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Abstrakt

Tato prace se zabyva teoretickou analyzou sdruzeného transportu vody a tepla
v nehomogennim ¢astecné saturovaném porovitém prostiedi. V préaci je uvedeno
podrobné odvozeni modelu, ktery je popsan dvéma evolucénimi nelinearnimi diferen-
cidlnimi rovnicemi s degeneracemi ve vSech transportnich koeficientech. V hlavni
¢asti textu je analyzovan model se smiSenymi Dirichletovymi a Neumannovymi
okrajovymi podminkami. Numerické feSeni je zaloZeno na semi-implicitni ¢asové
diskretizaci, ktera vede na soustavu nelinedrnich stacionarnich okrajovych tloh
s nezndmym rozlozenim teploty a tlakové vysky. Pro popsanou tlohu je v préci
dokézéna existence a regularita feSeni stacionarni tlohy v kazdém c¢asovém kroku.
Déle je pomoci vhodnych apriornich odhadu pro casové interpolace neznédmgych
funkci ukazana existence slabého Feseni nestacionarni tilohy a za dodate¢nych pied-
pokladii i jeji jednoznacnost.

Déle je v praci stru¢né analyzovan takzvany dualni model, zahrnujici odlisny piistup
k popisu porézniho prostiedi. Na zavér je pfedstaven dualni model s obecnymi
nelinearnimi okrajovymi podminkami a model obsahuji disperzni rovnici, popisujici
transport rozpusténych latek v proudici tekutiné.

Kli¢ova slova: sdruzeny transport, pérovité prostiedi, nelinedrni diferencialni
rovnice, Rotheho metoda, apriorni odhady, existence, slabé feseni



Abstract

This thesis deals with a theoretical analysis of a coupled heat and water transport in
partially saturated porous media. In the first part of this work, we derive a model,
which consists of two evolution nonlinear partial differential equations with dege-
neracies in all transport coefficients. In the main part of the work we analyze the
single porosity model with mixed boundary conditions of Dirichlet and Neumann
type. Employed numerical procedure is based on a semi-implicit time discretization,
which leads to a system of coupled nonlinear stationary equations with unknown
temperature and pressure head. We prove the existence and regularity of the so-
lution to the stationary problem in each time step. Further, by deriving suitable
a-priori estimates for the time interpolants of the unknown functions, we prove the
existence and uniqueness of the weak solution to the nonstationary problem.

Further, we briefly analyze the dual model, arising from a dual porosity approach
to the porous media description. Finally, we also present a model with general
nonlinear boudary conditions and a coupled diffusion-dispersion-convection model.

Keywords: coupled transport, porous medium, nonlinear differential equation,
Rothe’s method, a-priori estimates, existence, weak solution
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Part

Introduction

1 Motivation

Modeling of coupled moisture and heat transport through partially saturated porous
media plays a very important role in many agricultural, biological, environmen-
tal and civil engineering problems. Transport models may help with describing
problems such as concrete degradation due to elevated temperatures or corrosion,
concrete carbonation, contamination of soil areas due to infiltration of pollutants
under the surface, water infiltration into subsurface structures, e.g. tunnels, ra-
dioactive waste repositories, subsurface pipelines etc., geothermal energy analyses,
the groundwater distribution analyses and prediction of a drug delivery through
biological tissues etc. Models including phase changes may help with the prediction
of thawing of permafrost and its affects, degradation of railroad structures due to
frost action, and many others.

Transport models are based on the conservation laws and the difficulty of analysis
of these models lies in non-linear dependence of the transport coefficients on the
solution, which arises from the complex microstructure of various porous mate-
rials. Moreover, different approaches need to be utilized to describe various porous
materials since their structure and performance differs significantly.

2 Thesis outline

This work is organized as follows. In Part I, we discuss the main aspects of ma-
thematical description of porous media and we briefly introduce the most frequent
approaches to the porous media description. We also derive the equations describing
transport of mass and energy, which are based on basic conservation laws.

In Part II, we briefly summarize the results, regarding mathematical analysis of the
coupled transport models, which can be found in literature by various authors. We
also describe where the main difficulty of analyzing these models lies.

In Part III, we present a single porosity model with mixed boundary conditions of
Dirichlet and Neumann type. The formulation of the problem in a variational sense
is introduced, and later its existence and uniqueness is analyzed under physically
relevant assumptions, e.g. the transport coefficients degenerate in both elliptic and
parabolic part. The proof of the existence theorem can be separated in several
substeps. First, we approximate the evolution problem by means of a semi-implicit
time scheme, and we prove the existence and regularity of the solution to a steady
problem. Further, we derive suitable a-priori estimates to show that the solutions of
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the steady problem converge and that the limit is a solution to the original problem.
Under some additional assumptions, we also show the uniqueness of the solution.

In Part IV, we present a dual porosity model, which may be more suitable for various
engineering and ecological applications. Since the structure of the mathematical
analysis remains the same, we focus our attention only on the main differences
between the dual porosity model and the single porosity model.

In Part V, a general model with nonlinear boundary conditions and a coupled
diffusion-dispersion-convection model are introduced. These models have been ana-
lyzed in detail in papers |6] and [7], which have been attached to this work in
Appendices A and B.

Finally, in the last part of Appendices, we summarize some well known relations
and theorems which have been used throughout the work.

Let us mention that the main results of this work are subject to the following papers
which have been published throughout my doctoral studies at the Department of
Mathematics under the supervision of Michal Benes.

e [5] M. Benes, L. Krupicka, R. Stefan: On coupled heat transport and water
flow in unsaturated partially frozen porous media, Applied Mathematics and
Modelling, 39 (2015) 6580-3598.

e [6] M. Benes, L. Krupicka: Weak solutions of coupled dual porosity flows in
fractured rock mass and structured porous media, Journal od Mathematical
Analysis and Applications, 433 (2016) 543-565.

e 7] M. Benes, L. Krupicka: Global weak solutions to degenerate coupled diffusion-
convection-dispersion processed and heat transport in porous media, Interna-
tional Conference on Applications of Mathematics to Nonlinear Sciences, Elec-
tronic Journal of Differential Equations, Conf. 24 (2017) 11-22.

e [8] M. Benes, L. Krupic¢ka: On coupled dual porosity flows in structured porous
media, AIP conference proceedings, 1978 (2018).
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Part 1

Physical background

The porous medium generally consists of the solid matrix and a void space occupied
partially or fully by one or more fluid phases. The solid matrix and the void space
are both distributed throughout all the medium, e.g. wherever we take a sufficiently
large sample of the domain, it will always contain the matrix and the void space.

3 Porous media description

In order to describe any phenomena in the porous media, the real porous medium
is represented by a conceptual model supposing a set of simplifying assumptions.
Based on them we may formulate a mathematical model describing the performance
of the sample. In this section we will present tha main ideas of the most commonly
used approaches for porous media description.

3.1 Volume averaging

Generally the transport phenomena in porous media can be described at the micro-
scopic level at each point. But due to our inability to describe the exact microscopic
complex geometry of the porous media structure we have to search an appropriate
model to be able to pass from the microscopic level to the macroscopic level. The
most frequent approach to that is to average the physical quantity over a representa-
tive elementary volume (abbreviated REV). The representative elementary volume
is the smallest volume over which we are allowed to make a measurement to obtain
a representative value, i.e. a subvolume of a porous medium that has the same geo-
metric configuration as the medium at a macroscopic scale (see Figure 1). Without
the loss of the generality suppose the REVj is a circle with a center xy. In order to
evaluate the macroscopic value V(o) macro Of any physical quantity representing the
porous medium, we average its microscopic value V(&)micro Over the representative
elementary volume (for details see [3])

1
macro — T 1t s N\ micro dz. 1
Vleohmacrs = ooty o Vi ds (3.)

Using this procedure each point in the domain is assigned apropriate average values
of physical quantities.
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Physical quantity
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Volume R

Figure 1: The representative elementary volume determination.

3.2 Continuum approach vs discrete approach

At the micro scale a porous medium is heterogeneous and possess a very complex
structure. To describe transport phenomena in such a medium, various approaches
may be introduced depending on the scale of application. The complex system
description can be obtained applying discrete approach. However, this approach
has limitations due to the fact, that for representative modeling the exact geometry
of all individual fractures must be determined and the very high computational
effort is needed. For more information see [9]. For this reason the discrete approach
is limited only to the local studies with well known and described geometry. If
a porous medium can be described without detailed knowledge of the fractured
system, the continuum approach may be used. The continuum approach assumes
that all phases are continuous within a representative elementary volume. However,
in the literature could be found two different ways to mathematically describe the
porous system using a continuum approach [14].

Single porosity /permeability continuum approach. The most common way
of modeling the porous media is to assign a value of any physical quantity, that is
averaged over REV, to each point of the domain of interest (see Figure 2). This is
sometimes called the single porosity continuum approach.

Dual porosity /permeability continuum approach. An alternative option is
to introduce the dual porosity continuum approach. This approach assumes, that

17



real porous medium continuum

— O(z), A(z), K(z)...

volume averaging

Figure 2: Representation of domain of interest with the single continuum approach.

the porous medium consisting of fractures and matrices, is represented by two over-
lapping interacting continua. (see Figure 3) One representing fractures, other re-
presenting matrix, respectively. These two continua possess different physical cha-
racteristics, e.g. hydraulic conductivity, thermal conductivity, diffusivity etc., and
they are connected by appropriate exchange terms. The critical aspect of using this
approach lies in determining these exchange terms.

Several articles dealing with the numerical comparison of presented approaches in
various fields of interest can be found, for instance see [22], [37] and [48].

3.3 Saturated vs unsaturated zone

In terms of moisture retention, the porous medium can be divided into two regions.
First, the zone where all available spaces are filled with water, e.g. saturated zone.
The pressure in the saturated zone is greater than the atmospheric pressure, e.g.
the gauge pressure is greater than zero. The surface where the pressure is equal
to zero is called the water table. The zone where all available spaces are not filled
with water is called unsaturated or partially saturated zone, sometimes also called
vadose zone, from latin word "vadus" meaning shallow (see Figure 4). The water
here is held by the surface adhesive forces and it is sucked above the water table level
by the negative gauge pressure which is caused by capillary action. The capillary
pressure in the porous medium depends mostly on pore size, hence in media with
larger pores such as sand the capillary pressure is less than in clay soils with small
pore size.

Let us note that the commonly used physical quantity describing pressure in the
porous media is the pressure head w [m| which is a height of a liquid column cor-
responding to a particular pressure p |[Pal. This may be expressed mathematically
as
U= —,
PY
where p |kg m™3| is the liquid density and g |m s7?| is the acceleration due to
gravity. The moisure retention dependance on the pressure head in the vadose zone

18



continuum representing fractures

Of(x), Ag (), Ky (x)...

real porous medium

: —

volume averaging

j: interaction

O (), A (), K (z)...

continuum representing matrices

Figure 3: Representation of domain of interest with the dual continuum approach.

is described by the water retention curves (4.24) and the flow of water is commonly
mathematically described by the Richards equation (see more in Section 4.1), which
is based on Darcy’s law (4.25).

4 Theory of mass and energy transport in partially
saturated porous media

The transport processes in porous media are described by the basic conservation
laws, namely the conservation of mass and the conservation of heat energy.

4.1 Fluid mass conservation law

In mixture theory, the derivation of the equation describing fluid transport in a vari-
ably saturated porous media is based on mass conservation of fluid a-phase in the
domain €. A general form of a mass balance law is [50]

4 po‘dx+/ po‘va-ndS:/sadx. (4.1)
dt Jg o8 B
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h<0 unsaturated zone

h>0 saturated zone

Figure 4: Variably saturated porous medium sample.

The equation has to be satisfied for any domain B € B C Q. In (4.1) p® [kgm™?]
represents the phase averaged density and s, [kgm™3s7!| is a term representing
production. Further, v, [m s7!| is the velocity of a-phase and m represents an
outward unit normal vector to the boundary 0B. The phase averaged density p“

can be expressed as follows
(6%

p* = Oapa, (42)

where O, |-] is the volume fraction of the a-phase and p, |kgm™3| stands for the
intrinsic phase averaged density. Let us note that

D 0.=1.

Considering B is an arbitrary subdomain within €2 one is allowed to use Green’s
theorem on (4.1) and remove the integrals to obtain
ap”

E + V- (,0 va) = Sa- (43)

Introducing the material derivative we may rewrite (4.3) as

[e7

D%p
Dt

(67

4OV v = Sa, (4.4)

D2C) — 20 4 (). v, denotes the material derivative.

where B =

4.2 Heat energy transport conservation law
Derivation of heat equation is based on energy conservation law inside any arbitrary

volume B in a porous domain of interest. The rate of temporary energy change in
B plus the net rate of energy loss due to flow across the surface 0B of B must be

20



equal to rate of energy increase due to sources and interactions between phases.
A general form of the heat energy balance law reads [39]

d
— eadx—i—/ (qT)a-ndS:/Qadx—l—/eadw, (4.5)
dt /s o B B

where e, [Jm™] is the internal energy of the a-phase in B per unit of volume,
(@) [Wm™2] is the heat flux, Q, [Wm™?] stands for the volumetric heat source,
£ [Wm™3] represents the term expressing energy exchange with the other phases.
For the internal energy per unit of volume we assume

eq = pCub,, (4.6)

0. [K] is the absolute temperature and C, [Jkg™' K~!] represents the specific iso-
baric heat of the a-phase. Further in (4.5) the heat flux vector (g;), includes the
conductive flux g, [W m™2] and convection

(qT)Oc = qa + pacaga’va- (47)

Let us note that besides the internal energy per unit of volume e, given by (4.6)
we may also use the internal energy per unit of mass &, [J kg™!| defined as

En = Coba. (4.8)

Considering B is an arbitrary subdomain within 2 we are allowed to use Green’s
theorem on (4.5) and remove the integrals to obtain

deq
% + v . (qT)Oé — Qa + Ea- (49)

Combining (4.6), (4.7), (4.8), and (4.9) we have

ap® 0&,
5 L_f_pa_

e =V (p"€ava) = =V gy + Qo + . (4.10)

Further we replace 0;p® in (4.10) using (4.3) to obtain

0&,
a 5 ENV - (pP0a) + V- (p%Eavs) = =V - q, + Qu + 0 — E,Q%. (4.11)
Since V - (p*Eqva) — ELV - (p%v,) = pv, - VE, (4.11) becomes
W08
p 5 +p%y - VE, ==V - q, + Qo+ €a — EasSa- (4.12)

Using the material derivative we have

_Dog,
P "Dt

=—-V.-q,+ Qu+ca— Cibasa. (4.13)
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Enthalpy. To describe the property of a thermodynamic system we introduce
enthalpy # [J], which is equal to system’s total internal energy U [J| and product
of its pressure p [Pa] and volume V' [kg m™3] (see [39])

H=U-+pV.

In the following text, we will use the specific enthalpy within a-phase per unit of
mass H, [J kg™!| defined as

H, =&, + P (4.14)

Pa
where &, is the internal energy per unit of mass defined in (4.8). Let us specifically
mention that H, is a function of pressure and temperature [39].

Now we express the material derivative of internal energy &, in (4.13) with specific
enthalpy (4.14)

D=E, D~ Da
Dt ﬁ(”a‘:)

_ D°H, 0 (pa\]| DPa 0 (pa\]| D*pa
= 5o L G2 5 o G 5
D*H,, 1 D%qs  pa D%pa
Dt p, Dt ' p2 Dt
(87-[a) DT, (37—[a) D%p, 1D°‘pa+pa D%p,,
0

90, Dt Opa ), Dt po Dt = p2 Dt

hence

DeE, _ (GHQ) DT, &D Pa [(3?—[&) 1} D Pa. (1.15)
p

Dt T, ). Dt = p2 Dt e )y P

D%pq
Dt

Now we will express the term from the mass transport equation. Putting

p* = O4p, in (4.4) we obtain
0(paBOa
% + 0aOaV - v, + v, - V(Oups) — Sa =0,

which becomes

Pa (52& + 0 - V®a> +6a <% + v, Vpa> +paOaV Vo =50 = 0. (4.16)

We rewrite (4.16) using the material derivative we get

DO, D%p,,

el @a a@a *Uq = Sa = 0.
Pay + Di + 0aOaV vy — 5
Now we can express the material derivative of intristic phase averaged density as
D%pq, pa D0, 1
_ _Fa — 0oV UV, + — 5. 4.17
Dt 0. Dt PV Tl (4.17)
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Combining (4.17) and (4.15) we arrive at

D&, (0H, Da9a+ 08\ 1] D%a
Dt \ 04, , Dt Oa)y pal Dt
Pa DO, Do Da

— — 2V .v,. (4.1

Now we put the expression for the material derivative of internal energy per unit of
mass &, (4.18) in (4.13) and we have

o () e (), 2]
PePe\\ T, ), Dt e ). pa) Di
Do DO, Da Pa
PaOa {paga Dt pi@a8a+pav Ua}

:_V'qa+Qa+€a_gaQa-

Hence we obtain

ey Daea o
pa®a (aH ) +V'qa: Qa+€a_5a3a_]9_5a
p

90, Dt Pa
+paD;—(?“ + @a% F PaOLY -V — paO. (%—7;:)6 D;f“. (4.19)
Considering (4.14) we arrive at general form of heat equation for a-phase
(3] B
=Qu+6€a— HaSa + %‘;@a) + 0aOaV - vy — paBOy (?Tj)g D;];a. (4.20)

After neglecting some small terms related to viscous dissipation and mechanical
work, caused by density variation due to temperature changes and caused by volume
fraction changes (for details see [39]) we get

OHo\ DO,
o .q. = — 4.21
pa@a ( aea )p Dt + v qa Qa + 604 H(XSOH ( )
which becomes, considering (4.14)
00,
pa@aCaE + 0aCaOuavy - VO, +V -q, = Oy + 0 — HaSa- (4.22)

The total energy balance within a multiphase system consists of contribution from
each phase. Considering the total amount of heat energy exchange within phases
remains in the system, we can write for the multiphase system heat equation in
general form

> pa@aoa% +Y PaCaOuVa Vs +> Vg, = Qu—Y Hasa. (4.23)
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4.3 Constitutive relationships and hydraulic characteristics

Retention curves. Concerning retention curves of the matrix pore systems, we
present here the commonly used relation proposed by van Genuchten and Mualem
(see, for instance, [21])

O(u) = O, + (8, — ©,)[1 + |au|m] ™, (4.24)

where O is the soil saturated water content [-|, ©, is the soil residual water content
[-|, @ [m™!], n; and ny are parameters. For an example of a retention curve see
Figure 5.

0.5 T

0.45 -

<
~
T

0.35

(=}
w
T

0.25

<
o

3
o
3

Moisture retention © [-]

o
p—y

0.05 [

0 Il Il Il Il
-30 -25 -20 -15 -10 -5 0

Pressure head u [m)]

Figure 5: The retention curve given by (4.24).

Darcy’s law. The moisture flux through the variably saturated porous system is
determined by Darcy’s constitutive law

Ov = —k(u,0)(Vu +e,), (4.25)

where u [m] is the pressure head, e, stands for the vertical unit vector and & [m s™?]
represents the hydraulic permeability of the porous medium. The temperature-
pressure head dependence of the hydraulic conductivity is given by [13, 54|

k(0,u) = ky vy % (4.26)

where k, [m s7!| is the saturated hydraulic conductivity at the reference temperature
Ty [K], k [m s7!] is the h-dependent relative hydraulic conductivity,

k(u) = /S (u) (1 - (1- S(U)l/n2)"2)2 (4.27)
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Hydraulic conductivity k& [m s72]
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Figure 6: An example of the hydraulic conductivity & [ms™'] at constant tem-
perature ¢ = 300K (left) and constant pressure head u = —bm (right) given by
(4.26).

for h < 0 (unsaturated porous media), S(u) = %. Finally, v [m s72%] is the

temperature dependent kinematic viscosity for water given by
v(0) = 2.414 x 107° x 10%78/(0=140) (4.28)

and vy := v(ko). For an example of the hydraulic conductivity see Figure 6.

Fourier’s law. We assume the conductive heat flux g to be given by Fourier’s
law

qg=—N\(u,0)Vo (4.29)

with the thermal conductivity function A [Wm™' K~!]. The thermal conductivity
for porous media may be given by [20]

Au, 0) = Ag(0)Ae(u). (4.30)

In (4.30) n [-] is porosity, and A, is the thermal conductivity of a dry sample given
by
Ag(0) = Ngyes [L+ An(0 — O,ep)] (4.31)

where Age; [W m™' K] is the reference thermal conductivity of a dry sample at
a reference temperature 0,.; [K] and A, is a parameter [K™!]. And A; in (4.30)
is the reference thermal conductivity of a sample at a reference temperature 0,.¢
given by

AnprO(u)

(1 - n)pm‘

For an example of the thermal conductivity see Figure 7.

Ay(u) =1+ (4.32)
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Figure 7: An example of the thermal conductivity A [Wm~! K~!| at constant tem-

perature § = 300K (left) and constant pressure head v = —5m (right) given by
(4.30).

4.4 Boundary and initial conditions

The fluid flux across the boundary is given by the Neumann type boundary condition
O(u)v - n =,

where 7, [m s™!| represents the liquid flux imposed on the boundary. Considering
Darcy’s law (4.25) we may write

—k(u,0)(Vu +e,) -n =,.

For the heat flux, we may use the natural boundary condition given by
q-n=0a.0—0s)+enosp(0* —0%) +,

where o, [W m™2K™!] is the heat transfer coefficient, e,, |-| stands for the rela-
tive surface emissivity, ogp [W m=2K~*] represents the Stefan-Boltzmann constant,
T |K] is the temperature of the environment and 7y [W m™2| represents the heat
flux imposed on the boundary. Considering Fourier’s law (4.29) we have

—A(u,0)V0 -1 = a.(0 — 0s) + eosp(0* — 05,) + 0.

The Dirichlet boundary conditions are given by prescribed values of the pressure
head up [m] and temperature 6p [K] on the boundary

u=1up, 0= QD.
The initial conditions are set as follows:
u(x,0) = ug(x), 6(x,0)=0(x),

where, uy [m| and 6y [K] represent the initial distributions of the pressure head and
temperature.
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4.5 Summary of transport equations

Physical assumptions. In order to model effectively coupled transport of mois-
ture and heat energy, we present a set of simplifying assumptions based on the
physical reality.

(A) The porous medium consists of flowing liquid water (index f) and solid matrix
(index m);
(B) solid phase is incompressible and immobile, hence

v,, =0, ©,, = const;

(C) liquid phase is incompressible, hence
V- Vy = 0;

(D) hysteresis is not present;

E) porous medium is not deformable;

(
(

G

)
)
F) there are neither external sources of heat and mass, nor the phase changes;
) the medium is isotropic;

)

(
(H) the intristic phase averaged density p, and the specific isobaric heat C,, are

constant.

Simplified equations. Taking into account the set of simplifying assumptions
(A)—(H) the basic general conservation equations introduced in the Sections 4.1
and 4.2 may be simplified. The moisture transport equation (4.3) becomes

895;(“) +V - (0v)) =0, (4.33)
hence, using Darcy’s law (4.25), we obtain
a@a;t(u) -V -K(u,0)(Vu+e,) =0. (4.34)

Considering the set of simplifying assumptions (A)—(H) the heat conservation equa-
tion (4.22) becomes

oT 90,
pf@f(u)cfa—tf + PO Con = 4 psCrO; (h)vs - VO +V -q; +V -q,, = 0. (4.35)

ot
For the first term we can write
00 0[O ¢(u)by] 00(u)
Pf@f(u)cfa_tf = Pf0f$ —psCs (’;t 0. (4.36)
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Now combining (4.36), (4.33) and putting into (4.35) we obtain

0\0¢(h)0 90,
prf%—i—pm@m(]mW—kprfV-[Hf@f(u)vf]+v-qf+v-qm = 0. (437)

Hence, taking into account the Darcy’s law (4.25) and Fourier’s law (4.29), we
obtain

0©f(u)d 00,
pfcf% + pm@mcmw - prfv : [Tf/{?(h, 9f)(Vh + ez)]

4.5.1 Single porosity continuum mathematical model

Let the domain of interest 2 be a part of a variably saturated porous medium
partially filled with water. We assume the domain as a continuum described in
Section 3.2, hence one domain is continuously filled in each point by both water
and skeleton. For further text we denote

b(u) == Of(u).

The moisture transport in such a domain is described by Richards equation com-
pleted by Darcy’s law in form
Ob(u)

ot

-V k(u,0)(Vu+e,) =0. (4.39)

Further we assume the thermal equilibrium in each point of the continuum, i.e.
0r = 0,,. Now let us denote

Gy

A A
A, ) = f(“veljcfmw’@)

to obtain the heat balance equation in the form

b(u)0 + of]

5~V [Okw ) (Vute)] = V- A(u, §)VE = 0. (4.40)
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Part 11

Literature review

In mathematics, a wide variety of phenomena can be described by partial differ-
ential equations, for instance heat transport, moisture transport, fluid dynamics,
electrostatics, elasticity, quantum mechanics and many others. Unfortunately, in
general, we cannot expect that a partial differential equation or a system of them
has a classical, i.e. strong solution. The existence of a classical solution requires suf-
ficiently smooth parameters and certain strict regularity conditions on the domain
of interest. However, these conditions are often not satisfied in various applications
and phenomena. Therefore, we often deal with so called weak formulation of the
problem described by the partial differential equations. A weak solution, sometimes
also called a generalized solution, is a solution for which the derivatives may not
but in spite of that it satisfies the equation in some precisely defined sense. This
approach is widely used in application of mathematics in various fields of interest
in order to solve systems of equations describing the real nature or technical phe-
nomena. Sometimes it is even convenient to prove the existence of a weak solution
of the problem and after that show that this solution is smooth enough.

As already mentioned above, one of the important applications of the partial dif-
ferential equations is modelling transport processes of heat energy and moisture
within porous media. In the following paragraphs we will briefly summarize the
existing results regarding this topic, which can be found in literature and we will
also demonstrate where lies the main difficulty of these problems.

We shall rewrite the general model describing the coupled transport phenomena in
porous media in terms of vector operators A = A;;, ¥ = V¥,;, F' = F} in the form

0¥ (u) — V- A(u,Vu) = F(u), (4.41)

where u stands for the unknown vector of state variables corresponding here to the
matric potential, temperature and concentration of the dissolved species.

The difficulty in predicting the transport phenomena and in analyzing the model
(4.41) remains in non-linear dependence of the transport coefficients on temperature
and moisture retention, which have been observed in laboratories. This is a result of
the complex microstructure of porous media or fractured rock masses. For reason-
able applications these nonlinearities cannot be ignored. Therefore, problems of
this type equipped with the appropriate initial and boundary conditions are too
complex to be solved analytically. However, they may be solved in a weak sense
using spacial discretization of the domain by means of the finite element or finite
volume method and time discretization of the time interval.

In this text we will study some qualitative properties of the system (4.41) in order
to prove the existence and regularity of the variational solution. Let us note that
there is no complete theory for such general problem. However, we might find some
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results considering special structures of operators A, ¥ and growth conditions of
F.

The first related work, where is proven the existence, regularity and uniqueness
of solutions to (4.41) is by H. W. Alt and S. Luckhaus in 1983 [2|. The authors
obtained results for the problem

O¥(u) —V-A(¥(u),Vu) = F(¥(u)) in Q x [0; 7], (4.42)
Y(u) =¥, in Q x 0, (4.43)

U= up on I'py x [0; 77, (4.44)

A(u,Vu) -n=0 on I'yr x [0; 7). (4.45)

Assuming the following assumptions on the coefficients in (4.42)-(4.45)

e W is monotone;
e W has a gradient structure;
e A is continuous and elliptic;

e F is continuous and satisfies general growth condition (for details see [2],
Section 1.1. condition 4).

In 1987 G. Modica and M. Giaquinta [24] proved local solvability in classical sense
of a quasilinear parabolic system with nonlinear Neumann boundary conditions
without assuming any growth conditions

Ou—V - A(u,Vu) = F(u) in Q x [0; 00), (4.46)
uw=0 in Q x 0, (4.47)
A(u,Vu) - n=g on I' x [0;00). (4.48)

There are no further assumptions on F' in (4.46)—(4.48). Strong solutions to the
Richards equation are further analysed in [44] by Rybka and Merz.

Later in 1995 J. Filo and J. Kacur |17] extended previous results by proving the local
existence of the weak solution assuming nonlinear boundary condition of Neumann
type and more general growth conditions on F'.

0¥ (u) —V-A(u,Vu) = F(u) in Q x [0; 77, (4.49)
u = U in Q2 x 0, (4.50)
A(u,Vu) - n=g on T x [0;T]. (4.51)

e W is monotone;
e W has a gradient structure;

e A is continuous, monotone and coercive;
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e F'is continuous and its growth is bounded by polynomial (for details see [17],
equation (1.4));

e g is continuous and its growth is bounded by polynomial (for details see [17],
equation (1.5)).

Nevertheless, mentioned results assume either linear parabolic part or the gradient
structure of U. In 2002 J. Vala [58] analyzed model with an approach allowing non-
symmetry in the parabolic term although requiring unrealistic symmetry in the
elliptic term. The same author in [59] presented some other special transformations
preserving the symmetry in the elliptic part.

However, most theoretical results exclude the non-symmetrical parabolic part. These
models are applicable in various issues within engineering, ecology and biology. Let
us mention several examples of articles related to such topics. In [45] and [46]
authors analyze degradation processes in concrete due to chemical corrosion caused
by concrete carbonation. In [33], [34] and [35] deal with model describing the
interplay between fluxes of a colloidal population and heat flux. Such models are
applicable in predicting the concrete performance to high temperatures due to explo-
sions or predicting the drug delivery through biological tissues. Further in [40], [41]
and [42] B. Li and W. Sun analyze the specific model arising from coupled moisture
and heat transport with phase change in fibrous textile material. In [12] and [28] is
analysed solvability, uniqueness and regularity of a solution to a quasilinear model
of fluid/gas transport exposed to an electric field, thermal and diffusive forces. In
[32] the authors deal with parabolic variational inequalities solved by means of a
combined relaxation method and method of characteristic. A similar problem was
discussed by Hornung in [27].

Further, many results concerning the practical aspects and the physical relevance
of mathematical modelling of transport processes in porous media can be found in
literature. In 1989 [38] Lewis, Roberts and Schrefler introduced the finite element
scheme solving the system describing coupled heat and fluid flow in deforming
porous media. Authors also discussed its advantages and disadvantages concerning
the numerical stability during the initial time steps and also present the comparison
of obtained results with practical experiments.

Similar problem is dealt with in [57], where authors compare obtained results with
measurement on the fractured rock mass. Next numerical scheme is introduced in
|55, where Simunek and Saito introduced a numerical model solving the equations
governing liquid water and water vapor movement under the soil surface in the
vadose zone. Various research and commercial numerical tools are compared in

[53].

In [43] Liu and Yu present a model including freezing processes as well as Hans-
son and Simunek in [25]. Such models are applicable for predicting the transport
processes in freezing soils which is one of the most important issues in transport
engineering, e.g. railway structures or subsurface structures. Another authors com-
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pare in their publications various approaches to the modelling, e.g. single porosity
approach and double porosity approach and others. See for instance [11] and [26].

As mentioned before many results concerning numerical modelling can be found in
literature, however, the main issue in modelling transport processes in porous media
is, that some of the key components of the model, such as the hydraulic conductivity
or parameters for the water retention curves often rely on empirical relations whose
predictions may not be physically reliable since the structure of the porous media
is usually very complex and very variable. Because of that the complex geological
research is necessary in order to be able to predict the performance of the porous
medium with a required accuracy.

In this work we focus our attention on the theoretical aspects of (4.41) concerning
the degenerate doubly nonlinear elliptic-parabolic system with a specific structure
arising from diffusion-convection-dispersion processes in partially saturated porous
media. Degenerations occur in all transport coefficients according to the physical
background. The transport coefficients are not assumed to be bounded by positive
constants. We consider a weak formulation of (4.41) in the integral form

0¥ (u) - vdadt + A(u,Vu) - Vv = F(u) - vdadt, (4.52)
Qr Qr Qr

where v is a test function from an appropriate Sobolev space, ()7 denotes a space
time cylinder Qx I, (€ is a domain in R? and I denotes a time interval). The aim of
the existence and convergence analysis of (4.52) is to find some u € L>®(Qr) with
u € L* (I, Wh2(Q)) satisfying (4.52) in some time interval I = {t e R: 0 < ¢t < T'}.

The presented text is based on our previous results [5], [6], [7] and [8] published
during the Ph.D. studies.

In [5] we deal with a model decribing coupled transport processes including freezing
and thawing phenomena. In the paper we proved the existence of a weak solution of
the steady problem and we presented a numerical example documenting its physical
relevance. In [7] we analyzed qualitative properties of the single porosity model of
a coupled transport of heat, moisture and dissolved species. And finally, in [6] and
|8] we dealt with a dual porosity approach model of coupled heat and moisture
transport. The papers [6] and [7] are attached to this text in Appendices A and B.
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Part III

Mathematical analysis of the single
porosity model

Let © be a bounded domain in R? with Lipschitz boundary 9. Let I'p and I'y be
open disjoint subsets of 9 such that T'p # () and 9Q\(T'p UTy) is a finite set. Let
T € (0,00) be fixed throughout the text, I = (0,7) and Q7 = Q x I denotes the
space-time cylinder, 'pr =T'p x [ and I'nyp =Ty X 1.

5 Strong Formulation of the Problem

We will analyze the initial boundary value problem in ()7 arising from a coupled
moisture-heat transport through a partially saturated porous media as described in
the previous text. We consider the following system

Ob(u) =V - (k(0,u) (Vu+e,)) in Qr, (5.1)

Oy [b(w)f + 00] =V - (AN0,u)VE) +V - (0k(6,u) (Vu+e,))) inQr, (5.2)
u=>0 on I'pr, (5.3

0=0 onI'pr, (5.4

(Vu+e,) n=0 on I'yr,  (5.5)
Vo-n=0 on 'y, (5.6)

u(x,0) = ug(x) in Q, (5.7)
0(x,0) = by(x) in Q. (5.8)

In (5.1)-(5.8) u: Qr — R and 0 : Qr — R are the unknown functions representing
pressure head and temperature of the porous medium. Further k& : R? — R, b :
R—-R AN:R* =R, up:Q— R, and 0y : 2 — R are given functions, p is a real
constant, e, is the vertical unit vector.

Let us note that in order to avoid technicalities we present in this part the problem
with homogeneous boundary conditions. However, the presented procedure can be
extended to the problem with nonhomogeneous boundary conditions.

6 Preliminaries

Here we present some helpful auxiliary results and remarks concerning notation and
structure and data properties.
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6.1 Notation

Remark 6.1 Throughout this part of the text we suppose that r is a fixed number,
such that (0 is some sufficiently small positive number)

r=2+9. (6.1)

Remark 6.2 (Sobolev space WP (Q)) By the symbol WP (Q) with some p > 1, we
denote the Sobolev space WP(Q) with zero trace on T'p (see Appendiz C.6).

6.2 Structure and data properties

According to the physical background we present the following assumptions on
functions in (5.1)—(5.8):

(i) b is a positive lipschitz continuous strictly monotone function such that

0<b(&) <by < +00 VE € R (by = const),
(0(&) = b(&2)) (& — &) >0 Vé1,6 €R, & # &

(ii) k£ and A are positive continuous functions;

(iii) o is a real positive constant and e, is a vertical unit vector;

(iv) wg, by € L=(Q).

Let us note that the assumption (i) is physically relevant since the function b(u)
corresponds to the moisture retention given by van Genuchten’s relation (4.24),
hence for negative pressure head (e.g. unsaturated zone which is subject to our
work) the function is positive and increasing. Further, assumption (ii) is physically
relevant as well since the transport coefficients k& (hydraulic conductivity), and A
(thermal conductivity) are positive continuous functions (see also Figures 6 and 7).

6.3 Auxiliary results
Here we present some useful auxiliary results which can be found in literature.

Remark 6.3 (/2], Section 1.1) Let us note that (1) implies that there is a (strictly)
convexr C*-function ® : R — R such that

b(z) —b(0) =d'(2) VzeR (6.2)
Introduce the Legendre transform

B(z) = /0 (b(z) — b(sz))zds = /Oz(b(z) —b(s))ds. (6.3)
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Corollary 6.4 Let us present some properties of B [2]:

B(z) := /0 (b(z) — b(s2))zds = /Oz(b(z) —b(s))ds>0 VzeR, (6.4)
B(s) — B(p) = (b(s) — b(p))p Vp,s €R,  (6.5)
b(z)z — @(z) + ®(0) = B(z) < (b(2) — b(0)) = Vz € R. (6.6)

Proof. Since b is a positive increasing function (recall (i)), it is obvious that
/Z b(z)ds = zb(z) > /Z b(s)ds
0 0
and hence (6.4) holds. Further we rewrite (6.5) and use (6.3), to get
[ 066) = by do = [ 00) = b)) e = 005) ~ i)

Subtracting the identical terms and modifying the inequality we arrive at

b(s)(s—1)> /S b(x)dx — /P b(x)dx. (6.7)

0 0
For the case s > p we may rewrite (6.7) as
b(s)(s — p) > / “ba) du (6.8)
P

Since b is an increasing function (recall (i)) the inequality (6.8) holds. Similarly for
p > s we rewrite (6.7) as

b(s)(s — p) < / " () da. (6.9)

The inequality (6.9) is satisfied thanks to monotonicity of b. Finally the case s = p
is trivial. Now we integrate (6.2) from 0 to z to get

/OZ (b(s) —b(0)) ds = /OZ d'(s)ds (6.10)
and hence B
—/O (b(s) — b(0)) ds = —B(=) + B(0). (6.11)
We put (6.11) in (6.6) to obtain
b(z)z — /0 " (b(s) — b(0)) ds = B(=), (6.12)
which becomes ;
/0 (b(z) — b(s) —b(0)) ds = B(z). (6.13)



Hence the equality in (6.6) is satisfied. Finally we put (6.13) into (6.6) to obtain

/O T (b(2) — b(s) — b(0)) ds < (b(2) — b(0)) 2. (6.14)

Subtracting the identical terms in (6.14) we have
—/ b(s)ds < 0. (6.15)
0

Note that since b is a positive function, (6.15) holds for all z € R. This proves (6.6)
and the proof of Corollary 6.4 is complete. [

Lemma 6.5 Let g € L>*(Q)), then (i) implies, that there exist positive constants
b1, by such that

0<b <b(g) <by <+oo ae. in ), (6.16)

and further, let g1,go € L>*(Y), (ii) implies, that there ezist positive constants
kl, k’g, )\1, )\2 such that

0 <k <k(g1,92) < ks <400 a.e. in €, (6.17)
0< A1 <Ag1,92) <A< +oo  ae. in €. (6.18)

7 Existence result

The aim of this part is to prove the existence of a weak solution to the problem
(5.1)-(5.8). First we formulate our problem in a variational sense.

Definition 7.1 A weak solution of (5.1)—(5.8) is a pair

u € L*(I; W}jz(Q)) N L>®(Qr),
0 € L*(I; W5*(Q)) N L™(Qr),

which satisfies
—/ b(u)8t¢dxdt+/ k,u) (Vu+e,)  Vodaedt = / b(ug)o(0)dz  (7.1)
T T Q
for any ¢ € LA(LW5*(Q) nWHHI; LN(Q)) and ¢(T) = 0;
- / (b(w)0 + 00) Opp dzdt + / A0, u)VO - Vi dedt
Qr Qr
+ / (0k(O,u)(Vu+e,)) Vipdadt = / (b(ug)by + 06p) ¥(0)dz  (7.2)
T Q
for any b € LA(I; W5*(Q)) N WHY(I; LY(Q)) and (T) = 0.
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Remark 7.2 (/31], Remark 1.19) There exists 9,b(u) € L*(I; W5*(Q)*) and

/ (b(uo) — b(u)] Arp dadt — /0 (Db(u), 8) dt

holds for any ¢ € L*(I; W5*(Q)) N WHNI; L)) and ¢(T) = 0, then in the place
of (7.1) we have

/OT (Oib(u), ) dt + / k(O,u) (Vu+e,) Vodrdt =0

for any ¢ € LA(I; W5*(Q)).
Similarly, there exists 0, (b(u)0 + o) € L*(I; W5*(Q)*) and

/ [(b(u0)bo + 0bo) — (b(w)0 — 00)] Oyp dxdt = /0 (Or (b(u)0 + 0b) 1) dt

holds for any 1 € L*(I; W5*(Q)) N WH(I; L)) and n(T) = 0, then in the place
of (7.2) we have
T
/ (@, (b(w)0 + 0) , ) dt+/ A0, u) V-V dxdt+/ (O k(0,w) (Vu + e.))- Ve dadt = 0
0

T T

for any ¥ € L*(I; W5(Q)).

Theorem 7.3 (Eristence of the weak solution) Let the assumptions (1)—(iv) be sa-
tisfied. Then there ezists at least one weak solution of the system (5.1)—(5.8).

8 Proof of the existence result

To prove Theorem 7.3 we will use the method of semidiscretization in time. The
proof is divided into three steps. In the first step we approximate our problem by
means of a semi-implicit time discretization scheme and prove the existence and
regularity of the solution to the steady problem in each time step. In the second
step we show some suitable a-priori estimates and finally in the third step we pass
to the limit from discrete approximations to obtain the weak solution of the original
continuous problem.

8.1 Steady problem

Fix p € N and let 7 := T'/p be a time step. Let

hS O“csgo

— o } a.e. in Q. (8.1)
= 6.

N
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We approximate the evolution problem by a semi-implicit time discretization scheme
and define functions u; and 6] as a solution of the following recurrence steady
problem in each time step.

Problem 8.1 Find u? € W5(Q) N L=(Q) and 02 € W5*(Q) N L=(Q) to be solu-

tions of the recurrence system

p

n\ __ n—1
/ b(up) b(up )qﬁdx X / k(ezfl,unfl) (vuz + ez) -Vodor =0 (82)
Q T Q

for any ¢ € WE’Q(Q);

n n—1

¢da+ Q/Q S —dr +/QA(9;}1, wHVor - Vid

/ b(up)0r — b(u;‘_l)eg_l
0

T

+/ Ork(0y ' up ™) (Vuy +e.) - Vipdz =0 (8.3)
Q

for any ¢ € W,%,’Q(Q), where ug and «92 are initial functions from (8.1) satisfying the
assumption (iv).

In what follows we will prove the existence and some regularity of the solution to
the problem (8.2)—(8.3).

8.2 Approximate solution to the moisture equation
8.2.1 Existence of the approximate solution to the moisture equation

Theorem 8.2 [Existence of the solution to (8.2)] Consider n € N, 1 <n <p, and
let [un=', 001 € L=(Q)* be given and the assumptions (1)—(iv) be satisfied. Then
there exists u; € W2(Q) the solution to the problem (8.2).

In order to prove the existence of the approximate solution to the moisture equation
(8.2) we define the functional i, and the operator A, corresponding to the problem.
Next, we show some important properties of the operator A,, which yield the
existence of the approximate solution.

Define the functional j, € [W5*(Q)]* by the equation
) =+ [ W oo [ k@30 e, Voda (8.1
for all ¢ € WS*(Q).
Further, define the operator A, : W5*(Q) — [W5(Q)]* by the equation
(Auluy), ¢) = /Qk(Ggl,uzl)Vuz -Vodr + % / b(uy )¢ dw (8.5)

Q
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for all ¢ € WS*(Q).

A function uj, is a solution of the operator equation A, (uy) = p, if and only if uy
solves (8.2). Now we present some properties of the operator A,.

Lemma 8.3 The operator A, : W5*(Q) — [W5(Q)]* is bounded.

Proof. Taking into account (i)-(iv) and using Hélder’s inequality to each term on
the right-hand side of (8.5), we deduce

(Au(uy), 0) < ClHUZ”WBQ(Q)|’¢’|W32(9) + 02H¢HW32(Q)7

< 10l (e gy +2)
which yields

HAU(UP)H[WBQ(Q)]* = sup NPl

< el lysoge + o
sewir@lolzo [1Pllwize) pllwi)

Hence the operator A, : W5(Q) — [W)*(Q)]* is bounded. O
Lemma 8.4 The operator A, : W5*(Q) — [W5*(Q)]* is coercive.

Proof. The operator A, is coercive iff

o AelBh ) (5.6

el 12y =00 g iz o)
Using (6.6) we have

1 n\y . n 1 n n
! /Q b(ul) u dz > /Q (B2 + b(0)u?) da. (8.7)

T T

Next, using Young’s inequality we obtain

! /Q (B(u!) + b(0)u?) da > ! /Q B(uy) dr -+ /Q e u, dr — c(e). (88)

T T T

And further, using Friedrichs inequality we arrive at

1 1 1
_/ (B(u) + b(0)up) dz > —/ B(uy)dr — —ECQHUZHI%VJQ(Q) — c(e). (8.9)
Q Q T b

T T

Using Friedrichs inequality and due to (6.17) we have for the elliptic term

(8.10)

/Q |k(9;}—1, ug_l)Vuz : VUZ| dxr > C”“ﬁﬁzvgz(ﬂ)'
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Combining estimates (8.9) and (8.10) and choosing e sufficiently small, we arrive at

(Au(uy), uy) > clHuZHf)Vé,g(Q) — ¢o. (8.11)

Hence the identity (8.6) holds and the operator A, : W5*(Q) — [W5(Q)]* is
coercive. [J

Lemma 8.5 Operator A, : W52 (Q) — [W5*(Q)]* is monotone in the main part.
(For the definition of monotonicity in the main part see [52], Chapter 2.)

Proof. Let us define the operator A, : W5*(Q) — [W*(Q)]* by the equation
(Au(ug),@ = / k@ ur )Vl - Vo da. (8.12)
Q
Since k is a nonnegative continuous function (recall (ii)), we have

1 n 1 n n n n— n— n n\ |2
(Aulug) — Au(ugy), upy — tps) = /Qk(Qp Lt |[(Vuly — Vuly)|” dz >0
(8.13)
15 Upoy € WS (Q). Hence the operator A, WA (Q) — [W5(Q)]* is mono-

tone and the operator A, : W5*(Q) — [W}5*(Q)]* is monotone in the main part.
U

for all u™

Proof of Theorem 8.2. We have shown that the operator A, defined by equation
(8.5) is bounded, coercive and monotone in the main part. Now by [47, Theorem
3.3.42| the operator A, is surjective, which yields the existence of the solution
uy € W5*(Q) to the equation Au(uy) = . This completes the proof of Theorem
8.2. O

8.2.2 Regularity of the approximate solution to the moisture equation

Theorem 8.6 (W,°-reqularity of the solution to (8.2)) Let uy € WE(Q) be the
weak solution to the discrete problem (8.2). Then uy € W5 (Q), with some s > 2.

Tn order to show W, *-regularity of the solution to (8.2) we use the following lemma.

Lemma 8.7 (|19, Theorem 4|, [15]) Let Q be a bounded connected open set with
a Lipschitz continuous boundary of RY. Let T be a regular part of 0Q and ' = OQ\T'.
Suppose I' has a non-null (N — 1)-dimensional measure. There is a real number s,
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2* > 50 > 2, such that, if u is the weak solution of (A represents a function from
L>(Q) satisfying the ellipticity condition)

ue W5 (Q),
fQ A(ZE)VU(:E) . V(p(fl?) dQ = <f, 90>W$’2(Q)*,W$‘2(Q) VQO € WgQ(Q),

where f € W5 (Q)*, s = s/(s — 1), s € [2,50). Then u belongs to W5*(Q) and
there exists a real number C(s) such that

||U||W}55(Q) < C(S)HfHWé,s'(Q)*-

Moreover, sy only depends on A and Q and C(s) on A, Q, s, not on f.

Proof of Theorem 8.6. Following Theorem 8.2, u, € Wllj’Q(Q) solves the equation
/k(@;—l,ug—l)vu; Vodr = {fi,, d), (8.14)
Q
for all ¢ € W,*(Q), where (ji,, ¢) is given by the equation
~ n— n— 1 I/(,n 1 n—
(i, ) = — /Q kO e, - Vo do - ;/Qb(up)gbdx—k; / b )g de. (8.15)

Q

Provided [u?™, 077! € [W,5"(Q)]? we may use (6.17) to conclude that

ko < RO a1 < ks

Further thanks to (i), b is a bounded function, which guarantees fi, € [Wll)’T/(Q)]*,
7' =r/(r —1). We can directly apply Lemma 8.7 to conclude the W* regularity
of the solution with some s > 2.

8.3 Approximate solution to the heat equation
8.3.1 Existence of the approximate solution to the heat equation

Theorem 8.8 (Euistence of the solution to (8.3)) Let [u7~", 077" € L>(Q)? and
uy € WS (Q) be the solution to (8.2) and the assumptions (i)-(iv) be satisfied. Then
there exists the solution 0] € W5 (Q) to the discrete problem (8.3).

We proceed in the similar way as in the proof of Theorem 8.2. We define the
functional pp and the operator Ay corresponding to the problem. And further, we
show some important properties of the operator Ay, which yield the existence of
the approximate solution. First, we define the functional puy € [W5*(Q)]* by the
equation

1 1
(o, ) = — /Q bup )0y e + /Q 00 yd (8.16)
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for all v € W5*(Q). Further, define the operator Ay : W5*(Q) — [WS5*(Q)]* by
the equation

T

(AolE). ) =~ [ (o) + ) 05
+ /Q Oy ur Ve - Vo da
+ /{29;/{(62_1,11;_1) (Vur +e.) - Vidz (8.17)
for all ¢ € WE’Q(Q). Now, we will present properties of the operator Ay.

Lemma 8.9 The operator Ay : W5 (Q) — [W5(Q)]* is bounded.

Proof. Let us estimate all terms on the right-hand side of (8.17). Recall that
u, € Wll)’T(Q). Using Holder’s inequality we can write for the convective term

/QQZk(@gl,uZl)Vuz : Vw dx < CHG;ZHL‘](Q)HVU’ZHLT(Q)Q"vw"LQ(Q)27 (818)
where 1/¢ 4+ 1/r +1/2 = 1. Considering r = 240, 6 > 0 we have ¢ > 1. Since

W5(Q) — LI(Q) for any ¢ € [1;00) we have o) € WS5(Q) — LI(Q). Hence we
can write

/Q k(O )V -V da < el s o iy (5:19)

Thus and in view of (6.16) and (6.17), we can write for any v € W;*(Q)

[(Aa(8)), )| < <01’|Qg||wrl)v2(9) +C2> ||¢||Wé’2(§2)‘

Therefore we have

Mo o = 50 ol
YEW 52 (Q),[|v[|£0 w5(©)

< a2 ) + 2
Hence the operator Ay : W5*(Q) — [W52(Q)]* is bounded. OJ
Lemma 8.10 The operator Ag : W5*(Q) — [W5*(Q)]* is coercive.

Proof. We use 1) = (6))* as a test function in (8.2) to obtain

n— n— n n n 1 b(un) B b(unil) n
/Qk(e Lu ) (Vur +e) - 00V do = —5/9 = E—(07) dx. (8.20)

P T
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Let us note that all integrals in (8.20) are well defined. Since 67", up~' € L>°(2) we
may use (6.17) to conclude that ky < k(' ul™") < ky. Further Vu? € L*™°(Q)?,
Vor € L*(Q)? and 07 € W5*(Q) — LP(Q), where p € [1;00).

From the definition of the operator Ay : W5() — [W5*(Q)]* we can write

(Ap(6)),0,) = l/ [b(u;) + 0] (Gg)zdx + /Q A(G;‘_l,uz_l)weﬁzdx

T Ja

p

- / kO an ) (Val + e.) - 90V6r do. (8.21)
Q

Using (8.20) in (8.21) we get
1 — n
(Aol6).03) = 5= [ ta) + b ™) + 2] 6% o
+/A(egl,u"1)|veg|2dx. (8.22)
Q

p

Considering )~ u?'~! € L>(2) we may use (6.18) to conclude that Ay < A() ", u7 ™).

Similarly we use (6.16) to conclude that b < b(uj~") and finally thanks to ) €
W5 (Q) we have b < b(uy). Now since g is a positive constant, using Friedrichs
inequality, we can write

<A(9;)7 0;) > CHQ;LH‘Q/VBQ(Q)‘

Hence the operator Ag : W5(Q) — [W52(Q)]* is coercive. O

Lemma 8.11 The operator Ay : W5*(Q) — [WS(Q)]* is monotone in the main
part.

Proof. Let us define the operator Ay : W5*(Q) — [W5*(Q)]* by the equation

(Ag(6™), ) :LA(HZ_l,uZ_l)VQZ-dex. (8.23)
Obviously

p

1 (0 n n n n— n— n n \2
(Aa(Bn) — Ag(07), 07 — 0 = /Q A ) (V07 — V)Y de >0 (8.24)

for all 07,607, € W5*(Q).

pls YV p2

Hence the operator Ay : W*(Q) — [W5*(Q)]* is monotone and the operator
Ag - WEH Q) — [W5*(Q)]* is monotone in the main part. O
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Proof of Theorem 8.8. With the same arguments as in the proof of Theorem
8.2 we conclude that the operator Ay : W5*(Q) — [W5*(Q)]* is surjective. The
operator equation Ay(0))) = py has a solution if and only if the function 07 €

W5*(Q) is the solution to the variational equation (8.3) and the proof of Theorem
8.8 is complete. [

8.3.2 Regularity of the approximate solution to the heat equation

Similarly as for pressure head w; we have the following regularity result for tem-
perature 0.

Theorem 8.12 (W};*-reqularity of the solution to (8.3)) Let 0, € WA (Q) be the
weak solution to the discrete problem (8.3), and u; € W5 (Q) be the weak solution
to the discrete problem (8.2). Then 0 € W5 (Q) with some s > 2.

Proof of Theorem 8.12 Let ¢} € W?(€) be the solution of the equation Ay(0y) =
Lo, 1.e.

[ N6 V8 - Vds = (o, v) (8.25)
Q

for all ¢ € WS*(Q), where

1 1
(o) =+ [ [b(a)0p = b6 o+ o7 107 3o

Q

- /Q k(0 ) (Vul +e.) - Vi da

1 1
+—/b(uz_1)9;_1wdx+;/QQ;}_l@/de (8.26)
Q

T Q

Let us focus our attention on the critical convective term on the second line of
(8.26). Recall that we have u} € WL (Q) and o) € W5(Q) — LYQ) with
arbitrary ¢ € [1;4+00) [52, Theorem 1.20]. Then we have, using Holder’s inequality,

ey (820)

p

/QQ;k(egl,unl)vuz -Vydr < CH&ZHLQ(Q)HV'U/;L”L2+6(Q)val

where

1+ L +1—1 (8.28)

q 246 s '
Hence

, —q0 +4+20

(8.29)

ST G p—

Let so > 2. Now we see that for arbitrary small 6 > 0 there exists ¢ large enough
such that
S0
e 121 .
s So — 1
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Hence, [y € (WE)’SI(Q)> and the conditions of Lemma 8.7 are satisfied. This

ensures the required regularity of uy;. [J

Summary of Section 8.1. In this section we have proven, at first, the existence of
the approximate solution uy € W% (Q) to the moisture equation (8.2). Next, thanks
to Lemma 8.7 we have shown also the W' -regularity of the solution. Hence, due to
the embedding W;,"Q — L®(Q) we have u? € W5*(Q)NL>(Q). Similarly, we have
shown the existence of the solution 0 € W5%(Q) to the heat equation (8.3) and its
Whr-regularity. With the same argument we can conclude 67 € W5 Q) N L®(Q).
Hence we have solution of the recurrence Problem 8.1 forn=1,...,p.

8.4 A-priori estimates

In this section, we prove some uniform estimates with respect to p for the time
interpolants of the solution.

8.4.1 Construction of time interpolants

Let us define the piecewise constant interpolant functions (n = 1,2,...,p)
Uy (t) = u, for t € ((n — 1)1, n7], (8.30)
U,(t) = ug for t € (—7,0], (8.31)
0,(t) = 07 for t € (n — 1)7,n1], (8.32)
0,(t) = 0 for t € (—7,0]. (8.33)

The piecewise constant interpolants ,(t) € L>(I; W5A(Q)) N L(1; L2(R2)) and
0,(t) € L=(I; W5*(Q)) N L®(I; L=(Q)) satisty for all t € (0; 7] the equations

[ YD = 3 40 [ 1), 100 (9500 + e} V) =0
o @ (8.34)
for any ¢ € L*(I; WII)’Z(Q))Q

/ b(ip(£))0p(t) — b(T@y(t — 7))0,(t — T)¢(t) dz
Q

T

+ Q/Q %) =61 =7) )4y de +/Q)\(9 (t =), @y (t — 7))V, (1) - Vb(t)da
/9 k(B (t — 7). i (t — 7)) [Vt (1) + €] - Vib(t)de = 0 (8.35)
for any ¢ € L*(I; W5*(Q)).
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8.4.2 [*°-estimates

In this section we will derive the L>®-estimates for time interpolants 7, and 0,,.

L*-bound for u,. Let x € R, { € R and

£
B () = / b (s)(s — ) ds (8.36)

and
3
B (&) = / V(s)(s — k)yds, (8.37)
where symbols — and + denote negative and positive part of a function, i.e.
(s — k) = min{s — k,0} and (s — k)y = max{s — &, 0}.

Lemma 8.13 Let us present some properties of - and BT :

B (§1) = B (&) < (b(&1) = b(§2)) (61 — K)— V€1, 6 €R, (8.38)
Bi(&) = Bi(6) < (b(&) = b(&))(&1 — k) V&, & ER. (8-39)

Proof. From (8.37) we have
&1 &2
B - 5l(&) = [ ¥ -0ids— [THE-0ids (840)

Substituting (8.40) in (8.39) we obtain
&1 &2
/ V(s)(s—k)yds — / V(s)(s — k) ds < (b(&) —b(&))(& — k). (8.41)

Let us first consider the case when & > k and & > k. Integrating by parts the
left-hand side of (8.41) we get

&1 &
b(Ex) (6 — ) — b(E2) (62 — 1) — / b(s) ds + / b(s) ds < (b(62) — B(&2)) (€1 — ).

Hence

&
Cb(E)E + / b(s) ds < —b(E)E1.

&1

If & < &, considering b is a positive function, the integral is nonnegative and the
inequality (8.39) holds. If & > & we have

&1
b(&2)(&1 — &) < / b(s)ds.

&2
Since b is an increasing function, the inequality holds. Further, cases with & < &

or & < k can be handled in the same manner. In the same way we would prove
(8.38). O
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Let k4 € R, such that k; < up + 22 a.e. in Q. In order to show the L>-bound for
u, we set

uy + To — Ky, for uy < Ky — g,

¢ = [Up + Ty — Hﬁ], = { 07 for u; 2 Ky — 2o, (842)

as a test function in (8.2) to obtain

/ b(uy,) — bluy™")

. (uy + 22 — k) dz

p’p

+/ k(07 ul )V (ul + 29 — k) - V(up + 22 — ky)- = 0. (8.43)
Q

The second integral in (8.43) is clearly nonnegative and we can write

l/Q (b(up) = b(un™")) (up 4 2 — ky)— da < 0. (8.44)

T

Let us set Ky = max,,cq(ky — 2). In view of (8.38) we may write
L —(,n—1
[ ) - st <o (8.45)

Let us now consider the case n = 1. Since ug € L, there exist &4 such that £y < ug
almost everywhere in 2. Hence

up ()
B, (uolx)) = / W (s)(s — y)_ds = 0. (8.46)

And from (8.45) we get
/Bgu(u;) <0. (8.47)
Q

Considering the definition of S~ in (8.36), this implies

uy > Fy. (8.48)
Repeating the described procedure successively for n = 2,3, --- | p we conclude that

foralln=1,... p.

In the same manner we will search the upper bound. Let x* € R, such that xf >
ug + o a.e. in . We set

ug—l—xg—mﬁ, ug>/fﬁ—:c2,

o=+l = { ¢ i (5.50)
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as a test function in (8.2) to obtain

/ b(uy) — bluy ™)

T

(uy + 9 — K9 da

+ / k(02 up DY (u) + @) - V(u) + x5 — k%) = 0. (8.51)
Q
The elliptic term is nonnegative, hence we get
1

- /Q (b(up) = b(up™)) (up + x2 — k¥4 dz < 0. (8.52)

Let us set &% = ming,cq(x* — 24), now considering (8.38) we may write

/Qﬁ;ﬁ(u;) — BL(up) <. (8.53)
Similarly as before, for n = 1, we obtain (by similar arguments)
uo () ) B
3% (ug(x)) == /u b'(s)(s — Ry)4ds =0 (8.54)
and from (8.53) we deduce
uy < & (8.55)
Hence we may conclude, successively for n = 2,3,--- ,p, that
u < i (8.56)

Combining (8.49) and (8.56), for n = 1,...,p, we arrive at
Ry < uy < RF, (8.57)
which becomes
[p|| L= @r) < ¢, (8.58)
where ¢ is independent of p.

The a-priori estimate (8.58) allows us to conclude that there exists u € L>(Qr)
such that, letting p — 400 (along a selected subsequence),

u, —u  weakly star in L>(Qr). (8.59)

L*>-bound for 6,. Let ¢ be an odd integer. Using ¢ = [¢/(¢ + 1)][0,(s)]*"* as
a test function in (8.34) we have

¢ b(tp(s)) — b(up(s — 7)) = 041
—/ - B,(5))""
14

T,

k(O,(s — 1), ty(s — 7)) [Viiy(s) + e.] - V[0,(s)]"™ daz = 0. (8.60)
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Further, we use 1 = [0,(s)] as a test function in (8.35) to obtain

/b(up<s))§p(s) — b(tip(s — 7))By(s — 7) (o)) dr 4 o / 0,(5) — Oy(s — ) 8,()]" da

T 0

—0—/)\(51,(5 —7),t,(s — 7))VO,(s) - V[ép(s)]édx
Q
Jr/ﬂé’p(s)k;(@p(s —7),U,(s — 7)) [Vy(s) + e,] - V[ép(s)]edx =0. (8.61)

Now subtracting (8.60) from (8.61) we obtain

1 1 1 1

el Qb(ﬂp@))[?p(s)]”l de =~ 57 ) bln(s = N, (s — 7)] da
# L [t~ s = a2 [ ot ~ 100 da
=2 [ s = D)y~ ) do
+ @% /Q [6,(s) — 0,(s — 7)] [6p(s)]" da
= [ XG5 = 7). 1,05 = )98, (5) - V1B, (5) o =0 (8.62)

Rearranging the terms on the third and fourth line we obtain

g [ PN B ) e =~ [ ba(s = )y = 7 o

;E—l—l +1 Jg

L (s — (s — ) de + 25 [ ba(s — )6, (9) da
Tg‘i‘l Q P P T€+1 0 b g
1

2 [ Bl = 1)+ 01y = O da o [ B e

+/Q)\(9p(s —7),1,(5 — 7))V0,(s) - V[0,(s)]"dz = 0. (8.63)

Applying Young’s inequality on the first term in the third line we can write

> [ Bl =)+ el (s = M (5)
< S [ B = 1)+ el Byl = )
Sl [ Bt = )+ B s (36
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Combining (8.63) and (8.64) we deduce

L1 - ) 0+1
ST L Bl =) + g By(e)) T e
2 L Bl =) + s = o

+/)\(9p(s —7),1p(5 — 7))V0,(s) - V[0,(s)]'dr < 0. (8.65)
Q
The elliptic term is nonnegative since

/ MO,(s), tp(s — 7))VO,(s) - V[b,(s)]"dw > / cl0,(s) 1 Va,(s)|?dx > 0. (8.66)
Q Q

From (8.66) and (8.65) we have

/Q (6,(1) (b (1)) + g] dz < / (60" b (o) + o] d. (8.67)

Q

Considering p is a positive constant and b is a nonnegative function we obtain

sup / 8,(1)]+ [b(a,(1) + o] de < C. (5.68)

0<t<T

Hence )
10pll Lo (r;pe41 )y < €, £ €N, (8.69)

where the constant C' is independent of ¢ and p. Now, let { — +o0 in (8.69). We
get _
10pll 2 (@r) < C. (8.70)

From the a-priori estimate (8.70), we conclude, that there exists § € L>°(Qr) such
that, letting p — +oo (along a selected subsequence),

6, =6  weakly star in L>=(Qr). (8.71)

8.4.3 Energy estimates

In this section we will derive the energy estimates for time interpolants u, and gp.

Energy estimate for u,. To derive the suitable a-priori estimate for u, we test
the equation (8.34) with ¢ = u,(t) to obtain

/ b(ap<t)) B b(ap(t — T)) 7p(t) dx
Q

u
T

+ /Q k(0,(t — 7). Tp(t — 7)) [V (t) + e5] - Vi (t) dz = 0 (8.72)
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for all t € (0; 7.

Now, we will deal with each term of the above equation separately. First, in view
of Remark 6.3, we estimate the first term as

b(uy(t)) = b(uy(t — 7)) B(uy(t)) = B(uy(t — 7))
/ uy(t)de > ¢ de.  (8.73)
Q Q

T T

Further, using Friedrich’s inequality, we have for the elliptic term the estimate

| O =)t = )V do > el Ol 670

Note that, thanks to (6.17), the constant ¢ in (8.74) does not depend on p.

Taking into account Cauchy’s inequality § a? + 5 L 1)2 > ab and Hoélder’s inequality we
have

/Q e. - V(1) do < [lez| sz [ (0) 1 e

€ 1.
< Slle-luap + o Im O 1o 0 (8.75)

N}

Combining (8.73), (8.74) and (8.75) we obtain

1 _ _ _
_/B<up(t))—B(u,,(t—T))dx+c1||up(t)||§vl,2(m
T Jo D

€ 1, _

< Sl + ol B0 gy (8.76)

(]

Further, we can write

> [ B - Bt - et (e o) 000 e 67

T

and therefore, for sufficiently large €, we have

! /Q B, (1)) — Bly(t — 7)) da + [,(0) Py < c (8.78)

T

We now integrate (8.78) with respect to time from 0 to s (0 < s < T'). Without
loss of generality suppose s = k7, k =1,...,p. We arrive at

Z / / B(u (t—T))ddeZ/ (D12 12 gt < Ii7e.
_ (8.79)

Evaluating the integrals we have

kT
—/QB(up(O))da:—i—/QB(up(kT))dm+/O (D12 At < hre. (8.80)
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Hence

sup /QB(up(t))dx—F/o ||ﬁp<t>||§vg? dt <Te. (8.81)

0<t<T
Let us note that (8.81) becomes

1| s w2 @)y < Te (8.82)

As a consequence of the a-priori estimate (8.82) we see ([49], Section 10.26) that
there exists a function v € L*(I; WéQ(Q)) such that, along a selected subsequence
(letting p — 00), we have

i, —u  weakly in L2(I; W5*(Q)). (8.83)

Energy estimate for ép. In order to derive the energy estimate for H_p we use
P(t) = 26,(t) as a test function in (8.35) to obtain

L/M%ﬁ»@@—ﬁ@Aﬁﬂﬂ@@—TE%@ﬁm+g/éﬂﬂ_@@_Tb@@dx

T

+/A(_p(t —7),1,(t — 7))VO,(t) - V20,(t)dx
Q

+/Q¢9p(t)k( L(t—7),1,(t — 7)) [V,(t) + e.] - V20,(t)dz = 0.

We modify the above equation to get

t/M%@»—M%@—ﬂ5%GFM*/9A)

+1}M@@ 7).yt — 7))V

+ / B, ()k(B,(t — 7), @p(t — 7)) [V, (t) + 2] - V20,(t)da = 0. (8.84)
Q

Further, we use ¢(t) = 6,()? as a test function in (8.34) to obtain

/b<<>> m%u—T»@()d

(= 7), Gyt — 7)) [V (t) + e.] - VO, () dz = 0. (8.85)

\ﬂ
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Substituting (8.85) in (8.84) we have

/ Op(1)* (b(up(1)) + 0) = Oyt = 7)* (WUt = 7)) +0)
Q

+ [ 21000) — (@l = 7)) Oyt~ ) + o) ds

+9 /Q MOt — 1), a,(t — 7))V, (¢) - Va,(£) dx = 0. (8.86)

Since b is a positive function and o is a positive constant, the second integral
is nonnegative. Further, we use Friedrich’s inequality for the elliptic term and
integrate with respect to time from 0 to s (0 < s < T,s = k7, k € N). Hence we
obtain

kT kT
/ / L(t—7),1,(t—7))VO,(t)-V,(t) dz dt > c/ ||ép(t)||§vl,2(m dt. (8.87)
0 D

In the same way we integrate the first term in (8.86) with respect to time from 0
to s, s = k7, k € N, to obtain

/O ' s (0,(1)* (b(up(t)) + 0) — O,(t — 7) (b(up(t — 7)) + 0)) dadt
= /Q % Z /( :) (6p(1)* (b(ip(1)) + 0) = Op(t — )7 (blup(t — 7)) + ) dt dx
= /Q — (6,(0))" (b(1,(0)) + ) dz + / (6,(k))* (b(ay (k7)) + 0) dz.  (8.88)

Q

We integrate (8.86) with respect to time from 0 to s, s = k7, k € N and we
substitute (8.87) and (8.88) in (8.86) to obtain

kT
= 2
| @) @) + 0 do e [ 10,008
= 2,
< /Q (8,(0)) (b(y(0)) + 0) dr. (8.89)
Considering b is a bounded function and p is a positive constant we can write
16, (k7)|* dz + ¢ ' 10,12 dt <e¢ (8.90)
o D ; D WBQ(Q) ~ C. .
Hence, since 6,(t) is a piecewise constant function, we have also

T
sup / }ép(t)f dz +/0 Hép(t)”?xv}f dt <e. (8.91)

0<t<T JQ
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Let us mention that (8.91) becomes
HépHLZ([;WBQ(Q)) <ec. (8.92)

Now, from the a-priori estimate (8.92), we conclude ([49], Section 10.26) that there
exists § € L2(I; W5*(Q)) such that, letting p — +oo (along a selected subsequence),

6, ~ 0  weakly in L*(I;W}*(Q)). (8.93)

8.4.4 Further estimates
Due to the nonlinearities in the model we need some further estimates in order to
show the convergence of time interpolants almost everywhere. In what follows we

use the procedure proposed by Alt and Luckhaus in [2].

Theorem 8.14 (Convergence almost everywhere of t, and ép) Let the assumptions
(1)—(iv) be satisfied, then

Up — u almost everywhere on Qr, (8.94)

0, — 0 almost everywhere on Qr. (8.95)

To show (8.94) and (8.95) we use the following lemma:

Lemma 8.15 (see [2], Lemma 1.9) Suppose u. converge weakly in L" (0,T; H'"(Q))
to u with the estimates

T—h
%A AJM%@+h»_bWAﬂHWAﬁ+m—%%@)dmﬂéc, (8.96)

and

/ B(us(t))de <c¢ for 0<t<T, (8.97)
Q
then
b(ue) — bu) in LY([0,T] x ), (8.98)
and
B(u:) = B(u) almost everywhere. (8.99)

Proof of Theorem 8.14 Let k € N. We use

8(1) = 7= iyl + k) =y (s,))
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for JT <t < (j+k)r with (j—1)7 <s; <jrand 1 <j < %— k, as a test function
in (8.34). For the parabolic term, we can write

(j+k)T
k¢2 / — b(a,(t — 7)) [y(s; + k1) — p(s;)] dadt
k — | 7[b(a,(j + k7)) — b(@,(57))] [@p(j + k) — @, (j7)] da

sz/J N / (@ (t + k7)) — b(a,(1))] [@,(t + k) — ay(1)] dadt.

Hence, summing over j =1,...,p — k we get
p—k (j+k)T
o) / / —b(u,(t —7))] [up(s; + k1) — upy(s;)] dadt
J=1
T—kt
> W / (¢ + k7)) — b(iay(1))] [ip(t + k) — y(1)] dlzd.  (8.100)

For the elliptic term we use a similar approach. To simplify the procedure, let us
introduce the following notation

§i(t) = 1 (Uy(s; + k7) = Up(s5))
q(t) = k(0,(t — 7). up(t — 7)) [V (t) + €]

(j+k)T
/ / -V &(t) dadt.
T

One is allowed to divide the time interval for integration to get

p ko k (G+i)T
SN / / -V &(t) dadt.
j=1 i=1 (J+i—1)7

Expanding the first sum, we have

(1+4)7
/ / V& (1) dadt
(2+i)7
+ Z / / -V &(t) dadt
i=1 (1+9)7
+

ko plo—k+i)r
+Z/ /q(t)~vgp_k(t) dadt,

to obtain
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which becomes

/27/ ) -Vt dxdt+/ / -V & (t) dadt + ..
/]:H / -V & (t) dedt
+/:/Qc‘1(t).vgz(t)dde/:/Qq(t).v@(t)ddem

(k+2)7
+/ / -V & (t) dedt
(k+1)7

(p—k+1)7 (p—k+2)7
A ECR dxd“/ [t Vit dnit +.
(p—Fk)T Q (k1)

/ / -V &p_i(t) dzdt.
p 1

(8.101)
For the first term on the first line we can write
/ / -V & (t) dedt = / / -V [ty(T 4+ k7) — 0p(7)] dadt
2T
/ / -V [u,(2T + kT — 7) — 0,(27 — 7)] dadt
/ / -V uy(t + k1 — 1) — ,(t — 7)] dadt.
Similarly, for the second term on the first line we have
27
/ / -V & (t) dadt, = / / -V [up(T + k7) — ty(7)] dadt
27
— / / -V [6,(37 + kT — 27) — 0,(37 — 27)] dadt
27
1
=— / / -V [yt + k1 — 27) — 1,(t — 27)] dadt.
T Jor

o6



Hence, for each line in (8.101) we have

(i4+1)7
first Z / / -V [ay(t — i + k1) — 1,(t — i7)] dadt;

(i+1)7
second Z / / -V [up(t — i1 + k1) — u,(t —i7)] dadt;

k

(i+p—Fk)T
(p — k)—th Z ! /( /Qfl(t) -V [ay(t — i1 + k1) — 0,y(t — i7)] dadt.

i=1 ‘+P—k—1)7'

Summing over the lines we obtain
(i+p—k)T
/ / -V uy(t — i1 + k1) — Up(t — i7)] dadt

THir—kt
/ / -V [ay(t — i1 + k1) — a,(t — i7)] dadt.

Now, we use Holder’s inequality and after a straightforward computation we obtain

k 1 T+it—kt
=2}/’ 12(0) ]| 2@ IV [apt — 7+ k) — (¢ — im)] ooyt

T /.
=1 T

k 1 THit—kt
> - / @2 + IV [@p(t — i + k1) — @y (t — i7)] [|72()dt

T /.
=1 T

k

1 T+it—kt T—kt
:Z—/ 120 e dt+Z/ IV (s + kr) — Viy(s)|Zagayds

7‘ .
i=1 T

IN

k 1 [T+ir—kr T—kr
<>/ r\|mmm+§jt/ IV s+ 7))+ [V 0y

T .
i=1 T

<Ayl (8.102)

c
T T T
Combining (8.100) and (8.102) we arrive at
T—kt
/ / [b(a,(t + k7)) — b(uy,(t))] [u,(t + k1) — 0,y(t)] dedt < ckr.  (8.103)
Q
Further, in much the same way as in (8.103), we can show

/T—kT / |b(a, (¢ + k7))0,(t + k1) — b(T,(t))0,(t)| < ckr. (8.104)
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From (8.104) we conclude, using (8.70), that
1 T—1 3 3 9
- 6,(t+7) — 0,(t)]" dz dt <c. (8.105)
T Jo Q

Now, in view of (8.70), (8.81), (8.83), (8.93), (8.103), (8.104) and (8.105) we employ
Lemma 8.15 and ([30], Proposition 3.35) to conclude

Up — u almost everywhere on Qr, (8.106)

0, — 0 almost everywhere on Q7. (8.107)
This completes the proof of Theorem 8.14. [

Summary of Section 8.4. Let us summarize that the a-priori estimates (8.58),
(8.70), (8.81), and (8.91) allow us to conclude that there exist u € L*(I; W5*(Q))N
L®(Qr) and 0 € L*(I;W5*(Q)) N L=(Qr) such that, letting p — 400 (along a
selected subsequence), we have

i, = weakly in L(I; W5™(Q)),
U, — u weakly star in L>(Q7),
9, — 0 weakly in L*(1; Wllj’2(Q))a
), — 0 weakly star in L>(Qr).

Further, we also have proven

U, —u almost everywhere on @,
ép — 0 almost everywhere on Q7.
8.5 Passage to the limit for p — oo

The moisture equation. We define the sequence of functionals X, € L? ([, W}f(Q)*)
such that

/ / / — “p(t =) ot) du at
/ / Pt — 7)) [Vt (t) + e] - Vo) dzdt. (8.108)

The parabolic term in (8.108) can be rewritten, for ¢ € L? (I, Wll)Q(Q)) and ¢(T) =
0, as

/ / — U “p(t =) 5(t) daat

[t - s A= drar. a0

o8



Further, thanks to the energy estimate (8.82), we have

T
| 0) < IRt =)t = D=0 980 20 100
0
(8.110)
hence the functionals X, are bounded in L? (I , Wll)’z(Q)*), therefore, for a selected

subsequence
X, =~ X weakly in L*(I; W)*(Q)"). (8.111)

Hence, (8.111) implies X = 0;b(u). Further, for the elliptic term in (8.108), we have,
thanks to (8.83), (8.106) and (8.107)

lim /O ' /Q k(B (t — 7), 0, (t — 7)) [Vt (1) + €] - V() de dt

T—0

_ / k(O(8), u(t)) [Vu(t) + e.] - Vo(t) dedt. (8.112)
Q

The heat equation. Let us note that above established convergences (8.83),
(8.93), (8.106) and (8.107) are sufficient for repeating the same procedure, which
has been presented in the paragraph before, also for the heat equation. Hence the
functions u and 6 are a weak solution of the problem (5.1)-(5.8). This completes
the proof of the main result stated in Theorem 7.3.

9 Uniqueness of the solution

In this section we will prove the uniqueness of the solution, under some additional,
but still physically relevant assumptions.

9.1 Additional assumptions

We present some additional assumptions:

(a) the hydraulic conductivity k& does not depend on temperature, hence (4.26)

becomes
k(u) = k(u) vp ks; (9.1)
(b) the thermal conductivity does not depend on temperature, hence (4.30) be-
comes
Au) = Ay(u); (9.2)
(c) assume
le(ur) — e(uz)[* < |b(ur) — blus)| (ur — us). (9-3)
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Taking into account the additional assumptions mentioned above we can write the
moisture equation (4.39) in the form

ob(u) =V - (k(u)(Vu+e,)) =0. (9.4)
The heat equation (4.40) becomes

—a[b(“);t* . [0k (u)(Vu +e.)] = V- Mu)VO = 0. (9.5)

9.2 Kirchhoff transformation

In order to eliminate the nonlinearities in the elliptic part of the moisture equation
we introduce the Kirchhoff transformation (see e.g. [2|). Define the function 3 :
R — R, by

Hence
V() = Vu L = k(u)V
u) = Vu T k(u)Vu
Further let us introduce
= PB(u).

Provided k is an increasing function with respect to u, which is physically relevant,
we have

B~ (@) = u. (9.6)
Putting (9.6) in the equation (9.4) we obtain

Ob(B (@) = V - [ks oV + k(3™ (@))e.)] = 0. (9.7)

Similarly using the transformation for the equation (9.4) we obtain

O[b(8~" ()0 + of]
ot

V-0 (ks voVa + k(B (@)e.))]—V-[MNB~ (@) VO] =0. (9.8)

Without loss of generality let us assume that the physical constants ks =1, vy = 1
and o = 1. Finally, in order to simplify mathematical formulations, let us introduce
the following notation:



9.3 The transformed problem

Strong formulation of the transformed problem. In terms of the notation
which has been introduced above, we introduce the following initial boundary prob-
lem

ob(a) — V- (Va+e(w)) =0 in Qr, (9.9)

b(1)0 4 0] — V - [0(Vii + e(@))] — V- MN@)VO =0 in Qr. (9.10)
i=0 on Ipr, (9.11)

=0 on I'pr, (9.12)

(Vi+e,) n=0 on 'y, (9.13)
Vo-n=0 on I'yr, (9.14)

iz, 0) = i (x) in Q, (9.15)

0(x,0) = by(x) in Q. (9.16)

In (9.9)-(9.16) @ : Qr — R and 6 : Q7 — R are the unknown functions.

Variational formulation of the transformed problem. The variational for-
mulation of the system (9.9)-(9.16) with homogeneous boundary conditions reads
as follows.

Definition 9.1 A weak solution of (9.9)-(9.16) is a pair

@€ LI W5 () N L™(Qr),
0 € LA(I;W5(Q) N L™= (Qr),

which satisfies
- / b(@1) 0 daxdt + / (Vi + e(@)) - Vo dadt = / b(iig)p(0)dz  (9.17)
T T Q
holds for any ¢ € L*(I; W5*(Q)) nWEH(I; L)) and ¢(T) = 0;

- / (B(a)e + 99) Oy dudt + / M)V - Ve dudt
+ / (0 (Vi + e(@))) - Vop dedt = /Q (é(ao))eo + g90> (0)dz (9.18)
holds for any o € L*(I; W5*(Q)) N WHH(I; LY(Q)) and (T) = 0.

Remark 9.2 (/31], Remark 1.19) There exists 0,b(@) € L*(I; W5*()*) and

/ [B(ao)—é(a)] By dardt = /0 ' <at8(a),¢> dt
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holds for any ¢ € L*(I; W5*(Q)) N WHNI; L)) and ¢(T) = 0, then in the place
of (7.1) we can have

/OT <at13(fa), ¢> dt + /T (Vi +e,) - Vodadt =0

for any ¢ € L*(I; W})’z(Q) E

)
Similarly, there ezists O, (5('&)9 + g@) € L2(I;W5*(Q)*) and

/Q [(6(&0)90 + o) — (b(@)f — 99)] By dadt = /0 ' <at (B(a)e + 99) ,¢> dt

holds for any o € L*(I; W5*(Q)) nWUL(I; LY(Q)) and ¢(T) = 0, then in the place
of (7.2) we have

/T <<9t (5('&)9 + 99) ,w> dt+/Q @) VO-V dxdt+/ (0 (Vi + e.))-Vib dadt = 0

T

for any ¢ € LA(I; W5*(Q)).

Theorem 9.3 (Ezistence of the solution to the transformed problem). Let the as-
sumptions (1)—(iv) and (a)—(c) be satisfied, then there exists a solution to (9.17)-
(9.18).

Proof. The proof can be realized in the way as described in Section 8. [J

Theorem 9.4 (Uniqueness of the solution to the moisture equation) There ezists
a unique solution to (9.17).

Proof. We follow [2]. Suppose there exist two solutions g, 4y to (9.17). Hence

/0 ' <atz3(a1) — Ob(ian), ¢> dt + / (V(iiy — tis) + (i) — e(dia)) - Vo dadt = 0

T
(9.19)
for all ¢ € L*(I; W5*(Q)). Introduce the function 8 € L2(I; W5*(€2)*) such that

B = b(iy) — b(iis).

Now Lax-Milgram’s theorem yields the existence of the unique function w, € ¢ €
L2(I; W5*(€)) such that

/()T/va“ VO dzdt = /OT (B, ) dt. (9.20)
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From [2] we have

% /Q Vwy(t) - Vw,(t) = /0 (0s3, wy) ds (9.21)

for all ¢ € I. Introduce the function x(t)p,- such that
_Jo it g [07),
X(t)[o,.r] = { 1 it te o7, VT e I. (9.22)
Now let us set ¢ = x(t)o,-jwn as a test function in (9.19) to obtain

/OT <at13(a1) — 0b(1ay), wu> dt+/OT/Q (V(iiy — 1p) + e(iiy) — e(iip))-Vw, dzdt = 0,
(9.23)

which becomes

/OT (0,8, wy) dt + /D/Q (V(iiy — fis) + (i) — e(fis)) - Vaw dadt = 0. (9.24)

Using (9.21) we have

1 T
3 / Vw,(7) - Vw,(7) dz +/ / (V(ay — 1) + e(uy) — e(us)) - Vw, dedt = 0.
Q o Jo
(9.25)
Further we set ® = x(t)[0,)(41 — @U2) as a test function in (9.20) to obtain
/ / Vuw, - V(i — ty) dedt = / (B, (1 — ug)) dt. (9.26)

Combining (9.25) and (9.26) we have

1/Qun(T) -V, (1) dz + /OT (B, (ur — ug)) dt

2
+ /OT/Q le(ty) — e(uz)] - Vw, dzdt = 0. (9.27)

Let us now focus on the third term in (9.27), using Young’s inequality with ¢ we
can write

/oT /Q [e(a1) — e(ug)] - Vw, dzdt

< e/ / le(iiy) — e(ii)]? dxdt+/ cle) [Vw, > dzdt. (9.28)
o Ja 0
Moreover, using (c), we can write
1 T T
5/ |V, (7)|* dz + (1 — e)/ (B, (ug —ug))ydt < c(e)/ |Vw,|” dedt  (9.29)
Q 0 0
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Since

[ 480 =y = [ o) = ), = ) > 0,

taking e sufficiently small, (9.29) becomes
1 T
5/ |V, (7)[* dz §/ c(e) |V, | dadt. (9.30)
0 0
Now Gronwall’s lemma yields w,(7) = 0 almost everywhere.

Lax Milgram’s theorem yields the existence of a unique function w, satisfying (9.20),
now we proved that this function equals zero almost everywhere. This implies that
£ = 0 almost everywhere. More over since b is a monotone function,

B =0b(u1) —b(uz) =0

implies
Uy = Uy a.e.in Q7.

The proof of Theorem 9.4 is complete. [

Theorem 9.5 (Uniqueness of the solution to the heat equation) There exists a unique
solution to (9.18), in the class of weak solutions such that 9;b(u) € L*(Qr) and
00 € L*(Qr).

Proof. Suppose there exist two solutions 6y, 605 to (9.18). We have

/T /Q 0, (B(@) (01 — 02) + (61 — 02)) ¥ dadt + / @)V (0, — 6y) - Voo dadt

T

T

We set ¢ = 6 — 0, as a test function in (9.31) to obtain

/T/ (& [B(ﬂ)(91 - 92)} (6, — 02)> + (0401 — 02)(01 — 02)) dxdt
0 Q
[ 3@ 190 - e dnt
Qr

+/ (61 — 0,) (Vu+e(u))) - V(0 — 02)daxdt = 0. (9.32)
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For the first term in (9.32) we can write
T ~ ~
/ / 0, [b(a)(el - 92)} 0 —0) = | 0,b(a)(6: — 0,)* dwdt
0 Q Qr
+ / b(10)D,[61 — 62) (6, — 6) daxdt

= %/QT at5<1~6>(61 — (92)2 dxdt 4 %/ 64[;(&)(91 _ 92)2] dadt

T

B(a(T))<91(T)—92<T))2dx+% ; OuB(@)](01 — 0,)% dadt. (9.33)

Hence (9.32) becomes

%/Qé(a(T))(el(T) — 0,(T))* dx + % /T A [b(@)] (61 — 62)? daxdt
1 ) - )
+3 . 0, [(61 — 6)?] dadt + /T @) [V (8, — 65)| dadt
+ %/ (Vi + e(@)) - V(0 — 65)*dadt = 0. (9.34)

T

Now we set ¢ = 1(61 — 65) as a test function in (9.17) to obtain

1 ~ 1

3 O; [b(W)](6, — 05)* dadt + §/ (Vi +e(@)) - V(0 — 0y)*dazdt =0 (9.35)
Qr Qr

and subtracting (9.35) from (9.34) we obtain

%/Qé(a(T))(el(T) — 05(T))* dz + % /T 0; [(6r — 62)*] dadt

+/ @) |V(0; — 65)]* dzdt = 0. (9.36)
Qr

Since b and X\ are positive functions we can write

1

and hence 0; = 0, a.e. in Q7. This completes the proof of Theorem 9.5. [

10 Conclusion

In this section of the work, we have proven the existence of the weak solution
u€ LW () N L=(Qr),
0 € L*(I;W5™(Q)) N L¥(Qr)
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to the problem (5.1)-(5.8) describing coupled moisture transport and heat trans-
fer through a partially saturated porous media. The model is describing porous
media performance by means of a single porosity approach described in Section
3.2. In order to avoid unnecessary technicalities we have analyzed in this section
a model with homogenous boundary conditions of a Dirichlet and Neumann type.
The presented analysis can be straightforwardly extended to a setting with general
boundary conditions.

We have also shown the uniqueness of the obtained solution, prescribing some ad-
ditional, but still physically relevant, assumptions on the transport coefficients.
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Part IV

Mathematical analysis of the dual
porosity model

11 Dual porosity approach

The single porosity model which has been presented in the previous part of the
text is the most frequently used approach. However, some physical and engineering
issues may require different approach, i.e. dual porosity model (see Section 3.2). The
dual porosity model consists of two sets of equations, representing two overlapping
continua corresponding to the fracture system and matrix system, respectively. The
system is completed by the coupling terms providing the communication between
these two continua. The structure of the analysis is realized in the same manner,
therefore, in the text we will focus our attention on the differences since the main
ideas of the analysis remain the same.

11.1 Strong formulation

Let Q be a bounded domain in R? with Lipschitz boundary T'. Let T' € (0,00) be
fixed throughout the paper, I = (0,7) and Qr = Q x I denotes the space-time
cylinder, 'y =T x I. We introduce the following dual porosity model (i = 1, 2)

Obi(w;) =V - (ki (0;,u;) (Vu; + e,))
+ wia (U1, uz)(ur — us) in Qr, (11.1)
O [bi(w;)0; + 0:6;] =V - (Ni(0;,u;)V;)
+ V- (0:k;:(6;, u;) (Vu; +e.)))
+ Fi(uy,ug,601,02) inQr, (11.2)

completed by boundary and initial conditions

u; =0 onI'p, (11.3)
g; =0 onI'p, (11.4)
ui(x,0) = uip(x) in €, (11.5)
0;(x,0) = O;0(x) in €. (11.6)

In (11.1)—(11.6), u; : Qr — R and 6, : Qr — R are the unknown functions re-
presenting pressure head and temperature. Further k; : R2 — R, b; : R — R,
Ai i R?2 = R, up: Q — Rand 6 : Q — R are given functions, and e, is the vertical
unit vector. Further wy = 1/w, wo = 1/(w —1), a; > 0, 5; > 0, g; and w € (0,1)
are given material constants. Finally o, : R> — R is a first order mass transfer
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coefficient function for water, F; : R* — R represents the exchange term for heat
exchange between two components.

Remark 11.1 (Sobolev space Wy*(Q)). By the symbol Wy (Q2), with some p > 1,
we denote the Sobolev space with zero trace on the boundary I'. (See C.5.)

11.2 Structure and data properties

According to the physical background we present the following assumptions on
functions in (11.1)—(11.6):

(I) b; is a positive lipschitz continuous strictly monotone function such that
0 <b;(€) < by < 40 V¢ € R (by = const),
(0i(&) = bi(&)) (& — &) > 0 V1,6 €R, &1 # &
(IT) v, k; and \; are positive continuous functions;
(IIT) o; is a real positive constant and e, is a vertical unit vector;

(IV) F;(&1, &2, Cr, C2) is continuous on &7, & and lipschitz continuous with respect to

Cla C27
(V) U;0, 01'0 c LOO(Q>

Remark 11.2 Similarly as in Lemma 6.5, (1) implies, that there exist positive
constants by and by such that

for all g € L>(Q).

Further (IT) implies that there exist positive constants ki, ks, A1, A2, a1 and s such
that

0< k< ki(gl,gg) < ky < “+00, (118)
O< < )\i(gl,gg) < A< +00, (119)
0<ag <ay(gr,g2) < ag <400 (11.10)

for all g1, g0 € L®(Q).
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11.3 Weak formulation

We now formulate the problem (11.1)—(11.6) in a variational sense.

Definition 11.3 By a weak solution of (11.1)—(11.6) we mean a pair [u, 0], u =
(uy,uz), @ = (61,02), such that

u; € L*(I; Wy * () N L=(Qr),
0; € L*(I; W, () N L™®(Qr),
which satisfy

T T

+ / wi(xw(ul,uﬁ(ul — U2)¢Z dadt = / bl(ulo)@(()) dz (1111)
T Q
for any ¢; € L*(I; W, (Q)) N WU L)) and ¢3(T) =0, i=1,2;

T T

T

T

+/ (bi(wio)bio + 0ibio) i (0)da (11.12)
Q
for any ¥; € LA(I; W% (Q) N WHH(I; LY(Q)) and 1;(T) = 0, i=1,2.

Theorem 11.4 (FEzistence of the weak solution) Let the assumptions (I)-(V) be
satisfied. Then there exists at least one weak solution of the system (11.1)—(11.6).

In the following text we will deal with the proof of Theorem 11.4 using the similar
procedure as in Section 8.

11.4 Steady problem

Fix p € N and set 7 := T'/p be a time step. We use a semi-implicit time discretiza-

tion, further define functions [uy,07], u; = (u,, u3,), 0, = (07,,03,) as solutions

of the steady problem in each time step.

Problem 11.5 Find a pair [ul,07] such that

p’p
ul € Wy(Q) N Le(Q),
07, € Wy (Q) N L¥(Q),
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T

bi(ug,) — bi(uf
/ (Uzp) (uzp )¢ld$—|—/ k(@” 1’ Z) 1) (VU%‘*‘QZ) V¢ld$
Q Q
—i—/ﬂwiaw(u? Lud ™Y (u} — uy)psde =0 (11.13)

holds for any ¢; € Wy (Q), i—1,2;

bs(ut )0, — by )0 o, — 0!
/ ( ) ( ) ip ¢1dx+gz/ D p ¢1d$+/>\ (en 17 ZD 1)v9n vwzdﬂf
Q T

/6 ki (07 1, up” N (Vul, +e.) ~V1pl-dx:/E(u’f,u;‘,ﬁ?,ég)z/}idx (11.14)

Q

holds for any 1; € W,2(Q), i=1,2.

11.4.1 Existence and regularity of the approximate solutions

Theorem 11.6 [Existence of the solution to (11.13)] Let ul, ™" and 0}, € L*(12),
be given and the assumptions (I)—(V) be satisfied. Then there exist uj, € Wy (),
i=1,2, the solution to the discrete problem (11.13).

Proof. Let us introduce ¢ := [¢1, 3] € Wy *(Q)2. Define the functional p, €
[Wo ()] by

(po, & Z / ') @dx—Z/ k(0 s e, - Vde (11.15)

for all ¢ € Wy (Q)2,
Further, define the operator A, : Wy*(Q)? — [Wy*(Q)?]* by the equation

2
1
i=1
+Z/wiaw(u” Jubt D (ul — ub)gsdr (11.16)
for all ¢ € Wy (Q)2,

The operator A, is monotone in the main part. Further, for any u, € VVO1 ’2(9)2 we
have, taking into account (I)—(IIT),

(Au(uy), @) < ClHU’ZHWOI’Q(Q)?H(ﬁHWBQ(Q)Q + CQHQSHWOI’Q(Q)?’

< ”qj”w;)v?(g)z (ClHuZHW(}’Q(Q)? + Cg) .
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Therefore, we have

||Au(up)H[W01’2(Q)2]* = SUP e

Sclﬂu"” 1,2QQ+02. (1117)
pewiz@2 plzo 1Plwiqy P

And further, applying Young’s inequality, we derive

(Au(up), up) > eif|upll?

D W&’Q(Q)Q — Ca. (1118)

Now, we can conclude from (11.17) and (11.18), with the same arguments as in
the Section 8.2.1, that above shown properties of the operator yield together with
([47], Theorem 3.3.42) the existence of the solution w, € W,?(2)? to the problem
(11.13). O

Theorem 11.7 (W, -regularity of the solution to (11.13)) Let uy € W,y (Q)? be

the weak solution to the discrete problem (11.13). Then u; € Wy (Q)? with some
r> 2.

Proof. The proof of Theorem 11.7 can be realized in the same way as the proof of
Theorem 8.6. [

Theorem 11.8 [Existence of the solution to (11.14)] Let ul™" and 0}, € L*>(12),
be given, let uj, € Wy (Q) and the assumptions (1)~(V) be satisfied. Then there
exist O, € Wy 2(Q), i=1,2, the solution to the discrete problem (11.14).

Proof. We denote v := [1)1,1] € W;*(Q)? and we define the functional p, €
(W ()] by

2
(pg, Z / ulher 1wldx—2/§2993)1widx (11.19)
=1

for all o € W, *(Q)2.
Further, define the operator Ag : W, ()% — [W,*(2)]* by the equation

2
1
<~A9(u2)a¢> :Z;/ [bl(u? ¢de+2/ en 1’ Z) 1 V@n sz'
+Z/0 Qn L Uy, Y (Vu?p—i‘ez) -V dx
2
=Y [ R o ade (1120)
i=1 7/
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for all ¢ € W,*(Q)2.

In view of (I)-(IV), the operator is bounded and monotone in the main part. Fur-
ther, we may write

(A0(8).65) > cr 0105 Z/ (L lon) +10n) o0 de.  (11.21)
Hence

(A0(67),63) = x| g0y — [ cn (60, 05, + 205,85 + 10, + 165, ) do

(11.22)
Applying Young’s inequality on the second term on the right-hand side of (11.22),
we arrive at

(A9(0;),6;) = (c1 = c2() 10711712 - (11.23)

Therefore, we may conclude, that the operator Ay is coercive. Hence, the properties
of the operator yield the existence of the weak solution 6, € W&’QQ to the steady
problem (11.14) with the same arguments as in Theorem 11.6. [J

Theorem 11.9 (W, *-regularity of the solution to (11.14)) Let uy € Wy (Q)? be
the weak solution to the discrete problem (11.13), let 8] € W, ?(Q)? be the weak
solution to the discrete problem (11.14). Then 6, € Wy % (Q)? with some s > 2.

Proof. The proof can be realized in the same way as in Section 8.3.2 since the
structure of the critical convective term remains the same. [J

Now, let us summarize, that we have shown the existence of the solutions u; and
07 € W,*(Q)? to the discrete system (11.13)-(11.14) and their W'"-regularity.
Since Wy (Q) — L®(Q), we may conclude that u? and ) € W, ()2 N L¥(Q)2.
This proves the existence of the solution to the recurrence Problem (11.13)—(11.14)
forn=1,...,p.

11.5 Time interpolants

Let us define the piecewise constant interpolant functions (n = 1,2,...,p)
U (t) = ug, for t € ((n — 1)1, n7],
ﬂlp(t) = U;0 for ¢ - ( T, ]
0ip(t) = 07 for t € ((n — 1)1, n1],
ézp(t) = 91‘0 fOl" t - ( T, ]
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N L>(1; L>*(Q2)) and

The piecewise constant interpolants i, (t) € L(1; W,>(Q)
(0; 7] the equations

0ip(t) € L(1; W2 (Q)) N L®(I; L=(Q)) satisfy for all t €

/ bi(Wip(t)) — bi(ip(t — 7))

T

o dx+/ k(0ip(t—T), tisp(t—T)) [V (t) + €,]- Vo, da
Q
+ /Qwiaw(ﬂlp(t — 7), Uy (t — 7)) [U1,(t) — Ugp(t)]pidx =0 (11.24)

for any ¢; € L*(I; Wy*(Q)), ¢(T) =0, i = 1,2;

/ bi(tip (1) 01y () = biltp(t = 7)) (E = 7) |

T

eip B eip - _ B 3
+ Qi/ﬂ (t) i (t 7')1/12' dx +/Q)\i(9ip(t — ), Uip(t — 7))V, (1) - Vipyda

+ / Oin (Bt — 7). Tip(t — 7)) [V (1) + €2] - Vo

= Fi(alp(t)7 a2p<t>’ le(t)v 92p(t))¢i (11~25)

for any ¢; € L*(I; Wy™(Q)), i(T) = 0, i = 1,2.

11.6 A-priori estimates

In this section we briefly introduce the main ideas of deriving the suitable a-priori
estimates for the time interpolants.

L*>*-bound for u;,. Let x € R, £ € R. Introduce the functions

13

e (&) = / (s — k)_ds, (11.26)
3

el (€)= / (s — k), ds. (11.27)

Recall that symbols — and + denote negative and positive part of a function. Hence
we can write (s — x)_ = min(s — k,0) and (s — k); = max(s — &, 0).

Lemma 11.10 Let us present the properties of e (§) and e} (£):

e, (&) —e. (&) < (G —&)(& —r)- V&, & ER, (11.28)
er(&r) —ei (&) < (G —&)(& —r)y V&,6 R, (11.29)

Proof. Proof of this lemma can be carried out in the same manner as the proof of
Lemma 8.13. [J
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Let xy € R, such that sy < uio + 2 a.e. in Q. Then we have (uj, +zp — Ky)— €
Wy?(9),i = 1,2 and thus we may test (11.13) with

O; = l/wi[uz7 + To — Ky,

and sum the equation for i = 1,2. We get

[uiy, + 2 — Ky] - da

Q

w; T
vi=1

WE

1
+_
Wi £

7

/ k(00w ) (Vul, + e.) - VIul, + x5 — ry]_ dx
0

1

+ /Q g (ut, t us ) (uf, — ub ) [ul, + o — Ky da
+ /Q g (ut, t us ) (uh, — ul) [uh, + @ — Ky dz = 0. (11.30)

Let us set &y = max,,cq(ky — z2). We now use (8.38) on the first term in (11.30)
and (11.28) for the third and fourth term in (11.30), further we slightly modify the
elliptic term and we obtain (recall the definition of 5z, in (8.36))

n—l)

2 — (o -
1 Z/ 5@(%';0) - Bgﬁ (uip da
W i—1 Q T

2
1 n— n— n 2
+ o E /Qki(éip Ll [V ul, + g — k]| da

i=1

[ autuy g (65, ) - 5, (3,) do
+ /Qaw(uﬁ—l’ugp—l) (ggﬁ(ugp) - 6gﬁ(u7fp)> dr <0. (11.31)

The sum of coupling terms equals zero, the elliptic terms are nonnegative because
k is a nonnegative function. This allows us to repeat the procedure in (8.45)(8.49)
to show that

ul >Ry, i=1,2. (11.32)

Further let x* € R, such that & > u;o+x5 a.e. in Q. Then we have (u%—i—xQ—/ﬁﬁﬁ €
Wy?(Q),i = 1,2 and we are allowed to test (11.13) with

¢ = 1/wilug, + 29 — K4

Now we sum the equations for i = 1,2, set & = ming,cq(k* — z2) and repeat the
procedure presented in (8.51)—(8.56) to show that

IN =

n

Boi=1,2. (11.33)
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Taking together (11.32) and (11.33) we arrive at
Ry < ulfy < RF (11.34)
almost everywhere in 2, n = 1,2, ---p. Note that (11.34) becomes

|@ipl| oo (@r) < (11.35)

The a-priori estimate (11.35) allows us to conclude that there exists u € L>(Qr)
such that, letting p — 400 (along a selected subsequence),

U, = u weakly star in L™(Qr)?. (11.36)

L*>-bound for 0;,. In order to show L®-bound for §;, we follow [29]. Let ¢ be an
odd integer. First, we use ¢; = [¢/({+1)][0,]! as a test function in (11.13) to get

14 b( )_b(lp ) n 1041
E—i—l/g T [Qip] dz

+ k(@” Lup ) (Vug, + e2) - VIR ] da

) 'Lp

E n— n— n
+ 1)/, wit (uf ™ u ) (W) — ug) 0] de = 0 (11.37)

and similarly, we set ¢; = [0},]° as a test function in (11.14) to obtain

1/ [(bs(ulp) + 0i) 05, — (biluf, H+1) 0, '] [0;‘0]4 dx+/)\ (. Ll 1)V9" V[@Z)]de

) zp

/e k(00w ) (Vul, + e) .v[eyp]fdx:Lm(u?,ug,e?,eg)[eg]fdx.
(11.38)

Now we divide the equation (11.38) by positive constant g;, ¢ = 1,2 and, for sim-
plicity, denote all obtained coefficients with the same symbols. Next, we subtract
(11.37) from (11.38), we sum the equations for ¢ = 1,2 and arrive at

2
S22 [0 41— () 1) 0
+Z/ (Vo A/ v AR

=3 | .00, 00 dx+§j€ Sir [ ) = by ) ) o

[\

2
+ ZZI —E 1 /QW@'OQU(u?l, ug*1>(u§b . u2>[6n]€+1 d. (1139)
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For the first term on the third line in (11.39) we can write (recall (IV))

2 2
Z/QFZ-(u?,ug,G’f,@S)[@%]de < Z/Qc(w\emﬂeg\)[e;;]@dx. (11.40)
i=1 i=1

Hence

3 /Q Fi(uf, u3, 07, 03)[03) do < ¢ / (165,) + [65,)') dz

Q
+ C/ ([97;})]54—1 + [Qgp]f-i—l) dx

Q
+ c/Q (07,165,)° + 03,167,]°) dz. (11.41)
Now we use Young’s inequality on the first term on the righthand side of (11.41)

to get

1 V4 1 /
n 14 n 14 ¢ n 10 ’ .
c/Q (167)° + [05,]°) dz < c/Q (_E o +1 ﬁwlp] +1y e +1 - 1[‘921)} +1> Qo
(11.42)
hence, we obtain

C/ ([9%]84— [egp]f) dz < QMCZH n 14

(+1° Tix1 /Q (105" + [05,)") dz. (11.43)

Similarly, we use Young’s inequality on the third term on the righthand side of
(11.41) to obtain

/Q (60 [0n )¢ + 6 [07]Y) da < ¢ /Q (6015 + [0+ de. (11.44)

Hence, putting (11.43) and (11.44) in (11.41) we arrive at

2
Q

S [ Ftg o o))t as < 28 [ (o) 4 o)) ai (1149

i=1 Q Q

Further, for the coupling term on the fourth line of (11.39) we can write (recall (IT))

¢ nel melyom o ¢ .
[ [t — oy dr < e g [0 e (149

Hence, putting (11.45) and (11.46) in (11.39) and considering that the elliptic term
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in (11.39) is nonnegative we obtain
1

- _bZ n—lenl d /en_enl an
S 2 [ [ttt — ity 0 x+2 ) da

2
(1 B .
_Zﬂ—l; /ﬂ (bi(ul) — bi(uly M) [ez.p]”l dz

s +c/ (165) + [65)F) dw. (11.47)
Q

Now, we multiply (11.47) by 7, again use Young’s inequality and after little lengthy
computation we arrive at

2
1
nE—i—l nﬁ—&—l nl n—174+1
5/9 d_l—é—ﬁl/glg dxiél/ )05, ] de

Q
< Z/ 071161 d$+TC1/Q (167,) + [65,)) dx+47‘5:_—ice+1. (11.48)

Hence

2

2
1
n 14+1 n n 14+1
2(1_2m) /Q o] dx+Z—€+ - /Q b(ull) [0 da
=1 =1
1
_ n—1 n—11¢+1
;—Hlfgb(uw )01 da

n— 1 " p(§2) 0+1

For sufficiently small 7, such that (1—27¢;) > 0, we can divide (11.49) by (1—27¢1)

2

n 14+1 n n 14+1
Z / 071 dz + Z - 2701 /Q b(ul)[On) " da

=1

2
. b n—1 enfl f+1d
;Z—l—ll—QTcl/Q (i 15,1 de
2

1 _ () 1
< — n—11gn P ———" A
—;1—27(:1/9[9”” 65, dz + €+11—2mc (11.50)

Let us mention, that we can write

1 2c172¢
— =1 2 — | T 11.51
1—27¢ +<01+1—2701>T ( )
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Now we denote
2c172¢1

L:=2¢, w,:= (11.52)

1—27’C1.

Let us mention that w, — 0, for 7 — 0. We employ notation (11.52) and again use
Young’s inequality on (11.50)

2
1 1
n 14+1 n n 16+1
2 /9[9"”] dot Zizl 11— 27, /Qb(u”’)w’p] o

1 1
o n—1 n—114+1
2 +11—2¢c1/9b(“”’ )05 17 do

1
+ 47%—&“. (11.53)

f —27'01
Now we denote
2
h= 3 /Q 62) do, (11.54)
=1
2
1 1
Vo= 1o [ bluip)lop]d 11.55
;£+11—2rcl/g<w)[ o dr (11.55)
2
1 1
Y_ = - b 7}—1 97_1—1 €+1d 11.
" Zf+11—27‘01/9 (i )10, e (11.56)

2
=Y /Q 6271 do. (11.57)

With this notation we rewrite (11.53) as

U + Yo <[4 (L +wp)7) " [yt + Yoo + 4] (11.58)

The recurrence relation (11.58) can be also rewritten as

Yo + Y, <1+ (L + wy)r] D" (yo +Yo+7Y 40”1) . (11.59)
j=1
Because Y, is nonnegative (recall that ¢ is an odd integer), we can write
Yn < [1+ (L 4 wp)7] D" (yo +Yo+ T 24&*1) . (11.60)
j=1
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We take the ¢ + 1-th root

1 A n
yatt <[+ (L +w,)7]" ( i W+1 e Z4eilc”1> . (11.61)
j=1
Recall, that n =1,...,p. Hence we can write
T n T p p
[1+(L+wp)—] < [1+(L+wp)—} < [1—1—5} — e, (11.62)
p p p
for p — oc.

Now we put the estimate (11.62) in (11.61)
Yt < (yg“ + Y, + 02) : (11.63)

Taking into account (11.54), from (11.63) we have

ﬁ 1
(/ [61,2] 1 da +/ [Bapn] dx) (yé“ + Y, + 02) : (11.64)
Q Q

Hence

1051 Lev1 @y < C. (11.65)
Now letting ¢ — +oo we get

1051l 2 (0) < C. (11.66)

Let us mention that (11.66) becomes

1Bsllzeen < C. (11.67)

The a-priori estimate (11.67) allows us to conclude that there exist 6§, € L>(Qr)
such that, letting p — 400 (along a selected subsequence),

0, —0 weakly star in L(Qr)?. (11.68)

Energy estimate for u;,. To derive energy a-priori estimate for @;,(t) we test
the equation (11.24) with ¢; = 4;,(t) /w; and sum the equations for i = 1, 2.

The sum of coupling terms is equal to zero. Using usual estimates for parabolic and
elliptic term we arrive at

Z ~ [ Bl (®) - Bl - dx+2||um Worsg <c: (1169
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We integrate (11.69) with respect to time from 0 to s (s = km,k € N;1 < k < p).
We arrive at

Z / (@ip(0 dx—l—Z/ (Tip(kT)) d:C—l—Z/ || (t me o At < kre.
(11.70)

Hence

Z sup /B(uip(t))das+2/o ||a,-p(t)||3vg,2 dt < Te. (11.71)

0<t<T

Let us note that (11.71) becomes
||aiPHL2(I7WOI’2(Q)) S Te. (1172)

Hence
w, ~u  weakly in L2(I; W, 2()?). (11.73)

Energy estimate for G_ip. In order to derive the energy estimate for Q_Z-p we use
Y; = 20}, as a test function in (11.14), ¢; = (67,)* as a test function in (11.13),
combine the equations and sum for i = 1,2 to get

Z / ) o) = (05) ((w, ) +o)

T

+Z/ (6] (bu(a™) + o) dx+22/ (O VL Ve d

— Z /Q 2Fi(u?p,u§p, 1p» 03,) 0, A + Z / W; 0y, U1p ,ugp 1)[u7fp — ugp](egf dz.
i=1
(11.74)

Recall that b is a positive function and p is a positive constant, the second integral
is nonnegative. Further, using Friedrich’s inequality for the elliptic term, we obtain

22/ A0 u Ve - v dx>ZcH0 ey (11.75)

Using (11.75) in (11.74), considering u; are bouded functions we can write

Z/ ")+ o) - 7(9" D" (i) + ) dx+26|l9 @)

< Z/QF(G{LP,Q” )gr dx+2/ dz. (11.76)

i=1
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Using (IV) we have
Z/ +Ql) (9;;—1)2(“711 +Q1]d$+ZCTH9 || 12
2
S (604000 do v S [etopras o1
i=1 /& = /o

Now, summing (11.77) for n =1,... k, 1 < k < p, we obtain

Z/ )+ a) — (08)° () + ) ot S erlnly

n=1 =1
<TZZ/ (1467, dl‘—i—TZZ/ dz. (11.78)
n=1 i=1 n=1 =1
Using (I) we obtain
2
;/Q (6:) +;;CTH%HW12@)
<c+722/ (1+07, dx—i—m’ZZ/ dz. (11.79)

n=1 i=1 n=1 =1

Now, we rewrite the second term on the righthand side of the inequality (11.79) to
get

2
Z/Q pr +ZZCTH6@PHW12(Q)
i=1

n=1 =1

k
SC+TZ/Q [9" + 05, + 207,05, + (9711,))2 ] d$+CTZZ/
n=1

n=1 i=1

(11.80)

We use Young’s inequality with parameters e

2 ko2
Z/ﬂ (efp)2+ZZCT||OZ?HIQA/§vQ(Q)
=1

< TZ/ €1+ ci(e 1p St c2(€) (%pr +2(e) (9?p>2
+2e3(c) (05,)° + (65,)" + (63,)°) da

+c+c¢22/ dz. (11.81)

n=1 =1
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Hence

2 k 2 k 2
> [ 05 o S erl g <crer S [@fdr (1182
=1

n=1 i=1 n=1 i=1

This yields

2 ) ko2
Z/Q (1) dz < ¢ —i—CQTZZ/Q(H;;)Q da. (11.83)

n=1 =1

Now, using the discrete form of Gronwall’s inequality D.5 we deduce

i/ﬁ (05)" dz <. (11.84)

Hence, the equation (11.84) yields

2 s s
2 n
;ngllaxp/g 05| do + TZZ/O ||0’ip||12/{/0172 dt <ec. (11.85)

i=1 n=1
Let us mention that (11.85) becomes

||9—iPHL2(I;W01"2(Q)) S C. (1186)
Hence

6, — 0  weakly in L*(I; W, ?(Q)?). (11.87)

Convergence almost everywhere of #;,, 0;,. Apart from energy estimates and
L*°-bounds, we need to show convergence almost everywhere of the interpolant
functions due to the nonlinear terms in the system.

Theorem 11.11 (Convergence almost everywhere of w;, and éip) Let the assump-
tions (I)~(V) be satisfied, then

Ujp —> U almost everywhere on Qr,

O;p — 0, almost everywhere on Q.

Proof. We procceed in the same way as in Section 8.4.4 and, using suitable test
functions, we verify the assumptions of Lemma 8.15. Since the verification is tech-
nical and the main ideas have already been presented, we refer for more details to
Section 8.4.4.
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11.7 Passage to the limit for p — oo

In the preceeding sections, we have shown that letting p — 400 (along a selected

subsequence),

Further, we have also

’ljip — Uy
Q_ip — 0%

weakly in L2(I; W 2(Q)),
weakly star in L>(Qr),
weakly in L?(I; W, 2(Q)),
weakly star in L>®(Q7).

almost everywhere on Qr,

almost everywhere on Q.

Hence, the above established convergences are sufficient for taking the limit p — oo
in (11.24)—(11.25) (along a selected subsequence) to show that the pair [u, ] is
a weak solution of the system (11.1)—(11.6).
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Part V

Further extensions

In this Section, we briefly introduce the model with general boundary conditions
arising from the dual porosity approach (see Section 3.2) and a coupled diffusion-
convection-dispersion model, including coupled transport of heat, moisture and dis-
solved species. In this text, we will formulate the problems in a variational sense
and present the assumptions on parameters. For more information, we refer the
reader to Appendices A and B, where we add our papers [6] and [7], which deal
with these problems in detail. Let us also note, that in what follows, we adopt the
notation from the mentioned papers.

12 Model with general boundary conditions

Strong formulation. Let Q be a bounded domain in R?, Q € C%! and let I'p and

I'y be open disjoint subsets of 9 (not necessarily connected) such that I'p # ()
and the OQ\(I'p UTy) is a finite set. Let T" € (0,00) be fixed, I = (0,7") and
Q1 = Q x I denotes the space-time cylinder, 'pr =T'p X [ and 'y =Ty x I.

We shall study the following initial boundary value problem (i = 1,2)

Oibi(ui) =V - ai(0;, ui, Vi) + fi(bi(ur), ba(u2))  in Qr, (12.1)
Oy [bi(w;)0; + 0:0;]) =V - (Ni(0i,4;) V)

+ V- (0:a;(0;,u;, Vu;)) — hi(0y,02) in Qr, (12.2)

U= up onI'pr, (12.3)

0=0p onI'pr, (12.4)

—a;(0;,u;, V) -m = —; onI'yr,  (12.5)
=Xi(0;,u)VO; - m = a;(6;) — g onI'yr,  (12.6)
u(x,0) = up(x) in Q, (12.7)

0(x,0) = 0y(x) in Q. (12.8)

The system (12.1)—(12.8) arises from the coupled water movement and heat transfer
through the dual porous system following the Kirchhoff transformation. Here u; :
Qr — R and 6, : Qr — R are the unknown functions. u = (uy, us) corresponds to
the Kirchhoff transformation of the matric potential and @ = (6, 65) represents the
temperature of the dual porous system. The vector function a; : R x R x R? — R?
admits the structure a;(r,s,z) = a;(r)z + e;(r,s), a; : R = R, e; : R? — R?,
biZR%R, )\Z‘SRQ—)R, fiIR2—>R, ]’LiIRQ—)R, UZ‘DZQT—>R, QiDIQT%R,
Yi Ty = R, g Ty > R o : R —= R, ug; -  — R and 6y : 2 — R are given
functions, p; is a real positive constant and n is the outward unit normal vector.
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Structure and data properties. We introduce our assumptions on functions in
(12.1)—(12.8).

(12i) b; is a positive continuous strictly monotone function such that

0 < (&) < b < +o0 VE € R (b* = const),
(0:(&) — bi(&2)) (& — &) > 0 VE1, & ER, & # &

(12ii) a; and \; are continuous functions satisfying

0<ay<a;i(§) <a < +oo Vé€R  (ay,a” = const),
0< A < N(EQ) <M < 400 VE,CER (g, A = const).

e; : R? — R? is continuously differentiable vector function, such that
lei(€,0)] < e* < +o0 VE,C €R  (ef = const).
(12iii) f; : R* — R is continuous.
(12iv) h; : R?* - R (i = 1,2) admits the structure
hi(r,s) =e(r —s), ho(r,s) =e(s —1),
where ¢ is a positive constant.

(12v) «; : R — R admits the structure
|3

a;(r) =c|r|’r —o(r), ¢>0,

where o is a continuous function satisfying the linear growth condition
o (r)] < e(1+[r]).
(12vi) Assume

Uy, 00 - L2(Q>,
up,O0p € LA(L;WH(Q) n WHH(T; L(Q)) N L=(1; L=(Tp)),
v,9 € C(Qr)*

with some § > 0.
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Weak formulation. A weak solution of (12.1)-(12.8) is a pair [u, 8] such that

u € up+ LQ(I; erDQ(Q)z),
6 € 0p + L*(I; W2 (Q)?) N L¥(1; L*(Q)%),
oy (0;) € LI, LY*(T'y)),

which satisfies (i = 1,2)

T T

[ (0n(). a)) s ot + /

Q

Iyt

Vo, € C®(Qr), ¢i(z, T) =0Vz € Qand ¢; =0 on I'p;

UZ 0 + 0O; z) 8,5@01 dxdt + / /\z<0u UZ)VQZ . V@Z)Z dxdt

T

T

Inr

Qr
A
Q/ VW+Q@mmyVMM&+/ZM%%WMMt
A
-/,

= (b (U(n)e()z + 4(_)290@) ¢Z< )dl’ + / glwl dSdt (1210)

Iyt

Vip; € C®(Qr), Yi(z,T) =0 Vx € Q and ¥; = 0 on I'p.

Theorem 12.1 Let the assumptions (121)—(12vi) be satisfied. Then there exists at
least one weak solution of the system (12.1)—(12.8).
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13 Diffusion-convection-dispersion model

Strong formulation. Let Q be a bounded domain in R?, Q € C%! and let I'p and
I'y be open disjoint subsets of 9 (not necessarily connected) such that I'p # ()
and the OQ\(I'p UT'y) is a finite set. Let 7" € (0,00) be fixed, I = (0,7") and
Qr = Q x I denotes the space-time cylinder, I'pr =T'p x [ and I'yyr =Ty x I.

We present the initial boundary value problem in Qr

Ob(u) =V - [a(0)Vul, (13.1)
O [b(u)w] =V - [b(u) Dy (u)Vw] + V - [wa(0)Vul, (13.2)
O [b(u)0 + 00] = V - [A(0,u) VO] + V - [0a(0)Vu], (13.3)

with the mixed-type boundary conditions

U = O, w = 0, =0 on FDT) (134)
Vu-n=0, Vw-n=0, V0-n=0 on I'yr (13.5)

and the initial conditions

u(+,0) = ug, w(-,0) =wp, 6(-,0) = by in Q. (13.6)

Here u : Qr - R, w: Q7 — R and 6 : Q7 — R are the unknown functions. In
particular, u corresponds to the Kirchhoff transformation of the matric potential
|2, w represents concentration of dissolved species and 6 represents the temperature
of the porous system. Further,a :R - R, D, R - R, b: R — R, A : R? = R,
up : 2 = R, wy: Q — R, and 6y : 2 — R are given functions, ¢ is a real positive
constant and n is the outward unit normal vector.

Structure and data properties. Let us introduce the assumptions on functions
in (13.1)—(13.6).

(13i) b e C'(R), 0 < B(€) < b, and
0<b(&) <by<+oo VE€R (bg,b. = const).
(13ii) a, D,, € C(R) and A € C(R?) such that

0 < a(§), 0< Du(S) VEER,
0 < A Q) VE,( ER.

(13iii) Assume
Up, Wop, 00 € LOO<Q),

such that

—o00 < up <up <0 a.e. in Q (u; = const). (13.7)
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Weak formulation. A weak solution of (13.1)-(13.6) is a triplet [u,w, 6] such
that

we L(I;WEAHQ), w e L(I; WEH(Q) N L¥(Qr), 6 € L*(I; WE2(Q) N L>®(Qr),

which satisfies
—/ b(u)0yp dxdt + / a(@)Vu - Vodzdt = / b(ug)o(x, 0) dx (13.8)
T T Q

for any ¢ € L*(I; Wp2(Q)) N WEH(I; L=(Q)) with ¢(-,T) = 0;

- / b(u)wdyn dxdt + / b(u) Dy (u)Vw - Vi dzdt
+ / wa(0)Vu - Vndadt = / b(up)won(x,0)dz  (13.9)
T Q
for any n € L*(I; W(Q)) N WhHY(I; L2(Q)) with n(-,T) = 0;
— / [b(u)8 + 00]0yp dadt + / A0, u)VO - Vi dzdt
Qr Qr
+/ 0a(0)Vu - Vi dedt = /[b(uo)ﬁg + 06p|t(x,0)dz  (13.10)
T Q
for any v € L*(I; Wr(Q)) N WHY(I; L(Q)) with ¢(-, T') = 0.

Theorem 13.1 Let the assumptions (131)—(13iii) be satisfied. Then there exists at
least one weak solution of the system (13.1)—(13.6).
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structured porous media. Existence of a global weak solution of the problem (on an
arbitrary interval of time) is proved by means of semidiscretization in time, deriving

ﬁ?ﬁ:ﬁﬁ;ndaw value problems for suitable a-priori estimates based on W l:P-regularity of the approximate solution and
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Coupled heat and mass transport

1. Introduction

In this paper we deal with mathematical analysis of fully nonlinear degenerate parabolic system modeling
coupled heat transport and preferential movement of water in dual structured porous media. Variably-
saturated porous medium is treated as a multi-phase material. At the microscale the individual phases can
be clearly identified, however, at the macroscale, where measurements are usually carried out, the only ob-
servable quantities correspond to the effective behaviour. Because the detailed description of the geometry
of the porous space is seldom known in practice, the macroscale-level equations are sought as suitable av-
erages of the microscale balance law, for example in the framework of the hybrid mixture theory, originally
proposed in [18-20]. In this context, the porous medium is considered as continuum of independent overlap-
ping phases. For each constituent its conservation equation is derived according to principles of continuum
mechanics.
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1.1. Conservation of mass

In mixture theory, the derivation of the mass balance equation is based on mass conservation of a-phase
inside the spatial domain €2 of interest. A general form of a mass balance law reads [34]

d
T gadx—i—/gava -ndS:/sadx (1.1)
B oB B

to be satisfied for any regular subdomain B C B C Q. Here, 0® = ©,0, represents the phase averaged
density, ©, [-] is the volume fraction of the a-phase, g, [kgm™3] stands for the intrinsic phase averaged
density and s, [kgm™3s7!] is a production term. Further, v, [ms~!] is the velocity of a-phase and n
represents an outward unit normal vector to the boundary 9B. Applying the divergence theorem to (1.1)
and owing to the arbitrariness of the domain B one arrives at the local form of the balance law

8(@a9a)

T + V- (0404v4) = Sa. (1.2)

1.2. Conservation of heat energy

The balance of heat energy for the a-phase can be written as
d
I eadr+ [(gr)a-mdS= | Qudx+ [ E,dx— | Hysedx, (1.3)
B oB B B B

where e,, [Jm™3] is the total internal energy of the a-phase in B, (1) [Wm™2] is the heat flux, Q,, stands
for the volumetric heat source, &, represents the term expressing energy exchange with the other phases
and the symbol H, [J kg_l] stands for the specific enthalpy of the a-phase. Here we assume

€a = QaCaTaa (14)

where T,, [K] is the absolute temperature and C, [Jkg ' K~!] represents the specific isobaric heat of the
a-phase. Further, the heat flux vector (g ), includes the conductive flux g, and convection

(qT)oc =4, + QaCoeTo/Ua- (15)

Hence, applying the divergence theorem to (1.3) and using (1.4) and (1.5) one obtains the heat energy
conservation equation for the a-phase in the differential form

at (QaCaTa) +V. (qa + QaCozTa'Ua) = Qa + ga - Hasa- (16)
1.8. Single porosity model

In the simplest case, consider the flow of a single homogeneous fluid through a porous solid, such as
variably saturated water flow in soils. The mass conservation equation for the a-phase (1.2) can be partic-
ularized to both the water phase (o« = w) and the solid phase (a = s). The mass conservation equations for
the water and solid phases, respectively, become (neglecting source terms)

8(@71)910)

\YwlwYw) = 1.
200) 1V (@u0uu) = 0 (1.7)
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and

9 (Os ps)

2 + V- (©50sv5) = 0.

Under local thermal equilibrium conditions between water and solid phases (T' = Ty = T),) and under the
assumption that the solid phase is immobile, summing up the energy conservation equations (1.6) over water
and solid phases one obtains (neglecting source terms)

Ot (CopowOuT + Cs0sT)+V-q+ V- (TCu0uOmvy) = 0. (1.8)

Equations (1.7) and (1.8), which describe the conservations of mass of water and heat energy of porous media,
respectively, may be used to model the coupled flow of water and heat in a porous medium. However, in
most practical applications the structured nature of a porous medium in structured soils or fractured rock
formations requires a more complicated approach to describe the water movement in the porous material.
One commonly used approach of this type is referred to as the dual porosity model [15].

1.4. Dual porosity model

The dual porosity medium is composed of two distinct pore homogeneous systems with contrasted hy-
draulic properties, the network of fractures and the matrix pore system, respectively. The amount of water
present at a certain matric potential h [m] of the porous medium is characterized by the water retention
curve © = O(h) [-]. In dual porosity type structured media two retention functions are taken into account,
for the matrix ©,, = ©,,(hy) [-] and fractures Oy = Of(hy) [-]. Water flow is considered for both, the
fractures and the matrix pore system. The transfer of water across the fracture-matrix interface is described
macroscopically using a first-order coupling term [37]. Water flow in the dual porosity medium is governed
by the following system of equations [39]

0t (0wOm) + V- 05OV + S (Om, Of) = 0, (1.9)
8t(gw@f)—l—V'Qw@f’vf—l-Sf(@m,@f) =0. (1.10)

The following system of equations expresses the first law of thermodynamics in the dual porous medium
allowing for the heat transfer between fractures and the matrix pore system (that is, one no longer has local
thermal equilibrium between matrix and fractures)

O (Cwa@me + Cstsme) +V. q., + A (Tmcwgw@mvm) - B(Tf - Tm) =0, (111)
O (Cwa@fo + CszSfo) + V- qs + V- (TwaQw@fvf) — ,B(Tm — Tf) =0. (1.12)

A critical aspect of using this approach lies in the determination of the appropriate coupling functions .S,,
and Sy and a value of  in the heat exchange terms [37]. In (1.9) (1.12), the subscripts f and m, respectively,
denote the subsystems of fractures (macropores) and matrix blocks (micropores), respectively. The primary
unknowns in the model are the absolute temperature of matrix 7}, [K]|, the absolute temperature of fractures
Ty [K], the fracture matric potential hy [m] and matrix matric potential (matrix pressure head) h,, [m]
(single-valued functions of the time ¢ and the spatial position z € §2). Further, g, [kgm™2] is the density
of water, C,, [Jkg™ " K~'] represents the isobaric heat capacity of water, gsm, 0s 5 [kem™3] and Cypp, Csy
[J kg™! K~1], respectively, are the mass densities and the isobaric heat capacities of solid microstructure

corresponding to matrix and fractures, respectively.
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1.5. Initial and boundary conditions

To complete the introduction of the model, let us specify the boundary and initial conditions. The
boundary conditions may be of Neumann or Dirichlet type. The water flux across the boundary is quantified
by the Neumann type boundary conditions

OV, - M= Yy, Ovyp-n =y,

where the couple (ym,,7f) represents the liquid flux imposed on the boundary.
As for the heat flux, we consider the natural boundary condition given by

q,, n=o0ca.(Tn—Tx)+ 6USB(T2‘1 - Téo) + gm,

in which the symbol «a. designates the heat transfer coefficient, e stands for the relative surface emissivity,
osp represents the Stefan-Boltzmann constant, 7o, [K] is the temperature of the environment and g, rep-
resents the heat flux imposed on the boundary. Analogously, corresponding Neumann boundary conditions
are considered for fractures.

The Dirichlet boundary conditions are usually given by prescribed values of the matric potential and the
temperature on the boundary

hm:th, hf:th, Tm:TDm, Tf:TDf.
The initial conditions are set as follows:

Here, hoy,, hof, Tom and To represent the initial distributions of the primary unknowns, matric potentials
and temperatures.

2. Constitutive relationships and hydraulic characteristics. Application of the Kirchhoff transformation

Physical models of coupled water flow and heat transport possess a common structure, derived from
balance laws for mass of water and heat energy of the system. Further, we apply Darcy’s constitutive law
for the mass flux

Ov =-K(Vh+e.), (2.1)

where e, stands for the vertical unit vector and K [ms~!] represents the hydraulic permeability of the
porous media. Similarly we assume the conductive heat flux q to be given by Fourier’s law

q=—-AVT (2.2)

with the thermal conductivity function A [Wm™! K~!]. Usually, under non-isothermal processes, given
functions K and A\ depend on the temperature and liquid water content and are measured experimentally.

Concerning retention curves of the fracture and matrix pore systems, respectively, we mention here the
commonly used relation proposed by van Genuchten and Mualem (see, for instance, [39])

O(h) = O; + (05 — O;)[1 + |ah|™] 7", (2.3)
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where Oy is the soil saturated water content [-], ©, is the soil residual water content [-], @ [m™'], n; and
ng are parameters.
The temperature—pressure head dependence of the hydraulic conductivity is given by [7,36]

K(T,h) = ks vo % (2.4)

where ks [ms™!] is the saturated hydraulic conductivity at the reference temperature Ty [K], k [ms™1] is
the h-dependent relative hydraulic conductivity,

w(h) = V/5) (1- (1- S(h)l/”2)n2>2 (2.5)

for h < 0 (unsaturated porous media), S(h) = %. Here ©, and Oy are positive constants. Finally, v
[ms™2] is the temperature dependent kinematic viscosity, vp := v(Tp). In particular, material parameters
in functions (2.3)(2.5) need to be determined for the fracture and matrix pore systems, respectively.

Let us note that the system (1.9)—(1.10) with the constitutive relationship (2.1) and material data
functions (2.3)—(2.5) is degenerate with degeneracies in both elliptic and parabolic parts. It is a common
treatment of nonlinear problems to introduce the so called Kirchhoff transformation, which converts these
degeneracies only to the parabolic term (see [2]). In particular, define the functions 3; : R — R*, ¢ = 3;(€),

1=1,2, by

B1(§) :/gﬁm(s)dsy B2() :/ffff(s)dsa

where k,, and Ky are the relative hydraulic conductivities (recall (2.5)) particularized for the matrix pore
system and fractures, respectively.
Finally, in order to simplify mathematical formulations, let us introduce the following notation:

bi(u1) = O By (ua)), ba(us) = © (B (ua)),

(T) = (ks)os () = @m:wm%»ﬁﬂ,
Q1= %Zigjn? 02 = Cc%ﬁfj,

e1(T,uy) := eszg;gil(ul)), es(T,up) = eZKf(g;}iil(UQ))

and finally

f1(b1(ur), ba(uz)) := iSm(@m(ﬁfl(Ul))»(91‘(551(U2)))7

w

ﬁ@mmmm:iﬁwMWMMﬂw;mm

This formally leads to the system (3.1)—(3.2) introduced in the next section and qualitatively analyzed in
the rest of the paper.
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3. Strong formulation of the problem

Let © be a bounded domain in R?, € C%! and let I'p and 'y be open disjoint subsets of Q) (not
necessarily connected) such that I'p # () and the 0Q\(I'p UT'y) is a finite set. Let T € (0,00) be fixed
throughout the paper, I = (0,7) and Qr = Q x I denotes the space-time cylinder, I'py = I'p x I and
'y =TpN x 1.

We shall study the following initial boundary value problem (i = 1, 2)

Obi(u;) =V - a;(0;,ui, Vu;) + fi(bi(u1), ba2(uz)) in Qr, (3.1)

O [bi(ui)0; + 0:0;) = V - (Ni(03,ui)VO;) + V- (0;a;(0;,u;, Vu;)) — hi(61,02) in Qr, (3.2)
u=up onTpr,  (3.3)

0=0p onTpr,  (3.4)

—a;(0;,u;, Vu;) -n = —; on I'nr, (3.5)
—Xi(0;,u)VO; - = a;(0;) — g; on 'y, (3.6)
u(z,0) = uo(z) in Q, (3.7)

0(z,0) = 0y(x) in Q. (3.8)

The system (3.1)—(3.8) arises from the coupled water movement and heat transfer through the dual porous
system following the Kirchhoff transformation. Here u; : Q7 — R and 6; : Q7 — R are the unknown
functions. w = (u1,usz) corresponds to the Kirchhoff transformation of the matric potential and 6 = (61, 62)
represents the temperature of the dual porous system. The vector function a; : R x R x R? — R? admits
the structure

ai(r,s,z) =ai(r)z +e;(r,s), (3.9)

a;:R—-R,e:R25R2b;:R-R N:R2SR, fi:R25R, b :R2 SR up:Qr >R, 0;p:Qr — R,
Yi:Inr = R, g : Tyt = R, a; : R = R, ug; - 2 — R and 6; : © — R are given functions, o; is a real
positive constant and m is the outward unit normal vector.

In this paper we study the existence of the solution to the system (3.1)-(3.9). In the last decades, a con-
siderable effort has been invested into detailed analysis of parabolic systems arising from the coupled heat
and mass flows in porous media. The related works in this context are, for instance, due to Vala [38], Li and
Sun [27], Li et al. [29] and Li and Sun [28]. Most theoretical results on parabolic systems exclude the case
of non-symmetrical parabolic parts [2,13,22]. Such systems are applicable e.g. in problems modeling degra-
dation processes in wet concrete [30-32], motion of interacting populations of colloidal species [23,25,24],
population dynamics [6], water movement in porous media with a dual porosity structure [15,16,10-12] etc.
Although the approach in [38] admits non-symmetry in the parabolic term, it requires unrealistic symmetry
in the elliptic part. In [8,21], the authors studied the existence, uniqueness and regularity of coupled quasi-
linear equations modeling evolution of fluid species influenced by thermal, electrical and diffusive forces. In
127,29,28], the authors studied a model of specific structure of a heat and mass transfer arising from textile
industry and proved the global existence for one-dimensional problems in [27,29] and three-dimensional
problems in [28]. In [40], the authors proved the global existence of positive/non-negative weak solutions of
the fully nonlinear, degenerate and strongly coupled parabolic system modeling one-dimensional heat and
sweat transport in porous textile media with a non-local thermal radiation and phase change. Giaquinta and
Modica in [17] proved the local-in-time solvability of quasilinear diagonal parabolic systems with nonlinear
boundary conditions (without assuming any growth condition), see also [41]. Recently, the existence of local-
in-time strong solutions for coupled moisture and heat transfer in multi-layer porous structures governed by
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the doubly nonlinear system is proven in [4]. In the present paper we extend our previous existence result for
coupled heat and mass flows in porous media [3] to more general coupled parabolic system in non-smooth
domains and under highly nonlinear mixed boundary conditions.

The rest of this paper is organized as follows. In Section 4, we introduce basic notation and suitable
function spaces and specify our assumptions on data and coefficient functions in the problem. In Section 5,
we formulate the problem in the variational sense and state the main result, the global-in-time existence
of the weak solution. The main result is proved by an approximation procedure in Section 6. First we
formulate the semi-discrete scheme and prove the existence of its solution (Subsection 6.1). The crucial
a-priori estimates of time interpolants of the solution are proved in Subsection 6.2. Finally, we conclude that
the solutions of semi-discrete scheme converge and the limit is the solution of the original time-continuous
problem (Subsection 6.3).

4. Preliminaries
4.1. Notations and some properties of Sobolev spaces

Vectors and vector functions are denoted by boldface letters. Throughout the paper, we will always use
positive constants C, ¢, ¢1, ¢, ..., which are not specified and which may differ from line to line. Throughout
this paper we suppose s, q,s" € [1,00], s’ denotes the conjugate exponent to s > 1, 1/s+ 1/s' = 1. L%(Q)
L) and W**(Q), k > 0 (k need not to
be an integer, see [26]), denotes the usual Sobolev-Slobodecki space with the norm || - [lyyx.s(). We define

denotes the usual Lebesgue space equipped with the norm || - |

Wllj(Q) = {ng e Wh2(Q); ng‘FD = 0}. By E* we denote the space of all continuous, linear forms on Banach

space E and by (-,-) we denote the duality between F and E*. By L*(I; E)) we denote the Bochner space
(see [1]). Therefore, L*(I; E)* = L*' (I; E*).

Remark 4.1. (See [1,26,35].) There exists a continuous linear operator (trace operator) R : WiP(Q) —
L'(09) such that, for any ¢ € C*(Q), we have R(¢) = qb‘aQ. R remains continuous as the mapping (for
N =2 in our paper) ¢ = ¢|,, : WHP(Q) — L9(d), where

ﬁ, for 1 <p<2,
q := { an arbitrarily large real for p = 2,
+o0 for p > 2).

Remark 4.2. Another useful result holds for a certain interpolation between the Sobolev and Lebesgue
spaces, see [13, Remark 4]. For all 7 sufficiently small, say 0 < n < ng, 1o being given, we have

j{|¢)|2dS < 77/ V| dz + C(n) / 19| dx for all ¢ € WH2(Q). (4.1)
o9 Q )

4.2. Structure and data properties
We start by introducing our assumptions on functions in (3.1)-(3.8).

(i) b; is a positive continuous strictly monotone function such that

0 < bi(€) < b < 400 VEeR (b* = const),
(bi(€1) = bi(&2)) (€1 — &) >0 Ve, & R, & # &
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(ii) a; and \; are continuous functions satisfying

0<ay <ai(§) < a* < 400 VEEeR (aﬁ,ati = const),

0 <A S N(&Q) <M < 400 VE,C €R (Mg, AP = const).
e; : R? — R? is continuously differentiable vector function, such that
lei(&, Q)] < e < +o0 VE,CeR (eti = const).

(iii) f; : R? — R is continuous.
(iv) h; : R? = R (i = 1,2) admits the structure

hi(r,s) =¢e(r — s), ho(r,s) =¢e(s—r),

where ¢ is a positive constant.
(v) a; : R — R admits the structure

ai(r) = c|r]®r —o(r), ¢>0,
where ¢ is a continuous function satisfying the linear growth condition
o (r)] < e(1 +|r]).
(vi) (Boundary and initial data) Assume

’U,o,gg c LQ(Q),
up,0p € L*(L;WH2T0(Q)) n WH(T; L*=(Q)) N L™=(I; L (T'p)),
7,9 € C(Qr)?

with some ¢ > 0.

4.8. Auxiliary results

Remark 4.3. (See [2], Section 1.1.) Let us note that (i) implies that there is a (strictly) convex C''-function
P, : R — R, ¢,(0) =0, ®;(0) = 0, such that b;(z) —b;(0) = ®(z) Vz € R. Introduce the Legendre transform

z

Bi(z) = /(bi(z)—bi(sz))zds:/(bi(z)—bi(s))ds.
0

0

Let us present some properties of B; [2]:

1

Bi(z) := [ (bi(z) — bi(s2))zds > 0 Vz € R,
/
B;(s) — Bi(r) > (bi(s) — bi(r))r Vr,s € R,

bi(z)z — ®i(2) + ®;(0) = Bi(z) < bi(2)z Vz € R.
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Proposition 4.4. (See /2], Lemma 1.5.) Suppose (vi). Let u; € up; + L*(I; W;DQ(Q)), such that b;(u;) €

L*(I; L)), Oibi(us) € LAH(I; W2 (9)*), and

/(&tbi(ui)a ¢)dt + /(bi<ui> — bi(u0;)) 0 dzdt =0
0 Qr

for every test function ¢ € L*(I; W;j(ﬂ)) N WL L(Q)) with ¢(T) = 0. Then B;(u;) € L*°(I; LY(Q))

and for almost all t the following formula holds

t

/ Bi(us(t)) da — / Bi(ug:) dz = / (Oubi (), ui — upy)ds
Q

Q 0

- / / (bi 1) — bi(uuo))Dptuy; dards + / (bs (us(8)) — bi (on) s (£) dz.
0 Q

Q

5. The main result

The aim of this paper is to prove the existence of a weak solution to the problem (3.1)—(3.9). First we

formulate our problem in a variational sense.

Definition 5.1. A weak solution of (3.1)-(3.9) is a pair [u, 8] such that
u € up + L2 (I; W2 (Q)?),
0 € 0p + L*(I; W 2(Q)%) N L>(I; L*(Q2)?),
oi(0;) € LY4(I; LY/ 4(Ty)),

which satisfies (i = 1,2)

Qr Qr
= /fi(bl(ul),bz(uz))¢id$dt+/bi(UOi)¢i(0)d$+ / Yi; dSdt
QT Q Int

Vo; € C®(Qr), ¢i(x,T) =0 Vo € Q and ¢; = 0 on I'p;

Qr Qr
—l—/(@i (ai(ﬁi)Vui—l—ei(Gi,ui)))-Vzpidxdt—i—/hi(ﬁl,ﬁg)widxdt
Qr Qr
+ / s (0:) 4 dSdt— / 0, i s dSdt
Nt I'nt
:/(bi(UOi)GOi‘i‘QieOi)wi(O) dr + / gihi dSdt
Q Int

Vap; € C®(Qy), ¥i(x,T) =0 Vo € Q and ¢; =0 on I'p.

(5.1)



552 M. Benes, L. Krupicka / J. Math. Anal. Appl. 433 (2016) 543-565

The main result of this paper reads as follows.

Theorem 5.2 (Main result). Let the assumptions (i)—(vi) be satisfied. Then there exists at least one weak
solution of the system (3.1)—(3.9).

To prove the main result of the paper we use the method of semidiscretization in time by constructing
temporal approximations and limiting procedure. The proof can be divided into three steps. In the first
step we approximate our problem by means of a semi-implicit time discretization scheme (which preserve
the pseudo-monotone structure of the discrete problem) and prove the existence and WP (Q)-regularity of
piecewise constant time interpolants of w. In the second step we derive suitable a-priori estimates. Finally,
in the third step we pass to the limit from discrete approximations.

6. Proof of the main result
6.1. Approzimations

Let us fix p € N and set 7 := T'/p be a time step. Further, let us consider

qZD(x) = 1 (n e qi(x, s)ds, n=1,...,p, )

gZ?(a:) = 1 (n 1)T gi(z, s)ds, n=1,...,p,

upl (z):= i 1y, Upi(z,8)ds, n=1,...,p,

Opg(:z:) = % ((:LLT_ll))T Opi(z,s)ds, n=1,...,p, a.c. on §2.
u?p(a:) = wi(x),

07y (x) = bo;(x)

We approximate our evolution problem by a semi-implicit time discretization scheme. Then we define, in
each time step, [uy,0,] as a solution of the following steady problem.

Problem 6.1. Find a pair [u},0,] € [upy,0p,] + Wy 2(Q)2 X W11D2(Q)2, n=1,...,p, such that

p>7p

(™) — b (1L
/bz(u”’) sz(uzp )¢i dx+/(az(9n 1)VU + (0, g uip)) - Vi do
4 Q

/ Filba(ufy) ba(u, o + [ 2701dS (6.1)

I'n

Vo, € C(Q) and ¢; =0 on I'p;
n\gn n—1\gn—1 n n—1
/bi(uip)eip _bi(uip )eip i dx+gi/ eip _eip ¥; Az
T

T
Q Q

/)\ 07wl Ve - vwidx+/9” (a: (00 M )Vui, + ei(00 " ull)) - Vipyda

) 1,p

/h v .05 @bldm%—/az (62)¢h; dS— /ew%pmds

- / gpr dS (6:2)

I'n

Vip; € C®(Q) and p; =0 on I'p.
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Theorem 6.2 (Existence of the solution to (6.1)). Let [uy =", 60, 'l € L?(Q)? be given and the assumptions
(1)-(vi) be satisfied. Then there exists u, € up, + WIDQ(Q) the solution to the discrete problem (6.1).

Proof. Let [u;~',60)" 1 € L?(2)? be given. Let us write uy = 1, + up, with a new unknown function

u, € WE;(Q) . This amounts to solving the problem with the homogeneous Dirichlet boundary condition
on I'p and shifted data

&i(w,0;, ' ap,) = e(05, 1 af, +upi,(2),  biz,aly) = bi(af, + upi, (@)
almost everywhere on ). Define the functional p € [Wﬁj((l)z]* by
12
n— 1 n
¢ =1 [utuy ¢zdx+z / VidS - Z / a0} ) Vupy, - Véda
i=1 ¢
Vi € W;;(Q) Further, define the operator A : Wé; (Q)? — [WFIDQ(Q)Z]* by the equation
2
A @) =Y [ (aso Vi + ey @) - Vordo

=1 Q

15 [ a)onds =3 [ 40,7 balo,y)ocdn
Q

zIQ

Vo, € W;;(Q) The operator equation A(@, ) = p has a solution if and only if u; € upj + @, solves (6.1).

The operator A is monotone in the main part. Further, for any @, € I/VFIDQ(Q)2 we have, taking into account

(i) (i),
(A, @) < (a1 w2 pe + 2 ) 1 Bllws e
Ve € VV;;(Q)2 Therefore, we can write

!<A(ﬂ2), ®)l

IR
P [WFD(Q)] ¢’€WF (Q)Z’ H¢|| (Q)2

Cl||ﬁZHng(Q)2 + c2.

Moreover, applying Young’s inequality one derives in a standard way
~n\ ~n ~n |2
<A(up)7 up)> > c1 ||up ||WF1D2(Q)2 — C2.

Now we conclude that the operator A is pseudomonotone and coercive (cf. [35, Lemma 2.31, Lemma 2.32],
see also [33]). Hence A : W%DQ(Q) — [W;j(ﬂ) |* is surjective, see [5]. This completes the proof. 0O

Theorem 6.3 (W'*-regularity of the solution to (6.1)). Let w' € up) + er’j(Q)Q be the weak solution to
the discrete problem (6.1). Then uy € W*(Q)? with some s > 2.
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Theorem 6.4. (See [1/, Theorem /], [9].) Let  be a bounded connected open set with a Lipschitz continuous

boundary of R™V. Let T be a regular part of 02 and [ = OO\T'. Suppose T has a non-null (N —1)-dimensional
measure. There is a real number sg, 2* > sg > 2, such that, if u is the weak solution of (A represents a

function from L () satisfying the ellipticity condition)

u € Wﬁj(a),
fQ :1: VQO( ) dQ2 = <f7 > 1 2(Q)* wl 2(Q)> VSO € WFlﬁ(Q)7

where f € WI%DSI(Q)*, s'=s/(s—1), s€[2,s0). Then u belongs to W;;(Q) and there exists a real number
C(s) such that

s @ < OOl
Moreover, sy only depends on A and 2 and C(s) on A, Q, s, not on f.

Proof of Theorem 6.3. Let us note that, provided [u; =", 6, 'l € L?(2)? and by virtue of (i)—(ii) and (vi),
a, b, upy and ~} are smooth enough to guarantee p € [WE; ()?2]*, v = r/(r — 1), with some r > 0.
Rewrite the equation A(@,) = p in the form (transferring the lower-order terms to the right hand side)

E/a%(en 1)V’u,1p V¢z de = — Z/eZ x, zp ,ﬂ?p)vqbld.ﬁ

Following the proof of Theorem 6.2 we have w, € W;j(QV Since f; is continuous and a;, b; and &; are
bounded functions (essentially bounded functions in {2 as compound functions of the spatial variable = € Q),
we can directly apply Theorem 6.4 to conclude the proof. O

Theorem 6.5 (Eristence of the solution to (6.2)). Let [u)~", 0~ e L2(0)? and upy € Whs(Q)?, with some
s > 2, be the solution to (6.1) and the assumptions ()7( i) be satisfied. Let T be sufficiently small. Then
there exists the solution 0, € Op,, + VV;;(Q)2 to the discrete problem (6.2).

Proof. We proceed in the same way as in the proof of Theorem 6.2. Let u)) € W*(Q)? with some s > 2 be
the solution to the discrete problem (6.1). Writing 6, = é2+9 p, amounts to solving the problem with a new
unknown function é; vanishing on I'p (in the sense of traces). Now define the functional p € [VVI{D2 Q)2

by the equation

\]

1 2
—Z/ w10t — bi(ull,)0p,) ide
=1

s

_l’_

2 2 2
3 / o0y = ool ynde+ Y [ auidse Y [ onap vids
=1 i:lFN i:lFN

Mw

/)\1 (05 ) Vopg, - Vipida
1o

i
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—Z/&Dw a; (07 ) Vg, + e (001, up)) - Vide

zIQ

-3 / hi(Bp Op% i

=1 Q

Y, € erDz(Q) The regularity of u; and (i), (ii), (iv) and (vi) guarantee that all integrals are well defined.
Further, define the operator A : VVI}DZ(Q)2 — [VV%D2 (£2)2]* by the equation

1< _
(A ;Z / [bi(ui,) + 03] 07,3 da
Q
+Z/Az(9“ Ll YL - Vi da
Q

(ai(07 1 )Vup, + ei(0 1 uft)) - Vb da

7’Lp

hi(07,,05,)1; da

> %

/al @, 0 ) dS— Z/ezp%pzpzds
> [

Q

Vi, € W#;(Q), where &;(z, Glp) = al(9” +0p;,). The operator A is monotone in the main part. Further,
since uy € Wh*(€2)? with some s > 2, we have for any given é; € W;j(Q)Q the estimate

(AB), ) < (e1lBp w2y + c2) [l

Y € WI{DQ (2)2. Therefore we can write

- (A®)). )|
lAG) v yey- = sup oo

<0,
¢€W12(Q)2‘|¢HW112(Q)2 “l HWM(Q)QJFCQ

In order to show coercivity of A we use ¢; = (9{;)2 in (6.1) to obtain

/(al(ﬂn 1)Vu + ei(0;, ! "))-éf;VéZodx

7zp
Q

— %/fi(b1(U?p),b2(u§p))(9~Z))2 dr + % /%pwn) s

I'n

2

% bi(ui,) —Tbi(“?p_ )(é%)z A, (6.3)
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Let us explicitly mention that, because of the regularity u, € W15(Q)? with some s > 2, all integrals in
(6.3) make sense. On the other hand, by the definition of the operator A we can write

(A(8,).6,) = %Z/ (b5 (ull,) + 0] (6 dx+Z/ (07wl Ve Pda

i:lQ zIQ

2
+3° [ (alyValy + o)) - 05,98 s
Q

=1
2 2
+Z/ozz(1:,9w)9” ds— Z/yg; (62)%ds
z:lFN i:lFN
2
+ Z/hz( v do. (6.4)
=1 Q

Exploiting (6.3) we can modify (6.4) to get

2

~n 1 n— -
(A(8,).6, —ZZ/ uph) + bi(ulst) + 20:] (071)? da
zZIQ

2
+Z/)\Z (0" ul VO ? da

=1

.

2
1 )
5 3 [ ) ) @) da
=1 Q
1 2
52/%,, dS-i—Z/aZ:c,GZJG”dS
z:lFN i= 1F

2
+) / hq (07, 05 )67, dz. (6.5)
=1

First two integrals on the right hand side in (6.5) are nonnegative. Remaining integrals can be estimated in

the following way
12
- Z/ Fi(br (), b)) (B2 d > klz/ (6.6)
=1 =1 Q
where k; represents some real constant. Further,
Z/h o, 03,)0% dz > 0. (6.7)
=1 Q
Boundary terms can be estimated using (4.1) to obtain

——Z/'yw dS>klz/

le le
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n)Z/(@ dx—nZ/WG 2 da (6.8)
’iZIQ

zIQ

and applying (v), (4.1) and Young’s inequality with sufficiently small positive parameter € we have

> / i(z,00)07 dS

i:lFN

_ Z / 0+ 0p [B(@2 + 0027, — (07, + 6 )T, dS

zlr

_Z/cw +0pI P — el + 0% P (0L + 007 )0pT, dS Z/ (07, + 0p7 )% dS

>Z/c1|9w+9%|5_e|9 +0p0 | — ()|0sz|5dS—022/ 1+ 167+ 6p7)|07 | dS

zlr ’LlF

> klz/mg,\?ds—cl

= 11"
22:/ dx—nZ/W@ % da — (6.9)
Q

where kp represents some real constant and 7 stands for sufficiently small positive number, cf. (4.1). Hence,
combining (6.5)-(6.9), for 7 sufficiently small, we can write

n

<A(ép) 9 >>Cl||0 ||W12

Q)2 — C2.

With the same arguments as in the proof of Theorem 6.2 we conclude that the operator A : I/VllDZ(Q)2 —
[W;;(Q)z]* is pseudomonotone and coercive and hence, surjective. The abstract equation A(ég) = p has
a solution if and only if the function 8, = 6p, + é: € W;;(Q)Q is the solution to the variational equation

(6.2). This completes the proof. O

6.2. A-priori estimates

Here we prove some uniform estimates (with respect to p) for the time interpolants of the solution. We

define the piecewise linear time interpolants (n =1,2,...,p)
dip(t) = ofy '+ FET (0, — 0
bip(t) = bi(uug, 1) + U (b)) — bi(ul, )

A

By (t) = bi(ufly )05 + M(b (ult,)0r, — bi(up, )65 )

for t € ((n — 1)7,n7] and the piecewise constant interpolants ¢;,(t) = ¢, for t € ((n — 1)7,n7] and, in
addition, we extend gi_h-p for t < 0 by q_Sip(t) = ¢, for t € (—7,0]. For a function ¢ we often use the simplified
notation ¢ = @(t), ¢ (t) = @t — 1), 9; "p(t) = M, o p(t) = M. Then, following
(6.1) and (6.2), the piecewise constant time interpolants w, € L (I; W*(Q)?) (with some s > 2), and
0, € L>=(I; Wh2(Q)?) satisfy the equations
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/@Tbi(uip(t))@bi diﬂ+/(az(9zp( )V (t) + ei(0ip(t — 1), wip(t))) - Ve da

Q Q

/ £i(Br (@ (), ba iy (1)) )1 d + / () dS (6.10)

I'n

Vo; € C(Q) and ¢; = 0 on I'p and

0 i) 0) + 08an0) vi:da + [ Xt~ 7).t~ 1)V (1) Vi do
Q

)

ip(t) (ai(Oip(t — 7)) Vitip (t) + €3 (O (t — 7), wip(t))) - Vi dav

I'n Q

Q
+ Q; (éz’p (t))wz dS— éip (t):ﬁp(t)wi dS + h; (élp(t)v §2p(t))¢i dz
f / /
[ an(usas (6.11)

Vip; € C®(Q) and 1p; = 0 on I'p.

We test with ¢; = ;,(t) — Up;,(t) and integrate (6.10) over ¢ from 0 to s. For the parabolic term we can
write

/S / 0; "bi(wip(t)) (Wip(t) — WDy (t)) dadt
- / / 0y "bi(wip (1)) tip (t) dadt + / / (0i (Wp (1)) = bi(15,)) O] WD (1) dirdlt

/ / bi(ip(t))) Upip(t + 7) dadt

STQ

z% / / Bi(tip(t)) — By(u, () dadt + / / (b (ip(t)) — bi(uf,)) O upp(t) dadt

s—71 Q)

/ / bi(Uip(t))) Upip(t + 7) dadt. (6.12)

sTQ

Further, adding (6.10) over ¢ = 1,2, using (6.12), applying the usual estimates for the elliptic part and,
finally, using Gronwall’s lemma, we obtain the a-priori estimate

Z sup /Bl(ulp(t))dx+iz2;j/Vuzp (t)|?dzdt < c. (6.13)

1 0<t<T

As a consequence of the preceding a-priori estimate (6.13) we see that there exists a function u €
L2(I; W12(Q)?) such that, along a selected subsequence (letting p — o), we have

up(t) = u weakly in L*(1; W12(Q)?). (6.14)
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In order to show that u, converges to u almost everywhere on Qr we follow [2]. Let k£ € N and use

i(t) = OF (tip(s) — WDy (s))

for j1 <t < (j+ k)7 with (j —1)7 < s < jrand 1 < j < L —k, as a test function in (6.10). For the

parabolic term, we can write

(j+k)T
[ @0) 3 () ~ iy (1) i
JT Q
/ / (i (£ + B7)) — bi(1ay (8))) (@i (£ + k) — @iy (1)) davdlt
(] 1T Q
/ / (@t + k7)) — bi(itsy () (@B (t + k7) — WDy (1)) derdt.
(] 7T Q
Hence, summing over j = 1,...,p — k we get the estimate
p—k (G+k)T

S [ o) ) - 15, 0) de

J=1 JjT Q
ki // (g (+ 7)) — bs(y (£))) (@ (£ + ) — i1y () dadt

JT
—g / / 0F D, ()] dadt. (6.15)

(-7 Q2

Similarly, for the elliptic term, after a little lengthy but straightforward computation we obtain

p—k (G+k)T
Z / / (ai(éipTVﬂip + ei(éipq—’ ﬂzp)) . V@t’” (ﬂip - ﬁzp) daxdt
J=1 JT Q
kE p—k (G+oT
Z Z / / (ai(éipT)Vﬂip + ei(éipﬂ 'lizp)) . V&fT (’[Lip - %zp) dxdt
=17=1G 1y @

g T—kr+ir

- Z / /(az(%r( ) Vi (t) + €;(0ipr (t), Uip(t))) - VO Tty (t — £1) ddt
=1 Q
g T—kr+ir

- Z / (ai(éipT(t))vaip( )+ ez(elm(t), Uip(t ))) VﬁkTuDlp( — 07) dxdt
= or Q
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C1 a _ o _ C2 _ __
S ? / ]ai(ﬁipT)Vuip + ei(eipT,uip)F dl‘dt + ? / \Vuip|2 + |VUDip|2 dl’dt
Qr Qr
< —. 6.16
<> (6.16)
Similarly, for the last terms we arrive at the estimate
p—k UTR)T _p G+k)T
kT (= . C
fi(b1(t1p), bg(ugp))ﬁ (uzp usz) dzdt + Z Y0y (uip — uDip) dsdt < s
=l 9 =l jr Ty
(6.17)

Combining (6.15)—(6.17) and using (6.13) we obtain
, T—
Z / i(Uip(s + k7)) — bi(Uip(s))) (Uip(s + kT) — wip(s))ds < ckr.
i=1

Using the compactness argument one can show in the same way as in [2, Lemma 1.9] and [13,
Eqs. (2.10)-(2.12)]

and almost everywhere on Q7. Since b; is strictly monotone, it follows from (6.18) that [22, Proposition 3.35]
Uy — U almost everywhere on Q. (6.19)

Now we use 9;(t) = 2(0;,(t) — 0p;,(t)) as a test function in (6.11) to obtain
[ 00 by ()28, 07 i — [ 07 b1 ()28, (0051 (0)
Q Q
4 [0 (0201,(8) ~ Ty () (BTt~ ) + 03)
Q
+2 / Ai(Oip(t — 7), tip(t — 7)) VOip(t) - V(0ip(t) — Opip(t)) da
+ / (az(ew( ))vuzp( )+ ei(éip(t -7), aip(t))) : 2§ip(t)véip(t) dz
~ [ (@l@glt = )Vt () + exlBint — 7).y (1)) - 2856V o
Q
42 [ alliplt)Oun(®) ~ Fip(1)) d5-2 [ 850y ()0 (6) — Ty (1)) dS

RaB1 (1), By (£)) (i (1) — O (1))

9ip(t)(Oip(t) — 0Dy (1)) AS. (6.20)
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One is allowed to use ¢;(t) = 0;,(t)? — 0p;,(t)? as a test function in (6.10) to obtain

[ o it 0)6,y (0 o
Q

+ / (0 Oip(t — 7)) Vitsp () + €s(Bip(t — 7), 15y (1)) - Vi (1)
Q

— [ 077 0 1) o
Q

+ / (@i(0ip(t = 7)) Vitip(t) + €i(Bip(t — 7), Uip(t))) - VOpip(t)? da
Q

+ /%(t) (6ip(1)* = Opip(t)?) S + /fi(bl(alp)’b2(a2p)) (0:p(t)* = 0Dy (1)) da. (6.21)
Q

I'n

Combining (6.20) and (6.21) we deduce

/ 07 [(Bat) —~ B (1)) (balip (1) + 0]
+ /315_7%@@)2(%(1") — Opip(t)) (bi(Uip(t — 7)) + 0;) dz

Q

1. _ _ - 2,

+ / - [(0ip(t) = Opip (1)) — (Oip(t —7) = Opip(t — 7))]” (biltip(t — 7)) + 0i) da

Q
+2 / (@it — ), it — 7)) V03p(8) - V(@i (1) — Tpip () da

Q

+ [ (ai(Oip(t = 7)) Viip(t) + ei(Op(t — 7), 6ip(t))) - 203 (1) V0D (1) dv

(a0 (t = T)Vtip () + €s(Bip(t — 7). iy (1)) - 2055 () VO3 (1) dr

+2 [ i) plt) ~ T () 452 [ 805 (0)Bip(t) ~ T (1) dS
'y I'n

+2 [ BiBup(0), 02 (0) @) ~ T3y (1)) do
Q

n / F5(br i), baiiny)) (Bin(t)? — Oy (8)?) da

Q

_9 / Gin (1) @p(t) — By (1)) dS — / 7:(8) (0ip(8)2 — Bpap()?) dS. (6.22)

I'n

Adding (6.22) over i = 1, 2, integrating with respect to time ¢ and using Gronwall’s argument we obtain the
a-priori estimate
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2 o T o T

Z sup /| | dz + Z/ HWl 2(Q)dt Z/ HL5(F )dt <ec. (623)

T 0<t<T P —

Q 0 0
Let us mention that (6.23) becomes

”ép”Lz(I;WL?(Q)z) <eg (6.24)
Hép||L°°(I;L2(Q)2) <eg, (6.25)
||ép||L5(I;L5(FN)2) <ec (6.26)

The a-priori estimate (6.24) allows us to conclude that there exists 8 € L?(I; W12(Q)?) such that, letting
p — +oo (along a selected subsequence),

0, — 6 weakly in L(1; W12(Q)?). (6.27)

Now our aim is to show the a-priori bound ||0; (Eip + Qiéip) ||L5/4(IAWF1,5(Q)*) < c that can be deduced directly
' Ip

from equation (6.11) exploiting the uniform bounds (6.13) and (6.23). Assume ; € L°(I; erj(Q)) and
integrate (6.11) over I to obtain

/a (it ()0 () + 01y (1)) W

- / Gip(£)r dSat — / Moy (t — 7). fay (E — 7))V (2) - Vs dardt

I'nt Qr
- / 01y () (as(Bip (¢ — 7)) Vitap(t) + €s(@ip(t — 7), (1)) - Vs dardt

Qr
- / 00s (B (£)) s AS A+ / i ()Tp (1) AS L

I'nt Int
_ / hs(T1p (1), oy () ddl. (6.28)
Qr

By means of a simple interpolation argument (see [3, eqs. (5.38) and (5.39)] for the details) we have
LYI;Wh(Q) N L= (I; L3(Q)) — L% (Qr). (6.29)
Using (6.13), (6.24), (6.25) and (6.29) we get
10:p [ai(Oipr) Viip + €i(Oipr, tip)] | 15/4(qr)2
< 0ipll L1030y (|0i(Oipr) Vitipl L2 (@2 + €5 Bipr tip) || L2(0r)2) < c. (6.30)
The latter relation yields the uniform bound of the “critical” convective term in equation (6.28) in the sense
‘ / Q_ip [CLZ‘ (e_ip-,—)Vl_Lip + ei(éipﬁ I_Llp)] . VI/JZ dfbdt’
Qr
< CHéip [ai(éim)vaip + ei(éipﬂﬁip)] HL5/4(QT)2HWHLS([;WFI’;(Q))

< cllvillsawis @) (6.31)
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The nonlinear boundary term can be handled as follows

4/5 1/5

‘/ai(éip)widet‘g /]ai(éip)w“det /\z/;i|5d5dt

'nT I'nt I'nr
< c||§ipHL5(I;L5(FN))”’l/]iHLE’(I;WFlg(Q))

< 0||¢i||L5(1;W§§(Q))'

563

(6.32)

The other terms on the right hand side of (6.28) can be handled in a more straightforward way. Moreover,

it is easy to see that

/8 00 (0)+ 01y (0) vt = [ Biy(0) + eyt
Qr

(6.33)

for all ¢; € L>(I; WII‘D5(Q)) Finally, equation (6.28) combined with (6.33) and estimates (6.24), (6.26),

(6.31) and (6.32) gives rise to the desired bound
”at(éip + Qiéz‘p)”mmg;wrlg(g)*) <c
Further, we can write
1Bip + 0i0ipll 151 (r.w1.51(0) < €
Since
WHAA(Q) s W/4(Q) = W2 (Q)",

where 3 is a small positive real number, the Aubin-Lions lemma yields the existence of x;
W1=8:5/4(Q)) such that (modulo a subsequence)

Bip+ 0i0;, — xi  strongly in L (I; W=#5/4(Q))

and almost everywhere on Q7 and therefore also we have

bi(tip)Oip + 010y — xi  strongly in L¥*(I; W=P5/4(q)).
Since u;), converges almost everywhere on ()7 to u;, we conclude

ép — 0 almost everywhere on Q.
Hence, bi(ﬂip)éip + Qiéip converges almost everywhere on Qr to b;(u;)0; + 0;0; and
Xi = bi(u;)0; + 0i6;.
Now, taking into account (6.34), we get
07T (bi(Wip(£))0ip(t) + 0i0ip(t)) — Oy(bi(w;)0; + 0,6;)  weakly in L**(I; WES(Q)*)

Finally, [13, Lemma 3], together with (6.23), (6.26) and (6.35), yields

(6.34)

€ L5/4(I;

(6.35)

(6.36)
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DI

» — 0 almost everywhere on I'y7, (6.37)
p—0

weakly in L°(I; L*(T'y)?). (6.38)

D1

6.3. Passage to the limit for p — oo

The above established convergences (6.14), (6.19) and (6.27), (6.35), (6.36), (6.37) and (6.38) are sufficient
for taking the limit p — oo in (6.10) and (6.11) (along a selected subsequence) to get the weak solution of
the system (3.1)-(3.9) in the sense of Definition 5.1. This completes the proof of the main result stated by
Theorem 5.2.
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GLOBAL WEAK SOLUTIONS TO DEGENERATE COUPLED
DIFFUSION-CONVECTION-DISPERSION PROCESSES AND
HEAT TRANSPORT IN POROUS MEDIA

MICHAL BENES, LUKAS KRUPICKA

ABSTRACT. In this contribution we prove the existence of weak solutions to
degenerate parabolic systems arising from the coupled moisture movement,
transport of dissolved species and heat transfer through partially saturated
porous materials. Physically motivated mixed Dirichlet-Neumann boundary
conditions and initial conditions are considered. Existence of a global weak
solution of the problem is proved by means of semidiscretization in time and by
passing to the limit from discrete approximations. Degeneration occurs in the
nonlinear transport coefficients which are not assumed to be bounded below
and above by positive constants. Degeneracies in all transport coefficients are
overcome by proving suitable a priori L°°-estimates for the approximations of
primary unknowns of the system.

1. INTRODUCTION

Let Q be a bounded domain in R2, € C%! and let I'p and I'y be open disjoint
subsets of 90 (not necessarily connected) such that I'p # @ and the 9Q\(T'p UT y)
is a finite set. Let T € (0,00) be fixed throughout the paper, I = (0,T) and
Q1 = Q x I denotes the space-time cylinder, 'pyr =T'p x I and 'y =Ty X 1.

We shall study the following initial boundary value problem in Qr,

Ob(u) =V - [a(0)Vu], (1.1)
O[b(w)w] = V - [b(u) Dy (u)Vw] + V - [wa(0)Vu], (1.2)
O[b(w)8 + 00] = V - (N0, u)VO] + V - [fa(0)Vu], (1.3)

with the mixed-type boundary conditions
u=0, w=0, =0 onlpr, (1.4)
Vu-n=0, Vw-n=0, V- n=0 onlInr (1.5)

and the initial conditions

u(-,0) =up, w(-,0)=uwy, 6(-,0)=6y inQ. (1.6)

2010 Mathematics Subject Classification. 5A05, 35D05, 35B65, 35B45, 35B50, 35K 15, 35K40.
Key words and phrases. Initial-boundary value problems for second-order parabolic systems;
global solution, smoothness and regularity of solutions; coupled transport processes;

porous media.
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System 1.1-1.6 arises from the coupled moisture movement, transport of dis-
solved species and heat transfer through the porous system [4, 20]. For simplicity,
the gravity terms and external sources are not included since they do not affect the
analysis. For specific applications we refer the reader to e.g. [19]. Here u : Q7 — R,
w: Qr - R and 0 : Qr — R are the unknown functions. In particular, u cor-
responds to the Kirchhoff transformation of the matric potential [2], w represents
concentration of dissolved species and 6 represents the temperature of the porous
system. Further, a: R - R, Dy :R - R, b: R - R, A:R?2 = R, ug : Q = R,
wp : 2 — R, and 6y : © — R are given functions, ¢ is a real positive constant and
n is the outward unit normal vector. In this paper we study the existence of the
weak solution to (1.1)—(1.6).

Nowadays, description of heat, moisture or soluble/non-soluble contaminant
transport in concrete, soil or rock porous matrix is frequently based on time depen-
dent models. Coupled transport processes (diffusion processes, heat conduction,
moister flow, contaminant transport or coupled flows through porous media) are
typically associated with systems of strongly nonlinear degenerate parabolic partial
differential equations of type (written in terms of operators A, ¥, F)

¥ (u) — V- A(u,Vu) = F(u), (1.7)

where u stands for the unknown vector of state variables. There is no complete
theory for such general problems. However, some particular results assuming special
structure of operators A and ¥ and growth conditions on F' can be found in the
literature, see [22].

Most theoretical results on parabolic systems exclude the case of non-symmetrical
parabolic parts [2, 8, 13].

Giaquinta and Modica [10] proved the local-in-time solvability of quasilinear
diagonal parabolic systems with nonlinear boundary conditions (without assuming
any growth condition), see also [23].

The existence of weak solutions to more general non-diagonal systems like (1.7)
subject to mixed boundary conditions has been proven in [2]. The authors proved
an existence result assuming the operator ¥ to be only (weak) monotone and sub-
gradient. This result has been extended in [8], where the authors presented the local
existence of the weak solutions for the system with nonlinear Neumann boundary
conditions and under more general growth conditions on nonlinearities in u. These
results, however, are not applicable if ¥ does not take the subgradient structure,
which is typical of coupled transport models in porous media. Thus, the analysis
needs to exploit the specific structure of such problems.

The existence of a local-in-time strong solution for moisture and heat transfer
in multi-layer porous structures modelling by the doubly nonlinear parabolic sys-
tem is proven in [5]. In [21], the author proved the existence of the solution to
the purely diffusive hygro-thermal model allowing non-symmetrical operators ¥,
but requiring non-realistic symmetry in the elliptic part. In [7, 12], the authors
studied the existence, uniqueness and regularity of coupled quasilinear equations
modeling evolution of fluid species influenced by thermal, electrical and diffusive
forces. In [15, 16, 17], the authors studied a model of specific structure of a heat
and mass transfer arising from textile industry and proved the global existence for
one-dimensional problems in [15, 16] and three-dimensional problems in [17].
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In the present paper we extend our previous existence result for coupled heat and
mass flows in porous media [6] to more general problem (including the convection-
dispersion equation) modeling coupled moisture, solute and heat transport in porous
media. This leads to a fully nonlinear degenerate parabolic system with natural
(critical) growths and degeneracies in all transport coefficients.

The rest of this paper is organized as follows. In Section 2, we introduce basic
notation and suitable function spaces and specify our assumptions on data and
coefficient functions in the problem. In Section 3, we formulate the problem in the
variational sense and state the main result, the global-in-time existence of the weak
solution. The main result is proved by an approximation procedure in Section 4.
First we formulate the semi-discrete scheme and prove the existence of its solu-
tion. The crucial a priori estimates and uniform boundness of time interpolants are
proved in part 4.2. Finally, we conclude that the solutions of semi-discrete scheme
converge and the limit is the solution of the original problem (Subsection 4.3).

Remark 1.1. The present analysis can be straightforwardly extended to a setting
with nonhomogeneous boundary conditions (see [6] for details). Here we work
with homogeneous boundary conditions, ignoring the gravity terms and excluding
external sources to simplify the presentation and avoid unnecessary technicalities
in the existence result.

2. PRELIMINARIES

2.1. Notation and some properties of Sobolev spaces. Vectors and vector
functions are denoted by boldface letters. Throughout the paper, we will always
use positive constants C, ¢, c¢1, ¢a, ..., which are not specified and which may differ
from line to line. Throughout this paper we suppose s,¢q,s’ € [1,00], s’ denotes the
conjugate exponent to s > 1, 1/s 4+ 1/s' = 1. L*(Q) denotes the usual Lebesgue
space equipped with the norm || - ||z (o) and Wk#(Q), k > 0 (k need not to be
an integer, see [14]), denotes the usual Sobolev-Slobodecki space with the norm
Il lwe.s(q)- We define

Wllﬁ(Q) ={veW"(Q): v‘FD =0}.

By E* we denote the space of all continuous, linear forms on Banach space F and by
{-,+) we denote the duality between E and E*. By L*(I; E) we denote the Bochner
space (see [1]). Therefore, L*(I; E)* = L* (I; E*).

2.2. Structure and data properties. We start by introducing our assumptions
on functions in (1.1)—(1.6).

(i) be CY(R), 0 < b/(€) < b, and
0<b(é) <by <40 VE€R (by,b, = const).
(ii) a, Dy, € C(R) and X € C(R?) such that
0<a(f), 0< D, VEeR,
0< A& Q) VY ¢CeR.
(iii) (Initial data) Assume ug, wo, 0y € L>°(2), such that

—oo<u <uy<0 a.e. in Q (ug = const). (2.1)
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2.3. Auxiliary results.

Remark 2.1 (]2, Section 1.1]). Let us note that (i) implies that there is a (strictly)
convex Cl-function ® : R — R, ®(0) = 0, ®'(0) = 0, such that b(z) — b(0) = ®'(2)

for all z € R. Introduce the Legendre transform

z

B(z) = /O "(b(2) — b(s2))zds = /O (b(2) — b(s)) ds.
Let us present some properties of B [2]:
B() = /Ol(b(z) _b(sz))zds >0 VzeR,
B(s) — B(r) > (b(s) — b(r))r Vr.s € R,

b(z)z — ®(z) + ®(0) = B(z) < b(z)z VzeR.

3. MAIN RESULT

The aim of this paper is to prove the existence of a weak solution to problem

(1.1)—(1.6). First we formulate our problem in a variational sense.

Definition 3.1. A weak solution of (1.1)—(1.6) is a triplet [u, w, 6] such that

we LP(LWp(Q), we LI Wp(92) N L™(Qr),
0 € L*(I; W2 (Q) N L¥(Qr),

which satisfies

7/ b(u)@thdxdtJr/ a(@)Vu~V¢da:dt:/Qb(uo)(;ﬁ(xﬁ) dz

for any ¢ € L2(I; W*(Q)) N Wh(I; L=(Q)) with ¢(-,T) = 0;

- / b(u)woyn dzdt + / b(w) Dy (u)Vw - Vi dadt
T T
+ / wa(0)Vu - Vi dedt

Qr
= [ b(uo)won(x,0)dz
Q
for any n € L*(I; W;;(Q)) NWLL(T; L°°(Q)) with n(-, T) = 0;

- / [b(w)0 + 06]8,4 dadt + / A0, w)V0 - Vi dadt
T Qr

+ 0a(0)Vu - Vip dzdt
Qr

— [ o)t + sl 0)
for any 1 € L*(I; W:2(Q)) N WH(I; L®(Q)) with (-, T) = 0.

The main result of this paper reads as follows.

(3.1)

(3.2)

(3.3)

Theorem 3.2. Let assumptions (1)—(iii) be satisfied. Then there exists at least one

weak solution of the system (1.1)—(1.6).
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To prove the main result of the paper we use the method of semidiscretization
in time by constructing temporal approximations and limiting procedure. The
proof can be divided into three steps. In the first step we approximate our prob-
lem by means of a semi-implicit time discretization scheme (which preserve the
pseudo-monotone structure of the discrete problem) and prove the existence and
Whs(Q)-regularity (with some s > 2) of temporal approximations. In the second
step we construct piecewise constant time interpolants and derive suitable a priori
estimates. The key point is to establish L>-estimates to overcome degeneracies in
transport coefficients. Finally, in the third step we pass to the limit from discrete
approximations.

4. PROOF OF THE MAIN RESULT

4.1. Approximations. Let us fix p € N and set 7 := T/p (a time step). Further,

let us consider u) := ug, w) := wo, 09 := Oy a.e. on Q. We approximate our
evolution problem by a semi-implicit time discretization scheme. Then we define,
in each time step n = 1,...,p, a triplet [u;}, wy, 0;}] as a solution of the following
recurrence steady problem.

For a given triplet [up~',wp=', 077, n = 1,...,p, up™! € L®(Q), wp~' €
L>®(Q), 0771 € L(Q), find [u?,w?, 07], such that u? € WE*(Q), wl € Wp(Q),
v, € Wll’;(Q) with some s > 2 and

b(u™) — b un—l
/ Md)dm + / a(0yh)Vupy - Vedr =0 (4.1)
Q T Q

for any ¢ € W;j(Q),

/ b(up )wy — b(u;}’l)w;}’lndx
Q T (4.2)
+ /Q b(uzfl)Dw(uzfl)VwZ -Vndz + /ﬂ w;a(egfl)Vu; -Vndz =0
for any n € WIEDQ(Q)7
/ bluy)0y — b(ugil)egilz/;dx N / QO;” — Hgilwdx
Q T Q T (4.3)

+/ /\(eg—l,ug—l)vog-v¢dﬂ+/ Ora(0y ") Vuy - VipdQ = 0
Q Q

for any ¢ € Wllﬁ(fl)
Next we show the existence of the solution to (4.1)—(4.3).

Theorem 4.1. Let u~' € L®(Q), wp~" € L>(Q), 677" € L®(Q) be given

and the assumptions (1)-(iil) be satisfied. Then there exists [uy,wy,0;], such that
up € erDS(Q), wy € WIEDS(Q) and 0y € W%;(Q) with some s > 2 satisfying (4.1)—

(4.3).

Proof. The proof rests on the W'P-regularity of elliptic problems presented in
[9, 11] and the embedding WIEDS(Q) C L>®(Q) if s > 2 (recall that Q is a bounded
domain in R?).
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The existence of u, € W;;(Q) with some s > 2 and 0 € Wé;(ﬂ), solutions
to problems (4.1) and (4.3), respectively, is proven in [6]. The existence of w, €

WIEDQ(Q)7 the solution to (4.2), can be handled in the same way.

Now, with wy € W;;(Q) in hand, rewrite the equation (4.2) in the form (trans-
ferring the lower-order terms to the right hand side)

/ b(u;’_l)Dw(uz_l)ng -Vndax
Q

_ _/ b(uy )wy — b(ug_l)wg_l
Q

ndx — /ﬂ wra(07 ) Vuy - Vi de.

Since up~t € L®(Q), ull € Wll]’j(Q) with some s > 2, wi~! € L>(Q), 077! €
L>(€), both integrals on the right hand side make sense for any 7 € WIEDT/(Q),
" = r/(r — 1) with some r > 2. Now we are able to apply [9, Theorem 4] to

obtain wy € WI}’; (©) with some s > 2. Analysis similar to the above implies that
o, € WIEDS(Q) with some s > 2. O

4.2. A priori estimates. In this part we prove some uniform estimates (with
respect to p) for the time interpolants of the solution. In the following estimates,
many different constants will appear. For simplicity of notation, C represents
generic constants which may change their numerical value from one formula to
another but do not depend on p and the functions under consideration.

»s Wy, 0 con-
structed in Section 4.1, we define the piecewise constant interpolants ¢, (t) = ¢
for t € ((n — 1)7,n7] and, in addition, we extend ¢, for ¢ < 0 by ¢,(t) = ¢o
for t € (—7,0]. For a function ¢ we often use the simplified notation ¢ := @(t),
or(t) == @t —71), 07 Tp(t) := M, AT o(t) == M. Then, follow-
ing (4.1)—(4.3), the piecewise constant time interpolants @, € LOO(I;WIE;;(Q)),
w, € L™(I; WIEDS(Q)) and 60, € LOO(I;WFL;(Q)) (with some s > 2) satisfy the
equations

4.2.1. Construction of temporal interpolants. With the sequences u

/ O; Tb(up(t))p da —|—/ a(f,(t — 7)) Vi, (t) - Vodr =0 (4.4)
Q Q
for any ¢ € WEﬁ(Q),

/ O [b(iay (1)) (1)l + / (i (t — 7)) D (it (t — 7)) Vi, (1) - Ty
Q Q

(4.5)
+/ Wy (t)a(f,(t — 7)) Viiy(t) - Vndz = 0
Q
for any n € Wllﬁ(Q) and
/Q O 7 [b(uy(1))0,(t) + 00,(t)] ¥ d
+ / MOyt — 1), 0, (t — 7)) VO,(t) - Vipda (4.6)
Q

+ / 8,(t)a(B,(t — 7)) Viy(t) - Vipdz = 0
Q
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for any ¢ € WllDz(Q)

4.2.2. L*°-bound for uy, w, and ép, First we prove the L*-estimate for @,. Let us
set

b(ﬂp) — b(ul), Uy < U,
07 ap Z Uy,

¢ = [b(ap) — b(ur)] - = { (4.7)

as a test function in (4.4). Note that ¢ vanishes on I'p. It is a simple matter to
derive

1

5 | 0) ~b)Ede t [ ai@y s~ )b () T (5) X 5, <y s <0

for almost every ¢ € I. Hence we conclude that the set {z € Q: 4,(x,t) < u1} has
a measure zero for almost every ¢t € I.
Now setting

b(a,) — b(0). @, >0,

4.8
0, i, <0, (48)

¢ = [b(up) = b(0)]4 = {

we obtain, using similar arguments,

%/Q[b(ﬂp) —b(0)]2dz =0 for almost every ¢ € 1.

Hence the set {x € Q: 4,(x,t) > 0} has a measure zero for almost every t € I.
Finally, combining the previous arguments, we deduce

HﬂpHLN(QT) < Ca (49)

where C' does not depend on p.

Now we prove a similar estimate for w,. Let ¢ be an odd integer. Using ¢ =
[6/(£+1)](wp) ! as a test function in (4.4) and 7 = (w,)¢ in (4.5) and combining
both equations we obtain

1 1 _ _ 1
ST [, b)) de
1 1 _ - (+1
i /| s =l (s = ) o
1 1 _ - 1
2 | gl = (s = ) e
G _ o (4.10)
T riE1 /Q by (s — 7)) da

—1 Tp(s — 7))y (s — 7) [, (s)] da
[ Magls = s = iy (94

+ / 1, (8)] 0(ty (s — 7)) Dy (s — 7)) Vi, (s) - Viv(s) da = 0.
Q
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Applying the Young’s inequality we can write for the term in the third line

= [ Wnls = )i (s = iy () s
< g [ Mats = (s = ) e (4.11)
iy | ba(s = )y d
Combining (4.10) and (4.11) we deduce
~ri | P ) o
T | s =l (s = ) o (4.12)

+/ K[wp(s)]z’lb(ﬂp(s —7))Dy(tp(s — 7)) Vp(s) - Vip(s)dz < 0.
Q
Now, integrating (4.12) over s from 0 to ¢ we obtain
[ (o) b (0)de
Q

b [ D) a5~ T)Dulin(s = IV (s)Pdads  (413)
Q4

< [ (w0 (uo) .

Note that the second integral in (4.13) is nonnegative (¢ is supposed to be the odd
integer). Moreover, from (4.13) and (4.9) it follows that
[10pll Lo 0,1:0+1 () < Cs (4.14)

where the constant C' is independent of ¢ and p. Now, let £ — +oo in (4.14), we
obtain

[ @[ (@r) < C. (4.15)
In the same manner we arrive at the estimate for ,,, i.e.
10pll 2 (@) < C- (4.16)

4.2.3. Energy estimates for u,, w, and 0,. We test (4.4) with ¢ = 1, (¢) and inte-
grate (4.4) over ¢ from 0 to s. For the parabolic term we can write

) Tb(u T 1 ) i — B(ug) dz
/0 /Qat b(a,(t))a,(t) dedt > 7_/S_T/QB( »(t)) — B(ug) dadt. (4.17)

Further, using (4.9) and (4.17), applying the usual estimates for the elliptic part
(see also [2]), we obtain the a priori estimate

T
sup /B(ap(t))dwr/ /|Vﬂp(t)|2dxdt§C. (4.18)
0<t<T JQ 0 Q

Now it follows that there exists a function v € L2(T; WIEDQ(Q)) such that, along a
selected subsequence (letting p — 00), we have @, (t) — u weakly in L2(I; W;’;(Q))
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Now we prove similar result for w,(t). Using 7(t) = 2w,(t) as a test function in
(4.5) we obtain

/ 07 Tb(w,(t)) 2w, (t)? da +/ O Twy(t) 2w, (£)b(uy(t — 7)) da
Q Q
42 /Q b(iay(t — 7)) D (i1 (£ — 7)) Vi (£) - Vit () da (4.19)
+ / a(0,(t — 7)) Viiy(t) - 2w, () Viv,(t) dz = 0.
Q
One is allowed to use ¢(t) = w,(t)? as a test function in (4.4) to obtain

/ [0, Tb(,(1))]w,(t)? da + / a(0,(t — 7)) Vi, (t) - Vi, (t)* dz = 0. (4.20)
Q Q
Combining (4.19) and (4.20) we deduce

/ Oy T [wy(t)b(u,(t))] do +/ % [@,(t) — @, (t — 7)) b(iap(t — 7)) da
Q Q

(4.21)
+ 2/ b(Uy(t — 7)) Doy (U (t — 7)) Vp(t) - Vi, (t) dx = 0.
Q
In view of (4.9) we have
b(ap(t)), b(ap(t — 7)), Dy(up(t—1)) > C in Qx (-7,7). (4.22)

Recall that C' does not depend on p. Now, integrating (4.21) with respect to time
t we obtain

T
sup /pr(t)|2d9+/ \|wp(t)||§vly2(mdgga
Q 0 T'p

0<t<T
From this we can write
||wP||L2(I;W1}’2(Q)) <. (4.23)
D
Similarly, we use 1(t) = 20,(t) as a test function in (4.6) to obtain
/ Oy b1, (t))20,(t)? dx—l—/ Oy T0,(1)20,(t)b(up(t — 7)) dz
Q Q
+ 2/ MOp(t —7),0,(t — 7))V, (t) - VO,(t) d (4.24)
Q
+/ a(0,(t — 7))Va,(t) - 20,(t)VE,(t) dz < 0.
Q
Using ¢(t) = 6,(t)? as a test function in (4.4) we obtain
/ 07 Tb(y(1))0,(1)* d + / a(0,(t — 7))Vi,(t) - VO,(t)* dz = 0. (4.25)
Q Q

Combining (4.24) and (4.25) we deduce

I 2., 1 = 2.,
/Qat {(ep(t)) b(“p(t))} dx—l—/Q; [ P(t)_ep(t_T)} b(up(t_T)) dz

+ 2/ MOyt — 1), 0, (t — 7))VO,(t) - VO,(t) dz < 0.
Q

(4.26)



20 M. BENES, LUKAS KRUPICKA EJDE-2017/CONF /24

Integrating (4.26) with respect to time ¢ we obtain the a priori estimate (using
(4.9) and (4.16))

T
sup /|¢9P(t)|2d$+/o ||6p(t)||?}vgg(9)dt§0. (4.27)

0<t<T JQ
From this we have -
||6}7||L2(I;W1}‘2(Q)) <C. (4.28)
D

4.2.4. Further estimates. To show that @, converges to u almost everywhere on Qr
we follow [2]. Let k € N and use

(t) = OFTup(s)
for JT<t<(4+k)rwith(j—1)r<s<jrand1<j< % k, as a test function
n (4.4). For the parabolic term, we can write

(G+k)T
/ /a Tb(a,(t)) OF @, (t) dedt

=) /(J 1)T/ (b(tp(t + k7)) — b(1p (1)) (Up(t + kT) — 1p(t)) dadt.

Hence, summing over j = 1,...,p — k we obtain the estimate

=k (i+k)T
> / / O Th(, (1)) OF Ty (1) dwdt
j=1 JT Q

1 T—kt ~ - - -
> =8 /Q (b(ap(t + k7)) — b(up(t))) (Gp(t + k1) — ap(t)) dadt.

Similarly, for the elliptic term, after a little lengthy but straightforward computation
we obtain

=k L(i+k)T B
Z / / a(0,(t — 7))V, - VOF a, dzdt
— Q

k p- G+O)T B
= ZZ [ (al@yte = ryva) - Vok sz
j=1"(

(4.29)

=1 JHe=1)T
k T—kr+eT B (430)
=> / / a(0,(t — 7))V, (t) - VO, (t — 1) dzdt
—1 T Q
<a |a(§p(t77))Vﬂp\2dzdt+c—2/ IV, |? dedt
Qr T JQr
¢
-
Combining (4.29)—(4.30) and using (4.18) we obtain
T—kt
/ (b(ap(s + k7)) — b(Up(s))) (Up(s + k1) — Gp(s))ds < Ckr. (4.31)
0

Using the compactness argument one can show in the same way as in [2, Lemma 1.9]
and [8, Egs. (2.10)-(2.12)]

b(a,) — b(u) in L' (Qr) (4.32)
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and almost everywhere on Q. Since b is strictly monotone, it follows from (4.32)
that [13, Proposition 3.35]
Up =« almost everywhere on Q7. (4.33)

Further, in much the same way as in (4.31), we arrive at
/TkT |b(, (s + k7)), (s 4 kT) — b(y ()W, (s)[*ds < CkT. (4.34)
From thisowe conclude, using (4.15), that
/ T (s 4 k) — wy(s)[ds < Chr (4.35)
Finally, in a similar Waoy, using (4.16), we arrive at
/O T (s 4 k) — B, (s)2ds < Chr. (4.36)

4.3. Passage to the limit. The a priori estimates (4.15), (4.16), (4.18), (4.23),
(4.28), (4.31), (4.35), (4.36) allow us to conclude that there exist u € L%(I; I/I/'I}’E?(Q))7
w € L2(T; Wllj(Q)) NL>(Qr) and 0 € L2(I; W;DQ(Q)) N L>(Q7) such that, letting
p — +00o (along a selected subsequence),

i, —u weakly in L*(I; WIEDQ(Q)),
U, — u almost everywhere on Qr,
w, = w weakly in L*(I; WEE(Q)),
W, = w weakly star in L>(Qr),
W, — w almost everywhere on Qr,

0, — 0 weakly in L?(I; Wll]’f(ﬂ)),

0, — 0 weakly star in L>(Qr),
0, — 0 almost everywhere on Q7.

The above established convergences are sufficient for taking the limit p — oo in
(4.4)-(4.6) (along a selected subsequence) to get the weak solution of the system
(1.1)—(1.6) in the sense of Definition 3.1. This completes the proof of the main
result stated in Theorem 3.2.
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C Function spaces
Here we introduce some function spaces which have been used throughout the text.

Definition C.1 (Lebesgue space LP({2),p € [1;00) [36]) Let p € [1;00), let 2
be a measurable subset of Eucledian N-space RY. We denote by LP(Q) the set of all
measurable functions f defined almost everywhere on  and such that the Lebesque
integral

[ raras

s finite.

Definition C.2 (Norm in Lebesgue space LP(Q2),p € [1;00)[36]) Letp € [1;00),
let Q be a measurable subset of Eucledian N-space RY, let f be a measurable func-
tion defined almost everywhere in Q). We denote by || f||L»(q) norm in Lebesgue space

LP(Q) such that
1/p
| fllzeco) = (/Q |f(x)|pdx> )

Definition C.3 (Lebesgue space L>*(Q2) [36]) Let 2 be a measurable subset of
Eucledian N-space RY. We denote by L>=(Q) the set of all measurable functions f
defined almost everywhere on §2, such that there exists a constant K > 0 with the

property
f(2)] < K.
Definition C.4 (Sobolev space W'?(Q);p € [1;00)) Let Q be a measurable sub-

set of Eucledian N-space RY. We denote by WP(Q) the set of all measurable
functions f defined almost everywhere on €2, such that

fe Q)
and

of
al’i

€ LP(Q) i=1,2,.N.

Definition C.5 (Sobolev space W,”(Q);p € [1;00)) Let Q be a measurable sub-
set of Bucledian N-space RN with boundary Q). We denote by Wol’p(Q) the set of
all measurable functions [ defined almost everywhere on €2, such that

fewr(Q)

and

floa = 0.

126



Definition C.6 (Sobolev space W5"(Q);p € [1;00)) Let Q be a measurable sub-
set of Eucledian N-space RN with boundary 0Q C I'p. We denote by Wll)’p(Q) the

set of all measurable functions f defined almost everywhere on ), such that
fewhr(Q)

and

f|FD:O

Definition C.7 (Norm in Sobolev space WP (Q);p € [1;00)) Let Q) be a mea-
surable subset of Eucledian N-space RY and f a measurable function defined almost
everywhere on Q). We define the norm in Sobolev space W'P(Q);p € [1;00) such

that
I fllwir) = (/Q [fp(x) +ii1 (ag—g))p] dx) /p.

D Important inequalities

In this section we introduce some well known inequalities which have been used in
the text.

Lemma D.1 (Holder’s inequality ([16], Sec. B.2)) Let 1 < p, ¢ < +00
. =1 and f(z) € LP(Q), g(z) € LU(Q). The following inequality holds

/ﬂ f(@)g(x) dr < ( / Fay dx) " ( / g(x)de) "

Lemma D.2 (Friedrichs’ inequality ([51], Theorem 30.3)) Let ) be a domain
with a lipschitz boundary T, further I'y is a part of the boundary I' with nonnegative
measure, then there exists a constant ¢ > 0, which depends on the domain and the

part of the boundary T'y so that for all functions f(xz) € W12(Q) holds

Lo

7 p

@) B < ¢ ( [@s@ras [ f(x)2d5> |

Lemma D.3 (Young’s inequality ([16], Sec. B.2)) Let 1 < p,q < +0 a % +
é = 1. Then the following inequality holds

ab? b

ab < — + —

p q’
for all a,b > 0. Further let o # 0. We can write

b (xa) (b)ql
aa— < +{—=] -
q

« P o}
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Further
D

a 1

ab < —af + — b7
p qaP

1

Let us denote n = ";Tp , c(n) = 7or and we can write

ab < naf 4+ c(n)be.

Lemma D.4 (Gronwall’s inequality in integral form ([16], Appendix B, paragraph k.))
Let £(t) be a nonnegative, summable function on [0,T] which satisfies

<o | ¢(s)ds,

for a.e 0 <t <T, then
£(t)=0

almost everywhere.

Lemma D.5 (Gronwall’s inequality in discrete form ([52], Chapter 1)) Let
y < C+ 722;11(%% + b)) for any | > 0. The discrete form of the Gronwall’s
inequality reads as follows

l

y < c—I—TZ(ayk—i—bk). (D.1)
k=1

We will often use ay, = a constant, and the condition

l

yu<C+ TZ(ayk + by),
k=1

from which can be derived y; < (1 —at)™! (c +7by + T Ziﬁ;ll(ayk + bk+1)>, so that
(D.1) gives
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