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Abstrakt

Tato práce se zabývá teoretickou analýzou sdruºeného transportu vody a tepla
v nehomogenním £áste£n¥ saturovaném pórovitém prost°edí. V práci je uvedeno
podrobné odvození modelu, který je popsán dv¥ma evolu£ními nelineárními diferen-
ciálními rovnicemi s degeneracemi ve v²ech transportních koe�cientech. V hlavní
£ásti textu je analyzován model se smí²enými Dirichletovými a Neumannovými
okrajovými podmínkami. Numerické °e²ení je zaloºeno na semi-implicitní £asové
diskretizaci, která vede na soustavu nelineárních stacionárních okrajových úloh
s neznámým rozloºením teploty a tlakové vý²ky. Pro popsanou úlohu je v práci
dokázána existence a regularita °e²ení stacionární úlohy v kaºdém £asovém kroku.
Dále je pomocí vhodných apriorních odhad· pro £asové interpolace neznámých
funkcí ukázána existence slabého °e²ení nestacionární úlohy a za dodate£ných p°ed-
poklad· i její jednozna£nost.

Dále je v práci stru£n¥ analyzován takzvaný duální model, zahrnující odli²ný p°ístup
k popisu porézního prost°edí. Na záv¥r je p°edstaven duální model s obecnými
nelineárními okrajovými podmínkami a model obsahují disperzní rovnici, popisující
transport rozpu²t¥ných látek v proudící tekutin¥.

Klí£ová slova: sdruºený transport, pórovité prost°edí, nelineární diferenciální
rovnice, Rotheho metoda, apriorní odhady, existence, slabé °e²ení



Abstract

This thesis deals with a theoretical analysis of a coupled heat and water transport in
partially saturated porous media. In the �rst part of this work, we derive a model,
which consists of two evolution nonlinear partial di�erential equations with dege-
neracies in all transport coe�cients. In the main part of the work we analyze the
single porosity model with mixed boundary conditions of Dirichlet and Neumann
type. Employed numerical procedure is based on a semi-implicit time discretization,
which leads to a system of coupled nonlinear stationary equations with unknown
temperature and pressure head. We prove the existence and regularity of the so-
lution to the stationary problem in each time step. Further, by deriving suitable
a-priori estimates for the time interpolants of the unknown functions, we prove the
existence and uniqueness of the weak solution to the nonstationary problem.

Further, we brie�y analyze the dual model, arising from a dual porosity approach
to the porous media description. Finally, we also present a model with general
nonlinear boudary conditions and a coupled di�usion-dispersion-convection model.

Keywords: coupled transport, porous medium, nonlinear di�erential equation,
Rothe's method, a-priori estimates, existence, weak solution
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List of symbols

Mathematical symbols

Symbol Description
RN N -dimensional Euclidean space
Ω domain in RN

∂Ω boundary of domain Ω
Γ part of boundary ∂Ω
M closure of a setM
n outward unit vector
Lp(Ω) Lebesgue's space
‖ · ‖Lp(Ω) norm in the space Lp(Ω)
W k,p(Ω) Sobolev's space
‖ · ‖Wk,p(Ω) norm in the space W k,p(Ω)
W k,p(Ω)∗ dual space to W k,p(Ω)
↪→ continuous embedding
⇀ weak convergence
Cp(Ω) space of functions with a continuous derivative up to order p
X Banach's space
X∗ dual space to X
〈·, ·〉 symbol for duality between X a X∗

∂tu time derivative of u
∇ nabla operator
Du
Dt

material derivative of u
r′ conjugate index for r, r′ = r/(r − 1)
∩ intersection
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Nomenclature

Latin letters

Symbol Unit Description
a [m−1] van Genuchten's parameter
C [J kg−1 K−1] speci�c heat per unit of mass
e [J m−3] internal energy per unit of volume
em [-] relative surface emissivity
g [m s−2] acceleration due to gravity
k [m s−1] hydraulic permeability
ks [m s−1] saturated hydraulic permeability
n [-] porosity
n1 [-] van Genuchten's parameter
n2 [-] van Genuchten's parameter
p [Pa] pressure
qT [W m−2] heat �ux
q [W m−2] conductive heat �ux
s [kg s−1] source of mass
u [m] pressure head
v [m s−1] velocity
V [m−3] volume

Greek letters

Symbol Unit Description
α [-] material index
αc [W m−2K−1] heat transfer coe�cient
γu [m s−1] prescribed liquid �ux
γθ [W m−2] prescribed heat �ux
ε [W m−3] exchange heat
κ [m s−1] relative hydraulic conductivity
Λ [W m−1 K−1] thermal conductivity
σSB [W m−2 K−4] Stefan-Boltzmann constant
ν [m s−2] kinematic viscosity
ρ [kg m−3] density
θ [K] temperature
Θ [-] volume fraction
χ [W m−2] prescribed heat energy �ux
υ [kg m−2 s−1] prescribed �ux of a dissolved polute
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Miscellaneous

Symbol Unit Description
E [J kg−1] internal energy per unit of mass
H [J] enthalpy
H [J kg−1] enthalpy per unit of mass
Q [W m−3] heat source
U [J] total internal energy
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Part

Introduction

1 Motivation

Modeling of coupled moisture and heat transport through partially saturated porous
media plays a very important role in many agricultural, biological, environmen-
tal and civil engineering problems. Transport models may help with describing
problems such as concrete degradation due to elevated temperatures or corrosion,
concrete carbonation, contamination of soil areas due to in�ltration of pollutants
under the surface, water in�ltration into subsurface structures, e.g. tunnels, ra-
dioactive waste repositories, subsurface pipelines etc., geothermal energy analyses,
the groundwater distribution analyses and prediction of a drug delivery through
biological tissues etc. Models including phase changes may help with the prediction
of thawing of permafrost and its a�ects, degradation of railroad structures due to
frost action, and many others.

Transport models are based on the conservation laws and the di�culty of analysis
of these models lies in non-linear dependence of the transport coe�cients on the
solution, which arises from the complex microstructure of various porous mate-
rials. Moreover, di�erent approaches need to be utilized to describe various porous
materials since their structure and performance di�ers signi�cantly.

2 Thesis outline

This work is organized as follows. In Part I, we discuss the main aspects of ma-
thematical description of porous media and we brie�y introduce the most frequent
approaches to the porous media description. We also derive the equations describing
transport of mass and energy, which are based on basic conservation laws.

In Part II, we brie�y summarize the results, regarding mathematical analysis of the
coupled transport models, which can be found in literature by various authors. We
also describe where the main di�culty of analyzing these models lies.

In Part III, we present a single porosity model with mixed boundary conditions of
Dirichlet and Neumann type. The formulation of the problem in a variational sense
is introduced, and later its existence and uniqueness is analyzed under physically
relevant assumptions, e.g. the transport coe�cients degenerate in both elliptic and
parabolic part. The proof of the existence theorem can be separated in several
substeps. First, we approximate the evolution problem by means of a semi-implicit
time scheme, and we prove the existence and regularity of the solution to a steady
problem. Further, we derive suitable a-priori estimates to show that the solutions of
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the steady problem converge and that the limit is a solution to the original problem.
Under some additional assumptions, we also show the uniqueness of the solution.

In Part IV, we present a dual porosity model, which may be more suitable for various
engineering and ecological applications. Since the structure of the mathematical
analysis remains the same, we focus our attention only on the main di�erences
between the dual porosity model and the single porosity model.

In Part V, a general model with nonlinear boundary conditions and a coupled
di�usion-dispersion-convection model are introduced. These models have been ana-
lyzed in detail in papers [6] and [7], which have been attached to this work in
Appendices A and B.

Finally, in the last part of Appendices, we summarize some well known relations
and theorems which have been used throughout the work.

Let us mention that the main results of this work are subject to the following papers
which have been published throughout my doctoral studies at the Department of
Mathematics under the supervision of Michal Bene².

• [5] M. Bene², L. Krupi£ka, R. �tefan: On coupled heat transport and water
�ow in unsaturated partially frozen porous media, Applied Mathematics and
Modelling, 39 (2015) 6580�3598.

• [6] M. Bene², L. Krupi£ka: Weak solutions of coupled dual porosity �ows in
fractured rock mass and structured porous media, Journal od Mathematical
Analysis and Applications, 433 (2016) 543�565.

• [7] M. Bene², L. Krupi£ka: Global weak solutions to degenerate coupled di�usion-
convection-dispersion processed and heat transport in porous media, Interna-
tional Conference on Applications of Mathematics to Nonlinear Sciences, Elec-
tronic Journal of Di�erential Equations, Conf. 24 (2017) 11�22.

• [8] M. Bene², L. Krupi£ka: On coupled dual porosity �ows in structured porous
media, AIP conference proceedings, 1978 (2018).
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Part I

Physical background

The porous medium generally consists of the solid matrix and a void space occupied
partially or fully by one or more �uid phases. The solid matrix and the void space
are both distributed throughout all the medium, e.g. wherever we take a su�ciently
large sample of the domain, it will always contain the matrix and the void space.

3 Porous media description

In order to describe any phenomena in the porous media, the real porous medium
is represented by a conceptual model supposing a set of simplifying assumptions.
Based on them we may formulate a mathematical model describing the performance
of the sample. In this section we will present tha main ideas of the most commonly
used approaches for porous media description.

3.1 Volume averaging

Generally the transport phenomena in porous media can be described at the micro-
scopic level at each point. But due to our inability to describe the exact microscopic
complex geometry of the porous media structure we have to search an appropriate
model to be able to pass from the microscopic level to the macroscopic level. The
most frequent approach to that is to average the physical quantity over a representa-
tive elementary volume (abbreviated REV). The representative elementary volume
is the smallest volume over which we are allowed to make a measurement to obtain
a representative value, i.e. a subvolume of a porous medium that has the same geo-
metric con�guration as the medium at a macroscopic scale (see Figure 1). Without
the loss of the generality suppose the REV0 is a circle with a center x0. In order to
evaluate the macroscopic value V(x0)macro of any physical quantity representing the
porous medium, we average its microscopic value V(x)micro over the representative
elementary volume (for details see [3])

V(x0)macro =
1

meas(REV0)

∫

REV0

V(x)micro dx. (3.1)

Using this procedure each point in the domain is assigned apropriate average values
of physical quantities.
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Figure 1: The representative elementary volume determination.

3.2 Continuum approach vs discrete approach

At the micro scale a porous medium is heterogeneous and possess a very complex
structure. To describe transport phenomena in such a medium, various approaches
may be introduced depending on the scale of application. The complex system
description can be obtained applying discrete approach. However, this approach
has limitations due to the fact, that for representative modeling the exact geometry
of all individual fractures must be determined and the very high computational
e�ort is needed. For more information see [9]. For this reason the discrete approach
is limited only to the local studies with well known and described geometry. If
a porous medium can be described without detailed knowledge of the fractured
system, the continuum approach may be used. The continuum approach assumes
that all phases are continuous within a representative elementary volume. However,
in the literature could be found two di�erent ways to mathematically describe the
porous system using a continuum approach [14].

Single porosity/permeability continuum approach. The most common way
of modeling the porous media is to assign a value of any physical quantity, that is
averaged over REV, to each point of the domain of interest (see Figure 2). This is
sometimes called the single porosity continuum approach.

Dual porosity/permeability continuum approach. An alternative option is
to introduce the dual porosity continuum approach. This approach assumes, that

17



−→
volume averaging

real porous medium continuum

Θ(x),Λ(x), K(x)...

Figure 2: Representation of domain of interest with the single continuum approach.

the porous medium consisting of fractures and matrices, is represented by two over-
lapping interacting continua. (see Figure 3) One representing fractures, other re-
presenting matrix, respectively. These two continua possess di�erent physical cha-
racteristics, e.g. hydraulic conductivity, thermal conductivity, di�usivity etc., and
they are connected by appropriate exchange terms. The critical aspect of using this
approach lies in determining these exchange terms.

Several articles dealing with the numerical comparison of presented approaches in
various �elds of interest can be found, for instance see [22], [37] and [48].

3.3 Saturated vs unsaturated zone

In terms of moisture retention, the porous medium can be divided into two regions.
First, the zone where all available spaces are �lled with water, e.g. saturated zone.
The pressure in the saturated zone is greater than the atmospheric pressure, e.g.
the gauge pressure is greater than zero. The surface where the pressure is equal
to zero is called the water table. The zone where all available spaces are not �lled
with water is called unsaturated or partially saturated zone, sometimes also called
vadose zone, from latin word "vadus" meaning shallow (see Figure 4). The water
here is held by the surface adhesive forces and it is sucked above the water table level
by the negative gauge pressure which is caused by capillary action. The capillary
pressure in the porous medium depends mostly on pore size, hence in media with
larger pores such as sand the capillary pressure is less than in clay soils with small
pore size.

Let us note that the commonly used physical quantity describing pressure in the
porous media is the pressure head u [m] which is a height of a liquid column cor-
responding to a particular pressure p [Pa]. This may be expressed mathematically
as

u =
p

ρg
,

where ρ [kg m−3] is the liquid density and g [m s−2] is the acceleration due to
gravity. The moisure retention dependance on the pressure head in the vadose zone

18



−→ l
volume averaging

real porous medium

continuum representing fractures

continuum representing matrices

Θm(x),Λm(x),Km(x)...

Θf (x),Λf (x),Kf (x)...

interaction

Figure 3: Representation of domain of interest with the dual continuum approach.

is described by the water retention curves (4.24) and the �ow of water is commonly
mathematically described by the Richards equation (see more in Section 4.1), which
is based on Darcy's law (4.25).

4 Theory of mass and energy transport in partially

saturated porous media

The transport processes in porous media are described by the basic conservation
laws, namely the conservation of mass and the conservation of heat energy.

4.1 Fluid mass conservation law

In mixture theory, the derivation of the equation describing �uid transport in a vari-
ably saturated porous media is based on mass conservation of �uid α-phase in the
domain Ω. A general form of a mass balance law is [50]

d

dt

∫

B
ρα dx+

∫

∂B
ραvα · n dS =

∫

B
sα dx. (4.1)

19



saturated zone

unsaturated zone

h > 0

h < 0

Figure 4: Variably saturated porous medium sample.

The equation has to be satis�ed for any domain B ⊂ B ⊂ Ω. In (4.1) ρα [kg m−3]
represents the phase averaged density and sα [kg m−3 s−1] is a term representing
production. Further, vα [m s−1] is the velocity of α-phase and n represents an
outward unit normal vector to the boundary ∂B. The phase averaged density ρα

can be expressed as follows
ρα = Θαρα, (4.2)

where Θα [-] is the volume fraction of the α-phase and ρα [kg m−3] stands for the
intrinsic phase averaged density. Let us note that

∑

α

Θα = 1.

Considering B is an arbitrary subdomain within Ω one is allowed to use Green's
theorem on (4.1) and remove the integrals to obtain

∂ρα

∂t
+∇ · (ραvα) = sα. (4.3)

Introducing the material derivative we may rewrite (4.3) as

Dαρα

Dt
+ ρα∇ · vα = sα, (4.4)

where Dα(.)
Dt

= ∂(.)
∂t

+∇(.) · vα denotes the material derivative.

4.2 Heat energy transport conservation law

Derivation of heat equation is based on energy conservation law inside any arbitrary
volume B in a porous domain of interest. The rate of temporary energy change in
B plus the net rate of energy loss due to �ow across the surface ∂B of B must be
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equal to rate of energy increase due to sources and interactions between phases.
A general form of the heat energy balance law reads [39]

d

dt

∫

B
eαdx+

∫

∂B
(qT )α · n dS =

∫

B
Qαdx+

∫

B
εαdx, (4.5)

where eα [J m−3] is the internal energy of the α-phase in B per unit of volume,
(qT )α [W m−2] is the heat �ux, Qα [W m−3] stands for the volumetric heat source,
εα [W m−3] represents the term expressing energy exchange with the other phases.
For the internal energy per unit of volume we assume

eα = ραCαθα, (4.6)

θα [K] is the absolute temperature and Cα [J kg−1 K−1] represents the speci�c iso-
baric heat of the α-phase. Further in (4.5) the heat �ux vector (qT )α includes the
conductive �ux qα [W m−2] and convection

(qT )α = qα + ραCαθαvα. (4.7)

Let us note that besides the internal energy per unit of volume eα given by (4.6)
we may also use the internal energy per unit of mass Eα [J kg−1] de�ned as

Eα = Cαθα. (4.8)

Considering B is an arbitrary subdomain within Ω we are allowed to use Green's
theorem on (4.5) and remove the integrals to obtain

∂eα
∂t

+∇ · (qT )α = Qα + εα. (4.9)

Combining (4.6), (4.7), (4.8), and (4.9) we have

Eα
∂ρα

∂t
+ ρα

∂Eα
∂t

+∇ · (ραEαvα) = −∇ · qα +Qα + εα. (4.10)

Further we replace ∂tρα in (4.10) using (4.3) to obtain

ρα
∂Eα
∂t
− Eα∇ · (ραvα) +∇ · (ραEαvα) = −∇ · qα +Qα + εα − EαQα. (4.11)

Since ∇ · (ραEαvα)− Eα∇ · (ραvα) = ραvα · ∇Eα (4.11) becomes

ρα
∂Eα
∂t

+ ραvα · ∇Eα = −∇ · qα +Qα + εα − Eαsα. (4.12)

Using the material derivative we have

ρα
DαEα
Dt

= −∇ · qα +Qα + εα − Cαθαsα. (4.13)
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Enthalpy. To describe the property of a thermodynamic system we introduce
enthalpy H [J], which is equal to system's total internal energy U [J] and product
of its pressure p [Pa] and volume V [kg m−3] (see [39])

H = U + pV.

In the following text, we will use the speci�c enthalpy within α-phase per unit of
mass Hα [J kg−1] de�ned as

Hα = Eα +
pα
ρα
, (4.14)

where Eα is the internal energy per unit of mass de�ned in (4.8). Let us speci�cally
mention that Hα is a function of pressure and temperature [39].

Now we express the material derivative of internal energy Eα in (4.13) with speci�c
enthalpy (4.14)

DαEα
Dt

=
Dα

Dt

(
Hα −

pα
ρα

)

=
DαHα

Dt
−
[
∂

∂pα

(
pα
ρα

)]
Dαpα
Dt

−
[
∂

∂ρα

(
pα
ρα

)]
Dαρα
Dt

=
DαHα

Dt
− 1

ρα

Dαpα
Dt

+
pα
ρ2
α

Dαρα
Dt

=

(
∂Hα

∂θα

)

p

DαTα
Dt

+

(
∂Hα

∂pα

)

θ

Dαpα
Dt

− 1

ρα

Dαpα
Dt

+
pα
ρ2
α

Dαρα
Dt

,

hence

DαEα
Dt

=

(
∂Hα

∂Tα

)

p

DαTα
Dt

+
pα
ρ2
α

Dαρα
Dt

+

[(
∂Hα

∂pα

)

θ

− 1

ρα

]
Dαpα
Dt

. (4.15)

Now we will express the term Dαρα
Dt

from the mass transport equation. Putting
ρα = Θαρα in (4.4) we obtain

∂(ραΘα)

∂t
+ ραΘα∇ · vα + vα · ∇(Θαρα)− sα = 0,

which becomes

ρα

(
∂Θα

∂t
+ vα · ∇Θα

)
+ Θα

(
∂ρα
∂t

+ vα · ∇ρα
)

+ ραΘα∇ · vα − sα = 0. (4.16)

We rewrite (4.16) using the material derivative we get

ρα
DαΘα

Dt
+ Θα

Dαρα
Dt

+ ραΘα∇ · vα − sα = 0.

Now we can express the material derivative of intristic phase averaged density as

Dαρα
Dt

= − ρα
Θα

Dαθα
Dt

− ρα∇ · vα +
1

Θα

sα. (4.17)
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Combining (4.17) and (4.15) we arrive at

DαEα
Dt

=

(
∂Hα

∂θα

)

p

Dαθα
Dt

+

[(
∂Eα
∂pα

)

ϑ

− 1

ρα

]
Dαpα
Dt

− pα
ραΘα

DαΘα

Dt
+

pα
ρ2
αΘα

sα −
pα
ρα
∇ · vα. (4.18)

Now we put the expression for the material derivative of internal energy per unit of
mass Eα (4.18) in (4.13) and we have

ραΘα

[(
∂Hα

∂Tα

)

p

Dαθα
Dt

+

[(
∂Hα

∂pα

)

θα

− 1

ρα

]
Dαpα
Dt

]

− ραΘα

[
pα
ραΘα

DαΘα

Dt
− pα
ρ2
αΘα

sα +
pα
ρα
∇ · vα

]

= −∇ · qα +Qα + εα − EαQα.
Hence we obtain

ραΘα

(
∂Hα

∂θα

)

p

Dαθα
Dt

+∇ · qα = Qα + εα − Eαsα −
pα
ρα
sα

+ pα
DαΘα

Dt
+ Θα

Dαpα
Dt

+ pαΘα∇ · vα − ραΘα

(
∂Hα

∂pα

)

θ

Dαpα
Dt

. (4.19)

Considering (4.14) we arrive at general form of heat equation for α-phase

ραΘα

(
∂Hα

∂θα

)

p

Dαθα
Dt

+∇ · qα

= Qα + εα −Hαsα +
Dα(pαΘα)

Dt
+ pαΘα∇ · vα − ραΘα

(
∂Hα
∂pα

)

θ

Dαpα
Dt

. (4.20)

After neglecting some small terms related to viscous dissipation and mechanical
work, caused by density variation due to temperature changes and caused by volume
fraction changes (for details see [39]) we get

ραΘα

(
∂Hα

∂θα

)

p

Dαθα
Dt

+∇ · qα = Qα + εα −Hαsα, (4.21)

which becomes, considering (4.14)

ραΘαCα
∂θα
∂t

+ ραCαΘαvα · ∇θα +∇ · qα = Qα + εα −Hαsα. (4.22)

The total energy balance within a multiphase system consists of contribution from
each phase. Considering the total amount of heat energy exchange within phases
remains in the system, we can write for the multiphase system heat equation in
general form
∑

α

ραΘαCα
∂θα
∂t

+
∑

α

ραCαΘαvα · ∇θα +
∑

α

∇ · qα =
∑

α

Qα −
∑

α

Hαsα. (4.23)
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4.3 Constitutive relationships and hydraulic characteristics

Retention curves. Concerning retention curves of the matrix pore systems, we
present here the commonly used relation proposed by van Genuchten and Mualem
(see, for instance, [21])

Θ(u) = Θr + (Θs −Θr)[1 + |au|n1 ]−n2 , (4.24)

where Θs is the soil saturated water content [-], Θr is the soil residual water content
[-], α [m−1], n1 and n2 are parameters. For an example of a retention curve see
Figure 5.

-30 -25 -20 -15 -10 -5 0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 5: The retention curve given by (4.24).

Darcy's law. The moisture �ux through the variably saturated porous system is
determined by Darcy's constitutive law

Θv = −k(u, θ)(∇u + ez), (4.25)

where u [m] is the pressure head, ez stands for the vertical unit vector and k [m s−1]
represents the hydraulic permeability of the porous medium. The temperature-
pressure head dependence of the hydraulic conductivity is given by [13, 54]

k(θ, u) = ks ν0
κ(u)

ν(θ)
, (4.26)

where ks [m s−1] is the saturated hydraulic conductivity at the reference temperature
T0 [K], κ [m s−1] is the h-dependent relative hydraulic conductivity,

κ(u) =
√
S(u)

(
1−

(
1− S(u)1/n2

)n2
)2

(4.27)
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Figure 6: An example of the hydraulic conductivity k [m s−1 ] at constant tem-
perature θ = 300K (left) and constant pressure head u = −5m (right) given by
(4.26).

for h < 0 (unsaturated porous media), S(u) = Θ(u)−Θr
Θs−Θr

. Finally, ν [m s−2] is the
temperature dependent kinematic viscosity for water given by

ν(θ) = 2.414× 10−5 × 10247.8/(θ−140) (4.28)

and ν0 := ν(κ0). For an example of the hydraulic conductivity see Figure 6.

Fourier's law. We assume the conductive heat �ux q to be given by Fourier's
law

q = −Λ(u, θ)∇θ (4.29)

with the thermal conductivity function Λ [W m−1 K−1]. The thermal conductivity
for porous media may be given by [20]

Λ(u, θ) = Λd(θ)Λt(u). (4.30)

In (4.30) n [-] is porosity, and Λd is the thermal conductivity of a dry sample given
by

Λd(θ) = Λd,ref [1 + AΛ(θ − θref )] , (4.31)

where Λd,ref [W m−1 K−1] is the reference thermal conductivity of a dry sample at
a reference temperature θref [K] and AΛ is a parameter [K−1]. And Λt in (4.30)
is the reference thermal conductivity of a sample at a reference temperature θref
given by

Λt(u) = 1 +
4nρfΘ(u)

(1− n)ρm
. (4.32)

For an example of the thermal conductivity see Figure 7.
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Figure 7: An example of the thermal conductivity Λ [W m−1 K−1] at constant tem-
perature θ = 300K (left) and constant pressure head u = −5m (right) given by
(4.30).

4.4 Boundary and initial conditions

The �uid �ux across the boundary is given by the Neumann type boundary condition

Θ(u)v · n = γu,

where γu [m s−1] represents the liquid �ux imposed on the boundary. Considering
Darcy's law (4.25) we may write

−k(u, θ)(∇u + ez) · n = γu.

For the heat �ux, we may use the natural boundary condition given by

q · n = αc(θ − θ∞) + emσSB(θ4 − θ4
∞) + γθ,

where αc [W m−2K−1] is the heat transfer coe�cient, em [-] stands for the rela-
tive surface emissivity, σSB [W m−2K−4] represents the Stefan-Boltzmann constant,
T∞ [K] is the temperature of the environment and γθ [W m−2] represents the heat
�ux imposed on the boundary. Considering Fourier's law (4.29) we have

−Λ(u, θ)∇θ · n = αc(θ − θ∞) + eσSB(θ4 − θ4
∞) + γθ.

The Dirichlet boundary conditions are given by prescribed values of the pressure
head uD [m] and temperature θD [K] on the boundary

u = uD, θ = θD.

The initial conditions are set as follows:

u(x, 0) = u0(x), θ(x, 0) = θ0(x),

where, u0 [m] and θ0 [K] represent the initial distributions of the pressure head and
temperature.
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4.5 Summary of transport equations

Physical assumptions. In order to model e�ectively coupled transport of mois-
ture and heat energy, we present a set of simplifying assumptions based on the
physical reality.

(A) The porous medium consists of �owing liquid water (index f) and solid matrix
(index m);

(B) solid phase is incompressible and immobile, hence

vm = 0, Θm = const;

(C) liquid phase is incompressible, hence

∇ · vf = 0;

(D) hysteresis is not present;

(E) porous medium is not deformable;

(F) there are neither external sources of heat and mass, nor the phase changes;

(G) the medium is isotropic;

(H) the intristic phase averaged density ρα and the speci�c isobaric heat Cα are
constant.

Simpli�ed equations. Taking into account the set of simplifying assumptions
(A)�(H) the basic general conservation equations introduced in the Sections 4.1
and 4.2 may be simpli�ed. The moisture transport equation (4.3) becomes

∂Θf (u)

∂t
+∇ · (Θfvf ) = 0, (4.33)

hence, using Darcy's law (4.25), we obtain

∂Θf (u)

∂t
−∇ ·K(u, θ)(∇u + ez) = 0. (4.34)

Considering the set of simplifying assumptions (A)�(H) the heat conservation equa-
tion (4.22) becomes

ρfΘf (u)Cf
∂Tf
∂t

+ ρmΘmCm
∂θm
∂t

+ ρfCfΘf (h)vf ·∇θf +∇·qf +∇·qm = 0. (4.35)

For the �rst term we can write

ρfΘf (u)Cf
∂θf
∂t

= ρfCf
∂[Θf (u)θf ]

∂t
− ρfCf

∂Θf (u)

∂t
θf . (4.36)
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Now combining (4.36), (4.33) and putting into (4.35) we obtain

ρfCf
∂[Θf (h)θf ]

∂t
+ρmΘmCm

∂θm
∂t

+ρfCf∇· [θfΘf (u)vf ]+∇·qf +∇·qm = 0. (4.37)

Hence, taking into account the Darcy's law (4.25) and Fourier's law (4.29), we
obtain

ρfCf
∂[Θf (u)θf ]

∂t
+ ρmΘmCm

∂θm
∂t
− ρfCf∇ · [Tfk(h, θf )(∇h+ ez)]

−∇ · Λf (u, θf )∇θf −∇ · Λm(u, θm)∇θm = 0. (4.38)

4.5.1 Single porosity continuum mathematical model

Let the domain of interest Ω be a part of a variably saturated porous medium
partially �lled with water. We assume the domain as a continuum described in
Section 3.2, hence one domain is continuously �lled in each point by both water
and skeleton. For further text we denote

b(u) := Θf (u).

The moisture transport in such a domain is described by Richards equation com-
pleted by Darcy's law in form

∂b(u)

∂t
−∇ · k(u, θ)(∇u + ez) = 0. (4.39)

Further we assume the thermal equilibrium in each point of the continuum, i.e.
θf = θm. Now let us denote

% :=
ρmΘmCm
ρfCf

,

λ(u, θ) :=
Λf (u, θ) + Λm(u, θ)

ρfCf

to obtain the heat balance equation in the form

∂[b(u)θ + %θ]

∂t
−∇ · [θk(u, θ)(∇u+ ez)]−∇ · λ(u, θ)∇θ = 0. (4.40)

28



Part II

Literature review

In mathematics, a wide variety of phenomena can be described by partial di�er-
ential equations, for instance heat transport, moisture transport, �uid dynamics,
electrostatics, elasticity, quantum mechanics and many others. Unfortunately, in
general, we cannot expect that a partial di�erential equation or a system of them
has a classical, i.e. strong solution. The existence of a classical solution requires suf-
�ciently smooth parameters and certain strict regularity conditions on the domain
of interest. However, these conditions are often not satis�ed in various applications
and phenomena. Therefore, we often deal with so called weak formulation of the
problem described by the partial di�erential equations. A weak solution, sometimes
also called a generalized solution, is a solution for which the derivatives may not
but in spite of that it satis�es the equation in some precisely de�ned sense. This
approach is widely used in application of mathematics in various �elds of interest
in order to solve systems of equations describing the real nature or technical phe-
nomena. Sometimes it is even convenient to prove the existence of a weak solution
of the problem and after that show that this solution is smooth enough.

As already mentioned above, one of the important applications of the partial dif-
ferential equations is modelling transport processes of heat energy and moisture
within porous media. In the following paragraphs we will brie�y summarize the
existing results regarding this topic, which can be found in literature and we will
also demonstrate where lies the main di�culty of these problems.

We shall rewrite the general model describing the coupled transport phenomena in
porous media in terms of vector operators A = Aij, Ψ = Ψi, F = Fi in the form

∂tΨ(u)−∇ ·A(u,∇u) = F (u), (4.41)

where u stands for the unknown vector of state variables corresponding here to the
matric potential, temperature and concentration of the dissolved species.

The di�culty in predicting the transport phenomena and in analyzing the model
(4.41) remains in non-linear dependence of the transport coe�cients on temperature
and moisture retention, which have been observed in laboratories. This is a result of
the complex microstructure of porous media or fractured rock masses. For reason-
able applications these nonlinearities cannot be ignored. Therefore, problems of
this type equipped with the appropriate initial and boundary conditions are too
complex to be solved analytically. However, they may be solved in a weak sense
using spacial discretization of the domain by means of the �nite element or �nite
volume method and time discretization of the time interval.

In this text we will study some qualitative properties of the system (4.41) in order
to prove the existence and regularity of the variational solution. Let us note that
there is no complete theory for such general problem. However, we might �nd some
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results considering special structures of operators A, Ψ and growth conditions of
F .

The �rst related work, where is proven the existence, regularity and uniqueness
of solutions to (4.41) is by H. W. Alt and S. Luckhaus in 1983 [2]. The authors
obtained results for the problem

∂tΨ(u)−∇ ·A(Ψ(u),∇u) = F (Ψ(u)) in Ω× [0;T ], (4.42)
Ψ(u) = Ψ0 in Ω× 0, (4.43)

u = uD on ΓDT × [0;T ], (4.44)
A(u,∇u) · n = 0 on ΓNT × [0;T ]. (4.45)

Assuming the following assumptions on the coe�cients in (4.42)-(4.45)

• Ψ is monotone;

• Ψ has a gradient structure;

• A is continuous and elliptic;

• F is continuous and satis�es general growth condition (for details see [2],
Section 1.1. condition 4).

In 1987 G. Modica and M. Giaquinta [24] proved local solvability in classical sense
of a quasilinear parabolic system with nonlinear Neumann boundary conditions
without assuming any growth conditions

∂tu−∇ ·A(u,∇u) = F (u) in Ω× [0;∞), (4.46)
u = 0 in Ω× 0, (4.47)

A(u,∇u) · n = g on Γ × [0;∞). (4.48)

There are no further assumptions on F in (4.46)�(4.48). Strong solutions to the
Richards equation are further analysed in [44] by Rybka and Merz.

Later in 1995 J. Filo and J. Ka£ur [17] extended previous results by proving the local
existence of the weak solution assuming nonlinear boundary condition of Neumann
type and more general growth conditions on F .

∂tΨ(u)−∇ ·A(u,∇u) = F (u) in Ω× [0;T ], (4.49)
u = u0 in Ω× 0, (4.50)

A(u,∇u) · n = g on Γ × [0;T ]. (4.51)

• Ψ is monotone;

• Ψ has a gradient structure;

• A is continuous, monotone and coercive;
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• F is continuous and its growth is bounded by polynomial (for details see [17],
equation (1.4));

• g is continuous and its growth is bounded by polynomial (for details see [17],
equation (1.5)).

Nevertheless, mentioned results assume either linear parabolic part or the gradient
structure of Ψ. In 2002 J. Vala [58] analyzed model with an approach allowing non-
symmetry in the parabolic term although requiring unrealistic symmetry in the
elliptic term. The same author in [59] presented some other special transformations
preserving the symmetry in the elliptic part.

However, most theoretical results exclude the non-symmetrical parabolic part. These
models are applicable in various issues within engineering, ecology and biology. Let
us mention several examples of articles related to such topics. In [45] and [46]
authors analyze degradation processes in concrete due to chemical corrosion caused
by concrete carbonation. In [33], [34] and [35] deal with model describing the
interplay between �uxes of a colloidal population and heat �ux. Such models are
applicable in predicting the concrete performance to high temperatures due to explo-
sions or predicting the drug delivery through biological tissues. Further in [40], [41]
and [42] B. Li and W. Sun analyze the speci�c model arising from coupled moisture
and heat transport with phase change in �brous textile material. In [12] and [28] is
analysed solvability, uniqueness and regularity of a solution to a quasilinear model
of �uid/gas transport exposed to an electric �eld, thermal and di�usive forces. In
[32] the authors deal with parabolic variational inequalities solved by means of a
combined relaxation method and method of characteristic. A similar problem was
discussed by Hornung in [27].

Further, many results concerning the practical aspects and the physical relevance
of mathematical modelling of transport processes in porous media can be found in
literature. In 1989 [38] Lewis, Roberts and Schre�er introduced the �nite element
scheme solving the system describing coupled heat and �uid �ow in deforming
porous media. Authors also discussed its advantages and disadvantages concerning
the numerical stability during the initial time steps and also present the comparison
of obtained results with practical experiments.

Similar problem is dealt with in [57], where authors compare obtained results with
measurement on the fractured rock mass. Next numerical scheme is introduced in
[55], where Simunek and Saito introduced a numerical model solving the equations
governing liquid water and water vapor movement under the soil surface in the
vadose zone. Various research and commercial numerical tools are compared in
[53].

In [43] Liu and Yu present a model including freezing processes as well as Hans-
son and Simunek in [25]. Such models are applicable for predicting the transport
processes in freezing soils which is one of the most important issues in transport
engineering, e.g. railway structures or subsurface structures. Another authors com-
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pare in their publications various approaches to the modelling, e.g. single porosity
approach and double porosity approach and others. See for instance [11] and [26].

As mentioned before many results concerning numerical modelling can be found in
literature, however, the main issue in modelling transport processes in porous media
is, that some of the key components of the model, such as the hydraulic conductivity
or parameters for the water retention curves often rely on empirical relations whose
predictions may not be physically reliable since the structure of the porous media
is usually very complex and very variable. Because of that the complex geological
research is necessary in order to be able to predict the performance of the porous
medium with a required accuracy.

In this work we focus our attention on the theoretical aspects of (4.41) concerning
the degenerate doubly nonlinear elliptic-parabolic system with a speci�c structure
arising from di�usion-convection-dispersion processes in partially saturated porous
media. Degenerations occur in all transport coe�cients according to the physical
background. The transport coe�cients are not assumed to be bounded by positive
constants. We consider a weak formulation of (4.41) in the integral form

∫

QT

∂tΨ(u) · v dxdt+

∫

QT

A(u,∇u) · ∇v =

∫

QT

F (u) · v dxdt, (4.52)

where v is a test function from an appropriate Sobolev space, QT denotes a space
time cylinder Ω×I, (Ω is a domain in R2 and I denotes a time interval). The aim of
the existence and convergence analysis of (4.52) is to �nd some u ∈ L∞(QT ) with
u ∈ L2 (I,W 1,2(Ω)) satisfying (4.52) in some time interval I = {t ∈ R : 0 ≤ t ≤ T}.
The presented text is based on our previous results [5], [6], [7] and [8] published
during the Ph.D. studies.

In [5] we deal with a model decribing coupled transport processes including freezing
and thawing phenomena. In the paper we proved the existence of a weak solution of
the steady problem and we presented a numerical example documenting its physical
relevance. In [7] we analyzed qualitative properties of the single porosity model of
a coupled transport of heat, moisture and dissolved species. And �nally, in [6] and
[8] we dealt with a dual porosity approach model of coupled heat and moisture
transport. The papers [6] and [7] are attached to this text in Appendices A and B.
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Part III

Mathematical analysis of the single
porosity model

Let Ω be a bounded domain in R2 with Lipschitz boundary ∂Ω. Let ΓD and ΓN be
open disjoint subsets of ∂Ω such that ΓD 6= ∅ and ∂Ω\(ΓD ∪ΓN) is a �nite set. Let
T ∈ (0,∞) be �xed throughout the text, I = (0, T ) and QT = Ω × I denotes the
space-time cylinder, ΓDT = ΓD × I and ΓNT = ΓN × I.

5 Strong Formulation of the Problem

We will analyze the initial boundary value problem in QT arising from a coupled
moisture-heat transport through a partially saturated porous media as described in
the previous text. We consider the following system

∂tb(u) = ∇ · (k(θ, u) (∇u+ ez)) in QT , (5.1)
∂t [b(u)θ + %θ] = ∇ · (λ(θ, u)∇θ) +∇ · (θk(θ, u) (∇u+ ez))) in QT , (5.2)

u = 0 on ΓDT , (5.3)
θ = 0 on ΓDT , (5.4)

(∇u+ ez) · n = 0 on ΓNT , (5.5)
∇θ · n = 0 on ΓNT , (5.6)
u(x, 0) = u0(x) in Ω, (5.7)
θ(x, 0) = θ0(x) in Ω. (5.8)

In (5.1)�(5.8) u : QT → R and θ : QT → R are the unknown functions representing
pressure head and temperature of the porous medium. Further k : R2 → R, b :
R → R, λ : R2 → R, u0 : Ω → R, and θ0 : Ω → R are given functions, % is a real
constant, ez is the vertical unit vector.

Let us note that in order to avoid technicalities we present in this part the problem
with homogeneous boundary conditions. However, the presented procedure can be
extended to the problem with nonhomogeneous boundary conditions.

6 Preliminaries

Here we present some helpful auxiliary results and remarks concerning notation and
structure and data properties.
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6.1 Notation

Remark 6.1 Throughout this part of the text we suppose that r is a �xed number,
such that (δ is some su�ciently small positive number)

r = 2 + δ. (6.1)

Remark 6.2 (Sobolev space W 1,p
D (Ω)) By the symbol W 1,p

D (Ω) with some p ≥ 1, we
denote the Sobolev space W 1,p(Ω) with zero trace on ΓD (see Appendix C.6).

6.2 Structure and data properties

According to the physical background we present the following assumptions on
functions in (5.1)�(5.8):

(i) b is a positive lipschitz continuous strictly monotone function such that

0 < b(ξ) ≤ b2 < +∞ ∀ξ ∈ R (b2 = const),

(b(ξ1)− b(ξ2)) (ξ1 − ξ2) > 0 ∀ξ1, ξ2 ∈ R, ξ1 6= ξ2;

(ii) k and λ are positive continuous functions;

(iii) % is a real positive constant and ez is a vertical unit vector;

(iv) u0, θ0 ∈ L∞(Ω).

Let us note that the assumption (i) is physically relevant since the function b(u)
corresponds to the moisture retention given by van Genuchten's relation (4.24),
hence for negative pressure head (e.g. unsaturated zone which is subject to our
work) the function is positive and increasing. Further, assumption (ii) is physically
relevant as well since the transport coe�cients k (hydraulic conductivity), and λ
(thermal conductivity) are positive continuous functions (see also Figures 6 and 7).

6.3 Auxiliary results

Here we present some useful auxiliary results which can be found in literature.

Remark 6.3 ([2], Section 1.1) Let us note that (i) implies that there is a (strictly)
convex C1-function Φ : R→ R such that

b(z)− b(0) = Φ′(z) ∀z ∈ R. (6.2)

Introduce the Legendre transform

B(z) :=

∫ 1

0

(b(z)− b(sz))z ds =

∫ z

0

(b(z)− b(s)) ds. (6.3)
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Corollary 6.4 Let us present some properties of B [2]:

B(z) :=

∫ 1

0

(b(z)− b(sz))zds =

∫ z

0

(b(z)− b(s)) ds ≥ 0 ∀z ∈ R, (6.4)

B(s)−B(p) ≥ (b(s)− b(p))p ∀p, s ∈ R, (6.5)
b(z)z − Φ(z) + Φ(0) = B(z) ≤ (b(z)− b(0)) z ∀z ∈ R. (6.6)

Proof. Since b is a positive increasing function (recall (i)), it is obvious that
∫ z

0

b(z)ds = zb(z) ≥
∫ z

0

b(s)ds

and hence (6.4) holds. Further we rewrite (6.5) and use (6.3), to get
∫ s

0

(b(s)− b(x)) dx−
∫ p

0

(b(p)− b(x)) dx ≥ (b(s)− b(p))p.

Subtracting the identical terms and modifying the inequality we arrive at

b(s)(s− r) ≥
∫ s

0

b(x) dx−
∫ p

0

b(x) dx. (6.7)

For the case s > p we may rewrite (6.7) as

b(s)(s− p) ≥
∫ s

p

b(x) dx. (6.8)

Since b is an increasing function (recall (i)) the inequality (6.8) holds. Similarly for
p > s we rewrite (6.7) as

b(s)(s− p) ≤
∫ p

s

b(x) dx. (6.9)

The inequality (6.9) is satis�ed thanks to monotonicity of b. Finally the case s = p
is trivial. Now we integrate (6.2) from 0 to z to get

∫ z

0

(b(s)− b(0)) ds =

∫ z

0

Φ′(s) ds (6.10)

and hence
−
∫ z

0

(b(s)− b(0)) ds = −Φ(z) + Φ(0). (6.11)

We put (6.11) in (6.6) to obtain

b(z)z −
∫ z

0

(b(s)− b(0)) ds = B(z), (6.12)

which becomes ∫ z

0

(b(z)− b(s)− b(0)) ds = B(z). (6.13)
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Hence the equality in (6.6) is satis�ed. Finally we put (6.13) into (6.6) to obtain
∫ z

0

(b(z)− b(s)− b(0)) ds ≤ (b(z)− b(0)) z. (6.14)

Subtracting the identical terms in (6.14) we have

−
∫ z

0

b(s) ds ≤ 0. (6.15)

Note that since b is a positive function, (6.15) holds for all z ∈ R. This proves (6.6)
and the proof of Corollary 6.4 is complete. �

Lemma 6.5 Let g ∈ L∞(Ω), then (i) implies, that there exist positive constants
b1, b2 such that

0 < b1 ≤ b(g) ≤ b2 < +∞ a.e. in Ω, (6.16)

and further, let g1, g2 ∈ L∞(Ω), (ii) implies, that there exist positive constants
k1, k2, λ1, λ2 such that

0 < k1 ≤ k(g1, g2) ≤ k2 < +∞ a.e. in Ω, (6.17)
0 < λ1 ≤ λ(g1, g2) ≤ λ2 < +∞ a.e. in Ω. (6.18)

7 Existence result

The aim of this part is to prove the existence of a weak solution to the problem
(5.1)�(5.8). First we formulate our problem in a variational sense.

De�nition 7.1 A weak solution of (5.1)�(5.8) is a pair

u ∈ L2(I;W 1,2
D (Ω)) ∩ L∞(QT ),

θ ∈ L2(I;W 1,2
D (Ω)) ∩ L∞(QT ),

which satis�es

−
∫

QT

b(u)∂tφ dxdt+

∫

QT

k(θ, u) (∇u+ ez) · ∇φ dxdt =

∫

Ω

b(u0)φ(0) dx (7.1)

for any φ ∈ L2(I;W 1,2
D (Ω)) ∩W 1,1(I;L1(Ω)) and φ(T ) = 0;

−
∫

QT

(b(u)θ + %θ) ∂tψ dxdt+

∫

QT

λ(θ, u)∇θ · ∇ψ dxdt

+

∫

QT

(θ k(θ, u) (∇u+ ez)) · ∇ψ dxdt =

∫

Ω

(b(u0)θ0 + %θ0)ψ(0) dx (7.2)

for any ψ ∈ L2(I;W 1,2
D (Ω)) ∩W 1,1(I;L1(Ω)) and ψ(T ) = 0.
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Remark 7.2 ([31], Remark 1.19) There exists ∂tb(u) ∈ L2(I;W 1,2
D (Ω)∗) and

∫

QT

[b(u0)− b(u)] ∂tφ dxdt =

∫ T

0

〈∂tb(u), φ〉 dt

holds for any φ ∈ L2(I;W 1,2
D (Ω)) ∩W 1,1(I;L1(Ω)) and φ(T ) = 0, then in the place

of (7.1) we have
∫ T

0

〈∂tb(u), φ〉 dt+

∫

QT

k(θ, u) (∇u+ ez) · ∇φ dxdt = 0

for any φ ∈ L2(I;W 1,2
D (Ω)).

Similarly, there exists ∂t (b(u)θ + %θ) ∈ L2(I;W 1,2
D (Ω)∗) and

∫

QT

[(b(u0)θ0 + %θ0)− (b(u)θ − %θ)] ∂tφ dxdt =

∫ T

0

〈∂t (b(u)θ + %θ) , ψ〉 dt

holds for any ψ ∈ L2(I;W 1,2
D (Ω)) ∩W 1,1(I;L1(Ω)) and η(T ) = 0, then in the place

of (7.2) we have
∫ T

0

〈∂t (b(u)θ + %θ) , ψ〉 dt+

∫

QT

λ(θ, u)∇θ·∇ψ dxdt+

∫

QT

(θ k(θ, u) (∇u+ ez))·∇ψ dxdt = 0

for any ψ ∈ L2(I;W 1,2
D (Ω)).

Theorem 7.3 (Existence of the weak solution) Let the assumptions (i)�(iv) be sa-
tis�ed. Then there exists at least one weak solution of the system (5.1)�(5.8).

8 Proof of the existence result

To prove Theorem 7.3 we will use the method of semidiscretization in time. The
proof is divided into three steps. In the �rst step we approximate our problem by
means of a semi-implicit time discretization scheme and prove the existence and
regularity of the solution to the steady problem in each time step. In the second
step we show some suitable a-priori estimates and �nally in the third step we pass
to the limit from discrete approximations to obtain the weak solution of the original
continuous problem.

8.1 Steady problem

Fix p ∈ N and let τ := T/p be a time step. Let

u0
p := u0,
θ0
p := θ0.

}
a.e. in Ω. (8.1)
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We approximate the evolution problem by a semi-implicit time discretization scheme
and de�ne functions unp and θnp as a solution of the following recurrence steady
problem in each time step.

Problem 8.1 Find unp ∈ W 1,2
D (Ω) ∩ L∞(Ω) and θnp ∈ W 1,2

D (Ω) ∩ L∞(Ω) to be solu-
tions of the recurrence system

∫

Ω

b(unp )− b(un−1
p )

τ
φ dx+

∫

Ω

k(θn−1
p , un−1

p )
(
∇unp + ez

)
· ∇φ dx = 0 (8.2)

for any φ ∈ W 1,2
D (Ω);

∫

Ω

b(unp )θnp − b(un−1
p )θn−1

p

τ
ψ dx+ %

∫

Ω

θnp − θn−1
p

τ
ψ dx+

∫

Ω

λ(θn−1
p , un−1

p )∇θnp ·∇ψdx

+

∫

Ω

θnpk(θn−1
p , un−1

p )
(
∇unp + ez

)
· ∇ψdx = 0 (8.3)

for any ψ ∈ W 1,2
D (Ω), where u0

p and θ
0
p are initial functions from (8.1) satisfying the

assumption (iv).

In what follows we will prove the existence and some regularity of the solution to
the problem (8.2)�(8.3).

8.2 Approximate solution to the moisture equation

8.2.1 Existence of the approximate solution to the moisture equation

Theorem 8.2 [Existence of the solution to (8.2)] Consider n ∈ N, 1 ≤ n ≤ p, and
let [un−1

p , θn−1
p ] ∈ L∞(Ω)2 be given and the assumptions (i)�(iv) be satis�ed. Then

there exists unp ∈ W 1,2
D (Ω) the solution to the problem (8.2).

In order to prove the existence of the approximate solution to the moisture equation
(8.2) we de�ne the functional µu and the operator Au corresponding to the problem.
Next, we show some important properties of the operator Au, which yield the
existence of the approximate solution.

De�ne the functional µu ∈ [W 1,2
D (Ω)]∗ by the equation

〈µu, φ〉 =
1

τ

∫

Ω

b(un−1
p )φ dx−

∫

Ω

k(θn−1
p , un−1

p )ez · ∇φ dx (8.4)

for all φ ∈ W 1,2
D (Ω).

Further, de�ne the operator Au : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ by the equation

〈Au(unp ), φ〉 =

∫

Ω

k(θn−1
p , un−1

p )∇unp · ∇φ dx+
1

τ

∫

Ω

b(unp )φ dx (8.5)
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for all φ ∈ W 1,2
D (Ω).

A function unp is a solution of the operator equation Au(unp ) = µu if and only if unp
solves (8.2). Now we present some properties of the operator Au.

Lemma 8.3 The operator Au : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ is bounded.

Proof. Taking into account (i)-(iv) and using Hölder's inequality to each term on
the right-hand side of (8.5), we deduce

〈Au(unp ), φ〉 ≤ c1‖unp‖W 1,2
D (Ω)‖φ‖W 1,2

D (Ω) + c2‖φ‖W 1,2
D (Ω),

≤ ‖φ‖W 1,2
D (Ω)

(
c1‖unp‖W 1,2

D (Ω) + c2

)
,

which yields

‖Au(unp )‖[W 1,2
D (Ω)]∗ = sup

φ∈W 1,2
D (Ω),‖φ‖6=0

|〈Au(unp ), φ〉|
‖φ‖W 1,2

D (Ω)

≤ c1‖unp‖W 1,2
D (Ω) + c2.

Hence the operator Au : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ is bounded. �

Lemma 8.4 The operator Au : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ is coercive.

Proof. The operator Au is coercive i�

lim
‖unp‖W1,2

D
(Ω)
→∞

〈Au(unp ), unp〉
‖unp‖W 1,2

D (Ω)

= +∞. (8.6)

Using (6.6) we have

1

τ

∫

Ω

b(unp )unp dx ≥ 1

τ

∫

Ω

(
B(unp ) + b(0)unp

)
dx. (8.7)

Next, using Young's inequality we obtain

1

τ

∫

Ω

(
B(unp ) + b(0)unp

)
dx ≥ 1

τ

∫

Ω

B(unp ) dx− 1

τ

∫

Ω

ε unp dx− c(ε). (8.8)

And further, using Friedrichs inequality we arrive at

1

τ

∫

Ω

(
B(unp ) + b(0)unp

)
dx ≥ 1

τ

∫

Ω

B(unp ) dx− 1

τ
εcΩ‖unp‖2

W 1,2
D (Ω)

− c(ε). (8.9)

Using Friedrichs inequality and due to (6.17) we have for the elliptic term
∫

Ω

∣∣k(θn−1
p , un−1

p )∇unp · ∇unp
∣∣ dx ≥ c‖unp‖2

W 1,2
D (Ω)

. (8.10)
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Combining estimates (8.9) and (8.10) and choosing ε su�ciently small, we arrive at

〈Au(unp ), unp〉 ≥ c1‖unp‖2
W 1,2
D (Ω)

− c2. (8.11)

Hence the identity (8.6) holds and the operator Au : W 1,2
D (Ω) → [W 1,2

D (Ω)]∗ is
coercive. �

Lemma 8.5 Operator Au : W 1,2
D (Ω) → [W 1,2

D (Ω)]∗ is monotone in the main part.
(For the de�nition of monotonicity in the main part see [52], Chapter 2.)

Proof. Let us de�ne the operator Âu : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ by the equation

〈Âu(unp ), φ〉 =

∫

Ω

k(θn−1
p , un−1

p )∇unp · ∇φ dx. (8.12)

Since k is a nonnegative continuous function (recall (ii)), we have

〈Âu(unp1)− Âu(unp2), unp1 − unp2〉 =

∫

Ω

k(θn−1
p , un−1

p )
∣∣(∇unp1 −∇unp2

)∣∣2 dx ≥ 0

(8.13)

for all unp1, u
n
p2 ∈ W 1,2

D (Ω). Hence the operator Âu : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ is mono-
tone and the operator Au : W 1,2

D (Ω) → [W 1,2
D (Ω)]∗ is monotone in the main part.

�

Proof of Theorem 8.2. We have shown that the operatorAu de�ned by equation
(8.5) is bounded, coercive and monotone in the main part. Now by [47, Theorem
3.3.42] the operator Au is surjective, which yields the existence of the solution
unp ∈ W 1,2

D (Ω) to the equation Au(unp ) = µu. This completes the proof of Theorem
8.2. �

8.2.2 Regularity of the approximate solution to the moisture equation

Theorem 8.6 (W 1,s
D -regularity of the solution to (8.2)) Let unp ∈ W 1,2

D (Ω) be the
weak solution to the discrete problem (8.2). Then unp ∈ W 1,s

D (Ω), with some s > 2.

In order to showW 1,s
D -regularity of the solution to (8.2) we use the following lemma.

Lemma 8.7 ([19, Theorem 4], [15]) Let Ω be a bounded connected open set with
a Lipschitz continuous boundary of RN . Let Γ be a regular part of ∂Ω and Γ̃ = ∂Ω\Γ.
Suppose Γ̃ has a non-null (N − 1)-dimensional measure. There is a real number s0,
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2∗ ≥ s0 > 2, such that, if u is the weak solution of (A represents a function from
L∞(Ω) satisfying the ellipticity condition)

{
u ∈ W 1,2

D (Ω),∫
Ω
A(x)∇u(x) · ∇ϕ(x) dΩ = 〈f, ϕ〉W 1,2

D (Ω)∗,W 1,2
D (Ω) ∀ϕ ∈ W 1,2

D (Ω),

where f ∈ W 1,s′
D (Ω)∗, s′ = s/(s − 1), s ∈ [2, s0). Then u belongs to W 1,s

D (Ω) and
there exists a real number C(s) such that

‖u‖W 1,s
D (Ω) ≤ C(s)‖f‖

W 1,s′
D (Ω)∗

.

Moreover, s0 only depends on A and Ω and C(s) on A, Ω, s, not on f .

Proof of Theorem 8.6. Following Theorem 8.2, unp ∈ W 1,2
D (Ω) solves the equation

∫

Ω

k(θn−1
p , un−1

p )∇unp · ∇φ dx = 〈µ̃u, φ〉, (8.14)

for all φ ∈ W 1,2
D (Ω), where 〈µ̃u, φ〉 is given by the equation

〈µ̃u, φ〉 = −
∫

Ω

k(θn−1
p , un−1

p )ez ·∇φ dx− 1

τ

∫

Ω

b̃(unp )φ dx+
1

τ

∫

Ω

b(un−1
p )φ dx. (8.15)

Provided [un−1
p , θn−1

p ] ∈ [W 1,r
D (Ω)]2 we may use (6.17) to conclude that

k1 ≤ k(θn−1
p , un−1

p ) ≤ k2.

Further thanks to (i), b is a bounded function, which guarantees µ̃u ∈ [W 1,r′
D (Ω)]∗,

r′ = r/(r − 1). We can directly apply Lemma 8.7 to conclude the W 1,s
D regularity

of the solution with some s > 2.

8.3 Approximate solution to the heat equation

8.3.1 Existence of the approximate solution to the heat equation

Theorem 8.8 (Existence of the solution to (8.3)) Let [un−1
p , θn−1

p ] ∈ L∞(Ω)2 and
unp ∈ W 1,r

D (Ω) be the solution to (8.2) and the assumptions (i)�(iv) be satis�ed. Then
there exists the solution θnp ∈ W 1,2

D (Ω) to the discrete problem (8.3).

We proceed in the similar way as in the proof of Theorem 8.2. We de�ne the
functional µθ and the operator Aθ corresponding to the problem. And further, we
show some important properties of the operator Aθ, which yield the existence of
the approximate solution. First, we de�ne the functional µθ ∈ [W 1,2

D (Ω)]∗ by the
equation

〈µθ, ψ〉 =
1

τ

∫

Ω

b(un−1
p )θn−1

p ψdx+
1

τ

∫

Ω

% θn−1
p ψdx (8.16)
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for all ψ ∈ W 1,2
D (Ω). Further, de�ne the operator Aθ : W 1,2

D (Ω) → [W 1,2
D (Ω)]∗ by

the equation

〈Aθ(θnp ), ψ〉 =
1

τ

∫

Ω

[
b(unp ) + %

]
θnpψ dx

+

∫

Ω

λ(θn−1
p , un−1

p )∇θnp · ∇ψ dx

+

∫

Ω

θnpk(θn−1
p , un−1

p )
(
∇unp + ez

)
· ∇ψ dx (8.17)

for all ψ ∈ W 1,2
D (Ω). Now, we will present properties of the operator Aθ.

Lemma 8.9 The operator Aθ : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ is bounded.

Proof. Let us estimate all terms on the right-hand side of (8.17). Recall that
unp ∈ W 1,r

D (Ω). Using Hölder's inequality we can write for the convective term
∫

Ω

θnpk(θn−1
p , un−1

p )∇unp · ∇ψ dx ≤ c‖θnp‖Lq(Ω)‖∇unp‖Lr(Ω)2‖∇ψ‖L2(Ω)2 , (8.18)

where 1/q + 1/r + 1/2 = 1. Considering r = 2 + δ, δ > 0 we have q > 1. Since
W 1,2
D (Ω) ↪→ Lq(Ω) for any q ∈ [1;∞) we have θnp ∈ W 1,2

D (Ω) ↪→ Lq(Ω). Hence we
can write

∫

Ω

θnpk(θn−1
p , un−1

p )∇unp · ∇ψ dx ≤ c‖θnp‖W 1,2
D (Ω)‖unp‖W 1,r

D (Ω)‖ψ‖W 1,2
D (Ω). (8.19)

Thus and in view of (6.16) and (6.17), we can write for any ψ ∈ W 1,2
D (Ω)

|〈Aθ(θnp ), ψ〉| ≤
(
c1‖θnp‖W 1,2

D (Ω) + c2

)
‖ψ‖W 1,2

D (Ω).

Therefore we have

‖Aθ(θnp )‖[W 1,2
D (Ω)]∗ = sup

ψ∈W 1,2
D (Ω),‖ψ‖6=0

|〈Aθ(θnp ), ψ〉|
‖ψ‖W 1,2

D (Ω)

≤ c1‖θnp‖W 1,2
D (Ω) + c2.

Hence the operator Aθ : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ is bounded. �

Lemma 8.10 The operator Aθ : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ is coercive.

Proof. We use ψ = (θnp )2 as a test function in (8.2) to obtain

∫

Ω

k(θn−1
p , un−1

p )
(
∇unp + ez

)
· θnp∇θnp dx = −1

2

∫

Ω

b(unp )− b(un−1
p )

τ
(θnp )2 dx. (8.20)
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Let us note that all integrals in (8.20) are well de�ned. Since θn−1
p , un−1

p ∈ L∞(Ω) we
may use (6.17) to conclude that k1 ≤ k(θn−1

p , un−1
p ) ≤ k2. Further ∇unp ∈ L2+δ(Ω)2,

∇θnp ∈ L2(Ω)2 and θnp ∈ W 1,2
D (Ω) ↪→ Lp(Ω), where p ∈ [1;∞).

From the de�nition of the operator Aθ : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ we can write

〈Aθ(θnp ), θnp 〉 =
1

τ

∫

Ω

[
b(unp ) + %

]
(θnp )2dx+

∫

Ω

λ(θn−1
p , un−1

p )|∇θnp |2dx

+

∫

Ω

k(θn−1
p , un−1

p )
(
∇unp + ez

)
· θnp∇θnp dx. (8.21)

Using (8.20) in (8.21) we get

〈Aθ(θnp ), θnp 〉 =
1

2τ

∫

Ω

[
b(unp ) + b(un−1

p ) + 2%
]

(θnp )2 dx

+

∫

Ω

λ(θn−1
p , un−1

p )|∇θnp |2 dx. (8.22)

Considering θn−1
p , un−1

p ∈ L∞(Ω) we may use (6.18) to conclude that λ1 ≤ λ(θn−1
p , un−1

p ).
Similarly we use (6.16) to conclude that b1 ≤ b(un−1

p ) and �nally thanks to unp ∈
W 1,r
D (Ω) we have b1 ≤ b(unp ). Now since % is a positive constant, using Friedrichs

inequality, we can write

〈A(θnp ), θnp 〉 ≥ c‖θnp‖2
W 1,2
D (Ω)

.

Hence the operator Aθ : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ is coercive. �

Lemma 8.11 The operator Aθ : W 1,2
D (Ω) → [W 1,2

D (Ω)]∗ is monotone in the main
part.

Proof. Let us de�ne the operator Âθ : W 1,2
D (Ω)→ [W 1,2

D (Ω)]∗ by the equation

〈Âθ(θn), ψ〉 =

∫

Ω

λ(θn−1
p , un−1

p )∇θnp · ∇ψ dx. (8.23)

Obviously

〈Âθ(θ̃p1)−Aθ(θnp2), θnp1 − θnp2〉 =

∫

Ω

λ(θn−1
p , un−1

p )
(
∇θnp1 −∇θnp2

)2
dx ≥ 0 (8.24)

for all θnp1, θ
n
p2 ∈ W 1,2

D (Ω).

Hence the operator Âθ : W 1,2
D (Ω) → [W 1,2

D (Ω)]∗ is monotone and the operator
Aθ : W 1,2

D (Ω)→ [W 1,2
D (Ω)]∗ is monotone in the main part. �
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Proof of Theorem 8.8. With the same arguments as in the proof of Theorem
8.2 we conclude that the operator Aθ : W 1,2

D (Ω) → [W 1,2
D (Ω)]∗ is surjective. The

operator equation Aθ(θnp ) = µθ has a solution if and only if the function θnp ∈
W 1,2
D (Ω) is the solution to the variational equation (8.3) and the proof of Theorem

8.8 is complete. �

8.3.2 Regularity of the approximate solution to the heat equation

Similarly as for pressure head unp we have the following regularity result for tem-
perature θnp .

Theorem 8.12 (W 1,s
D -regularity of the solution to (8.3)) Let θnp ∈ W 1,2

D (Ω) be the
weak solution to the discrete problem (8.3), and unp ∈ W 1,r

D (Ω) be the weak solution
to the discrete problem (8.2). Then θnp ∈ W 1,s

D (Ω) with some s > 2.

Proof of Theorem 8.12 Let θnp ∈ W 1,2
D (Ω) be the solution of the equationAθ(θnp ) =

µθ, i.e. ∫

Ω

λ(θn−1
p , un−1

p )∇θnp · ∇ψ dx = 〈µ̃θ, ψ〉 (8.25)

for all ψ ∈ W 1,2
D (Ω), where

〈µ̃θ, ψ〉 =
1

τ

∫

Ω

[
b(unp )θnp − b(un−1

p )θn−1
p

]
ψdx+ %

1

τ

∫

Ω

(θnp − θn−1
p )ψdx

−
∫

Ω

θnpk(θn−1
p , un−1

p )
(
∇unp + ez

)
· ∇ψ dx

+
1

τ

∫

Ω

b(un−1
p )θn−1

p ψdx+
1

τ

∫

Ω

% θn−1
p ψdx. (8.26)

Let us focus our attention on the critical convective term on the second line of
(8.26). Recall that we have unp ∈ W 1,2+δ

D (Ω) and θnp ∈ W 1,2
D (Ω) ↪→ Lq(Ω) with

arbitrary q ∈ [1; +∞) [52, Theorem 1.20]. Then we have, using Hölder's inequality,
∫

Ω

θnpk(θn−1
p , un−1

p )∇unp · ∇ψ dx ≤ c‖θnp‖Lq(Ω)‖∇unp‖L2+δ(Ω)‖∇ψ‖Ls′ (Ω), (8.27)

where
1

q
+

1

2 + δ
+

1

s′
= 1. (8.28)

Hence
s′ =

−qδ + 4 + 2δ

q(1 + δ)− 2− δ . (8.29)

Let s0 > 2. Now we see that for arbitrary small δ > 0 there exists q large enough
such that

s′ ∈
(

s0

s0 − 1
; 2

]
.
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Hence, µ̃θ ∈
(
W 1,s′
D (Ω)

)∗
and the conditions of Lemma 8.7 are satis�ed. This

ensures the required regularity of unp . �

Summary of Section 8.1. In this section we have proven, at �rst, the existence of
the approximate solution unp ∈ W 1,2

D (Ω) to the moisture equation (8.2). Next, thanks
to Lemma 8.7 we have shown also theW 1,r-regularity of the solution. Hence, due to
the embeddingW 1,r

D Ω ↪→ L∞(Ω) we have unp ∈ W 1,2
D (Ω)∩L∞(Ω). Similarly, we have

shown the existence of the solution θnp ∈ W 1,2
D (Ω) to the heat equation (8.3) and its

W 1,r-regularity. With the same argument we can conclude θnp ∈ W 1,2
D (Ω) ∩ L∞(Ω).

Hence we have solution of the recurrence Problem 8.1 for n = 1, . . . , p.

8.4 A-priori estimates

In this section, we prove some uniform estimates with respect to p for the time
interpolants of the solution.

8.4.1 Construction of time interpolants

Let us de�ne the piecewise constant interpolant functions (n = 1, 2, . . . , p)

ūp(t) = unp for t ∈ ((n− 1)τ, nτ ], (8.30)

ūp(t) = u0 for t ∈ (−τ, 0], (8.31)
θ̄p(t) = θnp for t ∈ ((n− 1)τ, nτ ], (8.32)

θ̄p(t) = θ0 for t ∈ (−τ, 0]. (8.33)

The piecewise constant interpolants ūp(t) ∈ L∞(I;W 1,2
D (Ω)) ∩ L∞(I;L∞(Ω)) and

θ̄p(t) ∈ L∞(I;W 1,2
D (Ω)) ∩ L∞(I;L∞(Ω)) satisfy for all t ∈ (0;T ] the equations

∫

Ω

b(ūp(t))− b(ūp(t− τ))

τ
φ(t) dx+

∫

Ω

k(θ̄p(t−τ), ūp(t−τ)) [∇ūp(t) + ez]·∇φ(t) dx = 0

(8.34)
for any φ ∈ L2(I;W 1,2

D (Ω));

∫

Ω

b(ūp(t))θ̄p(t)− b(ūp(t− τ))θ̄p(t− τ)

τ
ψ(t) dx

+ %

∫

Ω

θ̄p(t)− θ̄p(t− τ)

τ
ψ(t) dx+

∫

Ω

λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇ψ(t)dx

+

∫

Ω

θ̄p(t)k(θ̄p(t− τ), ūp(t− τ)) [∇ūp(t) + ez] · ∇ψ(t)dx = 0 (8.35)

for any ψ ∈ L2(I;W 1,2
D (Ω)).
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8.4.2 L∞-estimates

In this section we will derive the L∞-estimates for time interpolants up and θp.

L∞-bound for ūp. Let κ ∈ R, ξ ∈ R and

β−κ (ξ) :=

∫ ξ

κ

b′(s)(s− κ)− ds (8.36)

and

β+
κ (ξ) :=

∫ ξ

κ

b′(s)(s− κ)+ ds, (8.37)

where symbols − and + denote negative and positive part of a function, i.e.
(s− κ)− = min{s− κ, 0} and (s− κ)+ = max{s− κ, 0}.

Lemma 8.13 Let us present some properties of β−κ and β+
κ :

β−κ (ξ1)− β−κ (ξ2) ≤ (b(ξ1)− b(ξ2))(ξ1 − κ)− ∀ξ1, ξ2 ∈ R, (8.38)
β+
κ (ξ1)− β+

κ (ξ2) ≤ (b(ξ1)− b(ξ2))(ξ1 − κ)+ ∀ξ1, ξ2 ∈ R. (8.39)

Proof. From (8.37) we have

β+
κ (ξ1)− β+

κ (ξ2) =

∫ ξ1

κ

b′(s)(s− κ)+ ds−
∫ ξ2

κ

b′(s)(s− κ)+ ds. (8.40)

Substituting (8.40) in (8.39) we obtain
∫ ξ1

κ

b′(s)(s− κ)+ ds−
∫ ξ2

κ

b′(s)(s− κ)+ ds ≤ (b(ξ1)− b(ξ2))(ξ1 − κ)+. (8.41)

Let us �rst consider the case when ξ1 > κ and ξ2 > κ. Integrating by parts the
left-hand side of (8.41) we get

b(ξ1)(ξ1 − κ)− b(ξ2)(ξ2 − κ)−
∫ ξ1

κ

b(s) ds+

∫ ξ2

κ

b(s) ds ≤ (b(ξ1)− b(ξ2))(ξ1 − κ).

Hence

−b(ξ2)ξ2 +

∫ ξ2

ξ1

b(s) ds ≤ −b(ξ2)ξ1.

If ξ1 ≤ ξ2, considering b is a positive function, the integral is nonnegative and the
inequality (8.39) holds. If ξ1 > ξ2 we have

b(ξ2)(ξ1 − ξ2) ≤
∫ ξ1

ξ2

b(s) ds.

Since b is an increasing function, the inequality holds. Further, cases with ξ1 < κ
or ξ2 < κ can be handled in the same manner. In the same way we would prove
(8.38). �
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Let κ] ∈ R, such that κ] ≤ u0 + x2 a.e. in Ω. In order to show the L∞-bound for
ūp we set

φ := [unp + x2 − κ]]− =

{
unp + x2 − κ], for unp < κ] − x2,
0, for unp ≥ κ] − x2,

(8.42)

as a test function in (8.2) to obtain

∫

Ω

b(unp )− b(un−1
p )

τ
(unp + x2 − κ])− dx

+

∫

Ω

k(θnp , u
n−1
p )∇

(
unp + x2 − κ]

)
− · ∇(unp + x2 − κ])− = 0. (8.43)

The second integral in (8.43) is clearly nonnegative and we can write

1

τ

∫

Ω

(
b(unp )− b(un−1

p )
)

(unp + x2 − κ])− dx ≤ 0. (8.44)

Let us set κ̃] = maxx2∈Ω(κ] − x2). In view of (8.38) we may write
∫

Ω

β−κ̃](u
n
p )− β−κ̃](u

n−1
p ) ≤ 0. (8.45)

Let us now consider the case n = 1. Since u0 ∈ L∞, there exist κ̃] such that κ̃] ≤ u0

almost everywhere in Ω. Hence

β−κ̃] (u0(x)) :=

∫ u0(x)

κ̃]

b′(s)(s− κ̃])− ds = 0. (8.46)

And from (8.45) we get ∫

Ω

β−κ̃](u
1
p) ≤ 0. (8.47)

Considering the de�nition of β− in (8.36), this implies

u1
p ≥ κ̃]. (8.48)

Repeating the described procedure successively for n = 2, 3, · · · , p we conclude that

unp ≥ κ̃] (8.49)

for all n = 1, . . . , p.

In the same manner we will search the upper bound. Let κ] ∈ R, such that κ] ≥
u0 + x2 a.e. in Ω. We set

φ := [unp + x2 − κ]]+ =

{
unp + x2 − κ], unp > κ] − x2,
0, unp ≤ κ] − x2,

(8.50)
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as a test function in (8.2) to obtain

∫

Ω

b(unp )− b(un−1
p )

τ
(unp + x2 − κ])+ dx

+

∫

Ω

k(θnp , u
n−1
p )∇

(
unp + x2

)
· ∇(unp + x2 − κ])+ = 0. (8.51)

The elliptic term is nonnegative, hence we get

1

τ

∫

Ω

(
b(unp )− b(un−1

p )
)

(unp + x2 − κ])+ dx ≤ 0. (8.52)

Let us set κ̃] = minx2∈Ω(κ] − x2), now considering (8.38) we may write
∫

Ω

β+
κ̃]

(unp )− β+
κ̃]

(un−1
p ) ≤ 0. (8.53)

Similarly as before, for n = 1, we obtain (by similar arguments)

β+
κ̃]

(u0(x)) :=

∫ u0(x)

κ̃]
b′(s)(s− κ̃])+ ds = 0 (8.54)

and from (8.53) we deduce
u1
p ≤ κ̃]. (8.55)

Hence we may conclude, successively for n = 2, 3, · · · , p, that
unp ≤ κ̃]. (8.56)

Combining (8.49) and (8.56), for n = 1, . . . , p, we arrive at

κ̃] ≤ unp ≤ κ̃], (8.57)

which becomes
‖ūp‖L∞(QT ) ≤ c, (8.58)

where c is independent of p.

The a-priori estimate (8.58) allows us to conclude that there exists u ∈ L∞(QT )
such that, letting p→ +∞ (along a selected subsequence),

ūp ⇀ u weakly star in L∞(QT ). (8.59)

L∞-bound for θ̄p. Let ` be an odd integer. Using φ = [`/(` + 1)][θ̄p(s)]
`+1 as

a test function in (8.34) we have

`

`+ 1

∫

Ω

b(ūp(s))− b(ūp(s− τ))

τ
[θ̄p(s)]

`+1 dx

+
`

`+ 1

∫

Ω

k(θ̄p(s− τ), ūp(s− τ)) [∇ūp(s) + ez] · ∇[θ̄p(s)]
`+1 dx = 0. (8.60)
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Further, we use ψ = [θ̄p(s)]
` as a test function in (8.35) to obtain

∫

Ω

b(ūp(s))θ̄p(s)− b(ūp(s− τ))θ̄p(s− τ)

τ
[θ̄p(s)]

` dx+ %

∫

Ω

θ̄p(s)− θ̄p(s− τ)

τ
[θ̄p(s)]

` dx

+

∫

Ω

λ(θ̄p(s− τ), ūp(s− τ))∇θ̄p(s) · ∇[θ̄p(s)]
`dx

+

∫

Ω

θ̄p(s)k(θ̄p(s− τ), ūp(s− τ)) [∇ūp(s) + ez] · ∇[θ̄p(s)]
`dx = 0. (8.61)

Now subtracting (8.60) from (8.61) we obtain

1

τ

1

`+ 1

∫

Ω

b(ūp(s))[θ̄p(s)]
`+1 dx− 1

τ

1

`+ 1

∫

Ω

b(ūp(s− τ))[θ̄p(s− τ)]`+1 dx

+
1

τ

1

`+ 1

∫

Ω

b(ūp(s− τ))[θ̄p(s− τ)]`+1 dx+
1

τ

`

`+ 1

∫

Ω

b(ūp(s− τ))[θ̄p(s)]
`+1 dx

− 1

τ

∫

Ω

b(ūp(s− τ))θ̄p(s− τ)[θ̄p(s)]
` dx

+ %
1

τ

∫

Ω

[
θ̄p(s)− θ̄p(s− τ)

]
[θ̄p(s)]

` dx

+

∫

Ω

λ(θ̄p(s− τ), ūp(s− τ))∇θ̄p(s) · ∇[θ̄p(s)]
`dx = 0. (8.62)

Rearranging the terms on the third and fourth line we obtain

1

τ

1

`+ 1

∫

Ω

b(ūp(s))[θ̄p(s)]
`+1 dx− 1

τ

1

`+ 1

∫

Ω

b(ūp(s− τ))[θ̄p(s− τ)]`+1 dx

+
1

τ

1

`+ 1

∫

Ω

b(ūp(s− τ))[θ̄p(s− τ)]`+1 dx+
1

τ

`

`+ 1

∫

Ω

b(ūp(s− τ))[θ̄p(s)]
`+1 dx

− 1

τ

∫

Ω

[b(ūp(s− τ)) + %] θ̄p(s− τ)[θ̄p(s)]
` dx+ %

1

τ

∫

Ω

[θ̄p(s)]
`+1 dx

+

∫

Ω

λ(θ̄p(s− τ), ūp(s− τ))∇θ̄p(s) · ∇[θ̄p(s)]
`dx = 0. (8.63)

Applying Young's inequality on the �rst term in the third line we can write

1

τ

∫

Ω

[b(ūp(s− τ)) + %] θ̄p(s− τ)[θ̄p(s)]
` dx

≤ 1

τ

1

`+ 1

∫

Ω

[b(ūp(s− τ)) + %] [θ̄p(s− τ)]`+1 dx

+
1

τ

`

`+ 1

∫

Ω

[b(ūp(s− τ)) + %] [θ̄p(s)]
`+1 dx. (8.64)
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Combining (8.63) and (8.64) we deduce

1

τ

1

`+ 1

∫

Ω

[b(ūp(s− τ)) + %] [θ̄p(s)]
`+1 dx

− 1

τ

1

`+ 1

∫

Ω

[b(ūp(s− τ)) + %] [θ̄p(s− τ)]`+1 dx

+

∫

Ω

λ(θ̄p(s− τ), ūp(s− τ))∇θ̄p(s) · ∇[θ̄p(s)]
`dx ≤ 0. (8.65)

The elliptic term is nonnegative since
∫

Ω

λ(θ̄p(s), ūp(s− τ))∇θ̄p(s) · ∇[θ̄p(s)]
`dx ≥

∫

Ω

c ` θ̄p(s)
`−1|∇θ̄p(s)|2dx ≥ 0. (8.66)

From (8.66) and (8.65) we have
∫

Ω

(θ̄p(t))
`+1 [b(ūp(t)) + %] dx ≤

∫

Ω

(θ0)`+1 [b (u0) + %] dx. (8.67)

Considering % is a positive constant and b is a nonnegative function we obtain

sup
0≤t≤T

∫

Ω

[θ̄p(t)]
`+1 [b(ūp(t)) + %] dx ≤ C. (8.68)

Hence
‖θ̄p‖L∞(I;L`+1(Ω)) ≤ C, ` ∈ N, (8.69)

where the constant C is independent of ` and p. Now, let ` → +∞ in (8.69). We
get

‖θ̄p‖L∞(QT ) ≤ C. (8.70)

From the a-priori estimate (8.70), we conclude, that there exists θ ∈ L∞(QT ) such
that, letting p→ +∞ (along a selected subsequence),

θ̄p ⇀ θ weakly star in L∞(QT ). (8.71)

8.4.3 Energy estimates

In this section we will derive the energy estimates for time interpolants up and θp.

Energy estimate for ūp. To derive the suitable a-priori estimate for ūp we test
the equation (8.34) with φ = ūp(t) to obtain
∫

Ω

b(ūp(t))− b(ūp(t− τ))

τ
ūp(t) dx

+

∫

Ω

k(θ̄p(t− τ), ūp(t− τ)) [∇ūp(t) + ez] · ∇ūp(t) dx = 0 (8.72)
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for all t ∈ (0;T ].

Now, we will deal with each term of the above equation separately. First, in view
of Remark 6.3, we estimate the �rst term as

∫

Ω

b(ūp(t))− b(ūp(t− τ))

τ
ūp(t) dx ≥ c

∫

Ω

B(ūp(t))−B(ūp(t− τ))

τ
dx. (8.73)

Further, using Friedrich's inequality, we have for the elliptic term the estimate
∫

Ω

k(θ̄p(t− τ), ūp(t− τ))|∇ūp(t)|2 dx ≥ c‖ūp(t)‖2
W 1,2
D (Ω)

. (8.74)

Note that, thanks to (6.17), the constant c in (8.74) does not depend on p.

Taking into account Cauchy's inequality ε
2
a2 + 1

2ε
b2 ≥ ab and Hölder's inequality we

have
∫

Ω

ez · ∇ūp(t) dx ≤ ‖ez‖L2(Ω)‖ūp(t)‖W 1,2
D (Ω)2 ,

≤ ε

2
‖ez‖2

L2(Ω)2 +
1

2ε
‖ūp(t)‖2

W 1,2
D (Ω)

. (8.75)

Combining (8.73), (8.74) and (8.75) we obtain

1

τ

∫

Ω

B(ūp(t))−B(ūp(t− τ)) dx+ c1‖ūp(t)‖2
W 1,2
D (Ω)

≤ ε

2
‖ez‖2

L2(Ω)2 +
1

2ε
‖ūp(t)‖2

W 1,2
D (Ω)

. (8.76)

Further, we can write

1

τ

∫

Ω

B(ūp(t))−B(ūp(t− τ)) dx+

(
c− 1

2ε

)
‖ūp(t)‖2

W 1,2
D (Ω)

≤ c (8.77)

and therefore, for su�ciently large ε, we have

1

τ

∫

Ω

B(ūp(t))−B(ūp(t− τ)) dx+ ‖ūp(t)‖2
W 1,2
D (Ω)

≤ c. (8.78)

We now integrate (8.78) with respect to time from 0 to s (0 ≤ s ≤ T ). Without
loss of generality suppose s = kτ, k = 1, . . . , p. We arrive at

k∑

i=1

1

τ

∫ iτ

(i−1)τ

∫

Ω

B(ūp(t))−B(ūp(t− τ)) dx dt+
k∑

i=1

∫ iτ

(i−1)τ

‖ūp(t)‖2
W 1,2
D (Ω)

dt ≤ kτc.

(8.79)

Evaluating the integrals we have

−
∫

Ω

B(ūp(0)) dx+

∫

Ω

B(ūp(kτ)) dx+

∫ kτ

0

‖ūp(t)‖2
W 1,2
D (Ω)

dt ≤ kτc. (8.80)
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Hence

sup
0≤t≤T

∫

Ω

B(ūp(t)) dx+

∫ T

0

‖ūp(t)‖2
W 1,2
D

dt ≤ Tc. (8.81)

Let us note that (8.81) becomes

‖ūp‖L2(I,W 1,2
D (Ω)) ≤ Tc. (8.82)

As a consequence of the a-priori estimate (8.82) we see ([49], Section 10.26) that
there exists a function u ∈ L2(I;W 1,2

D (Ω)) such that, along a selected subsequence
(letting p→∞), we have

ūp ⇀ u weakly in L2(I;W 1,2
D (Ω)). (8.83)

Energy estimate for θ̄p. In order to derive the energy estimate for θ̄p we use
ψ(t) = 2θ̄p(t) as a test function in (8.35) to obtain

∫

Ω

b(ūp(t))θ̄p(t)− b(ūp(t− τ))θ̄p(t− τ)

τ
2θ̄p(t) dx+ %

∫

Ω

θ̄p(t)− θ̄p(t− τ)

τ
2θ̄p(t) dx

+

∫

Ω

λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇2θ̄p(t)dx

+

∫

Ω

θ̄p(t)k(θ̄p(t− τ), ūp(t− τ)) [∇ūp(t) + ez] · ∇2θ̄p(t)dx = 0.

We modify the above equation to get

∫

Ω

b(ūp(t))− b(ūp(t− τ))

τ
2θ̄p(t)

2 dx+

∫

Ω

θ̄p(t)− θ̄p(t− τ)

τ
2θ̄p(t) [b(ūp(t− τ) + %] dx

+

∫

Ω

2λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇θ̄p(t)dx

+

∫

Ω

θ̄p(t)k(θ̄p(t− τ), ūp(t− τ)) [∇ūp(t) + ez] · ∇2θ̄p(t)dx = 0. (8.84)

Further, we use φ(t) = θ̄p(t)
2 as a test function in (8.34) to obtain

∫

Ω

b(ūp(t))− b(ūp(t− τ))

τ
θ̄p(t)

2 dx

+

∫

Ω

2θ̄p(t)k(θ̄p(t− τ), ūp(t− τ)) [∇ūp(t) + ez] · ∇θ̄p(t) dx = 0. (8.85)
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Substituting (8.85) in (8.84) we have

∫

Ω

θ̄p(t)
2 (b(ūp(t)) + %)− θ̄p(t− τ)2 (b(ūp(t− τ)) + %)

τ
dx

+

∫

Ω

1

τ

[(
θ̄p(t)

)
−
(
θ̄p(t− τ)

)]2
(b(ūp(t− τ)) + %) dx

+ 2

∫

Ω

λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇θ̄p(t) dx = 0. (8.86)

Since b is a positive function and % is a positive constant, the second integral
is nonnegative. Further, we use Friedrich's inequality for the elliptic term and
integrate with respect to time from 0 to s (0 ≤ s ≤ T, s = kτ, k ∈ N). Hence we
obtain

2

∫ kτ

0

∫

Ω

λ(θ̄p(t−τ), ūp(t−τ))∇θ̄p(t)·∇θ̄p(t) dx dt ≥ c

∫ kτ

0

‖θ̄p(t)‖2
W 1,2
D (Ω)

dt. (8.87)

In the same way we integrate the �rst term in (8.86) with respect to time from 0
to s, s = kτ , k ∈ N, to obtain
∫ kτ

0

∫

Ω

1

τ

(
θ̄p(t)

2 (b(ūp(t)) + %)− θ̄p(t− τ)2 (b(ūp(t− τ)) + %)
)

dx dt

=

∫

Ω

1

τ

k∑

i=1

∫ iτ

(i−1)τ

(
θ̄p(t)

2 (b(ūp(t)) + %)− θ̄p(t− τ)2 (b(ūp(t− τ)) + %)
)

dt dx

=

∫

Ω

−
(
θ̄p(0)

)2
(b(ūp(0)) + %) dx+

∫

Ω

(
θ̄p(kτ)

)2
(b(ūp(kτ)) + %) dx. (8.88)

We integrate (8.86) with respect to time from 0 to s, s = kτ , k ∈ N and we
substitute (8.87) and (8.88) in (8.86) to obtain

∫

Ω

(
θ̄p(kτ)

)2
(b(ūp(kτ)) + %) dx+ c

∫ kτ

0

‖θ̄p(t)‖2
W 1,2
D (Ω)

dt

≤
∫

Ω

(
θ̄p(0)

)2
(b(ūp(0)) + %) dx. (8.89)

Considering b is a bounded function and % is a positive constant we can write
∫

Ω

∣∣θ̄p(kτ)
∣∣2 dx+ c

∫ T

0

‖θ̄p(t)‖2
W 1,2
D (Ω)

dt ≤ c. (8.90)

Hence, since θ̄p(t) is a piecewise constant function, we have also

sup
0≤t≤T

∫

Ω

∣∣θ̄p(t)
∣∣2 dx+

∫ T

0

‖θ̄p(t)‖2
W 1,2
D

dt ≤ c. (8.91)
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Let us mention that (8.91) becomes

‖θ̄p‖L2(I;W 1,2
D (Ω)) ≤ c. (8.92)

Now, from the a-priori estimate (8.92), we conclude ([49], Section 10.26) that there
exists θ ∈ L2(I;W 1,2

D (Ω)) such that, letting p→ +∞ (along a selected subsequence),

θ̄p ⇀ θ weakly in L2(I;W 1,2
D (Ω)). (8.93)

8.4.4 Further estimates

Due to the nonlinearities in the model we need some further estimates in order to
show the convergence of time interpolants almost everywhere. In what follows we
use the procedure proposed by Alt and Luckhaus in [2].

Theorem 8.14 (Convergence almost everywhere of ūp and θ̄p) Let the assumptions
(i)�(iv) be satis�ed, then

ūp → u almost everywhere on QT , (8.94)
θ̄p → θ almost everywhere on QT . (8.95)

To show (8.94) and (8.95) we use the following lemma:

Lemma 8.15 (see [2], Lemma 1.9) Suppose uε converge weakly in Lr (0, T ;H1,r(Ω))
to u with the estimates

1

τ

∫ T−h

0

∫

Ω

[b (uε(t+ h))− b (uε(t))] (uε(t+ h)− uε(t)) dx dt 5 c, (8.96)

and ∫

Ω

B(uε(t)) dx ≤ c for 0 < t < T, (8.97)

then

b(uε)→ b(u) in L1([0, T ]× Ω), (8.98)

and

B(uε)→ B(u) almost everywhere. (8.99)

Proof of Theorem 8.14 Let k ∈ N. We use

φ(t) =
1

kτ
(ūp(sj + kτ)− ūp(sj))
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for jτ ≤ t ≤ (j+ k)τ with (j− 1)τ ≤ sj ≤ jτ and 1 ≤ j ≤ T
τ
− k, as a test function

in (8.34). For the parabolic term, we can write

1

kτ 2

∫ (j+k)τ

jτ

∫

Ω

[b(ūp(t))− b(ūp(t− τ))] [ūp(sj + kτ)− ūp(sj)] dxdt

=
1

kτ 2

∫

Ω

τ [b(ūp(j + kτ))− b(ūp(jτ))] [ūp(j + kτ)− ūp(jτ)] dx

=
1

kτ 2

∫ jτ

(j−1)τ

∫

Ω

[b(ūp(t+ kτ))− b(ūp(t))] [ūp(t+ kτ)− ūp(t)] dxdt.

Hence, summing over j = 1, . . . , p− k we get

p−k∑

j=1

1

kτ 2

∫ (j+k)τ

jτ

∫

Ω

[b(ūp(t))− b(ūp(t− τ))] [ūp(sj + kτ)− ūp(sj)] dxdt

≥ 1

kτ 2

∫ T−kτ

0

∫

Ω

[b(ūp(t+ kτ))− b(ūp(t))] [ūp(t+ kτ)− ūp(t)] dxdt. (8.100)

For the elliptic term we use a similar approach. To simplify the procedure, let us
introduce the following notation

ξj(t) :=
1

kτ
(ūp(sj + kτ)− ūp(sj)) ,

q̄(t) := k(θ̄p(t− τ), ūp(t− τ)) [∇ūp(t) + ez] ,

to obtain
p−k∑

j=1

∫ (j+k)τ

jτ

∫

Ω

q̄(t) · ∇ ξj(t) dxdt.

One is allowed to divide the time interval for integration to get

p−k∑

j=1

k∑

i=1

∫ (j+i)τ

(j+i−1)τ

∫

Ω

q̄(t) · ∇ ξj(t) dxdt.

Expanding the �rst sum, we have

k∑

i=1

∫ (1+i)τ

(i)τ

∫

Ω

q̄(t) · ∇ ξ1(t) dxdt

+
k∑

i=1

∫ (2+i)τ

(1+i)τ

∫

Ω

q̄(t) · ∇ ξ2(t) dxdt

+ ...

+
k∑

i=1

∫ (p−k+i)τ

(p−k+i−1)τ

∫

Ω

q̄(t) · ∇ ξp−k(t) dxdt,
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which becomes
∫ 2τ

τ

∫

Ω

q̄(t) · ∇ ξ1(t) dxdt+

∫ 3τ

2τ

∫

Ω

q̄(t) · ∇ ξ1(t) dxdt+ ...

+

∫ (k+1)τ

kτ

∫

Ω

q̄(t) · ∇ ξ1(t) dxdt

+

∫ 3τ

2τ

∫

Ω

q̄(t) · ∇ ξ2(t) dxdt+

∫ 4τ

3τ

∫

Ω

q̄(t) · ∇ ξ2(t) dxdt+ ...

+

∫ (k+2)τ

(k+1)τ

∫

Ω

q̄(t) · ∇ ξ2(t) dxdt

.

.

.
∫ (p−k+1)τ

(p−k)τ

∫

Ω

q̄(t) · ∇ ξp−k(t) dxdt+

∫ (p−k+2)τ

(p−k+1)τ

∫

Ω

q̄(t) · ∇ ξp−k(t) dxdt+ ...

+

∫ pτ

(p−1)τ

∫

Ω

q̄(t) · ∇ ξp−k(t) dxdt.

(8.101)

For the �rst term on the �rst line we can write
∫ 2τ

τ

∫

Ω

q̄(t) · ∇ ξ1(t) dxdt =
1

τ

∫ 2τ

τ

∫

Ω

q̄(t) · ∇ [ūp(τ + kτ)− ūp(τ)] dxdt

=
1

τ

∫ 2τ

τ

∫

Ω

q̄(t) · ∇ [ūp(2τ + kτ − τ)− ūp(2τ − τ)] dxdt

=
1

τ

∫ 2τ

τ

∫

Ω

q̄(t) · ∇ [ūp(t+ kτ − τ)− ūp(t− τ)] dxdt.

Similarly, for the second term on the �rst line we have
∫ 3τ

2τ

∫

Ω

q̄(t) · ∇ ξ1(t) dxdt, =
1

τ

∫ 2τ

τ

∫

Ω

q̄(t) · ∇ [ūp(τ + kτ)− ūp(τ)] dxdt

=
1

τ

∫ 3τ

2τ

∫

Ω

q̄(t) · ∇ [ūp(3τ + kτ − 2τ)− ūp(3τ − 2τ)] dxdt

=
1

τ

∫ 3τ

2τ

∫

Ω

q̄(t) · ∇ [ūp(t+ kτ − 2τ)− ūp(t− 2τ)] dxdt.
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Hence, for each line in (8.101) we have

first
k∑

i=1

1

τ

∫ (i+1)τ

iτ

∫

Ω

q̄(t) · ∇ [ūp(t− iτ + kτ)− ūp(t− iτ)] dxdt;

second
k∑

i=1

1

τ

∫ (i+1)τ

iτ

∫

Ω

q̄(t) · ∇ [ūp(t− iτ + kτ)− ūp(t− iτ)] dxdt;

(p− k)−th
k∑

i=1

1

τ

∫ (i+p−k)τ

(i+p−k−1)τ

∫

Ω

q̄(t) · ∇ [ūp(t− iτ + kτ)− ūp(t− iτ)] dxdt.

Summing over the lines we obtain

k∑

i=1

1

τ

∫ (i+p−k)τ

iτ

∫

Ω

q̄(t) · ∇ [ūp(t− iτ + kτ)− ūp(t− iτ)] dxdt

=
k∑

i=1

1

τ

∫ T+iτ−kτ

iτ

∫

Ω

q̄(t) · ∇ [ūp(t− iτ + kτ)− ūp(t− iτ)] dxdt.

Now, we use Hölder's inequality and after a straightforward computation we obtain

=
k∑

i=1

1

τ

∫ T+iτ−kτ

iτ

‖q̄(t)‖L2(Ω)‖∇ [ūp(t− iτ + kτ)− ūp(t− iτ)] ‖L2(Ω)dt

≤
k∑

i=1

1

τ

∫ T+iτ−kτ

iτ

‖q̄(t)‖2
L2(Ω) + ‖∇ [ūp(t− iτ + kτ)− ūp(t− iτ)] ‖2

L2(Ω)dt

=
k∑

i=1

1

τ

∫ T+iτ−kτ

iτ

‖q̄(t)‖2
L2(Ω)dt+

k∑

i=1

1

τ

∫ T−kτ

0

‖∇ ūp(s+ kτ)−∇ūp(s)‖2
L2(Ω)ds

≤
k∑

i=1

1

τ

∫ T+iτ−kτ

iτ

‖q̄(t)‖2
L2(Ω)dt+

k∑

i=1

1

τ

∫ T−kτ

0

‖∇ ūp(s+ kτ)‖2
L2(Ω) + ‖∇ūp(s)‖2

L2(Ω)ds

≤ c1

τ
+
c2

τ
≤ c

τ
. (8.102)

Combining (8.100) and (8.102) we arrive at

∫ T−kτ

0

∫

Ω

[b(ūp(t+ kτ))− b(ūp(t))] [ūp(t+ kτ)− ūp(t)] dxdt ≤ ckτ. (8.103)

Further, in much the same way as in (8.103), we can show
∫ T−kτ

0

∫

Ω

∣∣b(ūp(t+ kτ))θ̄p(t+ kτ)− b(ūp(t))θ̄p(t)
∣∣ ≤ ckτ. (8.104)
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From (8.104) we conclude, using (8.70), that

1

τ

∫ T−τ

0

∫

Ω

[
θ̄p(t+ τ)− θ̄p(t)

]2
dx dt ≤ c. (8.105)

Now, in view of (8.70), (8.81), (8.83), (8.93), (8.103), (8.104) and (8.105) we employ
Lemma 8.15 and ([30], Proposition 3.35) to conclude

ūp → u almost everywhere on QT , (8.106)

θ̄p → θ almost everywhere on QT . (8.107)

This completes the proof of Theorem 8.14. �

Summary of Section 8.4. Let us summarize that the a-priori estimates (8.58),
(8.70), (8.81), and (8.91) allow us to conclude that there exist u ∈ L2(I;W 1,2

D (Ω))∩
L∞(QT ) and θ ∈ L2(I;W 1,2

D (Ω)) ∩ L∞(QT ) such that, letting p → +∞ (along a
selected subsequence), we have

ūp ⇀ u weakly in L2(I;W 1,2
D (Ω)),

ūp ⇀ u weakly star in L∞(QT ),

θ̄p ⇀ θ weakly in L2(I;W 1,2
D (Ω)),

θ̄p ⇀ θ weakly star in L∞(QT ).

Further, we also have proven

ūp → u almost everywhere on QT ,

θ̄p → θ almost everywhere on QT .

8.5 Passage to the limit for p→∞

The moisture equation. We de�ne the sequence of functionals Xp ∈ L2
(
I,W 1,2

D (Ω)∗
)

such that
∫ T

0

〈Xp, φ〉 =

∫ T

0

∫

Ω

b(ūp(t))− b(ūp(t− τ))

τ
φ(t) dx dt

= −
∫ T

0

∫

Ω

k(θ̄p(t− τ), ūp(t− τ)) [∇ūp(t) + ez] · ∇φ(t) dx dt. (8.108)

The parabolic term in (8.108) can be rewritten, for φ ∈ L2
(
I,W 1,2

D (Ω)
)
and φ(T ) =

0, as
∫ T

0

∫

Ω

b(ūp(t))− b(ūp(t− τ))

τ
φ(t) dx dt

= −
∫ T−τ

0

∫

Ω

[b(ūp(t))− b(u(0))]
φ(t+ τ)− φ(t)

τ
dx dt. (8.109)
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Further, thanks to the energy estimate (8.82), we have

∫ T

0

〈Xp, φ〉 ≤ ‖k(θ̄p(t− τ), ūp(t− τ))‖L∞(QT )‖∇ūp(t)‖L2(QT ) · ‖φ(t)‖L2(I,W 1,2
D (Ω)),

(8.110)

hence the functionals Xp are bounded in L2
(
I,W 1,2

D (Ω)∗
)
, therefore, for a selected

subsequence
Xp ⇀ X weakly in L2(I;W 1,2

D (Ω)∗). (8.111)

Hence, (8.111) implies X = ∂tb(u). Further, for the elliptic term in (8.108), we have,
thanks to (8.83), (8.106) and (8.107)

lim
τ→0

∫ T

0

∫

Ω

k(θ̄p(t− τ), ūp(t− τ)) [∇ūp(t) + ez] · ∇φ(t) dx dt

=

∫

Ω

k(θ(t), u(t)) [∇u(t) + ez] · ∇φ(t) dx dt. (8.112)

The heat equation. Let us note that above established convergences (8.83),
(8.93), (8.106) and (8.107) are su�cient for repeating the same procedure, which
has been presented in the paragraph before, also for the heat equation. Hence the
functions u and θ are a weak solution of the problem (5.1)�(5.8). This completes
the proof of the main result stated in Theorem 7.3.

9 Uniqueness of the solution

In this section we will prove the uniqueness of the solution, under some additional,
but still physically relevant assumptions.

9.1 Additional assumptions

We present some additional assumptions:

(a) the hydraulic conductivity k does not depend on temperature, hence (4.26)
becomes

k(u) = κ(u) ν0 ks; (9.1)

(b) the thermal conductivity does not depend on temperature, hence (4.30) be-
comes

λ(u) = Λt(u); (9.2)

(c) assume
|e(u1)− e(u2)|2 ≤ |b(u1)− b(u2)| (u1 − u2). (9.3)
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Taking into account the additional assumptions mentioned above we can write the
moisture equation (4.39) in the form

∂tb(u)−∇ · (k(u)(∇u+ ez)) = 0. (9.4)

The heat equation (4.40) becomes

∂[b(u)θ + %θ]

∂t
−∇ · [θk(u)(∇u+ ez)]−∇ · λ(u)∇θ = 0. (9.5)

9.2 Kirchho� transformation

In order to eliminate the nonlinearities in the elliptic part of the moisture equation
we introduce the Kirchho� transformation (see e.g. [2]). De�ne the function β :
R→ R, by

β(ξ) =

ξ∫

0

κ(s)ds.

Hence
∇β(u) = ∇u dβ

du
= κ(u)∇u.

Further let us introduce
ũ := β(u).

Provided κ is an increasing function with respect to u, which is physically relevant,
we have

β−1(ũ) = u. (9.6)

Putting (9.6) in the equation (9.4) we obtain

∂tb(β
−1(ũ))−∇ ·

[
ks ν0∇ũ+ k(β−1(ũ))ez)

]
= 0. (9.7)

Similarly using the transformation for the equation (9.4) we obtain

∂[b(β−1(ũ))θ + %θ]

∂t
−∇·[θ

(
ks ν0∇ũ+ k(β−1(ũ)ez)

)
]−∇·

[
λ(β−1(ũ))∇θ

]
= 0. (9.8)

Without loss of generality let us assume that the physical constants ks = 1, ν0 = 1
and % = 1. Finally, in order to simplify mathematical formulations, let us introduce
the following notation:

b̃(ũ) := b(β−1(ũ)),

e(ũ) := k(β−1(ũ))ez,

λ̃(ũ) := λ(β−1(ũ)).
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9.3 The transformed problem

Strong formulation of the transformed problem. In terms of the notation
which has been introduced above, we introduce the following initial boundary prob-
lem

∂tb̃(ũ)−∇ · (∇ũ+ e(ũ))) = 0 in QT , (9.9)

∂t[b̃(ũ)θ + θ]−∇ · [θ (∇ũ+ e(ũ)))]−∇ · λ̃(ũ)∇θ = 0 in QT . (9.10)

ũ = 0 on ΓDT , (9.11)
θ = 0 on ΓDT , (9.12)

(∇ũ+ ez) · n = 0 on ΓNT , (9.13)
∇θ · n = 0 on ΓNT , (9.14)
ũ(x, 0) = ũ0(x) in Ω, (9.15)
θ(x, 0) = θ0(x) in Ω. (9.16)

In (9.9)�(9.16) ũ : QT → R and θ : QT → R are the unknown functions.

Variational formulation of the transformed problem. The variational for-
mulation of the system (9.9)�(9.16) with homogeneous boundary conditions reads
as follows.

De�nition 9.1 A weak solution of (9.9)�(9.16) is a pair

ũ ∈ L2(I;W 1,2
D (Ω)) ∩ L∞(QT ),

θ ∈ L2(I;W 1,2
D (Ω)) ∩ L∞(QT ),

which satis�es

−
∫

QT

b̃(ũ)∂tφ dxdt+

∫

QT

(∇ũ+ e(ũ)) · ∇φ dxdt =

∫

Ω

b̃(ũ0)φ(0) dx (9.17)

holds for any φ ∈ L2(I;W 1,2
D (Ω)) ∩W 1,1(I;L1(Ω)) and φ(T ) = 0;

−
∫

QT

(
b̃(ũ)θ + %θ

)
∂tψ dxdt+

∫

QT

λ̃(ũ)∇θ · ∇ψ dxdt

+

∫

QT

(θ (∇ũ+ e(ũ))) · ∇ψ dxdt =

∫

Ω

(
b̃(ũ0))θ0 + %θ0

)
ψ(0) dx (9.18)

holds for any ψ ∈ L2(I;W 1,2
D (Ω)) ∩W 1,1(I;L1(Ω)) and ψ(T ) = 0.

Remark 9.2 ([31], Remark 1.19) There exists ∂tb̃(ũ) ∈ L2(I;W 1,2
D (Ω)∗) and

∫

QT

[
b̃(ũ0)− b̃(ũ)

]
∂tφ dxdt =

∫ T

0

〈
∂tb̃(ũ), φ

〉
dt
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holds for any φ ∈ L2(I;W 1,2
D (Ω)) ∩W 1,1(I;L1(Ω)) and φ(T ) = 0, then in the place

of (7.1) we can have

∫ T

0

〈
∂tb̃(ũ), φ

〉
dt+

∫

QT

(∇ũ+ ez) · ∇φ dxdt = 0

for any φ ∈ L2(I;W 1,2
D (Ω));

Similarly, there exists ∂t
(
b̃(ũ)θ + %θ

)
∈ L2(I;W 1,2

D (Ω)∗) and

∫

QT

[
(b̃(ũ0)θ0 + %θ0)− (b̃(ũ)θ − %θ)

]
∂tφ dxdt =

∫ T

0

〈
∂t

(
b̃(ũ)θ + %θ

)
, ψ
〉

dt

holds for any ψ ∈ L2(I;W 1,2
D (Ω)) ∩W 1,1(I;L1(Ω)) and φ(T ) = 0, then in the place

of (7.2) we have

∫ T

0

〈
∂t

(
b̃(ũ)θ + %θ

)
, ψ
〉

dt+

∫

QT

λ̃(ũ)∇θ·∇ψ dxdt+

∫

QT

(θ (∇ũ+ ez))·∇ψ dxdt = 0

for any φ ∈ L2(I;W 1,2
D (Ω)).

Theorem 9.3 (Existence of the solution to the transformed problem). Let the as-
sumptions (i)�(iv) and (a)�(c) be satis�ed, then there exists a solution to (9.17)�
(9.18).

Proof. The proof can be realized in the way as described in Section 8. �

Theorem 9.4 (Uniqueness of the solution to the moisture equation) There exists
a unique solution to (9.17).

Proof. We follow [2]. Suppose there exist two solutions ũ1, ũ2 to (9.17). Hence

∫ T

0

〈
∂tb̃(ũ1)− ∂tb̃(ũ2), φ

〉
dt+

∫

QT

(∇(ũ1 − ũ2) + e(ũ1)− e(ũ2)) · ∇φ dxdt = 0

(9.19)
for all φ ∈ L2(I;W 1,2

D (Ω)). Introduce the function β ∈ L2(I;W 1,2
D (Ω)∗) such that

β := b̃(ũ1)− b̃(ũ2).

Now Lax-Milgram's theorem yields the existence of the unique function wu ∈ φ ∈
L2(I;W 1,2

D (Ω)) such that

∫ T

0

∫

Ω

∇wu · ∇Φ dxdt =

∫ T

0

〈β,Φ〉 dt. (9.20)
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From [2] we have

1

2

∫

Ω

∇wu(t) · ∇wu(t) =

∫ t

0

〈∂sβ, wu〉 ds (9.21)

for all t ∈ I. Introduce the function χ(t)[0,τ ] such that

χ(t)[0,τ ] =

{
0 if t /∈ [0; τ ],
1 if t ∈ [0; τ ],

}
∀τ ∈ I. (9.22)

Now let us set φ = χ(t)[0,τ ]wu as a test function in (9.19) to obtain
∫ τ

0

〈
∂tb̃(ũ1)− ∂tb̃(ũ2), wu

〉
dt+

∫ τ

0

∫

Ω

(∇(ũ1 − ũ2) + e(ũ1)− e(ũ2))·∇wu dxdt = 0,

(9.23)

which becomes
∫ τ

0

〈∂tβ, wu〉 dt+

∫ τ

0

∫

Ω

(∇(ũ1 − ũ2) + e(ũ1)− e(ũ2)) · ∇wu dxdt = 0. (9.24)

Using (9.21) we have

1

2

∫

Ω

∇wu(τ) · ∇wu(τ) dx+

∫ τ

0

∫

Ω

(∇(ũ1 − ũ2) + e(ũ1)− e(ũ2)) · ∇wu dxdt = 0.

(9.25)

Further we set Φ = χ(t)[0,τ ](ũ1 − ũ2) as a test function in (9.20) to obtain

∫ τ

0

∫

Ω

∇wu · ∇(ũ1 − ũ2) dxdt =

∫ τ

0

〈β, (ũ1 − ũ2)〉 dt. (9.26)

Combining (9.25) and (9.26) we have

1

2

∫

Ω

∇wu(τ) · ∇wu(τ) dx+

∫ τ

0

〈β, (u1 − u2)〉 dt

+

∫ τ

0

∫

Ω

[e(ũ1)− e(ũ2)] · ∇wu dxdt = 0. (9.27)

Let us now focus on the third term in (9.27), using Young's inequality with ε we
can write
∫ τ

0

∫

Ω

[e(ũ1)− e(ũ2)] · ∇wu dxdt

≤ ε

∫ τ

0

∫

Ω

|e(ũ1)− e(ũ2)|2 dxdt+

∫ τ

0

c(ε) |∇wu|2 dxdt. (9.28)

Moreover, using (c), we can write

1

2

∫

Ω

|∇wu(τ)|2 dx+ (1− ε)
∫ τ

0

〈β, (u1 − u2)〉 dt ≤ c(ε)

∫ τ

0

|∇wu|2 dxdt (9.29)
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Since ∫ τ

0

〈β, (u1 − u2)〉 dt =

∫ τ

0

〈b(u1)− b(u2), (u1 − u2)〉 dt ≥ 0,

taking ε su�ciently small, (9.29) becomes

1

2

∫

Ω

|∇wu(τ)|2 dx ≤
∫ τ

0

c(ε) |∇wu|2 dxdt. (9.30)

Now Gronwall's lemma yields wu(τ) = 0 almost everywhere.

Lax Milgram's theorem yields the existence of a unique function wu satisfying (9.20),
now we proved that this function equals zero almost everywhere. This implies that
β = 0 almost everywhere. More over since b is a monotone function,

β = b(u1)− b(u2) = 0

implies
u1 = u2 a.e. in QT .

The proof of Theorem 9.4 is complete. �

Theorem 9.5 (Uniqueness of the solution to the heat equation) There exists a unique
solution to (9.18), in the class of weak solutions such that ∂tb(u) ∈ L2(QT ) and
∂tθ ∈ L2(QT ).

Proof. Suppose there exist two solutions θ1, θ2 to (9.18). We have

∫ T

0

∫

Ω

∂t

(
b̃(ũ)(θ1 − θ2) + (θ1 − θ2)

)
ψ dxdt+

∫

QT

λ̃(ũ)∇(θ1 − θ2) · ∇ψ dxdt

+

∫

QT

((θ1 − θ2) (∇ũ+ e(ũ))) · ∇ψ dxdt = 0. (9.31)

We set ψ = θ1 − θ2 as a test function in (9.31) to obtain

∫ T

0

∫

Ω

(
∂t

[
b̃(ũ)(θ1 − θ2)

]
(θ1 − θ2)

〉
+ 〈∂t[θ1 − θ2](θ1 − θ2)) dxdt

+

∫

QT

λ̃(ũ) |∇(θ1 − θ2)|2 dxdt

+

∫

QT

((θ1 − θ2) (∇ũ+ e(ũ))) · ∇(θ1 − θ2) dxdt = 0. (9.32)
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For the �rst term in (9.32) we can write
∫ T

0

∫

Ω

∂t

[
b̃(ũ)(θ1 − θ2)

]
(θ1 − θ2) =

∫

QT

∂tb̃(ũ)(θ1 − θ2)2 dxdt

+

∫

QT

b̃(ũ)∂t[θ1 − θ2](θ1 − θ2) dxdt

=
1

2

∫

QT

∂tb̃(ũ)(θ1 − θ2)2 dxdt+
1

2

∫

QT

∂t[b̃(ũ)(θ1 − θ2)2] dxdt

=
1

2

∫

Ω

b̃(ũ(T ))(θ1(T )− θ2(T ))2 dx+
1

2

∫

QT

∂t[b̃(ũ)](θ1 − θ2)2 dxdt. (9.33)

Hence (9.32) becomes

1

2

∫

Ω

b̃(ũ(T ))(θ1(T )− θ2(T ))2 dx+
1

2

∫

QT

∂t[b̃(ũ)](θ1 − θ2)2 dxdt

+
1

2

∫

QT

∂t
[
(θ1 − θ2)2

]
dxdt+

∫

QT

λ̃(ũ) |∇(θ1 − θ2)|2 dxdt

+
1

2

∫

QT

(∇ũ+ e(ũ)) · ∇(θ1 − θ2)2 dxdt = 0. (9.34)

Now we set φ = 1
2
(θ1 − θ2)2 as a test function in (9.17) to obtain

1

2

∫

QT

∂t [b̃(ũ)](θ1 − θ2)2 dxdt+
1

2

∫

QT

(∇ũ+ e(ũ)) · ∇(θ1 − θ2)2 dxdt = 0 (9.35)

and subtracting (9.35) from (9.34) we obtain

1

2

∫

Ω

b̃(ũ(T ))(θ1(T )− θ2(T ))2 dx+
1

2

∫

QT

∂t
[
(θ1 − θ2)2

]
dxdt

+

∫

QT

λ̃(ũ) |∇(θ1 − θ2)|2 dxdt = 0. (9.36)

Since b̃ and λ̃ are positive functions we can write

1

2

∫

Ω

(θ1 − θ2)2 dx ≤ 0 (9.37)

and hence θ1 = θ2 a.e. in QT . This completes the proof of Theorem 9.5. �

10 Conclusion

In this section of the work, we have proven the existence of the weak solution

u ∈ L2(I;W 1,2
D (Ω)) ∩ L∞(QT ),

θ ∈ L2(I;W 1,2
D (Ω)) ∩ L∞(QT )
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to the problem (5.1)-(5.8) describing coupled moisture transport and heat trans-
fer through a partially saturated porous media. The model is describing porous
media performance by means of a single porosity approach described in Section
3.2. In order to avoid unnecessary technicalities we have analyzed in this section
a model with homogenous boundary conditions of a Dirichlet and Neumann type.
The presented analysis can be straightforwardly extended to a setting with general
boundary conditions.

We have also shown the uniqueness of the obtained solution, prescribing some ad-
ditional, but still physically relevant, assumptions on the transport coe�cients.
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Part IV

Mathematical analysis of the dual
porosity model

11 Dual porosity approach

The single porosity model which has been presented in the previous part of the
text is the most frequently used approach. However, some physical and engineering
issues may require di�erent approach, i.e. dual porosity model (see Section 3.2). The
dual porosity model consists of two sets of equations, representing two overlapping
continua corresponding to the fracture system and matrix system, respectively. The
system is completed by the coupling terms providing the communication between
these two continua. The structure of the analysis is realized in the same manner,
therefore, in the text we will focus our attention on the di�erences since the main
ideas of the analysis remain the same.

11.1 Strong formulation

Let Ω be a bounded domain in R2 with Lipschitz boundary Γ. Let T ∈ (0,∞) be
�xed throughout the paper, I = (0, T ) and QT = Ω × I denotes the space-time
cylinder, ΓT = Γ× I. We introduce the following dual porosity model (i = 1, 2)

∂tbi(ui) = ∇ · (ki(θi, ui) (∇ui + ez))

+ ωiαω(u1, u2)(u1 − u2) in QT , (11.1)
∂t [bi(ui)θi + %iθi] = ∇ · (λi(θi, ui)∇θi)

+∇ · (θiki(θi, ui) (∇ui + ez)))

+ Fi(u1, u2, θ1, θ2) in QT , (11.2)

completed by boundary and initial conditions

ui = 0 on ΓT , (11.3)
θi = 0 on ΓT , (11.4)

ui(x, 0) = ui0(x) in Ω, (11.5)
θi(x, 0) = θi0(x) in Ω. (11.6)

In (11.1)�(11.6), ui : QT → R and θi : QT → R are the unknown functions re-
presenting pressure head and temperature. Further ki : R2 → R, bi : R → R,
λi : R2 → R, ui0 : Ω→ R and θi0 : Ω→ R are given functions, and ez is the vertical
unit vector. Further ω1 = 1/ω, ω2 = 1/(ω − 1), αi > 0, βi > 0, %i and ω ∈ (0, 1)
are given material constants. Finally αω : R2 → R is a �rst order mass transfer
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coe�cient function for water, Fi : R4 → R represents the exchange term for heat
exchange between two components.

Remark 11.1 (Sobolev space W 1,p
0 (Ω)). By the symbol W 1,p

0 (Ω), with some p ≥ 1,
we denote the Sobolev space with zero trace on the boundary Γ. (See C.5.)

11.2 Structure and data properties

According to the physical background we present the following assumptions on
functions in (11.1)�(11.6):

(I) bi is a positive lipschitz continuous strictly monotone function such that

0 < bi(ξ) ≤ b2 < +∞ ∀ξ ∈ R (b2 = const),

(bi(ξ1)− bi(ξ2)) (ξ1 − ξ2) > 0 ∀ξ1, ξ2 ∈ R, ξ1 6= ξ2;

(II) αω, ki and λi are positive continuous functions;

(III) %i is a real positive constant and ez is a vertical unit vector;

(IV) Fi(ξ1, ξ2, ζ1, ζ2) is continuous on ξ1, ξ2 and lipschitz continuous with respect to
ζ1, ζ2;

(V) ui0, θi0 ∈ L∞(Ω).

Remark 11.2 Similarly as in Lemma 6.5, (I) implies, that there exist positive
constants b1 and b2 such that

b1 < bi(g) ≤ b2 < +∞, (11.7)

for all g ∈ L∞(Ω).

Further (II) implies that there exist positive constants k1, k2, λ1, λ2, α1 and α2 such
that

0 < k1 < ki(g1, g2) ≤ k2 < +∞, (11.8)
0 < λ1 < λi(g1, g2) ≤ λ2 < +∞, (11.9)

0 < α1 < αω(g1, g2) ≤ α2 < +∞ (11.10)

for all g1, g2 ∈ L∞(Ω).
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11.3 Weak formulation

We now formulate the problem (11.1)�(11.6) in a variational sense.

De�nition 11.3 By a weak solution of (11.1)�(11.6) we mean a pair [u,θ], u =
(u1, u2), θ = (θ1, θ2), such that

ui ∈ L2(I;W 1,2
0 (Ω)) ∩ L∞(QT ),

θi ∈ L2(I;W 1,2
0 (Ω)) ∩ L∞(QT ),

which satisfy

−
∫

QT

bi(ui)∂tφi dxdt+

∫

QT

ki(θi, ui) (∇ui + ez) · ∇φi dxdt

+

∫

QT

ωiαω(u1, u2)(u1 − u2)φi dxdt =

∫

Ω

bi(ui0)φi(0) dx (11.11)

for any φi ∈ L2(I;W 1,2
0 (Ω)) ∩W 1,1(I;L1(Ω)) and φi(T ) = 0, i=1,2;

−
∫

QT

(bi(ui)θ + %iθi) ∂tψi dxdt+

∫

QT

λi(θi, ui)∇θi · ∇ψi dxdt

+

∫

QT

(θi ki(θi, ui) (∇ui + ez)) · ∇ψi dxdt =

∫

QT

Fi(u1, u2, θ1, θ2)ψi dxdt

+

∫

Ω

(bi(ui0)θi0 + %iθi0)ψi(0) dx (11.12)

for any ψi ∈ L2(I;W 1,2
0 (Ω)) ∩W 1,1(I;L1(Ω)) and ψi(T ) = 0, i=1,2.

Theorem 11.4 (Existence of the weak solution) Let the assumptions (I)�(V) be
satis�ed. Then there exists at least one weak solution of the system (11.1)�(11.6).

In the following text we will deal with the proof of Theorem 11.4 using the similar
procedure as in Section 8.

11.4 Steady problem

Fix p ∈ N and set τ := T/p be a time step. We use a semi-implicit time discretiza-
tion, further de�ne functions [unp ,θ

n
p ], u

n
p = (un1p, u

n
2p), θ

n
p = (θn1p, θ

n
2p) as solutions

of the steady problem in each time step.

Problem 11.5 Find a pair [unp ,θ
n
p ] such that

unip ∈ W 1,2
0 (Ω) ∩ L∞(Ω),

θnip ∈ W 1,2
0 (Ω) ∩ L∞(Ω),
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∫

Ω

bi(u
n
ip)− bi(un−1

ip )

τ
φi dx+

∫

Ω

ki(θ
n−1
ip , un−1

ip )
(
∇unip + ez

)
· ∇φi dx

+

∫

Ω

ωiαω(un−1
1 , un−1

2 )(un1 − un2 )φi dx = 0 (11.13)

holds for any φi ∈ W 1,2
0 (Ω), i=1,2;

∫

Ω

bi(u
n
ip)θ

n
ip − bi(un−1

ip )θn−1
ip

τ
ψi dx+%i

∫

Ω

θnip − θn−1
ip

τ
ψi dx+

∫

Ω

λi(θ
n−1
ip , un−1

ip )∇θnip·∇ψidx

+

∫

Ω

θnipki(θ
n−1
ip , un−1

ip )
(
∇unip + ez

)
· ∇ψidx =

∫

Ω

Fi(u
n
1 , u

n
2 , θ

n
1 , θ

n
2 )ψi dx (11.14)

holds for any ψi ∈ W 1,2
0 (Ω), i=1,2.

11.4.1 Existence and regularity of the approximate solutions

Theorem 11.6 [Existence of the solution to (11.13)] Let un−1
ip and θn−1

ip ∈ L∞(Ω),
be given and the assumptions (I)�(V) be satis�ed. Then there exist unip ∈ W 1,2

0 (Ω),
i=1,2, the solution to the discrete problem (11.13).

Proof. Let us introduce φ := [φ1, φ2] ∈ W 1,2
0 (Ω)2. De�ne the functional µu ∈

[W 1,2
0 (Ω)2]∗ by

〈µu,φ〉 =
2∑

i=1

1

τ

∫

Ω

bi(u
n−1
ip )φi dx−

2∑

i=1

∫

Ω

ki(θ
n−1
ip , un−1

ip )ez · ∇φi dx (11.15)

for all φ ∈ W 1,2
0 (Ω)2.

Further, de�ne the operator Au : W 1,2
0 (Ω)2 → [W 1,2

0 (Ω)2]∗ by the equation

〈Au(unp ),φ〉 =
2∑

i=1

∫

Ω

ki(θ
n−1
ip , un−1

ip )∇unip · ∇φi dx+
2∑

i=1

1

τ

∫

Ω

bi(u
n
ip)φi dx

+
2∑

i=1

∫

Ω

ωiαω(un−1
1 , un−1

2 )(un1 − un2 )φi dx (11.16)

for all φ ∈ W 1,2
0 (Ω)2.

The operator Au is monotone in the main part. Further, for any up ∈ W 1,2
0 (Ω)2 we

have, taking into account (I)�(III),

〈Au(unp ),φ〉 ≤ c1‖unp‖W 1,2
0 (Ω)2‖φ‖W 1,2

D (Ω)2 + c2‖φ‖W 1,2
0 (Ω)2 ,

≤ ‖φ‖W 1,2
D (Ω)2

(
c1‖unp‖W 1,2

0 (Ω)2 + c2

)
.
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Therefore, we have

‖Au(unp )‖[W 1,2
0 (Ω)2]∗ = sup

φ∈W 1,2
0 (Ω)2,‖φ‖6=0

|〈Au(unp ),φ〉|
‖φ‖W 1,2

0 (Ω)2

≤ c1‖unp‖W 1,2
0 (Ω)2 + c2. (11.17)

And further, applying Young's inequality, we derive

〈Au(unp ),unp〉 ≥ c1‖unp‖2
W 1,2

0 (Ω)2 − c2. (11.18)

Now, we can conclude from (11.17) and (11.18), with the same arguments as in
the Section 8.2.1, that above shown properties of the operator yield together with
([47], Theorem 3.3.42) the existence of the solution up ∈ W 1,2

0 (Ω)2 to the problem
(11.13). �

Theorem 11.7 (W 1,r
0 -regularity of the solution to (11.13)) Let unp ∈ W 1,2

0 (Ω)2 be
the weak solution to the discrete problem (11.13). Then unp ∈ W 1,r

0 (Ω)2 with some
r > 2.

Proof. The proof of Theorem 11.7 can be realized in the same way as the proof of
Theorem 8.6. �

Theorem 11.8 [Existence of the solution to (11.14)] Let un−1
ip and θn−1

ip ∈ L∞(Ω),
be given, let unip ∈ W 1,r

0 (Ω) and the assumptions (I)�(V) be satis�ed. Then there
exist θnip ∈ W 1,2

0 (Ω), i=1,2, the solution to the discrete problem (11.14).

Proof. We denote ψ := [ψ1, ψ2] ∈ W 1,2
0 (Ω)2 and we de�ne the functional µθ ∈

[W 1,2
0 (Ω)2]∗ by

〈µθ,ψ〉 =
2∑

i=1

1

τ

∫

Ω

bi(u
n−1
ip )θn−1

ip ψi dx−
2∑

i=1

∫

Ω

%θn−1
ip ψi dx (11.19)

for all ψ ∈ W 1,2
0 (Ω)2.

Further, de�ne the operator Aθ : W 1,2
0 (Ω)2 → [W 1,2

0 (Ω)2]∗ by the equation

〈Aθ(unp ),ψ〉 =
2∑

i=1

1

τ

∫

Ω

[
bi(u

n
ip) + %

]
ψi dx+

2∑

i=1

∫

Ω

λi(θ
n−1
ip , un−1

ip )∇θnip · ∇ψi

+
2∑

i=1

∫

Ω

θnipki(θ
n−1
ip , un−1

ip )
(
∇unip + ez

)
· ∇ψi dx

−
2∑

i=1

∫

Ω

Fi(u
n
1 , u

n
2 , θ

n
1 , θ

n
2 )ψi dx (11.20)
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for all ψ ∈ W 1,2
0 (Ω)2.

In view of (I)�(IV), the operator is bounded and monotone in the main part. Fur-
ther, we may write

〈Aθ(θnp ),θnp〉 ≥ c1‖θnp‖2
W 1,2

0 (Ω)2 −
2∑

i=1

∫

Ω

c2

(
1 + |θn1p|+ |θn2p|

)
θnip dx. (11.21)

Hence

〈Aθ(θnp ),θnp〉 ≥ c1‖θnp‖2
W 1,2

0 (Ω)2 −
∫

Ω

c2

(
θn1p + θn2p + 2|θn1pθn2p|+ |θn1p|2 + |θn2p|2

)
dx.

(11.22)
Applying Young's inequality on the second term on the right-hand side of (11.22),
we arrive at

〈Aθ(θnp ),θnp〉 ≥ (c1 − c2(ε)) ‖θnp‖2
W 1,2

0 (Ω)2 . (11.23)

Therefore, we may conclude, that the operator Aθ is coercive. Hence, the properties
of the operator yield the existence of the weak solution θnip ∈ W 1,2

0 Ω to the steady
problem (11.14) with the same arguments as in Theorem 11.6. �

Theorem 11.9 (W 1,s
0 -regularity of the solution to (11.14)) Let unp ∈ W 1,r

0 (Ω)2 be
the weak solution to the discrete problem (11.13), let θnp ∈ W 1,2

0 (Ω)2 be the weak
solution to the discrete problem (11.14). Then θnp ∈ W 1,s

0 (Ω)2 with some s > 2.

Proof. The proof can be realized in the same way as in Section 8.3.2 since the
structure of the critical convective term remains the same. �

Now, let us summarize, that we have shown the existence of the solutions unp and
θnp ∈ W 1,2

0 (Ω)2 to the discrete system (11.13)�(11.14) and their W 1,r-regularity.
Since W 1,r

0 (Ω) ↪→ L∞(Ω), we may conclude that unp and θnp ∈ W 1,2
0 (Ω)2 ∩ L∞(Ω)2.

This proves the existence of the solution to the recurrence Problem (11.13)�(11.14)
for n = 1, . . . , p.

11.5 Time interpolants

Let us de�ne the piecewise constant interpolant functions (n = 1, 2, . . . , p)

ūip(t) = unip for t ∈ ((n− 1)τ, nτ ],

ūip(t) = ui0 for t ∈ (−τ, 0],

θ̄ip(t) = θnip for t ∈ ((n− 1)τ, nτ ],

θ̄ip(t) = θi0 for t ∈ (−τ, 0].
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The piecewise constant interpolants ūip(t) ∈ L∞(I;W 1,2
0 (Ω)) ∩ L∞(I;L∞(Ω)) and

θ̄ip(t) ∈ L∞(I;W 1,2
0 (Ω)) ∩ L∞(I;L∞(Ω)) satisfy for all t ∈ (0;T ] the equations

∫

Ω

bi(ūip(t))− bi(ūip(t− τ))

τ
φi dx+

∫

Ω

k(θ̄ip(t−τ), ūip(t−τ)) [∇ūip(t) + ez]·∇φi dx

+

∫

Ω

ωiαω(ū1p(t− τ), ū2p(t− τ))[ū1p(t)− ū2p(t)]φi dx = 0 (11.24)

for any φi ∈ L2(I;W 1,2
0 (Ω)), φi(T ) = 0, i = 1, 2;

∫

Ω

bi(ūip(t))θ̄ip(t)− bi(ūip(t− τ))θ̄ip(t− τ)

τ
ψ dx

+ %i

∫

Ω

θ̄ip(t)− θ̄ip(t− τ)

τ
ψi dx+

∫

Ω

λi(θ̄ip(t− τ), ūip(t− τ))∇θ̄ip(t) · ∇ψidx

+

∫

Ω

θ̄ip(t)ki(θ̄ip(t− τ), ūip(t− τ)) [∇ūip(t) + ez] · ∇ψidx

= Fi(ū1p(t), ū2p(t), θ̄1p(t), θ̄2p(t))ψi (11.25)

for any ψi ∈ L2(I;W 1,2
0 (Ω)), ψi(T ) = 0, i = 1, 2.

11.6 A-priori estimates

In this section we brie�y introduce the main ideas of deriving the suitable a-priori
estimates for the time interpolants.

L∞-bound for ūip. Let κ ∈ R, ξ ∈ R. Introduce the functions

ε−κ (ξ) :=

∫ ξ

κ

(s− κ)− ds, (11.26)

ε+
κ (ξ) :=

∫ ξ

κ

(s− κ)+ ds. (11.27)

Recall that symbols − and + denote negative and positive part of a function. Hence
we can write (s− κ)− = min(s− κ, 0) and (s− κ)+ = max(s− κ, 0).

Lemma 11.10 Let us present the properties of ε−κ (ξ) and ε+
κ (ξ):

ε−κ (ξ1)− ε−κ (ξ2) ≤ (ξ1 − ξ2)(ξ1 − κ)− ∀ξ1, ξ2 ∈ R, (11.28)
ε+
κ (ξ1)− ε+

κ (ξ2) ≤ (ξ1 − ξ2)(ξ1 − κ)+ ∀ξ1, ξ2 ∈ R. (11.29)

Proof. Proof of this lemma can be carried out in the same manner as the proof of
Lemma 8.13. �
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Let κ] ∈ R, such that κ] ≤ ui0 + x2 a.e. in Ω. Then we have (unip + x2 − κ])− ∈
W 1,2

0 (Ω), i = 1, 2 and thus we may test (11.13) with

φi = 1/ωi[u
n
ip + x2 − κ]]−,

and sum the equation for i = 1, 2. We get

1

ωi

2∑

i=1

∫

Ω

bi(u
n
ip)− bi(un−1

ip )

τ
[unip + x2 − κ]]− dx

+
1

ωi

2∑

i=1

∫

Ω

ki(θ
n−1
ip , un−1

ip )
(
∇unip + ez

)
· ∇[unip + x2 − κ]]− dx

+

∫

Ω

αω(un−1
1p , un−1

2p )(un1p − un2p)[un1p + x2 − κ]]− dx

+

∫

Ω

αω(un−1
1p , un−1

2p )(un2p − un1p)[un2p + x2 − κ]]− dx = 0. (11.30)

Let us set κ̃] = maxx2∈Ω(κ] − x2). We now use (8.38) on the �rst term in (11.30)
and (11.28) for the third and fourth term in (11.30), further we slightly modify the
elliptic term and we obtain (recall the de�nition of β−κ̃] in (8.36))

1

ωi

2∑

i=1

∫

Ω

β−κ̃](u
n
ip)− β−κ̃](u

n−1
ip )

τ
dx

+
1

ωi

2∑

i=1

∫

Ω

ki(θ
n−1
ip , un−1

ip )
∣∣∇[unip + x2 − κ]]−

∣∣2 dx

+

∫

Ω

αω(un−1
1p , un−1

2p )
(
ε−κ̃](u

n
1p)− ε−κ̃](u

n
2p)
)

dx

+

∫

Ω

αω(un−1
1p , un−1

2p )
(
ε−κ̃](u

n
2p)− ε−κ̃](u

n
1p)
)

dx ≤ 0. (11.31)

The sum of coupling terms equals zero, the elliptic terms are nonnegative because
k is a nonnegative function. This allows us to repeat the procedure in (8.45)�(8.49)
to show that

unip ≥ κ̃], i = 1, 2. (11.32)

Further let κ] ∈ R, such that κ] ≥ ui0+x2 a.e. in Ω. Then we have (unip+x2−κ])+ ∈
W 1,2

0 (Ω), i = 1, 2 and we are allowed to test (11.13) with

φi = 1/ωi[u
n
ip + x2 − κ]]+.

Now we sum the equations for i = 1, 2, set κ̃] = minx2∈Ω(κ] − x2) and repeat the
procedure presented in (8.51)�(8.56) to show that

unip ≤ κ̃], i = 1, 2. (11.33)
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Taking together (11.32) and (11.33) we arrive at

κ̃] ≤ unip ≤ κ̃] (11.34)

almost everywhere in Ω, n = 1, 2, · · · p. Note that (11.34) becomes

‖ūip‖L∞(QT ) ≤ c. (11.35)

The a-priori estimate (11.35) allows us to conclude that there exists u ∈ L∞(QT )
such that, letting p→ +∞ (along a selected subsequence),

ūp ⇀ u weakly star in L∞(QT )2. (11.36)

L∞-bound for θ̄ip. In order to show L∞-bound for θ̄ip we follow [29]. Let ` be an
odd integer. First, we use φi = [`/(`+ 1)][θnip]

`+1 as a test function in (11.13) to get

`

`+ 1

∫

Ω

bi(u
n
ip)− bi(un−1

ip )

τ
[θnip]

`+1 dx

+
`

`+ 1

∫

Ω

ki(θ
n−1
ip , un−1

ip )
(
∇unip + ez

)
· ∇[θnip]

`+1 dx

+
`

`+ 1

∫

Ω

ωiαω(un−1
1 , un−1

2 )(un1 − un2 )[θnip]
`+1 dx = 0 (11.37)

and similarly, we set ψi = [θnip]
` as a test function in (11.14) to obtain

1

τ

∫

Ω

[(
bi(u

n
ip) + %i

)
θnip −

(
bi(u

n−1
ip ) + 1

)
θn−1
ip

]
[θnip]

` dx+

∫

Ω

λi(θ
n−1
ip , un−1

ip )∇θnip·∇[θnip]
`dx

+

∫

Ω

θnipki(θ
n−1
ip , un−1

ip )
(
∇unip + ez

)
· ∇[θnip]

`dx =

∫

Ω

Fi(u
n
1 , u

n
2 , θ

n
1 , θ

n
2 )[θnip]

` dx.

(11.38)

Now we divide the equation (11.38) by positive constant %i, i = 1, 2 and, for sim-
plicity, denote all obtained coe�cients with the same symbols. Next, we subtract
(11.37) from (11.38), we sum the equations for i = 1, 2 and arrive at

2∑

i=1

1

τ

∫

Ω

[(
bi(u

n
ip) + 1

)
θnip −

(
bi(u

n−1
ip ) + 1

)
θn−1
ip

]
[θnip]

` dx

+
2∑

i=1

∫

Ω

λi(θ
n−1
ip , un−1

ip )∇θnip · ∇[θnip]
`dx

=
2∑

i=1

∫

Ω

Fi(u
n
1 , u

n
2 , θ

n
1 , θ

n
2 )[θnip]

` dx+
2∑

i=1

`

`+ 1

1

τ

∫

Ω

(
bi(u

n
ip)− bi(un−1

ip )
)

[θnip]
`+1 dx

+
2∑

i=1

`

`+ 1

∫

Ω

ωiαω(un−1
1 , un−1

2 )(un1 − un2 )[θnip]
`+1 dx. (11.39)
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For the �rst term on the third line in (11.39) we can write (recall (IV))

2∑

i=1

∫

Ω

Fi(u
n
1 , u

n
2 , θ

n
1 , θ

n
2 )[θnip]

` dx ≤
2∑

i=1

∫

Ω

c (1 + |θn1 |+ |θn2 |) [θnip]
` dx. (11.40)

Hence

2∑

i=1

∫

Ω

Fi(u
n
1 , u

n
2 , θ

n
1 , θ

n
2 )[θnip]

` dx ≤ c

∫

Ω

(
[θn1p]

` + [θn2p]
`
)

dx

+ c

∫

Ω

(
[θn1p]

`+1 + [θn2p]
`+1
)

dx

+ c

∫

Ω

(
θn1p[θ

n
2p]

` + θn2p[θ
n
1p]

`
)

dx. (11.41)

Now we use Young's inequality on the �rst term on the righthand side of (11.41)
to get

c

∫

Ω

(
[θn1p]

` + [θn2p]
`
)

dx ≤ c

∫

Ω

(
1

`+ 1
c`+1 +

`

`+ 1
[θn1p]

`+1 +
1

`+ 1
c`+1 +

`

`+ 1
[θn2p]

`+1

)
dx

(11.42)
hence, we obtain

c

∫

Ω

(
[θn1p]

` + [θn2p]
`
)

dx ≤ 2
µ(Ω)

`+ 1
c`+1 +

`

`+ 1

∫

Ω

(
[θn1p]

`+1 + [θn2p]
`+1
)

dx. (11.43)

Similarly, we use Young's inequality on the third term on the righthand side of
(11.41) to obtain

∫

Ω

(
θn1p[θ

n
2p]

` + θn2p[θ
n
1p]

`
)

dx ≤ c

∫

Ω

(
[θn1p]

`+1 + [θn2p]
`+1
)

dx. (11.44)

Hence, putting (11.43) and (11.44) in (11.41) we arrive at

2∑

i=1

∫

Ω

Fi(u
n
1 , u

n
2 , θ

n
1 , θ

n
2 )[θnip]

` dx ≤ 2
µ(Ω)

`+ 1
c`+1+c

∫

Ω

(
[θn1p]

`+1 + [θn2p]
`+1
)

dx. (11.45)

Further, for the coupling term on the fourth line of (11.39) we can write (recall (II))
∫

Ω

`

`+ 1

∫

Ω

ωiαω(un−1
1 , un−1

2 )(un1 − un2 )[θnip]
`+1 dx ≤ c

`

`+ 1

∫

Ω

[θnip]
`+1 dx. (11.46)

Hence, putting (11.45) and (11.46) in (11.39) and considering that the elliptic term
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in (11.39) is nonnegative we obtain

2∑

i=1

1

τ

∫

Ω

[
bi(u

n
ip)θ

n
ip − bi(un−1

ip )θn−1
ip

]
[θnip]

` dx+
2∑

i=1

1

τ

∫

Ω

[
θnip − θn−1

ip

]
[θnip]

` dx

−
2∑

i=1

`

`+ 1

1

τ

∫

Ω

(
bi(u

n
ip)− bi(un−1

ip )
)

[θnip]
`+1 dx

≤ 2
µ(Ω)

`+ 1
c`+1 + c

∫

Ω

(
[θn1p]

`+1 + [θn2p]
`+1
)

dx. (11.47)

Now, we multiply (11.47) by τ , again use Young's inequality and after little lengthy
computation we arrive at

2∑

i=1

∫

Ω

[θnip]
`+1 dx+

2∑

i=1

1

`+ 1

∫

Ω

b(unip)[θ
n
ip]
`+1 dx−

2∑

i=1

1

`+ 1

∫

Ω

b(un−1
ip )[θn−1

ip ]`+1 dx

≤
2∑

i=1

∫

Ω

[θn−1
ip ][θnip]

` dx+ τc1

∫

Ω

(
[θn1p]

`+1 + [θn2p]
`+1
)

dx+ 4τ
µ(Ω)

`+ 1
c`+1. (11.48)

Hence

2∑

i=1

(1− 2τc1)

∫

Ω

[θnip]
`+1 dx+

2∑

i=1

1

`+ 1

∫

Ω

b(unip)[θ
n
ip]
`+1 dx

−
2∑

i=1

1

`+ 1

∫

Ω

b(un−1
ip )[θn−1

ip ]`+1 dx

≤
2∑

i=1

∫

Ω

[θn−1
ip ][θnip]

` dx+ 4τ
µ(Ω)

`+ 1
c`+1. (11.49)

For su�ciently small τ , such that (1−2τc1) > 0, we can divide (11.49) by (1−2τc1)

2∑

i=1

∫

Ω

[θnip]
`+1 dx+

2∑

i=1

1

`+ 1

1

1− 2τc1

∫

Ω

b(unip)[θ
n
ip]
`+1 dx

−
2∑

i=1

1

`+ 1

1

1− 2τc1

∫

Ω

b(un−1
ip )[θn−1

ip ]`+1 dx

≤
2∑

i=1

1

1− 2τc1

∫

Ω

[θn−1
ip ][θnip]

` dx+ 4τ
µ(Ω)

`+ 1

1

1− 2τc1

c`+1. (11.50)

Let us mention, that we can write

1

1− 2τc1

= 1 +

(
2c1 +

2c1τ2c1

1− 2τc1

)
τ. (11.51)
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Now we denote
L := 2c1, ωp :=

2c1τ2c1

1− 2τc1

. (11.52)

Let us mention that ωp → 0, for τ → 0. We employ notation (11.52) and again use
Young's inequality on (11.50)

2∑

i=1

∫

Ω

[θnip]
`+1 dx+

2∑

i=1

1

`+ 1

1

1− 2τc1

∫

Ω

b(unip)[θ
n
ip]
`+1 dx

−
2∑

i=1

1

`+ 1

1

1− 2τc1

∫

Ω

b(un−1
ip )[θn−1

ip ]`+1 dx

≤ [1 + (L+ ωp)τ ]`+1 1

`+ 1

2∑

i=1

∫

Ω

[θn−1
ip ]`+1 dx+

`

`+ 1

2∑

i=1

∫

Ω

[θnip]
`+1 dx

+ 4τ
µ(Ω)

`+ 1

1

1− 2τc1

c`+1. (11.53)

Now we denote

yn :=
2∑

i=1

∫

Ω

[θnip]
`+1 dx, (11.54)

Yn :=
2∑

i=1

1

`+ 1

1

1− 2τc1

∫

Ω

b(unip)[θ
n
ip]
`+1 dx, (11.55)

Yn−1 :=
2∑

i=1

1

`+ 1

1

1− 2τc1

∫

Ω

b(un−1
ip )[θn−1

ip ]`+1 dx, (11.56)

yn−1 :=
2∑

i=1

∫

Ω

[θn−1
ip ]`+1 dx. (11.57)

With this notation we rewrite (11.53) as

yn + Yn ≤ [1 + (L+ ωp)τ ]`+1 [yn−1 + Yn−1 + 4τc`+1
]
. (11.58)

The recurrence relation (11.58) can be also rewritten as

yn + Yn ≤ [1 + (L+ ωp)τ ](`+1)n

(
y0 + Y0 + τ

n∑

j=1

4c`+1

)
. (11.59)

Because Yn is nonnegative (recall that ` is an odd integer), we can write

yn ≤ [1 + (L+ ωp)τ ](`+1)n

(
y0 + Y0 + τ

n∑

j=1

4c`+1

)
. (11.60)
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We take the `+ 1-th root

y
1
`+1
n ≤ [1 + (L+ ωp)τ ]n

(
y

1
`+1

0 + Y
1
`+1

0 + τ
1
`+1

n∑

j=1

4
1
`+1 c`+1

)
. (11.61)

Recall, that n = 1, . . . , p. Hence we can write
[
1 + (L+ ωp)

T

p

]n
≤
[
1 + (L+ ωp)

T

p

]p
≤
[
1 +

c

p

]p
→ ec, (11.62)

for p→∞.

Now we put the estimate (11.62) in (11.61)

y
1
`+1
n ≤ c1

(
y

1
`+1

0 + Y
1
`+1

0 + c2

)
. (11.63)

Taking into account (11.54), from (11.63) we have

(∫

Ω

[θ1pn ]`+1 dx+

∫

Ω

[θ2pn ]`+1 dx

) 1
`+1

≤ c1

(
y

1
`+1

0 + Y
1
`+1

0 + c2

)
. (11.64)

Hence
‖θpip‖L`+1(Ω)) ≤ C. (11.65)

Now letting `→ +∞ we get
‖θnip‖L∞(Ω)) ≤ C. (11.66)

Let us mention that (11.66) becomes

‖θ̄ip‖L∞(QT ) ≤ C. (11.67)

The a-priori estimate (11.67) allows us to conclude that there exist θi ∈ L∞(QT )
such that, letting p→ +∞ (along a selected subsequence),

θ̄p ⇀ θ weakly star in L∞(QT )2. (11.68)

Energy estimate for ūip. To derive energy a-priori estimate for ūip(t) we test
the equation (11.24) with φi = ūip(t)/ωi and sum the equations for i = 1, 2.

The sum of coupling terms is equal to zero. Using usual estimates for parabolic and
elliptic term we arrive at

2∑

i=1

1

τ

∫

Ω

B(ūip(t))−B(ūip(t− τ)) dx+
2∑

i=1

‖ūip(t)‖2
W 1,2

0 (Ω)
≤ c. (11.69)

79



We integrate (11.69) with respect to time from 0 to s (s = kτ, k ∈ N, 1 ≤ k ≤ p).
We arrive at

2∑

i=1

−
∫

Ω

B(ūip(0)) dx+
2∑

i=1

∫

Ω

B(ūip(kτ)) dx+
2∑

i=1

∫ kτ

0

‖ūip(t)‖2
W 1,2

0 (Ω)
dt ≤ kτc.

(11.70)

Hence
2∑

i=1

sup
0≤t≤T

∫

Ω

B(ūip(t)) dx+
2∑

i=1

∫ T

0

‖ūip(t)‖2
W 1,2

0
dt ≤ Tc. (11.71)

Let us note that (11.71) becomes

‖ūip‖L2(I,W 1,2
0 (Ω)) ≤ Tc. (11.72)

Hence
ūp ⇀ u weakly in L2(I;W 1,2

0 (Ω)2). (11.73)

Energy estimate for θ̄ip. In order to derive the energy estimate for θ̄ip we use
ψi = 2θnip as a test function in (11.14), φi = (θnip)

2 as a test function in (11.13),
combine the equations and sum for i = 1, 2 to get

2∑

i=1

∫

Ω

(
θnip
)2 (

bi(u
n
ip) + %i

)
−
(
θn−1
ip

)2 (
bi(u

n−1
ip ) + %i

)

τ
dx

+
2∑

i=1

∫

Ω

1

τ

[(
θnip
)
−
(
θn−1
ip

)]2 (
bi(u

n−1
ip ) + %i

)
dx+2

2∑

i=1

∫

Ω

λi(θ
n−1
ip , un−1

ip )∇θnip·∇θnip dx

=
2∑

i=1

∫

Ω

2Fi(u
n
1p, u

n
2p, θ

n
1p, θ

n
2p)θ

n
ip dx+

2∑

i=1

∫

Ω

ωiαω(un−1
1p , un−1

2p )[un1p − un2p](θnip)2 dx.

(11.74)

Recall that b is a positive function and % is a positive constant, the second integral
is nonnegative. Further, using Friedrich's inequality for the elliptic term, we obtain

2
2∑

i=1

∫

Ω

λi(θ
n−1
ip , un−1

ip )∇θnip · ∇θnip dx ≥
2∑

i=1

c‖θnip‖2
W 1,2

0 (Ω)
. (11.75)

Using (11.75) in (11.74), considering ui are bouded functions we can write

2∑

i=1

∫

Ω

(
θnip
)2 (

bi(u
n
ip) + %i

)
−
(
θn−1
ip

)2 (
bi(u

n−1
ip ) + %i

)

τ
dx+

2∑

i=1

c‖θnip‖2
W 1,2

0 (Ω)

≤
2∑

i=1

∫

Ω

2Fi(θ
n
1p, θ

n
2p)θ

n
ip dx+

2∑

i=1

∫

Ω

c(θnip)
2 dx. (11.76)
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Using (IV) we have

2∑

i=1

∫

Ω

[(
θnip
)2 (

bi(u
n
ip) + %i

)
−
(
θn−1
ip

)2 (
bi(u

n−1
ip ) + %i

)]
dx+

2∑

i=1

cτ‖θnip‖2
W 1,2

0 (Ω)

≤ τ
2∑

i=1

∫

Ω

(1 + θn1p + θn2p)θ
n
ip dx+ τ

2∑

i=1

∫

Ω

c(θnip)
2 dx. (11.77)

Now, summing (11.77) for n = 1, . . . , k, 1 < k ≤ p, we obtain

2∑

i=1

∫

Ω

(
θkip
)2 (

bi(u
k
ip) + %i

)
−
(
θ0
ip

)2 (
bi(u

0
ip) + %i

)
dx+

k∑

n=1

2∑

i=1

cτ‖θnip‖2
W 1,2

0 (Ω)

≤ τ

k∑

n=1

2∑

i=1

∫

Ω

(1 + θn1p + θn2p)θ
n
ip dx+ τ

k∑

n=1

2∑

i=1

∫

Ω

c(θnip)
2 dx. (11.78)

Using (I) we obtain

2∑

i=1

∫

Ω

(
θkip
)2

+
k∑

n=1

2∑

i=1

cτ‖θnip‖2
W 1,2

0 (Ω)

≤ c+ τ
k∑

n=1

2∑

i=1

∫

Ω

(1 + θn1p + θn2p)θ
n
ip dx+ cτ

p∑

n=1

2∑

i=1

∫

Ω

(θnip)
2 dx. (11.79)

Now, we rewrite the second term on the righthand side of the inequality (11.79) to
get

2∑

i=1

∫

Ω

(
θkip
)2

+
k∑

n=1

2∑

i=1

cτ‖θnip‖2
W 1,2

0 (Ω)

≤ c+ τ

k∑

n=1

∫

Ω

[
θn1p + θn2p + 2θn1pθ

n
2p +

(
θn1p
)2

+
(
θn2p
)2
]

dx+ cτ
k∑

n=1

2∑

i=1

∫

Ω

(θnip)
2 dx.

(11.80)

We use Young's inequality with parameters ε

2∑

i=1

∫

Ω

(
θkip
)2

+
k∑

n=1

2∑

i=1

cτ‖θnip‖2
W 1,2

0 (Ω)

≤ τ

k∑

n=1

∫

Ω

(ε1 + c1(ε)
(
θn1p
)2

+ ε+ c2(ε)
(
θn2p
)2

+ 2(ε)
(
θn1p
)2

+ 2c3(ε)
(
θn2p
)2

+
(
θn1p
)2

+
(
θn2p
)2

) dx

+ c+ cτ

k∑

n=1

2∑

i=1

∫

Ω

(θnip)
2 dx. (11.81)
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Hence

2∑

i=1

∫

Ω

(
θkip
)2

dx+
k∑

n=1

2∑

i=1

cτ‖θnip‖2
W 1,2

0 (Ω)
≤ c+ cτ

k∑

n=1

2∑

i=1

∫

Ω

(θnip)
2 dx. (11.82)

This yields
2∑

i=1

∫

Ω

(
θkip
)2

dx ≤ c1 + c2τ

k∑

n=1

2∑

i=1

∫

Ω

(θnip)
2 dx. (11.83)

Now, using the discrete form of Gronwall's inequality D.5 we deduce

2∑

i=1

∫

Ω

(
θkip
)2

dx ≤ c. (11.84)

Hence, the equation (11.84) yields

2∑

i=1

max
n=1,...,p

∫

Ω

∣∣θpip
∣∣2 dx+ τ

2∑

i=1

p∑

n=1

∫ T

0

‖θnip‖2
W 1,2

0
dt ≤ c. (11.85)

Let us mention that (11.85) becomes

‖θ̄ip‖L2(I;W 1,2
0 (Ω)) ≤ c. (11.86)

Hence

θ̄p ⇀ θ weakly in L2(I;W 1,2
0 (Ω)2). (11.87)

Convergence almost everywhere of ūip, θ̄ip. Apart from energy estimates and
L∞-bounds, we need to show convergence almost everywhere of the interpolant
functions due to the nonlinear terms in the system.

Theorem 11.11 (Convergence almost everywhere of ūip and θ̄ip) Let the assump-
tions (I)�(V) be satis�ed, then

ūip → ui almost everywhere on QT ,

θ̄ip → θi almost everywhere on QT .

Proof. We procceed in the same way as in Section 8.4.4 and, using suitable test
functions, we verify the assumptions of Lemma 8.15. Since the veri�cation is tech-
nical and the main ideas have already been presented, we refer for more details to
Section 8.4.4.
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11.7 Passage to the limit for p→∞

In the preceeding sections, we have shown that letting p → +∞ (along a selected
subsequence),

ūip ⇀ ui weakly in L2(I;W 1,2
0 (Ω)),

ūip ⇀ ui weakly star in L∞(QT ),

θ̄ip ⇀ θi weakly in L2(I;W 1,2
0 (Ω)),

θ̄ip ⇀ θi weakly star in L∞(QT ).

Further, we have also

ūip → ui almost everywhere on QT ,

θ̄ip → θi almost everywhere on QT .

Hence, the above established convergences are su�cient for taking the limit p→∞
in (11.24)�(11.25) (along a selected subsequence) to show that the pair [u,θ] is
a weak solution of the system (11.1)�(11.6).
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Part V

Further extensions

In this Section, we brie�y introduce the model with general boundary conditions
arising from the dual porosity approach (see Section 3.2) and a coupled di�usion-
convection-dispersion model, including coupled transport of heat, moisture and dis-
solved species. In this text, we will formulate the problems in a variational sense
and present the assumptions on parameters. For more information, we refer the
reader to Appendices A and B, where we add our papers [6] and [7], which deal
with these problems in detail. Let us also note, that in what follows, we adopt the
notation from the mentioned papers.

12 Model with general boundary conditions

Strong formulation. Let Ω be a bounded domain in R2, Ω ∈ C0,1 and let ΓD and
ΓN be open disjoint subsets of ∂Ω (not necessarily connected) such that ΓD 6= ∅
and the ∂Ω\(ΓD ∪ ΓN) is a �nite set. Let T ∈ (0,∞) be �xed, I = (0, T ) and
QT = Ω× I denotes the space-time cylinder, ΓDT = ΓD × I and ΓNT = ΓN × I.
We shall study the following initial boundary value problem (i = 1, 2)

∂tbi(ui) = ∇ · ai(θi, ui,∇ui) + fi(b1(u1), b2(u2)) in QT , (12.1)
∂t [bi(ui)θi + %iθi] = ∇ · (λi(θi, ui)∇θi)

+∇ · (θiai(θi, ui,∇ui))− hi(θ1, θ2) in QT , (12.2)
u = uD on ΓDT , (12.3)
θ = θD on ΓDT , (12.4)

−ai(θi, ui,∇ui) · n = −γi on ΓNT , (12.5)
−λi(θi, ui)∇θi · n = αi(θi)− gi on ΓNT , (12.6)

u(x, 0) = u0(x) in Ω, (12.7)
θ(x, 0) = θ0(x) in Ω. (12.8)

The system (12.1)�(12.8) arises from the coupled water movement and heat transfer
through the dual porous system following the Kirchho� transformation. Here ui :
QT → R and θi : QT → R are the unknown functions. u = (u1, u2) corresponds to
the Kirchho� transformation of the matric potential and θ = (θ1, θ2) represents the
temperature of the dual porous system. The vector function ai : R×R×R2 → R2

admits the structure ai(r, s, z) = ai(r)z + ei(r, s), ai : R → R, ei : R2 → R2,
bi : R → R, λi : R2 → R, fi : R2 → R, hi : R2 → R, uiD : QT → R, θiD : QT → R,
γi : ΓNT → R, gi : ΓNT → R, αi : R → R, u0i : Ω → R and θ0i : Ω → R are given
functions, %i is a real positive constant and n is the outward unit normal vector.
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Structure and data properties. We introduce our assumptions on functions in
(12.1)�(12.8).

(12i) bi is a positive continuous strictly monotone function such that

0 < bi(ξ) ≤ b] < +∞ ∀ξ ∈ R (b] = const),

(bi(ξ1)− bi(ξ2)) (ξ1 − ξ2) > 0 ∀ξ1, ξ2 ∈ R, ξ1 6= ξ2.

(12ii) ai and λi are continuous functions satisfying

0 < a] ≤ ai(ξ) ≤ a] < +∞ ∀ξ ∈ R (a], a
] = const),

0 < λ] ≤ λi(ξ, ζ) ≤ λ] < +∞ ∀ξ, ζ ∈ R (λ], λ
] = const).

ei : R2 → R2 is continuously di�erentiable vector function, such that

|ei(ξ, ζ)| ≤ e] < +∞ ∀ξ, ζ ∈ R (e] = const).

(12iii) fi : R2 → R is continuous.

(12iv) hi : R2 → R (i = 1, 2) admits the structure

h1(r, s) = ε(r − s), h2(r, s) = ε(s− r),

where ε is a positive constant.

(12v) αi : R→ R admits the structure

αi(r) = c|r|3r − σ(r), c > 0,

where σ is a continuous function satisfying the linear growth condition

|σ(r)| ≤ c(1 + |r|).

(12vi) Assume

u0,θ0 ∈ L2(Ω),

uD,θD ∈ L2(I;W 1,2+δ(Ω)) ∩W 1,1(I;L∞(Ω)) ∩ L∞(I;L∞(ΓD)),

γ, g ∈ C(QT )2

with some δ > 0.
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Weak formulation. A weak solution of (12.1)�(12.8) is a pair [u,θ] such that

u ∈ uD + L2(I;W 1,2
ΓD

(Ω)2),

θ ∈ θD + L2(I;W 1,2
ΓD

(Ω)2) ∩ L∞(I;L2(Ω)2),

αi(θi) ∈ L5/4(I;L5/4(ΓN)),

which satis�es (i = 1, 2)

−
∫

QT

bi(ui)∂tφi dxdt+

∫

QT

(a(θi)∇ui + ei(θi, ui)) · ∇φi dxdt

=

∫

QT

fi(b1(u1), b2(u2))φi dxdt+

∫

Ω

bi(u0i)φi(0) dx+

∫

ΓNT

γiφi dSdt (12.9)

∀φi ∈ C∞(QT ), φi(x, T ) = 0 ∀x ∈ Ω and φi = 0 on ΓD;

−
∫

QT

(bi(ui)θi + %iθi) ∂tψi dxdt+

∫

QT

λi(θi, ui)∇θi · ∇ψi dxdt

+

∫

QT

(θi (ai(θi)∇ui + ei(θi, ui))) · ∇ψi dxdt+

∫

QT

hi(θ1, θ2)ψi dxdt

+

∫

ΓNT

αi(θi)ψi dSdt−
∫

ΓNT

θi γi ψi dSdt

=

∫

Ω

(bi(u0i)θ0i + %iθ0i)ψi(0) dx+

∫

ΓNT

giψi dSdt (12.10)

∀ψi ∈ C∞(QT ), ψi(x, T ) = 0 ∀x ∈ Ω and ψi = 0 on ΓD.

Theorem 12.1 Let the assumptions (12i)�(12vi) be satis�ed. Then there exists at
least one weak solution of the system (12.1)�(12.8).
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13 Di�usion-convection-dispersion model

Strong formulation. Let Ω be a bounded domain in R2, Ω ∈ C0,1 and let ΓD and
ΓN be open disjoint subsets of ∂Ω (not necessarily connected) such that ΓD 6= ∅
and the ∂Ω\(ΓD ∪ ΓN) is a �nite set. Let T ∈ (0,∞) be �xed, I = (0, T ) and
QT = Ω× I denotes the space-time cylinder, ΓDT = ΓD × I and ΓNT = ΓN × I.
We present the initial boundary value problem in QT

∂tb(u) = ∇ · [a(θ)∇u], (13.1)
∂t[b(u)w] = ∇ · [b(u)Dw(u)∇w] +∇ · [wa(θ)∇u], (13.2)

∂t [b(u)θ + %θ] = ∇ · [λ(θ, u)∇θ] +∇ · [θa(θ)∇u], (13.3)

with the mixed-type boundary conditions

u = 0, w = 0, θ = 0 on ΓDT , (13.4)
∇u · n = 0, ∇w · n = 0, ∇θ · n = 0 on ΓNT (13.5)

and the initial conditions

u(·, 0) = u0, w(·, 0) = w0, θ(·, 0) = θ0 in Ω. (13.6)

Here u : QT → R, w : QT → R and θ : QT → R are the unknown functions. In
particular, u corresponds to the Kirchho� transformation of the matric potential
[2], w represents concentration of dissolved species and θ represents the temperature
of the porous system. Further, a : R → R, Dw : R → R, b : R → R, λ : R2 → R,
u0 : Ω → R, w0 : Ω → R, and θ0 : Ω → R are given functions, % is a real positive
constant and n is the outward unit normal vector.

Structure and data properties. Let us introduce the assumptions on functions
in (13.1)�(13.6).

(13i) b ∈ C1(R), 0 < b′(ξ) < b∗ and

0 < b(ξ) ≤ b2 < +∞ ∀ξ ∈ R (b2, b∗ = const).

(13ii) a, Dw ∈ C(R) and λ ∈ C(R2) such that

0 < a(ξ), 0 < Dw(ξ) ∀ξ ∈ R,
0 < λ(ξ, ζ) ∀ξ, ζ ∈ R.

(13iii) Assume
u0, w0, θ0 ∈ L∞(Ω),

such that

−∞ < u1 < u0 < 0 a.e. in Ω (u1 = const). (13.7)
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Weak formulation. A weak solution of (13.1)�(13.6) is a triplet [u,w, θ] such
that

u ∈ L2(I;W 1,2
ΓD

(Ω)), w ∈ L2(I;W 1,2
ΓD

(Ω)) ∩ L∞(QT ), θ ∈ L2(I;W 1,2
ΓD

(Ω)) ∩ L∞(QT ),

which satis�es

−
∫

QT

b(u)∂tφ dxdt+

∫

QT

a(θ)∇u · ∇φ dxdt =

∫

Ω

b(u0)φ(x, 0) dx (13.8)

for any φ ∈ L2(I;W 1,2
ΓD

(Ω)) ∩W 1,1(I;L∞(Ω)) with φ(·, T ) = 0;

−
∫

QT

b(u)w∂tη dxdt+

∫

QT

b(u)Dw(u)∇w · ∇η dxdt

+

∫

QT

wa(θ)∇u · ∇η dxdt =

∫

Ω

b(u0)w0η(x, 0) dx (13.9)

for any η ∈ L2(I;W 1,2
ΓD

(Ω)) ∩W 1,1(I;L∞(Ω)) with η(·, T ) = 0;

−
∫

QT

[b(u)θ + %θ]∂tψ dxdt+

∫

QT

λ(θ, u)∇θ · ∇ψ dxdt

+

∫

QT

θa(θ)∇u · ∇ψ dxdt =

∫

Ω

[b(u0)θ0 + %θ0]ψ(x, 0) dx (13.10)

for any ψ ∈ L2(I;W 1,2
ΓD

(Ω)) ∩W 1,1(I;L∞(Ω)) with ψ(·, T ) = 0.

Theorem 13.1 Let the assumptions (13i)�(13iii) be satis�ed. Then there exists at
least one weak solution of the system (13.1)�(13.6).
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This paper deals with a fully nonlinear degenerate parabolic system with natural 
(critical) growths and under non-linear boundary conditions. Such problems arise 
from the heat and water flow through a partially saturated fractured rock mass and 
structured porous media. Existence of a global weak solution of the problem (on an 
arbitrary interval of time) is proved by means of semidiscretization in time, deriving 
suitable a-priori estimates based on W 1,p-regularity of the approximate solution and 
by passing to the limit from discrete approximations.
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1. Introduction

In this paper we deal with mathematical analysis of fully nonlinear degenerate parabolic system modeling 
coupled heat transport and preferential movement of water in dual structured porous media. Variably-
saturated porous medium is treated as a multi-phase material. At the microscale the individual phases can 
be clearly identified, however, at the macroscale, where measurements are usually carried out, the only ob-
servable quantities correspond to the effective behaviour. Because the detailed description of the geometry 
of the porous space is seldom known in practice, the macroscale-level equations are sought as suitable av-
erages of the microscale balance law, for example in the framework of the hybrid mixture theory, originally 
proposed in [18–20]. In this context, the porous medium is considered as continuum of independent overlap-
ping phases. For each constituent its conservation equation is derived according to principles of continuum 
mechanics.
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1.1. Conservation of mass

In mixture theory, the derivation of the mass balance equation is based on mass conservation of α-phase 
inside the spatial domain Ω of interest. A general form of a mass balance law reads [34]

d
dt

∫

B

�α dx +
∫

∂B

�αvα · n dS =
∫

B

sα dx (1.1)

to be satisfied for any regular subdomain B ⊂ B ⊂ Ω. Here, �α = Θα�α represents the phase averaged 
density, Θα [-] is the volume fraction of the α-phase, �α [kg m−3] stands for the intrinsic phase averaged 
density and sα [kg m−3 s−1] is a production term. Further, vα [m s−1] is the velocity of α-phase and n
represents an outward unit normal vector to the boundary ∂B. Applying the divergence theorem to (1.1)
and owing to the arbitrariness of the domain B one arrives at the local form of the balance law

∂(Θα�α)
∂t

+ ∇ · (Θα�αvα) = sα. (1.2)

1.2. Conservation of heat energy

The balance of heat energy for the α-phase can be written as

d
dt

∫

B

eα dx +
∫

∂B

(qT )α · n dS =
∫

B

Qα dx +
∫

B

Eα dx −
∫

B

Hαsα dx, (1.3)

where eα [J m−3] is the total internal energy of the α-phase in B, (qT )α [W m−2] is the heat flux, Qα stands 
for the volumetric heat source, Eα represents the term expressing energy exchange with the other phases 
and the symbol Hα [J kg−1] stands for the specific enthalpy of the α-phase. Here we assume

eα = �αCαTα, (1.4)

where Tα [K] is the absolute temperature and Cα [J kg−1 K−1] represents the specific isobaric heat of the 
α-phase. Further, the heat flux vector (qT )α includes the conductive flux qα and convection

(qT )α = qα + �αCαTαvα. (1.5)

Hence, applying the divergence theorem to (1.3) and using (1.4) and (1.5) one obtains the heat energy 
conservation equation for the α-phase in the differential form

∂t (�αCαTα) + ∇ · (qα + �αCαTαvα) = Qα + Eα − Hαsα. (1.6)

1.3. Single porosity model

In the simplest case, consider the flow of a single homogeneous fluid through a porous solid, such as 
variably saturated water flow in soils. The mass conservation equation for the α-phase (1.2) can be partic-
ularized to both the water phase (α = w) and the solid phase (α = s). The mass conservation equations for 
the water and solid phases, respectively, become (neglecting source terms)

∂(Θw�w)
∂t

+ ∇ · (Θw�wvw) = 0 (1.7)
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and

∂ (Θs ρs)
∂t

+ ∇ · (Θs�svs) = 0.

Under local thermal equilibrium conditions between water and solid phases (T = Ts = Tw) and under the 
assumption that the solid phase is immobile, summing up the energy conservation equations (1.6) over water 
and solid phases one obtains (neglecting source terms)

∂t (Cw�wΘwT + Cs�sT ) + ∇ · q + ∇ · (TCw�wΘmvw) = 0. (1.8)

Equations (1.7) and (1.8), which describe the conservations of mass of water and heat energy of porous media, 
respectively, may be used to model the coupled flow of water and heat in a porous medium. However, in 
most practical applications the structured nature of a porous medium in structured soils or fractured rock 
formations requires a more complicated approach to describe the water movement in the porous material. 
One commonly used approach of this type is referred to as the dual porosity model [15].

1.4. Dual porosity model

The dual porosity medium is composed of two distinct pore homogeneous systems with contrasted hy-
draulic properties, the network of fractures and the matrix pore system, respectively. The amount of water 
present at a certain matric potential h [m] of the porous medium is characterized by the water retention 
curve Θ = Θ(h) [-]. In dual porosity type structured media two retention functions are taken into account, 
for the matrix Θm = Θm(hm) [-] and fractures Θf = Θf (hf ) [-]. Water flow is considered for both, the 
fractures and the matrix pore system. The transfer of water across the fracture–matrix interface is described 
macroscopically using a first-order coupling term [37]. Water flow in the dual porosity medium is governed 
by the following system of equations [39]

∂t(�wΘm) + ∇ · �wΘmvm + Sm(Θm,Θf ) = 0, (1.9)

∂t(�wΘf ) + ∇ · �wΘfvf + Sf (Θm,Θf ) = 0. (1.10)

The following system of equations expresses the first law of thermodynamics in the dual porous medium 
allowing for the heat transfer between fractures and the matrix pore system (that is, one no longer has local 
thermal equilibrium between matrix and fractures)

∂t (Cw�wΘmTm + Csm�smTm) + ∇ · qm + ∇ · (TmCw�wΘmvm) − β(Tf − Tm) = 0, (1.11)

∂t (Cw�wΘfTf + Csf�sfTf ) + ∇ · qf + ∇ · (TfCw�wΘfvf ) − β(Tm − Tf ) = 0. (1.12)

A critical aspect of using this approach lies in the determination of the appropriate coupling functions Sm

and Sf and a value of β in the heat exchange terms [37]. In (1.9)–(1.12), the subscripts f and m, respectively, 
denote the subsystems of fractures (macropores) and matrix blocks (micropores), respectively. The primary 
unknowns in the model are the absolute temperature of matrix Tm [K], the absolute temperature of fractures 
Tf [K], the fracture matric potential hf [m] and matrix matric potential (matrix pressure head) hm [m] 
(single-valued functions of the time t and the spatial position x ∈ Ω). Further, �w [kg m−3] is the density 
of water, Cw [J kg−1 K−1] represents the isobaric heat capacity of water, �sm, �sf [kg m−3] and Csm, Csf

[J kg−1 K−1], respectively, are the mass densities and the isobaric heat capacities of solid microstructure 
corresponding to matrix and fractures, respectively.
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1.5. Initial and boundary conditions

To complete the introduction of the model, let us specify the boundary and initial conditions. The 
boundary conditions may be of Neumann or Dirichlet type. The water flux across the boundary is quantified 
by the Neumann type boundary conditions

Θmvm · n = γm, Θfvf · n = γf ,

where the couple (γm, γf ) represents the liquid flux imposed on the boundary.
As for the heat flux, we consider the natural boundary condition given by

qm · n = αc(Tm − T∞) + eσSB(T 4
m − T 4

∞) + gm,

in which the symbol αc designates the heat transfer coefficient, e stands for the relative surface emissivity, 
σSB represents the Stefan–Boltzmann constant, T∞ [K] is the temperature of the environment and gm rep-
resents the heat flux imposed on the boundary. Analogously, corresponding Neumann boundary conditions 
are considered for fractures.

The Dirichlet boundary conditions are usually given by prescribed values of the matric potential and the 
temperature on the boundary

hm = hDm, hf = hDf , Tm = TDm, Tf = TDf .

The initial conditions are set as follows:

hm(·, 0) = h0m(·), hf (·, 0) = h0f (·), Tm(·, 0) = T0m(·), Tf (·, 0) = T0f (·).

Here, h0m, h0f , T0m and T0f represent the initial distributions of the primary unknowns, matric potentials 
and temperatures.

2. Constitutive relationships and hydraulic characteristics. Application of the Kirchhoff transformation

Physical models of coupled water flow and heat transport possess a common structure, derived from 
balance laws for mass of water and heat energy of the system. Further, we apply Darcy’s constitutive law 
for the mass flux

Θv = −K(∇h + ez), (2.1)

where ez stands for the vertical unit vector and K [m s−1] represents the hydraulic permeability of the 
porous media. Similarly we assume the conductive heat flux q to be given by Fourier’s law

q = −Λ∇T (2.2)

with the thermal conductivity function Λ [W m−1 K−1]. Usually, under non-isothermal processes, given 
functions K and λ depend on the temperature and liquid water content and are measured experimentally.

Concerning retention curves of the fracture and matrix pore systems, respectively, we mention here the 
commonly used relation proposed by van Genuchten and Mualem (see, for instance, [39])

Θ(h) = Θr + (Θs − Θr)[1 + |αh|n1 ]−n2 , (2.3)
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where Θs is the soil saturated water content [-], Θr is the soil residual water content [-], α [m−1], n1 and 
n2 are parameters.

The temperature–pressure head dependence of the hydraulic conductivity is given by [7,36]

K(T, h) = ks ν0
κ(h)
ν(T ) , (2.4)

where ks [m s−1] is the saturated hydraulic conductivity at the reference temperature T0 [K], κ [m s−1] is 
the h-dependent relative hydraulic conductivity,

κ(h) =
√

S(h)
(
1 −

(
1 − S(h)1/n2

)n2)2
(2.5)

for h < 0 (unsaturated porous media), S(h) = Θ(h)−Θr

Θs−Θr
. Here Θr and Θs are positive constants. Finally, ν

[m s−2] is the temperature dependent kinematic viscosity, ν0 := ν(T0). In particular, material parameters 
in functions (2.3)–(2.5) need to be determined for the fracture and matrix pore systems, respectively.

Let us note that the system (1.9)–(1.10) with the constitutive relationship (2.1) and material data 
functions (2.3)–(2.5) is degenerate with degeneracies in both elliptic and parabolic parts. It is a common 
treatment of nonlinear problems to introduce the so called Kirchhoff transformation, which converts these 
degeneracies only to the parabolic term (see [2]). In particular, define the functions βi : R → R+, ζ = βi(ξ), 
i = 1, 2, by

β1(ξ) =
ξ∫

0

κm(s)ds, β2(ξ) =
ξ∫

0

κf (s)ds,

where κm and κf are the relative hydraulic conductivities (recall (2.5)) particularized for the matrix pore 
system and fractures, respectively.

Finally, in order to simplify mathematical formulations, let us introduce the following notation:

b1(u1) := Θm(β−1
1 (u1)), b2(u2) := Θf (β−1

2 (u2)),

a1(T ) := (ks)m (ν0)m
1

νm(T ) , a2(T ) := (ks)f (ν0)f
1

νf (T ) ,

�1 := Csm�sm

Cw�w
, �2 := Csf�sf

Cw�w
,

λm(T, u1) := Λm(T, β−1
1 (u1))

Cw�w
, λf (T, u2) := Λf (T, β−1

2 (u2))
Cw�w

,

e1(T, u1) := ezKm(T, β−1
1 (u1))

Cw�w
, e2(T, u2) := ezKf (T, β−1

2 (u2))
Cw�w

and finally

f1(b1(u1), b2(u2)) := 1
�w

Sm(Θm(β−1
1 (u1)),Θf (β−1

2 (u2))),

f2(b1(u1), b2(u2)) := 1
�w

Sf (Θm(β−1
1 (u1)),Θf (β−1

2 (u2))).

This formally leads to the system (3.1)–(3.2) introduced in the next section and qualitatively analyzed in 
the rest of the paper.
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3. Strong formulation of the problem

Let Ω be a bounded domain in R2, Ω ∈ C0,1 and let ΓD and ΓN be open disjoint subsets of ∂Ω (not 
necessarily connected) such that ΓD �= ∅ and the ∂Ω\(ΓD ∪ ΓN ) is a finite set. Let T ∈ (0, ∞) be fixed 
throughout the paper, I = (0, T ) and QT = Ω × I denotes the space–time cylinder, ΓDT = ΓD × I and 
ΓNT = ΓN × I.

We shall study the following initial boundary value problem (i = 1, 2)

∂tbi(ui) = ∇ · ai(θi, ui,∇ui) + fi(b1(u1), b2(u2)) in QT , (3.1)

∂t [bi(ui)θi + �iθi] = ∇ · (λi(θi, ui)∇θi) + ∇ · (θiai(θi, ui,∇ui)) − hi(θ1, θ2) in QT , (3.2)

u = uD on ΓDT , (3.3)

θ = θD on ΓDT , (3.4)

−ai(θi, ui,∇ui) · n = −γi on ΓNT , (3.5)

−λi(θi, ui)∇θi · n = αi(θi) − gi on ΓNT , (3.6)

u(x, 0) = u0(x) in Ω, (3.7)

θ(x, 0) = θ0(x) in Ω. (3.8)

The system (3.1)–(3.8) arises from the coupled water movement and heat transfer through the dual porous 
system following the Kirchhoff transformation. Here ui : QT → R and θi : QT → R are the unknown 
functions. u = (u1, u2) corresponds to the Kirchhoff transformation of the matric potential and θ = (θ1, θ2)
represents the temperature of the dual porous system. The vector function ai : R × R × R2 → R2 admits 
the structure

ai(r, s,z) = ai(r)z + ei(r, s), (3.9)

ai : R → R, ei : R2 → R2, bi : R → R, λi : R2 → R, fi : R2 → R, hi : R2 → R, uiD : QT → R, θiD : QT → R, 
γi : ΓNT → R, gi : ΓNT → R, αi : R → R, u0i : Ω → R and θ0i : Ω → R are given functions, �i is a real 
positive constant and n is the outward unit normal vector.

In this paper we study the existence of the solution to the system (3.1)–(3.9). In the last decades, a con-
siderable effort has been invested into detailed analysis of parabolic systems arising from the coupled heat 
and mass flows in porous media. The related works in this context are, for instance, due to Vala [38], Li and 
Sun [27], Li et al. [29] and Li and Sun [28]. Most theoretical results on parabolic systems exclude the case 
of non-symmetrical parabolic parts [2,13,22]. Such systems are applicable e.g. in problems modeling degra-
dation processes in wet concrete [30–32], motion of interacting populations of colloidal species [23,25,24], 
population dynamics [6], water movement in porous media with a dual porosity structure [15,16,10–12] etc. 
Although the approach in [38] admits non-symmetry in the parabolic term, it requires unrealistic symmetry 
in the elliptic part. In [8,21], the authors studied the existence, uniqueness and regularity of coupled quasi-
linear equations modeling evolution of fluid species influenced by thermal, electrical and diffusive forces. In 
[27,29,28], the authors studied a model of specific structure of a heat and mass transfer arising from textile 
industry and proved the global existence for one-dimensional problems in [27,29] and three-dimensional 
problems in [28]. In [40], the authors proved the global existence of positive/non-negative weak solutions of 
the fully nonlinear, degenerate and strongly coupled parabolic system modeling one-dimensional heat and 
sweat transport in porous textile media with a non-local thermal radiation and phase change. Giaquinta and 
Modica in [17] proved the local-in-time solvability of quasilinear diagonal parabolic systems with nonlinear 
boundary conditions (without assuming any growth condition), see also [41]. Recently, the existence of local-
in-time strong solutions for coupled moisture and heat transfer in multi-layer porous structures governed by 
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the doubly nonlinear system is proven in [4]. In the present paper we extend our previous existence result for 
coupled heat and mass flows in porous media [3] to more general coupled parabolic system in non-smooth 
domains and under highly nonlinear mixed boundary conditions.

The rest of this paper is organized as follows. In Section 4, we introduce basic notation and suitable 
function spaces and specify our assumptions on data and coefficient functions in the problem. In Section 5, 
we formulate the problem in the variational sense and state the main result, the global-in-time existence 
of the weak solution. The main result is proved by an approximation procedure in Section 6. First we 
formulate the semi-discrete scheme and prove the existence of its solution (Subsection 6.1). The crucial 
a-priori estimates of time interpolants of the solution are proved in Subsection 6.2. Finally, we conclude that 
the solutions of semi-discrete scheme converge and the limit is the solution of the original time-continuous 
problem (Subsection 6.3).

4. Preliminaries

4.1. Notations and some properties of Sobolev spaces

Vectors and vector functions are denoted by boldface letters. Throughout the paper, we will always use 
positive constants C, c, c1, c2, . . . , which are not specified and which may differ from line to line. Throughout 
this paper we suppose s, q, s′ ∈ [1, ∞], s′ denotes the conjugate exponent to s > 1, 1/s + 1/s′ = 1. Ls(Ω)
denotes the usual Lebesgue space equipped with the norm ‖ · ‖Ls(Ω) and W k,s(Ω), k ≥ 0 (k need not to 
be an integer, see [26]), denotes the usual Sobolev–Slobodecki space with the norm ‖ · ‖W k,s(Ω). We define 

W 1,2
ΓD

(Ω) :=
{
φ ∈ W 1,2(Ω); φ

∣∣
ΓD

= 0
}

. By E∗ we denote the space of all continuous, linear forms on Banach 

space E and by 〈·, ·〉 we denote the duality between E and E∗. By Ls(I; E) we denote the Bochner space 
(see [1]). Therefore, Ls(I; E)∗ = Ls′(I; E∗).

Remark 4.1. (See [1,26,35].) There exists a continuous linear operator (trace operator) R : W 1,p(Ω) →
L1(∂Ω) such that, for any φ ∈ C1(Ω), we have R(φ) = φ

∣∣
∂Ω. R remains continuous as the mapping (for 

N = 2 in our paper) φ → φ
∣∣
∂Ω : W 1,p(Ω) → Lq(∂Ω), where

q :=

⎧
⎪⎨
⎪⎩

p
2−p , for 1 ≤ p < 2,
an arbitrarily large real for p = 2,
+∞ for p > 2).

Remark 4.2. Another useful result holds for a certain interpolation between the Sobolev and Lebesgue 
spaces, see [13, Remark 4]. For all η sufficiently small, say 0 < η ≤ η0, η0 being given, we have

∮

∂Ω

|φ|2dS ≤ η

∫

Ω

|∇φ|2 dx + C(η)
∫

Ω

|φ|2 dx for all φ ∈ W 1,2(Ω). (4.1)

4.2. Structure and data properties

We start by introducing our assumptions on functions in (3.1)–(3.8).

(i) bi is a positive continuous strictly monotone function such that

0 < bi(ξ) ≤ b� < +∞ ∀ξ ∈ R (b� = const),

(bi(ξ1) − bi(ξ2)) (ξ1 − ξ2) > 0 ∀ξ1, ξ2 ∈ R, ξ1 �= ξ2.
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(ii) ai and λi are continuous functions satisfying

0 < a� ≤ ai(ξ) ≤ a� < +∞ ∀ξ ∈ R (a�, a
� = const),

0 < λ� ≤ λi(ξ, ζ) ≤ λ� < +∞ ∀ξ, ζ ∈ R (λ�, λ
� = const).

ei : R2 → R2 is continuously differentiable vector function, such that

|ei(ξ, ζ)| ≤ e� < +∞ ∀ξ, ζ ∈ R (e� = const).

(iii) fi : R2 → R is continuous.
(iv) hi : R2 → R (i = 1, 2) admits the structure

h1(r, s) = ε(r − s), h2(r, s) = ε(s − r),

where ε is a positive constant.
(v) αi : R → R admits the structure

αi(r) = c|r|3r − σ(r), c > 0,

where σ is a continuous function satisfying the linear growth condition

|σ(r)| ≤ c(1 + |r|).

(vi) (Boundary and initial data) Assume

u0,θ0 ∈ L2(Ω),

uD,θD ∈ L2(I;W 1,2+δ(Ω)) ∩ W 1,1(I;L∞(Ω)) ∩ L∞(I;L∞(ΓD)),

γ, g ∈ C(QT )2

with some δ > 0.

4.3. Auxiliary results

Remark 4.3. (See [2], Section 1.1.) Let us note that (i) implies that there is a (strictly) convex C1-function 
Φi : R → R, Φi(0) = 0, Φ′

i(0) = 0, such that bi(z) − bi(0) = Φ′
i(z) ∀z ∈ R. Introduce the Legendre transform

Bi(z) :=
1∫

0

(bi(z) − bi(sz))z ds =
z∫

0

(bi(z) − bi(s)) ds.

Let us present some properties of Bi [2]:

Bi(z) :=
1∫

0

(bi(z) − bi(sz))z ds ≥ 0 ∀z ∈ R,

Bi(s) − Bi(r) ≥ (bi(s) − bi(r))r ∀r, s ∈ R,

bi(z)z − Φi(z) + Φi(0) = Bi(z) ≤ bi(z)z ∀z ∈ R.
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Proposition 4.4. (See [2], Lemma 1.5.) Suppose (vi). Let ui ∈ uDi + L2(I; W 1,2
ΓD

(Ω)), such that bi(ui) ∈
L∞(I; L1(Ω)), ∂tbi(ui) ∈ L2(I; W 1,2

ΓD
(Ω)∗), and

T∫

0

〈∂tbi(ui), φ〉dt +
∫

QT

(bi(ui) − bi(u0i))∂tφ dxdt = 0

for every test function φ ∈ L2(I; W 1,2
ΓD

(Ω)) ∩ W 1,1(I; L∞(Ω)) with φ(T ) = 0. Then Bi(ui) ∈ L∞(I; L1(Ω))
and for almost all t the following formula holds

∫

Ω

Bi(ui(t)) dx −
∫

Ω

Bi(u0i) dx =
t∫

0

〈∂tbi(ui), ui − uDi〉ds

−
t∫

0

∫

Ω

(bi(ui) − bi(u0i))∂tuDi dxds +
∫

Ω

(bi(ui(t)) − bi(u0i))uDi(t) dx.

5. The main result

The aim of this paper is to prove the existence of a weak solution to the problem (3.1)–(3.9). First we 
formulate our problem in a variational sense.

Definition 5.1. A weak solution of (3.1)–(3.9) is a pair [u, θ] such that

u ∈ uD + L2(I;W 1,2
ΓD

(Ω)2),

θ ∈ θD + L2(I;W 1,2
ΓD

(Ω)2) ∩ L∞(I;L2(Ω)2),

αi(θi) ∈ L5/4(I;L5/4(ΓN )),

which satisfies (i = 1, 2)

−
∫

QT

bi(ui)∂tφi dxdt +
∫

QT

(a(θi)∇ui + ei(θi, ui)) · ∇φi dxdt

=
∫

QT

fi(b1(u1), b2(u2))φi dxdt +
∫

Ω

bi(u0i)φi(0) dx +
∫

ΓNT

γiφi dSdt (5.1)

∀φi ∈ C∞(QT ), φi(x, T ) = 0 ∀x ∈ Ω and φi = 0 on ΓD;

−
∫

QT

(bi(ui)θi + �iθi) ∂tψi dxdt +
∫

QT

λi(θi, ui)∇θi · ∇ψi dxdt

+
∫

QT

(θi (ai(θi)∇ui + ei(θi, ui))) · ∇ψi dxdt +
∫

QT

hi(θ1, θ2)ψi dxdt

+
∫

ΓNT

αi(θi)ψi dSdt−
∫

ΓNT

θi γi ψi dSdt

=
∫

Ω

(bi(u0i)θ0i + �iθ0i)ψi(0) dx +
∫

ΓNT

giψi dSdt (5.2)

∀ψi ∈ C∞(QT ), ψi(x, T ) = 0 ∀x ∈ Ω and ψi = 0 on ΓD.
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The main result of this paper reads as follows.

Theorem 5.2 (Main result). Let the assumptions (i)–(vi) be satisfied. Then there exists at least one weak 
solution of the system (3.1)–(3.9).

To prove the main result of the paper we use the method of semidiscretization in time by constructing 
temporal approximations and limiting procedure. The proof can be divided into three steps. In the first 
step we approximate our problem by means of a semi-implicit time discretization scheme (which preserve 
the pseudo-monotone structure of the discrete problem) and prove the existence and W 1,p(Ω)-regularity of 
piecewise constant time interpolants of u. In the second step we derive suitable a-priori estimates. Finally, 
in the third step we pass to the limit from discrete approximations.

6. Proof of the main result

6.1. Approximations

Let us fix p ∈ N and set τ := T/p be a time step. Further, let us consider

qn
ip(x) := 1

τ

∫ nτ

(n−1)τ qi(x, s)ds, n = 1, . . . , p,
gn
ip(x) := 1

τ

∫ nτ

(n−1)τ gi(x, s)ds, n = 1, . . . , p,
uD

n
ip(x) := 1

τ

∫ nτ

(n−1)τ uDi(x, s)ds, n = 1, . . . , p,
θD

n
ip(x) := 1

τ

∫ nτ

(n−1)τ θDi(x, s)ds, n = 1, . . . , p,
u0

ip(x) := u0i(x),
θ0
ip(x) := θ0i(x).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

a.e. on Ω.

We approximate our evolution problem by a semi-implicit time discretization scheme. Then we define, in 
each time step, [un

p , θ
n
p ] as a solution of the following steady problem.

Problem 6.1. Find a pair [un
p , θ

n
p ] ∈ [uD

n
p , θD

n
p ] + W 1,2

ΓD
(Ω)2 × W 1,2

ΓD
(Ω)2, n = 1, . . . , p, such that

∫

Ω

bi(un
ip) − bi(un−1

ip )
τ

φi dx +
∫

Ω

(
ai(θn−1

ip )∇un
ip + ei(θn−1

ip , un
ip)
)

· ∇φi dx

=
∫

Ω

fi(b1(un
1p), b2(un

2p))φi dx +
∫

ΓN

γn
ipφi dS (6.1)

∀φi ∈ C∞(Ω) and φi = 0 on ΓD;
∫

Ω

bi(un
ip)θn

ip − bi(un−1
ip )θn−1

ip

τ
ψi dx + �i

∫

Ω

θn
ip − θn−1

ip

τ
ψi dx

+
∫

Ω

λi(θn−1
ip , un−1

ip )∇θn
ip · ∇ψidx +

∫

Ω

θn
ip

(
ai(θn−1

ip )∇un
ip + ei(θn−1

ip , un
ip)
)

· ∇ψidx

+
∫

Ω

hi(θn
1p, θ

n
2p)ψi dx +

∫

ΓN

αi(θn
ip)ψi dS−

∫

ΓN

θn
ip γn

ip ψi dS

=
∫

ΓN

gn
ipψi dS (6.2)

∀ψi ∈ C∞(Ω) and ψi = 0 on ΓD.
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Theorem 6.2 (Existence of the solution to (6.1)). Let [un−1
p , θn−1

p ] ∈ L2(Ω)2 be given and the assumptions
(i)–(vi) be satisfied. Then there exists un

p ∈ uD
n
p + W 1,2

ΓD
(Ω)2 the solution to the discrete problem (6.1).

Proof. Let [un−1
p , θn−1

p ] ∈ L2(Ω)2 be given. Let us write un
p = ũn

p + uD
n
p with a new unknown function 

ũn
p ∈ W 1,2

ΓD
(Ω)2. This amounts to solving the problem with the homogeneous Dirichlet boundary condition 

on ΓD and shifted data

ẽi(x, θn−1
ip , ũn

ip) := ei(θn−1
ip , ũn

ip + uD
n
ip(x)), b̃i(x, ũn

ip) := bi(ũn
ip + uD

n
ip(x))

almost everywhere on Ω. Define the functional μ ∈ [W 1,2
ΓD

(Ω)2]∗ by

〈μ,φ〉 = 1
τ

2∑

i=1

∫

Ω

bi(un−1
ip )φidx +

2∑

i=1

∫

ΓN

γn
ipφidS −

2∑

i=1

∫

Ω

ai(θn−1
ip )∇uD

n
ip · ∇φidx

∀φi ∈ W 1,2
ΓD

(Ω). Further, define the operator A : W 1,2
ΓD

(Ω)2 → [W 1,2
ΓD

(Ω)2]∗ by the equation

〈A(ũn
p ),φ〉 =

2∑

i=1

∫

Ω

(
ai(θn−1

ip )∇ũn
ip + ẽi(x, θn−1

ip , ũn
ip)
)

· ∇φi dx

+ 1
τ

2∑

i=1

∫

Ω

b̃i(x, ũn
ip)φi dx −

2∑

i=1

∫

Ω

fi(b̃1(x, ũn
1p), b̃2(x, ũn

2p))φi dx

∀φi ∈ W 1,2
ΓD

(Ω). The operator equation A(ũn
p ) = μ has a solution if and only if un

p ∈ uD
n
p + ũn

p solves (6.1). 
The operator A is monotone in the main part. Further, for any ũn

p ∈ W 1,2
ΓD

(Ω)2 we have, taking into account 
(i)–(iii),

|〈A(ũn
p ),φ〉| ≤

(
c1‖ũn

p‖W 1,2
ΓD

(Ω)2 + c2

)
‖φ‖W 1,2

ΓD
(Ω)2

∀φ ∈ W 1,2
ΓD

(Ω)2. Therefore, we can write

‖A(ũn
p )‖[W 1,2

ΓD
(Ω)2]∗ = sup

φ∈W 1,2
ΓD

(Ω)2

|〈A(ũn
p ),φ〉|

‖φ‖W 1,2
ΓD

(Ω)2
≤ c1‖ũn

p‖W 1,2
ΓD

(Ω)2 + c2.

Moreover, applying Young’s inequality one derives in a standard way

〈A(ũn
p ), ũn

p )〉 ≥ c1‖ũn
p‖2

W 1,2
ΓD

(Ω)2 − c2.

Now we conclude that the operator A is pseudomonotone and coercive (cf. [35, Lemma 2.31, Lemma 2.32], 
see also [33]). Hence A : W 1,2

ΓD
(Ω)2 → [W 1,2

ΓD
(Ω)2]∗ is surjective, see [5]. This completes the proof. �

Theorem 6.3 (W 1,s-regularity of the solution to (6.1)). Let un
p ∈ uD

n
p + W 1,2

ΓD
(Ω)2 be the weak solution to 

the discrete problem (6.1). Then un
p ∈ W 1,s(Ω)2 with some s > 2.
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Theorem 6.4. (See [14, Theorem 4], [9].) Let Ω be a bounded connected open set with a Lipschitz continuous 
boundary of RN . Let Γ be a regular part of ∂Ω and Γ̃ = ∂Ω \Γ. Suppose Γ̃ has a non-null (N−1)-dimensional 
measure. There is a real number s0, 2∗ ≥ s0 > 2, such that, if u is the weak solution of (A represents a 
function from L∞(Ω) satisfying the ellipticity condition)

{
u ∈ W 1,2

ΓD
(Ω),∫

Ω A(x)∇u(x) · ∇ϕ(x) dΩ = 〈f, ϕ〉W 1,2
ΓD

(Ω)∗,W 1,2
ΓD

(Ω), ∀ϕ ∈ W 1,2
ΓD

(Ω),

where f ∈ W 1,s′

ΓD
(Ω)∗, s′ = s/(s − 1), s ∈ [2, s0). Then u belongs to W 1,s

ΓD
(Ω) and there exists a real number 

C(s) such that

‖u‖W 1,s
ΓD

(Ω) ≤ C(s)‖f‖
W 1,s′

ΓD
(Ω)∗ .

Moreover, s0 only depends on A and Ω and C(s) on A, Ω, s, not on f .

Proof of Theorem 6.3. Let us note that, provided [un−1
p , θn−1

p ] ∈ L2(Ω)2 and by virtue of (i)–(ii) and (vi), 
a, b, uD

n
p and γn

p are smooth enough to guarantee μ ∈ [W 1,r′

ΓD
(Ω)2]∗, r′ = r/(r − 1), with some r > 0. 

Rewrite the equation A(ũn
p ) = μ in the form (transferring the lower-order terms to the right hand side)

2∑

i=1

∫

Ω

ai(θn−1
ip )∇ũn

ip · ∇φi dx = −
2∑

i=1

∫

Ω

ẽi(x, θn−1
ip , ũn

ip) · ∇φi dx

− 1
τ

2∑

i=1

∫

Ω

b̃i(x, ũn
ip)φi dx +

2∑

i=1

∫

Ω

fi(b̃1(x, ũn
1p), b̃2(x, ũn

2p))φi dx + 〈μ,φ〉.

Following the proof of Theorem 6.2 we have ũn
p ∈ W 1,2

ΓD
(Ω)2. Since fi is continuous and ai, b̃i and ẽi are 

bounded functions (essentially bounded functions in Ω as compound functions of the spatial variable x ∈ Ω), 
we can directly apply Theorem 6.4 to conclude the proof. �
Theorem 6.5 (Existence of the solution to (6.2)). Let [un−1

p , θn−1
p ] ∈ L2(Ω)2 and un

p ∈ W 1,s(Ω)2, with some 
s > 2, be the solution to (6.1) and the assumptions (i)–(vi) be satisfied. Let τ be sufficiently small. Then 
there exists the solution θn

p ∈ θD
n
p + W 1,2

ΓD
(Ω)2 to the discrete problem (6.2).

Proof. We proceed in the same way as in the proof of Theorem 6.2. Let un
p ∈ W 1,s(Ω)2 with some s > 2 be 

the solution to the discrete problem (6.1). Writing θn
p = θ̃

n

p +θD
n
p amounts to solving the problem with a new 

unknown function θ̃
n

p vanishing on ΓD (in the sense of traces). Now define the functional μ ∈ [W 1,2
ΓD

(Ω)2]∗

by the equation

〈μ,ψ〉 = 1
τ

2∑

i=1

∫

Ω

(
bi(un−1

ip )θn−1
ip − bi(un

ip)θD
n
ip

)
ψidx

+ 1
τ

2∑

i=1

∫

Ω

�i(θn−1
ip − θD

n
ip)ψidx +

2∑

i=1

∫

ΓN

gn
ipψidS+

2∑

i=1

∫

ΓN

θD
n
ip γn

ip ψidS

−
2∑

i=1

∫

Ω

λi(θn−1
ip , un−1

ip )∇θD
n
ip · ∇ψidx
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−
2∑

i=1

∫

Ω

θD
n
ip

(
ai(θn−1

ip )∇un
ip + ei(θn−1

ip , un
ip)
)

· ∇ψidx

−
2∑

i=1

∫

Ω

hi(θD
n
1p, θD

n
2p)ψidx

∀ψi ∈ W 1,2
ΓD

(Ω). The regularity of un
p and (i), (ii), (iv) and (vi) guarantee that all integrals are well defined. 

Further, define the operator A : W 1,2
ΓD

(Ω)2 → [W 1,2
ΓD

(Ω)2]∗ by the equation

〈A(θ̃n

p ),ψ〉 = 1
τ

2∑

i=1

∫

Ω

[
bi(un

ip) + �i

]
θ̃n
ipψi dx

+
2∑

i=1

∫

Ω

λi(θn−1
ip , un−1

ip )∇θ̃n
ip · ∇ψi dx

+
2∑

i=1

∫

Ω

θ̃n
ip

(
ai(θn−1

ip )∇un
ip + ei(θn−1

ip , un
ip)
)

· ∇ψi dx

+
2∑

i=1

∫

ΓN

α̃i(x, θ̃n
ip)ψi dS−

2∑

i=1

∫

ΓN

θ̃n
ip γn

ip ψi dS

+
2∑

i=1

∫

Ω

hi(θ̃n
1p, θ̃

n
2p)ψi dx

∀ψi ∈ W 1,2
ΓD

(Ω), where α̃i(x, θ̃n
ip) := αi(θ̃n

ip + θD
n
ip). The operator A is monotone in the main part. Further, 

since un
p ∈ W 1,s(Ω)2 with some s > 2, we have for any given θ̃

n

p ∈ W 1,2
ΓD

(Ω)2 the estimate

|〈A(θ̃n

p ),ψ〉| ≤
(
c1‖θ̃

n

p‖W 1,2
ΓD

(Ω)2 + c2

)
‖ψ‖W 1,2

ΓD
(Ω)2

∀ψ ∈ W 1,2
ΓD

(Ω)2. Therefore we can write

‖A(θ̃n

p )‖[W 1,2
ΓD

(Ω)2]∗ = sup
ψ∈W 1,2

ΓD
(Ω)2

|〈A(θ̃n

p ),ψ〉|
‖ψ‖W 1,2

ΓD
(Ω)2

≤ c1‖θ̃
n

p‖W 1,2
ΓD

(Ω)2 + c2.

In order to show coercivity of A we use φi = (θ̃n
ip)2 in (6.1) to obtain

∫

Ω

(
ai(θn−1

ip )∇un
ip + ei(θn−1

ip , un
ip)
)

· θ̃n
ip∇θ̃n

ip dx

= 1
2

∫

Ω

fi(b1(un
1p), b2(un

2p))(θ̃n
ip)2 dx + 1

2

∫

ΓN

γn
ip(θ̃n

ip)2 dS

− 1
2

∫

Ω

bi(un
ip) − bi(un−1

ip )
τ

(θ̃n
ip)2 dx. (6.3)
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Let us explicitly mention that, because of the regularity un
p ∈ W 1,s(Ω)2 with some s > 2, all integrals in 

(6.3) make sense. On the other hand, by the definition of the operator A we can write

〈A(θ̃n

p ), θ̃n

p 〉 = 1
τ

2∑

i=1

∫

Ω

[
bi(un

ip) + �i

]
(θ̃n

ip)2dx +
2∑

i=1

∫

Ω

λi(θn−1
ip , un−1

ip )|∇θ̃n
ip|2dx

+
2∑

i=1

∫

Ω

(
ai(θn−1

ip )∇un
ip + ei(θn−1

ip , un
ip)
)

· θ̃n
ip∇θ̃n

ip dx

+
2∑

i=1

∫

ΓN

α̃i(x, θ̃n
ip)θ̃n

ip dS−
2∑

i=1

∫

ΓN

γn
ip (θ̃n

ip)2 dS

+
2∑

i=1

∫

Ω

hi(θ̃n
1p, θ̃

n
2p)θ̃n

ip dx. (6.4)

Exploiting (6.3) we can modify (6.4) to get

〈A(θ̃n

p ), θ̃n

p 〉 = 1
2τ

2∑

i=1

∫

Ω

[
bi(un

ip) + bi(un−1
ip ) + 2�i

]
(θ̃n

ip)2 dx

+
2∑

i=1

∫

Ω

λi(θn−1
ip , un−1

ip )|∇θ̃n
ip|2 dx

+ 1
2

2∑

i=1

∫

Ω

fi(b1(un
1p), b2(un

2p))(θ̃n
ip)2 dx

− 1
2

2∑

i=1

∫

ΓN

γn
ip(θ̃n

ip)2 dS +
2∑

i=1

∫

ΓN

α̃i(x, θ̃n
ip)θ̃n

ip dS

+
2∑

i=1

∫

Ω

hi(θ̃n
1p, θ̃

n
2p)θ̃n

ip dx. (6.5)

First two integrals on the right hand side in (6.5) are nonnegative. Remaining integrals can be estimated in 
the following way

1
2

2∑

i=1

∫

Ω

fi(b1(un
1p), b2(un

2p))(θ̃n
ip)2 dx ≥ k1

2∑

i=1

∫

Ω

(θ̃n
ip)2 dx, (6.6)

where k1 represents some real constant. Further,

2∑

i=1

∫

Ω

hi(θ̃n
1p, θ̃

n
2p)θ̃n

ip dx ≥ 0. (6.7)

Boundary terms can be estimated using (4.1) to obtain

−1
2

2∑

i=1

∫

ΓN

γn
ip(θ̃n

ip)2 dS ≥ k1

2∑

i=1

∫

ΓN

(θ̃n
ip)2 dS
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≥ −C(η)
2∑

i=1

∫

Ω

(θ̃n
ip)2 dx − η

2∑

i=1

∫

Ω

|∇θ̃n
ip|2 dx (6.8)

and applying (v), (4.1) and Young’s inequality with sufficiently small positive parameter ε we have

2∑

i=1

∫

ΓN

α̃i(x, θ̃n
ip)θ̃n

ip dS

=
2∑

i=1

∫

ΓN

c|θ̃n
ip + θD

n
ip|3(θ̃n

ip + θD
n
ip)θ̃n

ip − σ(θ̃n
ip + θD

n
ip)θ̃n

ip dS

=
2∑

i=1

∫

ΓN

c|θ̃n
ip + θD

n
ip|5 − c|θ̃n

ip + θD
n
ip|3(θ̃n

ip + θD
n
ip)θD

n
ip dS −

2∑

i=1

∫

ΓN

σ(θ̃n
ip + θD

n
ip)θ̃n

ip dS

≥
2∑

i=1

∫

ΓN

c1|θ̃n
ip + θD

n
ip|5 − ε|θ̃n

ip + θD
n
ip|5 − C(ε)|θD

n
ip|5 dS − c2

2∑

i=1

∫

ΓN

(1 + |θ̃n
ip + θD

n
ip|)|θ̃n

ip| dS

≥ k1

2∑

i=1

∫

ΓN

|θ̃n
ip|2 dS − c1

≥ −C(η)
2∑

i=1

∫

Ω

(θ̃n
ip)2 dx − η

2∑

i=1

∫

Ω

|∇θ̃n
ip|2 dx − c1, (6.9)

where k1 represents some real constant and η stands for sufficiently small positive number, cf. (4.1). Hence, 
combining (6.5)–(6.9), for τ sufficiently small, we can write

〈A(θ̃n

p ), θ̃n

p 〉 ≥ c1‖θ̃
n

p‖2
W 1,2

ΓD
(Ω)2 − c2.

With the same arguments as in the proof of Theorem 6.2 we conclude that the operator A : W 1,2
ΓD

(Ω)2 →
[W 1,2

ΓD
(Ω)2]∗ is pseudomonotone and coercive and hence, surjective. The abstract equation A(θ̃n

p ) = μ has 
a solution if and only if the function θn

p = θD
n
p + θ̃

n

p ∈ W 1,2
ΓD

(Ω)2 is the solution to the variational equation 
(6.2). This completes the proof. �
6.2. A-priori estimates

Here we prove some uniform estimates (with respect to p) for the time interpolants of the solution. We 
define the piecewise linear time interpolants (n = 1, 2, . . . , p)

φ̂ip(t) = φn−1
ip + t−(n−1)τ

τ (φn
ip − φn−1

ip )
b̂ip(t) = bi(un−1

ip ) + t−(n−1)τ
τ (bi(un

ip) − bi(un−1
ip ))

B̂ip(t) = bi(un−1
ip )θn−1

ip + t−(n−1)τ
τ (bi(un

ip)θn
ip − bi(un−1

ip )θn−1
ip )

⎫
⎪⎬
⎪⎭

for t ∈ ((n − 1)τ, nτ ] and the piecewise constant interpolants φ̄ip(t) = φn
ip for t ∈ ((n − 1)τ, nτ ] and, in 

addition, we extend φ̄ip for t ≤ 0 by φ̄ip(t) = φi0 for t ∈ (−τ, 0]. For a function ϕ we often use the simplified 
notation ϕ := ϕ(t), ϕτ (t) := ϕ(t − τ), ∂−τ

t ϕ(t) := ϕ(t)−ϕ(t−τ)
τ , ∂τ

t ϕ(t) := ϕ(t+τ)−ϕ(t)
τ . Then, following 

(6.1) and (6.2), the piecewise constant time interpolants ūp ∈ L∞(I; W 1,s(Ω)2) (with some s > 2), and 
θ̄p ∈ L∞(I; W 1,2(Ω)2) satisfy the equations
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∫

Ω

∂−τ
t bi(ūip(t))φi dx +

∫

Ω

(
ai(θ̄ip(t − τ))∇ūip(t) + ei(θ̄ip(t − τ), ūip(t))

)
· ∇φi dx

=
∫

Ω

fi(b1(ū1p(t)), b2(ū2p(t)))φi dx +
∫

ΓN

γ̄i(t)φi dS (6.10)

∀φi ∈ C∞(Ω) and φi = 0 on ΓD and
∫

Ω

∂−τ
t

(
bi(ūip(t))θ̄ip(t) + �iθ̄ip(t)

)
ψi dx +

∫

Ω

λi(θ̄ip(t − τ), ūip(t − τ))∇θ̄ip(t) · ∇ψi dx

+
∫

Ω

θ̄ip(t)
(
ai(θ̄ip(t − τ))∇ūip(t) + ei(θ̄ip(t − τ), ūip(t))

)
· ∇ψi dx

+
∫

ΓN

αi(θ̄ip(t))ψi dS−
∫

ΓN

θ̄ip(t)γ̄ip(t)ψi dS +
∫

Ω

hi(θ̄1p(t), θ̄2p(t))ψi dx

=
∫

ΓN

ḡip(t)ψi dS (6.11)

∀ψi ∈ C∞(Ω) and ψi = 0 on ΓD.
We test with φi = ūip(t) −uDip(t) and integrate (6.10) over t from 0 to s. For the parabolic term we can 

write
s∫

0

∫

Ω

∂−τ
t bi(ūip(t))

(
ūip(t) − uDip(t)

)
dxdt

=
s∫

0

∫

Ω

∂−τ
t bi(ūip(t))ūip(t) dxdt +

s∫

0

∫

Ω

(
bi(ūip(t)) − bi(ū0

ip)
)
∂τ

t uDip(t) dxdt

+ 1
τ

s∫

s−τ

∫

Ω

(
bi(ū0

ip) − bi(ūip(t))
)
uDip(t + τ) dxdt

≥ 1
τ

s∫

s−τ

∫

Ω

Bi(ūip(t)) − Bi(ū0
ip(t)) dxdt +

s∫

0

∫

Ω

(
bi(ūip(t)) − bi(ū0

ip)
)
∂τ

t uDip(t) dxdt

+ 1
τ

s∫

s−τ

∫

Ω

(
bi(ū0

ip) − bi(ūip(t))
)
uDip(t + τ) dxdt. (6.12)

Further, adding (6.10) over i = 1, 2, using (6.12), applying the usual estimates for the elliptic part and, 
finally, using Gronwall’s lemma, we obtain the a-priori estimate

2∑

i=1
sup

0≤t≤T

∫

Ω

Bi(ūip(t))dx +
2∑

i=1

T∫

0

∫

Ω

|∇ūip(t)|2dxdt ≤ c. (6.13)

As a consequence of the preceding a-priori estimate (6.13) we see that there exists a function u ∈
L2(I; W 1,2(Ω)2) such that, along a selected subsequence (letting p → ∞), we have

ūp(t) ⇀ u weakly in L2(I;W 1,2(Ω)2). (6.14)



M. Beneš, L. Krupička / J. Math. Anal. Appl. 433 (2016) 543–565 559

In order to show that ūp converges to u almost everywhere on QT we follow [2]. Let k ∈ N and use

φi(t) = ∂kτ
t

(
ūip(s) − uDip(s)

)

for jτ ≤ t ≤ (j + k)τ with (j − 1)τ ≤ s ≤ jτ and 1 ≤ j ≤ T
τ − k, as a test function in (6.10). For the 

parabolic term, we can write

(j+k)τ∫

jτ

∫

Ω

∂−τ
t bi(ūip(t)) ∂kτ

t

(
ūip(t) − uDip(t)

)
dxdt

= 1
kτ2

jτ∫

(j−1)τ

∫

Ω

(bi(ūip(t + kτ)) − bi(ūip(t))) (ūip(t + kτ) − ūip(t)) dxdt

− 1
kτ2

jτ∫

(j−1)τ

∫

Ω

(bi(ūip(t + kτ)) − bi(ūip(t)))
(
uDip(t + kτ) − uDip(t)

)
dxdt.

Hence, summing over j = 1, . . . , p − k we get the estimate

p−k∑

j=1

(j+k)τ∫

jτ

∫

Ω

∂−τ
t bi(ūip(t)) ∂kτ

t

(
ūip(t) − uDip(t)

)
dxdt

≥ 1
kτ2

T−kτ∫

0

∫

Ω

(bi(ūip(t + kτ)) − bi(ūip(t))) (ūip(t + kτ) − ūip(t)) dxdt

− c

τ

jτ∫

(j−1)τ

∫

Ω

|∂kτ
t uDip(t)| dxdt. (6.15)

Similarly, for the elliptic term, after a little lengthy but straightforward computation we obtain

p−k∑

j=1

(j+k)τ∫

jτ

∫

Ω

(
ai(θ̄ipτ∇ūip + ei(θ̄ipτ , ūip)

)
· ∇∂kτ

t

(
ūip − uDip

)
dxdt

=
k∑

	=1

p−k∑

j=1

(j+	)τ∫

(j+	−1)τ

∫

Ω

(
ai(θ̄ipτ )∇ūip + ei(θ̄ipτ , ūip)

)
· ∇∂kτ

t

(
ūip − uDip

)
dxdt

=
k∑

	=1

T−kτ+	τ∫

	τ

∫

Ω

(
ai(θ̄ipτ (t))∇ūip(t) + ei(θ̄ipτ (t), ūip(t))

)
· ∇∂kτ

t ūip(t − �τ) dxdt

−
k∑

	=1

T−kτ+	τ∫

	τ

∫

Ω

(
ai(θ̄ipτ (t))∇ūip(t) + ei(θ̄ipτ (t), ūip(t))

)
· ∇∂kτ

t uDip(t − �τ) dxdt
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≤ c1
τ

∫

QT

|ai(θ̄ipτ )∇ūip + ei(θ̄ipτ , ūip)|2 dxdt + c2
τ

∫

QT

|∇ūip|2 + |∇uDip|2 dxdt

≤ C

τ
. (6.16)

Similarly, for the last terms we arrive at the estimate

p−k∑

j=1

(j+k)τ∫

jτ

∫

Ω

fi(b1(ū1p), b2(ū2p))∂kτ
t

(
ūip − uDip

)
dxdt +

p−k∑

j=1

(j+k)τ∫

jτ

∫

ΓN

γ̄i∂
kτ
t

(
ūip − uDip

)
dSdt ≤ C

τ
.

(6.17)

Combining (6.15)–(6.17) and using (6.13) we obtain

2∑

i=1

T−kτ∫

0

(bi(ūip(s + kτ)) − bi(ūip(s))) (ūip(s + kτ) − ūip(s))ds ≤ ckτ.

Using the compactness argument one can show in the same way as in [2, Lemma 1.9] and [13, 
Eqs. (2.10)–(2.12)]

bi(ūip) → bi(ui) in L1(QT ) (6.18)

and almost everywhere on QT . Since bi is strictly monotone, it follows from (6.18) that [22, Proposition 3.35]

ūp → u almost everywhere on QT . (6.19)

Now we use ψi(t) = 2(θ̄ip(t) − θDip(t)) as a test function in (6.11) to obtain
∫

Ω

∂−τ
t bi(ūip(t))2θ̄ip(t)2 dx −

∫

Ω

∂−τ
t bi(ūip(t))2θ̄ip(t)θDip(t) dx

+
∫

Ω

∂−τ
t θ̄ip(t)2(θ̄ip(t) − θDip(t)) (bi(ūip(t − τ)) + �i) dx

+ 2
∫

Ω

λi(θ̄ip(t − τ), ūip(t − τ))∇θ̄ip(t) · ∇(θ̄ip(t) − θDip(t)) dx

+
∫

Ω

(
ai(θ̄ip(t − τ))∇ūip(t) + ei(θ̄ip(t − τ), ūip(t))

)
· 2θ̄ip(t)∇θ̄ip(t) dx

−
∫

Ω

(
ai(θ̄ip(t − τ))∇ūip(t) + ei(θ̄ip(t − τ), ūip(t))

)
· 2θ̄ip(t)∇θDip dx

+ 2
∫

ΓN

αi(θ̄ip(t))(θ̄ip(t) − θDip(t)) dS−2
∫

ΓN

θ̄ip(t)γ̄ip(t)(θ̄ip(t) − θDip(t)) dS

+ 2
∫

Ω

hi(θ̄1p(t), θ̄2p(t))(θ̄ip(t) − θDip(t)) dx

= 2
∫

ΓN

ḡip(t)(θ̄ip(t) − θDip(t)) dS. (6.20)
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One is allowed to use φi(t) = θ̄ip(t)2 − θDip(t)2 as a test function in (6.10) to obtain
∫

Ω

∂−τ
t bi(ūip(t))θ̄ip(t)2 dx

+
∫

Ω

(
ai(θ̄ip(t − τ))∇ūip(t) + ei(θ̄ip(t − τ), ūip(t))

)
· ∇θ̄ip(t)2 dx

=
∫

Ω

∂−τ
t bi(ūip(t))θDip(t)2 dx

+
∫

Ω

(
ai(θ̄ip(t − τ))∇ūip(t) + ei(θ̄ip(t − τ), ūip(t))

)
· ∇θDip(t)2 dx

+
∫

ΓN

γ̄i(t)
(
θ̄ip(t)2 − θDip(t)2

)
dS +

∫

Ω

fi(b1(ū1p), b2(ū2p))
(
θ̄ip(t)2 − θDip(t)2

)
dx. (6.21)

Combining (6.20) and (6.21) we deduce

∫

Ω

∂−τ
t

[(
θ̄ip(t) − θDip(t)

)2 (bi(ūip(t)) + �i)
]

dx

+
∫

Ω

∂−τ
t θDip(t)2(θ̄ip(t) − θDip(t)) (bi(ūip(t − τ)) + �i) dx

+
∫

Ω

1
τ

[(
θ̄ip(t) − θDip(t)

)
−
(
θ̄ip(t − τ) − θDip(t − τ)

)]2 (bi(ūip(t − τ)) + �i) dx

+ 2
∫

Ω

λi(θ̄ip(t − τ), ūip(t − τ))∇θ̄ip(t) · ∇(θ̄ip(t) − θDip(t)) dx

+
∫

Ω

(
ai(θ̄ip(t − τ))∇ūip(t) + ei(θ̄ip(t − τ), ūip(t))

)
· 2θDip(t)∇θDip(t) dx

−
∫

Ω

(
ai(θ̄ip(t − τ))∇ūip(t) + ei(θ̄ip(t − τ), ūip(t))

)
· 2θ̄ip(t)∇θDip(t) dx

+ 2
∫

ΓN

αi(θ̄ip(t))(θ̄ip(t) − θDip(t)) dS−2
∫

ΓN

θ̄ip(t)γ̄ip(t)(θ̄ip(t) − θDip(t)) dS

+ 2
∫

Ω

hi(θ̄1p(t), θ̄2p(t))(θ̄ip(t) − θDip(t)) dx

+
∫

Ω

fi(b1(ū1p), b2(ū2p))
(
θ̄ip(t)2 − θDip(t)2

)
dx

= 2
∫

ΓN

ḡip(t)(θ̄ip(t) − θDip(t)) dS −
∫

ΓN

γ̄i(t)
(
θ̄ip(t)2 − θDip(t)2

)
dS. (6.22)

Adding (6.22) over i = 1, 2, integrating with respect to time t and using Gronwall’s argument we obtain the 
a-priori estimate



562 M. Beneš, L. Krupička / J. Math. Anal. Appl. 433 (2016) 543–565

2∑

i=1
sup

0≤t≤T

∫

Ω

|θ̄ip(t)|2dx +
2∑

i=1

T∫

0

‖θ̄ip(t)‖2
W 1,2(Ω)dt +

2∑

i=1

T∫

0

‖θ̄ip(t)‖5
L5(ΓN )dt ≤ c. (6.23)

Let us mention that (6.23) becomes

‖θ̄p‖L2(I;W 1,2(Ω)2) ≤ c, (6.24)

‖θ̄p‖L∞(I;L2(Ω)2) ≤ c, (6.25)

‖θ̄p‖L5(I;L5(ΓN )2) ≤ c. (6.26)

The a-priori estimate (6.24) allows us to conclude that there exists θ ∈ L2(I; W 1,2(Ω)2) such that, letting 
p → +∞ (along a selected subsequence),

θ̄p ⇀ θ weakly in L2(I;W 1,2(Ω)2). (6.27)

Now our aim is to show the a-priori bound ‖∂t(B̂ip +�iθ̂ip)‖L5/4(I;W 1,5
ΓD

(Ω)∗) ≤ c that can be deduced directly 

from equation (6.11) exploiting the uniform bounds (6.13) and (6.23). Assume ψi ∈ L5(I; W 1,5
ΓD

(Ω)) and 
integrate (6.11) over I to obtain

∫

QT

∂−τ
t

(
bi(ūip(t))θ̄ip(t) + �iθ̄ip(t)

)
ψi dxdt

=
∫

ΓNT

ḡip(t)ψi dSdt −
∫

QT

λi(θ̄ip(t − τ), ūip(t − τ))∇θ̄ip(t) · ∇ψi dxdt

−
∫

QT

θ̄ip(t)
(
ai(θ̄ip(t − τ))∇ūip(t) + ei(θ̄ip(t − τ), ūip(t))

)
· ∇ψi dxdt

−
∫

ΓNT

αi(θ̄ip(t))ψi dSdt+
∫

ΓNT

θ̄ip(t)γ̄ip(t)ψi dSdt

−
∫

QT

hi(θ̄1p(t), θ̄2p(t))ψi dxdt. (6.28)

By means of a simple interpolation argument (see [3, eqs. (5.38) and (5.39)] for the details) we have

L2(I;W 1,2(Ω)) ∩ L∞(I;L2(Ω)) ↪→ L10/3(QT ). (6.29)

Using (6.13), (6.24), (6.25) and (6.29) we get

‖θ̄ip

[
ai(θ̄ipτ )∇ūip + ei(θ̄ipτ , ūip)

]
‖L5/4(QT )2

≤ ‖θ̄ip‖L10/3(QT )
(
‖ai(θ̄ipτ )∇ūip‖L2(QT )2 + ‖ei(θ̄ipτ , ūip)‖L2(QT )2

)
≤ c. (6.30)

The latter relation yields the uniform bound of the “critical” convective term in equation (6.28) in the sense
∣∣∣
∫

QT

θ̄ip

[
ai(θ̄ipτ )∇ūip + ei(θ̄ipτ , ūip)

]
· ∇ψi dxdt

∣∣∣

≤ c‖θ̄ip

[
ai(θ̄ipτ )∇ūip + ei(θ̄ipτ , ūip)

]
‖L5/4(QT )2‖ψi‖L5(I;W 1,5

ΓD
(Ω))

≤ c‖ψi‖L5(I;W 1,5
ΓD

(Ω)). (6.31)
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The nonlinear boundary term can be handled as follows

∣∣∣
∫

ΓNT

αi(θ̄ip)ψi dSdt
∣∣∣ ≤

⎛
⎝
∫

ΓNT

|αi(θ̄ip)|5/4 dSdt

⎞
⎠

4/5⎛
⎝
∫

ΓNT

|ψi|5 dSdt

⎞
⎠

1/5

≤ c‖θ̄ip‖L5(I;L5(ΓN ))‖ψi‖L5(I;W 1,5
ΓD

(Ω))

≤ c‖ψi‖L5(I;W 1,5
ΓD

(Ω)). (6.32)

The other terms on the right hand side of (6.28) can be handled in a more straightforward way. Moreover, 
it is easy to see that

∫

QT

∂−τ
t

(
bi(ūip(t))θ̄ip(t) + �iθ̄ip(t)

)
ψi dxdt =

∫

QT

∂t(B̂ip(t) + �iθ̂ip(t))ψi dxdt (6.33)

for all ψi ∈ L5(I; W 1,5
ΓD

(Ω)). Finally, equation (6.28) combined with (6.33) and estimates (6.24), (6.26), 
(6.31) and (6.32) gives rise to the desired bound

‖∂t(B̂ip + �iθ̂ip)‖L5/4(I;W 1,5
ΓD

(Ω)∗) ≤ c. (6.34)

Further, we can write

‖B̂ip + �iθ̂ip‖L5/4(I;W 1,5/4(Ω)) ≤ c.

Since

W 1,5/4(Ω) ↪→↪→ W 1−β,5/4(Ω) ↪→ W 1,5
ΓD

(Ω)∗,

where β is a small positive real number, the Aubin–Lions lemma yields the existence of χi ∈ L5/4(I;
W 1−β,5/4(Ω)) such that (modulo a subsequence)

B̂ip + �iθ̂ip → χi strongly in L5/4(I;W 1−β,5/4(Ω))

and almost everywhere on QT and therefore also we have

bi(ūip)θ̄ip + �iθ̄ip → χi strongly in L5/4(I;W 1−β,5/4(Ω)).

Since ūip converges almost everywhere on QT to ui, we conclude

θ̄p → θ almost everywhere on QT . (6.35)

Hence, bi(ūip)θ̄ip + �iθ̄ip converges almost everywhere on QT to bi(ui)θi + �iθi and

χi = bi(ui)θi + �iθi.

Now, taking into account (6.34), we get

∂−τ
t

(
bi(ūip(t))θ̄ip(t) + �iθ̄ip(t)

)
⇀ ∂t(bi(ui)θi + �iθi) weakly in L5/4(I;W 1,5

ΓD
(Ω)∗). (6.36)

Finally, [13, Lemma 3], together with (6.23), (6.26) and (6.35), yields
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θ̄p → θ almost everywhere on ΓNT , (6.37)

θ̄p ⇀ θ weakly in L5(I;L5(ΓN )2). (6.38)

6.3. Passage to the limit for p → ∞

The above established convergences (6.14), (6.19) and (6.27), (6.35), (6.36), (6.37) and (6.38) are sufficient 
for taking the limit p → ∞ in (6.10) and (6.11) (along a selected subsequence) to get the weak solution of 
the system (3.1)–(3.9) in the sense of Definition 5.1. This completes the proof of the main result stated by 
Theorem 5.2.
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GLOBAL WEAK SOLUTIONS TO DEGENERATE COUPLED

DIFFUSION-CONVECTION-DISPERSION PROCESSES AND

HEAT TRANSPORT IN POROUS MEDIA

MICHAL BENEŠ, LUKÁŠ KRUPIČKA

Abstract. In this contribution we prove the existence of weak solutions to

degenerate parabolic systems arising from the coupled moisture movement,
transport of dissolved species and heat transfer through partially saturated

porous materials. Physically motivated mixed Dirichlet-Neumann boundary

conditions and initial conditions are considered. Existence of a global weak
solution of the problem is proved by means of semidiscretization in time and by

passing to the limit from discrete approximations. Degeneration occurs in the
nonlinear transport coefficients which are not assumed to be bounded below

and above by positive constants. Degeneracies in all transport coefficients are

overcome by proving suitable a priori L∞-estimates for the approximations of
primary unknowns of the system.

1. Introduction

Let Ω be a bounded domain in R2, Ω ∈ C0,1 and let ΓD and ΓN be open disjoint
subsets of ∂Ω (not necessarily connected) such that ΓD 6= ∅ and the ∂Ω\(ΓD ∪ΓN )
is a finite set. Let T ∈ (0,∞) be fixed throughout the paper, I = (0, T ) and
QT = Ω× I denotes the space-time cylinder, ΓDT = ΓD × I and ΓNT = ΓN × I.

We shall study the following initial boundary value problem in QT ,

∂tb(u) = ∇ · [a(θ)∇u], (1.1)

∂t[b(u)w] = ∇ · [b(u)Dw(u)∇w] +∇ · [wa(θ)∇u], (1.2)

∂t[b(u)θ + %θ] = ∇ · [λ(θ, u)∇θ] +∇ · [θa(θ)∇u], (1.3)

with the mixed-type boundary conditions

u = 0, w = 0, θ = 0 on ΓDT , (1.4)

∇u · n = 0, ∇w · n = 0, ∇θ · n = 0 on ΓNT (1.5)

and the initial conditions

u(·, 0) = u0, w(·, 0) = w0, θ(·, 0) = θ0 in Ω. (1.6)

2010 Mathematics Subject Classification. 5A05, 35D05, 35B65, 35B45, 35B50, 35K15, 35K40.
Key words and phrases. Initial-boundary value problems for second-order parabolic systems;

global solution, smoothness and regularity of solutions; coupled transport processes;

porous media.
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System 1.1–1.6 arises from the coupled moisture movement, transport of dis-
solved species and heat transfer through the porous system [4, 20]. For simplicity,
the gravity terms and external sources are not included since they do not affect the
analysis. For specific applications we refer the reader to e.g. [19]. Here u : QT → R,
w : QT → R and θ : QT → R are the unknown functions. In particular, u cor-
responds to the Kirchhoff transformation of the matric potential [2], w represents
concentration of dissolved species and θ represents the temperature of the porous
system. Further, a : R → R, Dw : R → R, b : R → R, λ : R2 → R, u0 : Ω → R,
w0 : Ω → R, and θ0 : Ω → R are given functions, % is a real positive constant and
n is the outward unit normal vector. In this paper we study the existence of the
weak solution to (1.1)–(1.6).

Nowadays, description of heat, moisture or soluble/non-soluble contaminant
transport in concrete, soil or rock porous matrix is frequently based on time depen-
dent models. Coupled transport processes (diffusion processes, heat conduction,
moister flow, contaminant transport or coupled flows through porous media) are
typically associated with systems of strongly nonlinear degenerate parabolic partial
differential equations of type (written in terms of operators A, Ψ, F )

∂tΨ(u)−∇ ·A(u,∇u) = F (u), (1.7)

where u stands for the unknown vector of state variables. There is no complete
theory for such general problems. However, some particular results assuming special
structure of operators A and Ψ and growth conditions on F can be found in the
literature, see [22].

Most theoretical results on parabolic systems exclude the case of non-symmetrical
parabolic parts [2, 8, 13].

Giaquinta and Modica [10] proved the local-in-time solvability of quasilinear
diagonal parabolic systems with nonlinear boundary conditions (without assuming
any growth condition), see also [23].

The existence of weak solutions to more general non-diagonal systems like (1.7)
subject to mixed boundary conditions has been proven in [2]. The authors proved
an existence result assuming the operator Ψ to be only (weak) monotone and sub-
gradient. This result has been extended in [8], where the authors presented the local
existence of the weak solutions for the system with nonlinear Neumann boundary
conditions and under more general growth conditions on nonlinearities in u. These
results, however, are not applicable if Ψ does not take the subgradient structure,
which is typical of coupled transport models in porous media. Thus, the analysis
needs to exploit the specific structure of such problems.

The existence of a local-in-time strong solution for moisture and heat transfer
in multi-layer porous structures modelling by the doubly nonlinear parabolic sys-
tem is proven in [5]. In [21], the author proved the existence of the solution to
the purely diffusive hygro-thermal model allowing non-symmetrical operators Ψ,
but requiring non-realistic symmetry in the elliptic part. In [7, 12], the authors
studied the existence, uniqueness and regularity of coupled quasilinear equations
modeling evolution of fluid species influenced by thermal, electrical and diffusive
forces. In [15, 16, 17], the authors studied a model of specific structure of a heat
and mass transfer arising from textile industry and proved the global existence for
one-dimensional problems in [15, 16] and three-dimensional problems in [17].
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In the present paper we extend our previous existence result for coupled heat and
mass flows in porous media [6] to more general problem (including the convection-
dispersion equation) modeling coupled moisture, solute and heat transport in porous
media. This leads to a fully nonlinear degenerate parabolic system with natural
(critical) growths and degeneracies in all transport coefficients.

The rest of this paper is organized as follows. In Section 2, we introduce basic
notation and suitable function spaces and specify our assumptions on data and
coefficient functions in the problem. In Section 3, we formulate the problem in the
variational sense and state the main result, the global-in-time existence of the weak
solution. The main result is proved by an approximation procedure in Section 4.
First we formulate the semi-discrete scheme and prove the existence of its solu-
tion. The crucial a priori estimates and uniform boundness of time interpolants are
proved in part 4.2. Finally, we conclude that the solutions of semi-discrete scheme
converge and the limit is the solution of the original problem (Subsection 4.3).

Remark 1.1. The present analysis can be straightforwardly extended to a setting
with nonhomogeneous boundary conditions (see [6] for details). Here we work
with homogeneous boundary conditions, ignoring the gravity terms and excluding
external sources to simplify the presentation and avoid unnecessary technicalities
in the existence result.

2. Preliminaries

2.1. Notation and some properties of Sobolev spaces. Vectors and vector
functions are denoted by boldface letters. Throughout the paper, we will always
use positive constants C, c, c1, c2, . . . , which are not specified and which may differ
from line to line. Throughout this paper we suppose s, q, s′ ∈ [1,∞], s′ denotes the
conjugate exponent to s > 1, 1/s + 1/s′ = 1. Ls(Ω) denotes the usual Lebesgue
space equipped with the norm ‖ · ‖Ls(Ω) and W k,s(Ω), k ≥ 0 (k need not to be
an integer, see [14]), denotes the usual Sobolev-Slobodecki space with the norm
‖ · ‖Wk,s(Ω). We define

W 1,2
ΓD

(Ω) :=
{
v ∈W 1,2(Ω) : v

∣∣
ΓD

= 0
}
.

By E∗ we denote the space of all continuous, linear forms on Banach space E and by
〈·, ·〉 we denote the duality between E and E∗. By Ls(I;E) we denote the Bochner

space (see [1]). Therefore, Ls(I;E)∗ = Ls
′
(I;E∗).

2.2. Structure and data properties. We start by introducing our assumptions
on functions in (1.1)–(1.6).

(i) b ∈ C1(R), 0 < b′(ξ) < b∗ and

0 < b(ξ) ≤ b2 < +∞ ∀ξ ∈ R (b2, b∗ = const).

(ii) a, Dw ∈ C(R) and λ ∈ C(R2) such that

0 < a(ξ), 0 < Dw(ξ) ∀ξ ∈ R,
0 < λ(ξ, ζ) ∀ξ, ζ ∈ R.

(iii) (Initial data) Assume u0, w0, θ0 ∈ L∞(Ω), such that

−∞ < u1 < u0 < 0 a.e. in Ω (u1 = const). (2.1)
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2.3. Auxiliary results.

Remark 2.1 ([2, Section 1.1]). Let us note that (i) implies that there is a (strictly)
convex C1-function Φ : R→ R, Φ(0) = 0, Φ′(0) = 0, such that b(z)− b(0) = Φ′(z)
for all z ∈ R. Introduce the Legendre transform

B(z) :=

∫ 1

0

(b(z)− b(sz))z ds =

∫ z

0

(b(z)− b(s)) ds.

Let us present some properties of B [2]:

B(z) :=

∫ 1

0

(b(z)− b(sz))z ds ≥ 0 ∀z ∈ R,

B(s)−B(r) ≥ (b(s)− b(r))r ∀r, s ∈ R,
b(z)z − Φ(z) + Φ(0) = B(z) ≤ b(z)z ∀z ∈ R.

3. Main result

The aim of this paper is to prove the existence of a weak solution to problem
(1.1)–(1.6). First we formulate our problem in a variational sense.

Definition 3.1. A weak solution of (1.1)–(1.6) is a triplet [u,w, θ] such that

u ∈ L2(I;W 1,2
ΓD

(Ω)), w ∈ L2(I;W 1,2
ΓD

(Ω)) ∩ L∞(QT ),

θ ∈ L2(I;W 1,2
ΓD

(Ω)) ∩ L∞(QT ),

which satisfies

−
∫

QT

b(u)∂tφ dxdt+

∫

QT

a(θ)∇u · ∇φ dxdt =

∫

Ω

b(u0)φ(x, 0) dx (3.1)

for any φ ∈ L2(I;W 1,2
ΓD

(Ω)) ∩W 1,1(I;L∞(Ω)) with φ(·, T ) = 0;

−
∫

QT

b(u)w∂tη dxdt+

∫

QT

b(u)Dw(u)∇w · ∇η dxdt

+

∫

QT

wa(θ)∇u · ∇η dxdt

=

∫

Ω

b(u0)w0η(x, 0) dx

(3.2)

for any η ∈ L2(I;W 1,2
ΓD

(Ω)) ∩W 1,1(I;L∞(Ω)) with η(·, T ) = 0;

−
∫

QT

[b(u)θ + %θ]∂tψ dxdt+

∫

QT

λ(θ, u)∇θ · ∇ψ dxdt

+

∫

QT

θa(θ)∇u · ∇ψ dxdt

=

∫

Ω

[b(u0)θ0 + %θ0]ψ(x, 0) dx

(3.3)

for any ψ ∈ L2(I;W 1,2
ΓD

(Ω)) ∩W 1,1(I;L∞(Ω)) with ψ(·, T ) = 0.

The main result of this paper reads as follows.

Theorem 3.2. Let assumptions (i)–(iii) be satisfied. Then there exists at least one
weak solution of the system (1.1)–(1.6).
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To prove the main result of the paper we use the method of semidiscretization
in time by constructing temporal approximations and limiting procedure. The
proof can be divided into three steps. In the first step we approximate our prob-
lem by means of a semi-implicit time discretization scheme (which preserve the
pseudo-monotone structure of the discrete problem) and prove the existence and
W 1,s(Ω)-regularity (with some s > 2) of temporal approximations. In the second
step we construct piecewise constant time interpolants and derive suitable a priori
estimates. The key point is to establish L∞-estimates to overcome degeneracies in
transport coefficients. Finally, in the third step we pass to the limit from discrete
approximations.

4. Proof of the main result

4.1. Approximations. Let us fix p ∈ N and set τ := T/p (a time step). Further,
let us consider u0

p := u0, w0
p := w0, θ0

p := θ0 a.e. on Ω. We approximate our
evolution problem by a semi-implicit time discretization scheme. Then we define,
in each time step n = 1, . . . , p, a triplet [unp , w

n
p , θ

n
p ] as a solution of the following

recurrence steady problem.
For a given triplet [un−1

p , wn−1
p , θn−1

p ], n = 1, . . . , p, un−1
p ∈ L∞(Ω), wn−1

p ∈
L∞(Ω), θn−1

p ∈ L∞(Ω), find [unp , w
n
p , θ

n
p ], such that unp ∈ W 1,s

ΓD
(Ω), wnp ∈ W 1,s

ΓD
(Ω),

θnp ∈W 1,s
ΓD

(Ω) with some s > 2 and

∫

Ω

b(unp )− b(un−1
p )

τ
φdx+

∫

Ω

a(θn−1
p )∇unp · ∇φ dx = 0 (4.1)

for any φ ∈W 1,2
ΓD

(Ω);

∫

Ω

b(unp )wnp − b(un−1
p )wn−1

p

τ
η dx

+

∫

Ω

b(un−1
p )Dw(un−1

p )∇wnp · ∇η dx+

∫

Ω

wnp a(θn−1
p )∇unp · ∇η dx = 0

(4.2)

for any η ∈W 1,2
ΓD

(Ω);

∫

Ω

b(unp )θnp − b(un−1
p )θn−1

p

τ
ψ dx+

∫

Ω

%
θnp − θn−1

p

τ
ψ dx

+

∫

Ω

λ(θn−1
p , un−1

p )∇θnp · ∇ψdΩ +

∫

Ω

θnp a(θn−1
p )∇unp · ∇ψdΩ = 0

(4.3)

for any ψ ∈W 1,2
ΓD

(Ω).
Next we show the existence of the solution to (4.1)–(4.3).

Theorem 4.1. Let un−1
p ∈ L∞(Ω), wn−1

p ∈ L∞(Ω), θn−1
p ∈ L∞(Ω) be given

and the assumptions (i)–(iii) be satisfied. Then there exists [unp , w
n
p , θ

n
p ], such that

unp ∈ W 1,s
ΓD

(Ω), wnp ∈ W 1,s
ΓD

(Ω) and θnp ∈ W 1,s
ΓD

(Ω) with some s > 2 satisfying (4.1)–
(4.3).

Proof. The proof rests on the W 1,p-regularity of elliptic problems presented in
[9, 11] and the embedding W 1,s

ΓD
(Ω) ⊂ L∞(Ω) if s > 2 (recall that Ω is a bounded

domain in R2).
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The existence of unp ∈ W 1,s
ΓD

(Ω) with some s > 2 and θnp ∈ W 1,2
ΓD

(Ω), solutions
to problems (4.1) and (4.3), respectively, is proven in [6]. The existence of wnp ∈
W 1,2

ΓD
(Ω), the solution to (4.2), can be handled in the same way.

Now, with wnp ∈W 1,2
ΓD

(Ω) in hand, rewrite the equation (4.2) in the form (trans-
ferring the lower-order terms to the right hand side)

∫

Ω

b(un−1
p )Dw(un−1

p )∇wnp · ∇η dx

= −
∫

Ω

b(unp )wnp − b(un−1
p )wn−1

p

τ
η dx−

∫

Ω

wnp a(θn−1
p )∇unp · ∇η dx.

Since un−1
p ∈ L∞(Ω), unp ∈ W 1,s

ΓD
(Ω) with some s > 2, wn−1

p ∈ L∞(Ω), θn−1
p ∈

L∞(Ω), both integrals on the right hand side make sense for any η ∈ W 1,r′

ΓD
(Ω),

r′ = r/(r − 1) with some r > 2. Now we are able to apply [9, Theorem 4] to

obtain wnp ∈ W 1,s
ΓD

(Ω) with some s > 2. Analysis similar to the above implies that

θnp ∈W 1,s
ΓD

(Ω) with some s > 2. �

4.2. A priori estimates. In this part we prove some uniform estimates (with
respect to p) for the time interpolants of the solution. In the following estimates,
many different constants will appear. For simplicity of notation, C represents
generic constants which may change their numerical value from one formula to
another but do not depend on p and the functions under consideration.

4.2.1. Construction of temporal interpolants. With the sequences unp , w
n
p , θ

n
p con-

structed in Section 4.1, we define the piecewise constant interpolants φ̄p(t) = φnp
for t ∈ ((n − 1)τ, nτ ] and, in addition, we extend φ̄p for t ≤ 0 by φ̄p(t) = φ0

for t ∈ (−τ, 0]. For a function ϕ we often use the simplified notation ϕ := ϕ(t),

ϕτ (t) := ϕ(t − τ), ∂−τt ϕ(t) := ϕ(t)−ϕ(t−τ)
τ , ∂τt ϕ(t) := ϕ(t+τ)−ϕ(t)

τ . Then, follow-

ing (4.1)–(4.3), the piecewise constant time interpolants ūp ∈ L∞(I;W 1,s
ΓD

(Ω)),

w̄p ∈ L∞(I;W 1,s
ΓD

(Ω)) and θ̄p ∈ L∞(I;W 1,s
ΓD

(Ω)) (with some s > 2) satisfy the
equations

∫

Ω

∂−τt b(ūp(t))φ dx+

∫

Ω

a(θ̄p(t− τ))∇ūp(t) · ∇φ dx = 0 (4.4)

for any φ ∈W 1,2
ΓD

(Ω),
∫

Ω

∂−τt [b(ūp(t))w̄p(t)]η dx+

∫

Ω

b(ūp(t− τ))Dw(ūp(t− τ))∇w̄p(t) · ∇η dx

+

∫

Ω

w̄p(t)a(θ̄p(t− τ))∇ūp(t) · ∇η dx = 0

(4.5)

for any η ∈W 1,2
ΓD

(Ω) and
∫

Ω

∂−τt
[
b(ūp(t))θ̄p(t) + %θ̄p(t)

]
ψ dx

+

∫

Ω

λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇ψ dx

+

∫

Ω

θ̄p(t)a(θ̄p(t− τ))∇ūp(t) · ∇ψ dx = 0

(4.6)
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for any ψ ∈W 1,2
ΓD

(Ω).

4.2.2. L∞-bound for ūp, w̄p and θ̄p. First we prove the L∞-estimate for ūp. Let us
set

φ := [b(ūp)− b(u1)]− =

{
b(ūp)− b(u1), ūp < u1,

0, ūp ≥ u1,
(4.7)

as a test function in (4.4). Note that φ vanishes on ΓD. It is a simple matter to
derive

1

2

∫

Ω

[b(ūp(t))− b(u1)]2−dx+

∫

Qt

a(θ̄p(s− τ))b′(ūp(s))|∇ūp(s)|2χ{ūp<u1}dxds ≤ 0

for almost every t ∈ I. Hence we conclude that the set {x ∈ Ω : ūp(x, t) < u1} has
a measure zero for almost every t ∈ I.

Now setting

φ = [b(ūp)− b(0)]+ =

{
b(ūp)− b(0), ūp > 0,

0, ūp ≤ 0,
(4.8)

we obtain, using similar arguments,

1

2

∫

Ω

[b(ūp)− b(0)]2+dx = 0 for almost every t ∈ I.

Hence the set {x ∈ Ω : ūp(x, t) > 0} has a measure zero for almost every t ∈ I.
Finally, combining the previous arguments, we deduce

‖ūp‖L∞(QT ) ≤ C, (4.9)

where C does not depend on p.
Now we prove a similar estimate for w̄p. Let ` be an odd integer. Using φ =

[`/(`+ 1)](w̄p)
`+1 as a test function in (4.4) and η = (w̄p)

` in (4.5) and combining
both equations we obtain

1

τ

1

`+ 1

∫

Ω

b(ūp(s))[w̄p(s)]
`+1 dx

− 1

τ

1

`+ 1

∫

Ω

b(ūp(s− τ))[w̄p(s− τ)]`+1 dx

+
1

τ

1

`+ 1

∫

Ω

b(ūp(s− τ))[w̄p(s− τ)]`+1 dx

+
1

τ

`

`+ 1

∫

Ω

b(ūp(s− τ))[w̄p(s)]
`+1 dx

− 1

τ

∫

Ω

b(ūp(s− τ))w̄p(s− τ)[w̄p(s)]
` dx

+

∫

Ω

`[w̄p(s)]
`−1b(ūp(s− τ))Dw(ūp(s− τ))∇w̄p(s) · ∇w̄p(s) dx = 0.

(4.10)
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Applying the Young’s inequality we can write for the term in the third line

1

τ

∫

Ω

b(ūp(s− τ))w̄p(s− τ)[w̄p(s)]
` dx

≤ 1

τ

1

`+ 1

∫

Ω

b(ūp(s− τ))[w̄p(s− τ)]`+1 dx

+
1

τ

`

`+ 1

∫

Ω

b(ūp(s− τ))[w̄p(s)]
`+1 dx.

(4.11)

Combining (4.10) and (4.11) we deduce

1

τ

1

`+ 1

∫

Ω

b(ūp(s))[w̄p(s)]
`+1 dx

− 1

τ

1

`+ 1

∫

Ω

b(ūp(s− τ))[w̄p(s− τ)]`+1 dx

+

∫

Ω

`[w̄p(s)]
`−1b(ūp(s− τ))Dw(ūp(s− τ))∇w̄p(s) · ∇w̄p(s) dx ≤ 0.

(4.12)

Now, integrating (4.12) over s from 0 to t we obtain
∫

Ω

(w̄p(t))
`+1b(ūp(t))dx

+

∫

Ωt

(`+ 1)`[w̄p(s)]
`−1b(ūp(s− τ))Dw(ūp(s− τ))|∇w̄p(s)|2dxds

≤
∫

Ω

(w0)`+1b (u0) dx.

(4.13)

Note that the second integral in (4.13) is nonnegative (` is supposed to be the odd
integer). Moreover, from (4.13) and (4.9) it follows that

‖w̄p‖L∞(0,T ;L`+1(Ω)) ≤ C, (4.14)

where the constant C is independent of ` and p. Now, let ` → +∞ in (4.14), we
obtain

‖w̄p‖L∞(QT ) ≤ C. (4.15)

In the same manner we arrive at the estimate for θ̄p, i.e.

‖θ̄p‖L∞(QT ) ≤ C. (4.16)

4.2.3. Energy estimates for ūp, w̄p and θ̄p. We test (4.4) with φ = ūp(t) and inte-
grate (4.4) over t from 0 to s. For the parabolic term we can write

∫ s

0

∫

Ω

∂−τt b(ūp(t))ūp(t) dxdt ≥ 1

τ

∫ s

s−τ

∫

Ω

B(ūp(t))−B(u0) dxdt. (4.17)

Further, using (4.9) and (4.17), applying the usual estimates for the elliptic part
(see also [2]), we obtain the a priori estimate

sup
0≤t≤T

∫

Ω

B(ūp(t))dx+

∫ T

0

∫

Ω

|∇ūp(t)|2dxdt ≤ C. (4.18)

Now it follows that there exists a function u ∈ L2(I;W 1,2
ΓD

(Ω)) such that, along a

selected subsequence (letting p→∞), we have ūp(t) ⇀ u weakly in L2(I;W 1,2
ΓD

(Ω)).
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Now we prove similar result for w̄p(t). Using η(t) = 2w̄p(t) as a test function in
(4.5) we obtain

∫

Ω

∂−τt b(ūp(t))2w̄p(t)
2 dx+

∫

Ω

∂−τt w̄p(t)2w̄p(t)b(ūp(t− τ)) dx

+ 2

∫

Ω

b(ūp(t− τ))Dw(ūp(t− τ))∇w̄p(t) · ∇w̄p(t) dx

+

∫

Ω

a(θ̄p(t− τ))∇ūp(t) · 2w̄p(t)∇w̄p(t) dx = 0.

(4.19)

One is allowed to use φ(t) = w̄p(t)
2 as a test function in (4.4) to obtain

∫

Ω

[∂−τt b(ūp(t))]w̄p(t)
2 dx+

∫

Ω

a(θ̄p(t− τ))∇ūp(t) · ∇w̄p(t)2 dx = 0. (4.20)

Combining (4.19) and (4.20) we deduce
∫

Ω

∂−τt
[
w̄p(t)

2b(ūp(t))
]

dx+

∫

Ω

1

τ
[w̄p(t)− w̄p(t− τ)]

2
b(ūp(t− τ)) dx

+ 2

∫

Ω

b(ūp(t− τ))Dw(ūp(t− τ))∇w̄p(t) · ∇w̄p(t) dx = 0.

(4.21)

In view of (4.9) we have

b(ūp(t)), b(ūp(t− τ)), Dw(ūp(t− τ)) > C in Ω× (−τ, T ). (4.22)

Recall that C does not depend on p. Now, integrating (4.21) with respect to time
t we obtain

sup
0≤t≤T

∫

Ω

|w̄p(t)|2dΩ +

∫ T

0

‖w̄p(t)‖2W 1,2
ΓD

(Ω)
dΩ ≤ C.

From this we can write

‖w̄p‖L2(I;W 1,2
ΓD

(Ω)) ≤ C. (4.23)

Similarly, we use ψ(t) = 2θ̄p(t) as a test function in (4.6) to obtain
∫

Ω

∂−τt b(ūp(t))2θ̄p(t)
2 dx+

∫

Ω

∂−τt θ̄p(t)2θ̄p(t)b(ūp(t− τ)) dx

+ 2

∫

Ω

λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇θ̄p(t) dx

+

∫

Ω

a(θ̄p(t− τ))∇ūp(t) · 2θ̄p(t)∇θ̄p(t) dx ≤ 0.

(4.24)

Using φ(t) = θ̄p(t)
2 as a test function in (4.4) we obtain

∫

Ω

∂−τt b(ūp(t))θ̄p(t)
2 dx+

∫

Ω

a(θ̄p(t− τ))∇ūp(t) · ∇θ̄p(t)2 dx = 0. (4.25)

Combining (4.24) and (4.25) we deduce
∫

Ω

∂−τt
[(
θ̄p(t)

)2
b(ūp(t))

]
dx+

∫

Ω

1

τ

[
θ̄p(t)− θ̄p(t− τ)

]2
b(ūp(t− τ)) dx

+ 2

∫

Ω

λ(θ̄p(t− τ), ūp(t− τ))∇θ̄p(t) · ∇θ̄p(t) dx ≤ 0.

(4.26)
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Integrating (4.26) with respect to time t we obtain the a priori estimate (using
(4.9) and (4.16))

sup
0≤t≤T

∫

Ω

|θ̄p(t)|2dx+

∫ T

0

‖θ̄p(t)‖2W 1,2
ΓD

(Ω)
dt ≤ C. (4.27)

From this we have
‖θ̄p‖L2(I;W 1,2

ΓD
(Ω)) ≤ C. (4.28)

4.2.4. Further estimates. To show that ūp converges to u almost everywhere on QT
we follow [2]. Let k ∈ N and use

φ(t) = ∂kτt ūp(s)

for jτ ≤ t ≤ (j + k)τ with (j − 1)τ ≤ s ≤ jτ and 1 ≤ j ≤ T
τ − k, as a test function

in (4.4). For the parabolic term, we can write
∫ (j+k)τ

jτ

∫

Ω

∂−τt b(ūp(t)) ∂
kτ
t ūp(t) dxdt

=
1

kτ2

∫ jτ

(j−1)τ

∫

Ω

(b(ūp(t+ kτ))− b(ūp(t))) (ūp(t+ kτ)− ūp(t)) dxdt.

Hence, summing over j = 1, . . . , p− k we obtain the estimate

p−k∑

j=1

∫ (j+k)τ

jτ

∫

Ω

∂−τt b(ūp(t))∂
kτ
t ūp(t) dxdt

≥ 1

kτ2

∫ T−kτ

0

∫

Ω

(b(ūp(t+ kτ))− b(ūp(t))) (ūp(t+ kτ)− ūp(t)) dxdt.

(4.29)

Similarly, for the elliptic term, after a little lengthy but straightforward computation
we obtain

p−k∑

j=1

∫ (j+k)τ

jτ

∫

Ω

a(θ̄p(t− τ))∇ūp · ∇∂kτt ūp dxdt

=

k∑

`=1

p−k∑

j=1

∫ (j+`)τ

(j+`−1)τ

∫

Ω

(
a(θ̄p(t− τ))∇ūp

)
· ∇∂kτt ūpdxdt

=
k∑

`=1

∫ T−kτ+`τ

`τ

∫

Ω

a(θ̄p(t− τ))∇ūp(t) · ∇∂kτt ūp(t− `τ) dxdt

≤ c1
τ

∫

QT

|a(θ̄p(t− τ))∇ūp|2 dxdt+
c2
τ

∫

QT

|∇ūp|2 dxdt

≤ C

τ
.

(4.30)

Combining (4.29)–(4.30) and using (4.18) we obtain
∫ T−kτ

0

(b(ūp(s+ kτ))− b(ūp(s))) (ūp(s+ kτ)− ūp(s))ds ≤ Ckτ. (4.31)

Using the compactness argument one can show in the same way as in [2, Lemma 1.9]
and [8, Eqs. (2.10)–(2.12)]

b(ūp)→ b(u) in L1(QT ) (4.32)
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and almost everywhere on QT . Since b is strictly monotone, it follows from (4.32)
that [13, Proposition 3.35]

ūp → u almost everywhere on QT . (4.33)

Further, in much the same way as in (4.31), we arrive at
∫ T−kτ

0

|b(ūp(s+ kτ))w̄p(s+ kτ)− b(ūp(s))w̄p(s)|2ds ≤ Ckτ. (4.34)

From this we conclude, using (4.15), that
∫ T−kτ

0

|w̄p(s+ kτ)− w̄p(s)|2ds ≤ Ckτ. (4.35)

Finally, in a similar way, using (4.16), we arrive at
∫ T−kτ

0

|θ̄p(s+ kτ)− θ̄p(s)|2ds ≤ Ckτ. (4.36)

4.3. Passage to the limit. The a priori estimates (4.15), (4.16), (4.18), (4.23),

(4.28), (4.31), (4.35), (4.36) allow us to conclude that there exist u ∈ L2(I;W 1,2
ΓD

(Ω)),

w ∈ L2(I;W 1,2
ΓD

(Ω))∩L∞(QT ) and θ ∈ L2(I;W 1,2
ΓD

(Ω))∩L∞(QT ) such that, letting
p→ +∞ (along a selected subsequence),

ūp ⇀ u weakly in L2(I;W 1,2
ΓD

(Ω)),

ūp → u almost everywhere on QT ,

w̄p ⇀ w weakly in L2(I;W 1,2
ΓD

(Ω)),

w̄p ⇀ w weakly star in L∞(QT ),

w̄p → w almost everywhere on QT ,

θ̄p ⇀ θ weakly in L2(I;W 1,2
ΓD

(Ω)),

θ̄p ⇀ θ weakly star in L∞(QT ),

θ̄p → θ almost everywhere on QT .

The above established convergences are sufficient for taking the limit p → ∞ in
(4.4)–(4.6) (along a selected subsequence) to get the weak solution of the system
(1.1)–(1.6) in the sense of Definition 3.1. This completes the proof of the main
result stated in Theorem 3.2.
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[3] J.-P. Aubin; Un théorème de compacité, Comptes Rendus de l’Acadmie des Sciences, 256
(1963), pp. 5042-5044.

[4] J. Bear; Dynamics of Fluids in Porous Media, Courier Corporation, 1972.
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C Function spaces

Here we introduce some function spaces which have been used throughout the text.

De�nition C.1 (Lebesgue space Lp(Ω), p ∈ [1;∞) [36]) Let p ∈ [1;∞), let Ω
be a measurable subset of Eucledian N-space RN . We denote by Lp(Ω) the set of all
measurable functions f de�ned almost everywhere on Ω and such that the Lebesgue
integral

∫

Ω

|f(x)|p dx

is �nite.

De�nition C.2 (Norm in Lebesgue space Lp(Ω), p ∈ [1;∞)[36]) Let p ∈ [1;∞),
let Ω be a measurable subset of Eucledian N-space RN , let f be a measurable func-
tion de�ned almost everywhere in Ω. We denote by ‖f‖Lp(Ω) norm in Lebesgue space
Lp(Ω) such that

‖f‖Lp(Ω) :=

(∫

Ω

|f(x)|p dx

)1/p

.

De�nition C.3 (Lebesgue space L∞(Ω) [36]) Let Ω be a measurable subset of
Eucledian N-space RN . We denote by L∞(Ω) the set of all measurable functions f
de�ned almost everywhere on Ω, such that there exists a constant K > 0 with the
property

|f(x)| ≤ K.

De�nition C.4 (Sobolev space W 1,p(Ω); p ∈ [1;∞)) Let Ω be a measurable sub-
set of Eucledian N-space RN . We denote by W 1,p(Ω) the set of all measurable
functions f de�ned almost everywhere on Ω, such that

f ∈ Lp(Ω)

and
∂f

∂xi
∈ Lp(Ω) i = 1, 2, ..N.

De�nition C.5 (Sobolev space W 1,p
0 (Ω); p ∈ [1;∞)) Let Ω be a measurable sub-

set of Eucledian N-space RN with boundary ∂Ω. We denote by W 1,p
0 (Ω) the set of

all measurable functions f de�ned almost everywhere on Ω, such that

f ∈ W 1,p(Ω)

and
f |∂Ω = 0.
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De�nition C.6 (Sobolev space W 1,p
D (Ω); p ∈ [1;∞)) Let Ω be a measurable sub-

set of Eucledian N-space RN with boundary ∂Ω ⊆ ΓD. We denote by W 1,p
D (Ω) the

set of all measurable functions f de�ned almost everywhere on Ω, such that

f ∈ W 1,p(Ω)

and
f |ΓD = 0.

De�nition C.7 (Norm in Sobolev space W 1,p(Ω); p ∈ [1;∞)) Let Ω be a mea-
surable subset of Eucledian N-space RN and f a measurable function de�ned almost
everywhere on Ω. We de�ne the norm in Sobolev space W 1,p(Ω); p ∈ [1;∞) such
that

‖f‖W 1,p(Ω) :=

(∫

Ω

[
fp(x) +

N∑

i=1

(
∂f(x)

∂xi

)p]
dx

)1/p

.

D Important inequalities

In this section we introduce some well known inequalities which have been used in
the text.

Lemma D.1 (Hölder's inequality ([16], Sec. B.2)) Let 1 < p, q < +∞, 1
p

+
1
q

= 1 and f(x) ∈ Lp(Ω), g(x) ∈ Lq(Ω). The following inequality holds

∫

Ω

f(x)g(x) dx ≤
(∫

Ω

f(x)p dx

)1/p(∫

Ω

g(x)q dx

)1/q

.

Lemma D.2 (Friedrichs' inequality ([51], Theorem 30.3)) Let Ω be a domain
with a lipschitz boundary Γ, further Γ1 is a part of the boundary Γ with nonnegative
measure, then there exists a constant c > 0, which depends on the domain and the
part of the boundary Γ1 so that for all functions f(x) ∈ W 1,2(Ω) holds

‖f(x)‖2
W 1,2(G) ≤ c

(∫

Ω

(∇f(x))2 dx+

∫

Γ1

f(x)2dS

)
.

Lemma D.3 (Young's inequality ([16], Sec. B.2)) Let 1 < p, q < +∞ a 1
p

+
1
q

= 1. Then the following inequality holds

ab ≤ ap

p
+
bq

q
,

for all a, b > 0. Further let α 6= 0. We can write

α a
b

α
≤ (α a)p

p
+

(
b

α

)q
1

q
.
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Further

ab ≤ αp

p
ap +

1

qαp
bq.

Let us denote η = αp

p
, c(η) = 1

qαp
and we can write

ab ≤ η ap + c(η) b q.

Lemma D.4 (Gronwall's inequality in integral form ([16], Appendix B, paragraph k.))
Let ξ(t) be a nonnegative, summable function on [0, T ] which satis�es

ξ(t) ≤ C1

∫ t

0

ξ(s)ds,

for a.e 0 ≤ t ≤ T , then
ξ(t) = 0

almost everywhere.

Lemma D.5 (Gronwall's inequality in discrete form ([52], Chapter 1)) Let
yl ≤ C + τ

∑l−1
k=1(akyk + bk) for any l ≥ 0. The discrete form of the Gronwall's

inequality reads as follows

yl ≤ c+ τ
l∑

k=1

(ayk + bk). (D.1)

We will often use ak = a constant, and the condition

yl ≤ C + τ
l∑

k=1

(ayk + bk),

from which can be derived yl ≤ (1− aτ)−1
(
c+ τb0 + τ

∑l−1
k=1(ayk + bk+1)

)
, so that

(D.1) gives

yl ≤
eτla/(1−aτ)

1− aτ

(
c+ τ

l∑

k=1

bk

)
if τ <

1

a
.
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