:

Definition 2.1.3 (Plan) A plan is a finite sequence of actions π = 〈a1, a2, ..., an〉. We

define length of the plan |π| = n and cost of the plan as cost(π) =
∑n

i=1 cost(ai).

Definition 2.1.4 (Optimal Plan) Having a planning problem Π and its solution π, we

say that π is an optimal solution, if no subsequence of π is a solution for Π and if there

is no solution π′, such that |π′| ≤ |π|.
We say, that π is cost-optimal solution, if cost(π) = min{cost(π′) | π′ is a solution for P}.

CHAPTER 2. BACKGROUND 5

In order to find a solution to a planning problem, we need to use a problem-solving

algorithm. For classical planning problems, such algorithms are typically based on state-

space search [5].

Definition 2.1.5 (State-Space Search) State-space search algorithm performs search

over a graph G = (N,E), where N is a set of nodes and E is a set of edges.

Having a planning problem Π = 〈F,O, si, sg, c〉 and its induced transition system Σ =

〈S,A, γ, c〉, N corresponds to S and E corresponds to A.

The search starts in si, expanding each found state with γ, until a goal state is reached.

In that case, plan π can be returned as a sequence of actions applied at each expansion of

the search to reach the goal state.

We can solve any given problem in planning by looking through the whole state space

for a solution. That can be very slow and inefficient, since the state spaces can be very

big, and some algorithms require storing all the visited states in memory. Therefore, we

often use heuristic function in order to improve performance of the search.

Heuristic function is a h(s) : s −→ R, which maps any state s ∈ S to a real value [5].

Heuristic function gives us an estimate of path length from the current state s to a goal

state. A function, which always maps h(s) to the length of shortest possible path is called

perfect or optimal heuristic and it is denoted as h∗ in [5].

Heuristic function can be any function in general, however, there are some properties

of heuristic functions, which can further assure certain properties of search algorithms.

Definition 2.1.6 (Admissible Heuristic) Heuristic function h is admissible, if ∀s ∈
S : 0 ≤ h(s) ≤ h∗(s).

Definition 2.1.7 (Consistent Heuristic) Heuristic function h is consistent (monotone),

if h(s) ≤ cost(γ(s, a)) + h(γ(s, a))

Definition 2.1.8 (Goal-aware Heuristic) Heuristic function h is goal-aware, if h∗(s) =

0 then h(s) = 0.

Those are three important properties we might come across while describing heuristic

functions, which we used in our experiments.

Computing of heuristic estimate can be a very complicated problem, in fact, it may

be as complicated as solving the problem itself. To decrease the complexity of this task,

we use different techniques to simplify the problem and solve its simpler version. One of

these techniques is relaxation [5], which is a widely used approach. By relaxing a problem,

we delete some of its constraints making it much easier to solve. For example, in the maze

CHAPTER 2. BACKGROUND 6

domain, we could delete the walls and find length of the path to the goal by computing

the Euclidean distance.

Now that we have every tool to solve our problems, and even the heuristic function

to find the solution faster, we have to look at the type of solution we want. There are

multiple types of planning and the type we use depends on the solution we want to get.

One branch in planning focuses on finding cost-optimal solutions, hence called optimal

planning. An essential tool for finding cost-optimal solutions is a shortest path search

algorithm. The most famous representative of such algorithms is A* algorithm [7], which

gradually expands the state space and relies on heuristic evaluation of considered search

nodes. However, in order to obtain optimality guarantees, the heuristic evaluation func-

tion is required to be admissible, by Definition 2.1.6 and/or consistent, by Definition 2.1.7.

Since neural networks represent a black-box approximation scheme, we cannot expect to

ensure these properties. Therefore, we use satisficing planning for our experiments.

2.2 Satisficing Planning

Satisficing planning does not require finding an optimal solution to a problem but only

one possible solution. There are many algorithms, which can be used, practically any

search algorithm, which is complete. Completeness does assure finding a solution to a

problem if the solution exists [7]. Because we have a heuristic function to our disposal, we

are using only informed search algorithms [7], which are using additional information in

order to search the state space. In our case, that additional information are values from

a heuristic function. Namely, we are implementing two version of the best-first search

algorithm.

2.2.1 Best-first Search

Best-first search is a search algorithm introduced by J. Pearl [8]. The algorithm relies on a

heuristic evaluation function, which takes a state on the input and returns a value. Since

it is not closely specified, it can depend on basically anything, the state specification, goal

specification, information gained on the way to the current node, etc.

For experiments, we will be using two variants of best-first search. The first one

is going to be implemented as a greedy best-first search, which uses strictly computed

heuristic values. The second one will be using values from the heuristic function together

with information gained during the search.

CHAPTER 2. BACKGROUND 7

Greedy Best-first Search

Greedy best first search [5] is one of the most commonly used algorithms in satisficing

planning. It uses an open list to store states from the state-space, which are going to be

expanded, and a closed list, which is used to store already expanded states. To expand a

state and obtain its possible successors, we use the state-transition function γ. For each

successor, we compute its heuristic value and put it into the open list.

Its greedy property comes from the way it picks the nodes from the open list. Nodes

are picked only according to their heuristic value, node with the smallest heuristic value,

meaning it is closest to the goal, will be expanded first. We are using the closed list

to prevent any cycles in the search and to ensure completeness of the algorithm. It

is a suboptimal algorithm, unless we have strong restrictions in the heuristic function.

However, that is not a problem in case we are looking for an arbitrary solution.

We can see all the key parts of the algorithm in Listing ??. States in the open list are

ordered based on computed value of heuristics, so we use priority queue in the implemen-

tation. Once a state is expanded, it is added to the closed list, which is implemented by

a set.

function GBFS(s_init)

closed_list = Set()

open_list = PriorityQueue ()

open_list.add(s_init , compute_heuristic(s_init))

while length(open_list) > 0

s = open_list.pop()

if s == goal

return s

break

end

if s in closed_list

continue

end

closed_list.add(s)

for next_s in s.get_successors ()

h = compute_heuristic(next_s)

if h != Inf

CHAPTER 2. BACKGROUND 8

open_list.add(next_s , h)

end

end

end

return false

end

\label{listing:GBFS}

Listing 2.1: GBFS Pseudocode

2.2.2 History-considering Best-first Search

The second algorithm we will be using for our experiments is a best-first search, which

also considers the history of the search up to the current state. It still uses open list

for storing nodes to be expanded and a closed list for nodes, which were already visited.

Implementation details are the same as in the previously mentioned greedy best-first

search, however, the difference is in the function used to evaluate the nodes. This time,

we will not be using only the heuristic function, meaning the neural network, but we will

be taking shortest length to the current node as a g(n) value and we will sum it up with

the heuristic value.

function HCBFS(s_init)

closed_list = Set()

open_list = PriorityQueue ()

g_values = Dict()

h_init = compute_heuristic(s_init)

g_init = 0

g_values[s_init] = g

open_list.add(s_init , h_init + g_init)

while length(open_list) > 0

s = open_list.pop()

if s == goal

return s

break

end

CHAPTER 2. BACKGROUND 9

if s in closed_list

continue

end

closed_list.add(s)

Expand the selected state

for next_s in s.get_successors ()

if next_s in closed_list

continue

end

h = compute_heuristic(next_s)

g = g_values[s] + step_cost

if not(next_s in g_values) or g < g_values[next_s]

g_values[next_s] = g

open_list.add(next_s , h + g)

end

end

end

return false

end

Listing 2.2: HCBFS Pseudocode

Note that the algorithm is similar to A* [7]. However, to emphasize that our algo-

rithm does not provide any guarantees (due to the absence of admissible and consistent

heuristics), we call this search algorithm History-considering Best-first Search.

2.2.3 Multi-heuristic Search

We are trying to compare the neural networks with state of the art in satisficing planning.

One of the approaches which has proven to work well in classical planning is the multi-

heuristic search [9]. Multiple approaches were proposed in the paper, on how to use

more than one heuristic estimated in the search. The most simple and straightforward

possibility is using sum or maximum of the multiple values. However, in [9] it was shown

that this is not the most successful approach.

The first approach described in [9], which achieves good results is tie-breaking, where

we have a set of heuristic functions h = {h1, h2, ..., hn}. Instead of using only one function

CHAPTER 2. BACKGROUND 10

to order states in the open list, we use h1 for the initial ordering, h2 for the tie-breaking

when there are multiple states with the same heuristic value. Then h3 in case the values

are still the same and so on. One complication in this approach is determining the order of

used heuristics. If we use wrong ordering of the heuristics, it can cause worse performance.

Another option is alternation, which uses all the heuristic values and expands a state

based on a different heuristic value every iteration. We always select a state, which

minimizes selected heuristic hi and also which is the oldest. This approach has proven to

be the most successful one in [9].

2.2.4 Used Heuristic Functions

To evaluate results of a neural network replacing the heuristic function, we have to com-

pare it to already existing baseline approaches. In satisficing planning, one of the most

successful planners is [10], which uses HFF heuristic [11] in combination with landmarks.

In experiments, we use HFF as well, with the addition of LM-cut heuristic [12], which

also uses landmarks. We also included zero heuristic and Euclidean distance as examples

of very simple heuristics, which will hopefully be outperformed.

HFF - Fast Forward Heuristic

The name of the heuristic comes from the name of the planner, where it has been first used

[11]. It is a heuristic function, which performs delete-relaxation on the problem, meaning,

that all delete effects of operators in Definition 2.1.1 are simply ignored. With modified

operators, we get relaxed planning task, which is important for further computations.

Let’s look at pseudocode of the algorithm from [5].

Figure 2.1: HFF algorithm for Fast Forward heuristic computation taken from [5]

We can see that the algorithm gets a planning task Σ, current state s and a goal

condition g on the input. We first construct a graph, which starts by taking the state s

and applying all actions applicable in s to generate successor states. This continues until

CHAPTER 2. BACKGROUND 11

we find a state that satisfies the goal condition. Now that we found the goal in the relaxed

graph, we can start the second part of the algorithm, which is backtracking. We start

from the goal node and select minimal set of actions, which satisfies the goal. This way

we backtrack through the whole relaxed graph, until we arrive in the initial state again.

Length of the discovered path is the returned heuristic value for state s.

This heuristic is not admissible as stated in [5], since choosing actions in the back-

tracking part of the algorithm is not done in an optimal fashion. Therefore, we cannot

actually say, that the path found in the relaxed transition graph is optimal. However, for

satisficing planning HFF heuristic is widely used.

LM-cut

To introduce the LM-cut heuristic [12], we first need to explain landmarks, which are

the key part of the heuristic computation. Landmarks are logical formulas, that need to

be true at some point in the search. The already mentioned LAMA planner [10] uses

landmark based heuristic together with the HFF heuristic, which has proven to be a

great combination according to the IPS 2008 competition results, as it won the satisficing

planning track.

There are multiple heuristic functions, which are using landmarks in various ways. In

this thesis, we use operator landmarks. Operator landmark L is a subset of operator set

O such that in every plan, there is at least one operator o ∈ L. With these landmarks,

we compute the LM-cut heuristic. To do so, we need to use hmax heuristic.

For a set of literals s = {s1, s2, ..., sn} max-cost is defined as a largest max-cost of each

si individually. Such value is computed by function ∆max, which is defined as stated in

[5]:

∆max(s, g) = maxgi∈g∆
max(s, gi)

∆max(s, gi) =

0, if gi ∈ s

min{∆max(s, o) | o ∈ O and gi ∈ add(o)}, otherwise;

∆max(s, a) = cost(a) + ∆max(s, g)

Max-cost heuristic can be computed as

hmax = ∆max(s, g)

where s is a state and g is a goal condition.

Now that we are familiar with the hmax heuristic, we can explain LM-cut computation

itself. To compute LM-cut of a state s, we first compute its hmax heuristic, if it is

equal to 0 or infinity, we return the value. In case it is not, the cost of solution to the

CHAPTER 2. BACKGROUND 12

relaxed planning task is non-zero. We initialize value of the heuristic to zero and start

the computation. We construct an action landmark L, which consists of operators with

non-zero cost, from which at least one o ∈ L must be in the plan. We take o ∈ L which

has the minimal cost from all operators in L and we add its cost to the heuristic value.

We also subtract this cost from costs of all operators in L. This process is repeated until

value of hmax remains greater than zero. Once it is equal to zero, we return the computed

heuristic value.

This heuristic function is computationally challenging mostly because deciding, if a set

of operators is disjunctive landmark, is P-SPACE complete problem [5]. There are many

different ways of discovering landmarks. In this implementation, we took similar approach

to [12] and implemented landmark generating function using a justification graph and s-t

cut. We construct the graph by connecting each add effect of operator to it is most costly

precondition. We then perform s-t cut on this graph, which returns edges from the graph -

operators. We look for edges, which connect two sets of nodes, the ones that are accessible

from initial state with cost equal to zero, and the rest of the nodes. These operators then

form the landmark L.

2.3 Neural Networks

Since human brain can learn a large amount tasks without being specifically programmed

to do so, it has been a great inspiration for artificial intelligence. Namely, the field

of machine learning. Sometimes, it is not possible to program a machine to perfectly

perform a task. The task can be only shown by example, or it is too complicated to be

encoded by human. There are many cases like that, for which machine learning can be

beneficial.

For a machine to learn, we need a structure, that is capable of updating itself. In-

spiration in creating such structure often came from biological examples. One of these

structures is a neural network.

As said in [13], the term ’neural network’ originated in attempts of finding mathemat-

ical representations of information processing in biological systems. The first artificial

neuron was proposed by McCulloch and Pitts in [14] and later on, other researchers built

on top of this original idea to introduce significant improvements in the field, such as

multilayer perceptron [15].

From a mathematical perspective, a universal approximation theorem states, that

neural networks can learn any continuous function [16]. This theorem has been explored by

many others. In [17] there was a focus mostly on the architecture, which is considered to be

the feature, which gives the neural networks the ability of being a universal approximator.

CHAPTER 2. BACKGROUND 13

And in [18] it was shown that it holds for any non-linear activation function.

Therefore, we can say that with a mild assumption about the activation function, we

can approximate any function by a neural network.

Figure 2.2: Example of a simple neural network

To introduce a very basic structure of neural network, let’s look at this simple example

in Figure 2.2. Leftmost layer is the input layer, which has three inputs {x1, x2, x3}. Next

we have hidden layer, which consists of two neurons {h1, h2}. Both neurons in the hidden

layer have sigmoid as activation function. Last are two outputs located in the output layer.

Next, there are edges from inputs to hidden layer and from hidden layer to outputs, with

weight assigned to them.

To compute the input for any neuron, we have to compute a weighted sum of outputs

from the previous layer. In case of h1, its input is

hin1 = x1w1,1 + x2w2,1 + x3w3,1

Because h1 has a sigmoid activation function, output of this node is

hout1 =
1

1 + e−h
in
1

To finish the computation, the output o1 is computed as

o1 = hout1 w4,1 + hout2 w5,1

Now that we have output of the neural network, we can look at how correct it is

compared to the expected output. To do so, we need a loss function, which returns a

value based on computed outputs and expected outputs.

In order to decrease the loss and to output values closer to the expected output, we

CHAPTER 2. BACKGROUND 14

have to start training the network. To train the network, we have to update weights in

the network, which can be done by the backpropagation algorithm.

2.3.1 Backpropagation

We have a loss function, which gives us error for a set of computed and expected outputs.

Backpropagation takes this error value and computes its partial derivatives with respect

to every parameter in the network. Value of the derivative for each weight denotes its

credit. Credit value says how much does a weight contribute to the output of the network.

Computation of backpropagation runs in the exact opposite direction than computation of

the outputs of the network. The efficiency of the algorithm lays in the chain rule, which is

applied through the whole network in the backwards direction and allows to reuse already

computed derivatives instead of computing the derivatives for each layer separately [19].

It was one of the first ways of showing, that neural networks are actually capable of

learning non-trivial features. Until then, hand-crafting features was often taken approach,

which was limiting because of time and computational power required to include more

fields of problems. Now, it is commonly used together with a gradient descent type of

algorithm, to complete the whole training process of the neural network.

2.3.2 Stochastic Gradient Descent

Our main goal is still optimization, meaning that we want to converge to a minimal

possible error regarding the results of our network. To do the right adjustments to the

weights of our network, we will use gradient descent algorithm. As described in [7], we pick

a point in the weight space by initializing all the weights in our network. By computing

the gradient by backpropagation algorithm, we will move to a neighboring point, which

is downhill and repeat until we converge to a minimum. Very important part of this

process is the learning rate which determines how large is the step taken. It can either

be a constant or it can change overtime.

However, using gradient descent method over the whole data set may be very costly,

because data set for neural networks tend to be large. One solution to solve this issue

is the stochastic gradient descent, which is probably one of the most used optimization

algorithms when it comes to deep learning. The SGD works over mini-batches and not

the whole data.

Algorithm 2.3.1 (Stochastic Gradient Descent) Stochastic gradient descent update

in time step k requires learning rate εk and initial parameters Θ on the input. The function

f denotes computation done by neural network.

Until a stopping criterion is met, repeat:

CHAPTER 2. BACKGROUND 15

1. Sample a mini-batch of data samples {x1, x2, ..., xn} and their corresponding labels

{y1, y2, ..., yn}

2. Compute the gradient

ĝ ←− +
1

n
∇Θ

∑
i

loss(f(xi; Θ), yi)

3. Update the parameters

Θ←− Θ− εĝ

That is the very basic description of stochastic gradient descent, which shows how the

network learns. Updating parameters to approach the minimal error is the main goal.

2.3.3 Convolutional Neural Networks

During creating architectures of our networks, convolutional networks played a great role.

All of our data domains have image-like structure and we are trying to extract information

from them based just on the visual representation. A usual approach when working with

such data is deploying convolutional neural networks.

As the name suggests, the operation, which is performed when using these networks

is convolution. Convolution function has two arguments, the input array I and the kernel

K. Since we are dealing with multidimensional arrays, we will denote them as tensors.

In this case, input I has four dimensions, width, height, number of channels and number

of samples.

The kernel K is a tensor as well, with multiple trainable parameters. When creating

it, we need to specify its width and height, as well as the number of input channels and

number of output channels. The number of input channels has to equal to the number of

channels in the input tensor in order to process it.

Besides the size or the kernel, we have other hyperparameters, which influence the

convolution computation and modify the size of the output. The first one is padding, most

common padding schemes are valid and same. The valid padding performs convolution

only on valid pixels, which causes the output to be smaller than the input. The same

padding pads the input with zeros, so that the convolution produces output of the same

size as the input. It is also possible to define padding of a custom size.

Another one is stride, which defines the movement of kernel across the input data.

Stride equal to one means, that we move the kernel by one pixel at a time, which causes

heavy overlapping during the computation. We can also define the stride so that there is

no overlapping at all. The output dimension is decreasing with increasing the stride.

CHAPTER 2. BACKGROUND 16

Figure 2.3: Example of convolution taken from [20]

We can look at the kernel as multiple independent kernels, one for each channel. We

can then compute the convolution as

(I ∗K)i,j,k =
∑
m,n,o

Ii·S+m,j·S+n,oKm,n,o,k

where S is the given stride for the convolution computation as stated in [15].

2.3.4 Attention

Attention networks have proven to be a great success as showed in [21], by introducing

the Transformer architecture. In general, attention allows the network to focus only on

subsets of inputs.

In this work, we use attention masks created by convolutional layers and softmax.

We use multiple masks, not only one. Standard procedure in such case is concatenating

results of the multiplications of input and all the masks, in channel dimension. Also, each

mask is created by a separate convolutional network, which is also trained with the rest

of the architecture.

The created mask of values may contain only zeros and ones, in that case it is a hard

attention. In our case, we use soft attention, which uses values between zero and one.

Having such mask, we can then multiply the input features. That results in obtaining

modified input, with some of the features ”emphasized” by the attention mask.

2.3.5 Recurrent Neural Networks

Another explored direction, which we will be discussing, are recurrent neural networks.

These networks are used mostly for sequential data. This type of neural network has

CHAPTER 2. BACKGROUND 17

been a great success in many fields, one example is natural language processing, sequence

classification or sequence prediction. Recurrent neural networks are a great tool for pro-

cessing sequences, however there can be a problem with long-term dependencies, as the

sequences can be arbitrarily long.

The main building block of recurrent neural networks are the recurrent cells, there are

multiple types of them, but we will first look at the very basic one.

Figure 2.4: Recurrent network example with no outputs [15]

On the input of a recurrent cell, there is not only an input tensor, but also the previous

state, meaning the last generated output. After unfolding the cell for n-steps, we can see,

how the computation works. We can also have a network, which generates an output at

each single time step, or a network, which does use recurrent cells and returns only one

output for the whole input sequence.

One of the well-known recurrent cells is the LSTM cell, which was introduced in [22]].

LSTM stands for long short-term memory, which introduced the possibility of forgetting

information stored in memory cell. LSTM consists of input gate, output gate and a forget

gate. It has been a great discovery, since storing information about more than a couple

iterations in the past has been a great problem in the field of recurrent neural networks.

It has worked very well in the area of handwriting recognition [23], speech recognition

[24], and many others.

In this work in particular, we focused mostly on the reasoning network presented in

[25], which is also a form of recurrent neural network. Instead of just a simple feeding

the previous output to the input, there is a cell containing memory and control modules,

which supports reasoning over the input. Unlike LSTM or the regular recurrent cell, the

MAC cell introduced in [25] had to be implemented from scratch in order to train it, since

it is not a standardized recurrent cell, which appears in machine learning libraries.

The MAC cell has two main units, the control unit and the memory unit. In the control

unit, the main reasoning operation is performed in each time step and the internal state of

this unit is updated accordingly. The memory unit consists of the read and write modules.

In the read module, information is extracted from the knowledge base, which is the maze

in our case, and a retrieved information is then passed into the write module. The write

CHAPTER 2. BACKGROUND 18

Figure 2.5: Block diagram of LSTM cell [15]

Figure 2.6: MAC cell [25]

module takes the retrieved information and current memory state and produces a new

memory state.

This MAC cell core has been kept in our implementation as well, since its structure

does not depend on the definition of the task as much. However, in the paper the solved

task is much different from ours, so we had to modify the input and output modules in

order to fulfill our requirements.

Chapter 3

Proposed Solutions

Now that we discussed both classical planning and neural networks, we can talk about the

main focus of this work and that is combining the two fields. The proposed combination

technique consists of creating two networks, each one to substitute a different part of the

state-space search algorithm we defined earlier in Section 2.1.5.

First network is used to replace the state-transition function γ in order to generate

possible successor states in the state-transition system as defined in Definition 2.1.2. The

second network is used to replace a heuristic function h(s), which returns a number, that

represents an estimate of distance from state s to a goal state.

By replacing these parts of state-space search, we avoid the need of creating symbolic

representation of the states. That would be usually necessary in order to obtain new

successor states or to compute a heuristic value. By doing so, we narrow the gap between

model-based classical planning and model-free machine learning [26].

One key challenge of implementing such approach is obtaining a good quality data

sets in order to train the networks. The other challenge is creating the architectures

themselves. We first focus on generation of all required data sets and then proceed with

creating the neural network architectures.

3.1 Used Problem Domains

Since our main goal is using visual representation of problems, we use convolutional net-

works described in Section 2.3.3. Such networks are well suited to process data organized

in grids. To this end, we also consider domains, which can be represented by a grid. This

allows convenient visualization of the problems. The grid representation w.l.o.g. also pro-

vided, that the neural networks can process higher-dimensional ”visual” representation of

more complex planning problems.

Each described data set consists of train and test set of samples, which are disjunctive.

19

CHAPTER 3. PROPOSED SOLUTIONS 20

Both train and test set contain data samples and their corresponding labels. Batches for

the training of the network were randomly sampled from the training data sets.

There is one data set for each selected problem domains. In classical planning, there are

many problem domains, which are used as benchmark problems when comparing planning

algorithms or heuristics. In this section, we describe all selected problem domains and

the process of generation of their corresponding data sets.

3.1.1 Maze Domain

To start off with a simple data domain, which is easy to solve for humans as well, we use

the single-agent maze domain. We have four cell types, agent, goal, free cell and a wall.

There is one agent and one goal located in the maze, movement possible in 4-neighborhood

and all free cells are accessible by the agent. As for every domain, we implemented a data

generator from scratch to be able to get enough data for the networks to train. The maze

generator is based on Prim’s algorithm [27], which can be used in a randomized form to

generate mazes, which fulfill our demands. The generator is written in a way, so it can

generate any size of the maze and it places the goal and the agent randomly into the

created maze. Examples of randomly generated mazes are in Figure 3.1.

Figure 3.1: Examples of generated mazes
Yellow denotes the agent position, orange denotes the goal position, purple denotes the walls
and black denotes the corridors.

function generate_maze_prim(maze_size)

grid = ones(maze_size)

wall_list = []

cell = (rand(x),rand(y))

grid[cell] = 0

neighbors = get_neighbors(cell)

wall_list.add(neighbors)

CHAPTER 3. PROPOSED SOLUTIONS 21

while wall_list not empty

wall = rand(wall_list)

grid[wall] = 0

neighbors = get_neighbors(wall)

wall_list.add(neighbors)

wall_list.remove(wall)

end

end

\label{code:rand_prim}

Listing 3.1: Randomized Prim’s Algorithm Pseudocode

This algorithm in Listing ?? satisfies the requirements we have on our single-agent

maze instances and creates enough random data samples. Of course, there are different

types of mazes as well, not all mazes have the same restrictions. There are special cases

just like a spiral, which can be generated by the Prim’s algorithm, but there are many

others, for example mazes with wide hallways or empty mazes, which cannot be generated

with our algorithm.

Figure 3.2: Examples of handwritten mazes
Yellow denotes the agent position, orange denotes the goal position, purple denotes the walls
and black denotes the corridors.

Just to see, how well our networks work on different data, we generated some samples

manually. We wanted to use these unique cases, to see the results, since they are not in

the training data set. We do not expect the results to be perfect, since the structure of

some of these samples is very different from the generated data. However, it is interesting

to see, if the trained knowledge can be transferred to a slightly different domain.

3.1.2 Multi-goal and Multi-agent Maze Domains

In order to test the neural network architectures properly, it is good to have multiple

domains we can train on. Even though it is probable, that we will not be able to reuse the

networks between the domains, we still want to increase complexity of our data domains

to track the results.

CHAPTER 3. PROPOSED SOLUTIONS 22

Figure 3.3: Examples of generated multi-goal mazes
Yellow denotes the agent position, orange denotes the goal position, purple denotes the walls
and black denotes the corridors.

Increasing the complexity of the single-agent maze can be done by simply adding

more goals to the map. This creates more complicated task, because there are multiple

possible goals on the map. However, it still maintains the number of agents and the rules

of movement from the simple mazes.

Next step, in increasing the complexity, is using multiple agents with multiple goals.

This increases the difficulty of the task quite a lot, because now, we have multiple moving

entities in the maze. Introducing this problem domain also comes with a few unique

scenarios we have to deal with. Agent can still move in their 4-neighborhood, but they

cannot jump over each other or switch places. It is also important to say, that goals in

the maze are not assigned.

Figure 3.4: Examples of generated multi-agent mazes
Yellow denotes the agent position, orange denotes the goal position, purple denotes the walls
and black denotes the corridors.

To generate data for both of these domains, we used the same randomized Prim’s

Algorithm as mentioned before. After generating the mazes in similar fashion, we proceed

with placing goals and agents into the maze depending on the domain. The positions of

both are chosen at random.

In case of multi-agent domain, we have to deal with one new problem. The generated

problem instance don’t have to be solvable. In case of regular mazes and multi-goal mazes,

all the instances are always solvable, but that is not the case with this domain. Therefore,

the complexity of the data generation increases, since we want to use solvable problem

CHAPTER 3. PROPOSED SOLUTIONS 23

instances.

3.1.3 Sokoban Domain

To add even more complexity, we decided to add a problem domain, which is often used

as a classical planning benchmark. It is a well-known P-SPACE complete puzzle game,

Sokoban. It was first introduced in Japan in 1981 by Hiroyuki Imabayashi and later

released as a video game. Sokoban can be easily represented as a grid, which suits well

our set of problem domains. The rules of movement are very similar to movement in

mazes, the only difference is the box. Boxes can be pushed, cannot be pulled and we

cannot push two or more boxes at the same time. The goals of the game is to move boxes

around the map until each goal has a box on it.

Compared to all the other domains we introduced earlier, Sokoban maps are very

different. Not only the number of entities is higher, but we also tend to have a lot more

free space in the grid. Another complication is, that we have only one agent, but all the

boxes count as moving entities, which changes the transition function for this problem.

Another great problem we came across with Sokoban domain was the data. Generating

Sokoban levels, and planning problems in general, is a difficult problem. Its difficulty even

increases, when we want solvable levels, which is also an important property for us. It is

not beneficial for us to train the networks on levels, which cannot be solved.

We already mentioned, that we need lots of data in deep learning to obtain the best

possible results. Getting the data can be a difficult task, especially with a problem domain

like this one, where generating the levels is by itself a very interesting and complicated

problem.

Solvable Sokoban Level Generation

The first step of creating the Sokoban level generator was actually trying to find already

implemented one. There are multiple implementations of Sokoban levels online and there

are even ones, which focus on quality of the levels. For our cause, we needed quantity

rather than quality, so we implemented generator proposed in [28].

We first start with an empty map of requested size, into which we start placing pat-

terns. The Sokoban map generator uses seventeen 3x3 patterns, which are randomly

flipped and rotated and then placed onto an empty map next to each other. In each step,

we pick one random template and place it in the first free top left space. After using up

all the free space on the map, goals, boxes and the agent are placed. Filled map is then

processed by a solver, which determines if it is solvable or not. This step in particular

is a complication, since solving Sokoban is P-SPACE complete [29]. To slightly improve

CHAPTER 3. PROPOSED SOLUTIONS 24

performance on this step, there is a limit on how many states can the solver expand. Even

with such restriction, the algorithm is very slow.

Figure 3.5: Examples of generated solvable Sokoban levels
In case of this maze, dark violet denotes the walls and black are the floor tiles. The boxes are
yellow, goals are orange and the agent is dark pink.

There are also multiple conditions, which should help discarding the unsolvable maps

quicker. One of them is a check for the continuous floor, since we do not want any

inaccessible islands of free space in the map. Next is looking for ”trapped” floor tiles,

meaning tiles that are surrounded from at least 3 sides by the walls and the last one is

checking it there is not too much free space in the map, since according to [28] levels with

large empty spaces tend to be too easy to solve and are not as interesting as ones with

small free spaces. Since we were generating quite small maps, we decided to put 2 boxes

in the map to not make the map too overcrowded. However, the generator is written in

a way that arbitrary many boxes and goals can be placed into the map. The last step is

solving the level and returning it in case it can be solved.

Some of the maps are not too interesting for a human player, since the agent and

boxes are placed randomly. It does happen that there are boxes right next to the goal or

that the maps are too easy, however we need those data samples to train the networks

properly, so it can see as many scenarios as possible. Also, it does not mean that a map,

which is easy to solve for a human will be easy to solve for a planner.

3.1.4 Sokoban Data for the Expansion Network

Now that we know, how complicated is generating Sokoban levels, we need to consider

data for the expansion network. Expansion network needs a large data set, especially in

the case of Sokoban, because all possible movement combination including boxes are not

present in the generated maps.

To have a better chance at training the expansion network for Sokoban domain, we

had to create a separate data set containing all possible steps. We can make any possible

step on 5x5 grid by placing the agent to the middle, therefore all the samples in this

data set are 5x5. After placing the agent, we create all possible combinations of walls,

CHAPTER 3. PROPOSED SOLUTIONS 25

free spaces and boxes in the possible agent movement directions. That leaves us with a

”cross” of values with agent in the middle. From this set of samples, we delete the ones

with no moves possible. The rest of the samples is copied several times, until we obtain

a sufficient number of samples. Then, we go through the whole data set and randomize

all the cells, which were not assigned in each sample. Even though there are same step

scenarios in the data, due to this randomization, they are not likely to be exactly the

same.

3.1.5 Sokoban Data for the Heuristic Network

To train the heuristic network, we need to have a data set consisting of solvable Sokoban

maps. As we mentioned before, generating solvable maps is an issue. This problem is

common in the deep learning field and can be solved by multiple methods. The one we

decided to use is data augmentation.

Data augmentation uses various modifications of the already existing data in order

to generate new data samples without the need of generating them again. In our case,

we augmented the data by randomly rotating and flipping it, which resulted in different

maps. One advantage of this approach is, that even though the maps looks different,

length of the optimal solution is still the same. That means, that we do not need to

generate the labels for the augmented data samples again, which saves us a great amount

of time.

3.1.6 Label Generation

We already established that labels are important part of the data set for neural networks.

In order to compute loss and to train the network, we need the correct labels. In this

case, we are looking at two different data sets, where each one needs a different set of

labels. For the expansion network we give a maze in a certain state on the input and the

output show how the maze looks after taking all the possible steps. On the other hand,

for the heuristic network we require a number on the output, which tells us the heuristic

value for the input maze.

In order to generate the label set for expansion network, we just need a function similar

to the transition function used in search algorithms. In fact, almost exactly the function

we are trying to replace. Such function just returns possible next states and for each of

them, we add one input maze to the data set. If there are multiple steps possible in a

current state of a maze, the function returns all the possible next states. In such case,

we copy the input maze into the data, so that every label has an input. That can lead to

increasing number of samples in the data set, however in the simple maze and multi-goal

CHAPTER 3. PROPOSED SOLUTIONS 26

mazes, it cannot grow more than 4 times and even that is highly impossible, because that

would mean, that the agent is always on a crossroad, which is not really possible. In

Sokoban, it is a very similar scenario, because the only entity creating steps is the agent.

The only extra thing we have to take into account is possibly pushing boxes and being

sure that the generated steps are valid.

In the case of multi-agent mazes, the data set can grow a lot more, because we are

dealing with combinations of movements, which in the worst case means that there can

be 16 samples for one scenario. That would be the case if there were multiple agents on

crossroads. Again, it does not really happen, because all the samples are not just two

agents in separate crossroads, but the data set does grow when generating the labels.

Labels for the heuristic network are a little more complicated to create, since they

actually demand solving the problems. We are going to be solving our problem instances

in the means of satisficing planning during the experiments and evaluation, however, we

want the labels to be the values of h∗, so we need to use an optimal planning algorithm,

which does return cost of the shortest possible plan to the goal state. For that, we used

A* algorithm.

3.2 Planner Implementation

Since our main goal is replacement of parts of the state-space search algorithm in a

planner, we must implement the planner regardless. Not only because we want to use

neural networks instead of transition function and heuristic function, but also because

planners like these always use the symbolical representation we are trying to avoid by using

neural networks. Therefore, implementing our own planners, which are using different

representation, is necessary.

Because we are acting upon the visual representation, it is necessary to create a

domain-dependent planner for each of our domains. Each of these planners uses the

same planning algorithms and the same heuristics.

Input of the planner is

• initial state

– 2D array with the initial state of the problem

• selection of transition function

– true for expansion network

– false for regular transition function

• type of heuristic

CHAPTER 3. PROPOSED SOLUTIONS 27

– ”none” - always returns 0

– ”euclidean” - Euclidean distance

– ”hff” - fast forward heuristic

– ”lmcut” - LM-cut heuristic

– ”neural” - heuristic network

• array with heuristic network

- empty when not using the ”neural” heuristic

– non-empty when using the ”neural” heuristic

The expansion function in the algorithm can be replaced by a neural network by load-

ing the proper model and one-hot encoding the maze, which is supposed to be expanded.

Another thing, that has to be done is extracting the goals from the maze, since goal posi-

tion is not an important information in the task of making a valid step. Adding another

entity to the input is unnecessary, so we process a maze without goals. That is performed

by encoding the maze, creating a free space on the goal positions, and passing it to the

input of the neural network. The expansion network then outputs a maze, which con-

tains multiple agent placements, from which we then extract all possible states. It is also

possible to turn on a manual check of the returned states, in order to see if the network

makes any mistakes.

For the heuristic function, we implemented the already mentioned HFF and LM-cut

heuristics as a very successful state of the art heuristic functions. In case of using the

neural network as a heuristic function, there is a parameter in the function, which returns

values of heuristic of a state, which can be set to ”neural”. In that case, an already

loaded network gets a one-hot encoded maze as its input and returns a heuristic value.

This value is then returned and treated as a regular heuristic estimate. In addition to

these heuristic functions, we also use the zero heuristic and Euclidean distance.

In order to evaluate, how well do the networks perform, we need to compare the

performance of them with regular transition function and regular heuristics. The planner

returns length of the solution, number of states, which were expanded in the search and

array with the whole path, which is needed for further evaluations and comparisons.

3.3 Expansion Network

In the state-space search (Definition 2.1.5), transition function takes in a current state of

the search and returns all its successors. It does so, by applying all actions applicable in

CHAPTER 3. PROPOSED SOLUTIONS 28

that state. One great advantage of this function, is that it has the symbolic representation

of the actions. There could be a case, where symbolic definition of the actions is too

difficult to create. Or a case where the action is not defined at all and the only way to

obtain information about it, is by observation.

That is the problem we are trying to solve with the expansion network. By observing

pairs of states, without knowledge about actions that connect them, we want to learn

possible actions for the domain. Even for the most simple maze domain, size of the data

set is important in order to train the network. The task does not only lay in the location of

free spaces around the agent, but we need to make sure, that the maze structure remains

the same and no rules are broken when performing the learned actions.

We could say, that we are working with very small maze images, therefore it is con-

venient to use convolutional neural networks for this task. A key hyperparameter, when

using convolutional networks, is size of the used kernel. In this case, we want to focus on

the 4-neighborhood of the agent, which means that if we took a 3x3 window, we could

evaluate all the possible steps. Therefore, we use a 3x3 kernel in the convolutional net-

work. Another parameter is padding. The padding we use in this network is equal to one,

since we want to preserve the size of the input through the whole network. The maze

structure is very important to us, so changing the data size during the process does not

seem to be very reasonable or beneficial. Convolutional networks tend to be chained, so

we created the first architecture by chaining three of these kernels.

A great improvement for this network is usage of residual connections. Residual con-

nection is an architecture modification, which is often used in deep learning and achieved

great results for example in ResNet image classification network [30]. In ResNet, residual

connections were added to a deep architecture, which had problems with learning identity

function. After adding the residual connections, complexity of the network decreased and

there was an improvement in the results.

Figure 3.6: Expansion network architecture

Expansion network has one residual connection, which connects the input data with

output of the three chained convolutional layers. After concatenating these two parts of

data, we process them through 1x1 convolution to adjust the number of channels to match

CHAPTER 3. PROPOSED SOLUTIONS 29

the input. In order to obtain even better results, we added normalization in the form of

dropout between the first three convolutional layers. We can see the whole architecture

in Figure 3.6.

This architecture can be parametrized by several values. We can determine the variable

k, which in Figure 3.6 denotes number of channels in the hidden convolutional networks.

We can also determine size of kernel for all the convolutional layers.

3.3.1 Loss Function

Using a proper loss function is a key to training any network. In this case, we train

the network to learn distribution of values on a grid, so cross-entropy is a fitting loss

function. Since we are using one-hot encoded tensors, we are using its version intended

for this representation.

function logitcrossentropy(x, y; weight = 1)

return -sum(y .* logsoftmax(x) .* weight) *

1 // size(y, 2)

end

Listing 3.2: Logistic entropy loss from [31]

Unfortunately, the one-hot encoding has its limitations, because we cannot express

such thing as an agent standing on the goal. To do so, we would have to add another

dimension, increase the complexity of the problem, or use fraction numbers. The loss

function is not suitable for usage of fractions and another added dimension is unnecessary

addition. If we go the other way and replace the goal cells with empty cells, we keep the

task the same. The goal is treated the same way as the empty cells and to make a valid

move, it is not important to know the location of the goal.

3.3.2 Expanding to Multi-mazes

One great advantage of creating the no-goal representation is, that multi-goal mazes act

exactly the same as regular mazes in the eyes of the expansion network. Therefore, the

same network, which we implemented for the regular maze domain, can be reused for the

multi-goal maze domain.

Sadly, that is not the case with the multi-agent mazes. In this domain, we have several

special cases, which cannot appear in the other maze domains. Movement rules for all

the agents are still the same, but now, there are collisions possible. Without placing such

collisions in the training data set, there is no way for the network to learn how to evaluate

them.

CHAPTER 3. PROPOSED SOLUTIONS 30

Because we are not dealing with anything else, than increase in the number of agents,

there could be a possible reusability in this domain as well. A maze with single agent

could be denoted as a special case of multi-agent maze. That leads us to a possibility of

using only one expansion network for all our maze domains.

3.3.3 Expanding to Sokoban

Unfortunately, reusing the same architecture for Sokoban domain is not fully possible.

We can keep the structure the same, but with added entity in the maze, the number of

channels on the input is higher. That is why we need to train another expansion network

just for the Sokoban domain.

Again, we replace the goal cells with empty cells, since it does not change the char-

acteristics of our task. We have very similar rules of movement in all our domains, but

Sokoban the most complicated one. We have to learn not only, how to move the agent,

but also how and when we can move the boxes.

Until now, we used only 3x3 convolutional kernels, as we can see in Figure 3.6, because

it is enough to see all valid moves the agent can make. When adding the boxes, we have

a lot more complicated situation. The 3x3 view is no longer enough, because we have to

think about boxes and their movement. For pushing a box, it necessary to see not only

the box, but also one step further, to know if we can push it. That is why we increased

the kernel size and trained networks with 5x5 and 7x7 kernels. Except from this change,

the structure of the network stays the same as displayed in Figure 3.6.

3.4 Heuristic Network

Even in planning, heuristic computation is a complicated task. We are trying to compute

it based on a non-simplified visual problem representation, which is certainly not an

easy task. We built on top of the existing expansion network in the early works on the

heuristic network. Very soon, we figured that there needs to be a more complex network

architecture created, in order to return a usable heuristic function.

Since the input data representation is still based on the visual representation, convo-

lutional networks are still a good direction to explore. Since our task is very complex, we

wanted to get closer to the classical planning approaches for computing heuristics. That

is why we decided to use attention, to emulate simplification of the problem.

The other direction, we tried to explore were recurrent networks. We are still training

the network on relatively small data samples. That gave us an idea of internal simulation

of the search, which could be done by the network. Search is a sequential process, so

CHAPTER 3. PROPOSED SOLUTIONS 31

recurrent networks are a good candidate to approach this idea. Namely, we are talking

about the reasoning network using MAC cells.

Before we create any suitable architecture, we have to reevaluate used loss function

and the structure of data.

3.4.1 Loss Function and Generating Batches

We started designing the architecture with the same data set as we had in the case of

expansion network, just with different labels, which were telling us the optimal heuristic

for each data sample. At the very beginning we used mean-square error as a loss function,

to train the network to return as close values to the optimal heuristic values as possible.

After training several simple architecture using this dataset and loss function, it was

obvious from the results, that there was a need of using a different approach.

The first great change is in the dataset. If we look at the dataset from human per-

spective, it looks very random. Each maze is different and has a number assigned to it.

It would take us a very long time to figure out the relation between the maze and the

number. Even after that, it would still be hard to come up with numbers to mazes we

never saw.

On the other hand, if we got ten images of the same maze with different agent positions,

it would be much easier to come up with a relation between the values assigned to the

mazes. That is how we approached the data as well.

For each maze instance, which was located in the original data set, we randomly picked

multiple positions, from all possible agent placements, and added those randomly picked

samples with their computed labels into the data set. To train the network, we created

the batches by taking a selected number of positions from each maze instance, so there

were always multiple different agent placements in the maze at one batch.

With batches created in such manner, we then could compute the loss function for

each part of the batch with the same maze structure, summing the partial losses together

and returning the sum as a loss for the whole batch. Since MSE was not working very

well, we created our own loss function, which was more suitable for our data and the

results we are trying to achieve.

In satisficing planning, success of the planner depends highly on the heuristic function.

If the functions sorts our open list well, we will expand less states and find a solution faster.

In order to do so, it is not that helpful to have values close to h∗ if they are not ordered

well. What we need is a function, which will achieve the best ordering of the states

possible. A great example of such function is a monotonic function.

To train a neural network, which acts as a monotonic function is not a trivial problem

and it requires a custom loss function. The structure of our new data allows us to compute

CHAPTER 3. PROPOSED SOLUTIONS 32

the loss for each maze instance in the data. Meaning, that we take every sample, with

the same arrangement of walls and goal and we compute the loss for all these samples.

We then sum the values for all the maze instances and return it as a loss. For each maze

instance, it does a pairwise comparison of the elements, to determine if their order is

correct. The original order is based on the provided labels.

function loss(mx,y)

partial_losses = []

for every maze instance in batch

ixs = all indexes of the instance

data_diffs = mx[ixs] - transpose(mx[ixs])

labels_diffs = y[ixs] - transpose(y[ixs])

tmp = -data_diffs * sign(labels_diffs)+1

l = sum(max(0, tmp)

partial_losses.add(l)

end

return sum(partial_losses)

end

Listing 3.3: Pseudocode of loss for the heuristic network

3.4.2 Architecture Design

With a better designed data set and a new loss function, next step is creating the architec-

ture. As mentioned before, our main focus went into recurrent networks and convolutional

networks.

Recurrent Network Architecture

Our first idea in the field of recurrent networks was to use LSTM. It has been a great

success in so many fields, so we thought it may benefit us as well. Unfortunately, using

simple LSTM architecture was not a success and visualizations of the results were showing

rather random values across the mazes.

Since the state space of planning problems can be very large, one of the intuitions

behind the poor quality of the results was, that maybe the network architecture is not

complicated enough. We hoped that the recurrent network could simulate the search, but

that is a very complex task. Maybe, a more complex architecture could manage to do so.

And on that note, we decided to explore the reasoning neural networks and implement a

MAC recurrent network.

CHAPTER 3. PROPOSED SOLUTIONS 33

MAC recurrent network is quite different from the LSTM recurrent cell. Also, the

LSTM is usually implemented in every library, which is used to implement neural net-

works, but in case of MAC, we had to create the whole implementation from scratch with

modification, so the architecture matches the needs of our task.

The task presented in [25] is very different from ours. They have a question and an

image on the input, and the output is just one of predefined answers. We have only an

image, so we had to modify the input and output modules of the network.

On the input, we used a simple convolutional network, to extract features from the

maze image. There is no need to use a pretrained image processing network, mostly

because our images are so small, they could not be processed by it anyway. The output

module is modified, so it returns a number instead of a vector.

We aimed to create a complex recurrent architecture, which we fulfilled. The outputted

results from this network were better than the first ones we obtained by using LSTM.

However, there were still many issues with certain data samples.

One great drawback of this architecture is the number of hyperparameters it has. Due

to its complexity, it is very complicated to train. Manual changing of the hyperparameters

causes the outcomes to change a lot and it does require a lot of time to train. It would

require a lot more time and work in order to figure out if it is possible to train this

architecture to work in our favor. The reasoning of the network can be arbitrarily long,

depending on the complexity of the maze on the input. One way of training it effectively

is implementing a self-stopping mechanism, which is an interesting idea for future work.

Attention Network

The key success in this architecture is due to usage of attention, as described in Section

2.3.4. The thought behind this approach also reassembles the relaxation used in planning.

If we imagine looking at a maze and identifying interesting parts of it, such as crossroads

or long straight paths, we might simplify the problem enough to obtain a distance estimate

from the agent to the goal.

Implementation of attention was done by using convolutional layers and using softmax

over first two dimensions of the input. Meaning, at the end we received the attention mask.

One problem, which comes up when using attention is how many attention masks do we

want in order to find enough attention-worthy places in the data. We experimented with

different numbers of attentions to see if there is difference in the results.

The input of this network is still of the size W ×H ×C ×N , first two dimensions are

width and height of the data, the third is number of channels and the last one is number of

samples in the processed mini-batch. Size of the mini-batch has been deliberately omitted

in the architecture diagrams for simplification.

CHAPTER 3. PROPOSED SOLUTIONS 34

Figure 3.7: Attention block diagram

After creating M attention masks, we multiply the input data by each of the masks,

concatenating the results. That results in a data tensor of size M×C+C+2. We multiply

each channel of the data by each attention and concatenating the results with the original

data, this multiplication is denoted in Figure 3.7 as ”multiplication”. After that, we add

two last channels, which are x and y coordinates for the mazes. It was shown in the [32]

that for learning spacial information it can be highly beneficial to provide coordinates for

the data. Therefore, we added coordinates at the end of our data tensor.

This created data tensor is then processed by multiple convolutional layers with same

padding, which keeps the width and height of the data the same throughout the whole

network. After processing through the convolutional layers, aggregation in form of a

sum is performed over the first two dimensions, creating a vector of the same size as the

number of channels in the last convolutional layer. Then it is processed through a dense

layer, returning one value, which is our final heuristic value for the input. The whole

architecture is displayed in Figure 3.8.

Figure 3.8: Heuristic network architecture using one attention block

That is the top level description of the architecture. We experimented it with multiple

small modifications, to see if they influence the results. One modification is the number of

CHAPTER 3. PROPOSED SOLUTIONS 35

attention layers, which I mentioned earlier. The second modification, which we denoted

as an ”attention block”, states, how many times we repeat creating the attention masks

and the large multiplication of these with the input data. One case is using is only once,

as described above, at the beginning of the network. The other case is using five of them,

one between each two convolutional layers. This case is displayed in Figure 3.9.

Figure 3.9: Heuristic network architecture using five attention blocks
Every attention blocks has its own set of attention masks.

3.4.3 Expanding to Multi-mazes

With the expansion network, there were not many changes when applying the network to

other maze domains, since the movement rules are very similar for all three maze domains.

With the heuristic network, the situation is very different. In the multi-goal maze,

we have multiple goals, so every label represents length of the path to the closest goal,

because there are multiple goals in the maze. That may present a problem, because

analysis of the maze structure has more to focus on, as we are not only looking at one

agent position and one goal position, we need to add that deciding factor of which goal

is closer to the agent.

The multi-agent maze is even more complicated, because there are not only multiple

goals but also multiple agents. We need to consider placement of all agents at the same

time. This scenario is also more difficult to imagine for humans as well. Once there is

more than one moving entity in the maze, it becomes difficult to imagine how many steps

are left until we reach the goal.

3.4.4 Expanding to Sokoban

Similar to the multi-agent maze, we have multiple entities in the maze now, which can

move. We do not have to move them all at the same time, so that is an advantage, but

the goal is defined differently in Sokoban than in all the other domains. We are looking

at a different representation of the goal state. Also the structure of maps in Sokoban

is very different to structure of mazes we talked about previously. We do not have only

CHAPTER 3. PROPOSED SOLUTIONS 36

narrow hallways now, we are dealing with open space, where we have to position the boxes

correctly.

Labels of Sokoban map samples represent the optimal number of steps made to solve

the map, however that does not depend on distance of the agent from goal, like in the

maze domain. We need to also focus on the boxes and their distances from goal. Even for

a human, it is much more complicated to make an estimation of number of steps necessary

to solve a Sokoban level. That is why, it is an interesting problem.

Chapter 4

Experiments

Experiments in this work can be divided into two parts. The first part is training and

evaluating the designed networks and the second one is evaluating these trained networks

against classical planning methods.

Each of the established architectures has multiple adjustable hyperparameters. To

find the right architecture setup, we trained each network with varying selection of hy-

perparameters, to see if any of the settings can improve results of the network.

To justify selection of the hyperparameters, it is necessary to have a metric that helps

us evaluate and compare all the trained networks in order to pick the best ones. The best

selected networks are further used in the planning experiments.

4.1 Network Evaluation

To compare different trained networks and evaluate their results, we implemented several

evaluation functions. We focus less on the value of loss function achieved during training,

and more on the actual functionality of the networks on real data. These function try to

emulate functionality, which is required for the networks to perform in a classical planner.

4.1.1 Expansion Network Evaluation

For the expansion network, we implemented two evaluation functions, which were designed

to check the resulting maze structure, since that is something, that the output must

preserve.

The expansion network takes a grid representation of a state on the input and generates

a maze with possible successors. To this end, it is important to compare the generated

maze with actual state generated by the state-transition function.

The first function is used to check, whether the placement of wall cells is the same

in the input and output maze. The networks generated a whole new maze base on the

37

CHAPTER 4. EXPERIMENTS 38

input, therefore it is important to check, whether it is a maze with the same structure.

It also checks, if there are not any walls added to or deleted from the maze at the

output. Number at the output of this evaluation function denotes the largest value as-

signed to a cell, which is not supposed to be a wall. In the evaluation tables, output of

this evaluation is denoted as wall diff.

The other function evaluated the steps generated by the expansion network. It takes

the input and runs it through the expansion network. The output maze generated by

the expansion network creates a tensor of the same size as the input. The tensor consists

of a one-hot encoded vector for each cell, where each vector position represents one cell

type. Then it takes the input mazes and generates all possible successor states with the

state-expansion function.

Now with outputs from both state-transition function and the expansion network, we

can compare the successors generated from each. We first look at all the successor states

from state-transition functions and note all positions, where the agent was transitioned.

We look at one-hot vectors for all these cell positions and denote the smallest value, which

is at this position of the vector, decoding agent cell type.

Then, we do the exact opposite and look at all the cells, which are not possible to be

a valid agent placement. Now we look for the maximal possible value for agent at the

one-hot vector for all these cells.

That gives us the minimal correct step and the maximal wrong step created by the

expansion network. In the evaluation tables, there values are denoted as min corr and

max wr. In case of Sokoban, there is also a min corr box and max wr box, which gives

these values but for boxes on the map.

4.1.2 Heuristic Network Evaluation

For the heuristic network, the evaluation of the output is more complicated, since the

output is just one value. The heuristic network takes a maze on the input and returns a

value, which represents an estimate of the distance from the current state to the goal.

The visualization is a possibility, however in order to obtain it, we have to explore

the whole state space and compute the heuristic value for every possible agent placement.

This approach can be computationally very expensive for large maze instances and also

the readability of the visualization gets more difficult, depending on the difference between

neighboring heuristic values.

In the Figure 4.1, we can see examples of such visualization for heuristic network for

maze domains. The maze on the left contains heuristic values computed for each cell and

normalized. The maze on the right is the maze instance with placed goal. In the Figure

4.2, we can see the same visualization but for the multi-goal maze domain.

CHAPTER 4. EXPERIMENTS 39

We decided to solve this problem by computing a sequence ranking distance. To do

so, we take a problem sample, we want to evaluate the network on. We first optimally

solve the problem, which leaves us with the optimal path to solution.

The path consists of all the states, which are encountered on the optimal path, so we

can give each one of these states to the heuristic network and obtain their neural heuristic

value. We then order them according to the computed neural heuristic values and compare

the optimal ordering with this one. We do so by computing the normalized Kendall tau

distance [33]. Regular Kendall tau distance, in this case, could be computed as a number

of inversions in a permutation, since the first sequence is perfectly ordered sequence of

numbers. However, since we need to take the length of the path in consideration, we have

to normalize the value. The normalized Kendall tau distance tells us what percentage of

pair from both orderings, which differ in order.

The normalized Kendall’s tau K for a permutation σ is computed as

K(σ) =

∑
(i,j):i>j[σ(i) < σ(j)]

|σ|(|σ|−1)
2

In the evaluation tables, minimal and maximal Kendall tau distance are denoted as

min kt and max kt.

4.2 Training the Expansion Networks

In this section, we present results obtained from trained expansion networks. We trained

one network for the three maze-related domains and one for the Sokoban domain. All

metrics used to evaluate success of the architectures are described in Section 4.1.1.

4.2.1 Expansion Network for Maze Domains

We trained the expansion network architecture described in Section 3.3 with 64 output

channels in the first convolutional layer for 250 epochs. In Table 4.1 it is denoted as

nogoal-1 and on the regular maze data, it shows great results.

We attempted reusing the same trained network on the multi-agent data as well, but

as we can see in Table 4.1, the results were not sufficient at all. We can see, that the min

corr value is very low. That can cause ignoring possible successor states in the state-space

search.

All these low values for correct steps come from possible agent collisions. Collisions

of agent are not in the training data for the network, so it did not know how to properly

evaluate them.

CHAPTER 4. EXPERIMENTS 40

We solved this issue by combining the original maze data set with the multi-agent

data set and creating the training batches from both. The resulting network nogoal-ma-

1 returned much better results, as we can see in Table 4.1.

Model
maze data ma-maze data

wall diff min corr max wr wall diff min corr max wr
nogoal-1 9.71483e-6 0.24469 6.39833f-8 0.01587 3.11338f-11 0.00053

nogoal-ma-1 4.23067e-8 0.24124 8.42643f-10 1.85346e-5 0.23101 1.5056f-7

Table 4.1: Expansion network evaluation for maze domains

The nogoal-ma-1 trained network is used for all three maze domains in the planning

experiments in Section 4.4.

4.2.2 Expansion Network for Sokoban

As we mentioned before, Sokoban requires a separate network due to its data structure.

Because we are dealing with one more entity in the map, the box, we require the data to

have more channels.

We keep the same architecture as before, with minor modifications of the convolutional

kernel as mentioned in Section 3.4.4. In this case, we have to train the network with

multiple different parameter configurations.

We parametrize the experiments with the following parameters. The first one denotes

the number of channels in hidden convolutional layers. Next two denote size of the

convolutional kernels and number of used convolutional layers. The last one is number of

training epochs. Names of models are constructed from values of these four parameters.

We trained 17 models in total, which are evaluated on both training and test data set.

Results are displayed in Table 4.2.

Evaluation shows the real problem in this task. The walls are not a big problem even

for the test data samples, unlike the correct steps.

The minimal correct step values are so small, and the maximum wrong values so

large, that we probably would not be able to fully rely on any of these networks. Correct

placements of boxes and the agent have assigned values close to zero, which makes the

steps impossible to detect by the planner. The displacements of both boxes and agent are

assigned a lot higher values. This leads to not only generating invalid steps, but also to

ignoring existing valid ones.

Based on these results, we can assume, that training a Sokoban expansion network is a

much more complicated task than we first anticipated. Regardless, we will use a Sokoban

expansion network in the second part of our experiments. The network configuration we

will use is 64-5-2-250, which showed the best results.

CHAPTER 4. EXPERIMENTS 41

Model
Test data set

wall diff min corr min corr box max wr max wr box
128-5-2-250 0.00034 4.02678e-16 9.86054e-7 0.91806 0.38099
128-5-2-500 0.00106 1.1512e-21 3.2776e-7 0.96902 0.60831
128-5-2-750 0.0005 1.46605e-27 3.6783e-10 0.68624 0.57492
128-7-3-250 0.00029 2.12268e-38 1.04296e-10 0.98131 0.60293
128-7-3-500 2.71443e-6 3.8239e-23 4.77875e-7 0.68839 0.33603
128-7-3-750 0.00011 1.24393e-12 1.60283e-5 0.58009 0.54652
256-5-2-250 1.1452e-5 1.09583e-13 1.58407e-7 0.70511 0.41824
256-5-2-500 4.32075e-5 3.78003e-19 6.35464e-9 0.73162 0.55639
256-5-2-750 5.19998e-5 6.83472e-16 3.53193e-10 0.8935 0.58464
256-7-3-250 5.11103e-5 4.62526e-29 1.23327e-8 0.80184 0.43226
256-7-3-500 6.08975e-5 3.2576e-37 7.38266e-16 0.57952 0.60324
64-5-2-250 0.00241 1.33777e-11 4.79369e-6 0.96589 0.37592
64-5-2-500 5.04715e-6 1.52633e-22 4.95629e-7 0.99828 0.43834
64-5-2-750 1.12057e-5 5.23684e-25 2.6235e-7 0.99995 0.88743
64-7-3-250 3.70442e-5 3.19981e-18 3.50131e-8 0.47539 0.02295
64-7-3-500 1.43414e-6 5.33057e-19 9.47323e-7 0.74012 0.20341
64-7-3-750 1.62785e-5 2.37593e-37 5.94413e-8 0.77367 0.20639

Table 4.2: Expansion network evaluation for Sokoban

4.3 Training the Heuristic Networks

Heuristic network is trying to solve a much more complex task than the expansion network.

Therefore, we trained multiple configurations for each of the domains. The numbers of

trained configurations may differ, since we did not succeed in training all the configurations

on all problems. It is usually the case with the more complicated networks, which require

a lot of memory and time to train.

The trained networks were then evaluated by methods described in Section 4.1.2 and

compared manually according to the results. We sampled 1000 samples from both data

sets and used them to evaluate each trained network configuration.

The evaluation on train data means, that samples from the training dataset were

solved by a planner and the resulting path orderings were then compared as described in

4.1.2.

4.3.1 Heuristic Network for Maze Domain

For the single-agent maze domain, we first trained prototypes of both convolutional net-

work with attention, mentioned in Section 3.4.2 and the MAC network mentioned in

Section 3.4.2.

The MAC network requires a lot of parameter tuning and adjustments, since the archi-

tecture is much more complicated and the results we were able to get were not convincing

CHAPTER 4. EXPERIMENTS 42

enough in order to continue in its development. Therefore, we performed experiments

with the convolutional attention network and we will leave the MAC architecture for pos-

sible future development. One direction of such development is the self-stopping learning

mechanism we mentioned in Section 3.4.2.

During training, we tested multiple configurations of networks by adjusting four pa-

rameters. First one is padding, which is equal to 0 or 1 depending on whether or not

we want to pad the maze with walls on the input. Then we have number of attention

layers, which tells us how many attention masks is created for each attention block, which

performs operation described in Section 2.3.4. Next one is number of attention blocks. If

it is equal to one, the attention process is performed only at the very beginning of the

network. If it is equal to 5, there is one attention block between every two convolutional

layers in the network. The last parameter is number of epochs, which we consider to be

50 or 100.

In Table 4.3, we have minimal (min kt) and (max kt) maximal obtained Kendall tau

distance for each of the data sets. The number in brackets next to the value is how many

samples from 1000 has Kendall tau distance equal to the value.

Model
Train data Test data

min kt max kt min kt max kt
0-10-1-100 0.08696 (2) 1.0 (44) 0.10526 (14) 0.66667 (9)
0-10-1-50 0.0 (57) 1.0 (43) 0.0 (57) 0.66667 (4)
0-10-5-100 0.08889 (1) 1.0 (44) 0.15238 (1) 0.74546 (1)
0-10-5-50 0.0 (21) 1.0 (43) 0.0 (9) 0.66667 (8)
0-5-1-50 0.0 (480) 1.0 (18) 0.0 (480) 0.33333 (3)
0-5-5-50 0.00654 (1) 1.0 (44) 0.00952 (2) 0.66667 (9)

1-10-1-100 0.0 (929) 1.0 (2) 0.0 (950) 0.04762 (3)
1-10-1-50 0.08 (1) 1.0 (44) 0.10526 (13) 0.66667 (9)

1-10-5-100 0.0 (321) 0.59048 (1) 0.0 (248) 0.55556 (2)
1-10-5-50 0.01282 (1) 1.0 (44) 0.01905 (1) 0.66667 (9)
1-5-1-50 0.08333 (1) 1.0 (44) 0.10526 (13) 0.66667 (9)

Table 4.3: Heuristic network evaluation for maze domain

From evaluation in Table 4.3, there are two values, which stand out. The first one is

min kt of model 1-10-1-100 on training data. There are 929 samples from 1000, which

had Kendall tau distance equal to 0. That means, that all these were ordered correctly

by the network and there were no inversions in permutations needed to get the correct

order of the path. We can see, that the success was repeated with the test data as well

and there are 950 samples with the same property. This configuration also has a very

low max kt value for test data, which means that all orderings in the test data set were

performed near perfect.

The other value is the max kt for training data of 1-10-5-100. It is the only configu-

CHAPTER 4. EXPERIMENTS 43

ration, which achieved max kt lower than one. That is actually the highest possible value

of normalized Kendall tau distance, which denotes that maximum number of inversions

is necessary to create the correct permutation.

We decided to take both 1-10-5-100 and 1-10-1-100 configurations and use them

separately in the planner. Notice, that it is the same architecture, which differs only in

the number of used attention blocks. Both have some standout results, but it is hard

to tell, which one could have better performance. Therefore, we will run the planning

experiments with both.

To see the resulting attention masks used in the planning experiments, we also have a

visualization of them. An example for such visualization for one attention block with ten

attention masks is shown in Figure 4.3. The top-left image is the problem instance on the

input, next 10 images are attention masks from the first block of the heuristic network.

In the Figure 4.3, we can see, that there are various attention focuses in the masks.

Some of the masks focus primarily on the area around the goal. Some of them focus more

on the structure of the maze. Some of the masks look similar, however, none of them are

the same. Based on that, we can assume that the number of attention masks is not too

high.

4.3.2 Heuristic Network for Multi-goal Maze Domain

There are 11 trained heuristic networks for the multi-goal maze domain. We adjusted

four parameters of the configuration, just as in the previous cases. First is padding of the

data with walls, second two are number of attention layers in each block and number of

blocks. The last one is number of epochs.

To evaluate the networks we use normalized Kendall tau values min kt and max kt

described in Section 4.1.2. In Table 4.4, we can see values for all the trained networks. The

one, which stands out is the 1-5-1-50 configuration. It has the highest number of samples

with the minimal min kt, which means that about half of orderings from both train and

test data set, were ordered correctly. Therefore, we use the 1-5-1-50 configuration for

further planning experiments.

In Figure 4.4, we can see visualization of all the attention layers in the selected model

1-5-1-50. The original problem instance is the top-left image. The other 5 images are the

attention masks. We can tell, that two of the masks focus on the position of the agent.

Those almost look like duplicates. Mask in the middle of the bottom row looks exactly

like a path through the whole maze. Another one looks at the positions of goals. That

shows, that the attention masks can focus on different aspects of the maze.

CHAPTER 4. EXPERIMENTS 44

Model
Train data Test data

min kt max kt min kt max kt
0-10-1-50 0.10476 (1) 1.0 (92) 0.1 (2) 1.0 (88)
0-10-5-50 0.0 (18) 1.0 (92) 0.0 (29) 1.0 (86)
0-5-1-50 0.10526 (3) 1.0 (92) 0.09524 (1) 1.0 (88)
0-5-5-50 0.0 (28) 1.0 (92) 0.0 (34) 1.0 (87)
1-10-1-50 0.0 (23) 1.0 (119) 0.0 (21) 1.0 (125)
1-10-5-50 0.0 (29) 1.0 (83) 0.0 (20) 1.0 (90)
1-5-1-50 0.0 (492) 1.0 (48) 0.0 (497) 1.0 (55)
1-5-5-50 0.0 (445) 1.0 (57) 0.0 (437) 1.0 (73)
0-5-1-100 0.11111 (4) 1.0 (97) 0.1 (1) 1.0 (99)
1-5-1-100 0.0 (30) 1.0 (131) 0.0 (30) 1.0 (135)
1-10-1-100 0.0 (25) 1.0 (119) 0.0 (29) 1.0 (120)

Table 4.4: Heuristic network evaluation for multi-goal maze domain

4.3.3 Heuristic Network for Multi-agent Maze Domain

There are 9 trained networks for the multi-agent maze domain. The training configura-

tions are parametrized by four values. There is a parameter for padding the mazes with

walls, parameter for number of attention layers in a block, number of attention blocks

and a number of epochs. All results are in Table 4.5. In this case, a standout network

configuration is 0-10-1-100, as is has the highest number of samples with min kt value

in both train and test data set. We use this network configuration further in the planning

experiments.

Model
Train data Test data

min kt max kt min kt max kt
0-10-1-100 0.0 (28) 1.0 (5) 0.0 (32) 1.0 (4)

0-10-1-50 0.0 (26) 1.0 (5) 0.0 (18) 1.0 (4)
0-5-1-100 0.0 (4) 1.0 (16) 0.0 (5) 1.0 (6)
0-5-1-50 0.0 (9) 1.0 (13) 0.0 (5) 1.0 (6)

1-10-1-100 0.0 (5) 1.0 (10) 0.0 (3) 1.0 (7)
1-10-1-50 0.0 (1) 1.0 (10) 0.0 (1) 1.0 (7)
1-10-5-50 0.01515 (1) 1.0 (11) 0.0 (1) 1.0 (8)
1-5-1-100 0.0 (1) 1.0 (13) 0.0 (2) 1.0 (12)
1-5-1-50 0.03297 (1) 1.0 (15) 0.0 (1) 1.0 (10)

Table 4.5: Heuristic network evaluation for multi-agent maze domain

In Figure 4.5, we can see visualization of all attention masks applied on an input maze.

From the images, we can tell that the network focuses on locations of agents, as well as

on locations of goal. Several of the masks seem to focus more on wall placement and the

structure of the maze.

CHAPTER 4. EXPERIMENTS 45

4.3.4 Heuristic Network for Sokoban Domain

For the Sokoban domain, there are 5 trained networks. Unlike the maze domains, here

we do not use the wall padding parameter, since all the Sokoban maps are padded by

default.

The two possible parameters are number of attention blocks and number of attention

layers in one attention block. All networks were trained for 50 epochs. Evaluation using

Kendall tau distance is showed in Table 4.6. The min kt and max kt denote minimal and

maximal Kendall tau distances achieved on the evaluation data. Number in brackets next

to that says, for how many samples was this value computed.

Model
Train data Test data

min kt max kt min kt max kt
10-1-50 0.0 (118) 0.75 (1) 0.0 (116) 0.61905 (1)
10-5-50 0.0 (266) 0.39286 (1) 0.0 (226) 0.45455 (1)
20-1-50 0.0 (237) 0.5 (2) 0.0 (210) 0.52381 (1)
5-1-50 0.0 (106) 0.6 (1) 0.0 (103) 0.6 (2)
5-5-50 0.0 (148) 0.51111 (1) 0.0 (142) 0.50909 (1)

Table 4.6: Heuristic network evaluation for Sokoban domain

Every configuration in Table 4.6 achieved min kt equal to zero for both train and test

data. The max kt values did not reach 1.0 at any of the configurations. That is something

we saw repeatedly in the maze domains.

To select a network for further experiments, let’s look at the counts next to Kendall tau

distance values. The configuration 10-5-50 has overall lowest values for both train and

test data. Also, the number of samples with the lowest Kendall tau distance is the largest

of all the configurations. Therefore, we use this trained network in further experiments.

In Figure 4.6, we can see attention masks from the first attention block applied on an

input Sokoban map. We can see, that there is a mask, which looks directly at placement

of the goals and another one, which focuses on the boxes. Other ones focus on the whole

map and highlight different groups of cells.

4.4 Planning Experiments

In sections 4.2 and 4.3 we selected expansion networks and heuristic network to use in the

planning experiments. There are two expansion networks, one for Sokoban and one for

the all three maze-related domains. There are two heuristic networks for maze domain,

since each of them had different positive properties, we decided to use both. There is

one heuristic network for multi-goal maze, one for multi-agent maze and one for Sokoban

domain.

CHAPTER 4. EXPERIMENTS 46

We are using domain dependent planners, because of the visual representation of

problems, as stated in Section 3.2. For each domain, we implemented a planner with the

same algorithms and the same heuristics. There are three state-space search algorithms,

greedy best-first search (Section 2.2.1), history considering best-first search (Section 2.2.2)

and multi-heuristic search using tie-breaking (Section 2.2.3). In the multi-heuristic search,

we can select as many heuristics as desired. The other two algorithms support using only

one heuristic at a time.

For heuristic, we can select none, which always returns zero, Euclidean distance, HFF

heuristic (Section 2.2.4), LM-cut (Section 2.2.4) and the heuristic neural network. For

use in multi-heuristic search, they can be arbitrarily combined.

For each problem domain, we created 50 new problem instances, which are not in any

of the training data sets we used earlier. To compare the performance of all the planner

configurations, we measured length of the output plans and number of expanded states

during the search. There is also coverage denoted as cvg, which says percentage of solved

problems from the set of 50.

4.4.1 Planning Experiments for Maze Domain

With selected expansion network and heuristic network, we finished experiments for the

maze domain with results shown in Table 4.7. As mentioned in Section 4.3.1, we selected

two heuristic networks for this domain due to their results. In the Table 4.7, configuration

1-10-5-100 is denoted as nn and 1-10-1-100 is denoted as nn2.

We can see, that using the expansion network doesn’t change the coverage of any

configurations. Therefore, we can assume that is generates the successor states correctly,

since it’s possible to find solutions to all problems.

In GBFS experiments, LM-cut has the shortest paths together with Euclidean heuris-

tic, and the least expanded states. The next heuristic function after that is the heuristic

network 1-10-5-100. That means, that is outperformed the zero heuristic and hFF heuris-

tic as well.

In HCBFS experiments, all the configurations, except the 1-10-1-100 heuristic net-

work configuration (denoted nn2), achieved the same results for the ”Path len” values. For

the ”Expanded states” values, best is LM-cut and second is the heuristic network. That

shows, that it outperforms every other heuristic in the average number of expanded states,

except LM-cut. That holds for both expansion network and state-transition function.

In multi-heuristic search experiments, LM-cut achieved the best results with every

other heuristic as a tie-breaker. From all configurations with heuristic network as the

primary heuristic, 1-10-1-100 has overall best results when used with LM-cut as a tie-

breaker.

CHAPTER 4. EXPERIMENTS 47

Search Heuristic
Default expansion Expansion network

Path len Expanded states Path len Expanded states
avg min max avg min max cvg avg min max avg min max cvg

gbfs none 11.64 4.0 52.0 27.42 6.0 63.0 1.0 10.88 4.0 38.0 23.48 7.0 38.0 1.0
gbfs eucl 10.76 4.0 38.0 14.58 4.0 38.0 1.0 10.76 4.0 38.0 14.2 4.0 38.0 1.0
gbfs hff 11.64 4.0 52.0 27.42 6.0 63.0 1.0 10.88 4.0 38.0 23.48 7.0 38.0 1.0
gbfs lmcut 10.76 4.0 38.0 10.76 4.0 38.0 1.0 10.76 4.0 38.0 10.76 4.0 38.0 1.0
gbfs nn 10.8 4.0 38.0 14.12 4.0 38.0 1.0 10.8 4.0 38.0 14.12 4.0 38.0 1.0
gbfs nn2 10.92 4.0 38.0 35.16 30.0 62.0 1.0 10.84 4.0 38.0 35.16 30.0 62.0 1.0
hcbfs none 10.76 4.0 38.0 33.1 12.0 112.0 1.0 10.76 4.0 38.0 32.78 11.0 112.0 1.0
hcbfs eucl 10.76 4.0 38.0 20.9 5.0 90.0 1.0 10.76 4.0 38.0 20.86 5.0 88.0 1.0
hcbfs hff 10.76 4.0 38.0 33.1 12.0 112.0 1.0 10.76 4.0 38.0 32.78 11.0 112.0 1.0
hcbfs lmcut 10.76 4.0 38.0 12.98 5.0 68.0 1.0 10.76 4.0 38.0 12.2 5.0 39.0 1.0
hcbfs nn 10.76 4.0 38.0 20.38 5.0 84.0 1.0 10.76 4.0 38.0 20.38 5.0 84.0 1.0
hcbfs nn2 10.84 4.0 38.0 37.66 31.0 109.0 1.0 10.84 4.0 38.0 37.66 31.0 109.0 1.0

mh-gbfs eucl, hff 10.76 4.0 38.0 14.58 4.0 38.0 1.0 10.76 4.0 38.0 14.2 4.0 38.0 1.0
mh-gbfs eucl, lmcut 10.76 4.0 38.0 13.42 4.0 38.0 1.0 10.76 4.0 38.0 13.42 4.0 38.0 1.0
mh-gbfs eucl, nn 10.76 4.0 38.0 13.84 4.0 38.0 1.0 10.76 4.0 38.0 13.84 4.0 38.0 1.0
mh-gbfs eucl, nn2 10.76 4.0 38.0 14.58 4.0 38.0 1.0 10.76 4.0 38.0 14.2 4.0 38.0 1.0
mh-gbfs hff, eucl 10.76 4.0 38.0 14.58 4.0 38.0 1.0 10.76 4.0 38.0 14.2 4.0 38.0 1.0
mh-gbfs hff, lmcut 10.76 4.0 38.0 10.76 4.0 38.0 1.0 10.76 4.0 38.0 10.76 4.0 38.0 1.0
mh-gbfs hff, nn 10.8 4.0 38.0 14.12 4.0 38.0 1.0 10.8 4.0 38.0 14.12 4.0 38.0 1.0
mh-gbfs hff, nn2 11.64 4.0 52.0 27.42 6.0 63.0 1.0 10.88 4.0 38.0 23.48 7.0 38.0 1.0
mh-gbfs lmcut, eucl 10.76 4.0 38.0 10.76 4.0 38.0 1.0 10.76 4.0 38.0 10.76 4.0 38.0 1.0
mh-gbfs lmcut, hff 10.76 4.0 38.0 10.76 4.0 38.0 1.0 10.76 4.0 38.0 10.76 4.0 38.0 1.0
mh-gbfs lmcut, nn 10.76 4.0 38.0 10.76 4.0 38.0 1.0 10.76 4.0 38.0 10.76 4.0 38.0 1.0
mh-gbfs lmcut, nn2 10.76 4.0 38.0 10.76 4.0 38.0 1.0 10.76 4.0 38.0 10.76 4.0 38.0 1.0
mh-gbfs nn, eucl 10.8 4.0 38.0 14.1 4.0 38.0 1.0 10.8 4.0 38.0 14.1 4.0 38.0 1.0
mh-gbfs nn, hff 10.8 4.0 38.0 14.12 4.0 38.0 1.0 10.8 4.0 38.0 14.12 4.0 38.0 1.0
mh-gbfs nn, lmcut 10.8 4.0 38.0 14.1 4.0 38.0 1.0 10.8 4.0 38.0 14.1 4.0 38.0 1.0
mh-gbfs nn2, eucl 10.76 4.0 38.0 14.58 4.0 38.0 1.0 10.76 4.0 38.0 14.2 4.0 38.0 1.0
mh-gbfs nn2, hff 11.64 4.0 52.0 27.42 6.0 63.0 1.0 10.88 4.0 38.0 23.48 7.0 38.0 1.0
mh-gbfs nn2, lmcut 10.76 4.0 38.0 10.76 4.0 38.0 1.0 10.76 4.0 38.0 10.76 4.0 38.0 1.0

Table 4.7: Planning experiments for maze domain

4.4.2 Planning Experiments for Multi-goal Maze Domain

Results for the multi-goal maze domain are shown in Table 4.8. With a few minor excep-

tions, results for regular transition function and the expansion network are very similar.

The coverage achieved with both transition functions is equal to 1.0, therefore all problems

were solved with every planner configuration.

In case of GBFS, heuristic network achieves best results together with LM-cut and

hFF heuristics. In case of HCBFS, it even outperforms them in the number of expanded

states, using both expansion network and regular state-transition function.

In the multi-heuristic search, majority of the configurations achieved the same results,

which can be classified as the best. Every configuration with heuristic network as the

primary heuristic achieved those results as well. That shows us, that heuristic network

outperformed Euclidean heuristic at the primary position at the multi-heuristic search.

As a tie-breaker, heuristic network performed well with hFF , LM-cut, but not Euclidean

CHAPTER 4. EXPERIMENTS 48

heuristic.

Search Heuristic
Default expansion Expansion network

Path len Expanded states Path len Expanded states
avg min max avg min max cvg avg min max avg min max cvg

gbfs none 6.7 1.0 26.0 14.38 1.0 31.0 1.0 6.88 1.0 26.0 14.26 1.0 32.0 1.0
gbfs eucl 5.92 1.0 26.0 7.12 1.0 26.0 1.0 5.92 1.0 26.0 7.2 1.0 26.0 1.0
gbfs hff 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
gbfs lmcut 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
gbfs nn 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
hcbfs none 5.88 1.0 26.0 18.18 2.0 78.0 1.0 5.88 1.0 26.0 18.34 2.0 77.0 1.0
hcbfs eucl 5.88 1.0 26.0 10.72 2.0 34.0 1.0 5.88 1.0 26.0 10.86 2.0 39.0 1.0
hcbfs hff 5.88 1.0 26.0 7.86 2.0 37.0 1.0 5.88 1.0 26.0 7.68 2.0 28.0 1.0
hcbfs lmcut 5.88 1.0 26.0 7.86 2.0 37.0 1.0 5.88 1.0 26.0 7.68 2.0 28.0 1.0
hcbfs nn 5.88 1.0 26.0 6.88 2.0 27.0 1.0 5.88 1.0 26.0 6.88 2.0 27.0 1.0

mh-gbfs eucl, hff 5.92 1.0 26.0 6.88 1.0 26.0 1.0 5.92 1.0 26.0 6.88 1.0 26.0 1.0
mh-gbfs eucl, lmcut 5.92 1.0 26.0 6.88 1.0 26.0 1.0 5.92 1.0 26.0 6.88 1.0 26.0 1.0
mh-gbfs eucl, nn 5.92 1.0 26.0 6.88 1.0 26.0 1.0 5.92 1.0 26.0 6.88 1.0 26.0 1.0
mh-gbfs hff, eucl 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
mh-gbfs hff, lmcut 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
mh-gbfs hff, nn 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
mh-gbfs lmcut, eucl 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
mh-gbfs lmcut, hff 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
mh-gbfs lmcut, nn 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
mh-gbfs nn, eucl 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
mh-gbfs nn, hff 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0
mh-gbfs nh, lmcut 5.88 1.0 26.0 5.88 1.0 26.0 1.0 5.88 1.0 26.0 5.88 1.0 26.0 1.0

Table 4.8: Planning experiments for multi-goal maze domain

4.4.3 Planning Experiments for Multi-agent Maze Domain

Results of planning experiments for multi-agent maze domain are shown in Table 4.9.

Using the expansion network results in the same coverage as in the case of regular

state-transition network. Therefore, we can assume, that the expansion network works

correctly, since every problem was solved.

Using the heuristic network does not bring any significant improvement for any single-

heuristic search. The only heuristic outperformed is usually the zero heuristic. In the

multi-heuristic search, the one case, where heuristic network benefits the results is when

using is as a tie-breaker with the hFF heuristic, with the default state-transition function.

That decreases both lengths of found solutions and expanded states.

4.4.4 Planning Experiments for Sokoban Domain

Planning experiments for Sokoban domain are shown in Table 4.10. The number of entries

is smaller due to computational resources. We did not get any results for LM-cut and

HFF heuristics.

CHAPTER 4. EXPERIMENTS 49

Search Heuristic
Default expansion Expansion network

Path len Expanded states Path len Expanded states
avg min max avg min max cvg avg min max avg min max cvg

gbfs none 93.92 3.0 231.0 237.0 5.0 649.0 1.0 62.06 5.0 136.0 170.28 8.0 367.0 1.0
gbfs eucl 12.56 1.0 40.0 35.28 1.0 234.0 1.0 12.26 1.0 40.0 24.04 1.0 164.0 1.0
gbfs hff 10.5 1.0 30.0 15.28 1.0 43.0 1.0 10.34 1.0 30.0 14.72 1.0 51.0 1.0
gbfs nn 15.42 1.0 38.0 171.12 1.0 505.0 1.0 11.42 1.0 34.0 26.94 1.0 96.0 1.0
hcbfs none 8.9 1.0 18.0 485.14 5.0 934.0 1.0 8.9 1.0 18.0 350.08 4.0 684.0 1.0
hcbfs eucl 8.92 1.0 18.0 83.08 2.0 294.0 1.0 8.92 1.0 18.0 73.36 2.0 281.0 1.0
hcbfs hff 8.9 1.0 18.0 50.98 2.0 273.0 1.0 8.9 1.0 18.0 45.3 2.0 211.0 1.0
hcbfs nn 9.2 1.0 20.0 168.74 2.0 906.0 1.0 9.16 1.0 18.0 92.98 2.0 413.0 1.0

mh-gbfs eucl, hff 12.3 1.0 40.0 30.56 1.0 230.0 1.0 12.3 1.0 40.0 30.56 1.0 230.0 1.0
mh-gbfs eucl, nn 12.36 1.0 40.0 33.88 1.0 230.0 1.0 12.12 1.0 40.0 25.5 1.0 164.0 1.0
mh-gbfs hff, eucl 10.46 1.0 30.0 11.88 1.0 45.0 1.0 10.46 1.0 30.0 11.84 1.0 45.0 1.0
mh-gbfs hff, nn 9.7 1.0 24.0 12.94 1.0 59.0 1.0 9.66 1.0 24.0 11.38 1.0 36.0 1.0
mh-gbfs nn, eucl 15.42 1.0 38.0 171.12 1.0 505.0 1.0 11.42 1.0 34.0 26.94 1.0 96.0 1.0
mh-gbfs nn, hff 15.42 1.0 38.0 171.12 1.0 505.0 1.0 11.42 1.0 34.0 26.94 1.0 96.0 1.0

Table 4.9: Planning experiments for multi-agent maze domain

Search Heuristic
Default expansion Expansion network

Path len Expanded states Path len Expanded states
avg min max avg min max cvg avg min max avg min max cvg

gbfs none 111.24 5.0 351.0 3495.22 26.0 62388.0 1.0 Inf Inf Inf 5.0 1.0 13.0 0.0
gbfs eucl 31.1 5.0 64.0 484.1 8.0 10038.0 1.0 Inf Inf Inf 5.0 1.0 13.0 0.0
gbfs nn 27.32 5.0 54.0 1328.62 11.0 19092.0 1.0 Inf Inf Inf 5.0 1.0 13.0 0.0
hcbfs none 23.34 5.0 45.0 3919.6 18.0 81238.0 1.0 Inf Inf Inf 5.0 1.0 13.0 0.0
hcbfs eucl 23.34 5.0 45.0 2148.8 11.0 43823.0 1.0 Inf Inf Inf 5.0 1.0 13.0 0.0
hcbfs nn 24.3 5.0 48.0 1723.16 11.0 38089.0 1.0 Inf Inf Inf 5.0 1.0 13.0 0.0

mh-gbfs eucl, nn 29.44 5.0 62.0 369.82 5.0 4587.0 1.0 Inf Inf Inf 5.0 1.0 13.0 0.0
mh-gbfs nn, eucl 27.98 5.0 54.0 1360.78 11.0 19092.0 1.0 Inf Inf Inf 5.0 1.0 13.0 0.0

Table 4.10: Planning experiments for Sokoban maze domain

As expected, the expansion network did not work very well as the transition function,

as the coverage of all configuration equals to 0.0. Maximum number of expanded valid

states for a problem is 13, which means, that some of the successor states were found

correctly. However, not enough were found in order to find a solution to any of the

problems.

Now we focus on results from experiments with regular state-transition function. Cov-

erage for all the configurations is 1.0, which means, that all problem instances were solved.

For GBFS, we can see that using heuristic network leads to obtaining the shortest paths.

However, we do not outperform any other heuristic in the number of expanded states.

For HCBFS, path lengths differ by one on average, but the number of expanded states is

significantly lower.

In multi-heuristic search, we have configuration with heuristic network and Euclidean

heuristic in both orders. The eucl, nn configuration returns slightly longer paths, however,

the maximum number of expanded states is the lowest from the whole table. That shows,

that using heuristic network as a tie-breaking heuristic returns impressive results.

CHAPTER 4. EXPERIMENTS 50

Figure 4.1: Example of visualization of heuristic network output for maze domain
Plots on the left show visualization of output values of the heuristic network for each of the cells.
Plots on the right are generate mazes with a goal placed in the position denoted by yellow.

CHAPTER 4. EXPERIMENTS 51

Figure 4.2: Example of visualization of heuristic network output for multi-goal maze
domain
Plots on the left show visualization of output values of the heuristic network for each of the cells.
Plots on the right are generate mazes with a goals placed in the positions denoted by yellow.

CHAPTER 4. EXPERIMENTS 52

Figure 4.3: Attention mask visualization for maze domain
The top-left image is the problem instance on the input. The rest of the images are attention
masks, from 1-10-5-100 heuristic network, applied on the input maze.

Figure 4.4: Attention mask visualization for multi-goal maze domain
The top-left image is the problem instance on the input. The rest of the images are attention
masks applied on the input maze.

CHAPTER 4. EXPERIMENTS 53

Figure 4.5: Attention mask visualization for multi-agent maze domain
The top-left image is the problem instance on the input. The rest of the images are attention
masks applied on the input maze.

Figure 4.6: Attention mask visualization for Sokoban domain
The top-left image is the problem instance on the input. The rest of the images are attention
masks applied on the input map.

Chapter 5

Result Discussion

We stated several hypotheses over the course of this work. First is, that it is possible to

use expansion network as a transition function for all stated domains. Next one is, that it

is possible to use heuristic network as a heuristic function in all stated domains and that

it will outperform zero and Euclidean heuristic.

We created all possible networks in order to use them in a classical planning state-

space search algorithm for all stated domains. However, not all the networks provided us

with successful results. One example of that is the expansion network for the Sokoban

domain. As shown in Table 4.10, when using expansion network as a state-transition

function, no problems were solved. That was expected, since results from Table 4.2 show,

that none of the trained networks was capable of generating only correct successor states.

On the other hand, using expansion network for all other three domains provided us

with solutions to all problems in maze, multi-goal maze and multi-agent maze domains.

The coverage of experiments using expansion network is the same as when using regular

state-transition function.

Using heuristic network as a heuristic function also shows several interesting results.

Heuristic network managed to outperform zero heuristic in every single-heuristic search

across all domains.

In maze domain, the heuristic network outperformed zero and hFF heuristic, and

performed as well as Euclidean heuristic, with the difference of 0.4 average path length

in case of GBFS. The only heuristic function, which provided significantly better results

for this domain is LM-cut.

The greatest success was the multi-goal maze domain. In HCBFS, it outperformed

all other heuristics. In GBFS, it outperformed zero and Euclidean heuristic and had the

exact same results as hFF and LM-cut.

In the multi-agent domain, the only outperformed function is zero heuristic. This can

be caused by the higher complexity of this problem domain compared to the others.

54

CHAPTER 5. RESULT DISCUSSION 55

In Sokoban domain, heuristic network managed to outperform only zero heuristic. A

noticeable success is the amount of expanded states in HCBFS, which was a lot lower for

the heuristic network, than for the other heuristic functions.

This shows us, that in different domains, heuristic network can be used as a heuristic

estimate, which gives good amount of information to the search. Results of search with

heuristic network sometimes outperformed classical planning heuristic functions and many

times performed just as well.

Chapter 6

Conclusion

Main goal of this thesis was showing, that a combination of symbolic AI and model free

machine learning can be created by replacing parts of a classical planning algorithm by

neural networks.

We implemented an expansion network for three maze domains and one for the

Sokoban domain. We used this network, instead of a traditional state-transition func-

tion. We implemented four heuristic networks, one for each domain. We then used these

networks as heuristic functions in planning experiments and achieved results comparable

to those achieved by classical planning methods. All of these results were obtained by

experimental evaluation of the implemented solutions.

In the future, there is still more to consider. There’s a possibility of expanding to

more domains, scaling the approaches and continuing ideas, that weren’t fully closed.

The results we obtained show, that it is a possible direction, which deserves to be noticed

and explored further.

56

Appendix A

Attachments

Enclosed to this thesis is an archive with trained networks and Julia source files. We

included all trained networks used in Section 4.4.

Due to the size, we didn’t include generated data sets used to train the networks.

However, we did provide all the scripts necessary to generate the data.

Next, we provide the implementation of MAC reasoning network and files used to

train all the expansion and heuristic networks.

Here’s description of the structure of the archive.

• expansion networks

– maze8 resnet composer nogoal ma 1.bson - maze expansion network pt. 1

– maze8 resnet model nogoal ma 1.bson - maze expansion network pt. 2

– sokoban 64 5 2 250 composer.bson - Sokoban expansion network pt. 1

– sokoban 64 5 2 250 model.bson - Sokoban expansion network pt. 2

• heuristic networks

– ma maze model - heuristic network for multi-agent maze

∗ att1-10.bson - attention layers

∗ model.bson

– maze model - heuristic network for maze

∗ 1-10-1-100

· att1-10.bson - attention layers

· model.bson

∗ 1-10-5-100

· att1-50.bson - attention layers

57

APPENDIX A. ATTACHMENTS 58

· model.bson

– mg maze model - heuristic network for multi-goal maze

∗ att1-5.bson

∗ model.bson

– sokoban model - heuristic network for Sokoban

∗ att1-50.bson

∗ model.bson

• planners - planners for all domains used in planning experiments

– solver ma maze.jl

– solver maze.jl

– solver mg maze.jl

– solver sokoban.jl

• sokoban level generator

– sokoban all step generator.jl - data generator for Sokoban expansion network

– sokoban generator.jl - generator of solvable Sokoban levels

– sokoban solver.jl

– templates.jl

• custom mazes.jl - hand-written mazes

• heur att load.jl - loader for heuristic networks

• heur att run.jl - script used to train heuristic network for maze domain

• heur att run ma.jl - script used to train heuristic network for multi-agent domain

• heur att run mg.jl - script used to train heuristic network for multi-goal domain

• heur att run sokoban.jl - script used to train heuristic network for Sokoban domain

• heur mac network.jl - script for training MAC network

• MAC network.jl - implementation of MAC network

• maze8 expansion.jl - expansion network for maze domains

• mazegen prim.jl - data generator for maze domain

APPENDIX A. ATTACHMENTS 59

• multimazegen.jl - data generator for multi-goal and multi-agent maze domains

• sokoban expansion run.jl - script used to train expansion network for Sokoban do-

main

• utils heur.jl - utility functions

Bibliography

[1] M. Asai and A. Fukunaga, “Classical Planning in Deep Latent Space: From Unla-
beled Images to PDDL (and back).”, in NeSy, 2017.

[2] ——, “Classical planning in deep latent space: Bridging the subsymbolic-symbolic
boundary”, in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[3] C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Learning to rank for synthe-
sizing planning heuristics”, arXiv preprint arXiv:1608.01302, 2016.

[4] P. Gomoluch, D. Alrajeh, A. Russo, and A. Bucchiarone, “Learning Neural Search
Policies for Classical Planning”, arXiv preprint arXiv:1911.12200, 2019.

[5] M. Ghallab, D. Nau, and P. Traverso, Automated planning and acting. Cambridge
University Press, 2016.

[6] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the application of
theorem proving to problem solving”, Artificial intelligence, vol. 2, no. 3-4, pp. 189–
208, 1971.

[7] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited, 2016.

[8] J. Pearl, “Heuristics: intelligent search strategies for computer problem solving”,
1984.

[9] G. Röger and M. Helmert, “The more, the merrier: Combining heuristic estima-
tors for satisficing planning”, in Twentieth International Conference on Automated
Planning and Scheduling, 2010.

[10] S. Richter and M. Westphal, “The LAMA planner: Guiding cost-based anytime plan-
ning with landmarks”, Journal of Artificial Intelligence Research, vol. 39, pp. 127–
177, 2010.

[11] J. Hoffmann, “FF: The fast-forward planning system”, AI magazine, vol. 22, no. 3,
pp. 57–57, 2001.

[12] F. Pommerening and M. Helmert, “Incremental LM-cut”, in Twenty-Third Inter-
national Conference on Automated Planning and Scheduling, 2013.

[13] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[14] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity”, The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[16] B. C. Csáji, “Approximation with artificial neural networks”, Faculty of Sciences,
Etvs Lornd University, Hungary, vol. 24, p. 48, 2001.

60

BIBLIOGRAPHY 61

[17] K. Hornik, “Approximation capabilities of multilayer feedforward networks”, Neural
networks, vol. 4, no. 2, pp. 251–257, 1991.

[18] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function”, Neural
networks, vol. 6, no. 6, pp. 861–867, 1993.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors”, nature, vol. 323, no. 6088, pp. 533–536, 1986.

[20] I. S. M. Mohamed, “Detection and tracking of pallets using a laser rangefinder and
machine learning techniques”, PhD thesis, Master’s thesis, European Master on
Advanced Robotics Plus (EMARO+ . . ., 2017.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need”, in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[23] A. Graves, M. Liwicki, H. Bunke, J. Schmidhuber, and S. Fernández, “Unconstrained
on-line handwriting recognition with recurrent neural networks”, in Advances in
neural information processing systems, 2008, pp. 577–584.

[24] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks”, in 2013 IEEE international conference on acoustics, speech and
signal processing, IEEE, 2013, pp. 6645–6649.

[25] D. A. Hudson and C. D. Manning, “Compositional attention networks for machine
reasoning”, arXiv preprint arXiv:1803.03067, 2018.

[26] H. Geffner, “Model-free, model-based, and general intelligence”, arXiv preprint
arXiv:1806.02308, 2018.

[27] R. C. Prim, “Shortest connection networks and some generalizations”, The Bell
System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[28] J. Taylor and I. Parberry, “Procedural generation of sokoban levels”, in Proceedings
of the International North American Conference on Intelligent Games and Simula-
tion, 2011, pp. 5–12.

[29] J. Culberson, “Sokoban is PSPACE-complete”, 1997.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[31] FluxML Github Repository, 2020. [Online]. Available: https : / / github . com /

FluxML/Flux.jl.

[32] X. Wei, I. A. Bârsan, S. Wang, J. Martinez, and R. Urtasun, “Learning to Localize
Through Compressed Binary Maps”, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 10 316–10 324.

[33] M. G. Kendall, “A new measure of rank correlation”, Biometrika, vol. 30, no. 1/2,
pp. 81–93, 1938.

https://github.com/FluxML/Flux.jl
https://github.com/FluxML/Flux.jl

