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Abstract

The presented work addresses the visual perception of garments applied for their robotic
manipulation. Various types of garments are considered in the typical perception and
manipulation tasks, including their classification, folding or unfolding. Our work is
motivated by the possibility of having humanoid household robots performing these
tasks for us in the future, as well as by the industrial applications. The main challenge is
the high deformability of garments, which can be posed in infinitely many configurations
with a significantly varying appearance.

The thesis deals with several perception sub-tasks included in the robotic folding sce-
nario, where the goal is bringing a heap of unknown crumpled garments to a folded stack.
A custom built dual-arm robot, equipped with consumer grade sensors, is employed,
mimicking reasoning and actions of humans. The thesis addresses namely category
classification of a hanging garment, visual detection and analysis of folds needed for
their removal and pose estimation of a spread garment for its folding. An integration of
the sub-tasks into a state-of-the-art pipeline for the folding scenario is also described.

The pose estimation of a spread garment utilizes a single image. A novel two-stage
segmentation algorithm is proposed. A probabilistic model of the background color is
learned and used for an automated initialization of the existing segmentation method,
which would require a user input otherwise. The extracted garment contour is matched
to a newly developed polygonal model. Its vertices are defined manually, while their
mutual positions are learned from data. Two matching procedures based on a dynamic
programming are introduced, minimizing specific cost functions. Vertices of the fitted
model correspond to landmark points on the garment contour. They are used for folds
planning. The garment pose is checked after each fold by fitting a folded model.

The inverse task is the unfolding of a partially folded garment. The folded parts of
the garment are detected by analyzing its visible surface and assigning the pixels either
to the bottom or top folded layer. The optimum assignment is found by the graph based
minimization of a specific energy function. It combines image and depth information.
Its parameters are determined automatically from data. The folding axis is estimated
by analyzing the shape of a virtually unfolded garment.

The category classification of a hanging garment utilizes 3D point cloud, obtained by
fusing depth maps taken from multiple viewpoints. The cloud is processed with a novel
convolutional neural network. It utilizes a generalized convolution operation defined
over the spatially local neighborhood of each point. The point cloud is repeatedly
subsampled by the network, while size of the neighborhood grows in deeper layers. The
obtained local descriptors are aggregated to a single global feature vector. The network
is trained on a dataset of common 3D objects and transfered to the domain of garments,
in which the convolutional layers extract features for a linear classifier.
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Abstrakt

Tématem předložené práce je strojové vńımáńı textilíı založené na obrazové informaci a
využité pro jejich robotickou manipulaci. Práce studuje několik reprezentativńıch tex-
tilíı v běžných kognitivně-manipulačńıch úlohách, jako je např́ıklad tř́ıděńı neznámých
oděv̊u podle typu nebo jejich skládáńı. Některé z těchto činnost́ı by v budoucnu mohly
být vykonávány domáćımi robotickými pomocńıky. Strojová manipulace s textiliemi
je poptávaná také v pr̊umyslu. Hlavńı výzvou řešeného problému je měkkost a s t́ım
souvisej́ıćı vysoká deformovatelnost textilíı, které se tak mohou nacházet v bezpočtu
vizuálně velmi odlǐsných stav̊u.

Práce se zabývá několika d́ılč́ımi úkoly strojového vńımáńı vycházej́ıćımi ze scénáře
robotického skládáńı haldy zmuchlaných kus̊u oděvu, jejichž typ neńı předem znám. V
experimentech využ́ıváme pro tento účel postaveného dvourukého robotu, vybaveného
běžně dostupnými senzory. Robot s prádlem manipuluje podobným zp̊usobem jako
lidé. V práci se zabýváme předevš́ım klasifikaćı typu viśıćıho oděvu, detekćı sklad̊u
na částečně složeném kusu oděvu nutnou pro jeho rozložeńı a odhadem konfigurace
rozloženého oděvu pro jeho skládáńı. Popisujeme také integraci těchto d́ılč́ıch úloh do
unikátńıho funčńıho celku.

Vstupem metody pro odhad konfigurace rozprostřeného kusu oděvu je jediný sńımek,
který je segmentován ve dvou kroćıch. Využ́ıváme naučeného pravděpodobnostńıho
modelu barvy pozad́ı slouž́ıho k automatické inicializaci jinak manuálńı segmentačńı
metody. Takto nalezený vněǰśı okraj je poté sĺıcován se speciálně vyvinutým poly-
gonálńım modelem tvaru oděvu. Zat́ımco vrcholy modelu definujeme ručně, jejich
vzájemná pozice je naučena z dat. V práci představujeme dvě r̊uzné metody pro ĺıcováńı
modelu na obrys oděvu. Obě jsou založeny na minimalizaci určité cenové funkce za po-
moci dynamického programováńı. Vrcholy modelu, odpov́ıdaj́ıćı zvoleným význačným
bod̊um na vněǰśım obrysu daného typu oděvu, jsou následně využity pro plánováńı
sklad̊u. Konfigurace oděvu je kontrolována po každém jednotlivém skladu na základě
ĺıcováńı částečně složeného modelu.

V jistém smyslu opačnou úlohou je rozkládáńı částečně složeného oděvu. Detekce jed-
notlivých sklad̊u je založena na anaýze viditelné části povrchu oděvu. Jednotlivé obra-
zové body jsou přǐrazeny bud’to do spodńı, nebo do svrchńı přeložené vrstvy. Optimálńı
zařazeńı obrazových bod̊u do vrstev je formulováno jako grafová úloha minimalizace
určité cenové funkce, která zohledňuje obrazovou i hloubkovou informaci. Parame-
try funkce odhadujeme automaticky z pozorovaných dat. Oděv je následně několikrát
virtuálně rozložen s ćılem identifikovat skutečnou osu skladu.

Vstupem metody pro rozpoznáńı typu viśıćıho oděvu je množina 3D bod̊u. Body jsou
zrekonstruovány z hloubkových dat zachycených z mnoha r̊uzných pohled̊u. Množina
bod̊u je poté zpracována konvolučńı neuronovou śıt́ı. Ta využ́ıvá nově vyvinuté oper-
ace konvoluce definované na okoĺı jednotlivých bod̊u. Velikost okoĺı v hlubš́ıch vrstvách
roste, zat́ımco počet bod̊u postupně snižujeme pomoćı náhodného vzorkováńı. Lokálńı
př́ıznaky popisuj́ıćı okoĺı bod̊u jsou následně zkombinovány do globálńıho vektoru.
Parametry śıtě uč́ıme na velké databázi obecných 3D objekt̊u. Při rozpoznáváńı oděv̊u
konvolučńı vrstvy slouž́ı k extrakci př́ıznak̊u vstupuj́ıćıch do lineárńıho klasifikátoru.

v





Authorship

I hereby certify that the results presented in this thesis were achieved during my own
research in cooperation with my thesis advisor prof. Ing. Václav Hlaváč, CSc. and my
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1. Introduction

The proposed work deals with the visual perception of garments using conventional
cameras and depth sensors. The perception is an important component of the robotic
systems which are able to manipulate garments autonomously. It is crucial for the
reasoning, decision making or motion planning. It comprehends various tasks, including
the localization of a garment in the working area of a robot, classification of its category,
pose estimation or detection of possible grasping points.

1.1. Challenges

Both the visual perception and robotic manipulation of garments are challenging tasks.
The challenges are due to the softness of materials used, which makes the garments
highly deformable. The visual appearance of a garment is not fully determined by
the viewpoint selection and illumination, as for rigid objects, but also by its current
configuration (Fig. 1.1). Moreover, the space of possible configurations is infinite. The
variability of appearance is even significantly higher than for the articulated objects con-
sisting of several movable rigid parts. The garments are typically heavily self-occluded,
especially when posed in a crumpled state (Fig. 1.1). It may be therefore impossible to
observe some parts important for their understanding.

The robotic manipulation of garments is a challenging task as well. Due to folds
and wrinkles, it is problematic to approach and grasp the garment reliably. Since the
garment is deforming while being grasped, it is difficult to adjust the grasping force.
Once the garment is held and manipulated, it keeps deforming. It is not only because of
the manipulation, but also due to the gravity, stretching or friction. It is therefore very
challenging to track individual parts of the garment under manipulation. Moreover,
care must be taken to avoid tearing or ripping it.

Existing methods, including those described in the proposed work, employ a prag-
matic approach to deal with the aforementioned challenges. The manipulation task is
usually split into several simpler steps. Each step consists of perception, followed by
reasoning and actual manipulation. This repeated perception-action loop is called an
active perception. The existing perception algorithms are usually rather reactive, using
only a very limited amount of information from the previous steps.

Figure 1.1. Various configurations of the soft towel caused by its deformation. Notice the
heavy self-occlusions present in the folded and crumpled states.
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1. Introduction

Figure 1.2. [Yamazaki et al., 2012] believe that the various daily housekeeping tasks could be
performed by humanoid robots in future. c© 2012 IEEE

No advanced model of the garment is used that would be tracked during the ma-
nipulation and updated as more information is gathered. We intended to build such a
complex model originally that would combine rather certain information about already
seen parts of the garment with hypotheses about the unseen. However, we learned that
it would be very difficult to build and maintain it. It is also probably not necessary for
accomplishing the standard manipulation tasks described in the thesis. The advanced
qualitative modeling thus remains an open challenge.

1.2. Motivation

There is a serious problem with the aging society [Yamazaki et al., 2012]. It is caused
by an increasing life expectancy and decreasing birthrate. [Yamazaki et al., 2012] claim
that 20% of Japanese population was older than 65 years in 2005. This ratio is expected
to double to 40% by 2055. Some of these senior people may suffer by reduced mobility.
They may not be able to perform usual household activities such as cooking, washing
dishes, laundering, ironing, clothes folding, vacuuming, sweeping etc. Some of them may
be unable to get dressed or to have a bath. Quality of their lives can be significantly
improved by personal assistance.

[Yamazaki et al., 2012] believe that the assistance could be provided by robots in the
future (Fig. 1.2). They will probably use general manipulators resembling human hands
to perform various tasks and operate common house facilities. They will be required
to deal with garments while laundering, ironing or assisting with dressing up. They
will act mostly autonomously, but they might also collaborate with humans on some
tasks. These household robots will be also used by people who do not require personal
assistance, but do not want to spent their free time by housekeeping.

There is a demand for robots manipulating highly deformable objects in industry
as well. In contrast to general purpose household robots, the devices are constructed
specifically for one particular task. The industrial manipulation tasks are performed
repetitively and in a well-defined environment, which brings a significant simplification.
On the other hand, the industrial robots are expected to operate with nearly a perfect
reliability and usually very quickly.

2



1.3. Task formulation

An example of the industrial manipulation with garments are laundry companies,
which supply hotels and hospitals with clean towels or bedding. Many of them use
partially automated lines1, however, there are still tasks that need to be performed by
humans. They include inputting dirty garments to washing machines or setting already
washed garments to mangling machines. Since working conditions are often unhealthy
because of dust, heat and humidity, there is a demand for fully automated lines, as
proposed by [Hata et al., 2008]. Another possible application are fully automated in-
dustrial sewing machines2.

The aforementioned applications have attracted the attention of scientific commu-
nity in robotics during the last decade. The related publications are described in
Chap. 2. Robotic manipulation of garments has recently been a topic of several in-
ternational research projects, including I-DRESS3 and Clothes Perception and Manip-
ulation (CloPeMa)4. The author of the proposed work was involved in the latter.

CloPeMa was an international project funded by European Commission in years
2012–2015. Four academic institutions and one industrial partner were involved: Cen-
tre for Research and Technology Hellas (coordinator), Czech Technical University in
Prague, University of Glasgow, Universita Degli Studi Di Genova and Neovision s.r.o.
The goal of the project was to advance the state-of-the-art in autonomous perception
and manipulation of various kinds of fabrics and garments. A dual-arm robotic platform
was developed by the project consortium that we use extensively for the experimental
evaluation in this thesis.

The research presented in this thesis was started during the project CloPeMa. The
author was responsible for the visual perception utilized in the folding task, which is
described in Chap. 3. Later it was integrated into the unfolding and folding pipeline
described in Chap. 4. The author’s research continued after the successful finish of the
project CloPeMa. Chap. 5 describes a method for detecting layers of a folded garment.
Chap. 6 deals with the classification of hanging garments.

1.3. Task formulation

The vast majority of the existing scientific works, dealing with the robotic manipulation
of garments, focus on one or more sub-tasks in processing a heap of unknown garments.
There are basically two possible scenarios. The first scenario is sorting of the garments
based on their color or material properties to several groups that need to be laundered
separately. The second scenario is folding the heap of crumpled garments (Fig. 1.3).
This is typically needed after laundering when the garments are taken out of the dryer.

Dual-arm robots are usually used for the manipulation of garments, resembling hu-
man actions. The arms are mounted grippers that are able to grasp a garment. Two
arms make it possible to hold the garment at two different points at the time. The
garment can be stretched by moving the arms away. Most importantly, it is possible
to release and regrasp the garment with one of the grippers while holding it with the
other. This maneuver is utilized mainly during the unfolding.

Both sorting and folding scenarios share similar sub-tasks. Single garment needs to
be isolated from the pile at first to be processed (Fig. 1.3a). A suitable grasping point
must be chosen so that only one garment will be held reliably. Since there is not enough

1Jensen-Group: http://www.jensen-group.com
2SoftWear Automation: http://www.softwearautomation.com
3I-DRESS http://www.i-dress-project.eu
4CloPeMa: http://www.clopema.eu
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1. Introduction

a) Grasping b) Recognition and unfolding c) Unfolded state

d) Flattening e) Folding f) Final folded state

Figure 1.3. The folding scenario consists of several sub-tasks. a) The crumpled garment is
grasped and lifted up. b) Its category is recognized, pose estimated, the garment is unfolded
and c) placed on a table. d) The remaining wrinkles are flattened. e) The garment pose is
estimated and it is folded. f) The scenario ends with the fully folded garment.

information about the garments included in the pile at that moment, the pile is usually
segmented based on texture. The grasping point is chosen based on specific geometrical
properties, most often detected wrinkles or folds that are suitable for grasping.

The isolated garment is perceived with a camera, depth sensor or stereo rig to be
classified prior to the further manipulation (Fig. 1.3b). The usual sub-task is classi-
fication of its category, e.g. pants, shorts, T-shirt or towel. Other classification tasks
comprehend identification of a particular garment known in advance or recognition of
various properties, including a color, texture and material. Additional feature domains
may be used, including force-torque and tactile sensors. The garment can be manipu-
lated prior to and during the classification to gain more information. This approach is
known as an active perception.

The sorting scenario usually ends up with placing the sorted garments into separate
buckets. The folding scenario continues with unfolding of the hanging garment, utilizing
its known category. The garment can be unfolded either completely or only partially
in this stage. In the former case, the goal is to hold the garment at two predefined
locations, e.g. corners of a towel sharing its shorter side or shoulders of a T-shirt
(Fig. 1.3c). In the latter, the goal is to disentangle the garment and bring it to a
simpler configuration. The perception is needed to detect the desired grasping points,
sometimes based on the complete pose estimation.

The fully or partially unfolded garment is placed on a table. The next sub-task is
removal of wrinkles on the garment surface, usually achieved by pulling it sideways

4



1.4. Contribution

while holding it with the other arm (Fig. 1.3d). The related sub-task is detection and
unfolding of the folds remaining from the previous step.

The last sub-task of the folding scenario is folding of the spread garment laying on
a table (Fig. 1.3e). Its category and pose must be estimated if not known from the
previous stages. The garment is folded iteratively, imitating the approach used by
humans, e.g. a towel is folded over its middle repeatedly or sleeves of a T-shirt are
folded independently before folding the whole T-shirt over (Fig. 1.3f).

There are also tasks not involved directly in any of the considered scenarios. They
include robotic ironing or detection of a garment tossed in a room, which is useful
for collecting dirty garments to be laundered. The related research topic is also the
robotic dressing assistance, where the safety of the involved human and the potential
human-robot collaboration bring additional challenges.

The proposed work deals mainly with three sub-tasks related to the folding scenario:
folding of a spread garment (Chap. 3), unfolding of a partially folded garment (Chap. 5)
and category classification of a hanging garment (Chap. 6).

1.4. Contribution

The thesis deals with the perception of garments applied in various robotic manipulation
tasks. All the author’s original work relates to the perception itself, not to the actual
robotic manipulation. The main contributions can be summarized as follows:

• Segmentation method for objects with known background. We propose a
fully automated method for segmenting an unknown object having a background
with known statistical color properties [Stria et al., 2014a]. The background color is
modeled with Gaussian mixture model (GMM) learned from data. The model is used
for the initial segmentation, assuming that the background pixels are assigned a high
likelihood, whereas object pixels are less likely in GMM. The obtained segmentation
is used for initializing GrabCut algorithm instead of requiring a user input.

• Method for pose estimation of a polygonal object. We introduce an algorithm
for fitting a model to an object which has approximately polygonal shape. Slight
deformations are acceptable. The object contour is approximated by a polygon at
first. The simplified contour is matched a polygonal model. The model vertices are
defined manually, whilst their mutual positions are learned from data. The matching
is formulated as a minimization of a specific cost function comprehending terms of two
[Stria et al., 2014a] or three [Stria et al., 2014b] different types. The minimization is
solved by dynamic programming.

• Integration of the folding method into CloPeMa pipeline. The method for
estimating pose of a spread garment and its folding was integrated into CloPeMa
pipeline for the folding scenario [Doumanoglou, Stria et al., 2016], enabling to bring
a heap of unknown crumpled garmens to a folded state. To the best of our knowledge,
it is the first fully working pipeline for the folding scenario that is able to deal with
various types of garments.

• Method for detection of individual stacked layers of folded garment. The
problem of detecting folded layers is formulated as pixels labeling, with the labels
corresponding to individual layers [Stria et al., 2017]. The method combines image
and depth information and encodes it into a specific energy function. It is assumed
that the top layer is closer to the camera than the bottom one and that a boundary
of the layers is visible in the image. The optimum labeling minimizing the energy is
found using graph cuts.

5
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• Generalization of convolution for unstructured point clouds. A standard
discrete convolution is defined for vectors or grids with a regular structure, which
determines a local neighborhood of each point. We generalize the convolution for
sets of unordered 3D points [Stria and Hlaváč, 2018]. The local neighborhood of
each point is formed by its spatially closest neighbors ordered by distance.

• Neural network architecture for point clouds classification. The aforemen-
tioned generalized convolution is used as a building block in the convolutional neural
network (CNN) for classification of 3D point clouds [Stria and Hlaváč, 2018]. Our
architecture utilizes techniques analogous to those known from CNNs for image clas-
sification. Size of the local neighborhood grows in the deeper layers, increasing sizes
of the receptive fields. The point cloud is repeatedly subsampled by the network,
decreasing the output size in the deeper layers. The network is trained on common
3D objects and transferred to the domain of hanging garments.

1.5. Outline

The presented thesis is divided into seven chapters. The original contributions of the
author are described mainly in Chap. 3, 5 and 6. Their contents are partially indepen-
dent because they deal with various sub-tasks related to the folding scenario, described
in Chap. 4. However, the later chapters reuse some methods from the previous chap-
ters. They are therefore ordered chronologically, as the described methods have been
developed, instead of ordering them based on the folding scenario. We humbly suggest
the reader to follow the intended order.

• Chap. 2 describes the state-of-the-art in machine perception and robotic manipu-
lation of garments. It concerns all major sub-tasks related to the folding scenario,
including those not covered by our own work. Chap. 2 also summarizes methods for
applying CNNs on various types of 3D data, focusing mainly on 3D point clouds,
which provides the context for Chap. 6.

• Chap. 3 deals with pose estimation of a garment with the application in its robotic
folding. It describes the method for the garment segmentation, its contour extraction
and simplification. The polygonal model of the garment contour is defined and two
dynamic programming based algorithms are proposed for its matching to the per-
ceived contour. The method is applied both for the initially spread garment and for
checking its pose after individual folds. The performance is evaluated experimentally
on the dataset containing garments of various categories.

• Chap. 4 describes integration of the folding method into the CloPeMa pipeline for the
folding scenario. The other modules of the pipeline developed by the CloPeMa con-
sortium are summarized, including methods used for grasping, classification, hanging
pose estimation and flattening of garments. The experimental results are provided,
including performance evaluation of the robotic folding.

• Chap. 5 focuses on automated folds detection and their robotic unfolding. The gar-
ment is segmented from its background using the method proposed in Chap. 3. Its
surface is segmented into regions corresponding to the individual folded layers. Once
the layers are detected, the possible folding axes are generated and the garment is un-
folded virtually to select the correct axis. The folds are removed in a greedy manner
by a cooperative manipulation of both robotic arms. The performance is evaluated
on a dataset of folded garments and in real robotic experiments.

• Chap. 6 proposes an alternative strategy to the category classification of hanging
garments used in the CloPeMa pipeline. Depth maps capturing the garment from
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1.5. Outline

different viewpoints are fused into a 3D point cloud. A single global feature vector
is extracted from the point cloud with a novel CNN architecture. The feature vector
is classified with a support vector machine (SVM). The classification accuracy is
evaluated on publicly available datasets of hanging garments.
• Chap. 7 concludes the thesis. The achieved results are summarized and possible

future extensions are proposed.
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2. Related work

The majority of existing works, which deal with machine perception and robotic ma-
nipulation of garments, focus on one or more sub-tasks from the folding or sorting
scenario. The scenarios and sub-tasks are defined in Sec. 1.3. This chapter summarizes
the related works. Contributions of others are organized according to the mentioned
sub-tasks into Sec. 2.1–2.6. Sec. 2.7 reviews the available methods for classification and
semantic segmentation of 3D data using convolutional neural networks (CNNs).

2.1. Grasping point estimation and grasping

The first sub-task is grasping of a garment tossed on a flat surface, usually a table. There
can be only a single garment or whole heap of garments from which a single garment
needs to be isolated. The garment category is usually neither known in advance, nor
is attempted to be recognized prior to grasping because of heavy deformations. The
grasping is therefore uninformed, usually relying on geometric features extracted from
the visible garment surface.

Robotic manipulation of garments was pioneered by [Hamajima and Kakikura, 1998],
who describe, on a rather conceptual level, the whole pipeline for clothes folding sce-
nario, as defined in Sec. 1.3. The later work [Hamajima and Kakikura, 2000] focuses on
grasping a single garment from a heap perceived from above with a camera. An image
region covered with the heap is provided manually. The heap is segmented recursively
into sufficiently large regions of uniform color or texture. Centers of the regions form
candidate locations for grasping.

[Willimon et al., 2011a] also segment the heap into regions of uniform texture using
a graph-based method [Felzenszwalb and Huttenlocher, 2004]. Surface of the heap is
reconstructed from stereo images and used to compute the average height of each region
above the table. The geometric center of the highest region is grasped by the robot
(Fig. 2.1). The fulfillment of grasping is checked by subtracting two images of the arm,
before and after the operation. If not successful, it is repeated closer to the table, which
is an example of simple but robust approach.

[Ramisa et al., 2012] assume that there is only a single garment on the work table.
They combine a color image and depth map from a range sensor to detect highly wrin-
kled parts suitable for grasping. The wrinkledness is measured for each individual input
patch based on the scale-invariant feature transform (SIFT) [Lowe, 2004] and depth
descriptors. The patches are classified by the logistic regression and support vector
machine (SVM) [Cortes and Vapnik, 1995] learned from graspable and non-graspable
examples. [Ramisa et al., 2013, Ramisa et al., 2016] introduce the Fast Integral Normal
3D (FINDDD) descriptor developed specifically for textiles, improving the performance
over the generic descriptors. FINDDD is based on histograms of quantized normals es-
timated from a depth map.

[Yamazaki, 2014] detects the potential hemlines and corners of a tossed towel. They
search for the discontinuities in the input depth map and examine local geometry of such
discontinuous parts. The goal is to grasp the towel with both arms near neighboring
corners sharing an edge and unfold it directly.
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2. Related work

Figure 2.1. [Willimon et al., 2011a] segment the heap of garments based on texture informa-
tion, compute the average height of each region above the table and grasp the geometric
center of the highest region (red dot). c© 2011 IEEE

[Cusumano-Towner et al., 2011] find the outer boundary of a crumpled garment by
segmenting it from a background and grasp it from a side. [Foresti and Pellegrino, 2004]
address the detection of grasping points on furs. After the fur regions are segmented,
their skeleton is extracted and used to locate narrow branches, which are good candi-
dates for stable grasping. [Hata et al., 2008] and [Bersch et al., 2011] choose the highest
point of the heap as the grasping point, while [Maitin-Shepard et al., 2010] choose the
central point. [Kita et al., 2011] grasp the vertically oriented parts of a garment that
are located high enough above a table. [Alenyà et al., 2012] benchmark various grasping
strategies. They also describe common grasping concepts and identify possible issues.

2.2. Classification and pose estimation of hanging garments

Once the garment has been grasped and lifted up, its category must be classified and
pose estimated prior to the manipulation. The possible categories comprehend e.g.
pants, shorts, T-shirts or towels, which need to be unfolded and folded in different
ways. The garment is usually held at a single point and hanging down because of
gravity, which reduces the space of its possible configurations. The second arm can be
used for its active manipulation, e.g. to regrasp it at different point or spread it. The
existing methods can be split into the model-based ones, which fit a garment model
to perceived data, and learning-based ones, which extract features from perceived data
and learn a classifier on top of them.

The aforementioned model-based approach is employed by [Kita and Kita, 2002].
They use a planar mass-spring model [Lander, 1999] of a pullover, whose approximate
size is known in advance. The virtual model is spread, grasped for each of its 20 vertices
and lifted up in a physics simulator, obtaining 20 different hanging poses. Silhouette of
the observed pullover is then overlaid over all simulated poses to find the best matching
one. [Kita et al., 2004a, Kita et al., 2004b] use a virtual model of pants in addition to
the pullover. This enables category recognition by finding the best match over both
models and all simulated poses. The matching is improved by observing the garment
from two different angles and checking the consistency of individual pose estimations.

[Kita et al., 2009] reconstruct a 3D point cloud of the observed garment using a
trinocular camera system. The original mass-spring models are replaced with 3D mod-
els simulated in the professional animation software Maya1. The shape of the virtual
hanging model is adjusted with two types of forces before it is matched to the point
cloud. The internal forces preserve the model shape by keeping the distance between

1Autodesk Maya: http://www.autodesk.com/products/maya
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2.2. Classification and pose estimation of hanging garments

Figure 2.2. [Li et al., 2014b] reconstruct 3D model of a perceived garment by fusing depth
maps from multiple viewpoints. It is matched to virtual models, which are simulated hanging
from different grasping points. c© 2014 IEEE

vertices, which simulates the elasticity and flexural rigidity. The external forces compre-
hend the gravitation force and attraction to the closest point from the cloud. Once the
model is adjusted, its similarity with the point cloud is computed as the overlap ratio of
their 2D projections. The perception was further improved by an active manipulation
of the hanging garment [Kita et al., 2010], including its rotation and spreading.

[Li et al., 2014a] combine the model and learning-based approach. They build SVM
classifiers of category and pose, using bag-of-words (BoW) [Lazebnik et al., 2006] model
on top of quantized SIFT features extracted from depth maps. The classifiers are
trained on an artificial dataset of hanging garments simulated in Maya. An unknown
real garment is rotated around its vertical axis and perceived from 150–200 viewpoints,
each of them classified independently. The final classification is obtained by a major-
ity voting. [Li et al., 2014b] speed up the method by merging the depth maps from
individual viewpoints to a volumetric representation (Fig. 2.2). The reconstructed un-
known garment is classified to the closest simulated virtual model with respect to the
weighted Hamming distance. [Li et al., 2015a] further register the real garment to the
best matching model. The registration consists of a rigid transformation followed by a
non-rigid deformation of the virtual model. Estimation of the non-rigid deformation is
formulated as an energy minimization problem.

[Willimon et al., 2011a] employ the active perception approach to classify a garment
category. The unknown garment is repeatedly grasped and lifted up, two images are
taken from different viewpoints and the garment is dropped again. The procedure
is repeated 10 times, obtaining 20 images of the hanging garment held at random
points. Each image is matched to a dataset of annotated templates to find its nearest
neighbor. The similarity measure combines global features extracted from silhouettes
with information about Canny detected edges [Canny, 1986].

[Willimon et al., 2012] register the deformable mesh model of a garment to the se-
quence of RGBD images capturing a garment being held and manipulated by a human.
The registration is based on minimizing the weighted sum of several terms, using a semi-
implicit iterative algorithm [Kass et al., 1988]. The sum comprehends the smoothness
term capturing the internal energy of the mesh, or the terms responsible for keeping the
correspondences between the mesh and RGBD data. [Willimon et al., 2013a] improve
the method by building the initial 3D mesh automatically from the first RGBD image
in the sequence. They also modify the energy function.
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Figure 2.3. [Gabas et al., 2016] classify garment categories with CNN, whose input is a depth
map. The classifications are aggregated over multiple viewpoints. c© 2016 Springer

[Bersch et al., 2011] deal with the pose estimation of a hanging T-shirt whose surface
is covered with fiducial markers. The surface is reconstructed from multiple images and
represented with a triangulated mesh, which enables to measure geodesic distances of
the markers. It is assumed that the garment pose is fully determined by the currently
grasped mesh vertex. The grasped vertex is estimated with naive Bayes classifier, using
the geodesic and measured Euclidean distances of the markers as features.

[Doumanoglou et al., 2014a] train a Random Forest (RF) [Breiman, 2001] on sim-
ple features extracted from a depth map, including depth difference of two points or
curvature estimated in a selected point. The RFs serve both for category classifica-
tion of a hanging garment and for predicting the next grasping point on its surface
during unfolding. The classifier is used in the partially observable Markov decision pro-
cess (POMDP) [Sondik, 1978] framework that decides whether the hanging garment
should be rotated and perceived from another viewpoint for more informed decision.
[Doumanoglou et al., 2014b] omit the POMDP framework and incorporate the next
best view selection directly to the decision forest, called Active Random Forest (ARF).

Instead of using handcrafted features, there have been attempts recently to learn
the whole classification pipeline in the form of a CNN, whose input is a depth map.
[Mariolis et al., 2015] use networks comprising 3 convolutional and 3 fully connected
layers, hyperbolic tangent activations and L2 norm pooling. There is a single net-
work for the category classification and additional category specific networks, which
classify the currently grasped point from the predefined set of points on the garment
surface. The classifications are aggregated over multiple viewpoints by majority vot-
ing. The networks are trained on 643k synthetic depth maps simulated in Blender2 and
4.8k real depth images. [Kampouris et al., 2016] combine the proposed CNN with the
aforementioned ARF [Doumanoglou et al., 2014a] to improve the category classification
accuracy.

[Gabas et al., 2016] classify garment categories with a network based on AlexNet
[Krizhevsky et al., 2012], comprising 4 convolutional and 2 fully connected layers, max-
pooling, rectified linear unit (ReLU) activations and dropout (Fig. 2.3). The network
is trained on 4.3k real depth maps, formed by sequences of 12 maps depicting the same
hanging garment from different viewpoints. The classification accuracy is 83% for single
view and 92% while voting over all 12 viewpoints. [Corona et al., 2018] use a hierarchy
of these networks to detect the grasping points for unfolding. The detection is posed
as the regression of a point coordinates and its visibility, optimizing a loss function
independent on the grasps ordering. Training data were extended by 60k artificial
samples, which improved the classification accuracy to 97%.

2Blender: http://www.blender.org

12

http://www.blender.org


2.3. Classification and pose estimation of tossed garments

Figure 2.4. [Sun et al., 2016] manipulate the garment actively in order to classify its category
from multiple configurations. c© 2016 IEEE

2.3. Classification and pose estimation of tossed garments

The category classification of a randomly tossed garment, found in a crumpled state, is
even a more challenging problem than classification of a hanging garment. The majority
of the existing methods are learning-based, usually using SVM classifier on top of the
features extracted from images and depths. Matching a model to a crumpled garment
would be very difficult. The methods for pose estimation are rather rare, compared to
the case of hanging garments described in Sec. 2.2.

[Willimon et al., 2013b] use a multi-level classification architecture. The low-level
component combines the local SIFT image features, FPFH [Rusu et al., 2009] depth
features and multiple global histogram based features. The feature vectors are classified
with the binary SVM classifiers to decide about 27 mid-level characteristics, including
presence of a collar or round neck, stripedness, material etc. These characteristics,
together with learned masks weighting their importance for various categories of gar-
ments, are then used for the high-level classification.

[Sun et al., 2016] employ the active perception approach (Fig. 2.4). The perception
utilizes features extracted from a depth map produced by a stereo head, which provides
a better resolution than standard range sensors. The garment is grasped, shaken or
flipped, and tossed again after each perception stage, so that its configuration changes
before the next perception. The classification confidences are modeled, tracked and
updated with a Gaussian process. On contrary, [Sun et al., 2017] classify the garment
from a single depth map. They combine many local and global features, including shape
index [Koenderink and Van Doorn, 1992], local binary patterns [Ojala et al., 1996] and
features designed specifically for this task. The original Gaussian process based classifier
is compared to RF and SVM. The latter provides a superior performance if the radial
basis function (RBF) [Friedman et al., 2001] kernel is used.

[Ramisa et al., 2016] use their own FINDDD descriptor. It is based on quantized
normals estimated from a depth map, as described in Sec. 2.1. They build a BoW
model on top of FINDDD and classify it with an SVM model using the linear and RBF
kernels. The same pipeline is used for the identification of wrinkles and collars.

[Yamazaki and Inaba, 2013] deal with the identification of a particular crumpled gar-
ment from a set of garments varying in category and material. A grayscale image of the
garment is filtered with multi-scale and multi-orientation Gabor filters (Fig. 2.5). It
is assumed that the low frequency responses correspond to wrinkles, whereas the high
frequencies correspond to contours and overlaps. Their geometric properties are mea-
sured, discretized and accumulated into histograms. The concatenated histogram forms
a global descriptor that is classified with SVM using the RBF kernel. [Yamazaki, 2017]
extend the method by segmenting the garment into superpixels at first, whose features
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a) Input image b) Maximum magnitude c) Maximum orientation

Figure 2.5. [Yamazaki and Inaba, 2013] filter the input image with multi-scale and multi-
orientation Gabor filters to detect low-frequency wrinkles and high-frequency contours and
overlaps, as well as their orientations. c© 2013 IEEE

are described locally. Each superpixel is classified separately. It is therefore possible to
segment a whole heap containing multiple garments into individual items.

[Wang et al., 2011] deal with configuration recognition and pairing of socks. The local
texture of a sock is described with the local binary patterns (LBP) [Ojala et al., 1996]
and MR8 filter responses [Varma and Zisserman, 2005]. The local shape is described
with the histogram of oriented gradients (HOG) [Dalal and Triggs, 2005]. The local
descriptors are classified with SVM to detect specific parts of the sock, e.g. a heel
or toe. The detected parts are combined in a global shape model [Miller et al., 2011],
which determines the overall configuration. The local texture and shape descriptors
are also utilized to match pairs of socks together. Two pairing strategies are compared:
greedy matching and globally optimal pairwise matching.

2.4. Unfolding of hanging garments

The unfolding of a garment, which is held hanging under the gravity, is the next step
in the pipeline. The majority of the methods assume that the garment category and
pose are already known from the previous step, as described in Sec. 2.2, which is needed
for selection of the manipulation strategy. The goal of the unfolding is usually to hold
the spread and hanging garment at predefined locations, e.g. shoulders for a T-shirt
or neighboring corners for a towel. However, there are also methods approaching the
unfolding without knowing the garment category and in pure geometric manner, based
on the detected folds and hemlines.

[Hamajima and Kakikura, 1998, Hamajima and Kakikura, 2000] propose a method
for regrasping a lifted garment by its hemlines. Detection of the hemlines is based on
the observed shadows and outer shape of the hanging garment. The hemlines should
arguably form a convex outline. The desired goal is to hold the garment at two different
hemlines or at two endpoints of the same hemline. Then the garment can be at least
partially unfolded by stretching it out. [Kaneko and Kakikura, 2001] match the outline
of a stretched garment to three basic template shapes. Each template is accompanied
with a decision tree for recognizing the category and pose of the garment.

[Maitin-Shepard et al., 2010] focus on unfolding of a hanging towel (Fig. 2.6). The
hemlines are assumed to appear as the outer contours that have significant depth discon-
tinuities in depth maps taken from various viewpoints. The hemlines are fitted variously
angled corners with the random sample consesus (RANSAC) [Fischler and Bolles, 1981].
The corners detected in images are verified by fitting a 3D plane to the reconstructed
point cloud. The towel is regrasped several times until two neighboring corners are
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Figure 2.6. [Maitin-Shepard et al., 2010] unfold a towel in a series of manipulations, including
untwisting, utilizing information about the detected hemlines and corners. c© 2010 IEEE

held. It is then untwisted by stretching it out and rotating the grippers, pulled over
the edge of a table and folded.

[Cusumano-Towner et al., 2011] improve the method and extend it for various types
of garments. The garment is manipulated to an arbitrary recognizable configuration at
first by regrasping its lowest point repeatedly. The sequence of manipulations is modeled
with the hidden Markov model (HMM). The garment is modeled as a 3D triangulated
mesh. The currently grasped mesh vertices and the garment category form the hidden
states of HMM. Once the garment category and partially unfolded pose are known, the
garment is laid on a table and unfolded in another series of manipulations.

[Triantafyllou et al., 2016] unfold a hanging garment partially by grasping it at two
different outline points, without classifying its category. The garment is then laid down
on a table and fully unfolded [Mariolis and Malassiotis, 2015], as described in Sec. 2.5.
First, discontinuities in the input depth map are detected as Canny edges [Canny, 1986].
Junctions of the edges form candidates for folds appearing on the garment outline. They
are pruned with several heuristic rules. The most convenient point on the outline near
the fold is then grasped, optimizing a position and rotation of the gripper.

[Gabas and Kita, 2017] focus on localizing hemlines of a hanging towel, which are
suitable grasping locations for its unfolding. The input depth map is processed with
the Canny detector [Canny, 1986] at first. It provides the desired edges aligned with
the hemlines, but also edges due to the folds, wrinkles and noise. The hemline edges are
distinguished with a CNN classifier, which is fed with square patches centered at the
detected edges. The most horizontal hemline is grasped and pulled sideways to open
the towel, bringing it to a more unfolded state.

2.5. Unfolding and flattening of laying garments

Several methods deal with unfolding of garments placed roughly flat on a table surface.
It is assumed that the garment is placed in a configuration that could be reached by
folding a fully unfolded garment once or more times over arbitrarily located and oriented
folding axes. It is further assumed that the folding axes form straight line segments
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Figure 2.7. [Mariolis and Malassiotis, 2015] extract the polygonal contour of a folded garment
(green) and match it partially to the template of an unfolded garment (blue). The template
is folded virtually over the estimated folding axis (red). c© 2015 Springer

on the outer boundary of the garment. In practice, such a folded configuration can be
reached either by robotic folding, as described in Sec. 2.6, or by unfolding the hanging
garment only partially at first, e.g. using the approach by [Triantafyllou et al., 2016]
described in Sec. 2.4, and then placing it on a table.

[Mariolis and Malassiotis, 2013] match templates of unfolded garments to images of
folded garments (Fig. 2.7). The garment contour is extracted and approximated with
a polygon, sides of which form candidate folding axes. Remaining part of the contour
is matched partially to all unfolded templates, providing hypothesis on the location
of the folding axis for each template. The template is then folded virtually over the
estimated axis and matched to the observed contour using the inner distance shape
contexts [Ling and Jacobs, 2007]. The best matching template determines both the
configuration and category. In addition, [Mariolis and Malassiotis, 2015] also unfold
the contour virtually and register it to the unfolded template, while allowing some
deformations of the template.

[Estevez et al., 2016] propose a garment agnostic approach to unfolding from an
RGBD input. The background of a known color is segmented with a simple thresh-
olding. Part of the depth map corresponding to the garment is segmented with the
watershed algorithm [Šonka et al., 2014] into several regions, which correspond to in-
dividual folded layers. The highest region is selected for unfolding. The unfolding
direction is determined by examining height changes over various paths from that re-
gion to the outer contour. [Estevez et al., 2017] improve the method by integrating
depth maps from many viewpoints with Kinect Fusion [Newcombe et al., 2011]. The
background segmentation is based on fitting a plane to the underlying table.

Once the garment is fully unfolded, its surface is usually still wrinkled, which makes
the following folding process, described in Sec. 2.6, more difficult. The flattening deals
with wrinkles detection, estimation of their sizes and orientations. The garment is then
flattened by being pulled in the appropriate direction.

[Willimon et al., 2011b] proposed a method that combines flattening in the first phase
with unfolding in the second phase. In the first phase, the robotic arm moves around
the cloth, pulling each corner away from the garment center multiple times every 45
degrees. Dozens of pulls are usually performed. The second phase utilizes a stereo vision
to segment the garment surface to the regions of continuous depths. The corners of the
highest region are pulled either towards or away from the garment center, depending
on its particular configuration.

[Sun et al., 2013] detect wrinkles in a depth map obtained from a virtual towel simu-
lated with a mass-spring model [Lander, 1999]. The wrinkledness measure is computed
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Figure 2.8. [Sun et al., 2015] detect position and orientation of wrinkles on the garment
surface. The wrinkles are removed by pulling the garment in the horizontal direction.
c© 2015 IEEE

for each surface point at first, which is the mean absolute deviation of depths in its
neighborhood. The highly wrinkled points are selected with thresholding, clustered
with k-means [Friedman et al., 2001] algorithm and aggregated into larger clusters,
which are believed to correspond to wrinkles. Position and orientation of the most
salient wrinkle is used to plan a flattening move, which reposes in pulling the a corner
or edge of the towel.

[Sun et al., 2015] modify the method for real garments of multiple categories, using
precise depth maps reconstructed from stereo. The garment surface is piecewise ap-
proximated with B-splines and segmented to several classes based on curvature. The
classes are e.g. a cup, saddle or ridge. The segmentation determines the geometry
and topology of wrinkles. The flattening utilizes two robotic arms pulling the garment
simultaneously, which reduces the number of required iterations (Fig. 2.8).

2.6. Garments folding

The last stage of the folding scenario is the actual folding of the garment. The exist-
ing works deal mainly with two sub-tasks. The first is pose estimation of the spread
garment, which is usually implemented by model fitting. The approximate pose might
be known from the previous manipulation, however, it needs to be refined for a more
precise folding and checked after performing individual folds. The second sub-task is
planning of the folding trajectory that would minimize the garment slipping on a table.

[Berg et al., 2011] introduce a theoretical approach to folding any spread garment.
It is based purely on its shape, which is assumed to be polygonal. It is further assumed
that the garment is infinitely flexible and that there is an infinite friction between the
garment and a table. The grasping points on the contour are defined so that the hanging
part of the garment is immobilized by gravity during folding. The grippers holding the
garment follow triangular trajectories called g-folds.

[Petŕık et al., 2015] revise the triangular trajectory and compare it to a circular tra-
jectory. They show that for idealized rigid materials, flexible in the folding axis only,
the circular trajectory prevents the garment from slipping, as it minimizes the horizon-
tal pulling force. For real materials, the optimal trajectory is bound partially by the
triangular and circular ones.

[Petŕık et al., 2016] generate different folding trajectories for materials of various stiff-
nesses, again minimizing the horizontal pulling force to prevent slipping. They consider
only narrow soft strips that can be approximated and modeled with 1D Euler-Bernoulli
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a) Input image b) Parametric model c) Spread model d) Folded model

Figure 2.9. [Miller et al., 2011] estimate a) the garment pose by b) matching it the parametric
polygonal model, which is formed by skeleton (red dots) and derived landmarks (blue dots).
The method is used for c) spread and d) folded garments. c© 2011 IEEE

beams [Timoshenko, 1983]. The final trajectory is obtained by the means of physics
simulation. It resembles the shape of the letter R and consists of four phases determined
by boundary conditions. [Petŕık et al., 2017] extend the method for rectangular pieces
of soft materials that can be modeled with Kirchoff-Love shell theory for 2D elastic
shapes [Simo and Fox, 1989]. A single weight-to-stiffness parameter must be known to
generate the trajectory, which is measured manually. [Petŕık et al., 2018] estimate the
parameter automatically by measuring the cloth shape with a laser range finder.

[Miller et al., 2011, Miller et al., 2012] focus on estimating the category and pose of
a spread garment from a single image (Fig. 2.9). The background of a known color is
subtracted. The garment contour is matched to a parametric polygonal model, vertices
of which correspond to landmark points, e.g. corners or armpits. The matching pro-
cedure minimizes distances between the model outline and the contour points, using a
coordinate-wise descent over the model parameters. The optimization comprises three
phases, each one minimizing over a larger subset of parameters. The garment category
is classified by selecting the best matching model over multiple categories. The garment
is folded using the previously described g-folds [Berg et al., 2011]. Its configuration is
checked after each fold by fitting a folded model derived from the original one.

Similarly, [Li et al., 2015b] estimate the garment pose by matching its contour to
a deformable polygonal template. The matching procedure minimizes the distances
of the contour points to the template edges, as well as stretching of the model edges
and bending of its angles. The folding trajectory is again optimized with respect to
the empirically learned material properties and friction, preventing the garment from
slipping. The space of possible trajectories is formed by Bézier curves [Farin, 2014].

2.7. Convolutional networks for 3D data

Chap. 6 of the thesis deals with the category classification of hanging garments. Sec. 2.2
summarized the existing methods. Our approach is based on applying a convolutional
neural network (CNN) to a 3D point cloud representing the garment in order to ex-
tract a single global feature vector. The proposed network architecture is novel and
applicable in a wider setting of classifying unstructured 3D point clouds. Therefore, this
section summarizes the existing CNN architectures for 3D objects processing. There are
basically three possible representations of 3D objects and three corresponding families
of architectures.

First, a standard CNN architecture for an image classification, which is based on 2D
convolutions, can be applied on a depth map containing the object [Gupta et al., 2014].
This approach is used by all the existing methods dealing with garments classification
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Figure 2.10. [Qi et al., 2017a] propose PointNet architecture for the classification and semantic
segmentation of 3D points clouds. The convolutions are applied separately and gradually to
each of n input points, transforming its dimension from 3 to 1024. The single 1024-D global
feature vector is obtained by max-pooling over all local features. c© 2017 IEEE

[Mariolis et al., 2015, Kampouris et al., 2016, Gabas et al., 2016, Corona et al., 2018],
as described in Sec. 2.2. Some networks are even pretrained on annotated images, which
are better available than depth maps, and fine tuned on depth data later. The classifi-
cation accuracy can be improved by voting over multiple views of the same object. The
network can eventually work with multiple views inherently [Su et al., 2015], building
its own internal 3D representation of the object.

Second, there are networks working with the volumetric representation of an object
[Maturana and Scherer, 2015, Wu et al., 2015]. Their architecture is very similar to the
standard image networks. The relation of the neighboring pixels is analogous to the
neighboring cells in the volumetric grid. The discrete 2D convolutions are replaced
with 3D convolutions. Padding, striding or pooling are extended to 3D naturally. The
volumetric representation of an object is very sparse and therefore rather ineffective, as
the cells contain only binary occupancy values. It also depends heavily on the object
pose and discretization of the grid.

Third, it is possible to apply the convolutions on 3D points clouds directly. This rep-
resentation of an object is very compact, yet powerful, as individual parts of the object
can be sampled with different densities. The main challenge reposes in generalizing the
convolution operation over the unstructured set of 3D points. The related challenge is
in making the network invariant to any particular ordering of the points.

The representation based on 3D point clouds was pioneered by [Qi et al., 2017a] in
their PointNet architecture (Fig. 2.10). They apply convolution kernels separately
and independently on each individual point, which makes the output invariant to any
ordering of the points in the cloud. The convolutions therefore serve as simple feature
transformers, whose weights are learned. The input point cloud is transformed to a
canonical 6D pose at first by applying an affine transformation, whose parameters are
determined by a small spatial transformer sub-network [Jaderberg et al., 2015]. The
feature transforming convolutions are stacked into multiple layers. The number of
convolution kernels grows from 64 in the first layer to 1024 in the last one, transforming
each input 3D point to 1024-D feature vector. The local feature vectors are max-pooled
into a single global 1024-D feature vector. This keeps the architecture invariant to
any ordering of the points in the cloud, as the pooling operation is symmetric in its
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2. Related work

arguments. The global feature vector is classified with a stack of fully connected layers.
The improved PointNet++ architecture [Qi et al., 2017b] applies the main block from

the original PointNet iteratively and in a hierarchical manner. The convolutions are
again applied on each point separately to transform its 3D coordinates to a higher
dimensional feature space. The max-pooling is only applied to the subsets of spatially
close points. Each subset is therefore represented by a single feature vector, together
with one selected representative member point. In the next iteration, the convolutions
are applied on this partitioned representation of the original point cloud.

The closest to our own KnnNet architecture is PointCNN [Li et al., 2018], which was
developed independently approximately at the same time. The so called X-convolution
operation is introduced. It is defined for groups of spatially close points. Each point is
transformed independently to a higher dimensional feature space at first, similarly to
[Qi et al., 2017a]. The feature vectors of all neighboring points are then transformed
jointly to a latent feature space. Parameters of the transformations are learned from
data. It is assumed that the latent representation of the neighboring points is invariant
to their ordering. A convolution is applied on the latent feature vectors.

Similarly to our KnnNet, [Wang et al., 2018] build the graph connecting each point
with its k-nearest neighbors. The convolution operation is defined over individual edges
of the graph. The extracted edge features from all edges incident to a particular point
are aggregated with a function symmetric in its arguments. The related research field
are the CNN architectures working with general graphs. [Veličković et al., 2017] employ
the self-attention mechanism to select only the relevant neighbors, while aggregating
the features over a group of graph vertices.
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3. Folding spread garments

We propose a novel method to recognize the configuration of a spread out garment,
followed by its robotic folding. The perception comprises several steps. It starts with
a single RGB image taken from above. The garment is segmented from the underlying
surface, whose color properties are known and learned in advance. The garment contour
is extracted and approximated by a polygon.

The simplified polygonal contour is then fitted a polygonal model (Fig. 3.1), which
is specific for the particular category of garments. There are five categories used in
the experimental evaluation: towels, shorts, pants, short-sleeved T-shirts and long-
sleeved shirts. The vertices forming the polygonal model are defined manually. They
correspond to the key landmark points on the garment contour, e.g. corners, armpits
or crotch. The mutual positions of the vertices are learned automatically from data.

The fitting procedure is based on the minimization of a specified cost function, which
expresses dissimilarities between observed and expected data. Two different cost func-
tions [Stria et al., 2014a] and [Stria et al., 2014b] are presented and compared, compre-
hending different sets of cost terms. The overall costs are optimized with the dynamic
programming approach. The fitted model provides reliable estimation of the garment
landmark points, which are used to plan the folding manipulation (Fig. 3.1). The con-
figuration of the garment is checked after each fold by fitting a folded polygonal model.
It is derived automatically from the original model based on the planned fold.

Figure 3.1. Overview of the robotic folding. The contour of a spread garment is fitted a
polygonal model to estimate its pose. The vertices of the matched model determine the
folding axis. The garment pose is checked after each fold.
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3. Folding spread garments

a) Input image b) Initial segmentation c) Final segmentation

Figure 3.2. Segmentation pipeline. a) Input RGB image taken from top view. b) Initial seg-
mentation is obtained by classifying each pixel as foreground (cyan), background (yellow) or
unknown (magenta). c) The final segmentation mask is provided by the GrabCut algorithm.

3.1. Background segmentation

The input of our pipeline for pose estimation of a spread garment is a single RGB image
taken with one RGBD sensors attached to the wrists of both robotic arms. It shows
the top view of the garment spread out on a flat surface, which is a wooden table in
our experiments. The image may also contain a partial view of a gripper, as the RGBD
sensor is attached to the wrist, and the scene around the table. Since the sensor, robotic
arms and table are calibrated properly and their relative poses are therefore known,
everything except the table and garment laying on it can be masked out.

The segmentation of the garment and underlying surface of the table (Fig. 3.2a) is
based on two assumptions, which reduce the task complexity:

• The garment and table have statistically dissimilar colors. It is therefore possible to
distinguish them in the input image.

• The color properties of the table do not vary significantly in time and therefore they
can be learned from data. In practice, it means that the same RGBD sensor is used
for perception under approximately constant lighting conditions.

The background color is modeled probabilistically with the Gaussian mixture model
(GMM) comprising K components. The likelihood of RGB color x = (xR, xG, xB) is:

p(x) =
K∑
k=1

πk N (x;µk,Σk), (3.1)

where πk is a prior probability of the k-th component and N (z;µk,Σk) denotes a 3D
normal distribution having a mean vector µk and covariance matrix Σk.

The mixture is learned from the training set containing colors of pixels from the
background. The number of GMM components K is determined empirically, based on
the number of color clusters visible in training data. We use three components for the
wooden table in our experiments.

The training data (Fig. 3.3a) are split to K clusters C1, . . . , CK at first, employing the
binary tree algorithm for the palette design [Orchard and Bouman, 1991]. It starts with
assigning all RGB vectors to a single cluster and then iteratively constructs a binary
tree like hierarchy of clusters in the top-bottom manner. The cluster having the largest
variance is split to two new clusters in each iteration. The separating plane passes
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3.1. Background segmentation

a) Background sample
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b) GMM representation of background RGB colors

Figure 3.3. Pixel colors from a) sample background image are used to train b) probabilistic
model using GMM. The training data are visualized as points in RGB space assigned the
corresponding color. GMM components are visualized as red ellipsoids. They are centered
at means of the Gaussians and their shape is determined by covariance matrices.

through the center of the cluster and its normal vector is parallel with the principal
eigenvector of the cluster.

The prior probability πk, mean vector µk and covariance matrix Σk for the k-th GMM
component is estimated using the maximum likelihood principle [Duda et al., 2000]
from RGB vectors contained in the corresponding cluster Ck:

πk =
|Ck|∑K
l=1 |Cl|

, (3.2)

µk =
1

|Ck|
∑
x∈Ck

x, (3.3)

Σk =
1

|Ck|
∑
x∈Ck

(x− µk)(x− µk)>. (3.4)

The learned GMM (Fig. 3.3b) of the background color provides an initial partial
segmentation (Fig. 3.2b) of the input image. A pixel having the color x is assigned the
label z based on the likelihood (3.1) of being part of the background:

z =


foreground, p(x) < PF ,

unknown, PF ≤ p(x) ≤ PB,
background, PB < p(x).

(3.5)

The probability thresholds PF and PB are set so that 3 % training pixels, which are
background samples (Fig. 3.3a), have likelihood lower than PF and 80 % greater than
PB. It means that 80 % training data would be classified correctly, 3 % misclassified
as foreground and 17 % would remain undecided.

The final segmentation (Fig. 3.2c) is found using the GrabCut [Rother et al., 2004]
segmentation algorithm. The standard GrabCut requires the user to provide samples
of the foreground and background pixels. In our case, the samples are provided auto-
matically. They are formed by the pixels labeled as foreground and background (3.5)
in the partial segmentation (Fig. 3.2b).

Based on the provided samples, the GrabCut builds the initial probabilistic models
of the foreground and background color, again using the GMM (3.1). The GrabCut
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3. Folding spread garments

a) Segmentation mask b) Full contour c) Simplified contour

Figure 3.4. Contour processing pipeline. a) The input is a binary segmentation mask. b) The
garment contour is extracted from the mask. c) The contour is approximated by a polygon.

is an iterative optimization algorithm. In each iteration, the GMMs of foreground
and background colors are re-estimated from the actual pixel labeling. The pixels are
relabeled, minimizing an energy function enforcing smoothness of the segmentation.
The optimization is interrupted after three iterations in our implementation instead of
iterating until convergence, as the later iterations bring only minor refinements. The
result is the garment segmented from its background (Fig. 3.2c).

3.2. Contour processing

The garment contour is extracted from the obtained segmentation mask (Fig. 3.4a)
using the Moore’s algorithm [Gonzalez et al., 2009] for boundary tracking. The con-
tour consists of hundreds points corresponding to the pixels at the garment outline
(Fig. 3.4b). Their exact number depends mainly on the garment size, its distance from
the camera and the image resolution. However, the contour shape is rather simple and
therefore can be approximated sufficiently by a polygon, which has dozens vertices at
most (Fig. 3.4c).

The simplification method is based on the algorithm for the optimal approximation of
an open curve by a polyline [Perez and Vidal, 1994]. The algorithm utilizes a dynamic
programming approach to minimize the overall distance of the original contour points
to the segments of the approximating polyline. The number of segments is a parameter
of the method. The algorithm can be also utilized to approximate a closed curve by a
polygon. One point on the curve is chosen and considered to form both ends of an open
curve, therefore breaking the cycle. To find the optimal polygonal approximation, the
algorithm would have to be run for each point of the original closed curve. In practice,
we stop it after several iterations to obtain a sufficient approximation.

3.3. Polygonal models of garment contour

The possible shapes of the outer contour for various garments are described with polygo-
nal models. There is a separate model defined for each considered category of garments,
which are towels, shorts, pants, short-sleeved T-shirts and long-sleeved shirts in our case
(Fig. 3.5). The polygonal model is determined by its vertices and their mutual posi-
tions. The vertices were defined manually. They correspond to the important landmark
points on the garment contour, e.g. corners or armpits.
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3.3. Polygonal models of garment contour
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Figure 3.5. Polygonal models for various categories of garment. Learned distributions of inner
angles in radians (middle) and relative edge lengths with respect to the contour length (right).
The names and colors of the angles and edges are consistent over all three columns.
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3. Folding spread garments

The mutual positions of the vertices are learned from data. They are described and
represented probabilistically (Fig. 3.5). We learn a probability distribution of the inner
angles adjacent to the particular vertex. There is also a probability distribution of the
relative length for each edge, given the total circumference of the polygonal model.
Some distributions are shared among more vertices or edges of the particular model,
because of the obvious left-right and top-bottom symmetries.

The inner angles and relative edge lenghts are modeled with 1D normal distributions
(Fig. 3.5). Their means and variances were estimated according to the maximum like-
lihood principle [Duda et al., 2000], using the training images of garments that were
annotated manually with the polygonal models. The usage of normal distributions was
decided empirically based on the distributions observed in training data.

Our approach can be extended easily for new categories of garments by defining a new
model and learning its parameters. We use the following models in our experiments:

• The towel is determined by its 4 corner vertices. All incident inner angles share the
identical probability distribution. It is obvious that the angles should be approxi-
mately right. The top edge shares the length distribution with the bottom edge and
their length is the towel width. The left and right edge also share the distribution
and equal to the towel height. We define the height to be longer than the width in
order to deal with the ambiguity.

• The shorts are determined by 7 vertices, including 2 symmetric top corners, 4 sym-
metric corners at the inner and outer ends of legs and a single crotch. The symmetric
vertices share the distributions of angles. The edges forming both legs share distri-
butions of lengths due to the left-right symmetries.

• The pants are determined by the same 7 vertices as the shorts. The most important
difference is that the relative lengths of legs are obviously longer than for the shorts.

• The short-sleeved T-shirt is determined by 10 vertices, including 2 symmetric shoul-
ders, 4 symmetric inner and outer ends of sleeves, 2 symmetric armpits and 2 sym-
metric bottom corners. The symmetric vertices share the distributions of angles. The
edges on the left and right side share the distributions of the edge lengths.

• The long-sleeved shirt is analogous to the short-sleeved model. The learned relative
lengths of the sleeves are obviously longer. Despite its name, the model is also used
for jumpers, sweaters or jackets, which all share a similar outer shape.

3.4. Model matching

The polygonal model is matched to the simplified contour in order to estimate the
garment pose. The simplified contour consists of N planar points, which are the vertices
of the approximating polygon (Fig. 3.4c). The polygonal model is determined by the
vertices v1, . . . , vM , where M is specific for the particular model, e.g. it equals 4 for
a towel having 4 corners. We choose N so that it holds N > M , i.e. the simplified
contour comprehends more points than is the number of the model vertices.

The matching of the simplified contour points to the polygonal model can be described
by the mapping function f : {p1, . . . , pN} → {v1, . . . , vM , e} (Fig. 3.6). It holds:

f(pi) =

{
vm, point pi is mapped to vertex vm,

e, point pi is aligned to an edge.
(3.6)

The mapping f needs to satisfy the following constraints in order to describe a valid
matching of the model to the simplified contour:
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3.4. Model matching
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Figure 3.6. Visualization of the function f mapping the points p1, . . . , pN to the vertices
v1, . . . , vM (blue arrows). Some points are mapped to the model edges instead (red arrows).
The mapping preserves the clockwise ordering of points and vertices.

• For each vertex vm there exists a point pi mapped to it: ∀vm∃pi : f(pi) = vm.
• No two points pi and pj can be mapped to the same vertex vm. However, some points

remain unmapped to any vertex, being mapped to the model edge represented by the
special symbol e instead: ∀pi 6= pj : f(pi) = f(pj)⇒ f(pi) = e = f(pj).
• The mapping preserves the ordering of the contour points and the model vertices in

the clockwise direction.

The number of all possible mappings f satisfying the aforementioned constraints can
be enumerated easily. First, one of N points is selected to be mapped to the vertex v1.
Then an arbitrary subset of M − 1 points from the remaining N − 1 points is mapped
to the vertices v2, . . . , vM . Thus the number of all possible mappings is:

N

(
N − 1

M − 1

)
≥ N

(
N − 1

M − 1

)M−1
. (3.7)

Each possible mapping function f is associated a cost C(f). The total cost is given by
the summation of various local costs, which express the local qualities of the particular
mapping. Their definition utilizes special cyclic increment and decrement operators,
ensuring that the updated point index i and vertex index m stay in their valid ranges.
The cyclic operators are defined as:

i⊕ 1 =

{
i+ 1, i < N,

1, i = N,
(3.8)

i	 1 =

{
i− 1, i > 1,

N, i = 1,
(3.9)

m� 1 =

{
m+ 1, m < M,

1, m = M,
(3.10)

m� 1 =

{
m− 1, m > 1,

M, m = 1.
(3.11)

The first of the local costs is the vertex matching cost V m
i,j,k, which is defined for each

triple of points pi, pj , pk from the simplified contour and each model vertex vm:

V m
i,j,k = −λV logN (|∠pipjpk|;µm, σ2m). (3.12)

It expresses how the size of the oriented angle |∠pipjpk| fits the normal distribution
N ( · ;µm, σ

2
m) of the inner angles adjacent to the vertex vm. The distribution mean

µm and variance σ2m are learned from data (Fig. 3.5). The cost is weighted by λV .
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3. Folding spread garments

The edge matching cost Emj,k is defined for each pair of points pj , pk and each polygonal
model vertex vm:

Emj,k = −λE logN
(

‖pjpk‖∑n
i=1 ‖pipi⊕1‖

; νm, τ
2
m

)
. (3.13)

It expresses how the relative length of the line segment pjpk (with respect to overall
length of the contour) fits the distribution of relative lengths of the model edge vmvm�1.
The distribution mean νm and variance τ2m are learned from data (Fig. 3.5). The cost
is weighted by λE .

The segment matching cost is defined for each point pi from the simplified contour
in the following way:

Si = −λS logN (|∠pi	1pipi⊕1|; ξ, φ2). (3.14)

For simplicity, we also define the aggregated segment matching cost Sj,k for each pair
of points pj , pk from the simplified contour as follows:

Sj,k =
∑
i∈Ij,k

Si = −λS
∑
i∈Ij,k

logN (|∠pi	1pipi⊕1|; ξ, φ2). (3.15)

The range of indices Ij,k passed through by the index i is defined as:

Ij,k =

{
{j + 1, . . . , k − 1}, j ≤ k,
{j + 1, . . . , N, 1, . . . , k − 1}, j > k.

(3.16)

The segment costs represent the penalty paid for points mapped to the model edge
instead of vertex. Such points together with their neighboring segments should resemble
straight lines. Thus each angle ∠pi	1pipi⊕1 should resemble a straight angle. This is
why the mean and the variance of the normal distribution are set empirically to π and
π2/16. The costs are weighted by λS .

Weights of the matching costs were set empirically as λV = 1, λE = 1/3 and λS = 1
to balance the typical values of the costs. Note that both vertex and segment matching
cost evaluate angles and therefore their weights are equal, whereas the edge matching
cost evaluate relative lengths.

The matching algorithm aims at finding such mapping f∗ of the simplified contour
points to the model vertices, that would minimize the associated cost C(f):

f∗ = arg min
f

C(f). (3.17)

The number of possible mappings is exponential in the number of model vertices M ,
as shown in (3.7). It would be therefore inefficient to evaluate the costs exhaustively.
Sec. 3.5 and Sec. 3.6 propose efficient polynomial algorithms for exploring the space
of possible mappings and finding the globally optimum mapping. The local matching
algorithm [Stria et al., 2014a], described in Sec. 3.5, finds the optimum matching with
respect to more local version of the vertex matching cost and the segment matching cost.
The global matching algorithm [Stria et al., 2014b], introduced in Sec. 3.6, optimizes
with respect to the combination of vertex, edge and segment matching cost.

28



3.5. Local matching algorithm

3.5. Local matching algorithm

The local matching algorithm optimizes the cost with respect to the local neighborhoods
of the contour points that are mapped to the model. The cost has the following form:

Cloc(f) =
∑

f(pi)=vm

V m
i +

∑
f(pi)=e

Si. (3.18)

It is a sum of the costs for mapping individual points (Fig. 3.7). Each point pi mapped
to the edge is penalized with the segment cost Si (3.14). The cost for mapping it to
the vertex vm is a local version of the vertex cost (3.12):

V m
i = V m

i	1,i,i⊕1. (3.19)

The local cost Cloc(f) is minimized with the dynamic programming based approach.
Alg. 1 lists the main part of the optimization procedure. It finds the optimum mapping
with respect to the additional constraint:

1 ≤ i1 < i2 < . . . < iM ≤ N for f(pim) = vm and m ∈ {1, . . . ,M}. (3.20)

It says that both sequences of the point indices and vertex indices, to which the points
were mapped, are ordered in ascending. Alg. 1 basically chooses one of the leading
points and maps it to the vertex v1, some of its successors along the contour is mapped
to v2, some successor of the already mapped successor to v3 and so forth.

Alg. 1 fills the cost matrix T ∈ RN×M incrementally, where Tmi is the cost paid
for matching the sub-contour (p1, . . . , pi) to the model vertices (v1, . . . , vm). To find
the cost Tmi , Alg. 1 tries to map various points pj , j ∈ {m, . . . , i}, to the vertex vm,
using the previously computed costs for matching the sub-contours (p1, . . . , pj−1) to
the model vertices (v1, . . . , vm−1). Fig. 3.7 shows an example of a single iteration of
the mininimization. The result TMN is the cost of mapping all N contour points to all
M model vertices.

Algorithm 1 Local matching algorithm

Input:
V ∈ RN×M , V m

j = cost of matching angle ∠pj	1pjpj⊕1 to vertex vm
S ∈ RN , Sk = cost of mapping point pk to edge

Output:
T ∈ RN×M , Tmi = cost of matching sub-contour (p1, . . . , pi) to vertices (v1, . . . , vm)

for all i ∈ {1, . . . , N} do

T 1
i ← min

j∈{1,...,i}

(
j−1∑
k=1

Sk + V 1
j +

i∑
k=j+1

Sk

)
end for

for all m ∈ {2, . . . ,M} do
for all i ∈ {m, . . . , N} do

Tmi ← min
j∈{m,...,i}

(
Tm−1j−1 + V m

j +
i∑

k=j+1

Sk

)
end for

end for

return TMN
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3. Folding spread garments
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Figure 3.7. Minimization of the total matching cost Tm
i goes over j ∈ {m, . . . , i}, using the

previously computed costs Tm−1
j−1 , vertex matching cost V m

j and segment matching costs Sk.
The figure shows three example candidates for the optimum matching for matching sub-
contour (p1, . . . , pi) to vertices (v1, . . . , vm). See Alg. 1 for details.

In order to find the optimum solution with respect to (3.18) and not constrained by
(3.20), Alg. 1 is called repeatedly for every simplified contour shifted by n positions,
where n ∈ {0, . . . , N − 1}:(

p
(n)
1 , . . . , p

(n)
N

)
= (pn+1, . . . , pN , p1, . . . , pn). (3.21)

Rows of the matrix V ∈ RN×M , containing the precomputed vertex matching costs,
and elements of the vector S ∈ RN , containing the precomputed segment matching
costs, are also shifted by n positions to match the shifted contour. The shifted cost
matrix V (n) ∈ RN×M and vector S(n) ∈ RN are:[

V (n)
]m
(1,...,N)

= V m
(n+1,...,N,1,...,n), (3.22)[

S(n)
]
(1,...,N)

= S(n+1,...,N,1,...,n). (3.23)

The costs are precomputed in O(NM) time. Both minimizations in Alg. 1 for com-
puting T 1

i and Tmi can be performed incrementally in O(N) time by remembering the
summation values for previous j’s. The minimization is called O(NM) times to fill
all elements in T ∈ RN×M . Thus Alg. 1 runs in O(N2M) time. It is called N times
for all possible shifts of the contour, as defined in (3.21). Thus the overall time com-
plexity of the local matching algorithm is O(N3M). It is therefore polynomial both
in the number of simplified contour points and model vertices. Despite the relatively
high polynomial degree, the algorithm runs effectively, as we show in the experimental
evaluation (Sec. 3.9).

3.6. Global matching algorithm

The global matching algorithm optimizes the cost with respect to more global neigh-
borhoods of the contour points. It has the following form:

Cglob(f) =
∑

m∈{1,...,M}
i,j,k∈{1,...,N}

{
V m
i,j,k+Emj,k+Sj,k | f(pi) = vm�1, f(pj) = vm, f(pk) = vm�1

}
(3.24)

Each point pj mapped to the vertex vm is penalized with the vertex cost V m
i,j,k (3.12),

given that two selected points pi and pk are mapped to the neighboring vertices vm�1
and vm�1 (Fig. 3.8a). The segment pjpk is penalized with the edge cost Emj,k (3.13) for
matching the model edge vmvm+1. The segment cost Sj,k (3.15) is paid for approxi-
mating the sub-contour (pl|l ∈ Ij,k) with the segment pjpk.
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3.6. Global matching algorithm

Algorithm 2 Global matching algorithm

Input:
r = index of point mapped to vertex vM , i.e. f(pr) = vM
V ∈ RN×N×N×M , V m

i,j,k = cost of matching angle ∠pipjpk to vertex vm
E ∈ RN×N×M , Emj,k = cost of mapping segment pjpk to edge vmvm+1

S ∈ RN×N , Sj,k = cost of approximating sub-contour (pj+1, . . . , pk−1) by pjpk

Output:
T ∈ RN×N×M , Tmj,k = cost of mapping sub-contour (p1, . . . , pk−1) to vertices

(v1, . . . , vm) s.t. f(pj) = vm, f(pk) = vm+1

for all j ∈ {2, . . . , r −M + 2} do
for all k ∈ {j + 1, . . . , r −M + 3} do

T 2
j,k ←

(
V 1
r,1,j + V 2

1,j,k

)
+
(
EMr,1 + E1

1,j + E2
j,k

)
+ (Sr,1 + S1,j + Sj,k)

end for
end for

for all m ∈ {3, . . . ,M − 1} do
for all j ∈ {m, . . . , r −M +m} do

for all k ∈ {j + 1, . . . , r −M +m+ 1} do

Tmj,k ← Emj,k + Sj,k + min
i∈{m−1,...,j−1}

(
Tm−1i,j + V m

i,j,k

)
end for

end for
end for

return TMr,1 ← min
i∈{M−1,...,r−1}

(
Tm−1i,r + V m

i,r,1

)

The global cost Cglob(f) is minimized with the approach based on dynamic program-
ming, similarly to the local cost in Sec. 3.5. Alg. 2 lists the main part of the optimization
procedure. It finds the optimum mapping with respect to the additional constraints:

f(p1) = v1, (3.25)

f(pr) = vM , where r ∈ {M, . . . , N}, (3.26)

1 < i2 < . . . < iM−1 < r for f(pim) = vm and m ∈ {2, . . . ,M − 1}. (3.27)

The first two constraints fix the points mapped to the vertices v1 and vM . The last
constraint is analogous to (3.20) for the local matching, saying that the indices of points
and vertices, which the points are mapped to, proceed in ascending order. Alg. 2 finds
the optimal mapping of the sub-contour (p2, . . . , pr−1) to the vertices (v2, . . . , vM−1).

Alg. 2 fills the cost tensor T ∈ RN×N×M incrementally. The value Tmj,k is the cost paid
for matching the sub-contour (p1, . . . , pk−1) to vertices (v1, . . . , vm), so that f(pj) = vm
and f(pk) = vm+1 (Fig. 3.8a), i.e. the points pj and pk mapped to vertices forming the
model edge vmvm+1 are fixed. Note that the vertex cost paid for f(pk) = vm+1 is not
included in Tmj,k (Fig. 3.8a). In each iteration, Alg. 2 tries to map various candidate
points pi, where i ∈ {m− 1, . . . , j− 1}, to the vertex vm−1 (Fig. 3.8b). Each such map-
ping determines the vertex cost V m

i,j,k for matching the angle ∠pipjpk to the vertex vm.

The result TMr,1 is the cost of mapping all N contour points to all M model vertices,
satisfying the constraints (3.25–3.27).

In order to find the optimum solution with respect to (3.24) and not constrained
by (3.25–3.27), Alg. 2 is called repeatedly for each possible combination of shifting
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3. Folding spread garments
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a) Various matching costs
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b) Minimization of cost Tm
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Figure 3.8. a) The total matching cost Tm
j,k combines previously computed total cost Tm−1

i,j with
the vertex cost V m

i,j,k, edge cost Em
j,k and segment cost Sj,k. b) Minimization of Tm

j,k involves

exploration of various candidate points pi mapped to vm−1, where i ∈ {m− 1, . . . , j − 1}.

the simplified contour by n positions, as in (3.21), with selection of the point mapped
to vM . Elements of the tensor V ∈ RN×N×N×M , containing the precomputed vertex
costs, elements of the tensor E ∈ RN×N×M , containing the precomputed edge costs,
and elements of the matrix S ∈ RN×N , containing the precomputed segment matching
costs, are shifted to match the shifted contour, analogously to (3.22) and (3.23).

The costs are precomputed in O(N3M + N2M + N2) = O(N3M) time. The mini-
mization of Tmj,k in Alg. 1 can be performed incrementally in O(N) time by remembering

the summation values for previous i’s. The minimization is called O(N2M) times to
fill all elements in T ∈ RN×N×M . Thus Alg. 2 runs in O(N3M) time. It is called for
each possible combination of N shifts of the contour with N −M + 1 options of select-
ing f(pr) = vM , i.e. O(N2) times in total. The overall time complexity of the global
matching algorithm is therefore O(N5M). Although that the degree of the polynomial
is rather high, the experiments (Sec. 3.9) show that it runs nearly in real-time. It is
mainly because the number of simplified contour points N is chosen between 10 and
20, depending on the complexity of the matched model, which is enough for a precise
approximation of the original contour.

3.7. Folded models

The proposed algorithms for matching the simplified contour of a garment to the model
are not used for the spread garments only. After recognizing the initial spread config-
uration of the garment, the robot performs a single fold, which means e.g. folding
one sleeve of a shirt or folding a towel in half. The garment configuration needs to
be checked afterwards because of its possible unintended translation or rotation caused
by manipulation. The most common issue is slipping of the garment on a table. It is
caused by the horizontal pulling force generated by the gripper that holds the garment.
The pulling force can be minimized by following a specific folding trajectory, which
considers material properties of the garment [Petŕık et al., 2016, Petŕık et al., 2017].

To check a partially folded configuration of the garment, an image is taken, segmented
and the extracted contour is simplified, as described in Sec. 3.1–3.2. The simplified
contour is matched to the polygonal model of a folded garment, which is derived from
the original model. The process is fully automated. The parameters of the original
model are adjusted to that concrete garment at first. The adjusted model is folded
virtually, based on the planned fold.

Fig. 3.9 illustrates the incremental creation of the folded models. The original vertices
are being replaced by the vertices denoting endpoints of individual folds. The s-th fold
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3.8. Robotic folding
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Figure 3.9. Incremental creation of the folded models for a short-sleeved T-shirt. Some original
vertices are being replaced by new vertices, denoting endpoints of the individual folds (plotted
in various colors).

is performed over the folding axis denoted by two endpoints Fs and Ts. They are ordered
in the clockwise direction along the outline. The endpoints form two new vertices Fs
and Ts that are connected by an edge in the folded model. All the original vertices
positioned between Fs and Ts are removed. The vertices in the proximity of Fs and Ts
are removed as well to keep the resulting folded model simple. In Fig. 3.9, the right
shoulder (RS) and bottom-right corner (BR) are removed during the first fold, while
the left shoulder (LS) and bottom-left corner (BL) are removed during the second fold.

The distributions of inner angles and relative edge lengths, which are used to evaluate
the vertex and edge costs, are adjusted to correspond to the actually perceived garment
and planned fold. The mean µm, parameterizing the vertex cost V m

i,j,k (3.12), is updated
to the angle ∠vm�1vmvm�1 measured in the fitted model. The mean νm, parameterizing
the edge cost Emj,k (3.13), is updated to the relative edge length vmvm�1 measured in the

fitted model. All variances σ2m (3.12) and τ2m (3.13) are updated to the least variance
learned for the original model. The variances for the newly added vertices and edges are
set to twice that value because of the uncertainty in the planned fold. By updating the
means and variances, prior information about a shape of the concrete piece of garment
is encoded directly into the model.

3.8. Robotic folding

Once the garment configuration is known, it can be folded by a dual-arm robot. Sec. 4.1
describes the robotic testbed used in the experiments. The individual folding operations
and their order are defined manually. Single operation corresponds e.g. to folding one
sleeve or folding a towel in half. The manipulation is adjusted to the shape, size and
configuration of the particular piece of garment.

Each folding operation is parameterized by the points on the garment contour, which
need to be grasped, and by the axis, over which the grasped garment should be folded.
Positions of the grasping points, as well as position and orientation of the folding axis
are specified relative to the vertices of the matched polygonal model. E.g. in order to
fold a spread towel in half, two corners sharing the shorter hemline need to be grasped
and folded over the axis passing through the centers of the longer hemlines. The folding
axis is therefore approximately perpendicular to the longer hemlines.

We adopt the gravity based folding approach proposed by [Berg et al., 2011]. The
method assumes an infinite flexibility of the garment and an infinite friction between
the garment and table. Despite these unrealistic assumptions, the gravity based folding
performs well on real garments in practice. It is also less computationally expensive than
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3. Folding spread garments

Figure 3.10. Gravity based folding [Berg et al., 2011] is based on grasping the garment contour
at defined positions and moving them along triangular paths (dotted lines). The paths are
symmetric with respect to the folding axis (dash-dotted line) and culminate above it.

the simulation based methods [Li et al., 2015b, Petŕık et al., 2016, Petŕık et al., 2017],
which consider the material properties.

During the gravity based manipulation [Berg et al., 2011], one part of the garment
lays flat on a table, while the other part hangs down (Fig. 3.10). The grippers holding
the garment outline follow the triangular paths, ensuring that the hanging part is kept
immobilized all the time. The paths are contained in planes perpendicular to the folding
axis, are symmetric with respect to the axis and culminate above it (Fig. 3.10).

[Berg et al., 2011] further define theoretical locations of the grasping points that
would keep the hanging part of the garment immobilized. E.g. a towel needs to be
held for its two neighboring corners (Fig. 3.10), in contrast to holding it with a single
gripper only for the center of its hemline, which would cause the hemline to collapse
down. The required grasping points depend on the garment shape, mainly on its con-
vexity and concavity. Since the method may require more that two grippers for more
complex shapes, we use only a smaller set of the grasping points, minimizing the pos-
sibility of deformations. E.g. the wrist of a sleeve is grasped in the middle instead of
grasping its corners, which is possible due to its narrowness.

Our dual-arm robot is equipped with the specialized two-finger grippers, designed
specifically for the manipulation of soft materials (Sec. 4.1). The lower gripper slides
under the garment from side and grasps its outline. Then it follows the previously de-
scribed triangular trajectory (Fig. 3.10). We use two approaches to generate trajectories
for the arms: motion planning and interpolation. The former is used to approach the ini-
tial folding position. The Open Motion Planning Library (OMPL) [Şucan et al., 2012]
is used to schedule collision free trajectories between multiple states of the joint. Af-
ter testing several planning algorithms from OMPL, we found out that RRT-Connect
[Kuffner and LaValle, 2000] suits best our needs, since it successfully finds a plan in
most of the cases and in a reasonable time. The interpolation method generates points
distributed uniformly on a curve in Cartesian coordinates and computes the inverse
kinematics for each point to produce the final trajectory. It is used to compute the
triangular folding trajectory and for the trajectory in the vicinity of the grasping point.
The interpolation method provides a full control over the trajectory, which ensures no
damage to the garment.

3.9. Experiments

The proposed computer vision pipeline for pose estimation of a garment was evaluated
on garments of 5 categories, for which the models were defined and learned from data.
Fig. 3.5 shows the parameters of the normal distributions, which specify the vertex
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3.9. Experiments

Garment

Local matching Global matching

Success
Displac. [mm]

Success
Displac. [mm]

Mean Stdev. Mean Stdev.

Towels 53 / 53 3.0 2.3 53 / 53 3.4 2.3

Shorts 29 / 32 9.9 14.6 32 / 32 8.4 6.4

Pants 53 / 54 6.0 8.6 54 / 54 5.6 6.2

T-shirts 61 / 61 11.7 21.6 61 / 61 10.8 17.5

Shirts 90 / 90 11.7 16.1 90 / 90 10.6 14.3

Total 286 / 290 9.8 16.3 290 / 290 9.0 13.3

Table 3.1. Comparison of the local and global matching procedure evaluated on 290 testing
samples. The number of successfully fitted models is shown for each procedure and each
category of garments. The mean displacements of the fitted model vertices from the annotated
landmark points, as well as their standard deviations were computed from the successfully
fitted models only.
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Figure 3.11. Displacements of the fitted model vertices from the annotated landmark points.
Histograms are computed over all vertices and all testing data, excluding 4 failure cases for
the local matching procedure. More than 92 % vertices are displaced less than 30 mm.

(3.12) and edge (3.12) matching costs. The parameters of each model were learned
from 20 annotated images of garments posed in various spread configurations. The
testing dataset contains 290 images, including 53 images of towels, 32 shorts, 54 pants,
61 short-sleeved T-shirts and 90 long-sleeved shirts.

Two different matching methods were evaluated: the simpler local matching (Sec. 3.5)
and more robust global matching (Sec. 3.6). The previous steps of the pipeline, includ-
ing the segmentation (Sec. 3.1) and contour processing (Sec. 3.2), are shared by both
methods. The number of points forming the simplified contour is proportional to the
number of vertices for the particular model. We choose N = M + 10, i.e. there are 10
more points than the number of vertices for each model (3.7).

The results are summarized in Tab. 3.1. The global matching procedure succeeded
in all 290 test cases, while the local matching failed completely in 4 cases. Moreover,
the local matching provides slightly less accurate localization of the landmark points.
Tab. 3.1 shows the mean displacements of the matched vertices from the manually
annotated points, as well as their standard deviations. The aforementioned 4 failures
of the local matching procedure were excluded from further quantitative evaluation.
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3. Folding spread garments

a) Pants b) Shorts c) Towel

d) Long-sleeved shirt e) Short-sleeved T-shirt

Figure 3.12. Summary of displacements between the vertices of the matched models and man-
ually annotated landmarks. The outlines correspond to the learned models (means of normal
distributions of inner angles and relative lengths were used to plot the outlines). The crosses
denote the mean displacements for each vertex, and the ellipses correspond to the covariance
matrices of the displacements (the ellipses were plotted sized up five times).

The distributions of displacements are not symmetric around the means. They are
skewed positively, however, not heavy tailed. Fig. 3.11 shows the histograms. Regarding
the global matching, 93.7 % displacements, over all testing samples and all vertices,
are below 30 mm, 99.7 % below 100 mm and the largest observed displacement was
135 mm. The displacements of the local matching, excluding 4 complete failures, are
below 30 mm in 92.5 % cases and below 100 mm in 99.4 % cases. The displacement of
130 mm was exceeded in a single case only.

Fig. 3.12 visualizes the matching errors for individual vertices of all polygonal models
and compares the local and global matching approach. The individual displacement
vectors were collected from all testing images, normalized based on the orientation and
size of the particular garment and averaged. The covariance matrix of the normalized
displacements for each vertex was computed and plotted as an ellipse sized up 5 times.

The largest matching errors were observed for the vertices representing the shoulders
of short-sleeved T-shirts and long-sleeved shirts, where the usual displacement ranges
from 20 to 40 millimeters. The reason being that the shoulders do not form an easily
distinctive shape on the contour and may be confused with a neckline. This makes not
only the matching challenging, but also introduces noise to the manual annotations,
further increasing the errors. The locations of shoulders are therefore not used for
planning of folds. The position and orientation of the folding axis is based on the
mutual positions of bottom corners and armpits.

An another source of errors is the imperfect segmentation, which produces various
artifacts on the extracted contour. The artifacts confuse primarily the local matching
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3.9. Experiments

Figure 3.13. Selected examples of the polygonal models matched to the simplified garment
contour (shown as green circles connected with segments). The last column compares the
accuracy of the global matching (red polygon in the first row) with the local matching (blue
polygon in the second row), which got confused by the incorrectly segmented waist label.

procedure, whereas the global algorithm can cope with them. We observed these er-
rors mainly in case of pants and shorts (Fig. 3.12), where the leather waist labels are
sometimes segmented as part of the similarly colored background. See Fig. 3.13 for the
qualitative comparison of both matching procedures in such case.

The matching errors achieved by our method are sufficiently low for a reliable grasp-
ing and planning of the folding operations, considering the size of the gripper and
usual size of the garment. The displacements are slightly lower than those reported by
[Miller et al., 2011], whose approach is also based on matching the polygonal models
to the extracted garment contour. Our visual analysis method is significantly faster,
however, enabling nearly a real time execution, compared to 30–150 seconds reported
by [Miller et al., 2011] just for the model matching.

The proposed vision pipeline was implemented in MATLAB and C++. The time
performance was evaluated on a notebook with Intel i7-3740GM 2.7 GHz processor and
16 GB memory. The segmentation takes 1.2 seconds on average for 640 × 480 input
images. The contour simplification algorithm is the most time consuming operation.
It takes between 0.5 and 3.5 seconds almost always, depending mainly on the contour
complexity. The subsequent model matching procedures work with the already simpli-
fied contours. Their runtime is negligible, compared to the previous steps. It is 0.14
seconds on average for the global matching and less than 0.01 for the local matching.
The complete vision pipeline therefore runs in 2–5 seconds almost always.

The robotic experiments1 were conducted on a dual-arm robotic testbed (Sec. 4.1).
The model matched to the garment contour determines the next fold. Positions of the
initial grasping points and final releasing points are computed from locations of the
model vertices. Several approaching directions of the gripper are generated for each
grasping and each releasing point to increase the chance of planning a collision free
trajectory successfully.

1Folding videos: http://cmp.felk.cvut.cz/~striajan/phd
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3. Folding spread garments

Figure 3.14. A detailed view of the robot folding successfully garments of different categories.

The overall success rate of the proposed folding method, including vision, planning
and manipulation, is approximately 90 %. The detailed experiments are provided in
Sec. 4.6, where our method was integrated into the pipeline for the folding scenario.
Fig. 3.14 shows several successful folding sequences. The most frequent cause of failures
in an unsuccessful computation of the inverse kinematics. The second is an unsuccessful
motion planning, either due to a limited manipulation range, or due to a possible
collision of the robotic arms. The third factor is a slippage of the garment during its
folding, resulting in an incorrectly placed fold.
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4. Pipeline for folding scenario

Our method for the pose estimation and folding of unknown spread garments, proposed
in Chap. 3, was integrated into the complex pipeline developed by the Clothes Per-
ception and Manipulation (CloPeMa) project [Doumanoglou, Stria et al., 2016]. The
pipeline attempts to solve the folding scenario, introduced in Sec. 1.3. This chapter
summarizes briefly the components of the pipeline developed by other members of the
CloPeMa consortium, to provide a broader context for our folding method. The dual-
arm robotic testbed is introduced that was developed by the CloPeMa team and used
in all robotic experiments. The performance of the complete pipeline is evaluated.

The presented pipeline comprehends several steps (Fig. 4.1 and 4.2). There is a pile
of unknown garments at the beginning, which is perceived with an RGBD sensor. The
pile is segmented into separate garments using color and texture information. The ideal
grasping point is selected based on the features computed from a depth map, preferring
high and narrow wrinkles. The unknown garment is grasped, lifted up and then grasped
again for its lowest hanging point to reduce the space of its possible configurations. The
recognition and unfolding of the hanging garment are performed in the active manner,
utilizing the framework of Active Random Forest (ARF) for the detection of grasping
points, while optimizing actions of the robot. The unfolded garment is placed on a
table and optionally spread by pulling it horizontally into various directions. Pose
of the spread garment is recognized by matching its contour to polygonal models, as
described in Chap. 3, and the garment is folded step by step.

Segment and select
grasping point Grasp Grasping successful?

Isolation and grasping

Classification and unfolding

Spreading

Folding

Match polygonal
model to contour

Perform single fold
over a folding axis

Adjust model
parameters

Contour deformed? Compute spreading
points and direction

Hold and sweep
sideways with brush

Grasp lowest
hanging point

Classify category
or select action

Regrasp next point

Rotate for new view

yes

no

no

yes

Figure 4.1. Main steps of the proposed pipeline for a folding scenario, which comprehends four
perception and manipulation sub-tasks.
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4. Pipeline for folding scenario

a) Isolate from heap and lift b) Grasp lowest point c) Grasp first unfolding point

d) Grasp other unfolding point e) Hanging unfolded T-shirt f) Lay down on table

g) Spread left sleeve h) Spread right sleeve i) Fold right side

j) Fold left side k) Final fold in half l) Fully folded T-shirt

Figure 4.2. An example run of the pipeline applied on a T-shirt. a) The optimal grasping point
is selected, the T-shirt is isolated from a heap and lifted up. b) Its lowest point is regrasped
to reduce the number of possible configurations. c) The first unfolding point is grasped with
the free arm, the previously lowest point is released and d) the second unfolding point is
grasped. e) The T-shirt is unfolded by stretching the grasped points out. f) The unfolded
T-shirt is laid on the empty table. g) Both left and h) right sleeve are spread using the brush
tool if necessary. i) The folding procedure comprehends folding the right and j) left side of
the T-shirt before k) performing the final fold. l) The result is the fully folded T-shirt.
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4.1. CloPeMa testbed

a) Dual-arm CloPeMa robot b) Closed and opened gripper

Figure 4.3. CloPeMa testbed is composed mainly of two industrial arms that are attached
custom jaw-like grippers and consumer grade RGBD sensors.

4.1. CloPeMa testbed

All robotic experiments described in the presented thesis were performed using the
CloPeMa robotic testbed. The robot was designed by the project consortium members.
Three similar copies of the robot were built and used by the member institutions. The
experimental evaluation of the folding pipeline described in this chapter was performed
at the Center for Research of Technology Hellas. All other experiments included in this
thesis were performed at the Czech Technical University in Prague.

The robot is composed mainly of standard industrial components. Its body con-
sists of two Motoman MA1400 hollow wrist robotic arms mounted to R750 turn-table
(Fig. 4.3a). The components are controlled by two DX100 controllers working as master
and slave. The arms are attached jaw-like grippers developed by the CloPeMa consor-
tium and designed specifically for the manipulation of soft materials [Le et al., 2013].
The thin finger is intended for sliding easily under the garment placed on a table, while
the other finger moves towards it to close the grip (Fig. 4.3b).

The robot is equipped with several sensors. There are three combined RGBD sen-
sors ASUS Xtion PRO attached to the robot, two at the wrists and one at the base.
The provided RGB images have the resolution 1280 × 1024, while the depth maps
are 640 × 480 at 30 Hz. The depth sensing range, limited by the structured light
technology, is approximately from 80 cm to 3.5 m. The error of depth measurements
increases quadratically with the distance and ranges from several millimeters to cen-
timeters [Smı́̌sek et al., 2013]. A head comprising of two Nikon D5100 cameras for
stereo vision [Schmidt et al., 2016] and corresponding pan/tilt units is mounted on the
robot base. The experiments described in this thesis use only the RGBD sensors at-
tached to the wrists. The grippers are equipped with tactile sensors and photometric
stereo for material sensing. The wrists comprehend force and torque sensors.
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4. Pipeline for folding scenario

a) Input RGB image of pile b) Segmentation projected to point cloud

Figure 4.4. The input RGB image is segmented based on the color and texture information.
The resulting segments form candidates for graspable regions.

The perception and control system of the robot are built on top of the Robotic
Operating System (ROS) [Quigley et al., 2009]. The basic functionality of moving the
arms and reading positions from their joints is provided by the MotoROS package,
which is delivered by the manufacturer. We also utilize the MoveIt package and Open
Motion Planning Library (OMPL) [Şucan et al., 2012] for motion planning.

4.2. Isolation and grasping

The pipeline starts with a pile of crumpled garments of various categories, colors and
materials placed on a table. The pile is perceived with the RGBD sensor from above.
The first step is the isolation and grasping of a single garment from the pile.

The depth map is rectified by fitting a plane to the table surface with the random sam-
ple consesus (RANSAC) [Fischler and Bolles, 1981] and subtracting it from the depth
values. The rectified depths are filtered with the multi-scale and steerable kernels based
on the difference of Gaussians (DoG) to detect bell shaped profiles [Koller et al., 1995],
which correspond to wrinkles of various orientations and widths. The ridges of the
wrinkles are detected with the non-maximum suppression of the filter responses. The
high, narrow and isolated wrinkles are preferred for grasping.

The RGB image of the pile (Fig. 4.4a) is convolved with Gabor filters of multiple
frequencies and orientations to extract the local feature vectors. The differences of
their magnitudes are used as a dissimilarity measure in the graph-based segmentation
algorithm [Felzenszwalb and Huttenlocher, 2004]. The resulting regions correspond ei-
ther to individual garments or their parts due to the over-segmentation (Fig. 4.4b).
The region highest above the table is selected for picking up. The best graspable ridge
contained inside the region and not located close to its boundary is selected to avoid
grasping multiple garments at once.

The gripper approaches the selected ridge from above, having its orientation aligned.
The success of the grasping operation is checked by comparing two depth maps of the
heap, taken before and after the picking up. If the average absolute difference is lower
than a predefined threshold, the attempt is repeated with the second best grasping
candidate. Neither possible slippage of the garment from the gripper during its lifting,
nor grasping of multiple garments, as they have not been observed in the experiments.
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4.3. Classification and unfolding

Figure 4.5. Blue squares denote the possible lowest hanging points for randomly grasped gar-
ment of a particular category. Red circles denote the symmetric lowest points. Green dia-
monds denote the desired points to be held after unfolding.

4.3. Classification and unfolding

The picked up garment is classified according to its category at first. For each category,
two points are defined on its surface for which the garment should be held in order to
be unfolded (Fig. 4.5). The whole unfolding procedure is performed in the air, with the
help of gravity. The garment is being regrasped repeatedly, grasping either the desired
unfolding point directly in each step, or grasping such point that would facilitate the
unfolding in future.

Prior to classification, the garment is regrasped for its lowest hanging point to reduce
the space of its possible configurations significantly. The number of possible lowest
points for each category of garments is very limited. Omitting the symmetries, there
are only two such points for shorts and short-sleeved T-shirts, and one lowest point for
towels, pants and long-sleeved shirts (Fig. 4.5).

The category of the regrasped garment is recognized jointly with the currently held
point, which was the lowest hanging point before regrasping. Thus the set of possible
classes is the Cartesian product of garment categories and possible lowest points, with-
out considering the symmetries (Fig. 4.5). The related task is the regression of the next
grasping point and the direction it should be approached from by the gripper. They are
represented as real 3D vectors. The classification and regression are solved in the novel
framework of Active Random Forest (ARF) [Doumanoglou et al., 2014b]. It is also re-
sponsible for deciding whether and how much the garment should be rotated around
its vertical axis at a certain time, which brings information from a new viewpoint.

The ARF framework is based on the classic Random Forest (RF) [Breiman, 2001],
which is an ensemble of multiple decision trees. Each tree is trained on a randomly
generated subset of the training data, which is known as bagging. The sampled data are
being split recursively. A random subset of the features is generated for each node. The
best split is selected among these candidates, optimizing a specified objective. When a
defined criteria is met, the node becomes a leaf. The leaves predict the outcome variable
based on the assigned training data. During inference, all trees are evaluated in parallel
and the output is given by voting or averaging over the reached leaves. The trees in
ARF contain action-selection nodes in addition to split and leaf nodes (Fig. 4.7). They
serve for bringing more information into the process of samples splitting. They decide
about rotating the garment and observing it from a new viewpoint.

Each training sample for ARF represents one particular instance of a hanging garment
perceived from the particular viewpoint v ∈ V . The viewpoints from V are distributed
in uniform discrete steps on a horizontal circle around the garment. They originate in
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Figure 4.6. a) Two 3D vectors are regressed by ARF: the position of the grasping point gv
and direction of the gripper rv. b) The split nodes of ARF utilize simple thresholding tests
based on depths and curvatures of individual pixels.

rotating the robotic wrist holding the hanging garment around the vertical axis, while
perceiving it from a fixed location. The training sample is a tuple:

(Dv, c, gv, rv) for v ∈ V, (4.1)

where Dv denotes a depth map acquired from the viewpoint v. The class to be rec-
ognized c comprehends both the garment category and the originally lowest hanging
point, now being held by the gripper. The next grasping point is represented by the 3D
vector gv, while rv is a 3D vector aligned with the ideal direction to approach gv with
the gripper (Fig. 4.6a). It is oriented away from the garment surface. If the desired
grasping point is not visible from the viewpoint v, then gv and rv are undefined.

Fig. 4.7 provides an overview of the ARF training. The input samples (4.1) are split
to the training set ST and validation set SD. Each split node stores the set Vseen of
already seen viewpoints, which is propagated to its children. The garment is initially
perceived from a single viewpoint only, i.e. Vseen ← {vcurrent}.

The split nodes utilize very simple tests to control a flow of the training samples to
their left and right child nodes. There are three types of functions (Fig. 4.6b):

f1(v, p1, p2) = Dv(p1)−Dv(p2), (4.2)

f2(v, p1, p2, p3) = (Dv(p1)−Dv(p3))− (Dv(p3)−Dv(p2)) , (4.3)

f3(v, p) = |Kv(p)|, (4.4)

where Dv(p) is a depth value in the pixel p seen from the viewpoint v, and Kv(p) is
a curvature in the pixel p estimated from the neighbors of p in the depth map Dv.
A random set of functions is generated, each parametrized with a randomly selected
viewpoint v ∈ V and random pixel coordinates. The value of the function is compared
to a randomly generated threshold.

The best test, which is used for splitting, is selected from the described random set
with respect to the objective Q. It is equal to the classification objective Qclass in
the upper part of the tree, where the class is unknown, and switches to the regression
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Figure 4.7. ARF training procedure. The tree contains three types of nodes: split, leaf and
action selection. The training ST and validation SD data are being split recursively in the
split nodes. The leaf nodes provide information about the garment category and next grasping
point. The action selection nodes select the next best viewpoint from the distribution P (v).

objective Qreg deeper in the tree, where the class is already decided:

Q =


Qclass = −

∑
n∈{L,R}

∣∣ST
n

∣∣
|ST|

∑
c

Pn(c) log2 Pn(c), if maxc P (c) ≤ t,

Qreg = −
∑

n∈{L,R}

∣∣ST
n

∣∣
|ST|

log |Σn(q)| , otherwise.

(4.5)

The probability distribution over the classes in the particular node is denoted P and
thresholded with t = 0.9. The classification objective Qclass is a weighted sum of the
categorical entropies from both child nodes n ∈ {L,R}. The regression objective Qreg is
based on the entropy of the regressed continuous variable q, which is either the grasping
point g or the direction r. The regressed variable is selected randomly. Since g, r are
assumed to be distributed normally, the entropy of q is proportional to the determinant
of the covariance matrix |Σn(q)| in the child node n.

The next best view selection is integrated to the tree. It improves the classifica-
tion and regression accuracy, and enables detection of the grasping points hidden in
the already seen views. The split functions (4.2–4.4) and objectives (4.5) use only the
training samples ST from the already seen viewpoints Vseen. This set becomes uninfor-
mative at certain depth and the tree starts to overfit. This is detected by evaluating
the splits on the independent validation samples SD and comparing the training and
validation distributions using the Jeffrey divergence [Doumanoglou et al., 2014b]. If it
exceeds a predefined threshold, the action-selection node is added. It extends the set
of the already seen viewpoints Vseen with a new viewpoint vselected (Fig. 4.7).
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Figure 4.8. ARF inference procedure. The leaf nodes provide information about the garment
category and next grasping point. A new viewpoint, found during the training procedure, is
selected in each action-selection node, guiding the robot to rotate the garment.

The viewpoint v ∈ V to be used in the pixel tests (4.2–4.4) is sampled with the prob-
ability P (v). The distribution P (v) is constructed to prefer already seen viewpoints.
The unseen viewpoints are sampled with the probability decreasing exponentially with
the increasing rotation angle needed to reach them. In addition, the distribution prefers
such viewpoints, from which the grasping point is visible, i.e. located on the side facing
the sensor and not being occluded by wrinkles.

Fig. 4.8 provides an overview of the ARF inference. It starts with a single view of the
hanging garment. The trees are traversed from their roots. The inference procedure
reaches leaf nodes in some trees, whereas it ends up in the action-selection nodes in other
trees, where the next view is required to continue the traversal. The action-selection
nodes from different trees vote about the next viewpoint. The trees that voted for
the selected viewpoint can be further traversed using the new viewpoint, while the
remaining trees keep their votes for the next voting. The parallel traversal stops once a
predefined number of leaves is reached. The class distributions from the reached leaves
are averaged and the most probable class is selected. The grasping point g and grasping
direction r are decided by Hough voting [Doumanoglou et al., 2014b].

4.4. Spreading

The unfolded garment is held hanging at two predefined locations, which are specific
for the particular category of garments (Fig. 4.5). The garment is then pulled over
the edge of a table and laid down on it, which usually results in a partially deformed
configuration (Fig. 4.9). This can be improved by spreading, which is applied specifically
for the short-sleeved T-shirts in our pipeline. One arm is pressing the T-shirt towards
the table to prevent it from sliding, while the other is sweeping it repeatedly with a
small brush attached to its gripper (Fig. 4.9).
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4.4. Spreading

Figure 4.9. The brush tool attached to the gripper is moved in the direction shown by the
arrow. The other arm is holding the T-shirt to prevent it from sliding.

a) Deformed T-shirt

pf

ph

pg
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vm
dh

b) Deformed contour c) Spread contour

Figure 4.10. a) The unfolded T-shirt is deformed. b) The deformed contour (red) is matched
to the spread template (blue). The spreading gripper moves from pi to pf, while the other
gripper is holding the T-shirt at ph. c) No deformation is present after the spreading.

The contour of the deformed T-shirt (Fig. 4.10a) is extracted and matched to the
spread template using the inner distance shape contexts [Ling and Jacobs, 2007]. The
pairs of matching points determine a global similarity transformation, comprehending
translation, rotation and scaling. The transformation is used for registering the de-
formed contour to the template (Fig. 4.10b). The deformations are defined as such
continuous subsets of the contour, for which the distances to the registered template
exceed a predefined threshold. The deformation with the largest total distance is se-
lected for spreading. The central point of the largest deformation is denoted pc. The
displacement vectors between the deformation and registered template are averaged
into the vector vm, which is used to compute the spreading direction.

The spreading operation is defined by tree points (Fig. 4.10b): pi and pf, denoting
the initial and final position of the brush, and ph, denoting the position of the holding
gripper, which is pressing the T-shirt towards the table to prevent it from sliding. All
three points are located on a single line in the image plane. Locations of pi, pf and
ph are computed from the described mean displacement vector vm, central point of the
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4. Pipeline for folding scenario

deformation pc and the center of gravity pg of the garment as follows:

pi = pc + ‖vm‖
pg − pc
‖pg − pc‖

, (4.6)

pf = vm + pc, (4.7)

ph = pi + dh
pi − pf
‖pi − pf‖

. (4.8)

The initial distance dh of the spreading and holding gripper is chosen large enough to
prevent the robotic arms from colliding.

The estimated points pi, pf and ph in the image plane determine the positions of the
robotic arms in the world coordinates. The orientation of the brush is approximately
perpendicular to the spreading direction −→pipf. A few degrees deviation is allowed if the
inverse kinematics has no solution for the strictly perpendicular orientation.

4.5. Folding

The unfolded and optionally spread garment is folded with our method introduced in
Chap. 3. The extracted and simplified contour of the spread garment is matched the
polygonal model for the corresponding category, which is known from the classifica-
tion and unfolding phase (Sec. 4.3). The final pipeline utilizes specifically the global
matching method to fit the polygonal model (Sec. 3.6).

Despite that the approximate position, orientation and configuration of the spread
garment are known from the previous step, they are not used to simplify the matching.
The model is fitted from scratch. The main reason is that the individual methods
included in the pipeline were developed independently and integrated later. In principle,
it would be possible to map each model vertex only to such contour points that are close
to the approximately known location of the corresponding landmark. This restricted
matching could be also used for checking the pose of a partially folded garment.

4.6. Experiments

This section provides the experimental evaluation of the modules included in the pipeline
(Sec. 4.2–4.4), as well as the end-to-end robotic experiments of the whole pipeline. The
presented experiments were performed at the Center for Research of Technology Hel-
las. The pipeline was also deployed to the testbed at the Czech Technical University in
Prague and used as a robotic manipulation demo occasionally.

The grasping module (Sec. 4.2) was evaluated in the real robotic experiment. The
robot was isolating a single item from a heap repeatedly. There were 80 runs performed.
The garments in the heap were changed and shuffled manually every 10 runs. The run
was considered successful if only a single garment was grasped and lifted up without
affecting the heap significantly. The maximum number of 3 retries was allowed. The
overall success rate was 95 %. The failures were caused by the incorrect localization of
the grasping point and due to slippage of the garment during the gripper closing.

The classification of the hanging garment category, regression of the next grasping
point and regression of the corresponding gripper orientation (Sec. 4.2) were evaluated
on the dataset of 30 garments. It includes 6 unique garments for each of 5 categories:
towels, shorts, pants, short-sleeved T-shirts and long-sleeved shirts. There are 72,000
training and 600 testing samples. Each sample is the annotated depth map seen from a
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4.6. Experiments

Task Towels Shorts Pants T-shirts Shirts Overall

Classification [%] 85 100 100 91 98 95

Grasping point [%] 93 100 100 86 96 95

Orientation [%] 83 81 94 71 67 79

Table 4.1. Percentual success rates for the classification of the garment category and regression
of the next grasping point and corresponding gripper orientation vectors. The allowed error
of the estimate is 10 cm for the grasping point and 18◦ for the gripper orientation.

Figure 4.11. Qualitative results for the regression of the grasping point and corresponding
gripper orientation. Two failures shown on the right are due to wrong grasping point detection
(red diamond) and wrong orientation estimation (hollow red arrow).

particular viewpoint, as defined in (4.1). The detection of the grasping point is consid-
ered successful, if the distance to the ground truth is lower than 10 cm. The divergence
of 18◦ is allowed for the estimated orientation of the grasping gripper. Tab. 4.1 sum-
marizes the success rates for the individual garment categories. Fig. 4.11 shows the
selected qualitative results for the regression tasks, including two failures.

The spreading module (Sec. 4.2) was evaluated in the real robotic experiment, using
two T-shirts. Each T-shirt was placed on the table 15 times by pulling it over the edge,
while the other T-shirt was used as a spread template for the registration and detec-
tion of deformations. The spreading was considered successful if all landmark points
were recognized correctly by the polygonal model matching (Sec. 4.5). No configuration
satisfied the above criterion before spreading, whereas 25 out of 30 configurations did
afterwards, which gives 83 % success rate. The maximum distance of the deformed con-
tour from the template decreased from 14.3 cm to 3.7 cm on average by the spreading.
There were 2.8 spreading actions needed on average in each run.

The performance of the complete pipeline1 was evaluated on 3 categories of garments:
towels, shorts and short-sleeved T-shirts. Pants and long-sleeved shirts were not used
because the limited workspace of the robot does not allow to manipulate large garments.
Each category was represented by 4 unique items (Fig. 4.12). Each item was evaluated
8 times, starting from randomly tossed configurations. Fig. 4.2 shows an example run.

The complete pipeline was successful in 72 out of 96 runs. The overall success rate is
therefore 79 %. It can be understood as a product of the success rates for the individual
steps, since a failure in any step causes the whole pipeline to fail. The experiment was
overlooked by a human operator, who interrupted the execution in case of a failure. In
some cases, it would be also possible to restart the whole pipeline or at least some steps
(Fig. 4.1) to possibly improve the overall success rate.

The following failures were observed in the experiment: a towel was misclassified as
a T-shirt 7 times, wrong grasping points were detected for shorts 2 times and a T-shirt

1Videos of the pipeline: http://cmp.felk.cvut.cz/~striajan/phd
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4. Pipeline for folding scenario

Figure 4.12. Examples of garments used for the evaluation of the complete pipeline.

Shorts T-shirts Towels Overall

Successful / all trials count 30 / 32 21 / 32 25 / 32 76 / 96

Success rate [%] 94 66 78 79

Table 4.2. Overall results of experiments testing the complete pipeline including grasping,
category recognition, unfolding, spreading and folding.

was not spread 2 times. The folding module failed 9 times, out of which 2 failures were
caused by the pose estimation method and 7 failures by the unsuccessful planning of the
folding movement, mainly due to the limited workspace of the robot. Tab. 4.2 provides
a summary of results for individual garment categories. The most failures were observed
for T-shirts, which have the most complex shape and are usually manufactured from
the most deformable materials (Fig. 4.12).

The overall success rate of 79 % sets a baseline for the folding scenario. To the best
of our knowledge, it is the first and up to this day the only end-to-end pipeline that can
deal with various categories of garments. For comparison, [Maitin-Shepard et al., 2010]
report a nearly perfect success rate, but with a solution developed specifically and
exclusively for towels.

The execution of the pipeline takes 8 minutes on average, depending on the garment
category. Most of the time is spent by the robotic manipulation, while all perception
and reasoning takes under 30 seconds. For comparison, [Maitin-Shepard et al., 2010]
report approximately 20 minutes for processing a single towel. The relative slowness of
our pipeline, with respect to the usual expectations of the general public and industry,
is caused by the robot operating in moderate speed due to the safety reasons.

The detection of the initial grasping point (Sec. 4.2) takes approximately 1 second,
whereas the actual grasping and lifting takes 20 seconds. A single depth map of the
hanging garment is analyzed in 30–40 milliseconds by ARF (Sec. 4.3). Depth maps
from 5 different viewpoints are required on average. The whole process of unfolding
the garment by grasping two predefined points on its surface takes slightly over 2 min-
utes. The analysis of the deformed contour (Sec. 4.4) takes approximately 10 seconds,
while the spreading using a brush lasts around 50 seconds. The spreading procedure is
executed at most 3 times. The pose estimation of the spread garment (Sec. 4.5) takes
2–5 seconds, depending on the garment type. A single folding operation is performed
approximately in 30 seconds. There are two folds needed for towels and shorts, and 3
folds for T-shirts.
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5. Unfolding folded garments

We propose a method for the robotic unfolding of an unknown garment that was placed
flat on a table and folded over an unknown axis [Stria et al., 2017]. The algorithm com-
bines image and depth data to detect the bottom and top layer of the garment, where
the top layer denotes the folded part of the garment. The layers detection is formulated
as a labeling of the garment surface and solved in an energy minimization framework.
Parameters of the energy function are estimated automatically from perceived data.

Once the garment pose is known, several candidate folding axes are generated and
used to unfold the garment virtually. The shapes of the virtually unfolded garment are
analyzed to select the true folding axis among the candidates. The method does not
set any constraints on the garment shape. It is able to deal with various categories of
garments, including jackets, pants, shorts, skirts or T-shirts of any sleeve lengths, as
shown in the experimental evaluation.

The garment is unfolded by our dual-arm robot, utilizing a cooperated manipulation
of both arms. One arm grasps the boundary of the detected top folded layer and brings
it over the estimated folding axis. Meanwhile, the second arm is pressing the bottom
layer towards the table to prevent the garment from slipping.

5.1. Task formulation and motivation

The presented method deals with the visual analysis and robotic unfolding of a garment
laid on a table. The garment category is unknown and not utilized by our method. It
is assumed that the garment is posed in such a configuration that can be achieved by
grasping the boundary of the fully spread garment and folding it over a selected folding
axis (Fig. 5.1a). The location and orientation of the axis is unknown and must be
estimated by our method. We use the fact that the axis forms a straight line segment
on the outer boundary of the garment.

a) Single fold b) Robotic unfolding c) Mutiple folds

Figure 5.1. a) The initial configuration of a garment folded over the axis (dashed line), which
forms a straight line segment on the boundary. The folded garment consists of the top (green)
and bottom (red) layer. b) The top layer is grasped and unfolded over the axis, while the
bottom layer is pressed towards the table to prevent the garment from slipping. c) Multiple
folds are allowed, if the top layers (green) do not overlap.
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5. Unfolding folded garments

a) Input image b) Segmentation c) Erosion and dilation

Figure 5.2. a) The input image is b) segmented. c) The segmentation mask P is eroded to a
subset mask Pe (removed green strip) and dilated to a superset mask Pd (added red strip).

Let us denote the folded part a top layer and the remaining one a bottom layer. The
bottom layer lies directly on a table, while the top part is placed on top of it (Fig. 5.1a).
Our method assumes that the top layer does not cover the bottom one completely. Note
that the majority of garments consist of a front and back side sewn together, i.e. two
layers of material, but we consider them a single layer for our purposes. The garment
is allowed to be folded multiple times, if no two top folded layers overlap (Fig. 5.1c).

The goal is to detect the top layer, estimate the folding axis and unfold the garment
by bringing the top layer back over the axis (Fig. 5.1b). If there are more top folded
layers, they are being detected and unfolded one by one.

Although the task definition may seem rather artificial, it is motivated by two pos-
sible scenarios. First, it can replace grasping, classification and unfolding of a hanging
garment in the folding pipeline, if its initial configuration satisfies the assumptions.
This was first proposed by [Mariolis and Malassiotis, 2015] and [Estevez et al., 2016]
(Sec. 2.5). Another motivation is the two-stage unfolding procedure for completely
crumpled garments, proposed by [Triantafyllou et al., 2016] (Sec. 2.4). The hanging
garment is untangled and stretched out in the air, laid down on a table and the remain-
ing folds are removed, using the procedure analogous to ours.

5.2. Image and depth preprocessing

The input of our method for folded layers detection is formed by the RGB image I and
depth map D. They are acquired by the RGBD sensor (Sec. 4.1). The image and depth
data are equally sized and calibrated. The color I(p) and depth D(p) of the pixel p
therefore refer to the same location in the real world, enabling to combine information
from both modalities effectively.

The image I is used to segment the observed garment from its background, which is
a wooden table in our experiments (Fig. 5.2a). The two-phase segmentation method
introduced in Sec. 3.1 is used. It is assumed that the background differs from the gar-
ment and does not change in the experiments. A probabilistic model of the background
color is learned, which provides the coarse and incomplete segmentation. It is used
to initialize the GrabCut [Rother et al., 2004] algorithm automatically, which provides
the final smooth segmentation mask (Fig. 5.2b).

Let us denote P the set of pixels from the final mask that correspond to the gar-
ment. The mask is morphologically eroded and dilated with a disc structuring element
[Šonka et al., 2014], radius of which corresponds approximately to 2 cm. Let us denote
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Figure 5.3. a) Depths acquired by the range sensor are subtracted from the plane approximat-
ing the table surface to obtain b) heights above the table. The depth and height values are
missing in the white areas.

the eroded and dilated pixels Pe and Pd, respectively (Fig. 5.2c). It holds Pe ⊂ P ⊂ Pd.
The eroded mask enables to avoid noisy image and depth values near the garment
boundary. The dilated mask enables selection of the surrounding table pixels.

The depth map D is acquired by the RGBD sensor attached to the wrist of the robot
(Sec. 4.1). Although the arm points approximately downwards during the acquisition,
the view direction is not perfectly perpendicular to the table surface, which appears
skewed in D. Another challenge are the missing depth values, caused mainly by the
occlusions and limitations of the structured light technology on glossy surfaces.

The contour of the dilated segmentation mask Pd is extracted. If the segmentation
was successful, the contour pixels belong to the table, as they are located approximately
2 cm outwards from the garment boundary. The depth values from the contour pixels
are used to estimate a plane approximating the table surface. Its parameters are fit
with the random sample consesus (RANSAC) [Fischler and Bolles, 1981]. The input
depth map D (Fig. 5.3a) is then subtracted from the estimated table plane. This results
in the height map H, where H(p) is a height of the pixel p above the table (Fig. 5.3b).

5.3. Layers detection

We formulate the task of detecting the top and bottom layer as a task of finding the
optimum labeling for a visible surface of the garment. Each garment pixel p ∈ P needs
to be assigned a label zp ∈ {T,B}. The label T represents the top layer and B the
bottom layer. Construction of the optimum labeling is based on two assumptions:

• Boundaries between the top and bottom layer appear as edges in the image I.

• Pixels from the top folded layer appear higher above the table in the height map H
than pixels from the bottom layer.

Since the outer contour of the garment is a source of undesirable edges in the input
image I, only the inner eroded pixels Pe (Fig. 5.2c) are labeled at first. The labeling
is then extrapolated to the boundary pixels of the original full segmentation mask P .
The task of labeling the pixels p ∈ Pe optimally with the labels zp ∈ {T,B} is formu-
lated as the following energy minimization problem, which is a standard and common
formulation in many computer vision applications [Boykov and Kolmogorov, 2004]:

Z∗ = arg min
Z∈{T,B}|Pe|

∑
p∈Pe

Up(zp) +
∑

{p,q}∈Ne

Vp,q(zp, zq). (5.1)
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a) Bottom potentials Up(B) b) Top potentials Up(T )
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Figure 5.4. Unary potentials of pixels being assigned to the bottom and top layer of the folded
garment, i.e. the potentials Up(B) and Up(T ) for each p ∈ Pe.

The functions Up : {T,B} → R are called unary potentials. They express a cost of
assigning each pixel p ∈ Pe to the particular layer. The functions Vp,q : {T,B}2 → R
are pairwise potentials. They are defined for all pairs of neighboring pixels {p, q} ∈ Ne,
where p, q ∈ Pe. The pairwise costs align the boundary between the labeled layers with
the edges observed in the image. They also make the boundary smooth.

The unary potential Up(z) for the pixel p ∈ Pe and label z ∈ {T,B} is defined as:

Up(z) =

{
− logN

(
H(p);µz, σ

2
)
, H(p) is known,

0, otherwise.
(5.2)

The definition is based on the assumption of normally distributed heights of the
pixels belonging to a particular layer. The potentials are the negative log-likelihoods of
two normal distributions N

(
µT , σ

2
)

and N
(
µB, σ

2
)
. The mean height of the top and

bottom layer is µT and µB, respectively. The variance σ2, shared by both distributions,
is caused by the wrinkled surface of a garment and by the noise present in the input
depths. Sec. 5.4 explains how µT , µB and σ2 are estimated from the observed heights.

Fig. 5.4 shows an example of the unary potentials computed from Fig. 5.3b. The defi-
nition of unary potentials was inspired by [Rother et al., 2004], who use distributions of
foreground and background colors, instead of heights, for the color-based segmentation
of RGB images.

The pairwise potentials Vp,q(zp, zq) are defined for all pairs of neighboring pixels
{p, q} ∈ Ne, where p, q ∈ Pe. We use 8-connected neighborhood, i.e. all pairs of ver-
tically, horizontally or diagonally adjacent pixels. The potentials are defined similarly
to [Rother et al., 2004]:

Vp,q(zp, zq) =

{
γ1 + γ2

d(p,q) exp
(
−g(I,p,q)

2E[g]

)
, zp 6= zq,

0, zp = zq.
(5.3)

The term d(p, q) denotes the spatial distance of the pixels p and q in the image grid.
It is equal to 1 for the horizontally and vertically adjacent pixels. It equals

√
2 for the

diagonal neighbors. The function g evaluates the visual difference of the pixels p and q
in the image I. The term E[g] denotes the mean value of the function g over all pairs
of the neighboring pixels:

E[g] =
1

|Ne|
∑

{p′,q′}∈Ne

g(I, p′, q′). (5.4)
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a) Grayscale image
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Figure 5.5. a) The gray-scale image Igray used for computing pairwise potentials. b) The gray-
scale image is smoothed and the gradient magnitudes Igrad are estimated. The figure shows
the normalized and exponentiated gradients exp (−Igrad/E[Igrad]), similarly to (5.3).

We set γ2 = 50 as in [Rother et al., 2004] to balance the typical values of the unary
and pairwise potentials. In addition to [Rother et al., 2004], the potentials are extended
with the Ising prior term, represented by the constant γ1 = 1. It prefers labelings with
a shorter boundary between the top and bottom layer.

The labeling procedure is not sensitive to the exact choice of the function g. It can
be almost an arbitrary function that responds to the presence of edges between the
pairs of pixels. The input RGB image I is transformed to a gray-scale image Igray at
first (Fig. 5.5a), which is then smoothed with the bilateral filter [Gonzalez et al., 2009]
to reduce a noise, while preserving edges:

Ismooth(p) =

∑
q w(p, q)Igray(q)∑

q w(p, q)
, (5.5)

w(p, q) =

{
exp

(
− ||p−q||

2
2

2σ2
d
− ||Igray(p)−Igray(q)||

2
2

2σ2
r

)
, ||p− q||∞ ≤ dw,

0, otherwise.
(5.6)

It computes a weighted average of the neighboring pixel values for each pixel p ∈ Pe

over the window of size (2dw+1)×(2dw+1) centered at the pixel p, where dw = 2. The
weights combine differences of neighboring pixel coordinates and values. The constants
were set empirically as σd = 2 and σr = 1 for gray-scale values from [0, 1].

The smoothed image Ismooth is convolved with the horizontal and vertical Sobel filters
Gx and Gy [Gonzalez et al., 2009] to estimate the partial derivatives along the horizon-
tal and vertical axis. The gradient image Igrad contains squared norms of the gradient:

Igrad = (Ismooth ∗Gx)2 + (Ismooth ∗Gy)2. (5.7)

The magnitudes are averaged for pairs of neighboring pixels to construct g (Fig. 5.5b):

g(I, p, q) =
Igrad(p) + Igrad(q)

2
. (5.8)

The pairwise potentials, as defined in (5.3), are regular by the definition introduced
by [Kolmogorov and Zabin, 2004], because for each {p, q} ∈ Ne it holds:

0 = Vp,q(T, T ) + Vp,q(B,B) ≤ Vp,q(T,B) + Vp,q(B, T ). (5.9)

Therefore, the globally optimum labeling Z∗ with respect to (5.1) can be found effec-
tively by constructing a special weighted graph and constructing the maximum flow
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Figure 5.6. Normalized histograms of table heights and garment heights. The garment heights
are fitted GMM with two components by EM algorithm to estimate µT , µB and σ2.

from a source to a sink vertex [Boykov and Kolmogorov, 2004]. The source and sink
vertices represent the labels {T,B}. They are connected to a 2D grid of 8-connected
vertices representing individual pixels. The maximum flow in the graph corresponds to
the minimum cut, i.e. to the subset of edges separating the source from the sink, and
it determines the optimum labeling.

5.4. EM algorithm for heights estimation

We show how to estimate the expected height of the top µT and bottom µB layer
above the table as well as their variance σ2. They are used to compute the unary
potentials (5.2). We model the heights of pixels from Pe using the Gaussian mixture
model (GMM) with two components, each of them corresponding to a single layer.
The components are weighted by priors πT , πB that are also unknown. Let us denote
θ = (µT , µB, σ

2, πT , πB) all unknown parameters of the mixture. The likelihood of the
pixel p having the height H(p) is given by:

L(θ;H(p)) =
∑

z∈{T,B}

πz N
(
H(p);µz, σ

2
)
. (5.10)

The unknown parameters θ are estimated by the expectation-maximization algo-
rithm (EM) [Dempster et al., 1977]. It is based on the incremental refinement θ(t) of
their initial estimate θ(0) for t = 1, 2, . . . The EM algorithm alters between the ex-
pectation and maximization steps, while increasing the lower bound on the likelihood
(5.10). Our algorithm is similar to estimation of the standard GMM with independent
components [Bilmes et al., 1998]. However, the components are not independent in our
case. They share the variance σ2. Moreover, denoting ∆µ the unknown thickness of
one layer of the garment, the mean heights are linked as follows:

µB = ∆µ, (5.11)

µT = 2∆µ. (5.12)

The initial values of the parameters θ(0) are estimated by applying the k-means algo-
rithm [Duda et al., 2000] on the heights of eroded pixels Pe. Each layer is represented
by a single mean, i.e. k = 2. The k-means result in a cluster of pixels from the bot-

tom and a cluster of top pixels. The thickness ∆
(0)
µ is computed based on (5.11–5.12)

from the heights corresponding to the centers of clusters. The priors π
(0)
T and π

(0)
B are

initialized to the relative sizes of clusters and σ(0) is the sample standard deviation.
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5.5. Folding axis detection

a) Input image b) Detected layers c) Single folds

Figure 5.7. a) Twice folded garment with top layers not overlapping. b) Result of layers
detection. Both top folded layers (green) were detected. c) Two modified labelings where
only a single top layer is forced.

In the estimation (E) step, a variational distribution Q
(t)
p (z) is built for each pixel

p ∈ Pe using current values of the parameters θ(t) = (µ
(t)
T , µ

(t)
B , (σ

(t))2, π
(t)
T , π

(t)
B ):

Q(t)
p (z) =

π
(t)
z N

(
H(p);µ

(t)
z , (σ(t))2

)
∑

z′∈{T,B} π
(t)
z′ N

(
H(p);µ

(t)
z′ , (σ

(t))2
) . (5.13)

In the maximization (M) step, the variational distributions Q
(t)
p (z) are used to esti-

mate the new values of parameters θ(t+1). The thickness of the layer ∆
(t+1)
µ is estimated

at first:

∆(t+1)
µ =

∑
p∈Pe

(
2Q

(t)
p (T ) +Q

(t)
p (B)

)
H(p)∑

p∈Pe
4Q

(t)
p (T ) +Q

(t)
p (B)

. (5.14)

Using (5.11–5.12) to compute µ
(t+1)
T , µ

(t+1)
B from (5.14), the variance and priors are

estimated as in the standard EM for GMM [Bilmes et al., 1998]:

(σ(t+1))2 =
1

|Pe|
∑
p∈Pe

∑
z∈{T,B}

Q(t)
p (z)

(
H(p)− µ(t+1)

z

)2
, (5.15)

π(t+1)
z =

1

|Pe|
∑
p∈Pe

Q(t)
p (z). (5.16)

The EM algorithm converges to a local optimum [Dempster et al., 1977], which takes
30–50 iterations in our case. Fig. 5.6 shows an example of the final GMM estimated
from the height map H shown in Fig. 5.3b.

5.5. Folding axis detection

Once the layers detection is finished, each pixel p ∈ P is assigned either to the top or
bottom layer. As stated in Sec. 5.1, the garment is allowed to be folded multiple times,
as long as the top layers do not overlap (Fig. 5.7a). Each top folded layer then forms a
separate connected component in the computed labeling (Fig. 5.7b). They are unfolded
one by one and in a greedy manner.
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5. Unfolding folded garments

a) Candidate axes b) Corrects axis c) Contour overlap d) Complex contour

Figure 5.8. a) Outer contour of the top layer (green) approximated by 4 candidates folding
axes (various colors). b) Unfolding over the true axis. c) Unfolding over the false candidate
axis leading to an self overlapping unfolded contour. d) Unfolding over the false candidate
axis that leads to a complex unfolded contour.

A separate modified labeling is constructed for each connected component, where
only the pixels from that component belong to the top layer, while all other pixels are
hard assigned to the bottom layer (Fig. 5.7c). The cost of each modified labeling is
evaluated with respect to the energy function (5.1). The component with the minimum
cost is selected for unfolding.

As stated in Sec. 5.1, the folding axis forms an approximate segment on the outer
contour of the top layer (Fig. 5.1a). In order to estimate the folding axis, the outer
contour of the top layer is approximated by a polyline [Perez and Vidal, 1994]. The
algorithm approximates the outer contour with a single segment at first and then splits
it recursively at the furthest point on the contour. The resulting polyline can consist of
one or more segments. Each segment forms a candidate for the axis (Fig. 5.8a), which
is estimated by fitting a line to the contour points adjacent to the segment with the
robust M-estimator [Huber, 1973].

The detected top layer is unfolded virtually by reflecting it over each candidate axis
(Fig. 5.8a). The candidate axes, for which the reflected top layer overlaps the bottom
layer, are rejected from further processing (Fig. 5.8c). The unfolded contours for the
remaining candidates are analyzed and compared. Since the true shape of the garment
below the top layer is not known, the contour of the bottom layer is simply connected
to the contour of the unfolded top layer with two straight segments. The candidate axis
giving the shortest unfolded contour is chosen as the true folding axis (Fig. 5.8b). We
use this simple heuristic successfully to reject very complex invalid contours (Fig. 5.8d).

5.6. Robotic unfolding

The robotic unfolding uses two cooperated arms. The first arm unfolds the selected
top layer, while the other one holds the bottom layer to prevent the garment from
slipping. The first arm grasps the inner boundary of the top layer and pulls it back
over the estimated folding axis. The gripper follows a triangular unfolding path, which
is analogous to the triangular folding path introduced in Sec. 3.8 and shown in Fig. 3.10,
but it is oriented reversely. The triangular shape of the path helps to immobilize the
hanging part of the garment due to the gravity. Similarly to Sec. 3.8, we do not grasp
the folded layer at the theoretically justified locations [Berg et al., 2011] that would
ensure immobility of the manipulated garment during unfolding, as more than one
grasping point would be needed usually.
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a) Grasping and holding candidates b) Unfolding path

Figure 5.9. a) The grasping candidates on the inner contour of the top layer (black dots) and
holding candidates on the surface of the bottom layer (red dots). b) The unfolding path
(black polyline) for the most prioritized grasping point and for different orientations of the
grippers. The sliding direction of the gripper (green arrow) is same for all orientations.

The second arm is pressing the bottom layer towards the table to prevent the gar-
ment from slipping during unfolding, which would occur otherwise due to the horizontal
pulling force generated by the unfolding arm. This approach is used instead of gener-
ating such unfolding trajectory that would minimize the horizontal force, as described
in Sec. 2.4, and that would enable to employ both arms for the unfolding. However,
the trajectory optimization is computationally demanding and relies on known material
properties of the garment.

Several grasping and holding position candidates are sampled and tested to increase
the robustness of the method, because the kinematic restrictions of the robot do not
allow to plan trajectories for each combination of the positions. The candidates for
the grasping position are sampled uniformly on the inner boundary of the top layer
(Fig. 5.9a). Several orientations of the gripper, limited by the shape of the top layer
and by the gripper mechanics, are sampled for each candidate grasping point to find
such configuration that allows the gripper to slide under the top layer while grasping it.
The holding position candidates are sampled uniformly on the bottom layer (Fig. 5.9a),
with the orientations allowed by the gripper mechanics.

The planning algorithm repeatedly selects a pair of the grasping and holding candi-
dates and tries to follow the triangular unfolding path virtually (Fig. 5.9b). If the path
is feasible for the robot, it is used for the real unfolding. Otherwise, the next grasping
and holding pair is selected and tested. The grasping positions more distant from the
folding axis are tested first, as they usually prevent the top layer from deforming during
unfolding (Fig. 5.9a). The grasping orientations and holding positions are tested in an
arbitrary order for each grasping position.

5.7. Experiments

The proposed method for the detection of folds was evaluated on the dataset, which
we acquired for this purpose. It contains manually annotated images and depth maps
of garments posed in various folded configurations. The dataset contains 13 garments
of 8 categories (Fig. 5.10). They are made of different materials, e.g. cotton, polyester,
denim or leather. Therefore they vary significantly in thickness, stiffness or friction.
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5. Unfolding folded garments

Figure 5.10. Garments used for the experimental evaluation, including a jacket, jeans, shorts,
2 skirts, 2 sweaters, a sweatshirt, a towel and 4 T-shirts of various sleeve lengths. The
garments are made of various materials and having various colors.

Garment Items Success
Failure cause Displac. [mm]

Layers Axis Mean Stdev.

Jacket 1 14 / 15 1 0 6.4 8.6

Jeans 1 12 / 15 3 0 3.4 4.5

Shorts 1 14 / 15 1 0 3.5 3.4

Skirt 2 25 / 30 5 0 4.1 8.9

Sweater 2 26 / 30 2 2 4.2 4.8

Sweatshirt 1 14 / 15 0 1 2.7 3.2

Towel 1 14 / 15 1 0 3.4 2.4

T-shirt 4 51 / 60 9 0 4.2 3.8

Total 13 170 / 195 22 3 4.0 5.2

Table 5.1. Performance evaluation of layers detection and folding axis estimation on various
garments included in the dataset. The displacement of the detected boundary between the
top and bottom layer is provided for the successfully detected layers.

They are also variously colored. Each garment was placed on the table and posed into
15 different folded configurations, which results into 195 testing data samples in total.

The images and depth maps were acquired by the calibrated RGBD sensor (Sec. 4.1).
The images and depths are registered and scaled to the same resolution 640×480 pixels.
The acquired data were annotated manually to have a ground truth for the evaluation.
The boundary between the top and bottom layer was denoted with a polyline drawn
carefully over the image. The folding axis is denoted with an oriented line segment,
whose right side is aligned with the outer side of the garment boundary.

The dataset was used to evaluate the methods for layers detection (Sec. 5.3) and
folding axis estimation (Sec. 5.5). The results are summarized in Tab. 5.1. The first
column states the garment type, the second one the number of unique items of that
particular type. Each item was posed into 15 different configurations. The third column
presents the ratios of the correctly recognized folded configurations. The next two
columns analyze the counts of failures caused either by the layers detection or the
folding axis estimation. The overall success rate is 87 %. It does not vary significantly
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Figure 5.11. Selected examples of the successfully detected folds and folding axes. Each image
shows the detected boundary between the layers (red), outer boundary of the top layer (blue)
and estimated folding axis (green segment). The background outside the table is masked out.

for various garments, which proves the generality of the proposed method. The layers
detection mechanism tends to be more error-prone, having 11 % failure rate, compared
to 2 % failure rate of the folding axis detection.

The last two columns of Tab. 5.1 provide a quantitative evaluation of the layers
detection. For each of 173 configurations, in which the layers were detected correctly, the
displacement of the detected and annotated boundary between the layers is computed.
Namely, for each point of the correctly detected boundary, we find its closest point
on the manually annotated boundary. The usual displacement is several millimeters,
which is more than sufficient for reliable grasping, considering the size of the gripper.
Fig. 5.11 shows selected examples of the successfully detected layers and folding axes.

The observed failures can be split into three categories. The first category are failures
in the detection of layers when all pixels happen to be assigned to the single layer only.
It occurs when heights of the layers differ insignificantly and their boundary is not
clearly visible in the image (Fig. 5.12a). The second category of failures corresponds to
a wrong labeling of the layers. It can be caused either by misleading depth information
(Fig. 5.12b), or by the presence of strong image edges, which are not adjacent to the
boundary between the layers (Fig. 5.12c). The last and rarest type of failures is a
wrongly chosen folding axis. It is caused by the employed heuristic on choosing such
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a) Undetected top layer

b) Wrong detection due to depth

c) Wrong detection due to edges d) Wrong folding axis

Figure 5.12. Analysis of the observed failures. a) All pixels were assigned to the bottom layer.
b) Wrongly detected layers caused by misleading depth information and c) by misleading
edges in the image. d) Wrongly selected folding axis caused by the employed heuristics.

axis, which has the shortest unfolded contour of all possible candidates. The heuristic
can fail for some configurations of a garment (Fig. 5.12d).

The proposed perception method was implemented in Python and C++. The time
performance was evaluated on a notebook with Intel i7-3740QM 2.7 GHz processor and
16 GB memory. The preprocessing stage (Sec. 5.2) takes 3.1 seconds on the average,
spent mostly by the segmentation. Time spent by the detection of layers (Sec. 5.3)
varies from 0.4 to 1.8 seconds. It is directly proportional to the size of the observed
garment, as it is solved by labeling each pixel. Estimation of the folding axis (Sec. 5.5)
takes 0.1 seconds at most.

The dual-arm robotic testbed (Sec. 4.1) was used for evaluation of the manipulation
procedure (Sec. 5.6). The performance is affected mainly by two factors. First, the
space of positions and orientations reachable by the robot is limited due to its con-
struction properties. The robot is able to unfold rather small garments placed close to
its base. Second, only the left arm was equipped with the griper suitable for grasping
of garments (Fig. 4.3b) during the experimental evaluation. Therefore, the robot was
able to unfold only such configurations, where the folding axis is located on the left
side (Fig. 5.9a). If two grippers were available, it would be possible attempting to plan
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Garment Success
Failure cause

Detection Planning Execution

Shorts 3 / 5 1 1 0

Sweatshirt 4 / 5 1 0 0

Towel 5 / 5 0 0 0

T-shirt 5 / 5 0 0 0

Total 17 / 20 2 1 0

Table 5.2. Performance evaluation and failure analysis of unfolding.

the manipulation for both combinations of the grasping and holding arm. Since both
limiting factors are rather technical than methodological, we tend to place the garments
into the configurations reachable and graspable by the robot in our experiments.

Tab. 5.2 summarizes the experimental results. Each garment was placed into 5 dif-
ferent folded configurations1. The garments were unfolded successfully in 17 attempts
out of 20. Two failures were caused by the wrong detection of folds. In one case, the
garment was placed in such configuration that it was impossible to plan its unfolding.
The robotic manipulation itself was always successful in the experiment.

Selection of the grasping and holding position and planning of the folding trajec-
tory takes 1–15 seconds, depending strongly on the ranking of the successfully planned
candidate in the priority queue (Fig. 5.9a). The unfolding manipulation takes usually
40–50 seconds, with the robot starting and finishing in the initial position and moving
rather slowly due to the safety reasons.

1Unfolding videos: http://cmp.felk.cvut.cz/~striajan/phd
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6. Classifying category of hanging
garments

A novel method [Stria and Hlaváč, 2018] is proposed for classifying the category of an
unknown garment, which was grasped by the robot, lifted up and is being held in a
hanging state. The input is a sequence of depth maps taken from different viewpoints
around the garment. The depth maps are acquired by a stationary RGBD sensor, while
rotating the robot wrist holding the garment, i.e. rotating the hanging garment around
its vertical axis. The depth maps are fused into a single 3D point cloud.

The point cloud is fed into a convolutional neural network (CNN) that transforms
it into a single global feature vector of a fixed size. The network works directly with
the unordered set of 3D points. It utilizes a novel type of convolution defined over a
local neighborhood of a point. The convolution is invariant to a rotation, translation
and scaling of the point cloud. The whole network is invariant to a permutation of
the points. Sizes of the local neighborhoods grow and the point cloud is repeatedly
subsampled in deeper layers. This causes the receptive fields of the neurons to grow.

The network was trained on a dataset of common 3D objects, since there are no large
datasets of hanging garments available. The features extracted by the convolutional
layers are general enough to be transfered to our domain. The fully connected layers
are not adapted to a new task, however. The local features for individual points are
pooled to a single global feature vector instead, which is classified with a support vector
machine (SVM) [Cortes and Vapnik, 1995] trained on smaller datasets of garments.

6.1. Fusion of depth maps

The proposed method deals with the category classification of an unknown garment
for the purpose of the folding scenario (Sec. 1.3). The garment is randomly tossed
initially. It may be even in a heap of crumpled garments. Our method assumes that a
single garment was already grasped by the robot, lifted up and it is now being held in
a hanging state under the gravity, e.g. using the approach described in Sec. 4.2. The
hanging garment can be optionally regrasped for its lowest hanging point to reduce the
space of its possible configurations (Sec. 4.3).

The garment is perceived from many viewpoints distributed around it. The gripper
holding the garment is oriented downwards, while rotating the wrist, i.e. the garment
is rotated around the vertical axis. The RGBD sensor is attached to the other arm,
which remains stationary. The alternative would be mounting the sensor onto a tripod.
This results in a sequence of viewpoints distributed on a horizontal circle around the
garment, whose vertical axis intersects the centre. It is assumed that the wrist is rotated
at slow pace, at least several seconds per a single rotation, so that the configuration of
the hanging garment does not change by fluttering.

The RGBD sensor provides images and depth maps of the garment (Fig. 6.1a). The
proposed method utilizes only depth data. It is therefore invariant to various colors and
textures. The first step is a segmentation of the garment from its background in the
depth map. If the sensor and robot are hand-eye calibrated, it is possible to keep only
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a) Input images and corresponding depth maps b) Reconstructed 3D point cloud

Figure 6.1. Reconstruction of 3D point cloud. a) The input depth maps acquired from multiple
viewpoints around the garment are segmented and fused. b) The reconstructed 3D point cloud
with the estimated sensor poses visualized as cones.

data from a properly sized cuboid or cylinder below the gripper holding the garment.
The cuboid is defined manually in our experiments on the existing datasets.

The depth maps from multiple viewpoints (Fig. 6.1a) are fused into a single global
dense surface model by the Kinect Fusion algorithm [Newcombe et al., 2011], while
tracking 6DOF pose of the sensor over time (Fig. 6.1b). Depth measurements from each
viewpoint are converted to 3D vertices and normals in the camera coordinate system at
first, using the intrinsic calibration matrix. The sets of 3D vertices from two consecutive
viewpoints are registered by the Iterative Closest Point (ICP) [Besl and McKay, 1992]
algorithm, which also estimates the relative rigid 6DOF transformation of the sensor,
i.e. its relative translation and rotation with respect to the garment. It would be also
possible to define a prior on the transformation, as the relative movement is controlled
by rotating the robot wrist. However, the default method is used for simplicity.

The relative transformations are combined incrementally. The oriented 3D vertices
from all viewpoints are brought to a single global coordinate system and fused into a
volumetric representation. Each voxel stores a running average of the truncated signed
distance function (TSDF). Its value is negative for the points inside the object and pos-
itive for those outside. The reconstructed 3D point cloud contains points corresponding
to those voxels, whose neighbors have an opposite sign of TSDF.

We use the KinFu1 implementation of the fusion algorithm in CUDA. It delivers
real-time 3D reconstructions, even if running on the low-level GPU Nvidia GT 730M.
We use 2563 volumetric grid to represent the reconstructed cubical space of the edge
length 200 cm. Density of the reconstructed 3D point cloud is therefore 7.8 mm, which
corresponds approximately to the depth quantization step used by commonly available

1KinFu library: http://github.com/Nerei/kinfu_remake
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6.2. Local neighborhood of points

RGBD sensors. We have found out that one full rotation of the garment with 10◦ step
between the individual viewpoints suffices to obtain a precise enough reconstruction.

The reconstructed 3D point cloud usually contains thousands to tens of thousands
points in our case. It is downsampled by selecting n = 1024 points randomly, which
is enough for a suitable representation of its original shape. All points have an equal
probability of being selected, which results in an approximately uniform coverage of the
original point cloud in practice. The sampled point cloud is translated to zero mean
and scaled to span a unit ball.

6.2. Local neighborhood of points

The classical CNNs [Krizhevsky et al., 2012] utilize 2D convolution kernels that are
applied locally over the neighborhood of a pixel in the image grid. The ordering of the
neighboring pixels is well defined by the grid. There is no such a neighborhood and
ordering induced implicitly by a 3D point cloud. The pioneering PointNet architecture
[Qi et al., 2017a] thus applies the convolution on each point separately, transforming
its features to a higher dimension.

We propose a novel KnnConv operation defined on a local neighborhood of a point,
which is given by its k-nearest neighbors (k-NN) from the point cloud. The standard
Euclidean distance of the points in 3D space is used as a distance metric. An alternative
is the geodesic distance [Spivak, 1970], which is a length of the shortest path between
two points on the object surface. The neighborhood induced by the Euclidean and
geodesic distance differ especially in highly curved parts of the object, e.g. on a wrinkle.

We experimented with reconstructing the object surface from the input point cloud,
but rejected it from several reasons. First, the reconstruction is very time consuming,
compared to the computation performed by the network. Second, the highly curved
parts of the object, where we would benefit the most from knowing the actual surface,
are the main source of reconstruction errors. Last, it is possible in principle for the
network to learn estimating the local surface even from the Euclidean neighborhood.

The neighboring points are found by an exhaustive search over all n input points. An
alternative are the approximate search methods, e.g. a k-D tree [Muja and Lowe, 2014].
However, from our experience, they do not bring any performance improvement over
the exhaustive search implemented on GPU for n = 1024.

The input of our method is the 3D point cloud {p1, . . . , pn}, where pi ∈ R3. Since the
PyTorch framework [Paszke et al., 2017], in which our network is implemented, does
not support computation of the pairwise distance matrix D ∈ Rn×n, the Euclidean
distance Di,j of two points pi and pj is computed based on the following formula:

Di,j = ||pi − pj ||2 = ||pi||2 − 2p>i pj + ||pj ||2. (6.1)

The input points are organized into the design matrix P . The 3D coordinates of each
point form an individual row:

P =


p>1
...

p>n

 ∈ Rn×3. (6.2)

The squared Euclidean norms ||pi||2 from (6.1) are computed in parallel by sum-
ming the columns of the element-wise Hadamard product P ◦ P . The dot products
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p>i pj from (6.1) are computed for all pairs of points in parallel as the following matrix
multiplication:

p>i pj =
(
PP>

)
i,j
. (6.3)

The rows of the distance matrix D are sorted in ascending order. Each row is sorted
independently on GPU in O(n log n) time using the PyTorch framework, while remem-
bering the sorted indices. This results in the matrix K ∈ {1, . . . , n}n×n, containing in
the i-th row indices of all n points ordered in ascending distance from the point pi. The
matrix K is computed only once at the beginning and reused later to obtain k-NN for
different values of k. When the point cloud is subsampled in deeper layers by keeping
only a fraction of the points, the matrix K is subsampled accordingly by keeping only
the corresponding rows and filtering values in their columns.

6.3. Convolution on point sets

The local neighborhoods of points are specified by taking the first k columns of the
index matrix K. Each point is thus considered to be its closest neighbor. The remaining
neighbors are ordered in ascending Euclidean distance from the reference point. The
relation of the neighborhood and ordering of the neighbors are therefore invariant to
any permutation of the input points {p1, . . . , pn}. They are also invariant to a rotation
and translation of the point cloud, which do not affect the distances between points,
and to its scaling, which multiplies all distances by a constant factor. The k-NN relation
therefore enables defining a convolution over the local neighborhoods of points, similarly
to a convolution over the neighboring pixels in an image grid.

In addition to its 3D spatial coordinates pi ∈ R3, each point is also assigned a d-
dimensional feature vector xi ∈ Rd. We set xi = pi in our experiments for the input
point cloud, i.e. the initial feature vectors are just world coordinates of the points.
In general, the initial feature vector xi can contain an RGB color of the point, its
surface normal estimated from the local neighborhood, or an arbitrary local point cloud
descriptor [Hana et al., 2018] computed in advance.

The convolution combines the feature vectors from a local neighborhood of a point
and transforms them to a new feature vector describing the reference point. The feature
vectors of k neighboring points, specified by the matrix K, are concatenated at first to
obtain a feature vector zi describing the neighborhood of the i-th point:

zi =


xKi,1

...

xKi,k

 ∈ Rkd. (6.4)

A single convolution kernel is specified by a vector of weights wj ∈ Rkd. The convolu-
tion is applied on the neighborhood of the i-th point by computing a dot product with
the neighborhood descriptor zi. The result is optionally added a scalar bias bj ∈ R:

z>i wj + bj . (6.5)

A new transformed feature vector x′i for the i-th point is formed by applying m
different convolution kernels and corresponding biases:

x′i =


z>i w1 + b1

...

z>i wm + bm

 ∈ Rm. (6.6)
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Figure 6.2. Visualization of KnnConv(k = 3, d = 3,m = 4) operation. The point cloud con-
tains n points. The i-th point has spatial 3D coordinates pi ∈ R3 (shown as a dot) and is
assigned a feature vector xi ∈ Rd (shown as a vector). The feature vectors of k spatially
closest neighbors of each point (denoted with arrows) are concatenated to a neighborhood
descriptor zi ∈ Rkd. Each descriptor zi is dot multiplied with m kernels wj ∈ Rkd and added
biases bj to form a new transformed feature vector x′i ∈ Rm for the i-th point.

Let us denote a single layer of convolutions as KnnConv(k, d,m), where d is the
dimensionality of the input feature vectors, k is the size of the local neighborhood and
m is the number of convolution kernels. The layer has m(kd+ 1) learnable parameters
in total, which are the weight vectors w1, . . . , wm and corresponding biases b1, . . . , bm.
The neighborhood size k and number of kernels m are hyperparameters of the layer,
which need to be specified in advance and validated.

A special case is KnnConv(k, d,m) for k = 1. Since each point is its closest neighbor,
it holds zi = xKi,1 = xi in this case. Each feature vector xi is therefore transformed sep-
arately by such convolution layer. This restricted transformation is useful for combining
current point features to more complex higher features. It is also a transformation used
solely by the original PointNet [Qi et al., 2017a] architecture.

We implemented the KnnConv operation in PyTorch framework [Paszke et al., 2017],
using the available implementation of 1D convolution. The local neighborhood descrip-
tors (6.4) for all points are organized to a single n×kd tensor and convolved with 1×kd
tensor of weights (Fig. 6.2). This can be seen as a discrete multi-channel 1D convolution
of a vector, which has a length n and kd channels, with a convolution kernel, which has
a unit size and kd channels. It requires O(nkd) multiplications and additions.

In practice, KnnConv is computed for a batch of r point clouds and all m convolution
kernels in parallel. The descriptors (6.4) are therefore organized into a single r×n×kd
tensor and convolved with m×1×kd tensor of weights over the second dimension. The
result is a r× n×m tensor of new m-dimensional feature vectors for all points. Whole
computation therefore requires O(rnmkd) multiplications and additions. The imple-
mentation of convolutions in PyTorch is highly optimized and massively parallelized,
utilizing capabilities of modern Nvidia GPUs through CUDA and cuDNN libraries.

6.4. Subsampling of points

The local neighborhood descriptor zi is formed by concatenating the feature vectors
xKi,1 , . . . , xKi,k

assigned to k-NN of a point, as defined in (6.4). Therefore, the local
neighborhood descriptors zi belonging to the neighboring points share common sub-
vectors and also the transformed feature vectors x′i, defined in (6.6), of the neighboring
points encode partially redundant information. To reduce the redundancy and compu-
tational costs, we subsample the point cloud after several KnnConv layers, similarly to
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Figure 6.3. Example of the sub-network for estimating the sampling probabilities from the
feature points f(xi) = πi. It is formed by a stack of KnnConv(k, d,m) for k = 1 and d
halving gradually. The result scores si ∈ R are normalized to probabilities πi with softmax.

[Qi et al., 2017b]. Only a subset of points is selected randomly to represent the object,
whereas the remaining points are dropped out from the point cloud, together with their
feature vectors. If the sampled points cover approximately all parts of the original point
cloud, almost no information should be lost.

Prior to subsampling, the i-th point is assigned a probability πi of being selected.
This can be considered a categorical distribution over all n points:

πi ≥ 0,

n∑
i=1

πi = 1. (6.7)

We sample n′ points from this distribution without a replacement, where usually
n′ = n/2, i.e. a half of the points is discarded. During the backward pass, the gradients
are propagated only through the sampled points. However, as the local neighborhood
descriptors consist of feature vectors from k-NN points, as defined in (6.4), the gradients
get propagated gradually to almost all discarded points.

We experimented with two approaches of selecting the subset of points. The first
method assigns an equal probability of being sampled πi = 1/n to each of n points. As
n is in the order of hundreds, it is likely that the sampled points cover all parts of the
3D object due to the law of large numbers.

The second approach computes the probability as a function of the feature vector
at a particular layer πi = f(xi). The motivation is that the feature vector xi ∈ Rd
could hold information about the importance of the i-th point, which is extracted by f .
The function f is realized by a small sub-network (Fig. 6.3) of several KnnConv layers,
which predict a sampling score si ∈ R for each point, followed by the softmax function
[Goodfellow et al., 2016], which normalizes the scores to the categorical probability
distribution (6.7). The function f is learned in parallel with the main network.

The experiments showed, however, that the sampling utilizing the computed prob-
abilities does not bring any improvement over the uniform probabilities. The possible
reason is that the sub-network f is not able to learn a correct mapping from a high
dimensional space Rd to a scalar probability. Moreover, propagation of the gradients
through samples from the categorical distribution (6.7) is not straightforward, requir-
ing a specific reparametrization [Jang et al., 2017]. The final architecture thus assigns
uniform sampling probabilities πi = 1/n to all points.

The subsampling can be considered a form of pooling, which is used in CNNs for
image processing [Goodfellow et al., 2016]. In the standard pooling, the feature vectors
from several neighboring pixels, usually 2 × 2 or 3 × 3 window, are replaced with a
single aggregated vector, usually containing maximums over the corresponding values.
A spatial resolution of the input is reduced in consequence, which also reduces a number
of computations in deeper layers. This is also true for the proposed subsampling.
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Since the points are sampled randomly, the subsampling improves robustness of the
network and prevents overfitting. The same object is represented by different subsets
of points in the individual epochs during training. As only a random subset points is
kept and used to update the weights in deeper layers, the subsampling can be seen as
a dropout [Srivastava et al., 2014] on the data side.

6.5. Network architecture

The input of the network is a 3D point cloud {p1, . . . , pn}. The matrix K is built by the
KnnSearch module (Sec. 6.2), containing in the i-th row indices of all points ordered in
ascending distance from the point pi. The matrix K is used by KnnConv layers.

The point cloud is processed by a stack of KnnConv layers (Sec. 6.3), extracting a
set of local features. The l-th convolutional layer KnnConv(k(l), d(l),m(l)) is specified
by three parameters: the number of neighbors k(l), dimensionality of inputs d(l) and

number of convolution kernels m(l). The input feature vector x
(l)
i ∈ Rd(l) is transformed

to a new vector x
(l+1)
i ∈ Rm(l)

by the l-th layer, i.e. it holds m(l) = d(l+1). We set

x
(1)
i = pi ∈ R3, i.e. the initial feature vectors are Cartesian coordinates of the points.

The neighborhood size k(l) increases in deeper layers, causing the point features to
describe higher level concepts related to larger parts of the object. An exception are the
feature transformation convolutions (Sec. 6.3), where k(l) = 1. The number of kernels
m(l) increases in deeper layers. Outputs of the convolutional layers are batch normalized
[Ioffe and Szegedy, 2015]. The rectified linear unit (ReLU) [Goodfellow et al., 2016]
activation function is applied. The point cloud is subsampled (Sec. 6.4) after a block
of convolutional layers, followed by an another block.

The output of the convolutional part of the network with l layers is a set of point

feature vectors {x(l+1)
1 , . . . , x

(l+1)
n′ }, where x

(l+1)
i ∈ Rm(l)

and n′ ≤ n because of involved
subsamplings. As proposed by [Qi et al., 2017a], a function g symmetric in its argu-
ments is applied to obtain a global feature vector independent on ordering of the points:

g
(
x
(l+1)
1 , . . . , x

(l+1)
n′

)
∈ Rm

(l)
. (6.8)

The recommended form of g is a pooling function that aggregates the corresponding
elements of all n′ vectors to a single value. We use specifically the max-pooling in
our KnnNet. The global feature vector is therefore the element-wise maximum over all
local features. We experimented with implementing the function g with a recurrent neu-
ral network (RNN) [Goodfellow et al., 2016], namely the gated recurrent unit (GRU)

[Cho et al., 2014]. The set of features {x(l+1)
1 , . . . , x

(l+1)
n′ } is processed as a sequence

by the network. Since RNNs are not invariant to the ordering of inputs, the feature
vectors were permuted randomly during the training. However, RNNs did not bring
any significant improvement over the pooling.

The global feature vector (6.8) is classified by a stack of fully connected layers. Let us
denote a single layer as FC(c(l)), where c(l) is the number of neurons. All layers except
the last one are batch-normalized and use ReLU activation function. The output layer
uses the logarithm of softmax function to predict logarithms of a categorical distribution
over c output classes.

Outputs of all fully connected layers except the last one are regularized by dropout
[Srivastava et al., 2014]. Let us denote the dropout layer as Dropout(p). It discards
the output of each individual neuron from the previous layer with the probability 1− p
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Figure 6.4. Proposed KnnNet architecture. Yellow boxes show sizes of data in individual stages
for a single point cloud. The input is formed by 1024 points of the dimension 3. The points
are reduced to a half repeatedly by a random sampling, while the dimension of their feature
vectors grows up to 512 because of KnnConv layers. The local feature vectors of all 128
points are max-pooled to a single global feature vector of the dimension 512. The dimension
of the output vector 55 correspond to a number of classes.
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Figure 6.5. Selected 3D models from ShapeNet dataset [Chang et al., 2015], which contains
approximately 51 thousands samples over 55 categories of common objects.

by setting it to zero. The output is unchanged with the probability p. Gradients are
not propagated through the zeroed nodes during the backward pass.

We experimented with different architectures of the network, namely with various
numbers of convolutional blocks and layers inside these blocks, numbers of fully con-
nected layers and sizes of layers. We also tested various sizes of local neighborhoods,
numbers of sampled points or settings of dropout. Many different architectures were
trained, as described in Sec. 6.6. The architecture with the best validation accuracy
was used in the final experiments (Fig. 6.8).

Fig. 6.4 shows the final architecture of our network. It comprehends three blocks
of convolutional layers for the extraction of local features. Each block consists of a
single KnnConv layer over the local neighborhoods of points, one feature transforming
KnnConv layer and a random subsampling of the point cloud to a half. Size of the
local neighborhood grows from 4 in the first block to 12 in the last one. Number of
the convolution kernels grows from 64 to 512 after the last block, which is therefore a
dimension of the final local feature vectors for 128 sampled points. The local features
are max-pooled to a single global feature vector of dimension 512 that is classified by a
stack of 3 fully connected layers.

6.6. Network training

The existing CNNs for garments classification use depth maps on their input (Sec. 2.2).
They are trained from scratch on datasets of hanging garments, without any pre-training
on general RGBD datasets. The shortage of real world data is partially overcome by
generating synthetic samples with the cloth simulation engines included in Blender2

[Mariolis et al., 2015] or Maya3 [Gabas et al., 2016]. It is, however, difficult to ensure
sufficient diversity of synthetic data to avoid overfitting.

Our network is trained on ShapeNet [Chang et al., 2015], which is arguably the
largest publicly available dataset of annotated 3D models (Fig. 6.5). It contains more
than 51 thousands mesh models over c = 55 categories of common objects, including
vehicles, household equipment, electronics etc. We believe that by training our network
on such a variety of objects, the convolutional layers learn to extract general enough
features that can be transfered to a new domain of garments. The dataset is split
to 90 % training and 10 % validation subset, which was used to develop the network
architecture and optimize its hyperparameters.

Each 3D mesh model from ShapeNet is converted to a 3D point cloud by sampling
2048 uniformly distributed points on its surface. The point clouds are normalized to

2Blender: http://www.blender.org
3Autodesk Maya: http://www.autodesk.com/products/maya
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6. Classifying category of hanging garments

be zero meaned and located inside a unit ball, as in Sec. 6.1. Following augmentations
are employed in each training epoch to avoid overfitting. A subset of n = 1024 points
is sampled randomly, which ensures that the same cloud is almost never seen again in
different epochs. The sampled point cloud is rotated around the vertical axis by an
angle selected randomly from the range [0, 2π) radians.

The network is trained with Adam [Kingma and Ba, 2014] algorithm, using the rec-
ommended values of hyperparameters β1 = 0.9 and β2 = 0.999. The initial learning
rate α = 0.001 is decreased every 20 steps by multiplying it with the factor 0.7. The
categorical cross entropy loss is minimized. No weight decay is used. The network is
trained for 100 epochs in batches of 32. The classification accuracy on the validation
subset of the ShapeNet dataset is 81%.

The training takes approximately 6 hours on a single GPU Nvidia GeForce GTX
1080 Ti, which has 3584 CUDA cores and 11 GB memory. Since the whole network to-
gether with the ShapeNet dataset take approximately 3.3 GB memory, no data transfers
between the main and GPU memory are needed during training.

6.7. Classification

Despite that the network is trained on a dataset of common 3D objects, it is intended
to be used for classifying the categories of hanging garments. A standard approach
would be the adaptation of the weights to a new domain [Yosinski et al., 2014]. It is
achieved by freezing the weights up to a certain layer, usually all convolutional layers,
and adapting the remaining weights on a smaller dataset from that particular domain.
The convolutional weights can be eventually fine tuned with a small learning rate.

We experimented with freezing different parts of the network, up to the penultimate
fully connected layer. However, as the available datasets of hanging garments contain
only several hundreds of training sequences, it is difficult to avoid overfitting. Therefore,
only the convolutional part of the network followed by the pooling (6.8) is used to extract
a single global feature vector representing the point cloud, which is classified by SVM.

Given the set of training data {(gj , yj) | j = 1, . . . , N}, where gj ∈ Rd and yj ∈ {±1},
the linear SVM is a linear classifier [Friedman et al., 2001] that maximizes the distance
between the decision boundary and the closest samples. This should improve general-
ization on unseen data. SVM training can be formulated as the following constrained
optimization task:

min
β∈Rd

β0∈R
ξ∈RN

1

2
||β||2 + C

N∑
j=1

ξj

subject to yj(β
>gj + β0) ≥ 1− ξj ,

ξj ≥ 0.

(6.9)

The linear decision boundary is specified by the parameters β, β0. The slack variable
ξj ∈ (0, 1] penalizes a correctly classified gj , which is close to the decision boundary,
while ξj > 1 is a penalty for a misclassified sample. The sample gj is a global feature
vector obtained by pooling over local features. It is an output of the function g defined
in (6.8), i.e. there is a single gj computed for each of N training point clouds. Since
SVM is a binary classifier, i.e. yj ∈ {±1}, we train c different classifiers for c output
classes using one-against-all strategy. Each of them classifies samples from the specified
class as positive and all remaining samples as negative.
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a) Random points b) Lowest points c) Unfolding points

Figure 6.6. Samples from datasets of hanging garments used in the evaluation: a) randomly
grasped garments [Kampouris et al., 2016]; b) garments regrasped for the lowest point fol-
lowed by c) the first unfolding point [Doumanoglou et al., 2014b].

The regularization hyperparameter C, which weights the per-sample classification
penalties, is found by cross-validation over the training set. We use specifically the
LIBSVM implementation [Chang and Lin, 2011] of SVM.

6.8. Experiments

The proposed method for the classification of hanging garments was evaluated on two
publicly available datasets [Kampouris et al., 2016] and [Doumanoglou et al., 2014b].
The former contains randomly grasped garments, while garments in the latter one were
regrasped for the lowest hanging point to reduce the space of possible configurations.
Both datasets contain images and depth maps taken from multiple viewpoints around
the garment, enabling the reconstruction of 3D point clouds (Sec. 6.1).

The referred datasets were used only for training in the corresponding original works.
The evaluation was performed on additional testing data, which are either not available
anymore [Doumanoglou et al., 2014b] or do not contain full sequences of viewpoints
needed for fusing depth maps into point clouds [Kampouris et al., 2016]. We therefore
use the original training datasets both for training and out-of-sample evaluation of
our method. Its performance is compared to the reported performance of the original
methods evaluated on unavailable or unsuitable testing data.

Our method is evaluated in leave-one-out manner [Friedman et al., 2001]. One cloth-
ing item per each category is put into the testing set and the SVM classifier (Sec. 6.7)
is trained on the remaining items in each iteration. The process is repeated as many
times as is the number of unique garment items per category. The classification results
are averaged over all runs. Cross-validation of SVM hyperparameters is performed also
in leave-one-out manner on each training set independently.

The dataset of randomly grasped garments [Kampouris et al., 2016] contains 16 uni-
que items of 5 categories (Fig. 6.6a). Each garment was grasped by a robot at various
points on its surface and hung up. The dataset comprises 3 pants × 59 grasping points,
3× 74 shirts, 3× 20 shorts, 4× 56 T-shirts and 3× 25 towels. That is 758 combinations
in total, each perceived from 180 consecutive viewpoints rotated approximately by 2◦.
Only 90 views are used to reconstruct 3D point clouds.

[Mariolis et al., 2015] applies CNN directly on the depth maps. To improve the classi-
fication accuracy, CNN was later combined [Kampouris et al., 2016] with the approach
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Method Towels Shorts Pants T-shirts Shirts Overall

RF [Doumanoglou et al., 2014a] 72 73 47 80 82 75

dCNN [Mariolis et al., 2015] 48 53 60 76 84 70

RF+dCNN [Kampouris et al., 2016] 78 67 56 90 88 82

Ours 48 72 90 84 90 83

Table 6.1. Comparison of garment category classification accuracies (in percents) evaluated
on the dataset of randomly grasped hanging garments [Kampouris et al., 2016].

True\Pred. Towels Shorts Pants T-shirts Shirts

Towels 48 1 3 28 20

Shorts 2 72 3 23 0

Pants 1 1 90 1 7

T-shirts 2 4 3 84 7

Shirts 1 0 3 6 90

Table 6.2. Relative confusion matrix (in percents) for the proposed classifier evaluated on the
dataset of randomly grasped hanging garments [Kampouris et al., 2016]. Rows correspond
to true garment categories, columns to predictions.

based on RF [Doumanoglou et al., 2014a]. Predictions from multiple viewpoints are
aggregated, which can be considered an alternative to our fusion of depths.

Tab. 6.1 shows the comparison of the classification results. Overall accuracy of our
method is 83 % which is approximately on par with the current state of the art approach
combining CNN and Random Forest (RF) [Kampouris et al., 2016]. Tab. 6.2 shows a
relative confusion matrix for our classification results. Its rows correspond to true
garment categories, columns to our predictions.

The main source of our failures are towels, for which only 48 % samples are classified
correctly, while 48 % samples are classified incorrectly as short-sleeved T-shirts and
long-sleeved shirts. We believe that the low performance on towels is caused by the
absence of distinguishable parts like collars or sleeves.

The dataset collected by [Doumanoglou et al., 2014b] contains 4 clothing categories:
pants, shirts, shorts and T-shirts. Each category is represented by 6 unique items. Each
garment was grasped by a robot, lifted up and regrasped for its lowest point (Fig. 6.6b).
There is 1 possible lowest point for pants and shirts and 2 lowest points for shorts and
T-shirts. Each combination of a garment item and the possible lowest point occurs 20
times. This gives 720 sequences in total, each comprehending data from 40 viewpoints
distributed approximately equidistantly on a circle around the garment.

[Doumanoglou et al., 2014a] apply the RF classifier on simple features computed from
a depth map. Information from more views is aggregated by the partially observable
Markov decision process (POMDP) [Sondik, 1978]. [Doumanoglou et al., 2014b] aggre-
gates directly in the Active Random Forest (ARF), which also selects the next best
viewpoint, as described in Sec. 4.3. Only several views are needed for a decision, com-
pared to tens views distributed uniformly around the garment required by our method.
On the other hand, time spent by rotating the wrist holding the garment is negligible
compared to the other manipulation steps (Sec. 4.6).

We achieve 91 % overall classification accuracy. The results are approximately con-
sistent over all 4 categories (Tab. 6.3). The original works [Doumanoglou et al., 2014a,
Doumanoglou et al., 2014b] claim perfect 100 % accuracy. The RF approach, how-
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True\Pred. Shorts Pants T-shirts Shirts

Shorts 88 1 11 0

Pants 4 92 0 4

T-shirts 1 0 97 2

Shirts 2 2 10 86

Table 6.3. Relative confusion matrix (in percents) for the proposed classifier evaluated on
the dataset of garments regrasped for the lowest point [Doumanoglou et al., 2014b]. Rows
correspond to true garment categories, columns to predictions.

True\Pred. Shorts Pants T-shirts Shirts

Shorts 83 2 14 1

Pants 2 91 2 5

T-shirts 3 2 88 7

Shirts 0 3 16 81

Table 6.4. Relative confusion matrix (in percents) for the proposed classifier evaluated on the
dataset of garments being held for the lowest or unfolding point [Doumanoglou et al., 2014b].
Rows correspond to true garment categories, columns to predictions.

ever, has inferior performance on the randomly grasped garments (Tab. 6.1). Since our
method normalizes the input point cloud to a unit ball, it distinguishes the garment
category purely on its shape. On contrary, the RF can learn to classify the garments
based on their size, since e.g. shorts usually occupy smaller portion of the depth map
than pants. Such size based classification may not be a desired behavior. Moreover,
thanks to the normalization, our method is arguably easier transferable to different
robotic setups, in which a sensor with a different resolution may be used or its distance
to the garment may vary over time due to the movement of a robot.

The dataset [Doumanoglou et al., 2014b] contains additional 360 sequences of gar-
ments that have been already unfolded partially (Fig. 6.6c) by identifying and grasping
a particular point. These data are not used for classification in the original work
[Doumanoglou et al., 2014b], because the garment category must be already known be-
fore unfolding in practice. We mixed these 360 sequences with 720 sequences for the
lowest point. The resulting dataset should therefore be more complex than the low-
est point one (Fig. 6.6b), but still simpler than the one with random grasping points
(Fig. 6.6a), as the possible states of a garment are limited to a certain extent.

The achieved overall recognition accuracy 86 % proves this hypothesis, compared to
83 % for the random and 91 % for the lowest points. Tab. 6.4 shows a confusion matrix
for individual categories.
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7. Conclusion

In the thesis, several perception tasks were studied related to a dual-arm robotic ma-
nipulation of garments. The proposed work was motivated mainly by the scientific
challenges emerging from handling soft objects and materials, reposing in their high
deformability. The other motivation are possible future applications in robotic house-
hold assistants, which should be capable of laundering, as well as industrial applications
in robotic production lines. It should be said, however, that we do not believe in such
applications being common in the upcoming decade.

The thesis dealt mainly with three perception tasks originating from garments folding,
unfolding and classification. All three tasks are related to the robotic folding scenario.
The main contributions of the thesis are summarized in Sec. 7.1. The possible extensions
and yet unexplored research topics are outlined in Sec. 7.2.

7.1. Summary

The contents and contributions of the proposed thesis can be summarized as follows:

• Chap. 3 dealt with the pose estimation of a garment for its robotic folding. The
garment is segmented from its background automatically with a novel two-stage seg-
mentation method. It is applicable if the statistical properties of the background
are known and different from the foreground object. The extracted and simplified
contour of the garment is matched a polygonal model, whose vertices are defined
manually, but their mutual positions are learned from data. The model is matched
with a dynamic programming approach, minimizing a predefined cost. Two cost
functions of various complexity were developed and compared. The model matching
procedure should be applicable to any polygonal shaped objects.

• Chap. 4 described the integration of the folding method into the CloPeMa pipeline.
It is the first such end-to-end pipeline for bringing a heap of crumpled garments of
various categories to a fully folded state. Despite the achieved experimental results
are promising for such a complex and multistage task, the potential commercial ap-
plications would require a significant improvement in terms of robustness and speed.

• Chap. 5 addressed mainly the task of detecting the stacked layers of a folded garment,
formulated as its pixels labeling. The novelty reposes in combining image and depth
information and encoding them into a specific energy function. Its parameters are
determined by a specific version of the EM algorithm derived for our settings. The
position and orientation of the folding axis is estimated by generating several possible
candidates and examining shapes of the virtually unfolded garment.

• Chap. 6 dealt with the classification of hanging garments represented as 3D point
clouds. It employs a CNN based classifier of general objects, utilizing a novel convolu-
tion operation defined on local spatial neighborhoods of points. The other techniques
involve sub-sampling of the point cloud and increasing sizes of the receptive fields in
deeper layers. The network is trained on common 3D objects and used as a global
feature extractor in case of hanging garments, followed by the SVM classifier.
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7.2. Possible extensions

We identified the following possible future research directions related to the presented
methods and to the topic of garments perception and manipulation in general:

• Robustness and speed of the proposed methods would need to be improved for their
potential commercial applications. This is also true for the vast majority of other
state-of-the-art methods for clothes handling. A possible solution is implementation
of various fail-safe strategies for failures detection and recovery. Information coming
from force, torque and tactile sensors might be incorporated as well.
• The method for unfolding of folded garments, proposed in Chap. 5, utilizes no model

of the garment shape. It is thus generally applicable to various categories of garments.
However, incorporating such a model could improve the detection robustness and
avoid the heuristics used for a folding axis estimation. Another possible improvement
is a generalization to more than two overlapping folded layers.
• The CNN for classification of 3D point clouds, described in Chap. 6, may be mod-

ified to perform additional tasks. The final classification layer can be replaced by
a regression of the next grasping point for the garment unfolding. Eventually, all
fully connected layers could be replaced by the transposed convolutions to obtain a
semantic segmentation of the garment parts, e.g. sleeves collars or pockets.
• An interesting task is a highly precise reconstruction of the deformed garment surface.

The difficulties repose in the lack of texture, repeating texture patterns, thinness
of the material or its possible transparency. The most problematic step from our
experience is the surface reconstruction from a dense 3D point cloud, during which
discontinuities due to folds and wrinkles must be identified reliably.
• A related research topic is an advanced representation of the garment. Observed de-

formations of the reconstructed surface might enable to estimate the material prop-
erties or to hypothesize about the occluded and covered parts of the garment. Even
more ambitious task is tracking of the garment state under manipulation, resulting
in proper updates and refinements of the advanced representation. It might be also
helpful to model dynamics of the fabric.
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[Corona et al., 2018] Corona, E., Alenyà, G., Gabas, A., and Torras, C. (2018). Active
garment recognition and target grasping point detection using deep learning. Pattern
Recognition, 74:629–641. 12, 19

81



Bibliography

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273–297. 9, 65, 91

[Cusumano-Towner et al., 2011] Cusumano-Towner, M., Singh, A., Miller, S., O’Brien,
J. F., and Abbeel, P. (2011). Bringing clothing into desired configurations with
limited perception. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA),
pages 3893–3900. 10, 15

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 886–893. 14, 91

[Dempster et al., 1977] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maxi-
mum likelihood from incomplete data via the EM algorithm. J. of the Royal Statistical
Society, pages 1–38. 56, 57, 91

[Doumanoglou et al., 2014a] Doumanoglou, A., Kargakos, A., Kim, T.-K., and Malas-
siotis, S. (2014a). Autonomous active recognition and unfolding of clothes using
random decision forests and probabilistic planning. In Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 987–993. 12, 76

[Doumanoglou et al., 2014b] Doumanoglou, A., Kim, T.-K., Zhao, X., and Malassio-
tis, S. (2014b). Active random forests: An application to autonomous unfolding of
clothes. In Proc. European Conf. on Computer Vision (ECCV), pages 644–658. 12,
43, 45, 46, 75, 76, 77, 91

[Doumanoglou, Stria et al., 2016] Doumanoglou, A., Stria, J., Peleka, G., Mariolis, I.,
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[Ramisa et al., 2012] Ramisa, A., Alenyà, G., Moreno-Noguer, F., and Torras, C.
(2012). Using depth and appearance features for informed robot grasping of highly
wrinkled clothes. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA),
pages 1703–1708. 9

[Ramisa et al., 2013] Ramisa, A., Alenyà, G., Moreno-Noguer, F., and Torras, C.
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A. Acronyms

6DOF six degrees of freedom
ARF Active Random Forest [Doumanoglou et al., 2014b]
BoW bag-of-words [Lazebnik et al., 2006]
CloPeMa Clothes Perception and Manipulation project1

CNN convolutional neural network [Goodfellow et al., 2016]
DoG difference of Gaussians [Gonzalez et al., 2009]
GMM Gaussian mixture model [Friedman et al., 2001]
EM expectation-maximization algorithm [Dempster et al., 1977]
FINDDD Fast Integral Normal 3D descriptor [Ramisa et al., 2013]
GPU graphics processing unit
GRU gated recurrent unit [Cho et al., 2014]
HMM hidden Markov model [Friedman et al., 2001]
HOG histogram of oriented gradients [Dalal and Triggs, 2005]
ICP Iterative Closest Point [Besl and McKay, 1992]
k-NN k-nearest neighbors [Friedman et al., 2001]
LBP local binary patterns [Ojala et al., 1996]
OMPL Open Motion Planning Library [Şucan et al., 2012]
POMDP partially observable Markov decision process [Sondik, 1978]
RANSAC random sample consesus [Fischler and Bolles, 1981]
RBF radial basis function [Friedman et al., 2001]
RNN recurrent neural network [Goodfellow et al., 2016]
ReLU rectified linear unit [Goodfellow et al., 2016]
RF Random Forest [Breiman, 2001]
RGB 3-channel (red, green and blue) image
RGBD 4-channel (red, green, blue and depth) data
ROS Robotic Operating System [Quigley et al., 2009]
SIFT scale-invariant feature transform [Lowe, 2004]
SVM support vector machine [Cortes and Vapnik, 1995]
TSDF truncated signed distance function [Newcombe et al., 2011]

1CloPeMa: www.clopema.eu
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