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Abstrakt /

Chemie a biochemie prošly význam-
ným vývojem laboratorní techniky,
který způsobil, že měřená data jsou
mnohem složitější a větší než kdy před-
tím. Analýza chemických a biochemic-
kých dat vyžaduje spolupráci chemiků
a biologů s datovými analytiky a sta-
tistiky. Tato práce prezentuje několik
obecných závěrů o analýze chemických
a biochemických dat. Data jsou vysoce
dimenzionální, obvykle s méně pozo-
rováními než proměnnými. Z povahy
dat jsou proměnné obvykle kolineární.
To vymezuje specifické požadavky na
metody datové analýzy. Práce nabízí
přehled metod vhodných pro tento typ
dat a věnuje zvláštní pozornost gene-
ralizovaným mixed effect modelům a
jejich výhodám při modelování vztahů
v komplexních datech. Významná část
práce je věnovaná metodám založených
na simulacích pro statistickou inferenci
a porovnání modelů.
Hlavní část práce se zabývá analý-
zou dat z experimentu na melanomem
trpícím Liběchovském Minipraseti, la-
boratorním plemeni miniprasete trpícím
melanomem, které slouží jako in vivo
model progrese melanomu. Biologické
vzorky byly analyzovány laserovou
ablací ve spojení s hmotnostní spek-
tometrií indukčně vázaného plazmatu,
metodou která produkuje prostorové
mapy chemických prvků ve tkáňových
řezech.
Abychom prozkoumali vztahy mezi
prostorovým rozložením bioaktivních
chemických prvků (zinek, měď), his-
tologicky konzistentní tkáňové zóny
identifikované v sousedícím tkáňo-
vém řezu byly zpropagovány pomocí
vytvoření vrstvené reprezentace dat
provedené registrací obrazů. Vrstvená
reprezentace dat umožňuje použití
standardních metod analýzy dat. Shlu-
kování na vrstvených datech ukazuje, že

i po zpracování vzorku pomocí laserové
ablace jsme schopni rozlišit obecné ka-
tegorie tkání jako je melanomová tkáň
a vazivová tkáň. Tento postup nám také
umožnil provést analýzu prostorové
struktury melanomové tkáně. Analýza
prostorové struktury melanomu nám
poskytuje oporu v plánování podobných
experimentů – tkáň v melanomu si je
podobná až do vzdálenosti 24 µm.
Anotované tkáňové zóny byly využity
pro popis rozdílů v mapách chemic-
kých prvků zinku a mědi. S použitím
navrhovaného postupu zpracování dat,
lineárních mixed effect modelů, které
umožňují zohlednit individuálnní roz-
díly mezi zvířaty, a neparametrického
bootstrapu pro statistickou inferenci,
jsme byli schopni ukázat, že obsah zinku
v rostoucí melanomové tkání a tkáni s
počínající spontánní regresí je signifi-
kantně vyšší než při pozdní spontánní
regresi a vazivové tkáni.
Navrhovaný postup zpracování dat
otevírá nové možnosti pro zhodnocení
exprimentů s laserovou ablací s hmot-
nostní spektrometriíindukčně vázaného
plazmatu a podobnými metodami. Po-
užití kompexních modelů zpřesňuje po-
zorované vztahy v datech z přítomnosti
nezávislé i závislé variability. S využitím
na simulacích založených metod zlep-
šujeme spolehlivost statistické inference
stejně tak jako reprodukovatelnost.

Klíčová slova: mapování chemických
prvků, LA-ICP-MS, generalizovaný line-
ární mixed effect model, simulační me-
tody, histology, melanom, supervizovaná
PCA, metabolomika, NMR spektrosko-
pie
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Abstract /

The chemistry and biochemistry
witnessed substantial instrumental ad-
vances, which resulted in a measurement
of ever more complex and bigger data.
The analysis of data from modern chem-
ical and biochemical laboratory analyses
requires dedicated support from data
scientists or statisticians. In this work,
we present several general findings of
the chemical and biochemical data anal-
ysis. The data are high-dimensional,
usually have small number of observa-
tions and a large number of variables.
Due to the nature of the data, the
variables are generally collinear. This
property imposes specific limitations on
the data analysis methods. We present
and discuss the recommended meth-
ods and pipelines. We emphasize the
generalised mixed effect models as an
efficient tool for modelling relationships
in complex data. An important part of
the work is devoted to simulation-based
methods for statistical inference as well
as for model comparison.
The main part of the work deals with
the practical analysis of data from
an experiment on melanoma-bearing
Libechov minipigs. This animal is a
laboratory breed of pigs suffering from
melanoma used as an in vivo model of
melanoma progression. The biological
samples of melanoma were examined
by laser ablation inductively coupled
plasma mass spectrometry that pro-
duces spatial maps of elements in tissue
sections.
We integrated the elemental maps and
histology scans using image registration,
creating the layered data representa-
tion. The layered data representation
enables using standard data analysis
procedures to examine the relationships
between the annotated tissue zones
and the spatial distribution of bioactive
metals (zinc, copper). The clustering

on the layered data shows that broad
categories such as melanoma tissue and
fibrous tissue can be distinguished. The
analysis of the melanoma structure
provides us with justifications for the
planning of experiments in a similar
manner – the tissue in the melanoma is
similar for areas up to 24 µm apart.
The annotated tissue zones were utilised
to examine the differences in the ele-
mental maps of zinc and copper. We
showed that the zinc content in growing
melanoma tissue and early spontaneous
regression tissue is significantly higher
than in the late spontaneous regres-
sion tissue and the fibrous tissue. The
linear mixed effect model takes the in-
dividual differences among the animals
into account, and the non-parametric
bootstrap for the statistical inference
provides more reliable results than the
standard approach.
The data processing pipeline opens
new possibilities for the evaluation of
experiments involving spatial data such
as the elemental maps produced by
the laser ablation inductively coupled
plasma mass spectrometry. The use of
complex models refines the observed
relationships in the data among the
influence of independent and depen-
dent variability. The simulation-based
non-parametric bootstrap improves the
reliability of statistical assessment as
well as the reproducibility.

Keywords: chemical elemental map-
ping, LA-ICP-MS, generalised linear
mixed effect model, simulation-based
methods, histology, melanoma, MeLiM,
supervised PCA, metabolomics, NMR
spectroscopy
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Chapter 1
Introduction

Chemistry and biochemistry witnessed substantial instrumental advances. The im-
provement in laboratory techniques helped to understand many chemical and biochem-
ical phenomena. However, it also led to the generation of large amounts of data [1]. Let
us take the structure of the deoxyribonucleic acid (DNA) discovered by Watson and
Crick [2] as an example. In the case of the decoding of the information in the DNA,
the breakthrough came with the Human genome project and the techniques of DNA
sequencing [3] which identified 14.8 billion base pairs of the human genome over nine
months. Nowadays the DNA sequencing is cheaper and faster in order of magnitude
with next-generation sequencing methods [4].
And in other sciences, the amount of data followed the same pattern [5]. The new
generation measuring devices can generate vast amounts of data that many times over-
reach the abilities of the laboratory staff to process the data with the contemporary
approaches relying heavily on a manual treatment of the data or in the utilisation of
simple programs (usually supplied by the producer of the measuring device) for pro-
cessing small batches of data. This development inevitably led to the establishing of
new scientific disciplines combining chemistry and biochemistry with computer science,
machine learning and data mining. These interdisciplinary sciences are among other
the computational biology [6] and the biostatistics [7]. In the context of medicine, it is
the biomedical informatics [8].
All fields of study deal to a certain extent with similar problems when they try to under-
stand and interpret the measurements. Few topics summarise the issues common to all
the sciences dealing with data. The data collection and preprocessing, feature extrac-
tion, unsupervised and supervised analysis, interpretation of results are the problems to
be encountered during analysis of data originating in biochemistry [9]. The new trend
in the data sciences is to develop data analysis pipelines performing all the necessary
preprocessing steps specific to the data and producing the statistical assessment. A
well designed pipeline offers the scientist the opportunity to detach himself from the
tedious data analysis and to have results that point towards promising directions of
further research or that are ready for publication of a new set of findings. There are
generally two approaches:

. the time consuming manual processing of the data by a team of data scientists,
which check the consistency of the data, the potential confounding factors, sources
of variability, patterns of missing data and other important questions;. a fast throughput analysis by a pipeline, which produces the desired results in fraction
of time of the first approach, however the the pipeline may not fit all the data.

Each of these approaches has its supporters and opponents, its advantages and draw-
backs. In a team of specialists, the enthusiastic data scientists would be in favour of the
first approach, because it is their expertise. They are aware of the many issues related
to any data analysis. On the other hand, other team members are not always convinced
that careful data analysis is better than an automated pipeline. The presented view is

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
rather extreme, and only a compromise of these two views can win in the long term.
The data ’avalanche’ is very real, and without automated or semi-automated pipelines
of data analysis, we would not be able to obtain any results at a reasonable time [10].

1.1 Goals of the thesis

. To devise a pipeline of the processing of the integrated data with statistical and
machine learning methods that will lead to results that are reliable, stable and re-
producible. To develop a method for model comparison for models for high-dimensional biochem-
ical data. To develop a method for the integration of data in biochemical experiments combin-
ing spatial measurements (especially the digital microscopy and laser ablation induc-
tively coupled plasma mass spectrometry analysis) and external sources (specialists
annotations) that will generate a dataset enabling the use of standard statistical and
machine learning methods. To explore the spatial structure of the tissue in serial tissue sections and consequently
suggest a strategy for planning further follow-up experiments on tissue sections that
can bring a better understanding to oncological processes.. To examine the relationships between the spatial distribution of bioactive metals and
the developmental stage of melanoma tissue development

1.2 Structure of the thesis
The organisation of the thesis is such that the more theoretical chapters dealing with the
general description of the biochemical data, and various processing strategies precede
the chapters with experimental results.

Chapter 2 presents the diversity of biochemical data. We provide a description of the
measurement procedure and the properties of the resulting data on several examples of
biochemical data. These are mostly the data that we encountered during the work in
the field of biochemical data analysis.

Chapter 3 discusses the specific processing of biochemical data and presents the spe-
cific properties of the data in a formal way as well as several approaches to the data pro-
cessing. The topics in this chapter are the basic building blocks of the biochemical data
processing pipeline. Section 3.1 reviews several methods of feature extraction suitable
for biochemical data. Section 3.2 introduces the general problem of data integration in
biochemical data analysis. Section 3.3 presents the problem of multicollinearity. And
the last section 3.4 provides an overview of statistical and machine learning methods
available for the biochemical data.

Chapter 4 provides a more detailed description of the mixed effect model. Section
4.3 offers several methods of statistical inference for the mixed effect models that work
well for the biochemical data suffering from collinearity and other problems. Section
4.4 presents the extension of the linear mixed effect model to other statistical data
types in the form of generalised linear mixed effect model.

Chapter 5 presents a simulation-based approach to model comparison in the specific
field of nuclear magnetic resonance spectrometry. A method of generation of artificial
data described in section 5.1.3 is used to compare two methods for high-dimensional

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Structure of the thesis

data modelling common in nuclear magnetic resonance spectroscopy. Section 5.1 de-
scribes the pipeline for a simulation-based comparison of methods. Section 5.2 sum-
marises the results of the comparison.

Chapter 6 is a case study for the methods and approaches introduced in the previ-
ous chapters. Sections 6.4.3 and 6.4.4 explore the structure of the melanoma tissue.
Section 6.4.2 introduces data integration method suitable for elemental mapping and
digital microscopy. Section 6.4.5 provides a statistical framework for the testing of
differences in developmental stages of melanoma tissue.

Chapter 7 concludes the thesis. The Section 7.1 summarises the achieved goals of
the thesis. The Section 7.2 follows with the perspectives for future work. The Section
7.3 lists the author’s contributions and scientific publications.

3



Chapter 2
Problem statement

2.1 Introduction
The data originating in chemical and biochemical laboratories can be very diverse. It is
not the aim of this work to provide an exhaustive list of possible outcomes of chemical
experiments. On the other hand, the data share many properties. The measurements
are usually vectors, matrices or multidimensional arrays. Specific preprocessing tech-
niques have to utilised to preprocess the measurements. And in the data, there are
relationships among the variables, therefore the data are collinear.
The common issue with the data originating in chemistry and biochemistry are the need
to preprocess the data to remove the uncertainties introduced by the measurement pro-
cess [11–13]. In connection with the need to preprocess the data comes the need to
effectively extract features of the original data for following steps of the analysis. After
the preprocessing stage, the exploratory visualisations and tables help data inspection
and examination. This step can help to discover various sources of variability in the
data. These can be interactions among the variables, differences between groups of ob-
servations, patterns of missing data, or anomalies. The variability in the data is often
of two types:

. variability correlated to the experiment design. variability orthogonal to the experiment design

The experiment outcome often expressed as a response variable (e.g. level of a
metabolite in body fluid), classification of observations (e.g. classification of patients
as suffering from a disease or healthy) [14]. The analysis of the data employing
unsupervised and supervised machine learning methods can exploit the variability
related to the study design.
On the other hand, the orthogonal variability is often a nuisance during the data
analysis and specific methods were developed to remove or suppress it [15, 14].

2.2 Example – Gel electrophoresis
As an example of the problems dealt with during the data analysis may serve the study
of electrophoreograms. The electrophoreograms are the results of electrophoresis. A
digital image obtained by camera serves for the examination. The process of taking
the photography alone is a source of several severe problems. The illumination of the
electrophoreogram is often not even. The person taking the photo often does not use
any apparatus to support the camera, which leads to distortions in the image. The
misalignment between the camera and the photographed electrophoreogram leads to
a perceived perspective in the resulting image. The second source of uncertainty in
the data is the measurement process itself. The gel matrices used to the separation of
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the examined (biological) material into its compounds are often inhomogeneous, and
when inserted into the apparatus, they distort the electrical field. The design of the
equipment also makes the electrical field uneven, see Fig 2.1. When combining a series
of experiments, the alignment of the electrophoreograms by image transformation is
necessary to eliminate the lack of standardisation.
The electrophoreograms are always equipped with a standard band to provide a
reference for matching between diverse electrophoreograms. Image processing methods
can solve the issues connected to the taking of the image as well as with the differing
results in repeated measurements. The elimination of these problems does not lead
to data suitable for processing by machine learning or statistical methods. A feature
extraction procedure has to be employed to obtain variables describing the actual in-
teresting characteristics of the electrophoreograms. The individual bands representing
the analysed (biological) material have to be recognised and subjected to a feature
extraction algorithm. In the case of electrophoreogram, the average brightness curves
[J6, J5, J4] can represent the distribution of molecules according to their specific mass.
A collection of brightness curves provides information in a form that can be utilised by
data analysis methods for time series data.The most suitable are methods performing
further feature extraction and distinguishing correlated and orthogonal variability such
as [14] in [J5].

Figure 2.1. Electrophoresis apparatus. The analysed samples are loaded into the wells
in the gel matrix. The power supply generates an electrical field which attracts/repels
the compounds. The mobility of the compounds depends on the molecular weight and
the electric charge. The low molecular weight compounds travel farther than the high

molecular weight compounds. [16]
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The data analysis of the collection of the brightness curves may benefit from the

second application of feature extraction procedure. In the first case, the feature extrac-
tion was a part of data preprocessing stage of the analysis. An algorithm developed
specifically for the task of detection of bands performed the feature extraction. The
second application of feature extraction creates a new representation of the data that
helps to filter useful information and attenuate the nuisance variation in the data
(random noise). Such a method can be the wavelet transformation, which proved very
powerful in representing time series data for an analysis of time series data on various
scales [17].
We also observe the collinearity [18] in the average brightness curves. The resolution
of the digital camera is very high. The adjacent pixels in the electrophoreogram image
strongly correlate. The value of the pixels is very similar and providing we have several
neighbouring pixels we can estimate the value of the pixel with high precision. Even
though we collapse one dimension of the electrophoreogram image, the very detailed
sampling (due to the high resolution of the photography) still affects the average
brightness curves. The feature extraction methods such as the wavelet transform can
provide a data representation that is less affected by the colinearity. To summarise the
example of the analysis of electrophoreogram, the processing of biochemical data relies
on procedures that are in general common for any data [11]. However, the data suffer
from several issues that have to be resolved by specifically developed methods.

2.3 The biochemical data
This chapter aims to present the specifics of the processing of biochemical data, to
identify the issues common to all the data types that we dealt with as well as the specific
properties concerning specific to data from certain biochemical analytical methods. This
chapter is intended to describe the following data shortly:

. Brdička curve. Electrophoreogram image. Nuclear Magnetic Resonance spectroscopy. Elemental mapping by LA-ICP-MS. Additional information supplemented to the biochemical data

2.3.1 Brdička curve

The Brdička curve is a result of Brdička reaction [19]. The Brdička curve is measured
by differential pulse voltammetry [20]. The Brdička curve can be used to measure the
electrochemical properties of various (biological) materials [C4, J7]. The information
carried by the Brdička curve and its features can predict several medical conditions or
composition of various organic solutions.

The Brdička curve is a vector of value pairs of electrical current i and voltage u,
cj = [uj , ij ], uj , ij ∈ R,for j = 1, 2, ...n − 1, n, where n is the length of the vector.
In addition the curve is usually associated with a set of variables y = [y1, y2,…, yn]
(treatment group, severity of disease, concentration of a chemical compound,etc.).
The Brdička curve suffers from the usual problem encountered in time series data, and
it is the collinearity among the values of the series (see Section 3.3). The very fine
steps in electric voltage, which is varied during the measurement, produce very finely
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Figure 2.2. Example of Brdička curve of liver tissue [21]

sampled Brdička curve, but these adjacent data points are highly correlated and do
not carry much of useful information. The relationship governing the shape of the
Brdička curve can be non-trivial [22] and the processing of Brdička curve is covered in
the following publications [C4, J7, C3, C2] of the author. A visualisation of a Brdička
curve originating from rat’s liver is presented in Fig.2.2.

2.3.2 Electrophoreogram image

The short description of the electrophoreograms was provided as an example in Sec-
tion2.2. To continue the running example of the processing of electrophoreograms we
will present the problem in a more general way. A digital image I : Ω → Rm with m
colour channels defined in a rectangular Ω ⊆ Zd, where d is the grid dimension. The
digital image represents the electrophoreogram containing the results of an analysis of
several actual samples of (biological) material. A band represents each sample, and a
simple algorithm (adaptive thresholding) can extract the band and complement it with
features estimating the specific weights of the analysed samples of (biological) material.
Formally, we transform the image I → c a curve from a set c ∈ C. Each curve is
represented as a pair of molecular weight m and image brightness b, so cj = [mj , bj ],
mj , bj ∈ R, for j = 1, 2, ...n − 1, n, where n is the length of the vector. As a result,
an electrophoretic curve represents each band. A coordinate system estimated from
the standard band provides the reference for indexing or interpolation. Following this
procedure, the result is a set of curves aligned according to reference information from
the standard band. Again, additional information (treatment group, disease severity,
etc.) supplements the experimental data. The curves suffer from collinearity (as was
described in more detail in the Section 2.2). A whole electrophoreogram is shown
in Fig.2.3 and an illustration of extraction of brightness curve from one band in an
electrophoreogram is in Fig.3.1.
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Figure 2.3. Example of electrophoreogram image of MT proteins [J6]

2.3.3 Nuclear Magnetic Resonance spectroscopy

The nuclear magnetic resonance (NMR) spectroscopy measures the properties of
hydrogen or other active elements in a sample of material which is usually some
liquid. The active elements are characterised by non-zero magnetic spin. In the case of
metabolomics, the examined samples are biological fluids such as plasma, blood, urine
or saliva) [J2].
The measurement is very similar to the nuclear magnetic resonance imaging, see Fig.
2.4.

Figure 2.4. Schematic depiction of the NMR spectrometer [23]

A radio-frequency pulse stimulates (excites) the analysed sample which is in strong
magnetic field, and the recovery of the system to the equilibrium is measured. The
recovery describes the free induction decay signal. The interaction of hydrogen nuclei
in chemical bond and specific structures modulates the resonance frequency of the
nuclei. The modulation results in the form of shifts in the measured frequency. The
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frequency shifts help to figure out the molecular structure of analysed compounds
or recognise known compounds. The data analysed in NMR spectroscopy are the
frequency spectra obtained by Fourier transform of the free induction decay signal. An
example of NMR spectrum of mice urine is in Fig. 2.5. [24]

Figure 2.5. Example of NMR spectrum of urine with annotated peaks belonging to selected
metabolites. [J2]

The spectra of the examined samples are vectors of frequencies and respective mag-
nitudes. The spectra often do not need any specific preprocessing because the shifts in
the frequencies related to the compound structure are very distinct [24]. However, a
minor and non-linear shift in the frequencies may be present. The magnitude of these
minor shifts is smaller in order of magnitude than the major shifts due to compound
structure. The processing usually includes steps that eliminate minor shifts. For ex-
ample, the aggregation of the spectra by averaging magnitudes over frequency intervals
with specified width greater than the minor shifts eliminates the minor shifts. This
procedure called binning [12]. Another problem of NMR spectroscopy data is the often
unknown dilution of the biological samples, which affects the magnitudes of the peaks
in the spectra and the area under the curve of the spectra. The unknown dilution of
the sample results in the inability to establish a relationship between the magnitude
of in NMR spectra and the actual concentration of the observed chemical compounds.
The dilution varies among the samples and cannot be estimated. That is why specific
processing procedure has to be employed to alleviate this problem. These techniques
are denoted as the normalisation of NMR spectra [12]. The simplest normalisation
method is the constant sum normalisation that normalises the sum of the spectrum to
a constant value. The constant is the same for eac spectrum in the analysed set. The
sum of the spectrum approximates the content of diluted compounds. The normalised
spectra are comparable among each other, however we lose the information about the
actual content of the diluted compounds.
After the processing steps set of vectors of pairs s = [fj ,mj ], fj ,mj ∈ R, for j =
1, 2, ...n − 1, n, where n is the length of the vector, represents the NMR spectroscopy
data. The representation of the data as vectors tends to suffer from collinearity. In the
case of NMR spectroscopy data, the relationships among the samples of the spectra are
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not just the relationships among neighbouring samples. Due to the interactions between
compounds in examined samples, the relationships may exist among any pair of values
of the vector, as can be seen in Fig. 2.5. In Fig 2.5 for example, four annotated peak
represent the metabolite Nicotinamide N-oxide. Each of the four peaks is proportional
to the content of the Nicotinamide N-oxide in the analysed biological sample. These
relationships make the analysis of NMR spectroscopy data difficult.
The NMR spectroscopy is used mostly in metabolomics [25]. Metabolomics is a study
of metabolism. The metabolomic experiments sometimes suffer from small sample sizes
(especially in the case of studies performed on animal models, which are expensive).
Small sample sizes may result in data having more variables (frequency bins) than ob-
servations (measured samples taken from objects of study) [26]. Small sample sizes and
a large number of variables is another challenging property of NMR spectroscopy data
calling for specific analytic tools. An example of an NMR spectrum with annotated
peaks belonging to important metabolites is in Fig.2.5.

2.3.4 Elemental mapping by LA-ICP-MS

The elemental mapping carried by laser ablation induction coupled plasma mass
spectrometry (LA-ICP-MS) [27] is a sophisticated chemical analysis, which combines
several laboratory techniques. The analysis is performed by continuous evaporation of
the analysed sample by a high energy laser beam. The resulting gas is transported,
mixed with inert medium and subjected to analysis by a mass spectrometer to identify
the presence of specific chemical elements. Schematic depiction is in Fig 2.6. The laser
ablation moves across the analysed (biological) material row by row in an orthogonal
grid and destroys and evaporates the matter of the sample. The laser beam has a finite
cross-section, which limits the width of the rows in the analysed sample. The speed
of the laser beam movement limits the resolution long the row. The practical limit
is the duration of the scanning, which is inversely related to the speed of the laser
beam movement [28]. Due to the nature of the scanning procedure, the resulting data
are inherently isotropic. The transportation of the evaporated sample to the detector
of the mass spectrometer causes the gas to mix. The gas mixing contributes to a
decrease in the spatial focus and results in an observed blur in visualisations. Another
source of uncertainty in the resulting signals is due to the detector imperfections. The
technical details of the detector are out of the scope of this work, but for example, a
simultaneous appearance of two silicon 28Si atoms at the detector can falsely indicate
an iron 56Fe atom signal.

An important role in the measurement of chemical elements’ content in biological
sample analysis plays the inhomogeneity of the matter in the sample. The sample is
thicker in some places and thinner in other places. The intensity of the laser beam is
constant during the measurement. In case of relatively low intensity, the laser beam
may not evaporate all the matter in the sample. This so-called soft ablation results
in low intensity of detected signals. The hard ablation uses laser beam intensity high
enough to evaporate all the matter of the sample and even a substantial amount of the
supporting material, which is often glass. The observation of strong silicon 28Si signal
indicates the hard ablation. The silicon is present in glass in the form of silicon dioxide
SiO2. The silicon signal indicates evaporation of glass slide supporting the analysed
sample.
The result of the biological sample analysis by LA-ICP-MS is a set of matrices of
signals of the analysed chemical elements, which can be represented as a multi-channel
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Figure 2.6. Schematic depiction of LA-ICP-MS [29]

digital image A digital image I : Ω → Rm with m colour channels corresponding to
different elemental maps defined in a rectangular Ω ⊆ Zd, where d is the grid dimension.
These may be for example elements carbon C, silicon Si or metals copper Cu, zinc Zn
and iron Fe. A sample with a known constitution has to be measured to establish a
relationship between signal magnitude and the element content. The relationship may
be in the form of a calibration table or a mathematical formula. This relationship
serves for estimation of element content in the analysed sample. The actual thickness
of the (biological) material may vary significantly, and it is not possible to measure.
In that case, the calibration relationship does not hold. The information about the
measurement parameters (the physical size of the sample, laser beam intensity, speed of
the scanning movement of the laser) as well as additional information of the biological
properties of the sample is part of the resulting data. From the description of the
measurement procedure, it should be clear that the data are highly collinear, and the
relationship among the measurements differ in each direction. The evaporated sample
does not travel through the device in separated quanta, but as a steady flow in which
the compounds mix, however, the amount of mixing can be very small. The data
properties call for the analysis of the spatial distribution of the elements according to
other spatial properties of the samples. An example may be the attempt to find a
relationship among clusters of cancerous cells in a tissue sample and the content of
chemical elements [C1], i.e. the biologically active metals. To relate the clusters, those
have to be first identified in the sample beforehand. The identification of cancerous
clusters requires staining the sample. The dye used for this procedure contains metals
that would affect LA-ICP-MS measurement. A parallel tissue sample has to be used
to identify cancerous tissue [J1]. The tissue sample is scanned by a microscope and
represented as an digital image A digital image I : Ω → Rm with m colour channels
defined in a rectangular Ω ⊆ Zd, where d is the grid dimension. To relate the sample
examined for the presence of cancerous cells and the LA-ICP-MS measurements have to
be related. For this purpose a method known as image registration can be used [30][J1].
The image registration tries to find a relationship between images in the form of linear
mapping by minimising a criterion of image similarity. The image registration allows for
indexing among the samples and reasoning about the element spatial distribution and
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Figure 2.7. Illustration of the whole processing pipeline. The subject of the analysis is the
biological sample of melanoma (A). An expert annotates one tissue section (B). From a
parallel tissue section, The LA-ICP-MS produces an image of the tissue section (C) and
element maps (D). The carbon element map corrects for the uneven thickness of the tissue
sample (E). Image registration enables indexing among the histology and the element maps

(F). Layered data representation (G) allows statistical analysis (H). [J1]

presence of cancerous cells. Fig.2.7 illustrates the whole pipeline of elemental mapping
data processing.

2.3.5 Additional information supplemented to the biochemical
data

The description of all of the measurements mentioned above included a reference to
additional information associated with the measurements. This additional information
can be in any form. For example, it can be information about the membership in a
treatment group (the typical patients vs controls design). Therefore it can be called
the general data. We use the term general data only to differentiate them from the
biochemical data, which we have to treat differently. The general data are the type
of data that is usual in the standard statistics. The analysis of general data usually
does not involve any inventive work (in the sense of the development of new data
analysis methods). The analysis follows the standard procedure of data exploration,
understanding, and cleaning in the data preprocessing step and is completed by an
appropriate statistical analysis, for example, a statistical test [9]. The methods statistics
provide for various data types are out of the scope of this work. The only exception
is the generalised linear mixed effect models (GLMM). The GLMMs are of immense
importance in the statistical analysis of data originating in biology, chemistry, and
biochemistry calls for a brief description. The GLMMs will be discussed in the section
3.5.4.
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Figure 2.8. General pipeline of the biochemical data processing

2.4 Problem formulation
Let us assume, we perform a series of experiments that produces a collection of data
necessary for verification of a hypothesis. We process and integrate the measured (in-
put) data. We combine the experimental data with external information about the
experiments to find a relationship modelling our hypothesis tested by the experiment.
The general data processing pipeline is in Fig. 2.8.
The data we deal with are generally vectors or matrices D : Ω → Rm with elements
represented as vectors of length m defined in a rectangular Ω ⊆ Zd, where d is the grid
dimension. The elements in the vector of length m constituting the data D relates to
all the measurements resulting from the experiment, for example the elemental maps
of different chemical elements (Cu, Zn, Si and C).
The data preprocessing and feature extraction are generally transforms f of the data
D′ = f(D). Generally, D′ : Ω′ → Rl is a matrix whose elements are vectors of length l
in a rectangular grid Ω′ ⊆ Ze, where e is the grid dimension.
These can be various transforms of the elements of the data D, the transforms of the
rectangular grid Ω, or both of them. An example of a transform of the elements of D
is a conversion of an image from RGB to greyscale colour space, the original vectors
of length three are simplified into one number. The transformation of the grid Ω is
for example image rescaling, where the dimensions of the image change. When the
data D are digital images, common image transformation can represent the prepro-
cessing. In the case of vectors, the methods are generally signal processing methods.
The preprocessing of the elemental maps represents the step G in Fig. 2.7. The image
registration performs image transformation of the grid, which is depicted in the step F
of the pipeline in Fig. 2.7.
The results of preprocessing and feature extraction serve for the selection of the objects
of interest from the point of view of the original hypothesis. The data integration step
describes a strict transform of the input data D into the 2 dimensional data matrix X
with n rows and p columns. The rows in the data set X represent the objects of interest
in the measured data D, for example the spots annotated in the histological images as
presented in the Fig. 2.7B. The columns of the matrix X represent the properties of
the objects of interest, for example the information about the spot’s tissue type also
depicted in Fig. 2.7B. The resulting data set X is in a common data format accessible
by any machine learning or statistical method.
We define the matrix Y of n rows and q, q < p columns as a subset of the matrix X,
Y ⊂ X as the matrix of responses. These responses are derived from the input data
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D and serve for the modelling purposes. An exxample of the response variable can be
the labelling of the objects of interest in the data; labelling of the spots according to
their tissue type, see 2.7B. The matrix Y contains the external and internal informa-
tion about the data that describes our modelled hypothesis. The external information
can be for example the age of the animals weeks, while the internal information is the
tissue type labelling. We model the data in the matrix Y with a model represented by
a function h that generally provides an estimate of Y , Ŷ = h(X), in case of regression
models the estimate is real number h : R → R, in the case of classification h : R → l,
where l is a label from a set of labels L.
The final part of the biochemical data analysis is the statistical assessment that esti-
mates the variation in the modelled relationships represented by the model function h.
The standard methods use the classical statistical test which compare the test statis-
tics to a test statistic distribution. Simulation-based methods generate the test statistic
distributions by modelling the randomness of the data generation process. The applied
method of non-parametric bootstrap is described in Section 3.5.5 and also in Section
4.3.2.

2.5 Summary
In this chapter, we introduced the data dealt with and presented some of their prop-
erties. The first significant problem with data originating in biochemistry and related
fields is the need for reliable extraction of useful information from the original mea-
surements, which may be very diverse. We describe the methods of feature extraction
in the Section 3.1.The second problem is the combination and merging of data from
sources, which differ in the measured signals, but are necessary for the completion of the
full description of the problem and proper understating of the complexity of the data.
Methods of data integration are discussed in Section 3.2. The third common problem
of all of the presented data is the inherent relationships in the measured signals. These
relationships call for methods that are capable of discriminating between the variance
in the data correlated with the response, underlying concepts hidden in the signals,
and the orthogonal noise, possibly inflated by collinearity. We discuss the collinearity
in Section 3.3. The collinearity poses problems for the data modelling when we take the
additional information about the data into account. The modelling methods suitable
for the biochemical data are reviewed in the Section 3.4.
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Chapter 3
Specific processing of biochemical data

In this chapter, the three main problems connected with the biochemical data, which
were introduced in the Chapter 2 – the feature extraction (Section 3.1), the combina-
tion of data from different sources (Section 3.2) and the inherent dependency problem
(Section 3.3) – we will examine the problems in more detail and we will present several
possible approaches and solutions for the problems. The data analysis approaches are
reviewed in the Section 3.4.

3.1 Feature extraction
The fields of data mining and machine learning deal with the problem of feature ex-
traction. One of the many classifications of feature extraction methods is:

a) model-based
b) data-adaptive
c) data-non-adaptive
d) data-dictated,

This classification was adopted from [31] and is by no means the only possible or the
best of all possible classification of feature extraction methods. However, it is reason-
ably simple and covers most of the feature extraction methods relevant to our work.
Naturally, the choice of method for feature extraction depends on the type of data.
The biochemical data share many similar properties, and therefore general feature ex-
traction methods can be used as the starting point for the modelling of the relationships.

Let us review the most important ones for each category. From the category of
model-based feature extraction methods, the statistical models such as GLMMs, hid-
den Markov models are the most prominent. To the category of data-adaptive methods
belongs the principal component analysis (PCA) [32] and in broader sense even meth-
ods such as partial squares regression (PLSR) [33] and artificial neural networks (ANN)
[34], which perform the feature extraction in order to estimate an outcome variable.
The category of data-non-adaptive feature extraction methods consists of variety of
methods, it is traditionally the Fourier transform and related methods of frequency
spectrum estimation [35–38], the bountiful wavelet transform [17] and its variations as
time-frequency representation of the data and at last various data aggregation methods
in time domain. The data-dictated feature extraction is in accord with the name par-
ticular to the data. Therefore, it is difficult to name any general methods belonging to
this category. On the other hand, the data from the field of biochemistry offer excellent
examples of data with clear interpretation. The electrophoresis for example provides a
signal with peaks, that can be attributed with chemical compounds of specific molecular
weight [J6, J5, J4]. The amount of a chemical compound in the studied sample could
be estimated from the area under curve of the peak. Such representation of signals is
comprehensible for chemists and biochemists. However, it is not suitable for use on
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Figure 3.1. Electrophoreogram, one of the bands from Fig.2.3 (down) and an extracted
curve of the separated compounds (up)[J6]

larger sets of signals with subsequent application of statistical, data mining or machine
learning methods. The reason behind this claim is poor reproducibility of the mea-
surement conditions across several runs of experiments. The variation in experiment
condition introduces uncertainties in the data. Feature extraction methods attempting
to mimic the manual assessment of the data by an expert are problematic. An expert
can easily decide many ambiguous cases. Such behaviour (a case-specific treatment
of peak assignment by an expert) is extremely difficult to model reliably. Developed
methods usually cannot perform with the accuracy comparable to an expert. In the
scope of the data that have been presented, the relevant approaches are:

a) process the data in a way specific to the measurement method and established in
the community for the data interpretation – the data-dictated approach to feature
extraction,

b) design new features that are not necessarily relevant to the exact interpretation of
the of the data – the data-non-adaptive approach and

c) to utilise statistical or other methods which are capable of dealing with the specific
features of the data in their original form.

3.1.1 Data-dictated feature extraction

The data dictated approach is applicable to Brdička curves [C4, J7], electrophoreograms
[J6, J5, J4] and NMR spectroscopy [39]. All of the resulting signals are consisting of
several peaks, that relate to a specific part of the mixture that constitutes the studied
sample. Therefore, the processing methods are very similar for all the data types.
Unfortunately, the problems faced in the endeavour to decompose the signals into
meaningful descriptors of the mixture are also the same. In the field of chemistry and
biochemistry, the method of signal decomposition is called deconvolution. Deconvo-
lution relies on estimating the parameters of individual peaks. The meaning of the
term deconvolution in chemistry and biochemistry differs from the understanding of
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the process in signal processing or other fields. Assumptions about the peaks’ specific
shape (bell curve, gaussian or lorentzian) simplify the signal decomposition. The
algorithms for the decomposition include the expectation-maximisation algorithm (in
case of approximating the signal as mixture of gaussian bell curves, or other statistical
distributions) [40], the heuristic approaches (in case of unspecified peaks shapes) [C3,
C2], or the simulation of the actual mechanism taking place during the chemical
reactions [41] as seen in Fig. 3.2.

Figure 3.2. Brdička curve - a decomposition of the curve into waveforms [41]

The problem is how to estimate the number of peaks present in the signal. The
common property of the signals is a considerable peak overlap. The peak overlap in
combination with the corruption of the signals by noise and artefacts does not allow for
full automation of the process. The literature provides many examples of algorithms
for signal deconvolution [22, 42–43]. To our best knowledge, none of them established
itself in the field as the standard data analysis procedure. These methods may prove
to provide better results than data-non-adaptive feature extraction methods when used
by chemists or biochemists. The need for manual checking of the feature extraction
process results and making corrections may outweigh the benefits.

3.1.2 Data-non-adaptive feature extraction
The inability to automate the process of data dictated feature extraction makes the
data-non-adaptive feature extraction methods a viable alternative. The methods men-
tioned in the introductory paragraph were Fourier transform [35], wavelet transform
[17] and time-domain aggregations [31]. The properties of the studied signals and the
representation of the signal in the frequency domain provided by Fourier transform are
not a good approximation of the data. The position of the peaks and other waveforms
in the signals is very important for the interpretation. Unfortunately, the frequency
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spectra do not preserve the time information. On the other hand, the shape of the
frequency spectrum of the signal describes very well the shape of the waveforms. Fig.
3.3 shows a simple illustration of the Fourier transform.

Figure 3.3. Example of Fourier transform of square signal. The square signal approximates
an infinite sequence of sine waves with odd periods. [44]

The lack of time-domain information in frequency spectra directs us from the pure
frequency domain transforms to transforms that combine time domain and frequency
domain. This combined representation provides the short-time Fourier transform
(STFT) [45]. The STFT retains the time domain information by splitting the pro-
cessed signal into short segments and performing the discrete Fourier transform on
these pieces of the signal. Different approaches to estimation with different properties
exist [36–38]. Each resulting spectra of the shorter segments constitute a column (or
a row) in a matrix called spectrogram. It is common to visualise spectrogram as a
heatmap. The spectrogram provides extensive representation which can be analysed
by machine learning methods. The main disadvantage of the STFT is the inherent
trade-off between the resolution of the spectrogram in time and frequency domain [46].
There is an inverse relationship between the time and frequency domain resolution.
The resolution depends on the length of the segment, the shorter the segment of the
original signal, the better the time domain resolution. The frequency-domain resolution
also depends on the segment length, however, the longer the segment, the better the
frequency-domain resolution. In the case of the spectrogram, the segment length is
constant, and thus the resolution in time and frequency are constant in the whole
spectrogram. Using overlapping segments improves the time and frequency resolution
to a certain extent, however, the effect is limited.

A similar representation of the studied signals provides the wavelet transform [17].
The wavelet transform combines the time and frequency domain information by its def-
inition. In comparison with the STFT, the wavelet information does not estimate the
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Figure 3.4. The difference in the time-frequency resolution between short-time Fourier
transform (STFT) and wavelet transform (WT). The time-frequency resolution is uniform
in both the time and frequency for the STFT, while the WT offers better time resolution for
higher frequencies (where shorter signal segments suffice for the estimation of the frequency
spectrum) and better frequency resolution for lower frequencies (where the estimation of

the frequency spectrum requires longer segments of signal). [47]

frequency spectrum, but the result of the transformation is a response of specifically de-
signed filters. The mother wavelet and its scaling function define the filters. The choice
of the mother wavelet allows for customisation of the outcome – the scaleogram. The
time-domain and frequency-domain resolution in the scaleogram depend on the scale
at which is the signal analysed. The wavelet transform allows for higher time-domain
resolution for short scales (high frequencies) and higher frequency-domain resolution
on long scales (low frequencies). The palette of wavelets of different properties allows
choosing wavelets for specific tasks – which can be for example de-noising, change de-
tection or peak detection. The choice of mother wavelet suitable for feature extraction
by peak detection in studied signals is relevant for the interpretability of the resulting
description [48]. An example of the use of wavelet transform is described in [J6].
To complete the description of the data-non-adaptive methods for feature extraction
relevant for biochemical data, the time domain aggregations [31]. These methods split
the signal into equidistant segments and compute an aggregated value from the seg-
ments. The length of the segments can be varied to obtain the best results, and the
segments may be overlapping. The aggregation function may be as simple as a sum of
the elements in the segment or more complex such as mean, median, variance, standard
deviation, or designed specific purpose. The aggregation in the time domain is very
extensively used in NMR spectroscopy-based metabolomics and is called binning [12].

3.1.3 Statistical models for feature extraction
The feature extraction methods falling into the category of the statistical models is an
umbrella term for an extensive list of methods for dealing with data with various types
of statistical properties. One such category are the generalised mixed effect models
which we describe in the Chapter 4.There are specific methods for dealing with data
originating in chemistry and biochemistry [49]. The PLS analysis is the most used
method in the NMR spectroscopy-based metabolomics. The statistical assessment of
these methods needs specific approaches from the category of simulation methods [50].
Therefore, we redirect the reader to the Chapter 5 dealing with the statistical analysis
of these data.

3.1.4 Summary
In conclusion, there exist several approaches to feature extraction widely used in the
analysis of data originating from chemistry and biochemistry. The preferred methods
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are data-non-specific feature extraction methods capable of providing a very rich repre-
sentation of the signals from the perspective of keeping both the time-domain and also
frequency-domain information. An example of such a method is the wavelet transform.
It is not necessary to perform the feature extraction when using statistical analysis
methods capable of dealing with the data in their original form.

3.2 Combination of data from various sources
The ultimate goal of advanced analyses is to combine information from diverse sources
and combine them all to describe relationships that are new and not obvious to the
researchers. The whole field of statistical modelling deals with this endeavour and wit-
nesses constant development of new methods. However, the methods may be advanced;
most of them rely on the standard representation of data as data matrices. In order to
construct the data matrix, which allows most of the statistical methods to work, the
data have to be collected and arranged in a manner enabling exact identification of all
observations. Data matrices suit well simple data, where one observation is either one
value of one variable or vector of several values of several variables. However, when the
observation is a vector, matrix or multidimensional array of values for one variable, the
construction of a data matrix is not a simple business of arranging some values in rows
and columns. The data matrix is not the best representation method for such data;
the relational database outperforms it in all possible measures. However, the statistical
methods still require the data to be in the form of the data matrix. Then the easiest
approach to construct the data matrix is to unwrap the vectors, matrices and multidi-
mensional arrays into vectors and use each sample as a new variable. This procedure
produces the data matrix in the so-called wide form [51]. It is only applicable in the
case, where all the vectors, matrices and multidimensional arrays are sampled strictly
at the same values of the independent variables constituting the coordinates of the
samples. In many experiments, the coordinator of the work bears in mind the analysis
of the data and chooses measurement methods, that ensures the absolute consistency
among the input vectors, matrices and arrays. In some cases, the feature extraction
method produces synchronised features. For example, the NMR spectra are all very
well synchronised. The machine processing of the signal utilises fast Fourier transform,
which works only for signals of length in powers of 2 [35] and the signal length is directly
related to the estimated frequencies. In the case, where neither the coordination of the
experiments nor the nature of the multidimensional observations ensure data consistent
among observations, several approaches may be utilised to correct these inconsistencies.
The procedures for the alignment of the inconsistent data are of two categories. In the
first type of problem, the multidimensional observation sampled in a known coordinate
system. In the second category, we do not know the coordinate system for multidi-
mensional observation. In the first case, the solution to the problem is straightforward.
Simple transformations and interpolations may correct the signals. In the second case,
we have to devise the coordinate system and devise the transformations. We have to
assume at least partial correspondence among the observations to solve this problem.
This correspondence may be in the form of key features, similar shapes or other features
of the images [30]. According to the used metrics of the correspondence, a procedure
minimising a discrepancy in the correspondence between the images can be used to
infer the relationship among the observations and in conclusion perform the correction
procedure. [52–53]
The wide data matrix is useful, but there exist what is called a narrow form [51], that
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stores data in a more detailed fashion. Instead of having a special variable for each value
of multidimensional observations, the narrow form allows for storing the data without
the need for any transformations to consistent form. In comparison to the wide form
where all measurements were in the form of a 1 to 1 relationship, in case of the nar-
row form, the relationships in form 1 to n are possible. The obvious advantage of the
narrow format is the possibility to retain the original structure and granularity of the
data. Additional identification of the data in the 1 to n relationship prevents storing
of identical rows, which may cause problems during further analyses. The identifier
does not have to be in the form of a special unique key. The indices of the sample in a
multidimensional array or any similar value may serve very well, under the constraint,
that the value is unique in the context of the object it is describing. As an example may
serve a time-stamp for time series data or coordinates of pixels in case of digital images.
The narrow data format is not the most appropriate format for all types of analyses.
However, the retained structure may be beneficial for data analysis. In such cases,
where the observations on different objects result in substantially differing outcomes.
In general, the data may differ length or dimension, may be sampled at different, and
many more issues may complicate the integration of the data. For this type of data,
the application of standard methods of statistical analysis may not be appropriate or
even possible (in case of data suffering from a lot of missing values).
The data matrix in the wide or the narrow format, describe only cases where we treat
the objects as homogeneous entities. Unfortunately, the reality is often very different.
With the development of new imaging methods coupled with chemical analyses, we
have the opportunity to process the samples (predominantly biological) and capture
their non-uniform properties. The perfect example of inhomogeneous data are the ele-
ment maps from Section 2.3.4. The inhomogeneity is due to the growing or shrinking
nature of the tumour. A single tissue section of the size of approximately 10 x 10 mm
may contain several different stages of the tumour tissue. In the case of melanoma
[J1], the tissue sections contain growing melanoma tissue, early and late stages of spon-
taneous regression, fibrous tissue and adipose tissue. The spontaneous regression is
a process of organised rebuilding of the melanoma tissue into fibrous tissue. Apart
from these tissue types, the tissue sections contain other objects such as blood vessels
or bristles. In the case of the tissue sections, the annotation of the tissue histology
has to performed by a specialist. LA-ICP-MS can measure the spatial distribution of
metals in the tumour tissue with very fine resolution. It is not possible to perform the
histological annotation and LA-ICP-MS measurement on the same tissue section (for
more detail refer to Section 2.3.4). Alongside the differences in the examined samples,
other issues are hindering the combination of the histological description and spatial
distribution of metal content. The resolution of the methods differs not only in the
data granularity but also in the measurements uniformity. The histological data have
the same resolution in all directions). The spatial distribution of metal content shows
substantial differences in the resolution of the data in different directions – the data are
anisotropic. The problem of analysing two adjacent samples also may result in data
(images) that are not aligned. The data may originate from images that were shifted,
rotated, flipped or even deformed – stretched or squeezed, see Fig. 3.5.

In order to perform objective analyses of the data employing statistical analysis, the
data have to be first aligned to make the indexing among the different measurement
possible. A person can observe similarities in the shapes in element maps and histolog-
ical annotations. These similarities may point out to the potential relationships among
the tissue types (e.g. growing melanoma tissue type and areas with high metal con-
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Figure 3.5. Illustration of different deformations in images of biological samples of different
thickness. The panels a) and b) show the images before registration, the images have
different aspect ratios as well as shear deformations. The panel c) shows the image from
panel a) after the image registration procedure, and panel d) illustrates the differences in

the images after image registration. [J1]

tent). However, without any procedure for indexing among the images, the relationship
cannot be quantified and statistically assessed. Therefore the indexing among the data
from histology and LA-ICP-MS is of utmost importance. We need a transformation
that provides a mapping from one data type to the other to index between the images.
Without the unnecessary listing of possible transformation classes applicable for the
problem of finding a mapping between two sets, we direct the reader to the work of
[30] describing the broad field of image registration methods. The image registration
provides a solution to the exact problem of finding a mapping between two images and
generally between two sets of points. The affine transformation seems to be appro-
priate for the problem of two tissue sections. It allows correcting for different scales
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(differing resolutions), a shift in position and shear deformations. The transformation
parameters are estimated by finding values that minimise a criterion of the agreement
between the sets. One of the criteria for the agreement between the images may be a
sum of squared differences (SSD, least squares approach). In case of images measured
in the same modality (registration between two digital images), this criterion may be
sufficient. In case of differing modalities (example from medical imaging grayscale im-
age from computational tomography CT scanner and measured activity of radioactive
element from positron emission tomography PET) the simple SSD approach cannot
provide reliable information for the estimation of the registration parameters. In gen-
eral, optimising criterion based on the entropy or mutual information [30] provides a
solution to the problem of registration of data sets from differing modalities. The prob-
lem of registration of histology and spatial distribution of metal content even a very
rough approximation of the data sets by binary masks (image silhouettes) with the
SSD criterion may provide surprisingly good results. The best way to deal with the
problem of the combination of data from different sources is to plan the experiments
so that the need for complicated data integration never arises. In such a case, we avoid
the problem at the beginning, and we can bravely proceed with the statistical analysis.
Careful planning can only help to avoid the need to combine data from different sources
in simple experiments. The more complex the experiment design is, the more difficult
it is to align all the data sources and eliminate the need for data preprocessing. From
a certain point, the combination of data from various is unavoidable. Several methods
exist to align multidimensional observations such as vectors or matrices. The result is a
data matrix in wide form. The data matrix in the wide form is suitable for most of the
statistical methods as well as machine learning approaches. In cases where the data in-
tegration fails, it may be better to use narrow form. The data matrix in the narrow form
needs specific methods of data analysis as the standard methods usually do not work
well. In case of substantial interactions among the multidimensional measurement, it
is better to transform the data to avoid confusion caused by the different measurement
methods. The fields of machine vision and image processing provide methods for esti-
mation of relationships among the multidimensional measurements, namely the image
registration.

3.3 Covariance, correlation and collinearity
This chapter discusses the problem of collinearity [18]. We will present the problem
of the correlated data and propose several approaches on how to deal with it. All the
presented terms refer to very similar phenomena that are often interchanged or have a
different interpretation in different fields. As an example of the different meaning of a
term in different contexts may serve the correlation. In the statistics, the correlation
is a measure of a ’strength’ of a relationship between two variables. If the relationship
is linear, the correlation measured Pearson’s correlation coefficient [54] is sufficient.
Non-parametric estimates of correlation coefficients based on ranks such as Spearman’s
or Kendall’s correlation coefficient [55–56] provide good estimates for certain classes
of non-linear relationships between variables. Mutual information [57] and other
approaches from information theory measure strength of general relationships between
variables. In the field of signal processing, the term correlation has a quite different
meaning. In signal processing, the correlation is a signal describing the similarity
between two signals, correctly referred to as the cross-correlation of the two signals
[58]. One signal is often substantially longer than the other. The shorter signal is called
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the pattern. The computation of the correlation in the signal processing context lies in
shifting the pattern signal over the longer and compute the similarity at each value of
the relative shift (delay). The issue with nomenclature only arises when the two fields
meet. With the use of proper names, even the statisticians and signal engineers can
communicate without confusion. In the end, it is often complicated to differentiate
among the meanings for one simple reason. The statistical analyses often deal with
time series data which are signals – the object of study of signal processing. Therefore
the meaning of a term should always be explicitly stated in the given context and use.

3.3.1 Variability
In this work, we will try to stay in the field of statistics. We cannot rely solely on the
statistical definitions, because the studied data are multidimensional (signals, images)
and we often have to cross the boundaries. To understand the concepts, the best
starting point is probably the variability. The variability is a measure of scale or
spread of values of a random variable. The common way to estimate the variability is
the variance.

V ar(x) = (E[x− E[x]])2 (3.1)

The variance V ar(x) of the random variable x is the expected value (indicated by E[])
of differences of the values of x from the expected value of x indicated by E[x]. There
are many estimators of the variability of different properties [59].

3.3.2 Covariance
The covariance measures joint variability. For example, if high values in one of the
variables coincide with high values in the other, it can mean that the variables co-
vary. Easy way how to estimate the covariance of two variables is the estimation of the
expected value of the product of the variables pair.

cov(x, y) = E[(x− E[x])(y − E[y])] (3.2)

The covariance cov(x, y) of two random variables x and y is the expected value
(indicated by E[]) of the product of the the random variables’ differences from their
expected values. The high values of the covariance indicate a relationship between the
variables. It is not easy to decide which values of covariance indicate strong relationship
and which are just caused by high variance in the variables themselves.

3.3.3 Correlation
This problem solves the correlation by normalisation of the variables variances.

ρ = cov(x, y)√
V ar(x)V ar(y)

(3.3)

The Pearson correlation coefficient ρ of the random variables x and y is the covariance
of cov(x, y) normalised by their variances V ar(x) and V ar(y). Because of the variance
normalisation, the correlation is in the range from -1 to 1. Therefore the correlation
can be very well understood and used for the description of the relationship between
the examined variables. The linear relationship between two variables x and y in form
y = a ·x+b with coefficient a and constant b between results in correlation attaining the
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value 1 for positive values of the coefficient a > 0 and the correlation attaining value -1
for negative values of the coefficient a < 0. If there is not any relationship between the
variables, the correlation will be reaching the value 0. Apart from these extreme cases,
the absolute value of the correlation coefficients may indicate the strength of the linear
relationship. For example, the absolute value of the correlation coefficient greater than
0.5 or 0.8 may indicate a strong relationship. These simple interpretation rules are
only approximate and depend on the scientific field. It is usually better to perform
a statistical inference and estimate the value of the so-called null hypothesis. The
normalisation strips the resulting value of the original scale and units. That makes the
correlation usable only for the description of the characteristics of the relationship. For
more on the topic, refer to any statistics textbook, which will provide the reader with
more details. It is important to notice that the covariance and Pearson correlation
coefficient are measures of linear relationships. The methods are not easily extensi-
ble to non-linear relationships. The linearisation may help to deal with non-linear
relationships. Applying a transform that is inverse to the supposed transform that
altered the original variable (e.g. logarithm or square root). The transformation pair
is often not clear from the exploration of the data, and some experimenting with the
data transformations is necessary. Another approach is to revert to non-parametric
methods, which are in case of correlation coefficient the Spearman’s or Kendall’s rank
coefficients. The covariances and correlations are very good for describing the observed
relationships. The less obvious thing is the identification of the relationship source.

3.3.4 Collinearity
One of the difficult problems often faced in statistics is to determine whether the
observed relationship indicated by correlation is a direct relationship between the
variables. Formally for two variables x and y it is true that y = f(x) and x = f−1(y),
or the relationship is more complicated, to follow the more formal description, assume
variables x, y and z, then more complicated relationship can be y = f(z) and also
x = f(z) and even though there is no actual relationship between the x and y, the
correlation coefficient may indicate otherwise. It is often not possible to decide the
relationship type (direct, complicated) without the collection of new data.
The problem of the relationships among data is the point where the collinearity comes
to play. By collinearity we understand linear relationships among variables caused
by complicated relationships to another variable that is not observed [60, 18]. We
are dealing with the multicollinearity when the relationships include more than one
variable, that we do not observe directly.
Multicollinearity often affects observations, that have more dimensions (vectors, ma-
trices and arrays). The multicollinearity may be viewed as the most general example
of the relationships having an effect on the variables we observe. The relationship may
be among any possible group of variables.

One class of data that suffers from collinearity are the time series data. The time
series data are sequences of samples collected consecutively one after another from
the same studied object (e.g. biological sample). Therefore, we can expect a strong
relationship between the adjacent samples. The time series often describe the behaviour
of real-world systems. Any disturbance that propagates through any physical system
does that in a finite time. The system changes its states continuously. The actual value
is a function of the previous values as well as of the external inputs. More accurately,
if we adopt the methodology of systematic description of the real-world phenomena,
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Figure 3.6. Illustration of NMR spectrum of ethanol. Differently coupled H nuclei produce
different spectra, which form the compound (ethanol) spectrum. [61]

we automatically assume the dependence among the samples of time series. The
definition of a system of time-related relationships on an object completely describes
its properties from the statistical point of view. Unfortunately, in data analysis, we
are very far from defining any systems on objects. We deal with (time series) data
usually without any model of the system producing the data, but we are interested in
the ’content’ of the time series data. We usually look for specific patterns in the time
series, and the question can be what is the cause of the observed behaviour. A simple
question may be which of the patterns are independent on each other and which are
linked together. Alternatively, when a trend in the data is among the inherent variation
and when the trend indicates a change in the model parameters [62]. In general, we
would want to decompose the time series into few parts, most often a random part and
a signal of disturbances which caused the observed behaviour. That is the moment
when we can utilise the methodology of time series models and the covariance or
correlation among the samples. The auto-regressive (AR) model, the moving average
(MA) model or their combination, the auto-regressive moving average (ARMA) model
treat the signal as a random process (AR) with disturbances (MA). [63] These models
do not have to estimate the full covariance among each pair of samples (variables). It
is enough to estimate the covariances among adjacent samples. Another motivation for
the use of specific methods for dealing with dependency among samples in time series
data may be the effort to analyse the trends in time series statistically.
The power of inferential statistical methods is proportional to the sample size –
the number of observations, that was collected in order to support a hypothesis. A
fundamental assumption which affects almost any classical statistical method is the
need of the data to be independent and identically distributed (usually abbreviated as
i.i.d.). When we would not know or be willing to respect this assumption, we could
(un)intentionally inflate the number of observations and commit a very severe error
in our reasoning. Let us take the interpolation of the data as an example. We can
very easily change the time resolution of the signal by interpolation. Applying the
standard statistical methods on data which were interpolated to double the sampling
frequency will provide us with a double of the number of observations. The information
hidden in the interpolated data is the same as that in the original signal. By inflating
the number of samples, we would very significantly boost our power of statistical
reasoning. Therefore we should be cautious about estimating the actual ’number of
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independent samples’ of the time series. In the case of the time series data, we can
rely on the ARMA model to take care of the variability connected with the nature
of data. Similar reasoning about the collinearity applies to other types of dependent
data. The data with more dimensions cannot benefit from the extensive methodology
of ARMA models in the same way as the time series. The approach of using ARMA
models for investigation of time-related dependencies has been the standard for a long
time. New methods based on simulations [64] are now feasible because of the increase
in computing power.
A good example may be an image or any measurement in the form of a matrix with
inherent spatial properties [65]. In such data, we may estimate the local covariance. As
in the case of time series, it is not probable for samples far apart to be linked together
by a relationship, but the adjacent samples are very much alike.
The presented simple examples should provide us with the general idea of relationships
among variables. The relationships are either in the form of covariance or correla-
tion. The correlation directly measures the relationship between the variables. The
collinearity indicates that there is an unobserved variable causing the relationship. In
the context of our data, many of the general comments and recommendations presented
in the previous paragraphs are true. Some of the data have very specific properties re-
garding the relationships among the variables. The Brdička curves and electrophoretic
signals are similar to the time series data, and the independent variable is in the case
of these data an electrical potential. From the point of the data analysis, it usually
does not matter whether the independent variable is time, potential, position, or
another variable. In order to analyse these types of data, we may rely on the standard
approaches for time series. The usual processing of Brdička curves and electrophoretic
signals comprises of variable extraction methods which decompose the signals into
specific parts relevant to the chemical content. These parts describe the properties
of chemical compounds they represent. This approach eliminates the need for further
considerations about the collinearity in the data. In contrast with the simple data, the
collinearity plays an important role in the NMR spectrography-based metabolomics.
The collinearity belongs to the properties of the spectroscopy data and stems from the
physical properties of the measurement procedure. In short, the NMR spectrum is a
result of the response of several hydrogen H nuclei to excitation by radio-frequency
pulses in very strong magnetic fields. In general, the H nuclei respond on one specific
frequency. In the case of H nucleus bound in chemical structure, the interactions
between the H nucleus and other nuclei in the chemical structure of the compound
modify the resonance frequencies. These modifications are referred to as chemical
shifts in the resonance frequency. In chemical compounds, the number of H nuclei
can range in several orders of magnitude (dozens of H nuclei in anorganic compounds,
thousands and more in complex organic macromolecules such as proteins and lipids)
and each of the nuclei may have its specific resonance frequency. These shifts in
resonance frequency make the spectroscopic data of a chemical compound unique to
the compound, see Fig. 3.6. That enables the identification of a chemical compound
and its structure from the characteristics of its NMR spectrum. Even in mixtures
of several (hundreds) chemical compounds, these are identifiable, because the NMR
spectrum is a linear combination of individual compounds spectra. The less optimistic
property is that each peak in the NMR spectrum of a compound is proportional to
the concentration of the compound. From the data analysis perspective, this property
makes the resulting spectra collinear.
Due to the specific nature of NMR spectra, the collinearity does not affect only the
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adjacent samples, but the relationships are possible among any group of frequencies
(values in the time series data representing the NMR spectra). The source of the
collinear behaviour is the measurement procedure. We cannot solve the multicollinear-
ity with a simple application of ARMA models, but we have to resort to another class
of data analysis methods, which will be discussed in the next section 3.4.
The fourth example of data from biochemistry was the elemental mapping overlayed
over histological images. The properties of this data were briefly discussed several
times, to sum up, we have to differentiate among the data sources. The collinearity
has very different properties in each of the source of data. The histological image is
an image, and thus, we may expect the general behaviour regarding the relationships
among the pixels. The adjacent pixels are highly correlated. However, the further apart
are the pixels, the less they are influenced by each other. It may seem unnecessary in
the histology image, but the collinearity affects the precision of segmentation of the
relevant tissue into specific categories. The collinearity emerges when we index and
relate corresponding areas in the images. We measure the elemental maps with resolu-
tion smaller in order of magnitude in comparison to the resolution of the histological
image. The resolution in the elemental maps is not homogeneous. The resolution
along the laser path is finer than in the perpendicular direction. The collinearity in the
elemental map may be considered to be as of a vector (arranged into a matrix) and
analysed accordingly. The resolution in the elemental map is the limiting element for
the complete analysis.
We may assume two (or three) approaches. First, a specialist may process the histo-
logical image, annotate the specific tissue types which will be used for indexing. In this
case, the annotated spots may be large enough for the histological image, but small for
the elemental map. After indexing the map according to the histological image, the
resulting area may be smaller than a pixel in the map.
The second approach is the inverse of the first approach. We annotate the interesting
areas in the elemental maps and index the histological image (however such an approach
may be frowned upon by the members of the team concerned with the interpretation
of the results from the perspective of biology and histology). The resulting areas would
be so large that they would cover inhomogeneous parts of tissue and would not be
representative for any further analyses.
The third approach prevents the pitfalls of both the previous approaches. We estimate
the collinearity in the elemental maps and decide, which pixels are independent. This
parameter may be then used to infer the minimal size of an annotated spot in the
histological image from the parameters of the registration transform. The specialist
may be instructed to find sufficiently homogeneous areas in the histological image
[J1]. This approach ensures safe indexing among images of differing resolutions. The
last but not the least important issue is the type of data termed in this manuscript
as the general data. The general data are the data closest to the standard statistical
datasets. With the general data, we do not have to deal with overly correlated data
or repeated measurements of one subject. However, the collinearity may still be very
strongly present, as was presented in the introductory paragraphs. The collinearity
in general data may originate due to various reasons. One typical example is having
one variable measured twice and leaving the copy in the data or similarly having one
variable in different units in the data. In the context of biomedical data, we may
measure the height of a patient and put down the readings in the metric and the
imperial system, one variable in meters and the other in feet. The variables are exact
copies and with the Pearson correlation coefficient almost 1 (there may be round off
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Another example may be a purely mechanistic relationship among variables: Typical
measurement concerning the patients for physical examinations is the measurement
of patient’s weight. Although the relationship between the height and weight of a
patient is not trivial, a very basic idea may govern the relationship. Everybody who
ever attended any course in physics knows the relationship among the weight, specific
weight and volume of an object. The weight [kg] of an object is equal to the product
of its specific weight

[
kg ·m−3] and its volume [m3]. The object dimensions determine

its volume. In the case of a human, the height may very well serve for computation
of the volume of a person. The height is only one of three main dimensions, but the
shape of the human body is proportional to a certain extent, all three dimensions are
closely related. Due to the human body proportions, the body volume of an individual
is a cube of the person’s height corrected by coefficient reflecting the ratio between the
dimensions (height, width, depth) and the fact that the body is not a cube. The second
step is the relationship between volume and the weight; the human body is mostly
water, and the weight is proportional to the volume. The result is that there is a strong
non-linear relationship between the height and weight of a person.

Example 3.1. Collinearity in physical objects’ dimension

errors when converting the units). For another example, see Ex. 3.1

A third common cause of collinearity in general data is the inappropriate collection
of data or pure chance, which may lead to spurious correlations among variables
without any apparent cause [66]. The problem with the collinearity in general data is
that it is often not reasonable to transform or modify the variable, because we want to
retain the exact meaning of the variables. The solution is usually in the application of
methods tolerant to this properties.

3.3.5 Summary
In summary, the section discussing the covariance, correlation and collinearity covered
the intuition and provided examples of correlated data. The covariance is a measure
of a linear relationship between variables and the correlation as normalised covariance.
The collinearity indicates linear relationships among variables unrelated to the modelled
relationship. The presented examples conveyed the idea that the linear nature of the
relationships is a very strong assumption and the real-world data may be affected by
strong relationships independent on the objective of the analysis. The collinearity has
a strong effect on the efficiency of the statistical evaluation. We may interpolate the
data in the form of vectors, matrices and multidimensional arrays (time series, images,
integrated data sets) and artificially inflate the sample size. Specific procedures are
needed to correct the statistical evaluation for the collinear measurements. The last
part covered the typical structures in collinearity in data. The most common causes
of collinearity among data is the time-dependent covariance among samples in time
series data. ARMA models may estimate the time-dependent relationships among
samples. In the case of images, the collinearity is mostly local covariance among the
pixels. The collinearity in biochemical data in the scope of this work significantly
differs from the general cases. The NMR spectroscopic data although they are vectors,
cannot be processed by ARMA models, because the collinearity is not constrained to
adjacent samples, but may affect any pair or group of samples in the spectrum. The
concentration maps obtained by LA-ICP-MS are characteristic by a very big difference
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in the resolution in different directions, which makes the estimation of local covariance
among pixels in the map complicated, especially in case the map is transformed and
overlayed onto other images. To sum up, these properties are the reason for which we
cannot directly apply the standard statistical procedures to biochemical data. We have
to use specific methods.

3.4 Data analysis methods for biochemical data
We divided the section dealing with the methods for the biochemical data analysis
into two parts. It follows two standard approaches to the analysis of any data. The
classification may be arbitrary because both the classes overlap to a certain extent.
However, the approaches stem from different fields of science, and it is better to treat
them separately. The first approach is the data analysis using machine learning, artifi-
cial intelligence and similar methods. The second approach is the ’traditional’ analysis
by methods of mathematical statistics. In both of the approaches, we will describe the
basic ideas, the necessary data preparation steps and the learning procedure, as well as
the model interpretation and the assessment of the findings importance.

3.5 Machine learning approach for the analysis of data
in biochemistry

The field of machine learning witnessed tremendous development in recent years. The
development shows ever greater leaps in the process of creating a complex system (let
it be autonomous robots, drones or artificial intelligence) capable of solving difficult
problems. Problems which we consider extremely difficult or impossible when humans
attempt to find the solution. These new systems often surpass human skills not only
in computation but also in activities that were for a long time viewed as being only
possible with human intelligence. The breakthroughs, such as the victory of the arti-
ficial intelligence system AlphaGo over the human champions in the game of Go, were
covered by international media very extensively. It was not only another lost battle for
human intelligence, but the victories in the games also mark the incredible develop-
ment in the field. In many areas, these systems are being deployed and provide many
benefits. Regardless of these considerations, the data analysis of biomedical data may
benefit very much from these new models. Generally, the projects common in biochem-
istry do not generate the amount of data necessary for the application of the cutting
edge research. In our effort, we have to rely on simpler methods.
The specific properties of biochemical data call for special data analysis methods. The
method has to be capable of dealing with multicollinearity. It is practical to use meth-
ods that can specifically treat repeated measurement. In many cases, it is necessary to
use methods that can provide results for ill-conditioned problems (in the sense of the
number of observations and variables). We will first consider unsupervised methods.
The principal component analysis (PCA), the basic method of unsupervised data anal-
ysis with far-reaching applications, especially in fields dealing with collinear data [32].
Other methods for unsupervised data analysis are the clustering methods (the most
appropriate seem the hierarchical clustering methods) [67]. The unsupervised analysis
is mandatory in almost any exploratory analysis of biochemical data. The problem of
finding a structure in the data is substantial for the consequent analyses; the structure
may imply specific methods for the supervised analysis.
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The most common problem in supervised data analysis is the classification of observa-
tion into classes based on the expert’s annotation. Methods for the assignment of a new
observation into one class of a given set of classes are the decision trees [68] and related
methods (bagged trees [69], random forest [70] and AdaBoost [71] with trees), linear
classification methods such as ridge [72], LASSO [73] and elastic net [74] regression, the
classification artificial neural networks [75] are closely related to the linear classification
methods. Lastly, the multivariate methods, namely partial least squares discriminant
analysis [33] or supervised principal component analysis [76].
Another large group of methods are regression methods. The regression problem is
important in calibration analyses, and in understanding the systems of chemical reac-
tions. In the regression, the first choice is the linear regression and related regression
techniques [67]. However, we usually classify the regression among statistical methods,
and therefore, we will describe it in more detail in the section3.5.4. In the case of high
dimensional data, the partial least squares regression and supervised principal compo-
nent analysis are good methods for general analyses with no prior knowledge about the
possible relationships in the specific case. We will provide a brief description of the
listed methods in the following paragraphs.

3.5.1 Unsupervised methods
There are two main types of unsupervised data analysis - the clustering and the principal
component analysis.

3.5.1.1 Clustering

The clustering is a method of classification of observation into clusters without any
knowledge about any structure in the observations and based only on the observed val-
ues of variables. There are several classes of clustering methods. The non-hierarchical
clustering methods divide the observations into a given number of clusters based on the
similarity among the observations. The typical example of non-hierarchical clustering
methods is the k-means method [67], in case of the k-means algorithm the similarity
measure among the observations is a distance, typically euclidean, but any function
meeting the criteria for distance measure may be used. The algorithm assigns an
observation to a cluster to which it is most similar – has the minimal distance. Another
important example of non-hierarchical clustering method is the model-based clustering
– the Gaussian mixture model. In this case, the similarity to a cluster determines the
mixture probability model. The parameters of the clusters are in both cases estimated
by iteratively assigning observations to clusters and subsequent updating of the clusters
parameters according to the newly assigned observations. Both these methods have
their place in the biochemical data analysis. The hierarchical clustering methods
provide the structure of similarity among the observations. The hierarchical methods
do not need the number of clusters supplied before the analysis. The hierarchical
methods perform the bottom-up procedure of aggregating observations into clusters.
The procedure starts by finding the closest observation (similarly to k-means in the
sense of similarity measured by distance) and creates a link between the pair. The
pair now forms a cluster of two observations. In the second step, we look for the
smallest distance between a pair of observations. We now treat the pair of observations
aggregated in the first step as one entity. The procedure continues until all observations
are aggregated [67]. The structure of similarity among observations, which is called
dendrogram, is very practical for data exploration because it does not assume any
number of clusters in advance. We obtain the clustering in the form of a label by
cutting the dendrogram. The issue with the hierarchical clustering is the obvious need
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for not only defining the similarity measure for the observations but also the formed
clusters. We can compute the similarity between a cluster and an observation in a
variety of ways. We can represent a cluster by the average of all observations in the
cluster. We then compute the similarity as a simple distance between an observation
and the cluster average. Another approach is to compute the distance for each pair of
observations and then represent the similarity as aggregated value. Unfortunately, the
choice of the aggregating parameters very substantially affects the results. An average
or a median result in compact clusters, minimum as an aggregation function tends to
results in chains of small clusters. The many choices reduce the reproducibility and
validity of the results of hierarchical clustering. Therefore the resulting clustering has
to be carefully interpreted and related to the understanding of the data. There are
many different approaches to address this problem, interesting measures of the quality
of the resulting clusters are the separation of clusters [77] and the cluster stability [78].

3.5.1.2 Principal component analysis

The unsupervised principal component analysis solves a different problem. The
PCA tries to find a set of new variables (principal components) which may represent
the original data. The principal components are linear combinations of the original
variables and are equivalent to the original representation (lossless representation).
The important property of the PCA is that the principal components are orthogonal,
uncorrelated, but not necessarily independent in the statistical sense. The principal
components combine correlated variables by finding the common component in all the
correlated variables. The advantage of the PCA is, therefore, the elimination of covari-
ance among variables – the principal components represent independent components
in the original data. More importantly the principal components may be evaluated by
the variance which they explain in the original data, and consequently, the original
data may be represented a by a set of principal components whose number is lower
than the number of variables in the original data. The principal components may
be very useful for data summarisation, for visualisation of high dimensional data, for
exploration of the relationships among variables and to a certain extent for modelling.
The principal components may not be interpretable in the sense of the original data.
The intuition behind the PCA analysis is to find principal component as a projection
of the data which minimizes the maximum of variation in the data, estimate the
contribution of the original variables to the principal component and subtract this
from the data; repeat the procedure with remaining data until only uncorrelated noise
is left. There exist algorithms which follow this idea, namely the NIPALS algorithm
[33]. It is more common to estimate the principal components by an algorithm based
on singular value decomposition of the covariance matrix of the data [32]. Differences
in variables’ variance affect the results. Variables are usually scaled by dividing by
standard deviation and also centered by subtracting the mean. The scaling ensures
that each variable has equal weight during the estimation of the parameters of the
principal components and makes the principal components uncorrelated. The general
PCA has many extensions, for example, for nonlinear analysis. The PCA is one of
the most utilised exploration methods in data analysis, especially for high dimensional
data, which typically the data originating in biochemical analyses, predominantly the
NMR-based spectroscopy. For an example, see Fig. 3.7.
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Figure 3.7. Example of PCA score plot used in NMR metabolomics for data exploration.
Here a difference in metabolic profiles of two groups of laboratory mice is apparent even in
the unsupervised analysis of the spectral data. The group denoted by ’X’ are mice suffering
from a condition similar to diabetes mellitus type 2. The control group indicated by ’O’

are healthy mice. [J3]

3.5.2 Supervised methods

We divide the supervised data analysis into two main parts – the classification and
the regression. The distinction is in the response type. In the case of a continuous
variable, the problem is called the regression; if the variable is an indicator of several
groups, the problem is called the classification. Classification and regression is a very
rough distinction. The properties of the response variable may be more diverse. For
the general discussion of the other types of response variables, refer to [79]. The
classification problem is more common in the field of biochemistry and thus it will be
discussed in more detail.

3.5.2.1 Rule-based methods

The decision trees are very versatile classifiers applicable to a variety of problems.
The main advantage of the classification trees is in the intuitive interpretation of the
resulting model. The decision tree represents a set of rules that are understandable
to a wide audience. On the other hand, the simple nature of the rules is limiting
the number of types of decision boundaries they can model. In general, the decision
trees can handle any decision boundary. In order to approximate linear and non-linear
boundaries, the decision trees have to utilise piecewise constant segments. The trees
have to consist of a substantial number of rules for each curvature in the decision
boundary. Such decision trees lose their parsimony. Therefore the best type of data
for decision trees is independent variables which imply simple decision boundaries.
It may seem that this is in contradiction with the basic properties of most types of
biochemical data. Many methods of the data preprocessing provide uncorrelated data
suitable for the classification by decision trees. In case there is not any preprocessing
procedure providing uncorrelated data, we can use the PCA for creating a new set of
uncorrelated variables perfect for the classification with decision trees. An example of
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Figure 3.8. Decision tree discriminating tissue types in laboratory rats constructed from
features devised from the Brdička curves using the discrete wavelet transform. [21]

the use of decision tree for discrimination among tissue types is in Fig. 3.8.

3.5.2.2 Linear classification methods

The linear classification methods [67] work better with correlated data because they
can combine predictor variables and model more complex decision boundaries more
concisely. They can perfectly fit the constant (simple threshold) and linear boundaries.
With the help of extensions of the original data by polynomial features or spline-based
features, we can model non-linear decision boundaries with linear classification meth-
ods. The linear methods may yield more parsimonious models in comparison with
decision trees, but the interpretation is not as straightforward as in case of decision
trees. People interpreting the model have to have a basic understanding of linear
combinations and translation of the classifier coefficients into decision boundaries.
Although the interpretation of linear classifier is difficult, it is feasible. Also, linear
classifiers are capable of solving a wide variety of classification problems. In case of
biochemical data linear classifiers are better at dealing with correlated data than the
decision trees, however, at a certain level of collinearity in the data, the linear classifiers
would fail to estimate the decision boundary. Some help may provide regularised linear
classification methods. These methods can mitigate the collinearity in the data and
help to choose the best predictor variables. The class of linear classifiers is very rich
in methods. The linear classification methods include the linear discriminant analysis,
logistic regression, perceptron and support vector machines. From the given list of
linear methods, the logistic regression is interesting for its statistical background [80].
Special attention also needs the support vector machine method (SVM) [67]. The
SVM optimises a slightly different criterion than the other linear classifiers. The linear
classifier typically minimises the classification error of the classifier.
There can be many decision boundaries with the same error rate. Not all of them
may prove a good generalisation of the actual decision boundary and be efficient in
prediction. The criterion optimised by SVM minimises not only the classification
error but also the width of the decision margin. The wider decision margin sup-
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posedly means better predictions. The large margin may seem to be a competitive
advantage, but for a well-collected data, it may not be the biggest advantage over
standard linear classification methods. The wide margin classification is not the only
one strong advantage of SVM. The definition of SVM makes the method very easily
modified to utilise kernel transformation of the variables [67]. The kernel method
allows for transformation from the space of original variables into new variables
describing the similarities between observations. The linear classification on kernel
features is equivalent to non-linear classification boundary in the space of original
variables. To employ the SVM with kernel transformation, we have to choose the
type of the kernel and its parameters. An illustration of the kernel method is in Fig. 3.9.

Figure 3.9. Illustration of the kernel method that transforms the non-linear decision bound-
ary in the original feature space to a linear decision boundary in the kernel space. [81]

3.5.2.3 Artificial neural networks

The artificial neural networks (ANN) [75] may be viewed as a modification of the
linear classification methods (a combination of perceptrons). The ANNs are a diverse
category of methods inspired by the neural system of animals. The ANNs reach from
the multilayer perceptron [82] on one side of the spectrum to the deep networks [83]
on the opposite end. The ANNs are a subject of substantial development, and the
most recent breakthroughs in machine learning produce the ANNs. The ANNs have
a long history, the initial methods which may be classified as ANN appeared around
half of the 20th century. The methods very much differ in their capabilities as well
as in their complexity. The capabilities of deep convolutional ANNs are impressive,
but the application of deep neural networks on the biochemical data would not be
appropriate due to several reasons. The biochemical data from typical experiments
are too small (usually tens to hundreds of observations) to learn such complex model
(which require at least thousands or tens of thousands of observations). Second, the
model is highly complex and rather a ’black box’ - the interpretation of a trained model
would be extremely di�cult. We usually want to interpret the model behaviour in
the data analysis of scientific experiments. Regardless of the cutting edge research in
machine learning, the ordinary ANNs are suitable for applications in data analyses
of biochemical data. The advantages of ANNs are that they can approximate any
decision boundary without any modifications to the original data as in the case of linear
classifiers, where the nonlinear boundaries could be approximated with enhanced data
sets by the polynomial expansion of variables or by kernel method. The ANNs, which
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consist of artificial neurons – perceptrons – arranged into layers (typically input layer,
several hidden layers and output layers) create new variables as linear combinations
in the hidden layers of the network and classify them in the output layer. The simple
ANNs are more powerful for the classification, but it makes the interpretation of
their behaviour difficult. The interpretation cannot rely on the understanding of the
interpretation of network coefficients. The interpretation requires feeding the network
with artificial data. The neurons ’activation’ can then tell us what the model does.
However, this approach of presenting specific patterns is not anything that can be
easily presented to collaborators or in scientific papers. Therefore even the simple
ANNs are considered to be rather ’black boxes’ for data analysis. Another use for the
ANNs in data analysis may be for comparing other methods on the same data. The
ANN may help to set an upper bound of classification performance, and simple easily
interpretable classifiers can be trusted if they score similarly to the ANN.

3.5.2.4 Multivariate methods

The last but not the least important in the analysis of biochemical data are the
multivariate methods – the partial least squares discriminant analysis (PLS) [33] and
supervised principal component analysis (SPCA) [76]. Both the methods are very
similar, and as the name of the second implies, they are related to the unsupervised
method, the principal component analysis. The advantages of the regular PCA were
that it could create a new set of variables, which is a combination of the original
variables. The PCA creates the new variables so that it minimises the covariance in
the data – under special conditions (centered and scaled variables) the new variables
are uncorrelated. The idea behind the multivariate models is the following – we can
create a set of variables which extract only the variance that is related to the response.
In other words, combine the original variables in a way to maximise the classification
performance on the new variables. The simplest approach which may be successful to
certain extent is the principal component discriminant analysis (PCDA, the principal
component regression, PCR, for continuous outcome) [84]. The idea of PCDA is to
use the estimated principal components for classification. This approach does not use
any specific procedure to make the new variables any good for the classification. What
may be less obvious is, that if there is the relationship allowing for good classification,
it has to translate into the principal components, because it is a source of variability in
the data. In case that the difference between the classes is not a substantial source of
variation in the data, the principal component related to the classification problem may
be any of the principal components and the number of the principal components is in
general equal to the number of original variables. In comparison of the naive procedure
of PCDA [84], the PLS-DA [33] and SPCA [76] actually create new variables with the
classification objective. The new variables are devised to provide the best possible
classification. The advantage of these multivariate models are partially the same as
in case of PCA, the new variables are uncorrelated and summarise several correlated
original variables. This characteristics of the multivariate methods are ideal for data,
which are inherently highly correlated. The disadvantage of this multivariate methods
is that they estimate the full covariance matrix – they expect that relationship may
exist among any pair of variables. There are types of data, where this is an actual
problem. These are typically the NMR-based spectroscopy data. Other types of data
may not need such a general model of collinearity – for example time series data and
their relatives. Another advantage of the multidimensional methods is that they are
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capable of dealing with ill-posed problems [85]. By ill-posed, we mean a data which
consist of fewer observations than variables (the data matrix has fewer rows than
columns). Standard estimation methods like ordinary least squares [67] rely on matrix
inversions. In the case of ill-posed problems, the matrix is non-invertible. PLS and
SPCA methods can overcome this problem. In the case of PLS by employing the
iterative estimation of one new latent variable and its subtraction from the data, the
PLS-DA can overcome the problem with matrix invertibility. In the case of SPCA, the
solution relies on the SVD decomposition, which the method uses for the parameters’
estimation of the new variables. The properties of both algorithms will be more clear
from the algorithms. The methods are described in more detail in Chapter 5 or in the
original articles - for the PLS refer to [33] and for the SPCA refer to [76].

3.5.3 Summary
The list of methods capable of dealing with the specific properties of biochemical data
could be longer. The exhaustive list would not provide the reader with any substantial
additional knowledge; several works provide exhaustive reviews, refer to [12], which
deals mostly with NMR spectroscopy. However, the methods apply to other fields. In
this section were reviewed the most prominent methods for data analysis typical for
machine learning approach. The first mentioned methods were the decision trees. De-
cision trees are advantageous for their simplicity and interpretability. The simplicity of
the method, unfortunately, implies that the ability of the method to estimate complex
decision boundaries and the performance in classification of heterogeneous and collinear
data is poor in comparison with other methods.
Second, we mentioned methods from the wide family of linear classifiers. The extent
of the linear methods means that there is also wide variability in the properties and
classification performance. Although the methods may differ, the common denominator
is the linear classification boundary. The estimation procedure gives the resistance of
the methods to the collinearity. Some linear classifiers can deal with the collinearity
quite well; others may fail to provide reliable results. The linear classifier is reasonably
simple to be interpreted and understood by researchers without rigorous education in
mathematics and statistics. The linear decision boundary is more flexible than the
crude thresholding of individual variables in case of decision trees, but it is not able to
estimate more complicated decision boundaries without the use of polynomial or kernel
features.
The third mentioned classifier was again a group of methods called the artificial neural
networks. The properties of ANNs are such that the classification ANNs can estimate
any decision boundary and their nature is such that the collinearity does not pose any
problem. The main drawback of the ANNs is the very limited possibility to interpret
the coefficients of the network and their relationship to the classification of observa-
tions. From the point of the person analysing the data, the ANN classifier behaves
more like ’black box’ type system. This properties of ANNs substantially limit the
class of problems, where they may be applied. There is plenty of problems where we
demand the perfect classification, and the structure, coefficients and other details of the
classifier are not the main interest of the effort. However, the research in biochemistry
is usually not the field, where we can neglect the inner workings of classifiers. In the
biochemistry, we aim the data analysis at the understanding the phenomena relating
the variables to the response in the form of classification. Thus the possibilities to use
ANNs in the field of biochemistry research are only a few.
The fourth and the last mentioned were the multivariate methods related to the princi-
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pal component analysis, the partial least squares discriminant analysis and the super-
vised principal component analysis. These methods were developed to solve problems
with highly collinear data and problems with fewer observations than variables (ill-
posed problems). Therefore these methods are perfect for most of the problems dealt
with in the analysis of biochemical data; in some areas, such as NMR spectroscopy,
these methods are the methods of choice, in other areas they may be less effective.
These models are complex. The models are hierarchical. There is a set of estimated
latent variables from the original data, which form the first level of the model hierarchy.
The latent variables serve on the second level of the model hierarchy for the final classi-
fication. [86]. The models are interpretable; the loading vectors tell us which variables
constitute the latent variables. The role of latent variables is obvious from the classifier
in the second stage. The estimation of latent variables deals with collinearity in the
data by summarising the data by a small set of variables that are linear combinations
of the original variables. The problem connected with the multivariate models is in the
data, on which we usually apply these methods. The data with more variables than
observations are susceptible to overfitting, and it is very difficult to decide whether the
classifier is reliable. Whether the model is not a result of pure chance. There are many
approaches for testing model for overfitting and as useful reference provides [87–88],
specifically for metabolomics [26].
The regression refers to models and methods of relating variables to a response variable
that is of numeric (continuous) character. A regression modification exists to each of
the method that was mentioned in the classification section. There exist regression
trees, linear regression, ANNs for regression and partial least squares regression as well
as the supervised principal analysis (able to solve regression problems). In biochemical
data analysis, the resistance to collinearity of regression is the same as for the classifica-
ton. Regression is a wider concept in statistical modelling. In statistics the regression
is the umbrella term for all modelling approaches – for all types of response variables
– continuous, integer, count, binary [80]. We will discuss the statistical approach to
regression in the following section.

Method Collinearity Relationship Feature Feature
type selection extraction

Decision tree constant •
Logistic reg. linear
SVM any
Ridge reg. • linear
LASSO reg. • linear •
ANN • any •
PLS • linear •
Sup. PCA • linear •

Table 3.1. Summary of machine learning methods concerning their ability to deal with
various properties of the data

3.5.4 Statistical approach to the data analysis in biochemistry
The long history of development in statistics provides ample methods for various types
of data and problems. This section provides a list of statistical methods capable of
dealing with collinear data and other problems of the biochemical data. The section
will discuss the extent of statistical approaches from simple tests to more complex mod-
elling techniques. The statistics relies on the probability theory; the probability theory
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concentrates at the prediction of the probability of phenomena based on a probability
model. Typically, an example of the use of the probability theory is various games
such as throwing dice. The probability theory provides means for the estimation of
results of dice throwing. The statistics is interested in the description of the probability
models from the results of experiments. In the simple example of dice throwing, we
might have reasoned about the probability model of the dice, whether it is a ’fair’ dice
or whether any of the values on the dice is more or less frequent than would comply
with the assumed probability model. In the data analysis performed by the statistics,
we may be interested in description of the results of the experiments. The methods
for description and summarisation of the data provides the descriptive statistics. The
statistical inference allows for estimation of properties of the descriptive statistics.
Using the statistical inference, we may examine the descriptive statistical parameters
with estimates of variation, confidence intervals or for example, the distribution of the
parameters. With the introduction of assumptions about the so-called null hypothesis,
we may test, whether the descriptive values are in accord with the distribution of the
null hypothesis or whether they differ significantly from the distribution of the null
hypothesis [89]. The statistical tests can estimate how much the observed descriptive
statistical parameters deviate from the expected values following the null hypothesis.
The field of statistical modelling offers methods for estimation of parameters between
variables, and the parameters may be tested to estimate the statistical significance of
their values.

3.5.4.1 Standard statistical inference

We divide the statistical inference methods into three main approaches. The first is the
classical statistical inference, which uses the analytical approach to the computation
of the parameters and properties of the null hypothesis distributions. The classical sta-
tistical inference historically preceded the other approaches, which use computational
machinery such as computers. The classical statistics relies on strong assumptions
about the data, which consequently allow for the computation of the parameters of
the inference by standard statistical distributions directly or as asymptotic approxi-
mations. In classical statistics, the standard distributions are either approximated or
summarised in tables, which allow for the finding of test characteristics with reasonable
precision. The advantage of the classical statistical inference is its well-developed
theory. The assumptions the classical statistics relies on may be very easily violated,
and in consequence, the inference may not be correct. The classical statistics provides
a wide variety of inference methods and tests for most of the problems dealt with
in data analysis. To name an example, the typical problem in statistics is testing
whether two groups differ in specific parameters – most often whether a sample mean
is different between two samples. For such a problem the classical statistics offers
Student’s two sample test [89]. The Student’s test assumes the samples to be drawn
from the normal distribution and also assumes the variance equal among the samples.
With this assumption, the difference between groups may be assumed to follow the
normal distribution, and this may be used to compute characteristics such as critical
values or p values.
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3.5.4.2 Non-parametric statistical inference

The second approach to statistical inference is the nonparametric approach [31].
While in the case of the classical statistics the inference relied on standard statistical
distributions and thus forming the parametric approach, the non-parametric statistics
tries to lift some of the assumptions about the underlying statistical distributions and
use other means to perform the statistical inference. The non-parametric statistics
provides ’workarounds’ for the assumptions of classical statistics, the statistical power
(the ability to reject a truly invalid null hypothesis) is lower than in the classical
statistics. The non-parametric statistics can provide us with correct inference for cases
where the classical statistics would fail. The non-parametric statistics is very close to
the classical statistics. Even the non-parametric statistics uses approximations similar
to the classical statistics for large sample sizes. An example of a non-parametric test
for the problem of the comparison of the sample mean is the Wilcoxon’s rank sum test
[90], the Wilcoxon’s test does not assume the data to come from any specific statistical
distribution. Ranks represent the samples; the ranks are used to compute the rank
sum. For small sample sizes, the rank sum determines the inferential characteristics;
for large sample size, the test uses the normal approximation. Apart from the lower
statistical power, the Wilcoxon test is also sensitive to the empirical distribution of the
sample If the distributions differ substantially, the Wilcoxon’s also tests the difference
in the location, but also the difference in the samples empirical distribution’s shape.

3.5.4.3 Simulation-based statistical inference

The third approach is the bootstrap and other simulation based methods of statistical
inference. The bootstrap is the most recent contribution to the statistical inference
and its development by Efron revolutionised the statistics [50]. The idea of bootstrap
is very close to the intuition behind the nature of probability, chance and statistics.
With few simple assumptions the bootstrap can simulate the stochastic processes which
generated the data. The idea of bootstrap is the analogy between the population and
sample, and the sample and bootstrap sample. In classical statistics the sample drawn
from the population is used to study the statistical properties of the population. In
bootstrap the bootstrap sample can be used to study the statistical properties of the
sample. Thus what is the sample for the population is what is the bootstrap sample for
the sample. The bootstrap is similar to the permutation tests, which are established
in the classical statistical inference. For simple systems of discrete phenomena, we
can exactly compute all outcomes and perform the inference exactly. These are the so
called exact test and the most famous example is the Fisher’s tea tasting experiment
[91], which led to the development of the Fisher’s exact test for binomial distribution.
Similarly, the permutation test evaluates the complete set of possible outcomes; by
permutation of the outcomes (typically in case of two sample tests), the distributions
of null hypothesis may be estimated and used for the inference. The problem with
permutation tests (and also with bootstrap) is that set of all possible permutations
may be effectively so large, that the evaluation of all the permutations would not be
possible (the number of permutations is the factorial of the sample size). For such
cases, the Monte Carlo methods provide a good solution. With Monte Carlo methods
we evaluate only a reasonable number of permutations.
And finally to introduce the bootstrap sample – the bootstrap sample is a sample with
replacement of the size of the original sample drawn from the observations in the origi-
nal sample. The sampling with replacement allows for very extensive statistic inference;
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we can use the bootstrap for the estimation of the distribution of null hypothesis for
any one, two or more sample tests as well as for inference in statistical models. The
lack of any strong assumptions for the bootstrap makes the method of choice for any
problem where the classical approach to the statistical inference cannot be applied or
would not be appropriate. The apparent disadvantage of the bootstrap method is that
in order to estimate the distribution of the null hypothesis, we have to repeat the
bootstrap sampling and the number of random repetitions depends on the precision we
need. In case of simple tests we may settle with several thousand repetitions, for cases
where correction for multiple testing come into play, the number of repetitions may be
several orders higher. This need for a large number of repetitions also clearly points
to the weaknesses of the bootstrap approach – the repeated estimation of statistical
parameters needs reasonable computing power. For simple tests any contemporary
computer is sufficient, but with the increase in repetitions of the computation of the
examined statistical parameter, the considerations about the efficiency of the computa-
tions and efficient use of the resources (multicore processors, computer grids) become
a serious problem. The borderline between simple and difficult problems regarding
computer time is narrow. Simple problems take several minutes, intermediate problems
run for several hours, and serious problems can take months. A simple problem can
become easily intermediate when we decide to control our simulations for additional
effect. We can usually roughly estimate the total time that the complete number of
repetitions will take. The other problem with bootstrap is that apart from several
standardised bootstrap test (for example test for a difference between two samples,
estimation of confidence intervals for coefficients of a linear model), the bootstrap
test has to be programmed and run with code developed specifically for the given
problem. We cannot advise programming bootstrap from scratch in any programming
language. In order to ensure that the bootstrap samples are random and independent,
the program needs a good random number generator. The statistical software such as
R [92] or programmes for scientific computation come with the utilities to support for
pseudo-random computations with guaranteed independence among the (bootstrap)
samples.

3.5.4.4 Summary

To sum the statistical inference techniques, the classical statistics and non-parametric
approach are readily applicable for a variety of problems, but in order to perform
the inference correctly, we have to check the assumptions of chosen techniques. The
advantage of these methods is that they are well-established and supported by the
probability theory. The bootstrap approach is beneficial for problems, where the
classical techniques are not applicable due to their assumptions or where the methods
do not exist. The bootstrap allows for statistical inference even in very complicated
designs but may be very computationally intensive.

3.5.5 Multiple comparisons
In the analysis of multidimensional data, it is common to pose more questions during the
data analysis concerning one collected set of data. Testing more than one hypothesis on
data collected from one experiment may lead to overly optimistic results. In statistics,
the hypotheses are considered valid, when the probability of an error made by refuting
the null hypothesis is lower than a threshold chosen before carrying out the analysis. By
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performing several tests on the same data, the probability of making an error increases.
The intuition of increasing the risk of making an error may be illustrated on a simple
example with throwing a coin (see Ex. 3.2).

The probability of throwing head with a fair coin is 1/2. In case of throwing the coin
twice, the probability of at least one head is intuitively higher, it is exactly 3/4 (the
probability may be easily computed by basic rules for computing with probabilities or
by following the formula for probability of binomial distribution). The same applies in
case of statistical hypotheses, only the error is no more a fair coin. The probability
for the standard threshold of 0.05 will result in 0.0975 for 2 hypotheses,but it will be
0.226 for 5 hypotheses, 0.401 for 10 hypotheses, 0.641 for 20 hypotheses and 0.923 for
50 tested hypotheses.

Example 3.2. The probability of making the type I error when performing statistical tests
illustrated by dice throwing.

The presented number of hypotheses may seem large; however, in several fields of
research, the number hypotheses may be even many times higher. Obtaining reliable
results in case of testing multiple hypotheses therefore poses a substantial issue for
statistical analyses. In literature the problem is referred as corrections for multiple
testing or as family-wise error rate. The simplest approach to eliminate the problem
of multiple testing is lower the threshold for refuting the null hypothesis in way that
would ensure the overall error rate not to exceed the desired level (typically 0.05). This
may be achieved by dividing the threshold by the number of tested hypotheses. This
approach is called the Bonferroni correction for multiple comparison [93]. By figuring
out the probabilities of the error in this scenario, it is obvious, that the Bonferroni
correction is conservative, the actual error rate maintained by the Bonferroni correction
is lower than the 0.05 error rate. Better corrected threshold may provide the Šidák’s
correction [94]. The two presented methods for multiple comparison corrections are
only a small sample from a variety of methods applicable for multiple comparison
correction. The advantage of the mentioned methods is in their simplicity, which
makes them easily applicable. In contrast to manipulating the threshold, we may
work with the actual probabilities of making an error – the p-values estimated by the
statistical tests and apply the notion of false discovery rate, which tries to estimate
the number of false discoveries rather than the probability of making one error [95]. By
accumulating the probability of the error, we may refute more hypotheses and obtain
more interesting results. From these methods we may name the Holm’s procedure
[96] and Benjamini-Hochberg-Yekutieli method (BHY) [97]. These methods are more
complex and not as easy to use because we have to estimate the p-values, order them
and sequentially process. Standard programs for data analysis contain functions for
carrying out these procedures. The BHY method is interesting for correlated tests.
Imagine two cases – in one case we test two hypotheses on one set of data, each
on a different uncorrelated variable. For the second case imagine, that we tested a
hypothesis by mistake twice on the same variable. In the first case, the error rate
increases; in the second case, we can hardly tell that the error rate would change; it
is the same. The BHY procedure accounts for the correlation among tests and allows
for more sensitive treating of the p-values and better results (in the form of correct
refusing of the null hypothesis under correlation).
In conclusion, multiple testing procedures form a substantial issue in statistics. There
exist several methods. Simple methods such as Bonferroni or Šidák correction for
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multiple comparison work by modifying the threshold value for refusing the null
hypothesis. These methods are easy to use but may prove to be overly conservative.
Another group of methods works directly with p-values and allows for a more complex
approach to hypotheses’ testing. These methods are more difficult to apply.

3.5.6 Statistical modelling – regression
As mentioned before, we would not list the statistical models applicable to (bio-
chemical) data with only one exception – the generalised linear mixed e�ect models
(GLMM) [98]. The GLMMs are the state of the art method for most data types. It
is good to start with just generalised linear models (GLM) [80] to understand the
GLMMs. And to understand the GLM, it is best to start with an ordinary linear model
(LM) [99]. The ordinary LM is not just the linear regression which most researchers
associate with LM. The LM covers several methods, usually denoted by different
names. An LM relating (continuous) response to a logical (indicator) predictor is
equivalent to a two sample Student’s test with equal variances. In such a case, the
model coefficients are the mean the reference group and a difference between the
means. We can easily extend this model to a categorical predictor represented by a
matrix of indicators (indicator for each category of the predictor; meaning the original
predictor is either equal to a given category or not). This case in LM is equivalent
to testing the difference in the means of the response variable to a baseline value
(one of the categories) by two sample Student’s test with equal variance. The case of
continuous predictor is the well known linear regression. The previous cases presented
the simplest LMs with only one predictor. LMs with more than one predictor variable
offer a wide variety of relationships between the variables (predictors to the response).
The description of all possible cases is too long to be presented in this work. We direct
the reader to [99]. When using the LM we are restricted to cases where the response is
a continuous variable. There exist models for other types of response variables. There
is the Poisson regression for count data, the logistic regression for the binary response
variables and the ordinal (not ordinary) regression for the categorical variables. All of
these regressions can be used in the same manner as the LM and used to assess the
same types of hypotheses. However, there does not have to be any relationship to any
existing statistical test.
The idea of GLMs is that all these specific regression methods are special cases of
an LM with a transformed response variable. For example, the Poisson regression
modelling the integer variable, the natural logarithm of the response can be taken
and used for the modelling. The natural logarithm transforms a non-negative integer
variable into a continuous real-valued variable. When estimating the model, we have
to consider the relationship between the mean and the variance of the distribution.
We can formulate the logistic regression as an LM relating predictors to binary-valued
response variable transformed by logit function. The transformation is called a link
function which linearises the response in order to be able to work with as in an ordinary
regression (however the details of the optimisation procedure may slightly differ from
the ordinary LM). The variance function describes the relationship between the mean
and the variance of the distribution. The link function and the variance function
define the generalised linear model. Although the specific regressions may not relate to
existing tests, the GLM methodology allows derivation of asymptotic distributions of
the parameters so that the statistical evaluation can be easily carried out by standard
programs for statistics such as R.
And finally, the mixed effect model is a concept of a model for data which suffer from
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substantial variation due to the measurement procedure. An example of such data may
be the evaluation in sports such as acrobatics, ice-skating or horse riding, where there
is no objective measure of the contestants’ performance, but a group of judges assesses
it. Each judge at a competition would unintentionally have her, or his biases and the
assessment of one contestant by different judges may differ. Consider a problem of
modelling performance assessed at competitions of one contestant in acrobatics based
on the hours per week spent by practising. The judges will never be the same persons.
However, few of them may be assessing the performances in several competitions. The
differences between the judges’ assessments may be so important, that they completely
obscure the relationship between the training and the final evaluation – in this case, the
standard modelling procedure would fail to recognise an actual relationship. Another
extreme case may be an observed relationship between the evaluation and the training
caused by chance due to the judges’ biases (say the contestant practised the wrong
type of exercise). The mixed effect model consists of two parts – a fixed part and
a random part. In our example of acrobatics, each judge can correctly evaluate the
performance resulting in the same (or similar) order of contestant, but each judge
expresses her or his opinion in a different number of points. In order to model the
relationship between performance and training, we would have to find a transformation
of each judge’s points to compare them. The mixed effect model allows to estimate
the transformations for each judge as a random effect parameter and eliminating the
individual differences. The common variation among the individuals forms the fixed
effect – the changes in performance after compensation for the differences in judges’
assessment and their relationship to the training. It is clear that the concept of mixed
effect model greatly enhances the capabilities of the GLMs. The use of a mixed effect
model needs careful consideration of the nature of the problem, e.g. which variables
affect the response and whether they should be utilised as a random effect, fixed effect
or both. Complicated model design compensating for various effects in the data may
not translate well into a working mixed effect model. The estimation of mixed effect
models is very complicated due to several limitations implicated by the very concept
of the model (the random effects’ coefficients are often many and are subjected to be
random numbers drawn from N

(
0, σ2)). Similarly to the computational problems,

the statical assessment of the model parameters is complicated. The asymptotic
distributions for parameters can be derived, but only for specific cases satisfying strict
assumptions [98]. When we decide to use a mixed effect model, we can rarely be sure
that all the model assumptions hold. Therefore, non-parametric approaches such as
bootstrap may provide better results [100].
The GLMMs, as presented in the previous paragraph, suffer from one substantial
drawback. Several assumptions of the LMs which translate into GLMs and to a
certain extent to GLMMs are very limiting. The first assumption that is often not
met is the independence of residuals in the model. We often observe dependencies
among model residuals. The causes for the dependencies among the residuals may be
due to a wide variety of reasons. In simple problems, the dependency can indicate
another linear or non-linear relationship, that is present in the data and is affecting
the studied relationship. The reason for the dependency may be the properties of the
data. Consider data collected from a group of individuals in time. We refer to this
data type the time series data or longitudinal data. In other contexts, it is called
repeated measurements or called specifically by the nature of the dependency, e.g. data
with spatial covariance structure. The other important assumption of the LMs is the
homoscedasticity, which means that the variance in the data is constant and unrelated
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to the response. Homoscedasticity is the reason, why the two sample Student’s test
with equal variances was mentioned as equivalent to the LM with indicator predictor.
The equality of variances is a very strong limitation, which allows for a correct as-
sessment of only a small proportion of hypotheses. In the standard statistics, there is
the Welch’s test – the alternative to the Student’s test under unequal variances. In
case of linear models, the alternative is the general linear model (not generalised linear
model) which enables estimation of models for data which are dependent and also
heteroscedastic. These two properties cause substantial problems during the estimation
of the general linear model – the optimisation of the parameters. The good news is that
the methodology of GLMMs already allows for the utilisation of the dependence and
heteroscedasticity – the problem of these assumptions is related to the random effects
in the GLMMs, which are on itself an example of dependency, although expressed in
different form.

3.5.7 Summary
To wrap up the section on data analysis, we repeat and emphasise the most impor-
tant points. Generally, two approaches exist for the data analyses in biochemistry.
The machine learning methodology provides one way to process biochemical data. The
machine learning approach to data analysis classifies the methods into supervised and
unsupervised methods according to the analysed outcome. In unsupervised analyses
of data, the clustering examines, whether the data do not have any hidden structure.
Data with structure should be treated differently from unstructured data; we may ex-
ploit the found structure with modelling techniques.
Another important method from the class of unsupervised learning is the principal
component analysis. The principal analysis can help to assess the relationships among
variables. The correlation structure may be used to create a new set of uncorrelated
variables which may prove beneficial for visualisations and generally for data explo-
ration. The properties of such variables predestine them for use in models, which are
not capable of dealing with correlated variables.
The supervised learning rests in learning to approximate an expert knowledge – typi-
cally a class assignment in classification or prediction of continuous values in regression.
For the classification of biochemical data, several classifiers are applicable, but only a
few are appropriate. The best method for classification of biochemical data is various
linear classifiers. In linear classifiers, the benefits and drawbacks are in good compro-
mise. The linear methods provide sufficient complexity to approximate and correctly
classify even data, that are not linearly separable. The models are not difficult to
interpret. A good example of such a linear classifier is the support vector machine.
Second in the line of reasonable classifiers are the multivariate methods, namely the
partial least squares discriminant analysis and supervised principal component analysis.
These methods are complex enough to fit complicated decision boundaries and are still
interpretable. These methods are better at dealing with correlated variables and there-
fore are prominent in areas, where the collinearity poses a substantial problem, e.g. in
NMR spectroscopy. Other methods are less appropriate than the already mentioned for
the biochemical data. The decision trees and related methods are easily interpretable,
but the data without any feature extraction methods are far too complex for such sim-
ple methods. The other extreme is the neural networks, which are extremely powerful
at classification but are uninterpretable to the extent of black box system.
The statistical approach to the analysis of biochemical data rests in the rigorous applica-
tion of statistical methods. We have to choose the appropriate method and assessment
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of statistical significance to perform the statistical analysis correctly. The choice of
the method relies on careful consideration of the tested hypothesis – for example, for
group comparison we can apply a test of difference. The statistical assessment needs an
examination of the method’s assumptions. For the case of group comparison, several
tests are applicable. The applicable methods are the Student’s two sample test, the
Welch’s two sample test, the Wilcoxon’s rank sum test or a bootstrap test for differ-
ence in means. The first two tests are classical statistical methods, and they assume
several data properties in order to provide correct results. The Wilcoxon’s rank sum
test belongs to non-parametric methods, and so it has less assumptions than the Stu-
dent’s test, however also a lower statistical power and in some cases does not have to
be a test of difference at all. The bootstrap imposes the lowest number of limitations
on the tested data. However, it may happen that the used statistical problem would
not have the test implemented and therefore the testing procedure would have to be
programmed.
When performing a statistical test, it is also important to keep track of the number of
tested hypotheses. Each tested hypothesis increases the chance of finding anything sta-
tistically significant. Unfortunately, the multiple testing comes at a price – the chance
of making an error increases accordingly. The corrections for the multiple testing have
to be applied to avoid the risk of drawing incorrect conclusions. We can perform the
corrections following Bonferroni’s or Šidák’s methods, which rely on manipulating the α
level for the refutation of statistical hypotheses. More advanced methods work with the
estimates of the probability of making an error, these methods are more sensitive, but
we need statistical programs for the computations. Lastly, the very important method,
the generalised linear mixed effect models were presented alongside their advantages in
the analysis of biochemical data.
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Chapter 4
Generalised mixed e�ect models

In the preceding section 3.5.4, we provided the intuition behind the generalised mixed
effect models (GLMM) and their application. In this section, we will provide a detailed
description of the model and its components. The methods of model parameters es-
timation will follow. An essential part of the reasoning in experimental science is the
statistical inference about the model parameters. Therefore we will list the methods
available for the statistical inference about the model parameters, as well as a detailed
description of simulation methods. We consider the simulation methods to be the
methods for appropriate assessment of the statistical significance. We will start with
the simpler linear mixed effect model, and subsequently, the GLMM will be devised
based on the description of LMM.

4.1 LMM model description
The linear mixed effect model is a statistical two-level hierarchical linear model, which
combines fixed effects and random effects. The following equation describes the linear
mixed effect model.

y = Xβ + Zu+ ε (4.1)

where y is the n×1 vector of the response variable, X is the n×p matrix of predictors
for the fixed effect part of the model, β is the n×1 vector of the fixed effect coefficients
of the model, Z = [Z1, ..., Zb] are the design matrices, where Zi is the n × qi matrix
of predictors for the specific random effect part of the model, u = [u1, ...ub] is the
q × 1 vector of the coefficients of the random effect part, where the individual ui is a
qi × 1 vector such that q =

∑b
i=i qi and ε is the n × 1 vector of residuals. Both the

random effect coefficients u and the residuals e have zero mean E(u) = 0 and E(e) = 0.
[101–102]
The random effect coefficients u and the residuals e are assumed to be independent and
drawn from a multivariate Gaussian distribution with zero mean[

u
e

]
= N

([
0
0

]
, σ2

[
G (γ) 0

0 R (ρ)

])
(4.2)

.
The γ and ρ are r × 1 and s × 1 vectors of variance parameters corresponding to

the random effect coefficients u and residuals e. The variance-covariance matrix of the
response y is then:

var (y) = σ2 (ZGZT +R
)

= σ2H (4.3)

The presented factorisation of residual variance out of the variance matrix of the
data adopted from [101] is advantageous for the estimation of the model parameters.
Less general factorisation of the variance-covariance of the response y by assuming the
matrix R to be the identity matrix may be: [101]
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var (y) = V = ZGνZT + σ2I (4.4)

The benefit of the factorisation presented Eq. (4.3) is that the variance and covariance
in the residuals can be estimated separately.

4.2 LMM parameters estimation
The estimation of LMM parameters poses several problems in comparison with the
estimation of parameters of the simpler linear model. We can formulate the estimation
of LMM model parameters in several ways. The work [101] presents an approach based
on solving the mixed model equations. It also lists other formulations of the problem
of estimation. The work [102] proposes a more general approach as a minimisation of a
loss function. The parameter estimation devised as a solution of mixed model equations
is the following:

β̂ =
(
XTH−1X

)−1
XTH−1y

u = GZTH−1
(
y −Xβ̂

)
(4.5)

These equations can be used for the estimation only for known variance parameters σ2,
R and G. Usually, these parameters are unknown, and we have to estimate them from
the data. It is necessary to use an appropriate estimator of the variance parameters
σ2, R and G. There are two approaches to the estimation of the variance parameters,
the full information maximum likelihood method or the residual maximum likelihood
method [102].

4.2.1 Maximum likelihood estimation of LMM parameters

The maximum likelihood estimation of the LMM parameters rests in devising a likeli-
hood function - generally a function of model parameters and the data. The likelihood
function assesses, how well the model with a given set of parameters fits the data, or
more exactly, what is the chance, that the model with the given set of parameters gen-
erates the observed data. The optimal values of the parameters are those, which yield
the biggest value of the likelihood function, hence the maximum likelihood estimation.
The maximum likelihood estimation has many applications in statistics. We can devise
the closed-form solution for the maximum likelihood estimation for the estimation of
some statistical parameters (e.g. sample mean). More often, there is no closed-form
solution, and therefore, we have to utilise the methods of numerical optimisation to
find the set of parameters yielding the maximum value of the likelihood function. We
usually use the log-likelihood function instead of the likelihood function. The advan-
tage of the log-likelihood is the transformation of products in the likelihood function to
sums in the log-likelihood function. The log transform does not change the position of
the maximum of the function.
In the case of the LMM, the log-likelihood function of the model parameters and the
data is of the form:

lML (β, φ|y) =− 1
2

(
n log 2π + n log σ2 + log |H|

+ (y −Xβ)T H−1 (y −Xβ)
σ2

)
(4.6)
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where φ =
(
κT , σ2)T and κ =

(
γT , ρT

)T . The gradient optimisation methods can use
the analytically devised partial derivatives. For the more detailed description of the
likelihood function of the LMM variance parameters refer to [101]. The maximum
likelihood approach is known to be downward biased because they do not take into
account the degrees of freedom lost when estimating the fixed effects.[101]

4.2.2 Restricted maximum likelihood estimation of LMM
parameters

The unbiased estimation of the LMM parameters provides the restricted maximum
likelihood estimation. In comparison with the maximum likelihood approach, the like-
lihood is not computed with the original response y data, but with linearly independent
error contrasts orthogonal to the design matrix X. The linear combination in form KT y
are chosen so that the rank of the K matrix is maximised but is free of the fixed effect
coefficients β. The linear combinations are obtained from the data after fitting the fixed
effect coefficients β and therefore they are function of the residuals. That is why the
restricted maximum likelihood estimation is referred to as residual maximum likelihood
estimation. The restricted log-likelihood function is: [101]

lR(φ,KT y) =− 1
2

(
(n− p) log 2π + (n− p) log σ2 + log |KTHK|

+ 1
σ2 y

TK(KTH−1K)−1kT y
)

(4.7)

where φ =
(
κT , σ2)T and κ =

(
γT , ρT

)T . For a more detailed description of the re-
stricted maximum likelihood refer to [101], which also presents the partial derivatives
of the log-likelihood function needed for estimation of the coefficients by the means of
numerical optimisation. [101]

4.2.3 Numerical optimisation methods for the LMM parameters
estimation

The estimation of the LMM parameters either by the maximum likelihood approach
or by restricted maximum likelihood calls for numerical optimisation methods. The
optimisation can be performed by general-purpose optimisers or by optimisers whose
properties are best suited for the specific properties of the optimised model. Another
criterion by which we can distinguish the optimisation methods is whether they provide
only the best estimates of the model parameters or whether they also provide other in-
formation about the estimates useful for the inference about the parameters.
To the optimisers used to fit the maximum likelihood and restricted maximum likeli-
hood estimates of the LMM parameters belong the Newton-Raphson method, Fisher
scoring, Expectation maximisation algorithm and Average information algorithm [101].
The Fisher scoring and Average information are variants of the Newton-Raphson algo-
rithm. The Newton-Raphson method finds the roots of a function by iteratively refining
the estimates. In each iteration the intersection between the first derivative of the func-
tion (the tangent) at a certain value x0 and the x-axis is found by solving x1=x0−f(x0)

f ′(x0) .
The value of the intersect x1 serves in the following iteration as the value, where the
first derivative is used to find the intersect. This process continues until either we reach
the maximum number of the iterations or we achieve the convergence to the zero value.
For the algorithm to converge, we have to provide a good initial value. In the case of
(restricted) maximum likelihood, the Newton-Raphson method can be applied the first
derivative of the likelihood function, because the solution of f ′(x) = 0 corresponds to
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an extreme value of the function f(x) which is the maximum of the concave function.
The paper [101] is a good starting point for the other two similar methods - the Fisher
scoring and the Average information algorithm. The advantage of the methods based
on the Newton-Raphson algorithm is that they provide the asymptotic standard error
of the estimates, which is useful for the inference about the parameters. [101]
Similarly to the Newton-Raphson algorithm, the Expectation maximisation (EM) algo-
rithm is a general optimisation method. The EM method repeats the expectation and
the maximisation step. At the n-th expectation step, the conditional likelihood l(θn|y)
given the parameter estimates θn and the data y. At the consequent n-th maximisation
step, the conditional likelihood l(θn|y)from the expectation step is used to produce a
new parameter estimate θn+1. We repeat the expectation and maximisation steps until
either we perform the maximum number of iterations or reach the convergence. [101]

4.3 Statistical inference of the LMM

The statistical inference of the LMM divides into categories by the model parts - we
can perform the statistical inference for the fixed effect part, random effect part and the
variance of the model. From a different point of view, we can classify the approaches
to the statistical inference methods themselves - we can apply the standard statistical
approaches as well as simulation-based methods. Recently, the was criticism about
the standard statistical approaches to the inference about various parts of the LMM,
and the simulation approaches have been recommended to be the preferred method for
the statistical inference in LMM (and also in GLMM). However, we will present both
approaches to the problem.

4.3.1 Standard LMM inference

4.3.1.1 Standard inference about the fixed e�ect part of the LMM

The interest in the statistical significance of the LMM is in most cases in the fixed
effect coefficients. We usually interpret the fixed effect coefficients and use them for
concluding the studied problems. The modelling effort with the LMM should not be,
in any case, only focused on the fixed effect coefficients.
In case of the models fitted by the maximum likelihood approach, we can perform the
likelihood ratio test of the goodness of fit of a pair of models with equal random effect
parts and differing fixed parts. The test statistic is:

MLRT = −2(lML0 − lML1)

where the lML0 and lML1 are maximum likelihoods of two models that differ by a k
fixed effect parameters. The maximum likelihood ratio test MLRT asymptotically
follows a χ2distribution with k degrees of freedom. We cannot compare models fitted
by the restricted maximum likelihood approach by the presented procedure. The use
of different error contrasts K ′y makes the likelihood functions incomparable. [101]. We
can use a modified Wald test for the inference about the fixed effect coefficients. The
problem poses the estimation of the degrees of freedom for the distribution of the test
statistic. The Satterthwaite approximation can be used to estimate the approximate
degrees freedom. The modified Wald test is not the preferred way to perform the
inference of the fixed effect coefficients.
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4.3.1.2 Standard inference of the variance of the LMM

The variance is an important part of the model. The design of the variance-covariance
structure should reflect our understanding of the modelled problem as well as provide
sufficient means to fit the data properly. Variance structures with either too strict
(fewer parameters than necessary) or too loose (too many parameters) result in inac-
curate standard error estimates of the fixed effects. The restricted maximum likelihood
ratio test can assess the appropriateness of the variance structure of the model. A
pair of LMMs estimated by the restricted maximum likelihood approach with variance
parameters R0 and R1, we compute the restricted maximum likelihood ratio as:

REMLRT = −2(lR0 − LR1) (4.8)

Where the lR0 and lR1 are the restricted likelihoods of the two variance parameters. The
restricted maximum likelihood ratio test REMLRT statistics follows χ2 distribution
with k degrees of freedom, where k corresponds to the number of additional variance
parameters in the R1 variance model.[101]
Another approach is the score test, which uses the scores and the information matrix
to test the significance of the variance parameters. The advantage of the score test is
that we only have to fit the model of the null hypothesis. The score test statistic is:

S(κ0) = U(κ0)′Iκ0κ0U(κ0)|κ0 (4.9)

Where κ0 is a vector of variance parameters, U(κ0) is the score vector of κ0 and Iκ0κ0

is the portion of the inverse of the variance matrix associated with κ0. Similarly to
the REMLRT, the score test statistic follows χ2 distribution with k degrees of freedom.
[101]
Both the restricted maximum likelihood test and the score test are problematic, when
the null hypothesis is on the boundary of parameter space (e.g. σ2 = 0). For strategies
available to address this problem refer to [101].

4.3.1.3 Standard inference of the random e�ect part of the LMM

Some works proposed approaches to perform the standard inference about the random
effects as well as the combination of random and fixed effect parameters. Performing
any inference about the random effect parameters is a matter of debate. The random
effect parameters can be underestimated (in the case of the maximum likelihood
estimation), and their actual fitted values are not good estimates of the relationship
they model. There are other statistical models, which we can use to model the
relationships on the required level of hierarchy directly and which we can test directly.
However, in some cases, the inference about the random effect can be useful diagnostics
information. The work [101] provides an approach to perform the standard statistical
inference about the random effect parameters as well as a reference to more specialised
discussions for further study of the problem.

4.3.2 LMM inference based on simulations
The simulation approaches to the statistical inference about the LMM mainly utilise
the idea of bootstrap. The bootstrap, which was developed by Efron, has become a
widely used method for estimation of various properties in statistics (e.g. estimates
of variance, estimation of statistical distributions, hypothesis testing). The decisive
advantage of the bootstrap approach to statistical inference is its non-parametric na-
ture, which is common to many methods based on bootstrap. However, the bootstrap
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has also a substantial disadvantage which is high computation complexity of the sim-
ulations, which we need to perform and repeat many times in order to estimate the
required properties.
The basic idea of the bootstrap is that the inference about the statistical sample can
be performed by sampling the observations from the statistical sample with replace-
ment and estimating the required property. This method applies the general statistical
method of inferring the properties of a population by drawing a sample. There are
many resources on the bootstrap methods in various fields, the book [50] provides a
general introduction.
In the case of LMM, there exist several approaches to the bootstrap. Generally, there
are three categories of bootstrap methods, which are:

1. parametric bootstrap
2. residual bootstrap
3. cases bootstrap

4.3.2.1 Parametric bootstrap of LMM

The parametric bootstrap uses parametric estimates of the distribution of residuals ε
and distribution of random effects u to generate bootstrap samples. Usually normal
distribution is assumed for the residuals ε ∼ N(0, σ2I) as well as for the random effects
u ∼ N(0, Ĝ). The method of parametric bootstrap in LMM is presented in Alg. 4.1.
[102]

1) Draw a random sample of random effect parameters u∗ from a normal distribution
with zero mean and covariance matrix Ĝ.
2) Draw a random sample of residuals ε∗ from a normal distribution with zero mean
and covariance matrix σ2I.
3) Use the randomly generated random effects and residuals to compute the random
sample as y∗ = Xβ̂ + Zu∗ + ε∗.
4) Compute the estimates of all the LMM parameters on the y∗ sample.
5) Repeat the steps 1-4 to obtain the required number of simulations.

Algorithm 4.1. The parametric bootstrap of linear mixed-effect model

4.3.2.2 Residual bootstrap of LMM

The general idea of the residual bootstrap of the LMM comes from the residual boot-
strap of the simple linear model. The residual bootstrap uses the resampled estimated
residuals (and in case of LMM the random effects’ coefficients) to generate bootstrap
samples of the data. These bootstrap samples can be used to estimate the distribution
of some model parameters, construct confidence intervals or for example, to estimate
standard errors. The algorithm of the residual bootstrap of the LMM is as follows in
Alg. 4.2: [102]

4.3.2.3 Cases bootstrap of LMM

The cases bootstrap is probably the simplest approach to the bootstrap in LMM. The
cases bootstrap rests in resampling the cases. In a hierarchical model, the resampling
can be done individually on each level of the model. The decision about which level
of the model to resample relates to the problem that is solved. In some cases, we may
want to sample with replacement from the whole subjects (of the indicators identifying
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1) Draw a sample with replacement of random effect parameters u∗ from the estimated
random effects coefficients û.
2) Draw a sample with replacement of residuals ε∗ from the estimated residuals ε̂.
3) Use the resampled random effects and residuals to compute the random sample as
y∗ = Xβ̂ + Zu∗ + ε∗.
4) Compute the estimates of all the LMM parameters on the y∗ sample.
5) Repeat the steps 1-4 to obtain the required number of simulations.

Algorithm 4.2. The residual bootstrap of linear mixed-effect model

the random structure of the model). In other contexts, we may want to perform the
resampling of the observations within the subjects defining the random effect structure.
For the first case, a good example can be a model with repeated measurements; the sec-
ond case can be a problem of dealing with longitudinal data. However, we can perform
the resampling on both levels. The cases bootstrap is a simple algorithm Alg. 4.3. [102]

1) Draw a sample with replacement of Xi subsets of the dataset X corresponding to
the levels of the variable that defines the random effects structure.
2) In each of the subsets drawn with replacement from the original draw a sample with
replacement of the observations.
3) Combine the resampled data on both the levels to form a bootstrap sample of the
data X∗.
4) Compute the estimates of all the LMM parameters on the y∗ sample.
5) Repeat the steps 1-4 to obtain the required number of simulations.

Algorithm 4.3. The cases bootstrap of linear mixed-effect model

In the case of the cases bootstrap, subsequent steps depend on the problem and the
resampled levels of the model. For example, in case of resampling of both levels with
longitudinal data, we may assume, that we perform the bootstrap of a null hypothesis
and use the estimated distribution of the parameters directly to compute a p-value,
construct confidence intervals, etc. In other cases, we assume that we perform bootstrap
under the alternative hypothesis, which we can use to estimate standard errors or, e.g.
to construct confidence intervals.

4.3.2.4 Other approaches to the bootstrap of LMM

Many methods utilise bootstrap. In the case of the LMM the previous paragraphs
presented only the general ideas about the bootstrap in LMM. However, many authors
combine these categories to devise new bootstrap methods. An article [100] provides
a more detailed list which also provides a comparison of several approaches to the
bootstrap in LMM.

4.4 Generalised LMM
We introduced the idea of generalised models in the previous sections about the data
analysis. The same reasoning which provided for the distinction between the ordinary
linear models and generalised linear models applies to the mixed effect models. Thus
in order to fit a GLMM, we have to have a link function and a variance function. Te
link function linearises the response variable and enables to fit the model (almost) as

53



4. Generalised mixed e ect models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if it was a linear model. The variance function describes the relationship between the
mean and the variance of the distribution. It is also necessary to have an inverse link
function, which transforms the linearised response variable back to the original values.
The inverse link function transforms the fitted parameters of the GLMM in order for
them to be interpretable. There are link functions for standard data types. The count
data which are considered to be Poisson distributed use the natural logarithm log(·),
and the inverse link function is naturally the exponent exp(·). The variance function
for the Poisson distribution is the value of the distribution’s mean. In case of the
binomially distributed data, the link function is most often the logistic function log p

1−p

with the inverse link function exp(·)
1+exp(·) . The variance function of the logistic distribution

is µ(1 − µ), where µ denotes the mean of the distribution. The standard model with
normally distributed data is called the identity link function, which is just identity. The
link and variance functions are identity. There are many more link functions, for an
overview, refer to [80]
However, the fitting of GLMMs may result in many practical problems [103]. Several
approaches exist, however, each of them has its advantages and disadvantages. These
are the Penalised quasi-likelihood, Laplace approximation, Gauss-Hermite quadrature
and Markov Chain Monte Carlo. Many standard programs for statistical data analysis
implement the penalised quasi-likelihood approach. It is considered inaccurate for large
variations or small means. The Laplace approximation and Gauss-Hermite quadrature
are more accurate than the penalised quasi-likelihood but are slower and less flexible.
The Markov chain Monte Carlo method is a bayesian approach to the model fitting and
inference. It is rather challenging and technically complicated, although it is highly
flexible. [103]

4.5 Bayesian approach to the LMM and GLMM
The reason for the inclusion of this section is not to introduce the field of Bayesian
statistics or to compare the Bayesian statistics to the frequentist statistics by produc-
ing the differences in the basic concepts of the two statistical inference frameworks.
This comparison of the frequentist and Bayesian approach seems to be a mandatory
part of every textbook on the Bayesian statistics, and the reader can find them, for
example, in [104]. We mention the Bayesian approach to data analysis because of
the Markov chain Monte Carlo method (MCMC). The MCMC method is a collection
of methods for sampling from probability distributions, and the literature classifies it
among the methods of Bayesian statistics. The MCMC method relies on the construc-
tion of Markov chains to represent a probability distribution. After a certain number of
iterations (the burn-in period), the Markov chain produces samples of the probability
distribution. These samples are useful for many purposes, in the case of Bayesian statis-
tics (and especially the generalised mixed effect model) for the estimation of integrals of
a multivariate distribution. To the MCMC methods belong (among others) the Gibbs
sampling algorithm and Metropolis-Hastings algorithm. [105] The MCMC methods are
now widely available in standard programs for statistical data analysis. Several of the
plugins and packages attempt to simplify the application of the Bayesian methods for
LMM and GLMM model fitting to be as simple as the fitting of the LMM and GLMM
models by the standard maximum likelihood and other approaches (see section 4.2).
Such applications can be a good starting point for the estimation of the LMMs and
GLMMs by the MCMC methods. However, these applications do not expose the user
to many properties of the MCMC methods.
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The application of the MCMC methods consists of many experiments with the model
structure and parameters tuning. The experimenting with various model structures is
a common problem in any modelling. The parameters’ tuning is not very usual in the
standard statistical data analysis. In the case of the MCMC methods, the user has to
evaluate whether the Markov chains have converged, effectively explored the modelled
distribution, and assess the dependency among the samples sampled from the distribu-
tion. These are just general problems with the MCMC methods. [106]
The convergence is very difficult to evaluate. There are no general results about the
rate of convergence and other properties which would be useful for the setting up of the
Markov chains. Usually, we run several Markov chains in parallel with random initial
conditions. After a sufficient number of iterations, we compare the values to which the
different chains converged. We assess the convergence of individual chains by plotting
of the traceplots of the sampled parameters. The traceplots should show a transition
period with possibly big changes in the samples’ values followed by more stable and less
variable values when the chain attains good values of the parameters. In case the user
does not observe the convergence, we increase the number of iterations and repeat the
whole procedure. When the individual chains converged, it is important to compare
the values to which the chains converged. If the values (or their distribution) are iden-
tical, there is no problem, and the user can proceed to the next steps of the analysis.
In the case of different values, there are one or more problems. Typically, there is a
disagreement between the data and the model structure. The user should reconsider
the formulation of the model and try to fit a simpler model. On the other hand, there
can be a problem with parameters governing the sampling of the chains. In that case,
the user has to refer to the specific method and adjust the parameters accordingly.
We usually judge the problems with the distribution possible values exploration by the
samples dependency. The plots of the samples from the chains can show dependency.
If there are slow transitions between the values, the chain most likely did not explore
the distribution sufficiently. Another clue is a high autocorrelation among the samples,
which indicates the same - insufficient representation of the distribution by the con-
structed Markov chain.
The autocorrelation of the sampled values also limits the utilisation of the simulated
samples. High autocorrelation means that even though the user allowed the chain to
sample a large number of samples, the number of actual random samples is smaller. In
order to get independent samples for an inference about the model, w have to perform
thinning. When performing thinning, we retain only every n-th sample and discard the
rest.
We can use the samples of the parameters obtained by the MCMC methods for sta-
tistical inference. Here we have to remember that the MCMC methods are Bayesian
methods and therefore, the inference should be rather Bayesian than frequentist. The
Bayesian approach is usually not interested in point estimates (which is common in the
frequentist statistic inference), but in the distributions of the parameters. In Bayesian
statistics, the prior information about the modelled problem in the form of the prior
distribution of the parameters is also an important part of the inference following the
Bayes theorem, which is loosely

posterior ∝ likelihood× prior

The data provide evidence in the form of the likelihood. Our prior beliefs about the
relationship are in the form of the prior distribution. The prior belief and the evidence
are combined and result in the posterior probability of the parameters. The prior dis-
tribution can often be a problem; in many cases, we do not have any prior beliefs or any
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other evidence from previous trails to use as the prior distribution. In such cases, we
can use an uninformative prior distribution – a distribution that gives approximately
uniform probability to all possible values of the parameter distribution. To substitute
the distribution of a parameter generated by the MCMC method with a point estimate
(for a presentation, or better understanding) we can use a simple expected value of the
distribution. In many simpler statistical models (such as linear regression) the expec-
tation of the posterior distribution coincides with maximum likelihood estimates. We
usually do not perform the inference in the Bayesian framework by simple p-values.
The Bayesian framework uses a credible interval. The credible interval is very similar
to the standard confidence interval. The credible interval, which covers the value of an
unobserved parameter with a given probability is more intuitive than the confidence
interval. The confidence covers the true value of an unobserved parameter in a suffi-
ciently large number of random trials with a given probability. The prediction with the
models trained by the MCMC methods is problematic. We can perform the prediction
with sampling from the joint distribution of the data and the parameters. The result
is a distribution. We can utilise the expected value to obtain the more desirable point
estimate. [107]
In conclusion, the MCMC methods provide a versatile tool for fitting of complicated
LMMs and GLMMs. The MCMC methods are nowadays available in standard pro-
grams for statistical data analysis which provide interface to the samplers that estimate
the distributions of model parameters. The MCMC methods belong to the Bayesian
statistical inference framework and therefore the standard statistical inference with
p-values and confidence intervals cannot be used. In addition, the MCMC methods
in general require more computational resources than the standard methods as well
as lots of checking of the simulation results for problems with convergence and other
computational issues.
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Chapter 5
Comparison of methods in NMR spectroscopy

The metabolomics [108–109] has become an established approach for qualitative and
quantitative description of all metabolites present in the biological sample under study.
The detailed knowledge of the metabolic status of an organism seems to be beneficial,
especially in the biomedical research providing a better understanding of the molec-
ular background of a disease and its early diagnosis [110]. The metabolomics is a
part of simomics approaches. The metabolomics is a successor of genomics, transcrip-
tomics and proteomics [111]. The metabolomics deals with problems which are far more
complex in comparison with other ∼omics sciences. There are two main approaches
used in metabolomics - metabolomic profiling and metabolomic fingerprinting. The
metabolomic profiling aims at the identification and quantification of a pre-selected set
of metabolites. The metabolomic fingerprinting is an unbiased and global analysis of
all metabolites in a sample [25]. The nuclear magnetic resonance (NMR) spectroscopy
[112–113] is one of the most prominent analytical platforms in metabolomics, especially
in the fingerprinting experiments [114–115].
The complexity of metabolomic data calls for sophisticated methods of the evaluation
of the experiments. Many works present and review the basic concepts of data analysis,
as the best reference may serve [12]. The most prevalent method for data analysis in
NMR-based metabolomics became the partial least squares (PLS) regression [33]. The
understanding of the parameters estimated by multivariate model is challenging. The
analyses of metabolomic data tend to suffer from small sample sizes and a large number
of variables, which results in low power of statistical tests, the ability to discover the
actual relationships in the data. We cannot easily devise the statistical significance of
parameters of multivariate models, so the usual strategy is to utilise non-parametric
approaches such as resampling techniques. Even the use of resampling techniques, e.g.
bootstrap and permutation tests, cannot be applied directly without the consideration
of various properties of the data and the model. That is why the researchers usually
do not attempt to perform the statistical evaluation of the multivariate model and use
more heuristic approaches. We propose a procedure which allows testing of statistical
properties of multivariate models and other methods in NMR-based metabolomic data
analyses to provide reliable results.
The problem for the practitioner is often, how to decide, which data analysis method to
use. Each proposition of a new method in the analysis of the NMR spectroscopy data
should present a comparison to the established method, so the potential user knows all
the benefits and drawbacks. Typically, the new methods are, after careful theoretical
examination of their properties, tested on simulated data or benchmark data recognised
by the community. In the case of benchmark data, the main problem is the limited
number of trials, which they offer for the actual testing of the methods. The limited
number of trials stems from the fact that these data are usually results of experiments,
and we cannot repeat the experiments indefinitely. The small data sets may lead to
overspecialisation of the methods for the given data and spectacular failures in data
with different properties. Another problem poses the lack of accurate and correct re-
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sult for the problem. Well-collected benchmark data may provide difficult to simulate
properties. As an example of a study presenting a new method in PLS modelling and
testing on experimental data may serve [116]. The simulation-based comparison offers
a lot more data for the testing than the benchmarks. In this way, we may compare the
methods without the increased risk of overfitting. However, the quality of the compar-
ison is proportional to the quality of the simulated data. With badly simulated data,
the tested method may still fail on real-world data. Logical conclusion in this case is
to combine both approaches [117].
The main contribution of this chapter to the evaluation of the NMR-based metabolomics
studies lies in the proposition of a thorough procedure for statistical evaluation of mul-
tivariate models and its application to a comparison of multivariate methods based on
simulated data. The proposed procedure is used for a comparison of the established
projection to latent structure (PLS) [33] with the supervised principal component anal-
ysis (SPCA) [76]. To the best of our knowledge, the SPCA method has not been widely
used in NMR-based metabolomics yet. Apart from multivariate regression and classi-
fication, the framework of the SPCA offers unsupervised analysis – the ordinary PCA.
Also, the method can be very easily enriched by kernel transformation for advanced
analyses of non-linear relationships.

5.0.1 Projection to latent structures
The method was proposed by Wold in 1975 [33] as a partial least squares regression
and was suggested as an alternative to ordinary least squares regression method in the
ill-posed problems. The PLS is a supervised learning algorithm and is aimed at finding
any relevant variation in the data, which is correlated to the response and consequently
reflected in latent variables. The model created by the projection to latent structure
method is in form [118]:

X = T · P T + E (5.1)

Y = U ·QT + F (5.2)

The first equation is the description of the decomposition of the n×m matrix X of m
predictors in n observations into the n×l matrix T of l latent variables, the m×l matrix
P is composed from loading vectors. The n×m matrix E contains model residuals. The
second equation prescribes the decomposition of the n× p matrix Y of p responses into
the n× l matrix U of l latent variables, the p× l matrix Q is matrix of loadings vectors.
The n× p matrix F contains model residuals [118]. The estimation of the matrices of
loadings P and Q is aimed at the maximisation of the covariance between T and U
matrices, for an algorithm refer to [119].The study [120] confirms the appropriateness
of the algorithm originally used for solving of regression problem to a discrimination
(classification) problem.

5.0.2 Supervised principal component analysis
The SPCA as proposed by [76] is different from principal component regression (PCR),
which is sometimes denoted as SPCA, although it is a method using variables ex-
tracted from original data by ordinary PCA for regression and classification purposes.
The SPCA is a framework of techniques method allowing for multivariate regression
and classification without any other intermediate steps during the analyses. A similar
system of equations may describe the SPCA as PLS. However, the notation usually
differs. The equation (5.3) describes the SPCA model.

Y = X · UT + E (5.3)
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The original n×m matrix of predictors X of n observations and m predictors is related
to the n × p matrix of n observations and p responses Y by the loadings vectors in
p×m matrix U . The n×p matrix E contains the residuals. The matrix U is estimated
by singular decomposition (SVD) of matrix constructed from matrices X and Y , for
detailed description of the estimation of matrix U refer to [76].
The main difference between the two methods is in the estimation procedure of the
model parameters. The iterative procedure used in PLS algorithm does not allow to
fully exploit the joint covariance in the X and Y matrices, because it does not allow
subtraction of the estimated latent variables from both matrices simultaneously. Due
to the representation of the matrices X and Y in one combined matrix and use of the
SVD, the SPCA subtracts the latent variables simultaneously in both matrices. The
SPCA allows for detection of non-linear dependencies, due to the use of the stronger
notion of statistical dependency rather than the correlation used in PLS. The second
difference concerning classification problem is the rank deficiency of the PLS method.
In classification into c classes, the response matrix Y consists of c−1 vectors of dummy
variables. In PLS the rank deficiency does not allow for estimation of more than c− 1
loadings, which has severe consequences for the classification performance.

5.0.3 Model validation
The bilinear models have parameters whose values have to be estimated. In the case
of both PLS and SPCA, the parameter is the number of estimated latent variables.
In case of SPCA, the problem with validation of model parameters is in non-linear
analyses exploiting kernel transformations and concerns the parameters of kernels. The
standard approach for parameter estimation is the cross-validation procedure [121, 87].
The problem, which usually arises with metabolomic data is that there is not enough
data to form distinctive sets for training, validation and testing of the model. In this
case, the N-fold cross-validation is suitable for the estimation of the parameter [87]. In
situations where the number of instances of data is not sufficient, only the leave-one-out
validation remains [26]. Both of these methods may suffer from over-fitting. Various
techniques were suggested to attribute for the over-optimistic results of these techniques
[26].
Possibly the best solution is to estimate the variation of the values of performance
criterion by permutation or bootstrap test. These tests may significantly decrease the
uncertainty about the value of the criterion. This non-parametric test estimates the
distribution of criterion on permuted data, which then serves for the examination of
the case of no relationship between the groups – the null distribution. Consequently,
this distribution serves as a reference for the actual value of criterion measured on the
original data. The advantage is that these tests are simple, but may be computationally
intensive [87, 122].
The criterion of the model performance serves to assess the quality of the model from
various perspectives. We use a different set of criteria for classification models and
regression models. In the classification setting, we usually use the model performance
measured by classification accuracy or classification error, sensitivity, specificity and F1
score [123]. In the regression setting, we use the coefficient of determination, the per-
centage of explained variation, and the goodness of fit for the model quality assessment
[124].

5.0.4 Model interpretation and assessment
The logical conclusion of all the modelling effort is the interpretation and assessment of
the model. The interpretation of the model goes hand in hand with the understanding
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of the model parameters. The least informative for this purpose are the scores, which
are the estimate of the outcome; however, they may be useful for the detection of
outlying observations. The loading matrices of the model carry the most important
information for the model interpretation. The value of the loadings is directly related
to the importance of the variables in the high dimensional space of NMR data to the
resulting model. The greater the absolute loading value, the greater the importance
of the variable in the model, assuming some scaling procedure was utilised before the
model training. However, this does not provide any clues about the relevance of the
contribution and significance of the variable. The much needed decisive indicator for
loading values provides the variable importance in projection score (VIP score) [125].
We usually consider the VIP score of one as a threshold value for selecting variable
as significant. The threshold value may vary from 0.83 to 1.21 to yield more relevant
results. If we employ the statistic evaluation of the model, the most prominent approach
is the simple bootstrap. The main problem with the bootstrap approach is that the
null distribution of the loading value is (due to the PLS regularisation) affected by the
remaining values of the given loading. We have to control the uncertainty in the sample
to a higher degree to limit these unwanted effects. Following the work [126] the stability
of the loading’s distribution is most effectively estimated by permutation tests for each
loading’s value examined separately. Using the re-sampling methods in the context of
multivariate models such as ordinary PCA affect few issues. We have to pay attention
to the direction of loadings and the order of the principal components. These problems
do not concern the supervised methods such as PLS and SPCA, where the outcome
ensures the same orientation and order of all the loadings.

5.1 Methods

5.1.1 Hypotheses formulation

The authors of the SPCA claim and theoretically show that the method outperforms
the PLS. The simultaneous subtraction of variance in SPCA is a benefit over the PLS
algorithm in the form of model parsimony. The SPCA can handle classification into
more than two classes problems better. These differences can have practical conse-
quences for experimenters. In order to compare the methods, we devised a simulation
scheme allowing testing of various hypotheses regarding properties of the algorithms.
We decided to follow the recommended procedure for the analysis [121] of data in
NMR-based metabolomics and test the methods by criteria related to the typical prob-
lems in the analysis of NMR spectra. The process consists of analyses of simulated
datasets, where known signals of simpler compounds alter a set of template signals.
The identification of added compounds serves for estimation of performance measures.
By repeating this procedure, we obtain the distribution of the performance measures
and use them for the comparison.

5.1.2 Description of data

To compare the PLS and the SPCA, we used a set of NMR spectra of mouse urine
samples collected during various experiments. We divide the spectra into subgroups
according to the experiment settings (various groups of animals differing in treatment)
and NMR experiments applied for proton spectra acquisition (1D-NOESY, CPMG).
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Figure 5.1. The flowchart describing the treatment of the NMR spectra, generation of
simulated data and statistical procedures used for methods’ comparison.

5.1.3 Alteration by known signals

To simulate the specific characteristics of NMR spectra of urine in metabolomic study
we chose a set of metabolites based on previous results in [J3] and in one other indepen-
dent work [127]. We added the proton spectra of pure metabolites from Birmingham
Metabolite library [128] to the selected spectra from our set, to mimic the usual process
of the NMR spectra generation and analysis. For the list of used metabolites refer to
Tab. 5.1. We divided the selected spectra into treatment groups for the purposes of
the methods comparison. We altered the spectra following the formula:

Salt (f) = S (f)
N∑
i=1

ci,j · Smeti (f − δ) (5.4)
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Meaning that we shift the metabolite spectra Smeti (f − δ) in position by δ ∼
N
(
0, σ2

shift

)
to simulate the positional shift, we estimated the σ2

shift parameter
from the data. The metabolite spectrum Smet added to the spectrum to be altered
S (f) constitutes the altered spectrum Salt. The parameter of addition simulating
concentration is ci,j ∼ N

(
µi,j , σ

2), randomly distributed numbers from normal distri-
bution with the mean µi,j and standard deviation σ2. The mean µi,j of the addition
parameter ci,j was specific for each treatment group, indicated by the index j, and
the metabolite, indicated by the index i, to simulate the differences among groups.
Moreover, to make the comparison more credible, we chose the values of means µi,j
independently for each iteration of the comparison. The distribution of the means
µi,j was a gamma distribution Γ (a, b), because the values of gamma distribution are
non-negative, which also applies for the NMR spectra. We estimated the parameters
a and b of the Gamma distribution from the original unaltered spectra. In the com-
parison, we kept the actual addition parameters of pure metabolites spectra sampled
from distribution ci,j ∼ N

(
µi,j , σ

2) and we ubjected the values to an appropriate test
estimating the differences between the sampled ci,j by the class membership indicated
by j. If the sampled addition parameters significantly differed in this comparison, we
considered the metabolite as significant and its peaks frequencies used for methods
comparison as a reference in the classification task. This allowed the construction of
the confusion matrix.

5.1.4 NMR spectra processing

The altered spectra from were uniformly binned into intervals of the width of 0.04 ppm.
We excluded the parts of spectra exceeding the interval -1 to 10 ppm and parts related
to water, urea and reference compound (the intervals 4.6 - 4.9, 5.6 - 5.97, -0.12 - 0.12
ppm). We normalised the spectra by probabilistic quotient normalisation method [129].

5.1.5 Methods comparison

We decided to establish our comparison on criteria describing the confusion matrix
of a classification problem of metabolites according to their typical frequencies. We
chose this approach as a representative of the metabolomic fingerprinting. The criteria
related to the confusion matrix were the measures of classification performance. We
used sensitivity, specificity, the area under receiver operating characteristics (AUC),
and F1 score as the tested criteria. These measures are widely known, but for reference
can be used [123]. The distributions of these measures were estimated in simulation
repeating individual iterations with random parameters.

5.1.6 Single iteration of the comparison procedure

For each iteration, we chose a set of spectra of appropriate size according to the struc-
ture of the data. We divided the selected spectra into groups (two, three and five
according to simulation setting) and altered by known signals in the way described
in the section 5.1.3 and processed by standard pipeline following the work of [12]. We
performed the Student’s t-test on the parameters altering the template spectra and cor-
rected by the Bonferroni correction for multiple comparison [93] to obtain the reference
information about significant frequency bins for the construction of confusion matrix.
We considered the bins of the spectrum, which contained the significant frequencies
of chosen metabolites acquired from the Human Metabolome Database [130] as true
positives. We denoted all the other bins as true negatives.
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Metabolite Frequency Metabolite Frequency Metabolite Frequency
name [ppm] name [ppm] name [ppm]

Acetate 1.90 Histidine 3.14 Malate 2.34
3.18 2.38

Acetoacetate 2.26 3.22 2.66
3.42 3.26 2.70

3.98 4.30
7.10

Alanine 3.78 7.90 Methylamine 2.58
3.74
1.46 Ornithine 1.70

Isoleucine 0.90 1.74
Citrate 2.66 0.94 1.78

2.54 0.98 1.82
2.50 1.02 1.86

1.22 1.90
1.26 1.94

Creatine 3.94 1.30 3.02
3.02 1.42 3.06

1.46 3.78
1.50

Creatinine 3.02 1.94 Oxoglutarate 2.42
4.06 1.98 2.46

2.98
3.02

Dimethylamine 2.50 Isoleucine 1.98
2.02 Succinate 2.38

Fumarate 6.50 3.66
Taurine 3.26

3.42
Glutamine 2.10 Lactate 1.30

2.14 1.34 Trimethylamine 2.90
2.18 4.10
2.38 4.14 Tryptophan 3.26
2.42 3.30

3.46
3.50

Glycine 3.54 Leucine 0.94 4.02
0.98 4.06

Hippurate 3.94 1.62 7.18
3.98 1.66 7.22
7.54 1.70 7.26
7.62 1.74 7.30
7.66 1.78 7.54
7.82 3.70 7.70
7.82 3.74 7.74

Table 5.1. Metabolites used in the methods comparison.

We processed the data by the PLS and the SPCA methods. For both of these meth-
ods, we mean centered and Pareto scaled [131] the data. We tested the significance of
the results by the procedure proposed by [126]. This procedure effectively tests each
variable (frequency bin) by permutation test separately and without affecting the re-
maining variables. This procedure thus deals with many issues emerging in rigorous
testing of variable significance in models such as PCA, PLS and SPCA. The main
benefit is keeping the variance-covariance structure of the data unchanged during the
re-sampling process and in stabilising the variance of the tested variable by eliminating
the influence of other variables. However, this procedure compared to simple bootstrap
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methods needs many times more (exactly the number of variables times more) permuta-
tions and repeated the model estimation. The problem gets severe when the correction
for multiple comparisons comes into play. The proposed procedure would be infeasible,
considering the typical testing procedure using p-values. The number of tests in the
bilinear model in the metabolomics is usually in the order of hundreds. The number
of tests with the correction for multiple comparisons lowers the threshold value to such
small numbers, that the effective number of permutations to even reach an appropriate
resolution in p-values would have to be in the order of tens or hundreds of thousands.
We may try various strategies to decrease the number of permutations. One of them is
to test only variables, which show some tendency of being substantially different. We
may base this pre-pruning of analysis on an estimate of the true p-value by a similar
test, which may not be the most appropriate, but measures similar phenomenon. In
our study, we used the Student’s t-test with no correction for multiple comparisons.
The resulting p-values compared to the threshold value of 0.05 indicated variables for
rigorous testing, the remaining remained marked as non-significant.
The preceding procedure helps reduce the number of permutations, though it does not
affect the threshold value. We decided to decrease the number of computations by
using the relationship between p-value and confidence intervals. Comparing of p-value
to a predefined threshold value is equivalent to comparing the estimated value of tested
statistics to a critical value. In many cases, the critical value coincides with the limits of
confidence intervals. The estimation of the confidence interval may be simpler than the
exact computation of p-value. We decided to approximate the critical values for a test
by BCa method for estimation of confidence intervals [132] at an appropriate confidence
level corrected by Bonferroni correction. The advantages of the BCa method is that
the confidence interval can work with non-central distributions, is bias-corrected and
thus can provide the confidence interval for skewed distributions and the parameters of
the approximations need only thousands of simulations to estimate. Testing the values
of loading with confidence intervals means that we declare the value of the loading co-
efficient as significant in the case that the estimated value of the coefficient lies outside
the confidence interval.
The significant frequencies were compared to the reference information and eventually
arranged into confusion matrices. We used the confusion matrices for the estimation of
sensitivity, specificity, AUC and F1 score.

5.1.7 Evaluation of results from repeated comparisons

We repeated the comparison of methods on simulated data, and we kept the results for
the ultimate comparison. We do not know the properties of the distributions of the
measures for the hypotheses testing, and thus we cannot suppose it would have some
of the nice properties such as gaussianity. This directs us to non-parametric statistical
tests. The nature of the testing procedure allows for a paired test and thus, the most
appropriate statistical test is the Wilcoxon signed-rank test. In all the measures of the
performance of the methods, the higher the value, the better the outcome. That means
we can test hypotheses with a one-sided hypothesis test. We corrected the tests for
multiple comparisons with the Bonferroni correction.

5.2 Results
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5.2.1 Data description
We collected and processed the data using the Matlab Language for technical computing
program. We visualised the individual spectra and checked them for anomalies. No
missing or outlying observations were present. The final set consisted of 252 spectra
divided into 22 subgroups.
We used the whole set of spectra to estimate the parameters for the spectra alteration
process – the parameters of the distribution – by a Matlab statistics toolbox procedure
[133].

Sample SPCA PLS SPCA - PLS P-value
size Mean (SE) Mean (SE) Mean (SE)
10 0.064 (0.003) 0.170 (0.004) -0.106 (0.004) 1.0000

2 groups 20 0.205 (0.004) 0.198 (0.004) 0.007 (0.002) 0.0003
comp. 40 0.330 (0.004) 0.328 (0.004) 0.002 (0.001) 0.0009

100 0.442 (0.005) 0.442 (0.005) 0.000 (0.000) 0.1250
15 0.114 (0.004) 0.102 (0.003) 0.013 (0.003) 0.0008

3 groups 30 0.284 (0.004) 0.281 (0.004) 0.003 (0.002) 0.0297
comp. 60 0.415 (0.005) 0.414 (0.004) 0.001 (0.001) 0.2094

150 0.492 (0.006) 0.49 (0.006) -0.001 (0.001) 0.6444
25 0.048 (0.002) 0.040 (0.001) 0.008 (0.001) 0.0000

5 groups 50 0.264 (0.001) 0.244 (0.001) 0.020 (0.001) 0.0000
comp. 100 0.311 (0.001) 0.301 (0.001) 0.010 (0.000) 0.0000

250 0.345 (0.000) 0.344 (0.001) 0.001 (0.000) 0.9909

Table 5.2. The F1 score on simulated sets of NMR data divided into two, three and five
groups presented as means and standard errors of the means by experiment settings. Bold-
face indicates the significant differences according to the Wilcoxon signed-rank test – p-

value less than 0.0010.

5.2.2 Simulations
In order to compare the methods, 12 runs of repeated simulations were carried out. We
aimed the comparison at the differences between SPCA and PLS in biomarker discovery
problem setting. In the runs of the simulation, we varied two parameters. We repeated
the runs of simulations with 5, 10, 20 and 50 observations for each treatment group.
The second varied parameter was the number of outcome variables. The outcome
variable for the biomarker discovery (classification) problem is a binary indicator. The
number of outcome variables was chosen to simulate classification into two, three and
five groups. For each run of simulations, the number of simulations was 500. In each
simulation, we tested the significance of variables in loadings in SPCA and PLS models
by univariate bootstrap performing 5000 iterations to construct confidence interval
by the BCa method. We compared the actual model parameters to the confidence
interval corrected for the multiple comparisons and stored the significant variables. We
subsequently compared the significant variables to the reference and computed and
stored the performance measures. The resulting performance measures were used to
compare the method.
The results of the comparison were summarised in form of tables and are presented in
complete form in Tables 5.2, 5.3, 5.4 and 5.5. Examining the results, we may observe
few phenomena, some of them obvious, other more interesting. The general tendencies
are that the bigger the sample size, the better the results of the methods in identifying
the correct variables measured by the performance measures. The explanation for this
observation is obvious. The more data is available for the training of the model, the
better estimates of the models’ parameters and smaller standard errors.
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Sample SPCA PLS SPCA - PLS P-value

size Mean (SE) Mean (SE) Mean (SE)
10 0.513 (0.001) 0.542 (0.002) -0.029 (0.001) 1.0000

2 groups 20 0.551 (0.002) 0.549 (0.002) 0.002 (0.001) 0.0014
comp. 40 0.591 (0.002) 0.590 (0.002) 0.001 (0.000) 0.0010

100 0.630 (0.005) 0.630 (0.005) 0.000 (0.000) 0.1250
15 0.524 (0.002) 0.522 (0.001) 0.003 (0.001) 0.0177

3 groups 30 0.574 (0.002) 0.573 (0.002) 0.001 (0.001) 0.0280
comp. 60 0.616 (0.004) 0.616 (0.004) -0.000 (0.001) 0.3004

150 0.650 (0.005) 0.651 (0.005) -0.000 (0.001) 0.6613
25 0.300 (0.004) 0.269 (0.004) 0.031 (0.003) 0.0000

5 groups 50 0.352 (0.001) 0.325 (0.001) 0.027 (0.001) 0.0000
comp. 100 0.413 (0.001) 0.399 (0.001) 0.015 (0.001) 0.0000

250 0.462 (0.001) 0.461 (0.001) 0.001 (0.000) 0.9909

Table 5.3. The area under receiver operating characteristics (AUC) score on simulated
sets of NMR data divided into two, three and five groups presented as means and standard
errors of the means by experiment settings. Boldface indicates the significant differences

according to the Wilcoxon signed-rank test – p-value less than 0.0010.

Similarly, the bigger the sample size, the smaller the differences between the compared
models. Here the explanation is the same as in the previous case. As the differences
get small, we would need many more iterations to prove the difference between the
methods.
The third phenomenon is the possibility to estimate a model with an ever-smaller
number of observations. This problem originates from the computational characteristics
of the algorithms. The PLS algorithm devised for ill-conditioned problems can deal
even with the smallest data sets in the comparison. However, the smallest presented
set seems to be troublesome for the SPCA, see Tab. 5.2, 5.5. It seems that with the
very small sample sizes, the PLS method degenerates to a simple test that does not
account for the covariance in the data.
On the other hand, the SPCA utilises the covariance even with this very small sample
sizes and the differences are indistinguishable from the other variation in the data.
Another explanation for this observation may be the better training abilities of the
SPCA. The model can learn the training examples in such a detail that it completely
fails on new instances. Projecting this idea into univariate permutation test of loading
coefficients, the variability of the loading coefficients is due to the over-fitting very
high. High variation of the coefficient results in a very wide confidence interval for the
hypothesis testing and poor performance of the SPCA observed on small sets of data
(considering classification problems).

5.3 Discussion
To sum up the results, the SPCA is better than the PLS method in almost every
comparison. The difference is not very high; it depends on the setting of the run
of simulations. The most pronounced differences are in the runs with a multinomial
response – classification into five classes, which supports the claims of the authors of
the SPCA method [76] about the rank deficiency of PLS method. The results show
that the SPCA method used for classification has higher sensitivity than the PLS on
the same data sets. Using the Wilcoxon signed-rank test, we were able to show that
the SPCA is better than the PLS in the classification of samples into more than two
classes. The PLS is not capable of using more loadings than the number of classes, and
for this reason, it has very limited capabilities of solving classification into more than
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Sample SPCA PLS SPCA - PLS P-value
size Mean (SE) Mean (SE) Mean (SE)
10 0.037 (0.002) 0.113 (0.003) -0.076 (0.003) 1.0000

2 groups 20 0.130 (0.003) 0.124 (0.003) 0.006 (0.001) 0.0013
comp. 40 0.241 (0.003) 0.239 (0.003) 0.002 (0.001) 0.0078

100 0.405 (0.004) 0.405 (0.004) 0.000 (0.000) 1.0000
15 0.071 (0.002) 0.062 (0.002) 0.009 (0.002) 0.0000

3 groups 30 0.203 (0.003) 0.200 (0.003) 0.003 (0.001) 0.0021
comp. 60 0.359 (0.003) 0.356 (0.003) 0.003 (0.001) 0.0063

150 0.556 (0.003) 0.556 (0.003) 0.001 (0.001) 0.1747
25 0.373 (0.008) 0.306 (0.008) 0.067 (0.005) 0.0000

5 groups 50 0.642 (0.002) 0.585 (0.002) 0.057 (0.002) 0.0000
comp. 100 0.796 (0.002) 0.765 (0.002) 0.031 (0.001) 0.0000

250 0.911 (0.001) 0.908 (0.001) 0.003 (0.001) 0.0591

Table 5.4. The sensitivity score on simulated sets of NMR data divided into two, three and
five groups presented as means and standard errors of the means by experiment settings.
Boldface indicates the significant differences according to the Wilcoxon signed-rank test –

p-value less than 0.0010.

two classes problems.
We proposed a method to control the process of comparison that represents an ac-
tual metabolomic fingerprinting problem and its correct statistical evaluation. To
vindicate the first proposition, we used a process whose parameters are not affected
by artificial effects and biases. By choosing the parameters of metabolite spectra to
alter the analysed signals randomly, we eliminated confirmation bias (choosing such
sets of parameters that yield the desired outcome). The high number of repetitions of
simulations experiments allowed us to construct the distributions of the performance
measures, which provides more information than point estimates. The possibility to
repeat the experiments in silico is one of the main advantages of the proposed method.
In the laboratory with actual equipment, we cannot repeat an experiment several
thousand times to estimate variability in results and would be a complete waste of
resources, although it might provide valuable data for method comparison. The use
of proper statistical methods and appropriate corrections for multiple comparisons
ensures the second proposition of statistical correctness. Certain criticism may consider
the choice the reference testing, which does not account for the variability connected
with the sampling of the template spectra.
On the other hand, the rigorous statistical approach reflects the current problems of
metabolomics. The sample size in metabolomic fingerprinting has to be definitively
higher, considering the number of performed tests. The utilisation of corrections
for multiple testing helps prune the results and prevent publication of insufficiently
founded or erroneous results. The proposed procedure for model comparison proved to
be a reliable framework.

Another problem poses the choice of the measures by which to compare the methods.
The comparison can be exhaustive in the choice of the measures [134]. However long
lists of measures may not be understandable for the potential users. We decided to use
a simple and understandable measure for the comparison, which is the F1 score. The
F1 score (as well as the AUC) combines the classification errors from all the classes.
This helps to avoid biased resulting from shifting a threshold for a classification – the
case where an increase in threshold may designate more instances as a correct class,
but also increasing the errors in assignments to other classes. In other words, we are
comparing the overall performance of the model without the need to check whether we
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Sample SPCA PLS SPCA - PLS P-value

size Mean (SE) Mean (SE) Mean (SE)
10 0.989 (0.001) 0.971 (0.002) 0.018 (0.001) 0.0000

2 groups 20 0.972 (0.003) 0.974 (0.002) -0.001 (0.001) 0.9945
comp. 40 0.940 (0.004) 0.940 (0.004) -0.000 (0.000) 0.9453

100 0.854 (0.008) 0.854 (0.008) 0.000 (0.000) 0.1250
15 0.977 (0.002) 0.981 (0.002) -0.004 (0.001) 1.0000

3 groups 30 0.944 (0.004) 0.945 (0.004) -0.001 (0.001) 0.9508
comp. 60 0.874 (0.007) 0.876 (0.007) -0.003 (0.001) 0.9993

150 0.744 (0.011) 0.745 (0.011) -0.001 (0.001) 0.9936
25 0.228 (0.001) 0.232 (0.001) -0.005 (0.001) 1.0000

5 groups 50 0.061 (0.001) 0.065 (0.001) -0.004 (0.000) 1.0000
comp. 100 0.030 (0.000) 0.032 (0.000) -0.002 (0.000) 1.0000

250 0.013 (0.000) 0.014 (0.000) -0.001 (0.000) 1.0000

Table 5.5. The specificity score on simulated sets of NMR data divided into two, three and
five groups presented as means and standard errors of the means by experiment settings.
Bold face indicates the significant differences according to the Wilcoxon signed-rank test

– p-value less than 0.0010.

are only increasing sensitivity at the expense of specificity. The presented sensitivities
and specificities only complement the information given by the F1 score and AUC.

5.4 Conclusion
We examined the typical approaches to testing and comparing methods of data anal-
ysis in NMR-based metabolomics. By combining the usual testing on simulated and
real-world data, we devised a simple method for extensive testing and comparing of
data analysis approaches. The main benefit is in testing methods in the wide variety
of conditions provided by the experimental data with control over the correct results.
The method sufficiently simulates the process of NMR spectra generation and limits the
overfitting of the methods to small data set by repeated application to altered datasets.
We applied the proposed method on a comparison of methods in metabolomics finger-
printing. We compared the established partial least squares discriminant analysis and
the supervised principal component analysis. The SPCA is a new method previously
not widely used in the field of NMR-based metabolomics. The results of the comparison
clearly show that the SPCA is better for the assessment of metabolomic fingerprint-
ing. The differences are the most pronounced in difficult tasks such as classification of
individuals into more than two groups.
We were able to show that the actual difference is not in the threshold for classification,
which could be a problem if we used simple criteria such as classification accuracy or
error. We avoided this problem by examining not only simple classification error but
the F1 score, the AUC, the sensitivity and the specificity. We may thus conclude that
the SPCA is better than the established PLS method and only the lack of implemen-
tations in standard programs for data analysis hinders the use of SPCA in the field of
NMR-based metabolomics.
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Chapter 6
Element mapping

6.1 Introduction
We have already presented the idea of the elemental mapping by the LA-ICP-MS
method in the introductory chapter. In this chapter, we will focus on a more de-
tailed description of the problems which we need to deal with when analysing the data
originating from the LA-ICP-MS. We will use a data collected from an animal study
of the spatial distribution of bioactive metals in biological samples of pigs’ melanoma
alongside some other results from the examination of the variability of the data and
their structure. First, we will describe the data collection procedure as well as the re-
sulting data. Second, we will present the statistical properties of the data from various
sources, and we will devise a data integration procedure. Third, we will present results
from several case studies. This chapter summarises the work presented in the articles
[J1, C1], as well as some unpublished work.

6.2 Data collection
We can obtain useful information about biological tissue samples through various meth-
ods. The standard approaches either use different dyes to colour sample sections and
analyse them using microscopy or the chemical constitution of the biological samples is
analysed. These two approaches differ mainly in the treatment of the sample. The mi-
croscopy analysis is non-destructive. The aim is to prevent damaging the structures in
the sample section as much as possible. On the other hand, the analyses of the chemical
constitution are destructive. In order to measure the composition, the measurement
device liquidises, pulverises or, for example, evaporates the biological sample. Recently
developed methods of biological sample analysis allow for the simultaneous analysis of
both the spatial structure and the chemical composition.

6.2.1 Histology
The MeLiM (Melanoma-bearing Libechov Minipig) strain of miniature pigs with her-
itable cutaneous melanoma is an original animal cancer model with histopathological,
biochemical and molecular biological similarities to human melanoma [135–138]. Multi-
ple skin melanomas appear at birth or shortly after in approximately half of all piglets.
More than 2/3 of the affected minipigs display complete spontaneous regression of tu-
mours, which is usually accompanied by skin and bristle depigmentation. After a short
postnatal period of tumour growth, the first signs of spontaneous regression, both
macroscopic (flattening and grey colour of tumours) and microscopic (gradual destruc-
tion of melanoma cells, reduced expression of collagen IV and laminin, and rebuilding
of tumour tissue into fibrous tissue), are observed. Ten weeks of age appears to be
a turning point in the transition between tumour growth and spontaneous regression
in MeLiM melanoma [139]. The incidence of spontaneous regression of melanoma is
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high in the MeLiM model. The immune system destroys the melanoma cells after a
short postnatal period of tumour growth, and the healing processes turn the tumour
tissue into fibrous tissue. In connection with this process, four structurally different
zones were distinguished in the histological samples and marked with various colours
Fig. 2.7: GMT (the zone of normally growing melanoma tissue – red rectangles), ESR
(the zone of early spontaneous regression – violet rectangles), LSR (the zone of late
spontaneous regression – yellow rectangles) and FT (the zone of fibrous tissue – green
rectangles). In Fig. 6.1A-D we provide a detailed histological view of the zones and
their description. Particularly, using haematoxylin-eosin staining, four histologically
different zones were distinguished in the collected melanoma samples Fig. 6.1A-D:

. The zone of normally growing melanoma tissue (GMT) was composed of heavily
pigmented, intact melanoma cells, which were distributed close together with narrow
extracellular spaces (Fig. 6.1A).. The zone of early melanoma cell destruction (early spontaneous regression, ESR)
included cellular debris from some of the damaged melanoma cells, but a considerable
number of melanoma cells were still well preserved (Fig. 6.1B).. The zone of late melanoma cell destruction (late spontaneous regression, LSR) charac-
terised by extensive damage to the melanoma tissue (forming predominantly cellular
debris with small groups or individually dispersed melanoma cells) and its incipient
rebuilding in the fibrous tissue (Fig. 6.1C).. The zone of fibrous tissue (FT) arising by the total rebuilding of tumour tissue. A
small number of remaining melanoma cells were occasionally still present (Fig. 6.1D).

We can observe age-dependent changes in melanoma structure. In the melanoma
of the youngest (4-week-old) animals, zones of normally growing melanoma tissue were
distinctly prevalent compared with zones of early melanoma cell destruction. The other
two zones were entirely missing. The number and size of the GMT zones decreased
with age, whereas we can observe the opposite tendency in the zones of ESR and late
melanoma cell destruction (the latter appeared in 6-week-old animals). Fibrous tissue,
which we first observed in the 15-week-old minipigs, gradually replaced the damaged
tumour tissue. In the melanoma of the oldest animals (22 weeks old), zones of late
destruction of melanoma cells were most prevalent, and fibrous tissue occupied the
damaged tumour tissue. In the melanoma of the oldest animals (22 weeks old), zones
of late destruction of melanoma cells were most prevalent, and fibrous tissue occupied
the areas between the zones. In these minipigs as well as in the 15-week-old minipigs, we
no longer observed the zones of GMT. Selected zones were matched with the elemental
map (of the neighbouring cryosection) as provided by laser ablation to compare Zn and
Cu content in melanoma during melanoma growth and successive stages of spontaneous
regression.

6.2.2 LA-ICP-MS
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) enables
the measurement of the metal content in a selected zone ranging from one to several
hundred micrometres on the sample surface. LA-ICP-MS provides an ideal, rich source
of information because it can match each ablation pixel (the smallest part of the studied
sample that can be distinguished using ablation) to the relevant quantified information
about the presence of most chemical elements. Laser ablation parameters, such as
laser beam fluence, laser spot size, and scan speed rate, determine the time necessary
for the analysis of any sample as well as the accuracy of the obtained results. These
parameters were optimised to ensure the required performance, namely a low limit of
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Histologically differing tissue zones
Figure 6.1. Four histologically differing zones identified in haematoxylin-eosin stained
skin porcine melanoma: (A) growing melanoma tissue (GMT), (B) melanoma tis-
sue with early destruction of melanoma cells (early spontaneous regression-ESR), (C)
melanoma tissue with late destruction of melanoma cells (late spontaneous regression-
LSR), (D) fibrous tissue (FT) with a few remaining melanoma cells. Scale bar is 50
µm. [J1]

detection (LOD) and low broadening of images within a reasonable time of analysis.
This optimisation was performed by ablation of white paper with printed ink lines of
800 µm thickness. For this purpose, we recorded the 63Cu signal because this element is
present in the used ink [28]. Elemental mapping was performed using line scan mode so
that each line started on a glass substrate outside the tumour tissue. The laser beam
was moved on the sample surface continuously along a straight line with a constant
scan rate of 200 µm/s. The laser beam diameter and the distance between individual
straight lines were both 100 µm. The optimisation of the laser beam fluence and the
repetition rate resulted in the respective values of 8 J/cm2 and 20 Hz; We used these
values for all LA-ICP-MS analyses. The high laser beam fluence prevented the influence
of different ablation rates and was optimised to reach the glass substrate during laser
ablation.
We based the quantification on the calibration performed using agarose gel standards
prepared by spiking with known amounts of Cu and Zn, for Cu see in Fig. 6.2A. The
prepared calibration standards contained single metal content of 0, 20, 100, 500 and
2000 mg/kg. Each standard was ablated in triplicate using the same ablation parame-
ters used for imaging. We performed the background correction by subtraction of the
average signal obtained using a carrier gas blank (He).
In imaging by means of LA-ICP-MS, we can evaluate the broadening of imaged patterns
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as described previously [28, 140–141]. The broadening is mainly due to a combination
of the laser spot size and scan speed rate. Hence, we have to adjust carefully these
parameters concerning the size of the treated samples (due to time of analysis) and the
size of the zones of interest (due to the trueness of imaging).
Histologically different zones in minipig tumour tissues were well-defined areas inside
the analysed tissue samples with a size of several hundred micrometres in each dimen-
sion. Eight scan speed rates were used for the optimisation (80, 100, 150, 200, 300,
400, 500 and 1000 µm/s). Due to the large dimensions of the imaged tissue samples
(approximately 8 × 5 mm), a laser spot size of 100 µm was selected to reach a minimal
LOD. An increase in the laser spot size resulted in a lower LOD [28, 142]. We calculated
the apparent width wapp to evaluate the broadening caused by the various scan speed
rates. We obtain wapp as the difference between the onset of the signal increase and
the end of its decrease after the laser spot passed across the testing pattern (ink line).
The onset points were the intersections of the trend lines a and b, and the endpoints
were the intersections of the trend lines c and d. The trend lines a and d are linear
regression fits to the domains of the signal between the printed lines, whereas the trend
lines two and three resulted from linear regression in the domains of the signal rise and
drop, respectively. We express the trueness of imaging as the relative broadening ∆wrel
of the image wapp of the printed line with respect to its real width w.
The dependence of the relative broadening on the scan speed rate shows Fig. 6.2C.
The relative broadening increased from 5% to more than 200% as the scan speed rate
increased from 80 to 1000 µm/s.
However, the lateral resolution and LOD were not the only parameters considered in
developing the LA-ICP-MS elemental mapping method. The duration of analysis is an
important parameter because it affects the operating costs. The Fig. 6.2B presents
times required for mapping. We calculated the times for typical thin sections of our
samples of tumour tissue (8 × 5 mm). The time required for analysis decreased with
the increasing scan speed rate: whereas we need approximately 400 minutes for a scan
speed rate of 80 µm/s, we need only 20 minutes for a scan speed rate of 200 µm/s.
However, the broadening observed for these parameters was greater than 200%. Hence,
we selected a scan speed rate of 200 µm/s as a compromise because it resulted in a
relative broadening of 40% and duration of analysis of 150 min.
Laser beam fluence is one of the most crucial parameters for laser ablation. The laser
beam fluence mainly affects the ablation rate, the amount of material released during
one laser pulse. Variations of the ablation rate complicate the quantification of LA-
ICP-MS experiments because each laser pulse releases different amounts of analysed
material in the selected range. There are multiple methods to compensate for this un-
certainty. The first approach utilises normalisation to the sum of 100% [143–144] and
can be successfully used for single-spot analysis or imaging of materials with well-known
matrix composition to determine the appropriate multiplication coefficient that results
in the whole content of 100%. We cannot use this approach for samples with a complex
matrix containing large amounts of non-determinable elements or their groups (e.g.,
fluoroapatite, in which F− substitutes OH−, or biological samples containing O, N
and H).
In our case, the analysed tumour tissue represents samples containing large amounts
of non-determinable elements (O, N , and H). Hence, we cannot use the normalisation
approach based on the sum of 100%. The second normalisation approach uses the util-
isation of an internal standard [145], i.e., monitoring an isotope with a known amount.
It is necessary to rely on internal standards such as C, which is abundant in the sample.
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However, when we use carbon as an internal standard, marked systematic error arises
due to the production of carbon-containing gaseous species, resulting in high losses of
the carbon signal during laser ablation [146].
As mentioned above, differences in the ablation rate complicate imaging due to varia-
tions in the amount of ablated tissue. Releasing controlled amounts of material during
each laser pulse minimise this phenomenon. Hence, we suggest a total mass removal
approach when the whole layer of tissue is completely released. The Si signal indicates
removing the whole layer of tissue as well as ablation of the glass substrate. Moreover,
if the glass substrate does not contain special-interest elements (Zn, Cu and C), there
is no danger of contamination from the glass substrate, and the signals of Zn, Cu and
C arise from the tissue only.
We compared the elemental images of two nearby thin sections. We ablated one section
at high laser beam fluence (8 J/cm2 – hard ablation), and the second section at low
laser beam fluence (2 J/cm2 – soft ablation). We use the terms hard and soft ablation
in this text for explanation only. In the case of the soft ablation, the signal of 28Si
corresponding to the ablation of the glass substrate under the tissue is not strongly
enhanced compared to the gas blank value (Fig. 6.2D). Thus, the laser beam fluence
is not sufficient to ablate the whole layer of the tissue, and we do not reach the glass
substrate, except for two small regions in the left part of the tissue. We observe signifi-
cantly higher intensities of 28Si when we apply the hard ablation (Fig. 6.2E). The range
of the 28Si scale is 30 times larger than that of the soft ablation image, which indicates
that we reached the glass substrate and that ablated the tumour tissue completely. In
the case of the Zn image, we can observe strong enrichment in the lower right corner
of tissue. The strongly enhanced Zn signal does not originate from the glass substrate,
as confirmed by comparison with the parts of the image where we analysed only the
glass substrate (red part from Si image and blue part of carbon image). The Zn signal
is close to zero in all of these regions.

6.3 Data description

6.3.1 Histology
As a result, the collected data are arrays. In the case of the histology, the data are im-
ages. A special microscope scans the biological tissue sections. The resulting resolution
of the resulting images is very high. The images are usually not provided in any of the
standard image formats, because the very high resolution implies that the files are also
very high. The data formats are often proprietary – the microscope scanning the bio-
logical sections stores the data in such a format that is only readable by the proprietary
software provided with the apparatus. This approach, on the one hand, simplifies the
work of the laboratory staff with these specific images. On the other hand, it hinders
the processing of these images by advanced programs for image analysis. However, this
problem common to many research teams solved the ImageJ program [147], and its
Bioformats package [148]. The ImageJ program performs standard image processing
as well as many more advanced methods. In our work, we only used the ImageJ and
the Bioformats package for converting of the histological data in the proprietary format
(Olympus .vsi proprietary image format) into a more accessible image format (common
.jpeg). A scan of the usual tissue section of the size no bigger than 10× 10 mm) results
in an image of the size of several tens of thousands × several tens of thousands of pixels.
Such big images do not usually pose substantial problems for contemporary comput-
ers and standard image manipulation programs and operating systems. The advanced
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Figure 6.2. A) LA-ICP-MS signal in line scan mode recorded for laser beam passing across
one printed line at laser spot diameter of 100 µm, the scan speed of 20 µm/s, laser beam
fluence of 8 J/cm2 and repetition rate of 10 Hz. B) Duration of scanning of the sample
area of 15×15 mm at various scan speeds (µm/s). C) The relative broadening of a printed
line (expressed in %) with a width of 800 µm obtained at various scan speeds (mum/s).
D) Elemental maps of C, Si and Zn obtained at “soft” ablation parameters (2 J/cm2) for
tissue K320/1 (12 weeks old). E) Elemental maps of C, Si and Zn obtained at “hard”

ablation parameters (8 J/cm2) for tissue K320/1 (12 weeks old). [J1]

processing of these images very quickly reaches the limits of the system when we try to
use improperly implemented methods. One can either optimise the whole pipeline to
minimise the system requirements of the processing methods or reasonably decompose
the task and move the computations to a system with higher performance, e.g. a com-
puter cluster for scientific computations. Often, we have to follow both paths - we have
to optimise the method for processing to minimise the time and memory complexity as
well as use computer systems with a higher volume of available memory.
In the histology images, we are usually interested in the objects in the image. These
can be various tissue types and other objects of the biological samples (bristles, capil-
laries, etc.). The description of the objects in the tissue sections is rather complex, and
we have to utilise an expert information. In our case, the expert information was the
annotation of the tissue zones, as stated in the introductory section 6.2.1.

6.3.2 LA-ICP-MS
The results of the LA-ICP-MS analysis are also matrices. These data are not primarily
images, even though they can be easily visualised as heatmaps or by similar techniques.
The spatial properties of the LA-ICP-MS data are very different from those of the
histology data. From the description in the data collection section 6.2.2, it is clear,
that we can obtain high-resolution images. However, the resources spent in measuring
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the biological sample with such a fine resolution does not match the gain in the obtained
additional information. Where the histology scan of a biological section resulted in an
image of the approximate size of 104×104 pixels, the LA-ICP-MS measurement results
in a matrix of approximate size 102 × 102 elements. The difference in resolution is
immense. This fact has several implications. First, if we are to integrate the histology
and LA-ICP-MS data, we cannot approach this problem directly. We have to either
make some heuristic guesses about the initial values for the data integration algorithm
or include some intermediate step in the procedure. Second, the low spatial resolution
can be a ’bottleneck’ in the analyses. We can transform and interpolate the elemental
maps. However, we cannot obtain more information from these procedures. Third,
the measurement procedure, where the laser beam scans the sample, and we analyse
the evaporated material, causes the data to be correlated. The LA-ICP-MS procedure
analyses the elements simultaneously, so any anomaly in the analysed material can
affect all the maps similarly, which only increases the collinearity in the data. Fourth,
the inhomogeneity of the analysed material may lead to incorrect conclusions. For
example, the biological material may locally differ in thickness. Various tissue types
have different water content. In the preparation of the biological material, the tissue
samples’ storage at very low temperature causes evaporation (sublimation) of all the
water in the tissues and therefore, the uneven thickness of the tissue section. All the
problems indicate that we have to pay attention to the properties of the elemental map
and assess them from several points of view.

6.3.3 Additional information

In order to utilise some methods, additional information has to available to the already
mentioned histology and elemental matrices. The histology and the elemental matrices
are spatial data measured in different resolution and by a different modality. In order
to perform the data integration which is essential for the further processing and mod-
elling of the data, it is very beneficial to have another a photography of the tissue slice
used for the measurement of the elemental matrices. The photography has to be taken
before the chemical analysis because the measurement process destroys the biological
sample. Even though it is possible to integrate the histology directly and elemental
matrices. A rough outline of the tissue sample is visible in the elemental maps. We can
use a criterion independent of the actual values of the integrated datasets – such as the
mutual information exploiting the joint distribution of the datasets – and perform the
matching directly. A good matching between the sets can be obtained much more easily
by utilising the information about the tissue sample from simple photography. We can
obtain the outline, the shape and the position on the slide from the photography of
the tissue sample. Generally, it is more straightforward for the data integration using
image registration to combine two transformations, both of them relatively easily iden-
tifiable than to try to estimate parameters of complex transformation that combines
highly heterogeneous datasets. In our case, it is easy to find a transformation between
the histology and the tissue sample photography before the chemical analysis. These
images originate from two adjacent tissue slices and are therefore very similar apart
from a few local deformations. Similarly, the elemental maps and the photography of
the tissue sample are very similar, because they originate from one physical object, the
position and shape are identical, and they differ mostly in scaling and resolution. There
is no problem in combining the two estimated transforms. They are applied one after
the other to the transformed dataset. Of course, the direction of the transform matters
very much (the transform is usually estimated to transform the moving image on the
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template image). However, we can invert the transforms with a little use of matrix
algebra and use them for the opposite direction (a transform from the template image
to the moving image).
Another example of the additional information is the expert’s annotation of the histol-
ogy. In the work [J1] an expert annotated the tissue samples of porcine melanoma by
the developmental stages of the melanoma. The annotation was in the form of rectan-
gular areas of sufficiently homogeneous parts of the tissue with typical properties of the
distinctive stages of the melanoma (see Fig. 6.1). The annotation can be used to select
relevant areas in the elemental maps and to perform a comparison of the distributions of
the traced elements in the elemental maps. The histological annotation of sample N115
is in Fig. 6.3. These two additional information sources for the analysis of the tissue
samples are mentioned because they were used in the work [J1] and were crucial for
the successful processing and statistical analysis of the data. However, these additional
sources of information are by no means the only possible data, that can complement
the processing and the analysis of the data.

Histological annotation of melanoma tissue
Figure 6.3. Example of the annotation of the tissue types (see Fig. 6.1) in the sample
N115. The colour code: red - GMT, purple - ESR, yellow - LSR, green - FT. [C1]

6.4 Methods

6.4.1 Spatial covariance
In this section, we will discuss the spatial properties of the data. We will focus on the
estimation of the self-similarity of the elemental maps that we use for safe indexing
and subsetting of the data. The analysis of spatial data is an important concept in
statistics. We can trace the origins of the spatial analysis to the early improvements
in the cartography and surveying. One of the famous historical examples of the spatial
analysis is the visualisation of the map of the cholera case in London in the 19th cen-
tury or the visualisation of Napoleon Bonaparte’s Russian campaign. These are just
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examples showing that spatial analysis has a long history in the statistical analysis of
data. The proper utilisation of the spatial information is a problem common to various
statistical analyses - for example, the census data are one of the typical cases. The
countries, states, and other regional units up to the level of small neighbourhoods are
spatial units. The effect of the spatial parameters on various factors is not negligible.
The various problems with the spatial properties of the data were mentioned several
times throughout the text. The fundamental problems are the scale of the spatial data,
the spatial dependence of the spatial data and the correct localisation of the spatial
data. These basic problems further affect other statistical problems, for example, the
sampling of the spatial data, the modelling of the spatial data and other spatial issues.
The scale of the spatial data is problematic for several reasons. Ideally, we would like to
analyse data at the proper scale, meaning measure the data in reasonable spatial units
that provide us with a meaningful description of the studied phenomena. If we were
to measure the data in finer resolution, we would obtain more detailed information,
which does not have to be relevant to the analysis and in effect, view it as a noise.
Also, if we were to measure the data in a coarser resolution, we would not get the
relevant information at all. The domain knowledge may guide the choice of the proper
resolution. Take the census data as an example of spatial data. We do not identify the
surveyed people, and their actual address is not available due to the anonymisation of
the data. However, we store certain spatial information (city district, city, village) and
therefore, we can analyse the census data for the location. However, such information
about location does not tell us lots about the interesting aspects that we would like to
know. For example, people may travel to work in different areas. When analysing such
data, we may miss many relationships that are governed by the true (and unrecorded)
spatial information. These may be the place where the people work, where they spend
their free time, where they travel for holidays, where do they come from, where do their
relatives live, where live their friends, etc.
Similar relationships may be present in the biological tissue samples, where the cells
are in a spatial structure. Adjacent cells are often similar because similar types of cells
often form clusters or bigger structures in the tissue. As well as in cities, there are im-
portant places in the spatial structure of the tissues. Analogously to the roads between
cities and streets in the between and in cities, the veins, arteries and other types of
tubular structures facilitate not only the nutrient transport and exchange the oxygen
and carbon dioxide, but the cells of the immune system use it for transportation. Vari-
ous types of cells performing the functions of the immune system circulate through the
bloodstream. This way they get to the places where they are needed, for example to
inflamed tissues, cells attacked by viruses or other misbehaving cells.
The spatial dependence can be a multitude of relationships, as is usual in the field of
statistics. In the case of analyses of spatial dependence, data collection and represen-
tation is of great importance. The form of the data dictates the available methods for
the modelling of spatial relationships. We can approach the problem of assessing the
spatial dependence in many ways. The choice of the method depends on our goal of the
analysis - we may, for example, want only to know a strength of a relationship and in
that case we would like to have a measure similar to the correlation coefficient for the
spatial data; on another occasion we may want to directly model a spatial relationship
in order to predict some useful value, in such a case we would seek after for alterna-
tives of simpler models for spatial data; or we may want to only use certain spatial
dependencies as covariates in a model which estimates variables that are not inherently
spatial, but a spatial information is necessary to alleviate the target variable from some
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unwanted effects.
There are several methods for the measurement of spatial dependence. In some cases,
for example in regularly (on a rectangular grid) sampled data, we may model simple
relationships directly. In the case where we measure several variables in the same ’co-
ordinates’, we may try to assign a direct relationship between the variables directly. If
the variables do not completely overlap; however, we may assume relationships between
small neighbouring areas, spatial smoothing methods may help to provide appropriate
local spatial features for the assessment of local relationships. Distant relationships,
where by distant relationships we mean a relationship between consistent areas which
are not adjacent to each other, are not that easy to assess and model. In order to
corroborate a distant relationship, we cannot rely on a simple comparison of the spatial
data. To be sure of a relationship between distant areas additional dimension which
contains non-trivial variation has to be present. In that case, we can test the relation-
ship and find support for the hypothesis of the distant relationship between the areas.
There are several approaches to measure the spatial relationships in data. The most
general measure respecting the assumptions about the data is the Moran’s I [149]. The
Moran’s I is a measure of spatial autocorrelation - a self-similarity of signal (a 2D data).
The spatial autocorrelation is more complex than the one-dimensional autocorrelation
well-known in the field of signal processing. The Moran’s I is defined as follows:

I = N

W

∑
i

∑
j wij(xi − x)(xj − x)∑

i(xi − x)2 (6.1)

where N is the number of spatial units indexed by i and j, x is the variable of interest,
x is the average of the variable of interest x, wij is a matrix of spatial weights with
wii = 0 and W is the sum of all wij . Another measure of the spatial autocorrelation is
the Geary’s C [150], which is defined as follows:

C = N − 1
2W

∑
i

∑
j wij(xi − xj)2∑
i(xi − x)2 (6.2)

where again N is the number of spatial units indexed by i and j, x is the variable of
interest, x is the average of the variable of interest x, wij is a matrix of spatial weights
with wii = 0 and W is the sum of all wij .
The Moran’s I and Geary’s C are similar measures, which are quite general and flexible
due to the use of the custom W matrix of weights. In case of evenly samples data (in
the space), we may typically use the standard approaches using 4, 8 and more adjacent
spatial units, or other widely used weight matrices for spatial data - various 2D bell
curves. Both the measures of the spatial autocorrelation yield values that are usually in
the range from -1 to +1. The values approaching -1 or lower than -1 indicate a strong
negative spatial autocorrelation and values nearing +1 or greater than 1 indicate strong
positive autocorrelation.
The spatial autocorrelation is practical for several reasons.
In many cases, the spatial autocorrelation can help us to discover spatial relationships,
which we can further study in more detail. The spatial autocorrelation can also bene-
ficial as an overall measure of the smoothness of the spatial data.
In order to work with spatially co-varied data, we have to assume a certain model of
the spatial covariance.
Similarly to the measures of the spatial autocorrelation, we have to either directly
construct a neighbourhood matrix of weights, that indicates which spatial units are
correlated and what is the strength of the relationship, which can be seen as a linear
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model of the spatial covariance or utilise another model or method to estimate the
spatial relationships. In the case of the linear approach based on the neighbourhood
weight matrix, the model of the spatial relationships can be used to explain the spatial
variation in the data in a straightforward way. The other approaches usually model
the spatial relationships by a set of basis functions. An example of such an approach is
kriging. Kriging is a method of spatial statistics that originated in geostatistics. Krig-
ing is a method of interpolation where the model used for the interpolation of the data
is a Gaussian process. The Gaussian process is a method of data interpolation or mod-
elling, which estimates the underlying function for the data modelling or interpolation
by a function that is governed by a covariance structure. The type and parameters of
the covariance structure determine the shape of the function - the function can be con-
stant, periodic, noise, or for example, a linear trend. Apart from the usual modelling
techniques, the gaussian processes modelling utilises the local properties of the data to
produce the values for interpolation or the prediction. Gaussian processes are used in a
wide variety of fields, especially in neurobiology. An excellent resource on the Gaussian
processes is [151], and the webpage [152] provides other resources. The kriging based on
the Gaussian processes offers a very flexible framework of interpolation methods to use
in unevenly sampled spatial data. As is usual in the field of data science, the problem
is not how to utilise the kriging, but which of the different varieties to use and how to
decide which of the varieties is the best.
In many cases, the prior knowledge of the problem can provide leads which type of co-
variance kernel for the Gaussian process to choose; however, the domain knowledge can
help only up to some extent. In practice, it is usually better to try several parameters,
evaluate the obtained results and choose the best parameters for the given problem.
Another approach to the problem of utilising the spatial covariance in a similar way
to kriging are methods based on the spline interpolation are extensively used in the
regression, especially the B-splines. [153] The B-splines are defined by simple formulas
for different degrees (linear, quadratic, cubic and higher degrees of splines) and by a set
of knots, which are the breakpoints between the splines. The B-splines can provide a
smooth approximation of non-linear functions. The B-splines are similar to polynomial
regression. However, they provide greater variability in modelled relationships.

6.4.2 Data integration

As it was mentioned in section 6.3.2, the spatial distribution of each chemical element is
a matrix and can be depicted in the form of a heatmap (see Fig. 6.2 D,E). Because we
obtain the heatmaps of all elements during one analysis of a single sample, the maps have
an identical shape, orientation and resolution and are thus ideal for addressing questions
such as the relationship between the presence of Zn and Cu in selected ablation pixels of
the studied sample. However, the task becomes much more complex when we take into
account additional information, such as the histological properties of the considered
zone. Such information has to be determined from another tissue section because the
standard procedure of the biological sample staining with dyes severely affects the
distribution of analyzed metals. The dyes used for the staining of the biological sample
contain metallic ions, and therefore, the addition of a dye changes the metals’ content
in the biological sample. Two neighbouring serial cryosections of the original tissue
sample must be available, one of which is subjected to ablation, whereas we subject the
other to standard staining for histological analysis. Both treatments produce digital
images providing complementary information about the tissue sample. We must pair
the data corresponding to the selected zone from both treatments. Fig. 6.4A and B
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shows photographs of two neighbouring cryosections acquired under the same technical
conditions; in an ideal case, the two samples should have identical contours. We use
the two samples for different types of treatment: the sample in Fig. 6.4A is ready to
undergo the ablation procedure, whereas we will subject the sample in Fig. 6.4B will
to histological analysis. Both samples are so tender that handling them may change
both their shape and orientation slightly; the tissue can stretch, or some of its parts
may fall off. Comparison of the two images reveals stretching in both dimensions, with
a larger change in the vertical axis: the image in Fig. 6.4B fits into the blue rectangle
with a size of 17.5 × 18, whereas an area of 20 × 23 is necessary for the image in
Fig. 6.4A. Linear transformation of one of the images is suitable to solve this problem.
Linear transformation of the image in Fig. 6.4A is followed by registration to match the
histological scan of the sample in Fig. 6.4B. The resulting image, Fig. 6.4C (obtained
by transformation of Fig. 6.4A), has a size of 18 × 18, which is very close to that of
Fig. 6.4B. The blue colour identifies the area in which the two images do not match in
Fig. 6.4D. [J1]

Figure 6.4. Photographs of two neighbouring cryosections prepared for laser ablation and
histological analysis (A, B). The image C is the result of registering the images (A, B).
The blue rectangle indicates in the images (A-C) the minimal rectangle (with sides parallel
to axes) the image fits in. The red line in the image (A, C) accentuates orientation of the
corresponding borders on both the images. We compare the Images (B, C) in the image (D):
while the places appearing in both images have black colour, the space in blue corresponds

to the symmetric difference of both images. [J1]

Comparison of the slices before registration of Fig. 6.4A-B and after this registration
(Fig. 6.4C) indicates that the slices do not have the same orientation. The comparison
of the angles between the red lines defining one of the borders in both pictures and the
horizontal line demonstrate the differences in orientation and sample deformation. Let
us estimate the corresponding tangent values using the scale underlying both images:
while this value is 23/2 = 11.5 for the image a, it is 15/3 = 5 for the image B.
The resulting difference in the orientation of both images is approximately 0.055π (or
10◦). Moreover, the size and resolution obtained from the elemental map and the
histological image can differ by order of magnitude. The difference depends on the
applied magnification. Thus, the absolute size of a pixel in the histological image
differs significantly from that of the ablation pixel. We have to identify a homogeneous
cluster of cells in the histological image and locate it in all the elemental maps to
make full use of the information about the spatial distribution of different metals in the
sample. This task can be approximately resolved manually by taking advantage of the
human ability to match similar objects, as demonstrated in a breakthrough study of nine
samples of invasive breast carcinoma [154]. However, manual matching is not a viable
solution for frequent analysis of large sample sets. We, therefore, utilised a method that
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automates the process of combining and matching spatially resolved results from diverse
imaging techniques, namely histological and spectroscopic descriptions. Our method,
schematised in Fig. 2.7, first registers the digital images to project the contours specified
in one image to the corresponding pixels of the other images. Consequently, if we outline
a zone of interest Z in one of the images (e.g., histological image), the matching zone Z’
is identified automatically in any other image. Thus, it is possible to combine available
complementary data about both matching zones Z and Z’ (e.g., histology description
of Z and Zn content obtained from Z’). The matching is a necessary step towards a
modern methodology of analysis, interpretation and integration of biochemical data
from diverse sources. [J1]
Image registration is used to create layered multidisciplinary description; in other words,
the integrated data set. Each tissue sample was submitted to analysis by two fully
independent methods, namely histological scanning and the LA-ICP-MS measurement.
We compared the results for the presence of Zn and Cu in specified histologically uniform
locations of the sample. Each of the applied methods processes (and destroys) one of
the two bordering serial tissue sections from the same biological sample (Fig. 2.7A),
whereas each delivers its results in the form of a digital image. [J1]
Morphology of the studied tissue suggests that the corresponding zones in these sections
can be assumed to represent identical histological structures. This proposition holds
provided the selected zones are placed inside of a histologically homogenous tissue,
and their diameter is several times bigger than the thickness of the used slices. We
respected these conditions during data collection. We applied the image registration
[30], an extensively studied method of digital image processing widely used in computer
vision. Image registration is a standard method for overlaying two different images.
Particularly, the methodology of image registration is well developed and offers ample
approaches for overlaying two or more images of the same section obtained from different
viewpoints or by different sensors [30]. We chose the affine transformation [155] for the
registration of the studied images after considering other relevant methods. The main
benefit of the affine transformation is its simplicity and understandability due to the
linear transformation it applies to map the new image on the reference image. Let us
assume that an image is a function of two variables I(x, y) that assign an intensity
value to the pixel with specific coordinates x and y. The affine transformation of the
2D image is a simple linear mapping in the form of:x′y′

1

 =

 a b c
d e f
0 0 1

xy
1

 (6.3)

Where x and y are the coordinates of pixels in the original image and x′ and y′ are
the coordinates of the corresponding pixels in the transformed image. The constant
parameters a-f of the 3×3 transformation matrix T in the middle of the equation fully
characterise the treatment of the image. The affine transformation can accomplish
translation, rotation, and scaling as well as shear deformation of pixels. Symmetric
difference of both images characterises the quality of the match between the reference
image and the transformed image, as depicted in Fig. 6.5. This difference should be
zero in the ideal case. Multiresolution image registration [156] that applies an iterative
gradient algorithm is one of the basic procedures for estimation of the parameters a-f
of the transformation. It is robust and ensures good results. The registered images
were reduced to silhouettes to simplify the parameter estimation and to avoid problems
of different modalities of the registered images. The use of silhouettes allows for the
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definition of the brightness function I(x, y), defined as follows:

I(x, y) = 1 for a pixel belonging to the silhouette

I(x, y) = 0 elsewhere (6.4)

First, the registered image must be in the same coordinate system as the reference
image. We chose The sum of squared differences between the reference image and the
registered image (SSD, Fig. 6.4) as the criterion to be minimised during the registration
procedure. For the silhouettes of the reference image Iref (x, y) and the image to be
registered Ireg(x, y), the SSD may be defined as:

SSD(Iref , Ireg) =
∑
x

∑
y

(Iref (x, y)− Ireg(x, y))2 (6.5)

We can determine the parameters of the mapping between both images by minimis-
ing the SSD with the gradient algorithm. We used the iterative (gradual) estimation
of the parameters on a dyadic decomposition of the images to ensure convergence of
the gradient algorithm [156]. This multiresolution image registration approach decom-
poses both considered images into a sequence of images with decreasing resolution (the
resolution of each successive image is half that of the preceding image). The maximal
length lmax of the sequence of these decompositions depends on the integer part of the
smallest dimension dmin (width and height of the considered image) of both silhouettes.
The maximal length gives the following expression as:

lmax = log2(dmin)− 1 (6.6)

This upper limit for lmax ensures that any of the images in the sequence will have at
least 2 pixels in its smallest dimension. The procedure starts with a pair of images
(reference and registered) with the lowest level of resolution. For the given resolution,
the gradient algorithm estimates the parameters of the transformation. Their values
are used as the initial choice of parameters for the estimation of transformation in the
next step, which treats the pair of images with resolution two times higher than the
last (the iterative step). This process continues until the original resolution of both
images is reached, and wee obtain the final parameter estimates. There are even more
powerful types of transformations, but affine transformation proved to be sufficient for
our purposes. We can identify all operations performed by the affine transformation
on the image of the tissue sample with the actual sample treatment. The compressing
or stretching relates to the cutting of the cryosections. The shifting and rotating corre-
spond to the placement of the cryosection on the slide. The described transformation of
coordinates must be followed by the interpolation of the original brightness function to
obtain detailed information about the transformed image in the new coordinate system.
We used linear interpolation. We aim to provide complex information about individual
areas of the tissue samples as provided by the considered methods for their analysis.
The first step toward this goal is to determine the match between the histological scan
and tissue slice photography and also between the tissue slice photography and the
laser ablation measurements. We estimated the parameters of both transformations
by MATLAB’s universal optimiser for unconstrained optimisation supplied with the
optimisation toolbox. [J1]
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Figure 6.5. The illustration of the SSD criterion for image registration. The panels (A,B)
show the reference image and the image to be registered. The panel (C) shows overlaying of
both the images, the gray part corresponds to the difference between the images. The panel
(D) shows the difference. As the patterns are 3× 3 pixels, the difference part corresponds

to SSD of 4. [J1]

6.4.3 Spatial properties of the melanoma tissue

The assumption that the histological zones coincide in two neighbouring tissue sections
seems reasonable. The sections are relatively thin, and in case of neighbouring tissue
sections, the tissue structure is actually split and therefore, we should see a mirror
image in the two sections. We can easily apply the presented method for creation of
multilayered data representation to tissue sections that are not direct neighbours. The
question is then, can we reliably register images of more distant tissue sections? In order
to examine this proposition, we decided to design a separate experiment which would
enable us to assess the similarity of images of tissue sections after image registration. We
scanned a few dozens of serial tissue sections and obtained their annotate histological
zones. The scanned images of the dozens of serial sections showed that the variability in
the deformations applied to the physical sections is much greater than the deformations
of the images that can be dealt with by the affine transformation. We can choose a pair
of neighbouring sections so that the quality of the sections is fairly high, however, when
producing a long sequence of serial sections, the higher quality cannot be maintained.
Unfortunately, a not-insignificant amount of the tissue section preparation relies on
manual processing. A special device cuts the tissue sections automatically, however
afterwards they have to be transferred manually to a slide for further processing and
scanning by the microscope. During the transfer, the sections cannot only be stretched,
but also torn, or parts of the section can be folded over. We cannot deal with these
new types of deformations by the simple use of silhouettes. There are many solutions.
First, we can try to get rid of the folded parts and try to perform the image registration
with affine transformation. The folding of the section introduces non-linearities to the
sought-after transformation. The transformation is not the same for all the pixels
in the images. In order to obtain a good matching between the images, we have to
different parts of the image differently. Second, we can use a more general type of
transformation. A type of transformation that can transform differently various parts
of the image. Such a transformation id possible with elastic registration [30]. Simple
review of the elastic registration methods shows that in many areas there have been
developed fast and accurate algorithms to perform the elastic registration. However
in general, the accuracy of the overlaying of the registered images is not guaranteed.
Certain landmark points (points that can be identified in both the images reliably and
matched as corresponding pair) can be utilised and improve the resulting transformation
[157].
To assess the spatial properties of the tissue samples with respect to the histological
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zones annotations, the images of adjacent serial sections were registered by the elastic
registration. The transformation between images of tissue sections was produced as
a combination of the transformations between the adjacent images of tissue sections.
The estimated transformation was used to transform manual histological annotations
of several distinct objects in the images. The annotations consisted mainly of the same
histological zones as in the main analysis of the spatial distribution of bioactive metals -
namely the growing melanoma tissue zone, the early and late spontaneous regression and
the fibrous tissue. However, we also used the bristles because they are easily identified
in the histological scans even by an untrained person. The bristles look like several
concentric rings and because of their size go through several serial sections. The size of
a bristle is several times greater than the size of other objects present in the histology
images (cells, capillaries, etc.). The good match of the bristles in adjacent samples can
be a sign of good image registration. The histological annotation of the more difficult
to identify objects - the tissue zones - can be however considered a decisive sign for the
appropriateness of the image registration. A common measure of the overlap between
two sets of points is the Dice similarity coefficient [158] which is in other fields known as
the F1 score - for example in data mining and machine learning. Other similar measures
are the Jaccard similarity and Tanimoto similarity [158]. We computed the values of
the Dice similarity coefficient between an original annotation for a given tissue section
and a transformed annotation from the registered tissue section. We evaluated each
annotated type separately as well as all annotations together.

6.4.4 Unsupervised analysis of histological zones and elemental
maps

To examine the structure of the tissue sections, we decided to use standard clustering
algorithms used in image processing. We performed clustering with the state-of-the-art
spectral clustering [159]. The clustering was carried out using the R software [160]
and the package Kernlab [161]. In a series of experiments, we applied the clustering
algorithm first to the histological images. Second, we analysed the elemental matrice.
Third, we used the combination of the histological images and the elemental matrices.
We used the 2D maximum overlap wavelet transform (2D MODWT) [162] to extract
local features of the image.

We used the spectral clustering with kernel distance matrix. The used kernel was
the radial basis function and the parameter σ of the kernel optimised by the heuristic
function supplied by the Kernlab package [161]. We chose the number of clusters as
the drop in values of the distance matrix eigenvalues. We compared the results of the
clustering by tables of the coincidence between cluster assignment and the histological
annotation. The tables were tested by χ2 test to assess any relationships between the
different clustering experiments and the histological zones. Consequently, the logistic
regression model was used to test each category of the histological zone and each cluster.
We considered the relationship significant if the p-value was lower than a threshold value
of 0.05 corrected for the actual number of all test by Bonferroni correction. [C1]

6.4.5 Statistical analysis of the di�erences in the metals spatial
distribution

The exploratory analysis of the metal distribution in the samples showed a variation in
the values of the metal distribution in different individual animals. Another important
variable that seems to affect the distribution of the metals is the age of the animal.
Furthermore, not all the histology zones could be annotated in all the animals reliably,
and therefore, some histology zones were not available for all the biological samples.
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Figure 6.6. Simple visualisation of image segmentation of a histology scan of tissue section
based on the 2D MODWT features. There does not seem to be a relationship between
any finer structure in the histological scan than a rough classification of the tissues in

melanoma cells and the fibrous tissue. [C1]

Such a problem is difficult to model by the standard statistical modelling techniques.
However, the problem definition fits perfectly into the framework of mixed effect models
(see chapter 4). We used the following model structure to assess the differences among
the annotated areas:

CM = βT issue type · Tissue type+ β0 + b0,Animal + ε (6.7)
Where the CM indicates the content of a metal M in a specific annotated histological

zone, Tissue type is the indicator of tissue type (GMT, ESR, LSR and FT), Age is
the age of the animal, the βT issue type and β0 are the model coefficient in the fixed
effects part of the model. The b0,Animal, the coefficients in the random effect part of the
model are specific parameters for each animal, the b0,Animal is the random intercept.
More complicated model structures - for example, including random slopes are not
possible in this case. The variable Tissue type is categorical variable, and therefore,
the model coefficients are sample means (the intercept) and the differences between the
sample means between the categories. There is no unexplained variation left for the
estimation of the random slopes – the inclusion of the random slopes leads to singular
model fits. The ε denotes the residuals. In order to assess the statistical significance
of the model coefficients, namely the coefficients of the fixed effect part of the model,
we utilised the cases bootstrap, see Algorithm 4.3. We sampled the data on both levels
(the measurements for each animal, the animals).

6.5 Results

6.5.1 Data integration
The simple approach to the data integration as presented in [J1] and reported here is
quite simple and robust. The drawback of this approach is its roughness. The resulting
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transformation is global, and therefore, it does not allow for any local deformations.
The objects’ boundaries in the images govern the tranformation due to the use of the
image silhouettes. In the case of the data integration for mapping of metals in melanoma
tissue, the collected data did allow for more refined approaches. The reason was the
vast difference in the resolution and the level of detail in the images. The following
section presents a more accurate approach using the elastic transformation for image
registration, but on a different data set. The data integration resulted in a layered
representation of the histological scans and the elemental maps of Zn and Cu. The
layered representation allowed identification of specific areas – tissue zones from the
histology scans – and their projection on the elemental maps and further estimation of
average metal contents for these areas.

6.5.2 Spatial properties of the melanoma tissue
An important property of the examined tissue is its spatial consistency. We denote
tissue sections, whose structural appearance is similar or even identical not only in
adjacent sections but also in more distant tissue sections, as spatially consistent. The
spatial consistency is crucial because of the chosen methodology of the examination of
the spatial distribution of the bioactive metals. Without the spatial consistency, we
cannot assume that the resulting layered description of the histological data and ele-
mental maps enables us to assume the relationships among the distribution of bioactive
metals and developmental stages of the porcine melanoma. In order to examine the
spatial properties, a series of 12 sections from a pig melanoma was stained and scanned.
An expert annotated the relevant structures (tissue zones corresponding to melanoma
development, fibrous tissue and bristles) in each section. The scanning process does
not preserve the physical dimensions of the tissue section in the resulting image. The
manipulation with sections also resulted in some deformation of the tissue sections. Due
to these issues with the images of the tissue sections, the images have to be registered,
and the affine image transformation does not offer enough distortion to register the
images successively. That is why the elastic registration is necessary. The estimation
of the parameters of the elastic transformation can be problematic, and generally, the
optimisation of the parameters does not guarantee to find the global optimum. We
used a general optimisation from the ANTsR package [163] with no special initiation
of the parameters.
This approach to the elastic registration, which is to apply the elastic registration to
the images, without any specific initialisation or complex image similarity function in-
corporating information about the landmark and image intensity, is not guaranteed to
provide optimal results. The unconstrained optimisation of the elastic transformation
parameters can lead to highly variable results.
When applying this procedure to our data set of serial tissue sections, we may ob-
serve that there are undoubtedly well-registered pairs of images. However, there are
also many not-so-well-registered pairs of images. The extension of the transformations
estimated on the pairs of adjacent tissue sections leads to highly distorted results for
images that are more than one tissue section apart with badly registered images in the
chain of the transformations. The results of the comparison of the matching of the
annotated areas reflect the presence of badly registered image pairs. Tab. 6.1 presents
the resulting DICE indexes.

6.5.2.1 Concluding remarks

The elastic image registration provides a useful tool for the matching of images of
severely distorted tissue sections. However the process so far is not good enough to
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Annotated tissue zones
GMT ESR LSR FT BS ALL

D = 8µm 0.78 0.64 0.72 0.12 0.79 0.73
D = 16µm 0.70 0.55 0.56 0.07 0.72 0.64
D = 24µm 0.65 0.51 0.41 0.04 0.70 0.55
D = 32µm 0.56 0.38 0.15 0.03 0.61 0.43
D = 40µm 0.50 0.31 0.01 0.01 0.52 0.34
D = 48µm 0.46 0.28 0.01 0.00 0.49 0.27
D = 56µm 0.40 0.25 0.02 0.00 0.47 0.20
D = 64µm 0.38 0.25 0.03 0.00 0.42 0.19
D = 72µm 0.37 0.26 0.02 0.00 0.38 0.18
D = 80µm 0.37 0.31 0.03 0.00 0.31 0.18
D = 88µm 0.36 0.33 0.04 0.00 0.25 0.19

Table 6.1. The relationship between the average Dice coefficient and the distance of the
tissue sections indicated by the value of D for images registered by the elastic transforma-
tion. The annotated states are GMT - growing melanoma tissue, ESR - early spontaneous
regression, LSR - late spontaneous regression, FT - fibrous tissue, BS - bristle sheath and
ALL which are all the previous tissue zones together. The average values of Dice coeffi-
cients indicate that there is a good match between the adjacent (D = 8µm) tissue sections
(except the FT). The Dice coefficients for the tissue sections as far as three sections apart
(D = 24µm) are still showing a good match. However, the sections that are more than

three sections apart (D = 24µm) do not seem to be well-matched against each other.

provide good elastic transformation for any pair of images in the set, and therefore we
cannot show, that the spatial properties of the melanoma tissue extend further than
24 µm. This finding supports the use of adjacent tissue sections for separate chemical,
biochemical and histological analyses, which we have performed with the LA-ICP-MS
and histology in our main analysis. The finding also means that in planning further
analyses it is better to be on the safe side and when performing several chemical and
biochemical analyses, tissue sections for the histological analysis should be in between
the tissue sections for the biochemical analyses. It is important to note that there
are many possibilities for improvements in this task. As in any optimisation, a good
set of initial values results in faster convergence and attaining better values of the
optimisation criteria - the bristles or other landmarks in the tissue sections may be
used for this purpose. These landmarks can be utilised not only for the initiation of
the optimisation procedure, but they also may be incorporated into the optimisation
criterion, as shown in [157] and [164].

6.5.3 Unsupervised analysis histological zones and elemental
maps

6.5.3.1 Clustering of elemental maps

The clustering of the elemental maps showed that there are no distinctive clusters in
the elemental maps. In all the samples, one cluster dominates the cluster assignment,
which contains the majority of the observations, and the remaining clusters represent
only a small fraction of the data. Only one sample (N113) indicated a possible re-
lationship between the clustering and the histological annotation. However, none of
the following tests by the logistic regression showed any significant result. Therefore,
we may assume there is no simple relationship between the elemental maps and the
histological annotation.
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6.5.3.2 Clustering of histology

The histological images contain areas which may be divided into clusters easily. Based
on the original histological image and local features, the clustering can assign the pixel
correctly into these categories. The clustering seems to be consistent with the histo-
logical areas (except samples L619, N129). In the majority of samples, we can detect
a relationship and identify the clusters which correspond to the histological zones. Un-
fortunately, the results do not allow to distinguish all the histological zones, but only
the zones in broader categories of melanoma tissue or fibrous tissue. The visualisation
of the result of clustering is in Fig. 6.6

6.5.3.3 Clustering of the combination of histology and elemental maps

We utilised the layered data description for this experiment. The results of the clus-
tering were similar to those of the clustering of elemental maps. The addition of the
elemental maps features to the promising results on histological data did not result in
better clustering results. Only two samples passed the χ2 test (L619, N129). In the
case of these two samples, the following test by logistic regression model did not show
any specific relationships among the histological zones and the clustering.

6.5.3.4 Concluding remarks

In conclusion by the application of the spectral clustering algorithm on data from
pigs melanoma samples, we were able to detect structure in the histological images,
but not in the distribution of metals (Cu, Zn) or the combination of the histology
and distribution of metals. We tested the relationship between the histological zones
and the cluster assignment. The procedure consisted of testing by χ2 test for any
relationship followed by logistic regression. We tried the follow-up logistic regression
in case of a positive result from χ2 test to test histological zones against clusters. This
procedure showed that the clusters data might be related to the histological zones in
broader terms. There may exist a relationship between the melanoma cells and other
types of tissue. The exploratory analyses presented in this paper show us that there
is a structure in the data, but even though we used the state-of-the-art methods for
image processing, we were not able to relate the clusters and histological information
completely.

6.5.4 Statistical analysis
The data integration procedures provided data for ten tissue samples each from 10
individual animals of five postnatal ages. We observed three histologically different
zones in each sample obtained from minipigs at six weeks of age or older (GMT, ESR
and LSR at the age of six weeks; ESR, LSR and FT at the age of 15 and 22 weeks),
two zones only (GMT and ESR) were detected in the samples from the 4-week-old
minipigs. In each sample, 10 to 15 spots (3-5 per each zone) were annotated, resulting
in 125 annotated spots. The exploration of the integrated data shows that there are
several relationships. We can see a clear decreasing trend in the content of the Zn in
the stages of melanoma development.

In Fig. 6.7A we can see that the content of the Zn is the highest in the GMT
tissue zone and that the contents follow a trend GMT > ESR > LSR > FT. We
can observe even more pronounced decrease in the content of Cu with relationship
to the melanoma tissue development in Fig. 6.7C. However, other relationships are
affecting the data. For example, the age of the animal can be a source of substantial
differences in the content of the bioactive metals, see Fig. 6.7BD. Another important
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Figure 6.7. Content of Zn and Cu in all samples (A, C) and in samples stratified according
to age of minipigs (B, D). [J1]

variability in the data is related to the inter-individual differences. Fig. 6.8 shows
that the differences in the average content of Zn and Cu vary greatly among the animals.

Figure 6.8. The content of Zn (A) and Cu (B) in different samples. There are distinct
differences among the animals in the Zn and Cu content. These differences have to be
taken into account when modelling the relationships among the melanoma development

stages and bioactive metal content. [J1]

All this evidence indicates that simple linear models are no sufficiently complex to
capture all the relevant variability in the data. Without using the mixed effect model, we
could not integrate information about the inter-individual differences into our reasoning
about the relationships among the developmental stages of the porcine melanoma and
the content of bioactive metals.
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We modelled the differences among the tissue zones as fixed effects in the mixed effect

model, and we used the indicator of an animal as a random effect. We corrected the
resulting p-values estimated by non-parametric bootstrap test utilising 9999 random
samples from the data by the Bonferroni correction for multiple comparison [93]. Tab.
6.2 and 6.3 presents the estimated fixed effect coefficients.

GMT ESR LSR FT
GMT 497.05 -138.15 -162.66 -142.32
ESR - 358.90 -24.51 -4.17
LSR - - 334.39 20.34
FT - - - 354.73

Table 6.2. Estimated fixed effect coefficients of a model of differences in Zn content among
tissue zones. The values on the diagonal correspond to averages of the respective tissue
zone. The off-diagonal values represent the differences. The Zn content in the tissue zone
denoted by the row name plus the difference in the appropriate table cell gives the Zn
content in the tissue zone denoted by the column name. Statistically significant values are

in boldface.

GMT ESR LSR FT
GMT 154.35 -41.39 -77.43 -70.80
ESR - 112.96 -36.04 -29.41
LSR - - 76.92 6.63
FT - - - 83.55

Table 6.3. Estimated fixed effect coefficients of a model of differences in Cu content among
tissue zones. The values on the diagonal correspond to averages of the respective tissue
zone. The off-diagonal values represent the differences. The Cu content in the tissue zone
denoted by the row name plus the difference in the appropriate table cell gives the Cu
content in the tissue zone denoted by the column name. Statistically significant values are

in boldface.

The values in Tab. 6.2 and 6.3 shows that the differences among the tissue zones
when accounting for the inter-individual differences are less distinctive, than it may
seem from the visualisations. The statistical significance from the bootstrap test cor-
rected for multiple comparisons and indicated in the Tab. 6.2 and 6.3 indicates that
for the content of Zn, there is a clear difference between the GMT and the other tissue
zones. The content of Zn differs significantly from the content of Zn in any other tissue
zone.
On the other hand, the three remaining tissue zones (ESR, LSR, FT) are not distinctive
enough to be considered different from each other.
Similarly, in the case of the content of Cu in the various tissue zones, there are no sig-
nificant differences after the correction for multiple comparisons. However, the biggest
difference is between the ESR and the LSR stages. These observations can be used to
revise our understanding of the problem and reconsider the structure of the model. We
can attempt to simplify the classification of the tissue zones into the new description,
which could be classification into GMT and non-GMT tissues (more accurately into
GMT tissue zone against ESR & LSR & FT), which seem to be the case for the content
of ZN in the melanoma tissue. The other simplification of the classification of tissue
zones can be GMT & ESR classes versus LSR & FT. This classification seems to reflect
the observed differences in the Cu content in the melanoma tissue. Further tests with
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Coefficients
GMT SR&FT

GMT 495.90 -146.38
SR+FT - 349.52

P-values
GMT SR&FT

GMT 0.0018 0.0011
SR&FT - 0.0362

Table 6.4. Estimated fixed effect coefficients of a model of differences in Zn content among
revised tissue zones – the tissue zones are now classified as GMT and SR&FT. The values
on the diagonal correspond to averages of the respective tissue zone. The off-diagonal
values represent the differences. The Zn content in the tissue zone denoted by the row
name plus the difference in the appropriate table cell gives the Zn content in the tissue

zone denoted by the column name. Statistically significant values are in boldface.

Coefficients
GMT&ESR LSR&FT

GMT&ESR 401.84 -48.49
LSR&FT - 353.35

P-values
GMT&ESR LSR&FT

GMT&ESR 0.2488 0.0695
LSR&FT - 0.1712

Table 6.5. Estimated fixed effect coefficients of a model of differences in Zn content among
revised tissue zones – the tissue zones are now classified as GMT&ESR and LSR&FT.
The values on the diagonal correspond to averages of the respective tissue zone. The off-
diagonal values represent the differences. The Zn content in the tissue zone denoted by
the row name plus the difference in the appropriate table cell gives the Zn content in the
tissue zone denoted by the column name. Statistically significant values are in boldface.

the same methodology and the revised classification of the tissue zones are presented
in Tab. 6.4, 6.5, 6.6 and 6.7

The presented p-values indicate that the null hypothesis can be rejected only in the
case of Zn. Our data confirm that the Zn content in the zone of growing melanoma tissue
(GMT) was significantly higher than in all remaining zones, which represent consecutive
stages of the tumour tissue that arise as a result of the spontaneous regression of
melanoma (ESR, LSR) and its final rebuilding into fibrous tissue.

6.6 Discussion
The presented results show that it is possible to utilise data integration techniques -
the image registration - to combine the histological description of a tissue section with
the spatial distribution of bioactive metals into an integrated data set, the so-called
layered data representation. With such data, many questions about the spatial rela-
tionships between the bioactive metals and the histological description can be explored
and tested. In doing so, many other problems have arisen. Firstly, it is necessary to
judge the appropriateness of the image registration and the type of utilised transform.
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Coefficients

GMT SR&FT
GMT 151.70 -55.80

SR&FT - 95.89

P-values
GMT SR&FT

GMT 0.1137 0.0650
SR&FT - 0.4127

Table 6.6. Estimated fixed effect coefficients of a model of differences in Cu content among
revised tissue zones – the tissue zones are now classified as GMT and SR&FT. The values
on the diagonal correspond to averages of the respective tissue zone. The off-diagonal
values represent the differences. The Cu content in the tissue zone denoted by the row
name plus the difference in the appropriate table cell gives the Cu content in the tissue

zone denoted by the column name. Statistically significant values are in boldface.

Coefficients
GMT&ESR LSR&FT

GMT&ESR 126.26 -44.80
LSR&FT - 81.46

P-values
GMT&ESR LSR&FT

GMT&ESR 0.2491 0.1399
LSR&FT - 0.2328

Table 6.7. Estimated fixed effect coefficients of a model of differences in Cu content among
revised tissue zones – the tissue zones are now classified as GMT&ESR and LSR&FT.
The values on the diagonal correspond to averages of the respective tissue zone. The off-
diagonal values represent the differences. The Cu content in the tissue zone denoted by
the row name plus the difference in the appropriate table cell gives the Cu content in the
tissue zone denoted by the column name. Statistically significant values are in boldface.

In our work, we showed, that for tissue sections of reasonable quality, the affine trans-
formation is necessary to compensate for the distortion of the tissue sections due to the
manipulation and other treatment. In the case of serial sections, which may be treated
more roughly, which results in more substantial deformation of the tissue sections such
as folding over, we have to use a more powerful transform. Such a transform is the
elastic transform in its various forms. The elastic transform brings a whole new lot of
problems to the data integration procedure. However, we can overcome these problems
through the use of sophisticated image registration procedures. In any case, the data in-
tegration - image registration - is necessary for reliable and reproducible research in the
spatial distribution of chemical elements and compounds in tissue sections. Secondly,
the whole procedure relies on the similarity between the tissue sections submitted for
histology and laser ablation measurement. Without the assumed similarity, we cannot
use the whole process for any further analysis. In case of adjacent tissue sections, there
does not seem to be a problem - the device splits the tissue structure (for example
clusters of tumour cells), and therefore the tissue structures should be present in both
the adjacent sections in the same places. However, in cases of tissue sections, that are
more distant, the similarity may not be guaranteed. We tried to address this problem
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by integrating a large set of tissue sections from one piece of tissue. In these sections,
the prominent tissue structures were annotated and afterwards compared between the
sections. The serial sections from one piece of tissue called for a different treatment
when integrating. However, the resulting comparison of the matching of these struc-
tures suggests that not only the adjacent but also more distant sections are reasonably
similar and can be used for measurement by different analyses with consequent inte-
gration by image registration. We did not succeed in our endeavour to perform an
unsupervised analysis of the tissue section. T to recognise the different tissue zones
by analysing the histological scans. We were only able to differentiate between the
most distinct tissue types, which are the melanoma cells and the fibrous tissue. Serum
levels of Zn and Cu in melanoma patients have been suggested as valuable diagnostic
and prognostic parameters but have yielded conflicting results. The Cu level (but not
the Zn level) was generally elevated in melanoma patients, reflecting the degree and
extent of tumour activity [165]. By contrast, serum Cu concentrations were identical in
melanoma patients and healthy individuals, whereas the serum Zn concentration was
significantly increased in melanoma patients [166]. In tissue sections, the Zn level was
elevated in the majority of melanomas in comparison with the skin of healthy controls.
However, the Cu level was increased in some melanoma patients [167].

The suggested technique for Zn and Cu mapping permits not only simultaneous
quantification in the same tissue cryosection but also detection of both metal ions in
very small, histologically characterised zones of tissue. This is an important advantage
compared to their determination in tissue homogenates or whole tissue sections. We
used skin melanoma samples from MeLiM animals of various ages to develop and vali-
date this technique. Our findings (Fig. 6.7A–C) indicate that the Zn content of a given
zone is approximately 3 or 4 times higher than that of Cu (Fig. 6.7D–F). Moreover, the
content of both metals declines as a result of advancing spontaneous regression (due to
destruction of melanoma cells by anti-tumour immune reaction).
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Chapter 7
Conclusion

The thesis provides several results contributing the biochemical data analysis. The
biochemical data analysis is specific due to three main problems of the biochemical
data. First, the biochemical data are high-dimensional; the data are in the form of vec-
tors, but more often in the form of matrices and multidimensional arrays. We have to
utilise feature extraction extraction methods to obtain a practical data representation.
Second, the data are very diverse and we usually combine several different measure-
ments into on data set. We need to perform the data integration in order to create a
data set that we are able to model machine learning and statistical methods. Third,
the biochemical data are usually collinear. The collinearity indicates that there are
relationships among the variables in the data The collinearity poses problems for the
standard estimation procedures. For example, the collinear data may not be invertible
when estimating with least sum of squares method. Specific methods for collinear data
have to be used in the biochemical data analysis.
To solve these problems with biochemical data, we reviewed the available methods to
deal with feature extraction, data integration and modelling, we devised a modular
data processing pipeline. The inputs to the pipeline are the raw biochemical data. The
following steps is the data preprocessing and feature extraction, specific for each input
data type. The data integration combines the extracted features from the preprocessed
biochemical data into a standard data matrix whose rows represent the observations
and the columns represent the variables (extracted features). In this step, we also add
the additional information common in the biochemical analyses. The additional infor-
mation can be the classification of the measured subjects (patients vs controls). The
next step is the modelling. We use the data to model the response, such as the patient
and control classification. The last step is the statistical assessment and inference of the
modelled relationships. This pipeline was widely applied in the author’s publications
,[J1].
The modelling of the biochemical data is difficult due to the many problems of the data.
Choosing the right method for the modelling is often not straightforward procedure.
Many similar methods exists and their advantages and disadvantages are not often clear
enough to decide which model to use.
We devised a model comparison method for multivariate methods such as partial least
squares regression and discriminant analysis or supervise principal component analysis.
The method relies on the simulation of artificial data that closely mimic the properties
of the actual data. The multivariate methods are assessed by bootstrap test that ac-
counts for the relationships between the model coefficients (such as the normalisation of
the loadings in the principal component analysis by the L2 norm) by testing the effect
of each modelled variable on the model separately. We applied the suggested model
comparison method to the comparison of the partial least squares discriminant analy-
sis and the supervised principal component analysis in the metabolomic fingerprinting
experiment setting. By considering the various measures of the model assessment, we
were able to show that the supervised principal analysis is better in smaller data sets
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and for the classification into more than 2 classes. The results indicate that supervised
principal component analysis is beneficial in the assessment of metabolomic fingerprint-
ing experiments.
Following the more general results, we moved to the analysis of the elemental maps
measured by the laser ablation inductively coupled mass spectrometry in the analysis
of the melanoma of melanoma-bearing Libechov minipigs. The analysis by laser abla-
tion destroys the analysed biological sample. It is usually not possible to histologically
annotate the biological sample measured by the laser ablation because it is substan-
tially thicker than the tissue sections used in microscopy and the histology requires
staining that may affect the content of the analysed elements in the biological sample.
Therefore, two different tissue sections have to be used for the biochemical analysis.
Due to the utilisation of more than one biological sample, we have to integrate the
elemental maps and the histological annotation for further processing. The results of
the two methods are in form of digital images – matrices. The difference s mainly in
the resolution, however, the different tissue section can be deformed. We devised a
data integration procedure based on the image registration of image silhouettes. This
methods significantly improves the manual identification of the tissue zones [154]. The
author published the method in the work [J1]. The different spatial properties of the
data originating from the laser ablation combined histological annotations can be a
source considerable variation. In this and similar experiments, we want to know what
is the spatial variability of the data. It is important to assess the relative sizes of the
areas of interest represented in the various data projections (elemental maps, histology)
in order to safely index the data for further analyses.
In order to examine the spatial properties of the data, we performed a series of exper-
iments. We utilised the spatial covariance and the properties of the data integration
procedure – the affine image transform – to estimate the minimal size of the annotated
areas of interest. This way we can annotate only sufficiently large areas of consistent
tissue type in the histology and be sure that the area of interest would not be severely
affected by the spatial covariance in the elemental maps or result in areas of size smaller
than a pixel in the elemental map. The safe indexing procedure was utilised in the work
[J1]. The important variation in the elemental maps is due to the uneven thickness of
the biological material. We alleviated this problem by using the elemental map of car-
bon as an internal standard. The normalisation of the metal elemental maps by the
carbon elemental map eliminated the effect of the uneven thickness and improved the
results of the modelling the work [C1] of the author. We tried to model the variation in
the spatial data with clustering methods. The state-of-the-art clustering methods were
able to distinguish the broad categories of tissue types. These findings were published
in the conference contribution [C1] of the author. And last but not least, we examined
the properties of tissues in serial tissues sections. The importance of these properties is
in the planning of future experiments with more imaging methods of the tissue sections.
The elastic image registration estimated the relationships between the serial tissue sec-
tions and a manual annotations of tissue structures was utilised to assess the similarity
of the tissue structures in distant tissue sections. In conclusion, the tissue sections at
least as far as 24 µm apart are similar enough and can be utilised for destructive tissue
imaging measurements. The final part of the thesis dealt with the statistical analysis
of the differences in bioactive metals in various development stages of the melanoma
in melanoma-bearing Libechov minipigs. The data were provided by the previously
described data integration procedure and the annotation of the developmental stages
of the melanoma respected the spatial properties of the tissue. By utilising the linear
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mixed effect model assessed by non-parametric simulation-based bootstrap, we showed
that the content of zinc in the growing melanoma stage of the melanoma development
significantly differs from the other development stages. This finding alongside its bio-
logical and biochemical interpretation is published in the article [J1] of the author.

7.1 Achieved goals of the thesis
The first goal of the thesis:

. To devise a pipeline of the processing of the integrated data with statistical and
machine learning methods that will lead to results that are reliable, stable and re-
producible

The building blocks of the pipeline were discussed in Chapter 3 and 4. Specifically,
for the problem of the analysis of porcine melanoma by the combination of laser
ablation inductively coupled plasma mass spectrometry and histology. The pipeline
consists of a data integration step, which creates a layered data description. The
layered data description enables indexing, subsetting and propagation of labels and
similar annotations. Therefore a histology annotation can be used for selecting specific
areas of interest in the elemental maps. We can then compare the selected areas –
such as in the case of the comparison of the content of the bioactive metals in porcine
melanoma. The pipeline is in described in Chapter 6.

The second goal of the thesis:

. To develop a method for model comparison for models for high-dimensional biochem-
ical data

The comparison method for multivariate data is the topic of the Chapter 5. The de-
scription of the method is in the Section 5.1. The method was applied to the problem
of metabolomic fingerprinting and the comparison of the partial least squares discrimi-
nant analysis and the supervised principal component analysis. In a simulation utilising
artificial data we were able to show that the supervised principal component analysis
is better than the partial least squares discriminant analysis in smaller data sets and
problems of classification into more than two classes (see Section 5.2).

The third goal of the thesis:

. To develop a method for the integration of data in biochemical experiments combin-
ing spatial measurements (especially the digital microscopy and laser ablation induc-
tively coupled plasma mass spectrometry analysis) and external sources (specialists
annotations) that will generate a dataset enabling the use of standard statistical and
machine learning methods

The methods for data integration are discussed in general in Section 3.2 of Chapter
3. Section 6.4.2 of Chapter 6 provides description of the method for integration of
biochemical data from LA-ICP-MS imaging and histology scan. The method relies
on the image registration of image silhouettes. The resulting layered data description
enables indexing among the different data types and is suitable for further use by
machine learning and statistical data analysis methods.
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The fourth goal of the thesis:

. To explore the spatial structure of the tissue in serial tissue sections and consequently
suggest a strategy for planning further follow-up experiments on tissue sections that
can bring a better understanding to oncological processes.

The analysis of the spatial properties of the melanoma tissue is in Sections 6.5.2
and 6.5.4 in Chapter 6. The structure of the melanoma was performed by estimating
elastic image transformation between a histological scans of serial tissue sections. We
obtained annotations for each tissue section from the series for the specific tissue zones
and the matching between the original and transformed annotations from other serial
sections. The results indicate that the tissue structure is reasonably consistent for at
least three consecutive tissue sections (the distance of 24 µm).

The fifth and last goal of the thesis:

. To examine the relationships between the spatial distribution of bioactive metals and
the developmental stage of melanoma tissue development

The complete assessment of the relationships between the content of bioactive metals
and melanoma tissue developmental stages in minipigs is described in Chapter 6. By
applying the developed data integration procedure, we obtained the layered descrip-
tion. Through the processing pipeline, we extracted the data set of areas of interest
for statistical modelling. Eventually, we were able to show that there is a significant
difference in zinc content in the development stages of melanoma. The observed av-
erage zinc content in growing melanoma tissue zone and early spontaneous regression
tissue zone compared to the late spontaneous regression tissue zone and fibrous tissue
is significantly higher. This finding supports the hypothesis of the role of the bioactive
metals in the cell cycle.

7.2 Future work
Even though we may think that we performed a thorough analysis of the data, there are
many unanswered questions about the data. The open questions are mainly about the
possible improvements of the presented methods. For one thing, the elastic registration
would benefit from further work. These are mainly the improvements in the transfor-
mation estimation by using sophisticated initialisation based on the landmarks in the
images such as the bristles, or in development of complex criteria for the optimisation
procedure combining the landmarks and the global measures of image similarity.
Another question is the use of the presented procedures on different data types and
chemical and biochemical analyses. Many new biochemical analyses can produce spatial
data that can be analysed by a similar approach. These are the method matrix-assisted
laser desorption ionisation as a mass spectrometry imaging, the spatial imunochemi-
cal methods and the high pressure liquid chromatography with mass spectrometry on
segments of tissue sections. The analysis of the new spatial data cannot be just a
copy-and-paste, most definitely the other methods would require the development of
specific approaches for the new data. The important conclusions from the analyses of
the current data can be used in the planning of the new experiments, especially in min-
imising the manually performed tasks (such as the annotations of histological scans) by
reducing the number of annotated tissue sections.
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7.3 List of author’s publications

7.3.1 Publications related to the topic of the thesis

7.3.1.1 Journal contributions

[J1] Jiri Anyz, Lenka Vyslouzilova, Tomas Vaculovic, Michaela Tvrdonova, Viktor Kan-
icky, Hajo Haase, Vratislav Horak, Olga Stepankova, Zbynek Heger and Vojtech
Adam. Spatial mapping of metals in tissue-sections using combination of mass-
spectrometry and histology through image registration. Scientific reports. 2017,
7, 40196. Available at https://www.nature.com/articles/srep40169.pdf.

Cited 8 times (Scopus). IF (2018) = 4.011

The author contributed to this project by developing the data processing procedure
for the diverse data in this study. The author developed the data integration procedure
for the combination of histological annotations and elemental maps measured by laser
ablation inductively coupled plasma mass spectrometry. The author suggested the
normalisation procedure for the elemental maps that compensates for the uneven
thickness of the biological samples. The author estimated the smoothness of the
elemental maps for selection of sufficiently large tissue zones. The author performed
the statistical analysis of the differences in the content of bioactive metals with respect
to the individual differences among the animals utilising the linear mixed effect model
assessed by non-parametric bootstrap.

[J2] Helena Pelantova, Simona Bartova, Jiri Anyz, Martina Holubova, Blanka Zelezna,
Lenka Maletinska, Daniel Novak, Zdena Lacinova, Miroslav Sulc, Martin Haluzik,
and Marek Kuzma. Metabolomic profiling of urinary changes in mice with
monosodium glutamate-induced obesity. Analytical and bioanalytical chemistry.
2016. 408 (2). 567–578. Available at https://link.springer.com/article/10.
1007/s00216-015-9133-0.

Cited 12 times (Scopus). IF (2018) = 3.286

The author contributed to this project by performing the fingerprinting analysis
of the measured nuclear magnetic resonance spectra with unsupervised principal
component analysis method and the supervised partial least squares method.

[J3] Helena Pelantova, Martina Buganova, Jiri Anyz, Blanka Zelezna, Lenka
Maletinska, Daniel Novak, Martin Haluzik, and Marek Kuzma. Strategy for
NMR metabolomic analysis of urine in mouse models of obesity – from sam-
ple collection to interpretation of acquired data. Journal of pharmaceutical
and biomedical analysis. 2015. 115. 225–235. Available at https://www.
sciencedirect.com/science/article/abs/pii/S0731708515300534.

Cited 10 times (Scopus). IF (2018) = 2.983

The author’s contribution in this project was the processing of the nuclear magnetic
resonance spectra and the assessment of the effects of different measurement strategies
in the monosodium glutamate induced obesity mice model on the results of the finger-
printing experiment.
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[J4] Zbynek Heger, Petr Michalek, Roman Guran, Natalia Cernei, Katerina Duskova,
Stepan Vesely, Jiri Anyz, Olga Stepankova, Ondrej Zitka, Vojtech Adam, and
Rene Kizek. Differences in urinary proteins related to surgical margin status after
radical prostatectomy. Oncology reports. 2015. 34 (6). 3247–3255. Available at
https://www.spandidos-publications.com/or/34/6/3247?text=fulltext.

Cited 3 times (Scopus). IF (2018) = 3.041

The author’s contribution in this project was the analysis of the image electrophore-
ograms by the preprocessing method developed in his diploma thesis. The method
extracts the brightness curves from the electrophoreogram images. These curves and
the relation to disease outcome in the biological samples was modelled by the partial
least squares method.

[J5] Marketa Kominkova, Petr Michalek, Roman Guran, Natalia Cernei, Branislav
Ruttkay-Nedecky, Jiri Anyz, Ondrej Zitka, Olga Stepankova, Jiri Pikula, Vojtech
Adam, Miroslava Beklova, and Rene Kizek. From Amino Acids Profile to Protein
Identification: Searching for Differences in Roe Deer Papilloma. Chromatographia.
2014. 7 (7-8). 609–617. Available at https://link.springer.com/article/10.
1007/s10337-014-2658-0.

Cited 1 time (Scopus). IF (2018) = 1.552

The author’s contribution in this project was the analysis of the image electrophore-
ograms by the preprocessing method developed in his diploma thesis. The method
extracts the brightness curves from the electrophoreogram images. These curves and
the relation to disease outcome in the biological samples was modelled by the partial
least squares method.

[J6] Lenka Vyslouzilova, Sona Krizkova, Jiri Anyz, David Hynek, Jan Hrabeta,
Jarmila Kruseova, Tomas Eckschlager, Vojtech Adam, Olga Stepankova, and Rene
Kizek. Use of brightness wavelet transformation for automated analysis of serum
metallothioneins-and zinc-containing proteins by Western blots to subclassify
childhood solid tumours. Electrophoresis. 2013. 34 (11). 1637–1648. Available at
https://onlinelibrary.wiley.com/doi/abs/10.1002/elps.201200561.

Cited 10 times (Scopus). IF (2018) = 2.754

The author contributed to this project by developing the preprocessing procedures
for the electrophoreograms. This procedure extracted the brightness curves from
the electrophoreogram images. These curves were then described by their wavelet
decomposition, which was subsequently used for the classification of the tumours. This
developed preprocessig methods were also published as the author’s diploma thesis.

[J7] Pavlina Sobrova, Lenka Vyslouzilova, Olga Stepankova, Marketa Ryvolova, Jiri
Anyz, Libuse Trnkova, Vojtech Adam, Jaromir Hubalek, and Rene Kizek. Tissue
specific electrochemical fingerprinting. PLoS ONE. 2012. 7 (11). e49654. Avail-
able at https://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0049654.

Cited 19 times (Scopus). IF (2018) = 2.776
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The author’s contribution in this project was the development of the feature ex-

traction procedure for the Brdička curves utilising local extreme. These features were
further used in the classification of rats’ tissues.

7.3.1.2 Conference contributions

[C1] Jiri Anyz, Lenka Vyslouzilova, Vratislav Horak, Olga Stepankova, Tomas Vac-
ulovic, and Vojtech Adam. Examination of the Spatial Structure of Pigs’
Melanoma in Tissue Sections Based on Histology and Mass Spectrometry. In
World Congress on Medical Physics and Biomedical Engineering 2018. 2019.
255–259.

The authors contribution is the analysis of the spatial structure on the data collected
and processed in [J1]. The author utilised the unsupervised methodology for the
description of the data.

[C2] Jiri Anyz and Olga Stepankova. Using the radial basis function model for the
Brdicka curve fitting. In International Workshop on Computational Intelligence
for Multimedia Understanding (IWCIM). 2015. 1–5.

The author improved the feature extraction method for the Brdička curve presented
in [J7] and [C4] by using the radial basis function to model the peaks in the signal.

[C3] Jiri Anyz, and Olga Stepankova. Visualization of Individuals Characterized by
a Set of Synchronized Signals. In 17th International Conference on Information
Visualisation. 2013. 511–516.

The author’s contribution was the development of visualisation technique based on
the data vases visualisation for the sets of Brdička curves with the aim to eliminate
the inter-individual differences.

[C4] Lenka Vyslouzilova, Vojtech Adam, Andrea Szaboova, Olga Stepankova, Rene
Kizek, and Jiri Anyz. Brdicka curve – A new source of biomarkers. In 2011
IEEE International Conference on Bioinformatics and Biomedicine Workshops
(BIBMW). 2011. 193–198.

The author’s contribution in this project was the development of the feature ex-
traction procedure for the Brdička curves utilising local extreme. These features were
further used in the classification of rats’ tissues.

7.3.2 Publications unrelated to the topic of the thesis

7.3.2.1 Journal contributions

[J8] Jiri Anyz, Eduard Bakstein, Daniela Dudysova, Karolina Veldova, Monika Klikova,
Eva Farkova, Jana Koprivova, and Filip Spaniel. No wink of sleep: Population
sleep characteristics in response to the brexit poll and the 2016 US presidential
election. Social Science & Medicine. 2019. 222. 112–121. Available at https://
www.sciencedirect.com/science/article/abs/pii/S027795361830707X.

IF (2018) = 3.087 The author performed the complete data analysis of the effects
of global events on the sleep of Sleep as Android users. The statistical analysis
utilised non-parametric bootstrap test controlled for several effects such as the national
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differences and the weekly sleep pattern.

[J9] Filip Spaniel, Eduard Bakstein, Jiri Anyz, Jaroslav Hlinka, Tomas Sieger, Jan
Hrdlicka, Natalie Gornerova, and Cyril Hoschl. Relapse in schizophrenia: Defini-
tively not a bolt from the blue. Neuroscience letters. 2018. 669 (). 68–74.
Available at https://www.sciencedirect.com/science/article/abs/pii/
S0304394016302658.

Cited 3 times (Scopus). IF (2018) = 2.173
The author’s contribution in this project was the development and implementation
of the bootstrap test for the longitudinal differences in the reported self-assessments
in the ITAREPS system. The author also modelled the relationships by the negative
binomial mixed effect model of the prodromal timecourse assessed by non-parametric
bootstrap.

[J10] Jan Blaha, Milos Mraz, Petr Kopecky, Martin Stritesky, Michal Lips, Michal
Matias, Jan Kunstyr, Michal Porizka, Tomas Kotulák, Ivana Kolnikova, Bar-
bara Simanovska, Mykhaylo Zakharchenko, Jan Rulisek, Robert Sachl, Jiri Anyz,
Daniel Novak, Jaroslav Lindner, Roman Hovorka, Stepan Svacina, and Martin
Haluzik. Perioperative tight glucose control reduces postoperative adverse events
in nondiabetic cardiac surgery patients. The Journal of Clinical Endocrinology &
Metabolism. 2015. 100 (8). 3081–3089. Available at https://academic.oup.
com/jcem/article/100/8/3081/2830268.

Cited 31 times (Scopus). IF (2018) = 5.605
In this project the author contributed by performing the statistical analysis of the
differences in the patients’ outcomes in surgical operations in the group with and
without perioperative tight glucose control.

[J11] Zdenek Vojtech, Hana Malikova, Lenka Kramska, Jiri Anyz, Martin Syrucek, Josef
Zamecnik, Roman Liscak, and Vilibald Vladyka. Long-term seizure outcome af-
ter stereotactic amygdalohippocampectomy. Acta neurochirurgica. 2014. 156
(8). 1529–1537. Available at https://link.springer.com/article/10.1007/
s00701-014-2126-5.

Cited 11 times (Scopus). IF (2018) = 1.834
The contribution of the author to this project was the statistical assessment of the
observational case study of the outcomes of the lobotomy in patients with severe
epilepsy.
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Appendix A
List of abbreviations

A.1 Biochemical and other measurement methods
CPMG Carr-Purcell-Meiboom-Gill sequence

CT Computational tomography
LA-ICP-MS Laser ablation - Inductively coupled plasma - Mass spectrometry

NMR Nuclear magnetic resonance
NOESY Nuclear Overhauser effect spectroscopy

PET Positron emission tomography

A.2 Biological and biochemical terminology
DNA Deoxyribonucleic acid
ESR Early spontaneous regression
FT Fibrous tissue

GMT Growing melanoma tissue
LOD Limit of detection
LSR Late spontaneous regression

MELiM Melanoma-bearing Libechov Minipig
SR Spontaneous regression

A.3 Machine learning and statistical methods
ANN Artificial neural network

AR Autoregressive model
ARMA Autoregressive moving average model

AUC Area under the ROC
EM Expectation maximisation

GLM Generalised linear model
GLMM Generalised linear mixed effect model
LASSO Least absolute shrinkage and selection operator

LM Linear model
LMM Linear mixed effect model

MA Moving average model
MCMC Markov chain Monte Carlo
MLRT Maximum likelihood ratio test

MODWT Maximum overlap discrete wavelet transform
PCA Principal component analysis
PLS Partial least squares

PLSDA Partial least squares discriminant analysis
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A List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PLSR Partial least squares regression

REMLRT Restricted maximum likelihood test
ROC Receiver operating characteristic

STFT Short-time Fourier transform
SSD Sum of squared differences
SVD Singular value decomposition
WT Wavelet transform
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