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Abstrakt

Tato práce se zabývá analýzou a syntézou (zejména liniových) anténńıch řad umı́stěných

ve volném prostoru nebo nad nekonečnou zemńı rovinou. K charakterizaci problému byla

odvozena teorie a algoritmus implementován v programu MATLAB. Pro liniové anténńı

řady se vyvinutá metoda se vyznačuje velkou rychlost́ı z d̊uvodu použit́ı vhodné aproxi-

mace proudového obložeńı na jednotlivých prvćıch řady.

Pro analýzu řad jsou využity modálńı techniky, tj. řada je charakterizována maticemi

o rozměru N ×N (kde N je počet prvk̊u v řadě) popisuj́ıćımi jej́ı impedačńı a vyzařovaćı

vlastnosti. Tyto matice jsou následně podrobeny modálńım rozklad̊um, jejichž výsledek

poskytuje optimálńı buzeńı element̊u pro dosažeńı daných vlastnost́ı — rezonance řady,

činitel jakosti, směrovost.

Kromě semi-analytických metod aplikovaných na liniové řady byl rovněž vyvinut al-

goritmus využ́ıvaj́ıćı simulátor elektromagnetického pole CST MWS, jež je pomoćı maker

propojen s programem MATLAB. Takto je možné syntetizovat vyzařovaćı diagram řady

s libovolným typem element̊u, tj. nikoli jen s dipóly.

Výše zmı́něné metody jsou aplikovány a ověřeny na několika př́ıkladech:

• Optimalizace Yagi-Uda antény s r̊uznou délkou element̊u

• Optimalizace š́ı̌rky pásma a směrovosti řady nad zemńı rovinou

• Ř́ızeńı směrovosti kruhové řady

• Syntéza supersměrového buzeńı řady

• Syntéza daného vyzařovaćıho diagramu řady včetně zahrnut́ı vzájemných vazeb

V neposledńı řadě jsou tyto př́ıklady a techniky inspiraćı pro návrh a výrobu anténńı

řady na frekvenci 26 GHz. Tato řada byla vyrobena, změřena a bude implementována

spolu s optickým systémem, který bude tvořit napájećı a přenosovou část pro systém 5G.

Kĺıčová slova

Syntéza a optimalizace anténńıch řad, vyzařovaćı diagram, dipólové antény, ř́ızeńı anténńıho

svazku, modálńı dekompozice
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Abstract

This work deals with the analysis and synthesis of (especially linear) antenna arrays located

in free space or above the infinite ground plane. The theory and algorithm implemented

in MATLAB were derived to characterize the problem. For linear antenna array the

developed method is characterized by a high computational speed due to the use of suitable

current distribution approximation on individual elements of the array.

Modal techniques are used to analyze the array, i.e., the array is characterized by

matrices of N×N dimension (where N is the number of elements) describing its impedance

and radiation properties. These matrices are then subject to modal decomposition, the

result which provides optimal excitation of the elements to achieve given properties –

resonance, quality factor, directivity. In addition to semi-analytical methods applied to

linear arrays, an algorithm using electromagnetic field simulator CST MWS, which is

connected to MATLAB by macros, was also developed. In this way, it is possible to

synthesize a radiation pattern of an array with any type of element, i.e., not just dipoles.

The above methods are tested and validated on several examples:

• Optimization of Yagi-Uda antenna with different element lengths

• Optimization of bandwidth and directivity of an array above ground plane

• Directivity control of circular array

• Synthesis of super-directivity excitation of an array

• Synthesis of a given radiation pattern of an array, including the mutual coupling

Last but not least, these examples and techniques are an inspiration for the design and

manufacture of the 26 GHz antenna array. This array has been manufactured, measured

and will be implemented together with an optical system that will form the power and

transmission part to the 5G system.

Keywords

Antenna arrays synthesis and optimization, Antenna radiation patterns, Dipole antennas,

Beam steering, Modal decomposition
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Chapter 1

Introduction

There are many types of software programs that help the engineer to design to create

an antenna. Still, the design and development of an antenna and antenna arrays are

complex and costly. This work is focused on analysis, synthesis and optimization of elec-

tromagnetically coupled radiators with respect to different measures. The aim of this

work is to present results and develop tools for such analysis and synthesis. Recently, a

novel paradigm, relating to source current distribution with other important measures,

in antenna theory appeared [1]–[4]. Except for already known characteristics, as near or

far fields, gain, radiated power, antenna impedance, it is also possible to evaluate stored

energies and in turn the Q-factor of a radiator, indicating its bandwidth potential [3].

The main goal of the work is to make an extensive study on closely spaced dipole arrays

backed by electric ground plane and arbitrary oriented, closely spaced arrays. Antenna

geometry, such as spacing between elements, height above ground plane or number of

dipoles, should be synthesized. Optimization of excitation coefficients (voltages, currents)

concerning driving impedance, bandwidth, gain, field distribution in space and other mea-

sures is treated. The directivity of the end-fire arrays will be treated due to superdirective

properties.

The effective antenna analysis and design was and still is a very actual topic since

the number of applications is ever growing with the increasing popularity of wireless com-

munications. High computational power of today computers makes possible to simulate

full-wave behavior of not only separate parts of a wireless device but the system as a

whole. However, understanding the fundamental principles by performing such a complex

analysis can be very difficult.

The analysis and design of array antennas is complicated due to the fact that array

elements are not independent of each other. Instead, the elements interact electromag-

netically through what is called mutual coupling. There has been much effort directed

toward developing analysis methods that account for the effects of mutual coupling in an

array environment. The knowledge of mutual coupling effects is important in the design of

array elements, for array geometry selection to reduce mutual coupling among elements,

and for compensating the mutual coupling effects with feeding circuits.

But even if the antenna design or array design is complicated, it would be useless if it

was not applied in the real world. An antenna is basically a device that allows transferring

1
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data to the user. Currently, we are living in a hurried time with a lot of data coming to us

from all sites. The number of videos with 4K resolution is dramatically increasing. Also

the videos from the internet are more and more watched on mobile phones or tablets and

smart devices. Thus there is great compulsion on the amount of data transmission and

that implies the increasing of a transmission rates. The amount of transmitted data is

dependent on coding of the data and antenna parameters such as operational frequency,

bandwidth or gain.

It is expected that the amount of transmitted data in wireless networks will exceed 500

exabyte (EB) in year 2021, in contrast there was transmitted around 3 EB in year 2010

[5]. To fulfill these requirements, a 4th generation of network named Long Term Evolution

(LTE) was launched, reaching speeds of 3 Gb/s for downlink and 1.5 Gb/s for uplink when

using technology of Long Term Evolution Advanced (LTE-A) [6]. Next extension to mobile

networks will be mobile network of 5th generation named fifth generation (5G) [7].

Due to increasing transmission capacity and limited frequency bandwidth require-

ments, 5G networks will significantly increase transmission frequencies towards higher un-

licensed bands that provide the necessary bandwidth for large data transmissions. While

the macro signal is going to be in the Ultra High Frequency (UHF) band (< 3 GHz) due to

smaller dissipation losses, it is expected that smaller cells will grow massively with Internet

of Things (IoT). These cells will use Super High Frequency (SHF) and Extremely High

Frequency (EHF) exceeding 24 GHz [8]. In addition, other transmission technologies and

wireless standards are moving to shift to higher bandwidths. Increasing frequency, how-

ever, involves higher transmission system costs as well as stricter demands on microwave

technology used in the communications link, for example, metallic connecting cables and

cable connectors greatly increase attenuation and thus contribute to poor signal quality.

Another key factor is the higher non-linearity of such a system in comparison to the optical

link. Achieving the necessary Signal to Noise Ratio (SNR) can be very complicated, along

with reduced flexibility of the system due to the need to shorten the cables to a minimum.

In this case, the radio-over-fiber (RoF) [9] technology is able to effectively disconnect the

metallic conductors and, without major problems, to bridge longer distances and, at the

same time, lead in the immediate vicinity of, for example, high voltage.

The thesis first introduces techniques of antenna analysis and a developed methods

for array description, such as impedance of arbitrary array elements and directivity of

array elements. These techniques are described in Chapter 3, the accomplished results

with many array examples could be found in Chapter 4. In this chapter the bandwidth

of a linear arrays above perfect electric conductor (PEC) is optimized, the use of the

Characteristic Modes (CM) is shown on simple three-element dipole antenna array above

PEC ground. To present the usefullness of the developed method a Yagi-Uda antenna is

synthesized. In Chapter 5 the developed theory is applied to an antenna array with four

dipole elements designed for 5G network.



Chapter 2

State of the art in antenna array

design

In the past years, the antenna designers are looking for ways on how to increase frequency

bandwidth of their systems. This is because of a simple fact that using just one antenna,

or antenna array for the whole microwave frequency spectrum, is needed for low-cost

manufacturing devices and using very fast miniaturization of the devices. Very large

frequency bandwidth is also needed for applications such as radar where the increased

bandwidth is required for better spatial resolution and tracking accuracy.

One way how to accomplish this goal is to design and use wide-band elements that

often require a very complicated design and manufacturing. Unfortunately, as the an-

tenna design is more complex, there is no close description of how to analyze it. Thus, the

use of numerical methods [10], [11] becomes in consideration. These numerical methods

have been implemented in commercial electromagnetic simulators, such as FEKO [12],

HFSS [13] or CST [14] and others. With the help of these simulators, the time for the an-

tenna design is reduced, however, the designer needs to have some intuition and experience

to develop a well-done design of antenna or antenna array.

The second approach how to get a wider bandwidth of the system is to use wide-band

elements in arrays. Interesting phenomena was discovered by using narrow-band elements

in antenna arrays. The designers found, that the bandwidth of such array is wider than

the individual antennas. This phenomenon was first introduced with the use of Vivaldi

antennas, which are relatively wide-band elements, but when used in an antenna array, the

bandwidth is even wider if properly designed [15]. As previously mentioned in introduction

of this work, recently this phenomenon was observed in closely spaced dipole arrays [16] .

The advantage of using dipoles instead of Vivaldi antennas is their area when printed like

a planar array. This bandwidth increase is attributed to strong mutual coupling between

the radiators. Overall the analysis of antenna array is complicated due to the fact that

array elements are not independent on each other. Instead, the elements interact with each

other through what is called mutual coupling. There has been much effort in reduction

of the mutual coupling effects and also for compensating the mutual coupling effects with

feeding circuits. But the mutual interaction could be useful in some cases.

Many techniques for the antenna design have been developed in the last 50 years.

3
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Current state of the art allows very precise modeling of all properties of the array such as

radiation pattern, input impedance and current distribution on each antenna element. All

these parameters are obtained based on solving Maxwell’s equations. Depending on the

task and the solution technique chosen, either an integral form of differential Maxwell’s

equation in frequency domain or the time domain is selected to solve the problem. These

equation are solved thanks to the many numerical methods now available.

When multiple radiating elements are presented the analysis and design become more

and more complex and hard to achieve the proper result. Then the theory of CM [17]

becomes handy. The CM is method used for design of the antennas, because the modes

depend only on the antenna geometry without any excitation presented. When CM is

applied to an object, a set of unique currents is found.

Early antenna engineers historically approached the design of an array on one fun-

damental concept, the array element pattern [18]. The array factor is the pattern solely

stemming from the array shape, amplitude and phase of feeding and phasing between ele-

ments. This array element pattern, which is actively used since 1960s, corresponds to the

case when, in the transmitting mode, the excitation signal is fed to the input of only one

element in an array while all other elements are assumed to be terminated with matching

loads. This first-order approach can work only if the influence of one element on another

is not essential. This means that the impedance of isolated element does not change when

inserted into an array, not even the element pattern such as the far-field radiation pat-

tern of an array element radiating in the presence of the other array elements. When

the influence of these effects is meaningful, engineers often lump them together as mutual

coupling. Since the electromagnetic interaction always exist in the array elements, the

radiation corresponding to excitation of one input is formed by all the rest elements. For

this reason, the element pattern is also named as a partial array pattern. For all these rea-

sons engineers often design an array with large distance between each element to mitigate

the mutual coupling and side lobes suppression. These effects are much stronger when the

distance between elements is d < 0.5λ, where c is speed of light and f is frequency,when

d = 0.5λ is assumed to be the minimum spacing at the lowest frequency. However, in

this work we will focus on the opposite problem, closely spaced dipole arrays and we will

use benefit of this mutual coupling in arrays. Another approach how to describe antenna

array and the mutual coupling is the mutual impedance of the element ZAmn, as a ratio

of the current at element generated by a voltage across the feed at element n so that the

entire input impedance of the array is represented by the matrix ZA [19].

If antenna 1 is driven and antenna 2 is open-circuited, the field generated by the

current on antenna 1 will cause an open-circuit voltage, V21,oc, on antenna 2. The mutual

impedance of antenna 2 due to antenna 1 is defined to be

Z21 =
V21,oc
I1

(2.1)

where I1 is the input current on antenna 1 [20].

At the driving points of the several elements in an array, currents and voltages are

related by the usual coupled circuit equation. Assume the Vp is the driving voltage across
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the terminals of the element p in an array of N element. Let the Ip be the current in the

same terminals, then, if a Kirchhoff equation is written for each element, the following set

is obtained.
V1 = I1ZA,11 + I2ZA,12 + ...InZA,1n + ...INZA,1N

...

Vm = I1ZA,m1 + I2ZA,m2 + ...InZA,mn + ...INZAmN

...

VN = I1ZA,N1 + I2ZA,N2 + ...InZAmn + ...INZA,Nn.

(2.2)

The coefficient ZA,mn,m 6= n, is the mutual impedance between element m and n. Also

for the array that is in an isotropic medium such as air, ZA,mn = ZA,nm . The coefficient

ZA,mm is the self-impedance of element m [21]. The input or driving-point impedance of

an element is a function of both self and mutual impedances and excitation currents

Zd,m =
I1
Im

ZA,m1 + · · ·ZA,mm + · · · In
Im

ZA,mn + · · · IN
Im

ZA,mN . (2.3)

The driving terminals of an antenna coincide with the line-load junction between it and its

feeding transmission line. Thus, determining the mutual impedance of elements in an array

requires measurement or knowledge of the open-circuit voltage at each element when one

element is driven and the driving-point currents of all other elements in the array are zero,

that is, when all other elements are in open-circuit configurations [22]. Further notation

of impedances includes isolated impedance, active impedance and embedded impedance.

Isolated impedance is that of an array element with all other elements removed and active

impedance is that where all elements are in place and excited. Often the active impedance

is also named as scan impedance or driving impedance [23],[24]. Embedded impedance

is the terminal impedance at one element when all other elements are terminated in a

specified impedance.

Self- and mutual impedances or admittances depend upon the geometrical configura-

tion of each element, surroundings, the relative location and orientation of the element in

an array and the total number of elements. It must be considered if the array is used in

configuration with an infinite ground plane, or not. Once the self- and mutual impedances

have been determined, they can be used in equation (2.2) to calculate the driving point

impedances (or admittances) for any set of driving voltages or currents that may be applied

to the array.

In 1996, Lee and Chu [25] used block components to describe the impedance matrix

ZA. The goal of this work was to create a solution that is very fast in comparison to

full-wave solution and not have the limitations of infinite array techniques.

The design of the antenna is more and more complex topic. For example, the an-

tennas in the mobile phones are designed using computationally complex optimization

algorithms, where the antennas shape is determined through a set of predefined require-

ments. Thus, the designer has no insight, only simple understanding of how these antennas

truly function. This lack of internal knowledge leads to difficulties with new antenna shape

development. Furthermore, many textbooks analyze the antenna by using a set of elec-
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tromagnetic equations, providing more information than simple optimization. However,

there is one tool, which provides more complex insight, and that is the CM. When CM

is applied to an object, a set of currents are found. Each current is unique and if one of

these current is excited, it will resonate differently than any other derived currents. The

frequency behaviour of the modal eigenvalues has been helpful in clarifying the bandwidth

limits for antennas. Antenna array research faces similar issues, as the element weightings

in arrays for phasing and decreased side-lobe levels have been shown to impact element

impedance matches and array bandwidths. The orthogonal eigenmodes obtained using

the CM provide an excellent way to approach these problems.

The CM was firstly developed by Garbacz in 1965 [17]. His original idea utilized a

scattering matrix, which give us a prove, that any excitable current on an object can be

decomposed into an infinite set of radiating currents. This theory was further developed

by Garbacz in [26] and reworked to the current known formulation by Harrington and

Mautz in 1971 [27]. This known formulation since then remained with only one minor

change that CM is no longer associated with only PEC. In [28] the computational method

for determining both the characteristic currents and eigenvalues is based on the Sturm-

Liouville theory for weighted eigenvalue problems [29]. The Sturm-Liouville theory is also

the basis for solving Greens’ function using a direct approach [30]. In 1972, Harrington

and Mautz evaluated the modal Q-factor directly from the eigenvalue of the respective

mode [31]. From then, only a few electromagnetic researchers investigated a potential of

CM and this theory was almost abandoned. The reason is that a lot of computational

time was required for the excitation of modes.

The first antenna design concept based on the CM was the vehicular antenna design

for near vertical incidence skywave (NVIS) propagation in [32],[33]. In this work many

of the main formulation will be derived, such as Q-factor, CM-based current synthesis

to obtain desired gain and gain over quality factor (G/Q), pattern synthesis of arbitrary

oriented array. Early work in this area includes [34]–[38]. Since the characteristic modes

are computed in the absence of any kind of excitation or incident field, they only de-

pend on the shape, material and size of the conducting object. In our case of arrays,

only on number of elements, orientation in space and relative location of each element.

Thus, antenna array design using characteristic modes can follow steps like: computation

of characteristic modes and the corresponding eigenvalues, optimization of the shape of

the array, orientation of antennas and the number of elements and finally choosing the

optimum feeding of each element, so that desired mode or combination of modes may be

excited.

One of the example in this work is the Yagi-Uda antenna optimization. A Yagi-

Uda antenna [39], having two main parts, single driven element and additional “parasitic

elements”, is worldwide used due to high gain capability, low cost and simple construction.

The Yagi-Uda antenna is actually antenna array usually consisting of parallel dipoles. The

optimization of even an four element array is not simple, because all of the geometric

parameters are affecting the output characteristics, such as gain, bandwidth, reflection

coefficient and more. An antenna with N elements with constant radius requires 2N − 1

parameters, i.e., N wire lengths and N − 1 spacing, that are to be determined.
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Many efforts have been put in optimizing the Yagi-Uda antenna [40], [41], even using

Artificial Intelligence techniques [42], [43].

The developed concept of source currents of a radiating source can be employed to ex-

press its directivity in some particular cases analytically. These approaches from previous

chapters will be applied to examples of the array of two elementary dipoles and the array

of two isotropic radiators. It is well known that an end-fire antenna array of closely-spaced

elements is able to show a significant increase in its directivity (termed superdirectivity)

compared to a sole element [44], [45]. Uzkov derived the end-fire directivity limit for the

case of N isotropic radiators, when the directivity approaches N2 as the spacing between

them reaches zero [46].

Recently, the design of arrays with closely spaced elements (when their spacing is less

than λ/4, where λ is the wavelength) attracted both theoretical and practical interest

[47]–[52]. The first realization of such an array, the Kraus W8JK antenna, should be also

mentioned [53]. Optimizing a current distribution of an antenna to find its superdirec-

tive radiation is also a popular subject, see, e.g., [54]–[56]. A theory of highly directive

current distributions is given in [57]. However, this theory is presented using formalism

not very familiar to the antenna community. It provides an optimal current distribution

for a circular loop in two and three dimensions, but no closed-form expression for its (su-

per)directivity is given. It can be concluded that most of the recent approaches when

formulating the (super)directivity problem rely finally on numerical techniques without

revealing a closed-form solution. Note that this approach is nowadays also valid due to

high computational ability of computers and efficiency of numerical solvers.

It is well known that the array can show an increase in directivity [44], [45], [58] when

the feeding currents are not uniform but are designed to be optimal in this respect. Since

the directivity may be expressed as a ratio of two quadratic Hermitian forms, the opti-

mization is performed by solving the associated eigenvalue problem [59]–[62]. Equivalent

solution may be obtained by involving the inverse of array power matrix [58], [59], [63].

The problem of finding the superdirective excitation of a dipole/monopole array has

been treated by many authors both theoretically [63], [64] and practically [47]–[51]. Most

of the previous theoretical evaluation consider the dipole radiation pattern to evaluate

the quantities for directivity expression. In this paper the approach is different. We treat

arrays of thin-wire dipoles of arbitrary length and assume a current distribution to be of a

given form (particularly three-term King approximation [20]). Therefore, the matrices of

interest have dimension N ×N where N is number of elements in the array. The results

of the decomposition are then just the excitation currents or voltages to be applied to the

center of dipoles, see [65]. Consequently, the proposed approach (coded in MATLAB [66])

is very fast.

Several interesting properties are found. It is known [53] that one horizontal dipole

above ground show maximum directivity when its height goes to zero. However, for more

horizontal dipoles, it is shown that the directivity reaches its maxima (with optimal su-

perdirective currents provided) for quite unexpected height around 0.7λ regardless the

number of radiators. This observation is also supported by analysis of two isotropic radi-

ators above the ground plane.
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It is also noted that for case of a dipoles above the ground, the superdirective currents

are purely real.

Also in this thesis it is considered feeding synthesis of an arbitrary N -port antenna ar-

ray connected to independent voltage/current sources or reactive loads. Such configuration

is attractive for developing wireless communication systems requiring variable radiation

patterns [36], [67], [68].

Further application of the proposed method is the possibility to generate extraordinary

directivity [44], [49], particularly when the array elements are closely-spaced (separation

< λ/4). For example, best [51] achieved directivity of 10.2 dBi with a two element array

spaced by 0.1λ. To avoid multiple excitation, Haskou [48] proposed technique when only

one element is excited while the others are parasitic with proper reactive load. Another

approach, based on spherical wave expansion, was used by Clemente [52] to design four

element parasitic superdirective array.

Since the superdirective operation is very sensitive, precise knowledge of the feeding

amplitudes/phases or reactive load values is needed.

Several semi-analytic methods for array feeding synthesis were already developed. In

[69] Harrington expresses the gain as a quadratic form involving array excitation and

impedance matrix. Mautz and Harrington in [70] extends the CM theory [28] towards the

network CM, i.e., N -port loaded scatterers. Based on this framework, iterative pattern

synthesis is presented in [35]. Tzanidis in [71] use CM to find the array excitation current

such that the active impedances at all the ports are equalized.

The properties of each antenna array depend on the characteristics of the individual ra-

diating elements. The most widely used radiating elements in arrays are dipoles and patch

antennas. The dipole is very easy to simulate in commercial simulators, also is mathemat-

ically easy to describe, simple manufacturing and analytical circuit representation helps

to expand dipole arrays techniques.

It is important to mention that the elementary dipole/loop and isotropic radiator

belong to a class of so-called Canonical Minimum Scattering Antennas (CMSA), i.e.,

single-mode antennas [72], [73]. They have the important property that the far field of

a standalone antenna is identical with the far field of the same antenna embedded as an

element of an array and influenced by its other open-circuited elements.

There are techniques that lead to current description of the finite length dipole from

the elementary dipole. These techniques could be found in [74]. In short, the fundamental

building block of a finite length dipole is the ideal Hertzian dipole. This ideal dipole is

infinitesimal element with a current of uniform magnitude and phase distribution. Then

the radiation field from the dipole of finite length will be the sum (integration) of the

contributions from all ideal dipoles weighted by the current distribution.

To reduce mathematical complexity, it will be assumed, that the dipole has a negligible

diameter in comparison with wavelength. First order approximation, that gives reasonable

impedance and radiation pattern around first resonance. This distribution assumes that

the current on the antenna is maximum at the center and then vanishes at the end points

of the antenna [74]. For a half-wave dipole, the current is in phase and its amplitude can

be approximated by a sinusoid. The infinitely thin λ/2 dipole in free space has a center
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fed radiation port resistance of 73.1Ω. For the real dipole with no infinitesimal radius, the

impedance will be slightly inductive.

The dipole impedance will change because the current distribution is different due to

other near objects. As the impedance changes, the current on the dipole may become

redistributed and thus alter the dipole’s radiation pattern.

The image theory, which is the simplest equivalence principle, can be used when the

dipole in placed above infinite PEC ground [17], [75], [76].

Uniqueness theorem then says that the field above the plane must be the same in both

cases. This image theory can be applied for case with perfect electric ground or with the

perfect magnetic ground. The case with the electric ground of a current-carrying dipole

is shown in Figure 2.1.

 

h/2 

PEC 
h 

I1 I1 

I2 

image 
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h/2 
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image 

b) vertical 

I2 

h 
PEC 

Figure 2.1: Image theory for horizontal and vertical electric dipole

By reciprocity theorem, the mutual impedance of the image dipole is equal to that of

source dipole itself, so Z21 = Z12 .

The radio frequency (RF) spectrum is a limited public resource. Due to this and the

demand for higher data rate, higher frequencies have been suggested as candidates for

future 5G mobile phone applications. The higher frequencies have considerably larger

bandwidth and thus we can increase the capacity of the link and enable to transmit

several gigabits-per-second data rates [5], [77]. Moreover, mm-Wave frequencies lead to

miniaturization of RF front end including antennas. But shifting the frequencies towards

mm-Wave band introduces some new problems that needs to be considered. The antenna

is the most crucial component of a wireless systems as it highly affects the total receiver

sensitivity, thus transceiver designs and choices of digital modulation schemes and the link

budget [78]. It is not sufficient to scale down currently used antennas and antenna arrays.

One problem is increase in free-space loss. This problem can be evaded by beamforming,

to synthesize high gain narrow beam radiation pattern. Link budget analysis is required to
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obtain antenna gain for 28 GHz communication. The low equivalent isotropically radiated

power, 78 dBm for downlink and 43 dBm for uplink and big free-space loss demands the

directional antennas for high data rate [79]. Also 5G communication will be mostly to

line-of-sight (LOS). To achieve full coverage of the user we need to steer the beam towards

the user or smart device. It is also god to mention, that the usage of 5G networks will be

mostly to the smartphones and smart devices when the older generation networks will be

used to IoT.

The 5G wireless communication systems need to be designed to support high data rates

with maximum coverage for different application. One of the most essential requirements

of such systems is high gain antenna which is desirable as it will balance high path loss at

mmWave frequency and decrease the system cost. The other desirable properties for such

antenna design are high-efficiency and stable radiation patterns over the entire desired

band, compact size and low profile with simplicity of integration with other elements.

The designed system capacity can be increased by using multiplexing techniques based on

baseband signal processing [78].

The spectrum available for 5G, allocated by the Third Generation Partnership Project

(3GPP) in partnership with International Telecommunication Union (ITU) and Public

Private Partnership (5GPP) [7] is subdivided into band below 6 GHz and above 6 GHz,

in this case in mm-Waves at 28 GHz and 39 GHz [80]. In the 3GPP Release-16 was

introduced the plan for ”5G phase 2”, that should be completed in December 2019 [80].

The 5G network is expected to be able to accomplish certain requirements such as 1000-

fold system capacity, 100-fold energy efficiency, milliseconds end-to-end latency, 10 Gbps

maximal throughput and connectivity for numerous devices compared to the counterpart

4G network [81], [82]. Furthermore the infrastructure of the current wireless communica-

tions will not be able to to meet the requirements of 5G, so, a set of novel radio access

technologies will be required.

There are various innovative technologies such as massive multiple-input multiple-

output (M-MIMO), millimeter-wave (mm-wave), multi-carrier modulation (MCM), software-

defined networking (SDN), flexible spectrum management, small cells, HetNets, energy

harvesting, and cloud-based radio access that have been envisaged as s potential enablers

of 5G [83]–[86]. In the third generation (3G) cellular networks, the density of macrocell

base station (BS)s is comparatively lower than that of the microcell BSs of the fourth

generation (4G) cellular networks, such as LTE-A mobile communication systems. Gen-

erally, the motivation for further cellular densification through more BS deployment is

the required capacity that has to be provided to the subscribers. Furthermore, in the

5G cellular networks, in which mm-wave and M-MIMO technologies are envisaged to be

integrated into the BSs, small cell networks with higher density are expected to be de-

ployed so as to offer relatively higher throughput to the subscribers. Consequently, the

5G cellular network is anticipated to be an ultra-dense cellular network [86]. Moreover in

the 5G networks, to deliver high data rate, there should be dense deployment of small-cell

BSs with much smaller coverage over the traditional macro-cell. This bring the better

frequency reuse and significantly improves energy efficiency due to the reduction in the

path loss by the cell densification.Significant attention is given on the cloud-based radio
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access network (C-RAN) [87].

In 2016, SK Telecom and Ericsson completed first multi-vehicular 5G trials with BMW

demonstrating a Ka-band 5G system [88]. The trend in the 5G band is to make antenna

array with 4 elements (channels) on a chip unit cells that will allow spatial filtering, direct

its radiation beam (beamforming), as well as a greater coverage [89] [90]. Antenna arrays

with 1 × 8 and 4 × 4 elements are also in interest. The 4 × 4 Yagi antenna in [91] can

achieve a maximum gain of 18 dBi. But these antennas structures are either multi-layered

or complex structures, which perhaps fetch difficulties in fabrication. For the simplicity

of fabrication, printed log-periodic dipole array (LPDA) and patch antennas are designed

in the mmWave frequency, which provides enormous bandwidth with stable gain over the

entire frequency range, as well as simple geometrical design [78], [92]. A mesh type patch

antenna array with dual feed and 2 × 16 elements for 28 GHz was designed in [93]. The

peak array gain was 24 dBi, but the maximum bandwidth was too narrow. Another grid

array of 4 × 4 patch antennas in [94] showed peak gain 16.5 dBi and fractional bandwidth

5.4 %. In [95] a notch array 1 × 4 elements based on microstrip feeding and aperture

coupled slot antennas with gain 9.9 dBi was designed nd acomplished compact structure,

but still with low bandwidth. Simple waveguide structure dealing with wider bandwidth 2

GHz was designed in [96]. With a peak gain 11 dBi this 1 × 4 array was able to coverage

quarter of entire space. More 1 × 4 element arrays was in [97] using dipole elements

achieving gain 7.5 dBi and 12 GHz bandwidth, SIW structure in [98] with bandwidth 3.9

GHz but achieved a low gain, monopoles in [99] with peak gain 10 dBi and ±90◦ steerable

beam, and in [100] the tapered slot structure with peak gain 9.6 dBi, 8 GHz bandwidth

and ±35◦ scanning angle. Dipoles were also used in [101] but in configuration 1 × 8 with

peak gain 11 dBi and 2 GHz bandwidth.

The mentioned 20-30 GHz pioneer spectrum is the first to be used in mobile networks

above 6 GHz. This will bring number of challenges including a significantly high attenua-

tion (i.e., 3 dB/m) when the RF signal is transmitted over a metalic cables, which limits

the transmission span. To overcome this phenomena, the RoF technology was proposed

[81], e.g., to use between a central officeand the pico- or femto-cell BSs. The RoF technol-

ogy offers many benefits including high transmission bandwidth (THz and beyond), low

attenuation, low cost and immunity to electromagnetic interference. Moreover the RoF

technology [102] which refers to an analog transmission over fiber infrastructures, has

been adopted between a central station and a set of BSs and to support small-cell-based

scenarios while using the C-RAN [81].

In the RoF technology a data-carrying RF signal at a high frequency is used for

modulating the optical signal before being transmitted over the optical link. In doing so,

RF signals are optically distributed to BSs, where the signals are then converted back to

the electrical domain prior to amplification and transmission via an antenna or the antenna

array. Therefore, there is no need for frequency up/down conversion at various BSs. In

addition, the centralization of RF signal processing functions enables dynamic allocation of

resources, equipment sharing, simplified system operation, lower power usage and reduced

maintenance cost. Also, the RoF technology is protocol and bit-rate transparent, therefore,

it can be used to employ in any current and future technologies [103]. Commonly utilized
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RoF modulation techniques such as an externally modulated laser (EML), using Mach-

Zehnder modulator, and directly modulated laser (DML) have been investigated in [104].

The DML solution, compared to EML, represents a more compact solution with higher

transmit power, higher energy efficiency and linear modulation characteristics, which plays

a key role in RoF systems [105]. On the other hand, DML typically operates at lower

frequencies. However, in [106] a DML 1550 nm buried-heterostructure passive feedback

laser with a bandwidth up to 34 GHz at low distributed feedback driving currents, being

highly suitable for RoF applications, was investigated. The most detailed survey of RoF

operating within the frequency band of 24-28 GHz was reported in [107].

The deployment of the DML-based radio-over-free-sace optics (RoFSO), RoF, and their

combination in the emerging 24–26 GHz band as part of the future 5G mobile networks

for connection of micro-, pico-, and femto-cells, is shown in Figure 2.2.

Figure 2.2: RoF and RoFSO deployment for connection of micro-, pico-, and femto-cells
in 5G architecture [107].

2.1 Goals of the thesis

This work deals with closely spaced antenna arrays located in free space or above the

infinite electric ground plane. The theory and algorithms were derived to characterize

the problem. Modal techniques are applied to find optimal excitation of arrays. The

electromagnetic field simulator CST MWS was also connected with MATLAB to synthesize

far field of other antenna types.

The main goals of the thesis are:

• Developing of theory and algorithms for dipole antenna arrays.

• Analysis, synthesis and optimization of coupled elements with respect to far field,

gain, quality factor, efficiency and other measures.

• Study and design of closely spaced array elements using optimization tools.

• Development of MATLAB code for evaluating self/mutual/driving impedances for

arbitrarily oriented radiators in space and including infinite ground plane.

• Optimization of excitation coefficients (voltages/currents) based on required farfield

pattern. Analysis of closely-spaced arrays with respect to superdirectivity properties.
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• Design of antenna array with given radiation pattern.
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Chapter 3

Theory

The most important and basic computation in antenna array theory is impedance matrix.

This matrix is often computed by Method of Moments (MoM). Our case purely relies on

the antenna impedance matrix consisting only from self- and mutual impedances. Each

element in the array is described by one impedance parameter so the computation is very

fast. The disadvantage of this method is that it is dependent on knowledge of the current

distribution on dipoles, however in case of dipoles, the current distribution can be quite

accurately modeled. In the code the antenna array is defined just by few parameters

(antenna diameter, antenna length, element orientation and center of the element). Thus,

the optimization of such array is very fast. Some examples of the array geometries are in

Figure 3.1.
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Figure 3.1: Selected possible geometries of the dipole arrays.
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3.1 Derivations of necessary equations

If we introduce arbitrary array, the basic relations for the m-th antenna in the array can

be written. These equations include: Green’s function, magnetic vector potential, electric

scalar potential, continuity equation and electric field intensity. A Green’s function is the

field due to a point source described by a delta function. Once it is known, the field due

to an arbitrary source can be calculated by a convolution integral involving the source

distribution and the Green’s function [108]

G (r, rm) =
e−jkR(r,rm)

R (r, rm)
, (3.1)

where k = 2π/λ and in an unbounded isotropic medium

R (r, rm) = |r− rm| =
√

(x− xm)2 + (y − ym)2 + (z − zm)2 , (3.2)

where the position vector are r, rm as shown in Figure 3.2.
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Figure 3.2: Array geometry and coordinate system.

From the Maxwell’s equation, we can derive the magnetic vector potential and electric

scalar potential

A (r, rm) =
µ0
4π

w

Vm

Jm (rm)G (r, rm) dVm (3.3)

ϕ (r, rm) =
1

4πε0

w

Vm

ρm (rm)G (r, rm) dVm . (3.4)

Notice that for better understanding, the factor 1/4π is now before the integral and not

in the Green’s function. The continuity equation

∇ · Jm (rm) = −jωρm (rm) , (3.5)

and then the electric field strength is

E (r, rm) = −jωA (r, rm)−∇ϕ (r, rm) . (3.6)
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If we insert equation (3.3), (3.4) and (3.5) into equation (3.6) we can derive

E (r, rm) = − jωµ0
4π

r

Vm

Jm (rm)G (r, rm) dVm −∇

(
1

4πε0

r

Vm

ρm (rm)G (r, rm) dVm

)

= − jωµ0
4π

r

Vm

Jm (rm)G (r, rm) dVm −∇

(
j

4πωε0

r

Vm

∇m · Jm (rm)G (r, rm) dVm

)
.

(3.7)

3.1.1 Far-field approximation for m-th antenna

Because the convention in antenna design is to derive a field in spherical coordinates, the

magnetic vector potential is then

Am (r, θ, ϕ) = L (Jm (rm)) =
µ0
4π

e−jkr

r

w

Vm

Jm (rm) ejkr0·rmdVm , (3.8)

where

L (·) =
µ0
4π

e−jkr

r

w

Vm

(·) ejkr0·rmdVm . (3.9)

Electric field strength is

Em (r, θ, ϕ) = −jωAm (r, θ, ϕ) = − jωµ0
4π

e−jkr

r

w

Vm

Jm (rm) ejkr0·rmdVm (3.10)

and magnetic field strength

Hm (r, θ, ϕ) = − jω

Z0
r0 ×Am (r, θ, ϕ) =

r0
Z0
×Em (r, θ, ϕ) . (3.11)

In previous equations, the position vector is the same as in (3.13) and unit vector in

spherical coordinates is

r0 =
r

r
= (sin (θ) cos (ϕ) , sin (θ) sin (ϕ) , cos (θ)) (3.12)

and

r = (r sin (θ) cos (ϕ) , r sin (θ) sin (ϕ) , r cos (θ)) , |r| = r . (3.13)

The magnetic vector potential Am and current density Jm can be decomposed in arbitrary

coordinate system. In this case, for description of magnetic vector potential Am and

current density Jm, spherical and Cartesian coordinates are suitable, respectively. They

are related [74]

Am (r, θ, ϕ) = (Amr (r, θ, ϕ) , Amθ (r, θ, ϕ) , Amϕ (r, θ, ϕ))

= (L (Jmr (rm)) , L (Jmθ (rm)) , L (Jmϕ (rm))) ,
(3.14)
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where

Jmr (rm) = Jmx (rm) sin (θ) cos (ϕ) + Jmy (rm) sin (θ) sin (ϕ) + Jmz (rm) cos (θ)

Jmθ (rm) = Jmx (rm) cos (θ) cos (ϕ) + Jmy (rm) cos (θ) sin (ϕ)− Jmz (rm) sin (θ)

Jmϕ (rm) = −Jmx (rm) sin (ϕ) + Jmy (rm) cos (ϕ).

(3.15)

3.1.2 Generalized impedance for arbitrary oriented array elements

The mutual impedance of m-th and n-th antennas is

ZA,mn =
2Pmn
I∗m0In0

, (3.16)

where Im0, In0 are current amplitudes on the antenna elements. If we assume that the

current distribution on antenna is known, for calculation of the generalized impedance we

need to derive just the mutual power of the elements. Complex mutual power radiated by

the array element is obtained integrating along the whole dipole m and n.

Pmn = −1

2

w

Vm

J∗m (rm) ·En (rm, rn) dVm (3.17)

If we use the previous equations, specifically equation (3.6) we can write

Pmn =− 1

2

w

Vm

J∗m (rm) · (−jωAn (rm, rn)−∇mϕn (rm, rn)) dVm

=
1

2
jω

w

Vm

J∗m (rm) ·An (rm, rn) dVm+

1

2

w

Vm

∇m · (J∗m (rm)ϕn (rm, rn))

−∇m · J∗m (rm)ϕn (rm, rn) dVm

=
1

2
jω

w

Vm

J∗m (rm) ·An (rm, rn) dVm−

1

2

w

Vm

∇m · J∗m (rm)ϕn (rm, rn) dVm.

(3.18)

Including (3.3) and (3.4) we get the final result

Pmn =
1

2

jZ0

4πk

w

Vm

w

Vn

k2J∗m (rm) · Jn (rn)G (rm, rn) dVndVm︸ ︷︷ ︸
P

(J)
mn

−1

2

jZ0

4πk

w

Vm

w

Vn

∇m · J∗m (rm)∇n · Jn (rn)G (rm, rn) dVndVm︸ ︷︷ ︸
P

(ρ)
mn

.

(3.19)
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The above equation when substituted into (3.16) gives the self- and mutual impedance for

arbitrary oriented array elements. The entries of ZA corresponding to self- and mutual

impedances of m-th and n-th dipoles are

ZA,mn =
j30

k

Lm
2w

−Lm
2

Ln
2w

−Ln
2

(Ψ−Υ)
e−jkR

R
dlmdln , (3.20)

where Ψ = k2jm(lm)j∗n(ln) , Υ = ∇m · jm(lm)∇n · j∗n(ln) and R = |rm(lm)− rn(ln)| where

the thin-wire kernel [109] is used to treat the radii of dipoles and the position vector rm

and rn determine the position of m-th and n-th dipole respectively.

3.1.3 Generalized directivity and radiation intensity for arbitrary ori-

ented array elements

The directivity of an antenna is defined as the ratio of the radiation intensity in a given

direction from the antenna to the radiation intensity averaged over all directions. The

average radiation intensity is equal to the total power radiated by the antenna divided by

4π. Stated more simply, the directivity of a non isotropic source is equal to the ratio of

its radiation intensity in a given direction over that of an isotropic source. The directivity

of a radiating source in an angular direction (θ, φ) in the spherical coordinates is defined

as [20]

D(θ, φ) =
U(θ, φ)

U0
= 4π

U(θ, φ)

Pr
, (3.21)

where U is a radiation intensity in the direction (θ, φ), U0 = Pr/4π is an average radiation

intensity and Pr is a radiated power of the source. If we apply this equation to the array,

the mutual directivity of m and n antennas is

Dmn (θ, ϕ) =
4πUmn (θ, ϕ)

Pmn
. (3.22)

Radiation intensity in a given direction is defined as “the power radiated from an antenna

per unit solid angle.” The radiation intensity is a far-field parameter, and it can be obtained

by simply multiplying the power density by the square of the distance [74]. For the array

of antennas one can write

Umn (θ, ϕ) = r2Smn · r0 =
r2

2
(Em (r, θ, ϕ)×H∗n (r, θ, ϕ)) · r0 , (3.23)

where r is a distance from the origin of the coordinates, Smn · r0 is a radial power density

H∗n (r, θ, ϕ) =
(
H∗nr (r, θ, ϕ) , H∗nθ (r, θ, ϕ) , H∗nϕ (r, θ, ϕ)

)
, (3.24)

Em (r, θ, ϕ) = (Emr (r, θ, ϕ) , Emθ (r, θ, ϕ) , Emϕ (r, θ, ϕ)) . (3.25)
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So the generalized radiation intensity equation is now

Umn (θ, ϕ) =
r2

2
Emθ (r, θ, ϕ)H∗nϕ (r, θ, ϕ)︸ ︷︷ ︸

U
(θ)
mn(θ,ϕ)

−r
2

2
Emϕ (r, θ, ϕ)H∗nθ (r, θ, ϕ)︸ ︷︷ ︸

U
(ϕ)
mn(θ,ϕ)

=
r2

2

(
−jωAm (r, θ, ϕ)×

(
− jω

Z0
r0 ×An (r, θ, ϕ)

)∗)
· r0

=
r2ω2

2Z0
Amθ (r, θ, ϕ)A∗nθ (r, θ, ϕ)︸ ︷︷ ︸

U
(θ)
mn(θ,ϕ)

+
r2ω2

2Z0
Amϕ (r, θ, ϕ)A∗nϕ (r, θ, ϕ)︸ ︷︷ ︸

U
(ϕ)
mn(θ,ϕ)

=
ω2µ20

32π2Z0

w

Vm

w

Vn

Jmθ (rm) J∗nθ (rn) ejkr0·(rm−rn)dVndVm︸ ︷︷ ︸
U

(θ)
mn(θ,ϕ)

+
ω2µ20

32π2Z0

w

Vm

w

Vn

Jmϕ (rm) J∗nϕ (rn) ejkr0·(rm−rn)dVndVm︸ ︷︷ ︸
U

(ϕ)
mn(θ,ϕ)

,

(3.26)

where U
(θ)
mn (θ, ϕ) and U

(ϕ)
mn (θ, ϕ) are contributions to θ and φ polarizations and

r0 · (rm − rn) = (xm − xn) sin (θ) cos (ϕ) +

(ym − yn) sin (θ) sin (ϕ) +

(zm − zn) cos (θ) .

(3.27)

Normalized mutual radiation intensity of m-th and n-th antennas is

umn (θ, ϕ) =
Umn (θ, ϕ)

Im0I∗n0
=
U

(θ)
mn (θ, ϕ)

Im0I∗n0
+
U

(ϕ)
mn (θ, ϕ)

Im0I∗n0
= u(θ)mn (θ, ϕ) + u(ϕ)mn (θ, ϕ) . (3.28)

The radiated power Pr required for calculating the directivity D (3.22) can be obtained

through the Electromagnetic Field (EMF) method [110], or by integrating the intensity U

over the complete solid angle

Pr =

2πw

0

πw

0

U(θ, φ) sin θ dθ dφ =
N∑
m=1

N∑
n=1

Pmn (3.29)

where

Pmn = I∗mIn

2πw

0

πw

0

umn(θ, φ) sin θ dθ dφ = I∗mInpmn (3.30)

is a mutual radiated power of the m-th and n-th elements and pmn is its normalization to

the currents Im and In.

Consequently, the directivityD (3.21) takes a compact matrix form using (3.26), (3.29),
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(3.30) [58], [63], [60], [65]

D(θ, φ) = 4π

IH


u11(θ, φ) · · · u1N (θ, φ)

...
. . .

...

uN1(θ, φ) · · · uNN (θ, φ)

 I

IH


p11 · · · p1N
...

. . .
...

pN1 · · · pNN

 I

= 4π
IHu(θ, φ)I

IHpI

(3.31)

where H stands for Hermitian transpose, I = [I1, · · · , IN ]T is a vector of the excitation

currents and u and p are matrices of the normalized mutual intensities umn and powers pmn

respectively. The mutual intensity umn and power pmn represent influence of interaction

of the m-th and n-th elements on the directivity D.

3.2 Matrix treatment of dipole arrays

To increase calculation speed in our approach, while keeping reasonable accuracy around

fundamental half-wavelength resonance of the dipoles, we assume simple sinusoidal current

distribution with central feeding at the m-th dipole

Im (lm) = I0m sin

(
k

(
Lm
2
− |lm|

))
= I0mfm (lm) , lm ∈

〈
−Lm

2
,
Lm
2

〉
, (3.32)

where k is wavenumber, Lm is length of the dipole, lm is coordinate along m-th dipole

and Im0 is amplitude of a feeding current of a m-th dipole.

Now if we assume linear current, it can be writet

Jm (rm) = (Jx (rm) , Jy (rm) , Jz (rm)) = Im (lm) rm, (3.33)

where rm is position vector along dipole element and then the divergence of this current

is

∇mJm (rm) =
∂Im (lm)

∂lm
= −Im0sgn (lm) k cos

(
k

(
Lm
2
− |lm|

))
. (3.34)
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From the equation (3.16) and (3.19) we can write

ZA,mn =
1

I∗m0In0

jZ0

4πk

Lm
2w

−Lm
2

Ln
2w

−Ln
2

k2J∗m (rm) · Jn (rn)G (rm, rn) dlndlm

︸ ︷︷ ︸
Z

(J)
mn

− 1

I∗m0In0

jZ0

4πk

Lm
2w

−Lm
2

Ln
2w

−Ln
2

∇m · J∗m (rm)∇n · Jn (rn)G (rm, rn) dlndlm

︸ ︷︷ ︸
Z

(ρ)
mn

=
jZ0k

4π
rmo · rno

Lm
2w

−Lm
2

Ln
2w

−Ln
2

sin (ξm) sin (ξn)G (rm, rn) dlndlm

︸ ︷︷ ︸
Z

(J)
mn

− jZ0k

4π

Lm
2w

−Lm
2

Ln
2w

−Ln
2

sgn (lm) cos (ξm) sgn (ln) cos (ξn)G (rm, rn) dlndlm

︸ ︷︷ ︸
Z

(ρ)
mn

,

(3.35)

where

ξm = k

(
Lm
2
− |lm|

)
, (3.36)

and

ξn = k

(
Ln
2
− |ln|

)
. (3.37)

The evaluation of mutual intensity of the dipole array is very similar to radiation

intensity for arbitrary oriented antenna array. We are going to use equation (3.26) and
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equation (3.32), where the volume integral will become line integral, so

Umn (θ, ϕ) =
ω2µ20

32π2Z0

Lm
2w

−Lm
2

Ln
2w

−Ln
2

jmθ (rm) j∗nθ (rn) ejkr0·(rm−rn)dlndlm

︸ ︷︷ ︸
U

(θ)
mn(θ,ϕ)

+
ω2µ20

32π2Z0

Lm
2w

−Lm
2

Ln
2w

−Ln
2

jmϕ (rm) j∗nϕ (rn) ejkr0·(rm−rn)dlndlm

︸ ︷︷ ︸
U

(ϕ)
mn(θ,ϕ)

=
ω2µ20

32π2Z0
Im0I

∗
n0q

(θ)
mn

ejkr0·(rmc−rnc)

Lm
2w

−Lm
2

Ln
2w

−Ln
2

j′mj
′
nejkr0·(rmolm−rnoln)dlndlm

︸ ︷︷ ︸
U

(θ)
mn(θ,ϕ)

+
ω2µ20

32π2Z0
Im0I

∗
n0q

(ϕ)
mn

ejkr0·(rmc−rnc)

Lm
2w

−Lm
2

Ln
2w

−Ln
2

j′mj
′
nejkr0·(rmolm−rnoln)dlndlm

︸ ︷︷ ︸
U

(ϕ)
mn(θ,ϕ)

,

(3.38)

where q(θ)
mn

and q(φ)
mn

is contribution to θ and φ polarization, j′m= sin
(
k
(
Lm
2 − |lm|

))
and

j′n= sin
(
k
(
Ln
2 − |ln|

))
are normalized current density. Thus, the absolute directivity will

be

D = Dθ +Dϕ =
4πUθ
Pr

+
4πUϕ
Pr

. (3.39)

For a better performance we can use King’s three term current approximation [20],

but will lose some computational time. An antenna, whether transmitting or receiving, is

always driven by an external source field. In transmitting mode, the antenna is driven by

a generator voltage or current applied to its input terminals, and in receiving mode, by an

incident electric field (typically, a uniform plane wave if it is arriving from far distances.)

The incident field Ein induces a current on the antenna. In turn, the current generates

its own field E, which is radiated away. Assuming a perfectly conducting antenna, the

boundary conditions are that the tangential components of the total electric field vanish

on the antenna surface. These boundary conditions are enough to determine the current

distribution induced on the antenna [20]. Then the current on the antenna element would

be approximated

Im (lm) =A1

(
sin k|lm| − sin k

Lm
2

)
+A2

(
cos klm − cos k

Lm
2

)
+A3

(
cos k

lm
2
− cos k

Lm
4

)
,

(3.40)
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To determine the expansion coefficients A1, A2, A3 one need to insert it into the Hallen’s

equation. A comparison of the current along the dipole is depicted in Figure 3.3, which

shows current distributions according to the numerical solution of Hallen’s equation and

King’s three-term approximation with sinusoidal approximation given by (3.32) for the

two cases of Lm = 0.5λ and Lm = λ. As it is apparent that sinusoidal current distribution

given by (3.32) is acceptable approximation for a half-wavelength dipole. The numerical

 

Figure 3.3: Comparison of current distributions for half- and one-wavelength dipoles ob-
tained by different approaches.

integration are done with a 32-point Gauss-Legendre quadrature integration routine im-

plemented with the function quadr, which provides the appropriate weights and evaluation

points for the integration. As is evident from the above example, King’s three-term ap-

proximation does not work particularly well for larger antenna lengths (about l > 1.25λ).

This can be attributed to the crude approximation of computing the coefficients Ai by

matching the defining currents only at one point along the antenna (at the current max-

ima). It turns out, however, that the three-term approximation is very accurate if fitted

to the “exact” current as computed by solving Hallen’s equation numerically, with a range

of applicability of up to about l = 2λ. With a 4-term fit, the range increases to l = 3λ.

The developed method is a framework of self- and mutual radiation intensities and self-

and mutual radiated powers of array elements which is similar to the approach developed

by Hansen who used mutual radiation resistances in his derivation of the array directivity

[111].

3.3 Modal decomposition

The concept of characteristic mode analysis is conventionally used to find basis for a single

structure (antenna) that simultaneously minimize the net reactive power and maximize

radiated power [2]. Characteristic current modes J can be obtained as the eigenfunctions

of the following particular weighted eigenvalue equation

XJ = λRJ , (3.41)
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here R and X are the real and imaginary part of the complex impedance matrix Z given

by for instance MoM, λ are the eigenvalues and J is the eigen function or eigen current.

The impedance matrix Z is symmetric.

Next it is known from reciprocity theorem that if Z is a linear symmetric operator,

then, its Hermitian parts R and X will be real and symmetric operators, λ are real and

all the eigen currents J can be chosen equiphase over the antenna. Additionally, the

eigenmodes are all orthogonal and can be made orthonormal using normalization and

scaled to unit radiated power [27]

1

2
〈J,RJ〉 = 1 , (3.42)

where 〈〉 is inner product. From the basic equation that describes the orthogonality of the

modes [112] one can write these equations

〈J∗m,R(Jn)〉 = δmn , (3.43)

〈J∗m,X(Jn)〉 = λδmn , (3.44)

where δmn is the Kronecker delta. Furthermore, (3.43) is equal to the active power of the

antenna and (3.44) reactive power respectively [27]. The characteristic eigenvalue can be

found, when proper currents are known, using

F (J) =
〈J∗,XJ〉
〈J∗,RJ〉

=
2ω((Wm −We)

Pr
. (3.45)

In general, the eigenvalues λp ranges from −∞ to +∞. When the eigenvalue is zero,

the antenna is at resonance. Additionally, the sign of the eigenvalue determines whether

the mode contributes to store magnetic energy (λ > 0) or electric energy (λ < 0). As

mentioned before, eigenvalues are handy for finding the resonant frequency of the modes.

Nevertheless, in practice is preferred other alternative representation called as character-

istic angles [113]. The characteristic angle is defined as [114]

δ = 180◦ − arctan(λ) . (3.46)

From a physical point of view, a characteristic angle models the phase angle between a

characteristic current J and the associated characteristic field [115], or as mentioned in

[116]. At a resonant frequency f0, characteristic number satisfies the condition λ(f0) = 0,

that is the characteristic angle δ(f0) = 180◦, as follows from (3.46). Therefore, when the

characteristic angle is close to 180◦, the mode is a good radiator. Thus, the bandwidth

of a mode can be deduced from the slope of the curve with frequency described by the

characteristic angles. From the modal significance [32] one can deduce the values of char-

acteristic angle, which correspond to one-half the power radiated at resonance. These

eigenvalues generate characteristic angles of 135◦ and 225◦.
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3.3.1 Modal decomposition in antenna arrays - “Discrete modes”

The theory of characteristic modes could be extended to antenna array. When we rework

the equation (3.41) for the antenna array, with prescribed current distribution and only

the feeding currents Ip are unknown, where p is index of the element, in that case we

obtain only eigenvectors of each element from the array

XIp = λpRIp . (3.47)

In the case of antenna array, the characteristic mode problem is analogical and the result

from (3.47) is a set of eigenvectors Ip and eigenvalues λp that minimize the following power

functional

F (Ip) =
IHpXIp

IHpRIp
=

array reactive power

array radiated power
= λp , (3.48)

where H stands for Hermitian transpose. By the definition, the eigenvectors Ip are real

and are used to expand the sinusoidal function (3.32). From the eigenvalue, one can derive

valuable information. If the mode with eigenvalue close to zero is excited by characteristic

current amplitudes, the array as a whole will be in resonance resulting to simultaneous

match of all ports driving (active) impedances [117] when proper impedance on port is

provided.

The driving impedance for an elements above PEC ground Zd seen at m-th dipole for

a p-th CM is evaluated as

Zd,mp =
N∑
n=1

Inp
Imp

ZA,mn , (3.49)

where ZA,mn is the mutual impedance between the m-th dipole and n-th dipole minus the

mutual impedance between the m-th dipole and the image of the n-th dipole. Similarly,

ZA,mm is the self-impedance of the m-th dipole minus the mutual impedance with its

image [118].

As an example let us consider a three parallel thin-wire dipoles placed horizontally

above an infinite electric ground plane, equally spaced, each with the same length of

L1 = L2 = L3 = L = λ/2, where λ = 0.3 m is a wavelength at the frequency 1 GHz. A

spacing between each two dipoles is s12 = s23 = s = 0.25λ and a height above the ground

plane is h = 0.25λ, see Figure 3.4. The calculated impedance, when the elements are fed

by modal currents (or voltages) for outer and inner dipole and first three modes of the

array is in Figure 3.5 and Figure 3.6 respectively.

 

Figure 3.4: Geometry of array of three horizontal dipoles above infinite electric ground
plane

.



3.3. MODAL DECOMPOSITION 27

 

Figure 3.5: Real and imaginary part of the driving impedance for outer dipole when fed
by modal currents.

 

Figure 3.6: Real and imaginary part of the driving impedance for inner dipole when fed
by modal currents.

Also, a modal quality factor can be defined from the fractional bandwidth as [31]

Qrad,p ≈
1

BWp
. (3.50)

The quality factor measures how sharp the resonant response frequency is, thus, the

higher Q, the narrower radiating bandwidth. Several different definitions of Q factor can

be found:

Q̃ =
ω(W̃m + W̃e)

Pr
, (3.51)

Qz =
ω

2Rin

∣∣∣∣∂Zin

∂ω

∣∣∣∣ , (3.52)

Qh =
ω

2

IHp
∂X
∂ω Ip

IHpRIp
, (3.53)
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where the first definition is conventional definition and W̃m , W̃e are magnetic and electric

energy modified as in [3] to be finite. The Qz is the impedance definition [116], where

Zin is input impedance and Qh is definition done by Harrington and Mautz [31]. Finally,

in [31] an interpretation of a modal Q made in terms of the frequency variation of the

eigenvalues is also proposed

Qp,Harrington ≈
ω

2

∂λp
∂ω

. (3.54)

A good measure of impedance bandwidth is the impedance quality factor expressed in

(3.52). This equation may be understood and obtained from (3.52) as a power ratio

Qz =
Papp

Plost
, (3.55)

where Papp = ∂
∂ω

√
P 2
lost + jP2

reactive is frequency derivative of the apparent power (the

change of reactive power is usually dominant) and Plost is sum of radiated power and

power lost in conductors. However, it should be noted that there is no exact relation

between Qz and bandwidth and there are cases of Qz = 0 and finite bandwidth [119].

Indeed, the change of impedance with frequency can be made flat at some point ∂Zin
dω = 0.

In case of antenna arrays this is accomplished by mutual impedances.

As a second example, we consider an antenna array consisting of ten parallel thin-wire

dipoles with the same length L, spacing s and height h above the ground plane as in the

first example. The characteristic angles δp of all CM are in Figure 3.7. For simplicity,

frequency (GHz)
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Figure 3.7: Characteristic angles of all CM for the ten-element dipole array. Numbers
1, 2, · · · , 10 at curves correspond to number p of CM. FEKO results are shown only for
CM p = 1, 2 (dashed curves). Reproduced from [65].

FEKO results are shown in Figure 3.7 only for CM p = 1, 2 which are the CM with the

two lowest resonant frequencies.

It is seen from Figure 3.7 that the CM are quite complex thanks to strong mutual

interactions of the array dipoles. Contrary to the classical “continuous” CM analysis, in

the “discrete” case, we have to deal with two kinds of resonances: A resonance of an

individual array element and a resonance of the whole array. The latter strongly depends

on spacing and the mutual orientation of the elements.
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The corresponding currents Ip for the ten element array, where the characteristic angles

δp of all CM are in Fig. 3.7 related to at the resonant frequencies of the CM are in Fig. 3.8
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Figure 3.8: Excitation currents (components of eigenvector Ip) of all CM for the ten-
element dipole array at resonant frequencies of CM. Components Imp are normalized to
max(|Imp|) for given p. Reproduced from [65].

3.3.2 Excitation of modes

Advantage of the characteristic modes is that they are computed without an excitation,

which is represented by an arbitrary impressed field E. On the other hand, it should be

noted that when the geometry of the structure is changed, the modes will change as well.

Thus, this fact complicates a usage of characteristic modes for designing of the antenna

arrays.

To complete the task of excitation of modes we connect the antenna array to arbitrary

sources and loads. Thus we can divide the computation to voltage and current sources.

When we introduce the circuit diagram for a voltage sources case, shown in Figure 3.9,

we denote the matrix of mutual impedances as:

ZA =



ZA,11 · · · ZA,1n · · · ZA,1N

...
. . .

...

ZA,m1 ZA,mn ZA,mN

...
. . .

...

ZA,N1 · · · ZA,Nn · · · ZA,NN


, (3.56)
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matrix of load impedances as

ZL =



ZL,11 · · · ZL,1n · · · ZL,1N

...
. . .

...

ZL,m1 ZL,mn ZL,mN

...
. . .

...

ZL,N1 · · · ZL,Nn · · · ZL,NN


(3.57)

and the matrix of output impedances, which could be actually the loss matrix defined as

ZO =



ZO,1 · · · 0 · · · 0
...

. . .
...

0 ZO,m 0
...

. . .
...

0 · · · 0 · · · ZO,N


. (3.58)

 

VS,1 

ZO,1 

VA,1 VL,1 IS,1 VO,1 

VS,m 

ZO,m 

VA,m VL,m IS,m 
VO,m 

VS,p 

ZO,p 

VA,p VL,p IS,p VO,p 

ZA,11 

ZA,mm 

ZA,pp 

ZA,1m= ZA,m1 

ZA,mp= ZA,pm 

ZA,1p= ZA,p1 

Antenna array Sources Loads 

ZL 

Figure 3.9: Circuit diagram of the antenna array

From the circuit relations we can calculate the source current from known impedances

of array ZA, load impedances ZL, source impedance ZS and voltages set on a generator

VS see Figure 3.9 as

IS = (ZA + ZL + ZO)−1VS (3.59)

and the corresponding voltages

VA = ZA · IS,VL = ZL · IS,VO = ZO · IS (3.60)

The available active power corresponding to a power set on generator

PAV =
1

8
VS ◦

(
(Re (ZO))−1 ·V∗S

)
, (3.61)

where ◦ is a function composition. In our case the excitation of the characteristic mode,

thanks to the sinusoidal current assumption, is simple.

If calculating with admitances and the antenna array is connected to current sources

as depicted in Figure 3.10, the task is similar to voltage sources.
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YO,1 IS,1 

YA,11 

YA,mm 

YA,pp 

YA,1m= YA,m1 

YA,mp= YA,pm 

YA,1p= YA,p1 

Antenna array Sources Loads 

YL 

VS,1 IO,1 IL,1 IA,1 

YS,m IS,m 

VS,m IO,m IL,m IA,m 

YO,p IS,p 

VS,p IO,p IL,p IA,p 

Figure 3.10: Circuit diagram of the antenna array

The matrix of mutual admitances is

YA =



YA,11 · · · YA,1n · · · YA,1N
...

. . .
...

YA,m1 YA,mn YA,mN
...

. . .
...

YA,N1 · · · YA,Nn · · · YA,NN


, (3.62)

matrix of load impedances as

YL =



YL,11 · · · YL,1n · · · YL,1N
...

. . .
...

YL,m1 YL,mn YL,mN
...

. . .
...

YL,N1 · · · YL,Nn · · · YL,NN


(3.63)

and the matrix of output impedances, which could be actually the loss matrix defined as

YO =



YO,1 · · · 0 · · · 0
...

. . .
...

0 YO,m 0
...

. . .
...

0 · · · 0 · · · YO,N


. (3.64)

From the circuit relations the source voltage from known admitances and current

VS = (YA + YL + YO)−1 IS (3.65)

and the corresponding currents

IA = YA ·VS, IL = YL ·VS, IO = YO ·VS (3.66)
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The available active power corresponding to a power set on generator

PAV =
1

8
IS ◦

(
(Re (YO))−1 · I∗S

)
. (3.67)

The theory in this section will be used to set the proper source voltage of a generator,

when feeding the antenna array.

3.4 Array synthesis for different optima

Similar as the CM problem we can formulate the eigenproblem task in several different

ways.

1. Radiation modes [120]

RIp = λpIp (3.68)

2. Magnetic and electric stored energy modes [120]

XmIp = λmp Ip , (3.69)

XeIp = λepIp , (3.70)

where Xm and Xe correspond to the imaginary part X of the impedance ZA divided

into its current and charge components (only Ψ and Υ part in (3.20) are retained

respectively).

3. Q-factor modes [31]

ωX′Ip = QpRIp , (3.71)

where X′ is frequency derivative of the imaginary part X of the impedance matrix

ZA and Qp is Q factor (eigenvalue) of p-th mode.

4. Directivity modes

4πuIp = DpIp. (3.72)

where u and p are matrices of the normalized radiation intensities umn and pmn is a

normalization of a mutual radiated power of the m-th and n-th elements explained

later in Chapter 4.5.

In this work we aim on the directivity modes.

3.5 Super directivity in antenna arrays

Several authors have treated the problem of expressing the directivity of an array in the

closed-form. Such expressions for the directivity can be found for a phased array with

prescribed current distributions [121], a Dolph-Chebyshev array [122], or an arbitrary
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volumetric array [123]. Nonetheless, no superdirective excitation is considered in these

works.

In the following cases, the integrals contained in the relation for the directivity are easy

to work out in the closed-form. Furthermore, the quadratic form of the excitation currents

involved in the relation for the directivity (3.31) allows, by means of the generalized

eigenvalue problem, the optimum to be found, thus producing a maximal directivity of

these configurations. The optimum is also derived in the closed-form by following the

approach of Uzsoky and Solymar [58] and [63]. In this manner, the “superdirective factor”

of 21/15, accounting for the increased directivity between the optimal and out-of-phase

excitation of the array of two elementary dipoles, is found. A similar factor of 4/3 is

discovered for the array of two isotropic radiators.

It is good to mention that the elementary dipole/loop and isotropic radiator belong to

a class of so-called CMSA, i.e., single-mode antennas [72], [73]. They have the important

property that the far field of a standalone antenna is identical with the far field of the

same antenna embedded as an element of an array and influenced by its other open-

circuited elements. In such a case, the self- and mutual radiation intensities, self- and

mutual radiated powers and optimal excitation currents of the elements in the array can

be derived only from knowledge of the far field of the standalone antenna given by its

current distribution. The excitation currents for superdirective radiation can be found

based on the procedure presented in this paper for an arbitrary array. However, in the case

of non-CMSA elements, the far field of the elements from the numerical full-wave analysis

usually have to be used for evaluation of the self- and mutual radiation intensities, self-

and mutual radiated powers and optimal excitation currents. The directivity in terms

of source currents starts from basic equation of the directivity of a radiating source in

angular direction defined in this work (3.21). The intensity U is related to a far electric

field Efar of the source as

U(θ, φ) = r2Sr = r2
|Efar(r, θ, φ)|2

2Z0
(3.73)

where r is a distance from the origin of the coordinates, Sr is a radial power density,

Z0 = 120π =
√
µ0/ε0 is an impedance of the free space and ε0 and µ0 are a permittivity

and permeability of vacuum. The far electric field Efar may be expressed as

Efar(r, θ, φ) =
jk
√
ε0µ0

r0 × (r0 ×Afar(r, θ, φ)) (3.74)

where Afar is a vector potential of the source given by

Afar(r, θ, φ) =
µ0
4π

e−jkr

r

w

V

J(rm)ejkr0·rm drm. (3.75)

In the above equation, the integration is performed over a (finite) volume V of a current

density J of the source. Furthermore, k = 2π/λ is a wavenumber, the unit vector r0 =

(sin θ cosφ, sin θ sinφ, cos θ) determines the direction of radiation and the position vector
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rm describes the location of the density J.

In the case of the source represented by an array of N elements, the density J can be

written as

J(r) =
N∑
m=1

Jm(r) =
N∑
m=1

Imjm(r) (3.76)

where Jm is a current density existing in a volume Vm of the m-th element and jm is a

current density normalized to its excitation current In. By inserting (3.76) through (3.75)

and (3.74) into (3.73) and using |Efar|2 = E∗far ·Efar, we arrive at the expression

U(θ, φ) =

N∑
m=1

N∑
n=1

Umn(θ, φ) (3.77)

where

Umn(θ, φ) = I∗mIn
15k2

4π

w

Vm

w

Vn

Λ(rm, rn)e−jkr0·(rm−rn) drn drm

= I∗mInumn(θ, φ),

(3.78)

is a mutual radiation intensity that accounts for the interaction of the m-th and n-th

elements and umn is its normalization to the currents Im and In and

Λ(rm, rn) = j∗m(rm) · jn(rn)− r0 · j∗m(rm)r0 · jn(rn). (3.79)

The normalized current densities jm and jn are usually expressed as vectors, where jm =

[jmx, jmy, jmz] and jn = [jnx, jny, jnz] in the Cartesian coordinates similarly as the unit

vector r0 = [sin θ cosφ, sin θ sinφ, cos θ], which determines the direction of radiation. This

leads to the expression of (3.79) as

Λ = Λmx,nx + Λmx,ny + Λmx,nz

+ Λmy,nx + Λmy,ny + Λmy,nz

+ Λmz,nx + Λmz,ny + Λmz,nz

(3.80)
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where

Λmx,nx = j∗mxjnx(cos2 θ cos2 φ+ sin2 φ)

Λmx,ny = j∗mxjny(− sin2 θ cosφ sinφ)

Λmx,nz = j∗mxjnz(− cos θ sin θ cosφ)

Λmy,nx = j∗myjnx(− sin2 θ cosφ sinφ)

Λmy,ny = j∗myjny(cos2 θ sin2 φ+ cos2 φ)

Λmy,nz = j∗myjnz(− cos θ sin θ sinφ)

Λmz,nx = j∗mzjnx(− cos θ sin θ cosφ)

Λmz,ny = j∗mzjny(− cos θ sin θ sinφ)

Λmz,nz = j∗mzjnz sin2 θ.

The expression of the directivity D (3.31) holds true for an arbitrary array and it is

exact, provided the densities jn are known exactly. The densities jn are necessary for

evaluation of the matrices u and p through (3.78)–(3.79), (3.30). For an arbitrary array,

the exact densities jn have usually to be found with the help of a numerical full-wave

analysis of the complete array. In the case of an array consisting of elements belonging

to the class of CMSA, the exact densities jn can be obtained by a full-wave analysis of

standalone elements only. For some simple cases, the densities jn can be expressed in a

closed-form and the integrals in (3.78) and (3.30) may be also evaluated analytically as it

will be shown in chapter 4.5

3.6 Array feed optimization based on radiation pattern de-

scription

This chapter covers the expression of directivity through different formulation of far fields

(loaded, modal) and denotes the strategy to synthesize the incident wave on the antenna

array port. The example is shown in chapter 5.2. The principle of the synthesis of a given

far field is its decomposition (projection) into the orthogonal basis of functions represented

by modal far fields. The projection is given by the scalar product of the given far field

and modal far field from the base.

By inserting (3.75) through (3.74) into (3.23) and using (3.76), we arrive at the ex-

pressions

Efar(r, θ, φ) = C
√

2Z0
e−jkr

r

N∑
n=1

Infon(θ, φ) (3.81)

U(θ, φ) = |C|2
N∑
m=1

N∑
n=1

I∗mf
∗
om(θ, φ) · Infon(θ, φ) (3.82)

where

fon(θ, φ) = r0 ×

r0 ×
w

Vn

jn(r′)ejkr0·r
′
dr′

 (3.83)
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is a open-circuited normalized far field of the n-th element and

C =
jk

4π

√
Z0

2
(3.84)

is a constant. The term open-circuited refers to the state when only the n-th element is

excited by the current In and other elements are open-circuited, i.e., Im = 0 for m 6= n,

3.6.1 Expression of directivity through loaded far fields

The directivityD can be expressed through loaded (or also so-called embedded) normalized

far-fields to unit radiated power fe = [fe1, · · · , fen, · · · , feN ] where fen is loaded normalized

far-field of the n-th element. The term loaded refers to the state when only the n-th

element is excited by the normalized incident voltage waves v+n and other elements are

loaded by port impedances. In this case, the currents I can be written as

I = Z−1A

√
ZO (1 + SA)v+ (3.85)

Then it holds true

fo(θ, φ)I = fo(θ, φ)Z−1A

√
ZO (1 + SA)v+ = fe(θ, φ)v+ (3.86)

which implies for the far field fen

fen =
[
fo(θ, φ)Z−1A

√
ZO (1 + SA)

]
n

(3.87)

where []n denotes an operation which gets the n-th column of the vector in the square

brackets.

3.6.2 Expression of directivity through modal far fields

The directivity D can be expressed through modal normalized far-fields

fm = [fm1, · · · , fmn, · · · , fmN ] (3.88)

where fmp is modal normalized far-field of the array corresponding to its p-th mode. The

term modal refers to the state when the elements of the array are excited by the currents

Ip = [I1p, · · · , Inp, · · · , INp]T where Inp is an excitation current of n-th element correspond-

ing to p-th mode. Various types of the modes of the array can be considered. Further, the

so-called Characteristic Modes are taken into account. In this case, the currents I can be

written as a linear combination of the currents Ip, p = 1, · · · , N

I = Imw (3.89)

where w = [w1, · · · , wp, · · · , wN ]T is a vector of weights of the modes, wp is a weight of

the p-th mode and Im = [I1, · · · , Ip, · · · , IN ] is a vector of the modal currents which can
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be also expanded to the form

Im =



I11 · · · I1p · · · I1N
...

. . .
...

. . .
...

In1 · · · Inp · · · InN
...

. . .
...

. . .
...

IN1 · · · INp · · · INN


. (3.90)

Then holds true

fo(θ, φ)I = fo(θ, φ)Imw = fm(θ, φ)w (3.91)

which implies for the far field fmp

fmp = fo(θ, φ)Imp. (3.92)

A scale of the currents Ip is set through the weight wp when they are summed in (3.89).

It is convenient to pre-scale the currents to fulfill the condition

2πw

0

πw

0

f∗mp(θ, φ) · fmp(θ, φ) sin θ dθ dφ = 1. (3.93)

The optimization of radiation pattern, where f is required radiation pattern should

fulfill condition to minimize the mean quadratic error ∆2

|f −
N∑
n=1

cmfm|2 = ∆2, (3.94)

where cm is a weight coefficient. Using (3.93) and the orthogonal property, we can get the

weights coefficient as

cm =

2πw

0

πw

0

f∗m(θ, φ) · f(θ, φ) sin θ dθ dφ (3.95)

and the required radiation pattern is then

f =
N∑
n=1

cmfm. (3.96)
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Chapter 4

Results

4.1 Bandwidth optimization of linear arrays above PEC

ground

As mentioned above, the input driving impedance of array of dipoles backed by an infinite

electric ground plane consists of contribution of self and mutual impedances, in which the

latter are function of the elements positions. The bandwidth potential is evaluated using

the impedance quality factor [124]. It follows from previous research [125] that control

of mutual radiated power is important for optimizing the bandwidth. This is shown by

expressing the mutual radiated power between two elementary radiators, forming result

important for small antennas. In next section two different dipole arrays are optimized

using in-house Particle Swarm Optimization (PSO) code [126] for minimum Q and the

bandwidth is compared with FEKO full-wave MoM simulation [12]. For radiators above

electric ground, there is cancellation of radiated power caused by mutual interactions.

This is important especially when the structure is small and the radiators are close to the

ground. It will be shown, that this power interference, rather than stored energy, is key

issue that limits bandwidth of such arrays. For simplicity assume 1D current flowing along

the z-axis.

It could be evaluated from [127] that the mutual radiated power for out-of-phase point

currents (I(z)I(z′) = −1) is led by the function

P12(kR) = −sin kR

(kR)3
+

cos kR

(kR)2
. (4.1)

Here R is the distance between currents. This function is depicted in Figure 4.1 and has

maximum (which is important for maximizing the radiated power) for kR ≈ 5.76. This is

equivalent to one point source above infinite ground at height h = R/2 , hence kh ≈ 2.88

(h/λ ≈ 0.46). In previous study [125] worked out for λ/2 dipoles, the optimum was found

to be of similar value h/λ ≈ 0.33.

For upcoming two examples we consider length of dipoles L = λ/2 and radius a/λ = 5·
10−4. At first we introduce one dipole above PEC in height h. For small distances the qual-

ity factor asymptotically behaves as (h/λ)−2 and there is optimal separation h/λ ≈ 0.33

39
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Figure 4.1: Plot of the function P12 accounting for mutual radiated power between two
point currents. Reproduced from [127].

with Qz = 5.04. The ratio of quality factors between free space and grounded array is

thus
Qz (free space)

Qz (array)
= 0.66. (4.2)

Relative bandwidth evaluated from Qz is, assuming single resonance tuning

BW =
1

Qz

√
2

= 13.6%, (4.3)

while simulation in FEKO software gives relative bandwidth

BW =
f+ − f−√
f+f−

= 13.4%. (4.4)

The two in-phase dipoles above ground is another interesting structure appreciated for

great bandwidth, also known as the “Eleven feed” [128]. The dipoles are for all cases fed

in-phase voltage gaps located at height h and separated by s.

At first the Qz is shown as a function of both height and separation in Figure 4.2.

There is one minimum at h/λ ≈ 0.37 and s/λ ≈ 50.37 resulting in Qz = 2.52

 

Figure 4.2: Plot of quality factor of array of two in-phase fed dipoles separated by s and
located at h above infinite electric ground plane.
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The ratio of quality factors between free space and grounded array is in this case 0.33.

The relative bandwidth evaluated from Qz is, assuming now double resonance tuning

BW =

√
3

Qz
= 68% , (4.5)

while FEKO simulation gives

BW =
f+ − f−√
f+f−

= 71% . (4.6)

From the above results it is observed that optimal heights for both arrays are similar,

leading to conclusion that it is the radiated power cancellation caused by opposite currents

due to electric ground.

4.2 Three element array

A frequency where eigenvalue λp = 0 is further referred to as a resonant frequency of a p-th

CM of the array. The CMs are ordered and numbered by p according to their resonant

frequencies ascendingly, i.e., the highest p corresponds to the highest resonant frequency.

For excitation of an dipole array in FEKO, voltage gaps are used at the centers of

the dipoles. Relevant excitation voltages Vp = [V1p, · · · , Vmp, · · · , VNp]T of a p-th CM are

then given by [27]:

Vp = ZAIp. (4.7)

As a first example, let us consider an antenna array consisting of three parallel thin-

wire dipoles placed horizontally above an infinite electric ground plane, equally spaced,

each with the same length L1 = L2 = L3 = L = λ/2, where λ = 0.3 m is a wavelength at

the frequency 1 GHz. A spacing between each two dipoles is s12 = s23 = s = 0.25λ and a

height above the ground plane is h = 0.25λ, see Figure 3.4.

The characteristic angles δp of all CM and the corresponding currents Ip at the resonant

frequencies of the CM are shown in Figure 4.3. The agreement is perfect up to the

fundamental resonance of the individual dipoles which occurs at a frequency of 1 GHz

approximately. Further, it starts to deviate as the one-term sinusoidal current distribution

(3.32) becomes inaccurate. Improvement of accuracy is possible, e.g., by incorporating to

(3.32) a three-term approximation [20].

The currents Ip of all CM are also presented in Figure 4.4. Due to the symmetry of

the dipole array, see Figure 3.4, the magnitudes of the currents Imp are the same for the

dipoles m = 1 and m = 3. The currents Ip are normalized in the usual way

1

2
IHpRIp = 1 (W). (4.8)

Finally, the directivities Dp of all CM are depicted in Fig. 4.5. Their maximal values in

linear scale for CM p = 1, 2, 3 are 8.4, 9.2, 12.5 and 8.5, 7.4, 11 for calculation in MATLAB

and FEKO respectively. The differences can be addressed to the slightly different current
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Figure 4.3: Characteristic angles and excitation currents (eigenvector Ip) of all CM for the
three-element dipole array. Components Imp are plotted at resonant frequencies of CM
and normalized to max(|Imp|) for given p.
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Figure 4.4: Excitation currents (components of eigenvector Ip) of all CM for the three-
element dipole array.

distributions on the dipoles (one-term sinusoidal vs. obtained through full MoM in FEKO).
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Figure 4.5: Directivity of the three-element dipole array for all CM at their resonant
frequencies. Directivity is plotted in linear scale and for half-space xyz+ only since it is
symmetrical by the xy plane for this array.

4.3 Yagi-Uda optimization

The Yagi-Uda antenna parameters are optimized with respect to total directivity. The

purpose of this example is to present the usefulness of the developed method on an arrays of

any geometrical configuration, including unequally spaced elements and different lengths.

The radiation of the antenna array is oriented in y direction, while the elements itself

are oriented in z direction as depicted in Figure 4.6.

The length of the reflector is L0, length of the active element is L1, and the length of

directors is L2 and L3 respectively. The spacings of the elements are noted S0, S1 and

S2, and the radius of the dipoles is chosen a = 0.005λ and λ = c0/f is the free-space

wavelength at the center frequency 1 GHz. The active element is optimized in length

to achieve small reflection coefficient. The optimization steps are as follows: find the

optimum spacing and length of the reflector and the active element in free space, optimize
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Figure 4.6: Geometry of the Yagi-Uda antenna.

and analyze one director followed by the second director. This design steps are then

completed by optimization of a whole structure, this optimization contains 6 variables

(L0, L2, L3,S0, S1 and S2).

To test the correctness of the calculated directivity it is compared with FEKO. From

the comparison we can see good agreement for length of dipole up to L0 = 0.8λ as shown

in Figure 4.7. On the figure the directivity is in linear scale as a function of spacing S0

for two dipole elements.
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Figure 4.7: Directivity comparison as a function of the spacing S0 from MATLAB and
FEKO for three fixed reflector lengths.

When we evaluate the directivity depending on mutual spacing and length of the

reflector, we can observe a maximum directivity for L0 = 0.477λ and S0 = 0.2λ. The

directivity for the array consisting of reflector and active element is depicted in Figure 4.8.

In this figure, the directivity is increasing from blue colour to yellow, up to D = 2.5.

The cut of radiation pattern for this two-element structure for optimal current feeding,

when only one element is actively fed is depicted in Figure 4.9 in linear scale.

These steps can be extended to a full array, a complete four element Yagi-Uda antenna.

The directivity result of a sweep in length L4 and spacing S3 is showed in Figure 4.10.

From Figure 4.10 and previous results the final optimized dimensions of the Yagi-

Uda antenna for directivity maximization are: L0 = 0.5λ, L1 = 0.404λ, L2 = 0.451λ

and L3 = 0.443λ. The spacing between elements are S0 = 0.22λ, S1 = 0.214λ and



4.4. CIRCULAR ARRAY 45

0.1 0.2 0.3 0.4 0.5 0.6 0.7

 L
0
 [ ]

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 S
0
 [

]
1

1.5

2

2.5

D
ir
e

c
ti
v
it
y
 [

-]

Figure 4.8: Maximum achievable directivity of the array with active element and reflector
element calculated in MATLAB.
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Figure 4.9: Cut of radiation pattern for active and reflector element for θ = 90◦ in linear
scale.

S2 = 0.326λ. The total radiation pattern is depicted in Figure 4.11 and its vertical cut

in Figure 4.12, where the total directivity is D = 13.29 and D = 13.28 in MATLAB and

FEKO respectively.

The comparison of the radiation pattern in the cut for θ = 90◦ is depicted in Fig-

ure 4.12. We can see the excellent agreement of the calculated directivity from MATLAB

and from FEKO.

4.4 Circular array

The circular array is composed of five z-oriented dipoles uniformly spaced with distance

s, see Figure 4.13. The length of each the dipole is L = λ/2 and radius a = 0.005λ.

The mutual spacing between the dipoles is denoted as s, where the radius of the circle is

R = s/ (2 sin (π/N)) and N is total number of elements.

The maximum directivity in direction of x-axis (φ = 0) as a function of separation s is

depicted in Figure 4.14. For each particular separation, decomposition (3.71) is performed

with radiation intensity u fixed to (θ = π/2, φ = 0).

The calculated directivity by our code and FEKO for spacing s = 0.1 λ is shown in

Figure 4.15 showing good agreement.
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Figure 4.10: Directivity of the array with 4 elements calculated in MATLAB.
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Figure 4.11: Total directivity for 4 element Yagi-Uda antenna.
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Figure 4.12: Cut of radiation pattern for 4 dipoles for θ = 90◦.

Due to the rotational symmetry, we are able to obtain the same directivity in any

φ direction. It is notable that for the maximization of directivity in direction φ =

0, π/2, π, 3π/2, the amplitude of the feeding current is exactly the same, only the phase is

changing.

This method is able to find the optimum current distribution in any direction, which
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Figure 4.13: A five-element circular dipole array.
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Figure 4.14: Maximum directivity in x (φ = 0◦) axis for different distance between 5
dipoles.

is fixed in the u(θ, φ) matrix. Using (4.7), where ZA is the impedance matrix of the array,

corresponding voltage excitation vector V is obtained. These voltages were actually used

as inputs for FEKO in Figure 4.15.

Table 4.1 shows a normalized current and calculated voltage distribution for maxi-

mization of directivity of the circular array with the radiation pattern in Figure 4.15.

For the circular array, the CM decomposition was also used and the array was extended

to nine dipoles in circle. The excitation currents (components of eigenvector Ip) of all CM

N |I|(A) I(◦) |V |(V) V (◦)
1 1 -81.07 23.56 32.2
2 0.84 90.15 17.56 158.4
3 0.32 -104.23 3.95 -21.9
4 0.32 -104.23 3.95 -21.9
5 0.84 90.15 17.56 158.4

Table 4.1: Complex feed currents and voltages for maximizing directivity of circular array
with s = 0.1λ.
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(a) MATLAB D = 10.16 dBi (b) FEKO D = 10.07 dBi

Figure 4.15: Radiation pattern for circular array with 5 dipoles fed by optimal currents.

for the nine element circular array are in Figure 4.16 noted with blue colour. With the

red line there is approximation via cosine function. The period of the cosine function is

increasing with every two modes, means mode 2 and 3 has the same cosine distribution,

but with phase shift. It should be mentioned, that these discrete characteristic modes

when approximated with the cosine function behaves as excitation currents of elementary

loop.
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Figure 4.16: The excitation currents (components of eigenvector Ip) of all CM for the nine
element circular array.

4.5 End-fire superdirective array

In this chapter the directivity D, according to (3.31), is calculated for an array of two

elementary dipoles with end-fire radiation and the Uzkov’s limit N2 for the end-fire direc-

tivity of N isotropic radiators [46] is verified for N = 2. Finally the array of two isotropic

radiators above PEC ground is treated. This necessitates the finding of entries umn and

pmn of the matrices u and p in (3.78) and (3.30).
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Firstly, we consider an elementary dipole of the length L → 0 in the origin of the

coordinates oriented in the z-axis with a constant current density J1 = I1δ(x)δ(y)z0 =

I1j1zz0, see Fig. Figure 4.17 a).
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Figure 4.17: Geometry: a) elementary dipole, b) array of two elementary dipoles. Repro-
duced from [129].

4.5.1 Two elementary dipoles

Now we have basic knowledge about radiation intensity and power of a single elementary

dipole. Now, we can consider an array of two elementary dipoles of the length L → 0

oriented in the z-axis and spaced in the x-coordinate by a distance d with constant current

densities J1 = I1δ(x−d/2)δ(y)z0 and J2 = I2δ(x+d/2)δ(y)z0, see Figure 4.17 b). It is well

known that this arrangement produces end-fire radiation if the dipoles are closely-spaced

(d < λ/2) and excited by the out-of-phase currents, i.e., I1 = −I2 = I [53].

In this case, the self-intensities u11 = u22, since they cannot depend either on the

placement in the coordinates, nor on the mutual placement of the dipoles, and due to the

dipoles being identical. From (3.78)–(3.79), it follows for the mutual intensities u12 and

u21 that u12 = u∗21 and

u12(θ, φ, s) =
15k2

4π

L/2w

−L/2

L/2w

−L/2

sin2 θe−jkr0·(r−r
′) dz′ dz

≈ 15k2

4π

L/2w

−L/2

L/2w

−L/2

sin2 θe−jkd sin θ cosφ dz′ dz

=
15k2L2

4π
sin2 θe−jkd sin θ cosφ

= u11(θ, φ)e−js sin θ cosφ.

(4.9)

In the above equation, the Dirac δ-functions reduce the 3D volume integrals from (3.78) to

the 1D line integrals and effectively simplify (3.12), (3.79) and, finally, the approximation

z − z′ ≈ 0 for L → 0 is used with a normalized spacing s = kd being defined. Since the

elementary dipole belongs to the class of CMSA the character of the densities J1 and J2

of two dipoles in the array is considered the same as for a standalone dipole. Then, it is

seen from (4.9) that the mutual intensity u12 of two dipoles in the array is determined by

the self-intensity u11 of a standalone dipole through the phase shift −s sin θ cosφ which is
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the above mentioned property of CMSA.

The self-powers p11 and p22, i.e., p11 = p22, since the intensities u11 and u22 are equal.

From (3.30), it follows for the mutual powers p12 and p21 that p12 = p∗21 since it holds true

that u12 = u∗21, for the intensities u12 and u21. In addition, the power p12 is real, thus,

p12 = p21. This property follows from power p12 (4.10). Note that this result holds true

for all radiators whose normalized far field pattern f is rotationally symmetrical, i.e., it is

a function of the coordinate θ only.

Further, the relation (3.30) for the power p12 using (4.9) reads

p12(s) =
15k2L2

4π

2πw

0

πw

0

sin3 θe−js sin θ cosφ dθ dφ. (4.10)

The above integral was evaluated elsewhere [57], [60]. It is noted that exactly the same

result can be obtained by the EMF method [130], where all terms containing z − z′ are

discarded. It yields

p12(s) = 15k2L2

(
sin s

s
+

cos s

s2
− sin s

s3

)
, (4.11)

where the term in brackets in (4.11) can be written with the help of spherical Bessel

functions as j0(s) − j1(s)/s. For the given array, considering the out-of-phase excitation

currents I = [I,−I]T with a magnitude I and using the above found entries of the matrices

u and p, the directivity D (3.31) becomes

D(θ, φ, s) =
3 sin2 θ(1− cos (s sin θ cosφ))

2− 3
(
sin s
s + cos s

s2
− sin s

s3

) . (4.12)

The value of the magnitude I is insignificant when calculating the directivity D since it

is ultimately canceled in (3.31). Further, considering the spacing d < λ/2 (i.e., s < π),

the maximal (end-fire) radiation occurs for the direction (θ = 90◦, φ = 0◦) and the corre-

sponding directivity D is

D(90◦, 0◦, s) =
3(1− cos s)

2− 3
(
sin s
s + cos s

s2
− sin s

s3

) (4.13)

with the limit 15/4 = 3.75 (5.74 dBi) for the spacing d→ 0 (i.e., s→ 0).

In the directivity D (4.12), the currents I = [I,−I]T are considered. However, the

general expression of the directivity D (3.31) is a quadratic form in terms of the currents I

and can be used to find their optimum Iopt which maximizes the directivity D for a given

direction (θ, φ) and spacing s by solving the related weighted eigenvalue equation [62]

In this particular case, the currents Iopt = [I1,opt, I2,opt]
T can be found analytically by

following the procedure in [58], [63]. They are given by the solution

Iopt(θ, φ, s) =
1

4π
p−1(s)V(θ, φ, s) (4.14)
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where

p−1(s) =
1

p211 − p212(s)

[
p11 −p12(s)

−p12(s) p11

]
(4.15)

V(θ, φ, s) =

[
e−js/2 sin θ cosφf (θ, φ)

ejs/2 sin θ cosφf (θ, φ)

]
(4.16)

f (θ, φ) = sin θ (4.17)

and f is a normalized far field pattern of the elementary dipole. Thus, the currents Iopt

(4.14) can be written with the help of the previously found matrix p as

Iopt(θ, φ, s) =

[
Ie−jα(θ,φ,s)/2

Iejα(θ,φ,s)/2

]
(4.18)

where the magnitude I is the same for the currents I1,opt and I2,opt and α is their phase

difference, which reads

α(θ, φ, s) = −s sin θ cosφ+ 2 arg (ρRe(θ, φ, s) + jρIm(θ, φ, s)) (4.19)

where

ρRe(θ, φ, s) = 2 cos (s sin θ cosφ)− 3

(
sin s

s
+

cos s

s2
− sin s

s3

)
(4.20)

ρIm(θ, φ, s) = 2 sin (s sin θ cosφ). (4.21)

For the given array, considering the optimal excitation currents Iopt (4.18) and using

the above found entries of the matrices u and p, the directivity D (3.31) becomes

D(θ, φ, s) =
3 sin2 θ(cosα+ cos (s sin θ cosφ))

2 cosα+ 3
(
sin s
s + cos s

s2
− sin s

s3

) . (4.22)

This relation expresses the maximal directivity D for the given direction (θ, φ) and spacing

s which is achieved by the excitation of the given array by the currents Iopt set for the

direction (θ, φ) and spacing s according to (4.18). Further, considering the spacing d < λ/2

(i.e., s < π), the maximal (end-fire) radiation occurs for the direction (θ = 90◦, φ = 0◦)

and the corresponding directivity D is

D(90◦, 0◦, s) =
3(cosα+ cos s)

2 cosα+ 3
(
sin s
s + cos s

s2
− sin s

s3

) (4.23)

where the phase difference α (4.19) is now

α(90◦, 0◦, s) = 2π − s+ 2 arctan

(
2 tan s

2− 3
(
tan s
s + 1

s2
− tan s

s3

)) . (4.24)

The directivity D (4.23) has a limit of 21/4 = 5.25 (7.20 dBi) when the spacing d → 0

(i.e., s→ 0). Compared to the out-of-phase excitation, this represents an increase by the
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Figure 4.18: Phase difference of optimal excitation currents for maximal directivity of end-
fire radiation of array of two elementary dipoles: exact expression (blue-solid), Taylor’s
expansion (red-dashed), CST MWS simulation (black-dot). Reproduced from [129].
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Figure 4.19: Directivity of end-fire radiation of array of two elementary dipoles with out-
of-phase (blue-solid) and optimal for maximal directivity (red-dashed) excitation. CST
MWS simulation (dot). Reproduced from [129].

“superdirective factor” of 21/15 = 1.4 (1.46 dB). As seen from Figure 4.18, the phase

difference α is almost linear for a close spacing s. This motivates its Taylor’s expansion,

which, by taking the first two terms, gives a simple relation

α(90◦, 0◦, s) ≈ π − 2

5
s. (4.25)

The phase difference α (4.24) is notably similar to that obtained numerically by Yaghjian

[47] and Altshuler [49].

The calculated directivities D (4.13) and (4.23) for both out-of-phase and optimal

excitation are shown in Figure 4.19. The results are also validated by the time-domain

simulation in CST MWS [14], in which the given array is modeled by two thin dipoles of

the length L = λ/30. The optimal phase difference α of their excitation currents Iopt is

set manually in the simulation by varying the phases of the currents in the post-processing
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Figure 4.20: Radiation pattern of end-fire radiating array of two elementary dipoles with
spacing 0.1 λ for out-of-phase (top-left) and optimal for maximal directivity (top-right)
excitation. Corresponding streamlines of Poynting vector are shown below. Reproduced
from [129].

stage and checking the end-fire radiation for the maximal directivity, see Figure 4.18. The

differences in the values of the directivities D and phase difference α obtained by (4.13),

(4.23), (4.24) and by the simulation can be addressed to the fact that the simulation ap-

proximates the infinitely small elementary dipoles with the constant current distributions

assumed for the analytical relations by the dipoles of finite dimensions. For the array

with the spacing d = 0.1 λ (i.e., s = 0.2π), the equation (4.24) gives the phase difference

α = 166◦. It is seen from Figure 4.20 that the radiation patterns of this array for the

out-of-phase and optimal excitation are quite distinct. Streamlines of the Poynting vector

[131], [132] are also shown. The interaction between the two dipoles is much stronger

for the superdirective case and the power density represented by the streamlines is more

closely bound to the dipoles. Indeed, the fine structure of the power flow is remarkable.

4.5.2 Two isotropic radiators

We can further follow this approach and can verify the Uzkov’s limit N2 for the end-fire

directivity of N isotropic radiators [46] for N = 2. We consider an array of two isotropic

radiators spaced in the x-coordinate by a distance d in the same manner as the elementary

dipoles in Figure 4.17 a).

Similarly, as for the case of the array of two elementary dipoles, it holds true for the

intensities u11 = u22, u12 = u∗21 and

u12(θ, φ, s) = u11e
−js sin θ cosφ. (4.26)

However, the intensity u11 cannot depend on the direction (θ, φ) of radiation for the

isotropic radiator. From (3.30), the relation of the intensity u11 and power p11 can be

found as

p11 = u11

2πw

0

πw

0

sin θ dθ dφ = 4πu11 (4.27)
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u11 =
p11
4π

. (4.28)

It holds true for the powers p11 = p22 and p12 = p∗21 = p21 since the intensities u11

and u22 are equal, u12 = u∗21 and the power p12 is real. Further, the relation (3.30) for the

power p12 using (4.26) and (4.28) reads

p12(s) =
p11
4π

2πw

0

πw

0

sin θe−js sin θ cosφ dθ dφ = p11
sin s

s
. (4.29)

For the given array, considering the out-of-phase excitation currents I = [I,−I]T and

using the above found entries of the matrices u and p, the directivity D (3.31) becomes

D(θ, φ, s) =
1− cos (s sin θ cosφ)

1− sin s
s

. (4.30)

Further, considering the spacing d < λ/2 (i.e., s < π), the maximal (end-fire) radiation

occurs for the direction (θ = 90◦, φ = 0◦) and the corresponding directivity D is

D(90◦, 0◦, s) =
1− cos s

1− sin s
s

(4.31)

with the limit 3 (4.77 dBi) for the spacing d→ 0 (i.e., s→ 0).

In this case, the optimal currents Iopt producing the maximal directivity D for a given

direction (θ, φ) and spacing s can be also found in the manner given by (4.14) and (4.16)

but the normalized far field pattern f of the isotropic radiator is

f (θ, φ) = 1. (4.32)

The currents Iopt have the same form as (4.18) but the phase difference α is now

α(θ, φ, s) = −s sin θ cosφ+ 2 arg (ρRe(θ, φ, s) + jρIm(θ, φ, s)) (4.33)

where

ρRe(θ, φ, s) = cos (s sin θ cosφ)− sin s

s
(4.34)

ρIm(θ, φ, s) = sin (s sin θ cosφ). (4.35)

For the given array, considering the optimal excitation currents Iopt (4.18) and using

the above found entries of the matrices u and p, the directivity D (3.31) becomes

D(θ, φ, s) =
cosα+ cos (s sin θ cosφ)

cosα+ sin s
s

. (4.36)

Further, considering the spacing d < λ/2 (i.e., s < π), the maximal (end-fire) radiation
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Figure 4.21: Directivity of end-fire radiation of array of two isotropic radiators with out-
of-phase (blue-solid) and optimal for maximal directivity (red-dashed) excitation. Repro-
duced from [129].

occurs for the direction (θ = 90◦, φ = 0◦) and the corresponding directivity D is

D(90◦, 0◦, s) =
cosα+ cos s

cosα+ sin s
s

(4.37)

where the phase difference α (4.33) is now

α(90◦, 0◦, s) = 2π − s+ 2 arctan

(
tan s

1− tan s
s

)
(4.38)

with first two terms of Taylor’s expansion for a close spacing s

α(90◦, 0◦, s) ≈ π − 1

3
s. (4.39)

The directivity D (4.37) has a limit 4 (6.02 dBi) for the spacing d → 0 (i.e., s → 0)

corresponding with Uzkov’s limit N2 for N = 2 [46]. The calculated directivities D

(4.31) and (4.37) for both out-of-phase and optimal excitation are shown in Figure 4.21.

A comparison of the phase differences α (4.24) and (4.38) for the arrays of two elementary

dipoles and two isotropic radiators is given in Figure 4.22.

4.6 Two isotropic radiators backed by PEC ground

The increase in directivity for two isotropic radiators when close to each other implies,

that the arrays backed by PEC, when the height h is close to zero may have the greatest

directivity. To verify this, we present two isotropic dipoles above PEC ground. The array

of two isotropic radiators is spaced in the x coordinate by a distance d in the same manner

as the elementary dipoles in Figure 4.17 a), but shifted in y coordinate by distance h. The

PEC ground is presented here by additional two isotropic radiators shifted in y direction

by a distance −h.

Similarly, as for the case of the array of two isotropic elements, it holds true for the
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Figure 4.22: Comparison of phase difference of optimal excitation currents for maximal
directivity of end-fire radiation of arrays of two elementary dipoles (blue-solid) and two
isotropic radiators (red-dashed). Reproduced from [129].

intensities u11 = u22, u12 = u∗21. Here also the distance h comes in play and the intensity

u13 will be

u13(θ, φ, h) = u11e
−jv sin θ sinφ, (4.40)

where v = kh and

u14(θ, φ, s, h) = u11e
−js sin θ cosφ−v sin θ sinφ. (4.41)

When we calculate the additional intensities for the remaining elements and vice versa,

we get the intensities that holds true u11 = u22 = u33 = u44, u12 = u∗21 = u34 = u∗43,

u13 = u∗31 = u24 = u∗43, u14 = u∗41 and u23 = u∗32 and for the powers p11 = p22 = p33 = p44,

p12 = p21 = p34 = p43, p13 = p31 = p24 = p42 and p14 = p41 = p23 = p44, thus the power

matrix is symmetric.

For the given array, considering the in-phase excitation currents I = [I, I,−I,−I]T

where the first two current are for the elements above PEC ground and second pair of

currents is for mirror elements and using the above found entries of the matrices u and p,

the directivity D (3.31) becomes

D(θ, φ, s, h) =
kdh
√
d2 + h2 cos (kh sin θ sinφ− 1) (cos (kd sin θ cosφ))

dh sin
(
k
√
d2 + h2

)
+
√
d2 + h2 (d sin (kh)− h sin (kd)− dkh)

. (4.42)

Further considering the maximum radiation in the direction (θ = 90◦, φ = 90◦) the corre-

sponding directivity D is

D(θ, φ, s, h) =
2kdh (cos (kh)− 1)

√
d2 + h2

dh sin
(
k
√
d2 + h2

)
+
√
d2 + h2 (d sin (kh)− h sin (kd)− dkh)

(4.43)

with first four terms of Taylor’s expansion for a small height h shows the limit 6.56

(8.17 dBi) for the height h → 0 and spacing d = 0.93λ. The directivity D 4.43 is shown

in Figure 4.23 and the directivity D for a limit when h → 0 is given in Figure 4.24.
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Figure 4.23: Directivity for two isotropic radiators above PEC ground.
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Figure 4.24: Directivity for two isotropic radiators for h→ 0.

The optimal currents here are difficult, but generally possible, to find analytically by the

procedure described in previous chapter.

4.7 PSO optimization for antenna arrays

Because the developed computational method is very fast, we can evaluate the maximum

achievable broadside directivity for an array of N thin horizontal dipoles above PEC

ground by the PSO [133]. These dipoles have the same length of L = λ/2 and radius as in

the three element array example in chapter 4.2 and are oriented in z direction. The height

of the dipoles above the PEC ground is h and spacing is first fixed sn = s and then let

arbitrary sn. Due to constraint of broadside radiation (θ = 0), arrays with two and three

elements will have the same separation. However for arrays with more dipoles, this is not

generally true.

The maximum obtainable broadside directivity for the array of ten dipoles with con-

stant spacing is depicted in Figure 4.26 Maximum directivity D = 20.75 dBi occurs for

s = 0.658 λ and h = 0.907 λ.

It is noted that thanks to the presence of the ground plane, the superdirective currents
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are real (equiphase). It follows from the symmetry of the u and p matrices and the fact

that the original Io = ReIo + jImIo and image Ii = ReIi + jImIi currents resulting from

the modal decomposition are complex conjugated Ii = I∗o.

The results for different number of dipoles with constant separation are summarized in

Table 4.2 and the results from PSO with different spacings between elements are in Table

4.3

number of
elements N

D (dBi) h/λ(−) s/λ(−)

2 12.82 0.677 0.628
3 14.9 0.677 0.752
4 16.33 0.658 0.814
5 17.45 0.658 0.845
10 20.76 0.658 0.907
25 25.03 0.658 0.932
50 27.95 0.628 0.907

Table 4.2: Maximum directivity and its optima for different number of elements in the
array. Separations are kept constant.

N = 4 N = 5 N = 10
D(dBi) 16.44 17.57 21
h/λ(−) 0.663 0.662 0.657
s1/λ(−) 0.753 0.774 0.795
s2/λ(−) 0.875 0.878 0.915
s3/λ(−) s1 s2 0.918
s4/λ(−) s1 0.93
s5/λ(−) 0.933

Table 4.3: Array parameters for maximum directivities with PEC ground. Height and
separations are optimized

It is interesting that the optimal heights and mutual spacings are very similar. The

separation tends to increase with number of dipoles. This finding suggests that the height

of linear array above PEC ground has its optimum for any array with a different number

of elements.

This idea is supported by evaluation of optimal current for two isotropic radiators

above the PEC ground and inserting them into 3.31. The result is depicted in Figure 4.27

Contrary to the dipole case, there are two peaks. The first one is for zero height (probably

due to the fact that isotropic radiators lack any polarization properties), but for the second

we obtain similar numbers as for dipoles.

In Fig.4.25 we show normalized current amplitudes for arrays with N = 10, 25 and 50

elements (optimized both height and constant spacing as from Table 4.2), where the center

dipole is denoted as N = 0. It is interesting that the optimal height h and spacing s for

various numbers N are very similar and the spacing s tends to increase with the number

N . This finding suggests that the height h has optimum for an arbitrary number N . In

Figure 4.25, it is apparent that the magnitudes of the currents Iopt are not uniform, but

tapered. For higher number N , the magnitudes changes along the array in an oscillatory
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Figure 4.25: Feeding currents that maximize directivity for array with 10, 25 and 50
elements.

way, probably due to some kind of “resonance”.

Finally, in Figure 4.28 we show the radiation pattern of the array with three dipoles

placed at optimal height and spacing and fed by optimal current to achieve the maximum

directivity. Agreement with FEKO is excellent.
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Figure 4.26: Maximum directivity of 10 element dipole array above PEC ground.
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(a) FEKO 3x1 (b) MATLAB 3x1

Figure 4.28: Radiation pattern of 3 × 1 array above PEC optimized for maximum direc-
tivity.



Chapter 5

Beamforming

The array beamforming problem is the process of forming a strong beam or multiple

beams in a given direction using a collection of antennas that do not necessarily have

any preferential direction. By controlling the amplitude and phase of each antenna, their

individual radiation patterns can be made to constructively interfere in a chosen direction,

forming a main beam. At the same time, their radiation patterns interfere destructively

in other directions, ensuring that most of the emitted power travels along the main beam.

Basic approaches to the beamforming problem assume control over element positions,

transmit amplitudes, and transmit phases [134].

Multiuser M-MIMO systems are projected to play a vital role in 5G communication.

The bandwidth requirements for 5G are expected to rise 100 times more than the current

4G systems. These requirements now can be achieved only with beamforming.

5.1 Design of a 24-28 GHz array

For the antenna array using with 5G system a three different antenna arrays was de-

signed. They differ with maximum observable gain and bandwidth and on the other hand

were were selected by the manufacturing cost and durability. The maximum gain can be

achieved with Vivaldi array, moderate gain with waveguide array and lowest gain with

dipole array.

5.1.1 Vivaldi array

A Vivaldi antenna is antenna that is characterized by wide bandwidth, high gain and an

end-fire radiation pattern [135]. On the Figure 5.2 is a reflection coefficient and realized

gain of the Vivaldi antenna with a microstrip line feed depicted in Figure 5.1. This antenna

was designed on both sides of a Rogers RT/Duroid 5880. Because the Vivaldi antenna

requires a feed with a slot-line transmission line, which is balanced , it is necessary to use

balun, that acts as a microstrip-to-slot-line transformer. This balun must operate over a

frequency range of at least two octaves, and up to several octaves. Kayani [136] proposed a

simple, compact Vivaldi antenna in 2005 and this design was used in our antenna design.

The main advantage of this design is that the antenna can be made smaller compared

61
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(a) front of the vivaldi antenna (b) back of the vivaldi antenna

Figure 5.1: Vivaldi with microstrip feed with dimensions x ≈ 1.7λ, y ≈ 1.3λ

phase\element 1 2 3 4 5

A 0 0 0 0 0
B -100 -50 0 50 100
C -200 -100 0 100 200
D -300 -150 0 150 300

Table 5.1: Phase distribution on the elements of the array

to an antipodal Vivaldi antenna. The realized gain is evaluated for the radiation in x

direction (θ = π, φ = 0).

(a) S parameters (b) realized gain

Figure 5.2: Simulated S parameters and gain of the Vivaldi antenna

The antenna from Figure 5.1 was used to create an antenna array. The distance be-

tween the elements was changed to achieve optimal results (minimal grating-lobes, minimal

mutual coupling and maximal steering angle). As an initial distance was set d = 6 mm.

This value was calculated from (5.1), when fullfilling this expression, the closest unwanted

grating lobe will be not appear in visible space [137].

d

λ
<

1

1 + sin |θ0|
, (5.1)

where d is mutual distance between elements, λ is wavelength and θ0 is scanning angle.

In the Figure 5.3 is depicted basic arrangement of the Vivaldi array with mutual
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Figure 5.3: Parameters of the Vivaldi array with five elements, based on spacing between
the elements

distance d. This mutual distance is changed from d = 5 mm to d = 7 mm with the results

of the realized gain, scanning angle and side-lobe level (SLL) is depicted in Figure 5.3. The

parameters are calculated for different feeding, constant amplitude and phase in degrees

from Table 5.1. From the Figure 5.3 we can see, that with increasing mutual distance d

the realized gain is lower, but the scanning angle is wider, so the optimal mutual spacing

for our array of antennas is d = 6 mm.

The amplitude analysis for having narrow beams with low sidelobes was performed

with basic linear weight distribution distribution.

Often it is desirable to lower the highest sidelobes, at the expense of raising the lower

sidelobes. The optimal sidelobe level (for a given beamwidth) will occur when the sidelobes

are all equal in magnitude with Dolph-Chebyshev distribution [135],[20].

Taylor-Kaiser arrays are another used technique for designing array beam patterns. In

contrast to Chebyshev, the relation between mainlobe width and sidelobe attenuation is

not optimum in this technique. The mainlobe width is larger than in Chebyshev arrays

with the same sidelobe level [138] The array excitation coefficients can be calculated in

the folllowing way:

Im = I0

(
γ
√

1−m3/M2
)
, (5.2)
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where m = ±1,±2, . . . ,±M , or m = 0,±1,±2, . . . ,±M , for even or odd number of array

elements, I0 stands for the modified Bessel function of 1st kind and zero order and γ is

the shape parameter.

The binomial array has the amplitudes arranged in such a way that the resultant

radiation pattern has no minor lobes, but wide mainlobe. The weights of an N-element

binomial array are the binomial coefficients:

w(m) =
(N − 1)!

m!(N − 1−m)!
, (5.3)

where m = 0, 1, . . . , N − 1.

The weights for the specific array with five elements and mutual distance d = 6 mm

are depicted in Table 5.2.

distribution\element 1 2 3 4 5

linear 1 1 1 1 1
Dolph-Chebyshev 1 1.61 1.93 1.61 1
Taylor-Kaiser 1 2.27 2.84 2.27 1
binomial 1 4 6 4 1

Table 5.2: Weights distribution on the elements of the array

These weights were used as input for the realized gain calculation on the array. The

realized gains are depicted in Figure 5.4 and Figure 5.5 respectively, for the broadside

radiation and for maximum phase distribution D from Table 5.1.

5.1.2 Waveguide array

The final mounting and set precise element spacing of each antenna with Vivaldi elements

is complicated, thus the waveguide antenna was designed and is depicted in Figure 5.6.

The advantage of a waveguide antenna is easy manufacturing and possibility of transmit-

ting high power, thus increasing transmission distance and improving SNR. The realized

gain and reflection coefficient of the waveguide antenna is shown on Figure 5.7. From

the simulation one can notice that the reflection coefficient and realized gain is inferior

compared to Vivaldi results. Specifically the reflection coefficient in the monitored band

(24− 28 GHz) is better then s11 = −14 dB and realized gain is over 7 dBi. The reflection

coefficient was improved by adding the metal disc to the end of the coaxial feed probe.

To enhance the realized gain of the waveguide antenna another part of “cavity” was

added to top and bottom of the waveguide. The final design of a single antenna element

is depicted in Figure 5.8. The reflection coefficient and realized gain of this antenna are in

Figure 5.9. The realized gain has increased in the band 24 − 31 GHz and is approaching

the results of the Vivaldi antenna. The reflection coefficient in the monitored band has

improved by 2 dBi. On this design many parameters was optimized with respect to

feasibility of manufacturing. For this case the inside of the waveguide is blended with

radius R = 1mm. The feeding of the waveguide is from top side with SMP male threaded

limited detent connector SC5510 from Fairview Microwave [139]
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The model of the antenna from Figure 5.8 was used to create the antenna array with five

elements. The problematic part here was to minimize the spacing between each antenna

element. Due to this factor the metal thickness of the vertical wall between the elements

is reduced to one millimeter. In the Figure 5.10 is depicted total reflection coefficient

and realized gain for feeding of the elements with equal amplitude and phase. Due to

the symmetry, only three curves of reflection coefficient are showed, while s1,1+2+3+4+5 =

s5,1+2+3+4+5 and s2,1+2+3+4+5 = s4,1+2+3+4+5. The realized gain with this antenna array

is slightly better then with Vivaldi array. In the monitored band we obtain average gain

15 dBi. Also the waveguide array can operate in large frequency band.

But as mentioned above, the 5G networks will use M-MIMO. To ensure this property

we need to be able to stack up this array on each other. Thus the feeding from top

or side of the waveguide is not possible in this case. The only possible feeding of an

N ×N waveguide array is from behind. In literature there are many different techniques

to feed the waveguide with this way. Many authors use substrate integrated waveguide

(SIW) to waveguide transition such as [140], [141] or directly inserts the substrate into

the waveguide [142]. The design of the transition from microstrip to waveguide by Iizuka

[143], followed by Seo [144] and second approach by Sakakibara [145] was implemented in

(a) Uniform distribution, no steering (b) Uniform distribution, max steering

(c) Dolph-Chebyshev distribution, no steering (d) Dolph-Chebyshev, max steering

Figure 5.4: Different amplitude distribution for none and maximum steering
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(a) Taylor-Kaiser distribution, no steering (b) Taylor-Kaiser, max steering

(c) Binomial distribution, no steering (d) Binomial, max steering

Figure 5.5: Different amplitude distribution for none and maximum steering

CST. The designed structures are shown in Figure 5.11

Both design were applied to a central frequency 76.5 GHz. Iizuka developed a planar

proximity coupling transition. This transition can be composed of only a single dielectric

substrate attached to the waveguide end and suitable for mass production. The conductor

pattern with a notch and the microstrip line are located on the upper plane of the dielectric

substrate. A rectangular patch element and a surrounding ground are patterned on the

lower plane of the dielectric substrate. Via holes are surrounding the aperture of the

waveguide on the lower plane of the dielectric substrate to connect the surrounding ground

and the waveguide short electrically. The microstrip line is inserted into the waveguide

and overlaps on the rectangular patch element. The overall bandwidth is only 6.5%.

Sakakibara present design with substrate attached on a back short waveguide and to

WR-10 waveguide on top of the structure. This design is more difficult to manufacture

and consist from more parts. Also stacking up multiple layers is not possible with this

design. A topside waveguide-to-microstrip transition with double layer substrate has been

also developed. The substrate is set on the flat metal plate and the waveguide is set on

it perpendicularly. All the design parameters are in the substrate. Any special structures

are not necessary in the metal parts. However, the double layer substrate is necessary and
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(a) (b)

Figure 5.6: Waveguide antenna with coaxial feeding with dimensions x ≈ 0.7λ, y ≈ 0.65λ,
z ≈ 3.3λ,

(a) S parameters (b) realized gain

Figure 5.7: Simulated S parameters and gain of the waveguide

Figure 5.8: Waveguide antenna with coaxial feeding and ’cavity’

the bandwidth is limited because it operates by patch resonance. The bandwidth in this

case is only 6%.

This solutions are not applicable to our case because of required bandwidth, which

should be 15%.

5.1.3 Dipole array

Due to manufacturing problems, the dipole based dipole array on the PCB was designed,

where the design was inspired by [146].

Figure 5.12 shows the geometry of the printed dipole antenna, which was designed

on substrate Rogers RT/Duroid 5880 (h = 0.254 mm, εr = 2.2, and tan δ = 0.0009).
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(a) S parameters (b) realized gain

Figure 5.9: Simulated S parameters and gain of the waveguide antenna with ’cavity’

(a) S parameters (b) realized gain

Figure 5.10: Simulated S parameters and gain of the waveguide antenna array with ’cavity’

The antenna consists from a printed dipole, integrated balun, microstrip-line feed and

mini SMP full detent right angle connector type 187662 from Rosenberger [147]. The

feedline was on the top layer of the substrate, whereas the dipole and the ground plane

were on the bottom layer. Impedance matching was realized by adjusting the folded line

and rectangular slot. Also, the gap of the slotline and the stripline are crucial design

parameters of impedance matching. The printed dipole was angled to achieve a compact

size, as well as to realize a wide pattern in the E-plane. The simulated reflection coefficient

and a realized gain is depicted in Figure 5.13. Here the reflection coefficient is comparable

with reflection coefficient of the waveguide antenna, but the realized gain is lower by 1−2

dBi with decline around 29 and 32 GHz, which is outside the designed frequency band.

The dipole is fed by a slot line and the balun acts as a microstrip-to-slot-line transformer.

This arrangement does not allow for a completely symmetrical antenna, so the main lobe

direction of the far field is 5◦ with 3 dB beamwidth and −8.3 dB side-lobe-level.

As already mentioned, the designing of an antenna array is tradeoff between low mutual

coupling and low sidelobes with maximization of scanning angle. To obtain low mutual

coupling between dipole elements a microstrip stub was inserted in between the two ele-

ments with d = 6 mm spacing. The function of the stub is similar to the radio frequency

choke [148]. We implemented an 4-element dipole array as shown in Figure 5.14. The final

dimensions of this four element antenna array is in Appendix A.
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(a) design by Iizuka [143] (b) design by Sakakibara [145]

Figure 5.11: Waveguide to microstrip transition with double layer substrate

(a) front of the dipole antenna (b) back of the dipole antenna

Figure 5.12: Dipole antenna with microstrip feed with dimensions x = 4λ, y = 2.8λ.

The simulated reflection coefficient and realized gain is depicted in Figure 5.15 for

constant feeding in amplitude and phase. Because of the asymmetry of the single element

design, when the microstrip is offset against the dipole, the calculated s parameters are also

not symmetrical. The reflection coefficient of the dipole array is better than waveguide

array, but worse compared to Vivaldi array. The realized gain is lowest from all the

simulated antenna arrays. But the advantage of this array is its simple manufacturing on

one Printed Circuit Board (PCB), so the manufacturing cost is lower than with waveguide

array.

The manufactured antenna arrays were on PCB substrate with size 200× 240 mm. To

use all the expensive substrate, three versions from each array were manufactured. Because

the gap of the slotline and the stripline are crucial design parameters, this parameters were

varied by a few percent in each design. The manufactured arrays include 1,3,4,5 and 8

elements and 4 elements with simple power divider. The figure of all the manufactured

antennas is in Appendix B.

The manufactured antenna with only one dipole elements was used to measure and

verify the design. On the Figure 5.16 is comparison from CST simulation with simple

model of mini SMP connector and measurement of the same manufactured antenna. Also

one manufactured sample was mounted with end-launch connector and measured. From
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(a) S parameters (b) realized gain

Figure 5.13: Simulated S parameters and gain of the dipole antenna.

(a) front of the dipole antenna array (b) back of the dipole antenna array

Figure 5.14: Dipole antenna array with microstrip feed

this comparison we can see, that the results are very close to the simulation. The differ-

ences are probably due to poor mini SMP model in CST and also due to high sensitivity

in dimension change of the slotline and stripline.

Because of differencies in simulation and manufactured antenna, the one element PCB

was measured with microscope ASH OMNI [149] with resolution up to 0.001 mm. The

results with crucial dimensions are shown in Figure 5.17. The maximum variation in

dimensions is up to 15% in middle gap. This variation can cause the inaccuracy in mea-

surement and software simulation.

The manufactured four element dipole array was assembled by mini SMP connectors

and measured with vector network analyzer (VNA) Rohde & Schwarz ZVA50 and mini

SMP calibration kit. The measured results are depicted in Figure 5.18. Compared to sim-

ulation, the antenna has not the best reflection coefficient. The lowest s11 is in frequency

band from 21-23 GHz, while in simulation it was on frequencies around 24 GHz. This

frequency shift could be due to different substrate parameters, εr, or by slightly different

dimensions caused by manufacturing tolerances. This type of antenna is also sensitive to

misalignment of the two metallic planting. Strange behavior has port number 4, which

reflection coefficient is the highest and differs from other elements. This is probably due

to mistake in calibration.
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(a) S parameters (b) realized gain

Figure 5.15: Simulated S parameters and gain of the dipole antenna array
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Figure 5.16: Comparison of s11 from simulation and measurement

Another problem with this measurement are the mini SMP connectors itself. These

connectors are not precise and so the measurement repeatability is poor. In the best case

we get ±4 dBi variations when re-connecting the antenna. The repeated connecting of

the antenna with four elements and four different re-connection is depicted in Figure 5.19.

The s11 is a reflection coefficient of the first (left) element, while all connectors of the

antenna were connected to VNA.

5.2 Synthesis of feeding coefficients

The antenna array structure from Figure 5.14 was used to optimize the radiation pattern

based on prescribed one in MATLAB. For this antenna array the desired farfield was

prescribed in MATLAB by the functions (5.4) and (5.5). The direction of a main lobe

was steered in θ by 30 degrees and no side lobes were considered. The results from CST

(impedance matrix and radiation patterns), which are noted as loaded far fields were

integrated to MATLAB. These inputs were used along with modal decomposition to get

the vector of weights of the modes, vector of the modal currents and modal normalized
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Figure 5.17: Printed dipole antenna under the microscope
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Figure 5.18: s parameters of the manufactured antenna array with miniSMP calibration

farfields, see the MATLAB code in appendix C.

fon(θ) = cos (θ − π/2 + 30π/180)22 (5.4)

fon(φ) = cos (((φ− π/2) + 1)/2)2 (5.5)

The optimal parameters of a incident wave on the antenna ports are depicted in Table 5.3.

The amplitude on edge elements is lower to suppress the side lobes of the farfield, while

the phase on each element is not intuitive at all. The required normalized farfield from

functions (5.4) and (5.5) and farfield optimized by MATLAB are depicted in Figure 5.20.

element number amplitude (V) phase (◦)

1 0.0165 173.7
2 0.0248 82.2
3 0.0257 -8
4 0.0188 -101.6

Table 5.3: Optimal incident wave on the antenna port
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Figure 5.19: Repeated connecting of the four element antenna array with mini SMP
connector
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Figure 5.20: Required and optimized radiation patterns for 5GHz dipole antenna array.
Note that the farfields are minimized by the minimum-square method, therefore the farfield
is optimized as a whole resulting in slightly different maxima.

5.3 Practical realization and beam steering using RoF

This chapter and the results are done under the project MPO FV30427. To verify the

developed theory, the RoF method was used to feed the antenna array. The complete

system block diagram of the proposed scheme is depicted in Figure 5.21. The emitted

signal by a continuous wave (CW) 4 port laser (IDPhotonics TLCoBrite DX4) is launched

into the dense wavelength division multiplexer (DWDM). The signal is then launched to

the Mach-Zehnder Modulator (MZM) through polarize controller (PC) to set the defined

polarization. A RF signal at the frequency of 24 GHz from RF generator is used to mod-

ulate the optical carrier. The optical channel is formed by single mode fiber (SMF) with

variable lengths. The optical channels are then separated by using another DWDM. Direct

detection of the signal is realized by using a high-speed photodetector (PD) (PD–Optilab

PD 40) and the RF signal is send into the antenna. The phase shift between the elements
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is then controlled by varying the wavelength of the optical signal from CW laser. Due to

chromatic dispersion there is a different delay between the wavelengths. The s-parametrs

of the PD are in Figure 5.22.

Figure 5.21: System block diagram
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Figure 5.22: s-parameters of PD-Optilab PD 40

From the RF point of view is important the connection from the output of PD to

input of the antenna array. This could be done by directly integrating the PD with the

PCB of the antenna array. But this solution is very expensive. The cable connection was

realized with 6 inch long cables with miniSMP female to 2.92 male connectors. In this

case the relative phase shift of all cables relative to cable no.1 is crucial and must be know

to eliminate the error in feeding of the antenna. This relative phase is depicted in Table

5.4.

cable number 1 2 3 4 5 6 7 8 9 10
relative phase shift (◦) - 0.2 0.6 2.6 10 9.7 7.6 −10.8 −11.1 −7.9

Table 5.4: Relative phase shift of the 6 inch long, miniSMP to 2.92 cables relative to cable
no.1

The practical realization was first done without the antennas itself to verify the capabil-

ity of phase shift and possible output power A different length of SMF was used. The

realization is depicted in Figure 5.23.
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(a) (b)

Figure 5.23: Practical realization of RoF without antenna sector.
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Chapter 6

Conclusion

6.1 Discussion of results

The antenna array can be optimized from many points of view and for a different optima.

In this thesis I have focused on characterization of an arbitrary dipole arrays with discrete

impedance matrix, including mutual coupling between elements. This matrix description

was extended to directivity and gain.

A simple one-term sinusoidal current distribution with central excitation of the dipoles

was applied for increasing calculation speed and the infinite electric ground plane was mod-

eled by the method of images. The results of the proposed method, which was implemented

in MATLAB, were confirmed by examples and compared with good agreement with a full-

wave simulator FEKO using the method of moments. The MATLAB code was extended

with a more realistic King’s three-term approximation of the current distribution on the

dipoles.

The described theory can be used to solve complex and arbitrary oriented antenna

arrays with different elements in the array. This method is also suitable for all problems,

where one can prescribe analytically the current of an element. A four element Yagi-Uda

antenna was optimized as an example for gain and low side lobes level in the main axis

and to present the correctness of this method on elements with different length.

From the example with three dipoles above PEC ground we can see, that the antenna

array is very sensitive to a current deviations when in resonance. It was shown, that

the directivity maximization for a circular array with 5 elements can be achieved in all φ

scanning angles.

By using the generalized concept of the directivity of an antenna array based on the

self- and mutual radiation intensities, self- and mutual radiated powers and excitation

currents of array elements, analytical expressions for the directivity of the out-of-phase

excited arrays of two closely-spaced elementary dipoles and two isotropic radiators were

derived. Further, the optimal excitations to maximize the directivity of the arrays for a

given direction and spacing of their elements were also found analytically. It was shown,

that the analytical expressions can be derived for the arrays consisting of more than two

elements represented by the isotropic radiators since the necessary relations for the mutual

intensities and powers were stated for an arbitrary spacing of the elements. However, the

77
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expressions are expected to be extremely complicated, especially, due to the inverse of the

matrix of the self- and mutual powers contained in the derivation.

By employing the PSO it could find the exact optimal spacing and height for each

antenna element separately. But the maximized directivity with the optimized parameters

was slightly higher than in array with constant spacing between elements.It was shown

that for arrays above PEC ground, the optimal currents are purely real.

This methods contributed to design of 5G antenna array and synthesis of feeding

coefficients.

6.2 Contributions of the thesis

The most important contributions of the thesis are listed below:

• Derivation of generalized impedance, directivity and radiation intensity for arbi-

trary oriented array elements with sinus and with a more realistic King’s three-term

approximation of the current distribution on the dipoles.

• Modal decomposition in antenna arrays with use of so called discrete modes applied

to different optima.

• Super directivity arrays with elementary dipoles and isotropic radiators backed by

PEC ground.

• Antenna array optimization based on required radiation pattern.

• Implementing the developed method into MATLAB and connecting with CST soft-

ware to synthesize radiation pattern, beamforming.

• PSO optimization of linear arrays with different number of elements.

• Design and manufacturing of a 5G array and synthesis of feeding coefficients.

6.3 Future suggestions

The introduction of 5G networks is approaching rapidly. The developing of synthesis for

antenna arrays is essential. Beamforming is indispensable to achieve strict parameters

of these networks. Nowadays the beamforming is done by changing the phase of the

signal based on simple, but old theory. When designing the antenna arrays, engineers

now must design this array and with use of some software they can calculate phases on

each segment of antenna. But no possibility to prescribe the required radiation pattern

and synthesize feeding coefficients, amplitude and phase. Including this theory into some

commercial software should be done to help with antenna array design. Extension of the

input geometry could be done with elements, where the current is analytically known.

Also using the antenna array as a passive elements could bring some interesting results

and will be easy to manufacture.
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In this work, the proposed method for arbitrary oriented array elements was mainly

applied on a periodical and linear arrays. Some smart optimization should be implemented

to find optimal space distribution of array elements.
The RoF is promising technology to help with fast spreading of 5G networks. Low loss

and low price of the optical cables are nowadays redeemed with the high price of optical
to radio converters. This converters should be included directly into PCB of the antenna.
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Appendix B

Picture of manufactured antenna

arrays

(a) front (b) back

Figure B.1: Photo of the manufactured dipole antenna
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viii APPENDIX B. PICTURE OF MANUFACTURED ANTENNA ARRAYS

(a) front (b) back

Figure B.2: Photo of the manufactured dipole arrays

(a) front (b) back

Figure B.3: Photo of the manufactured dipole array with four elements and a feeding
network



Appendix C

Description of the developed

MATLAB code

The input geometry for the calculation can be directly coded in MATLAB, for simple

dipole geometry, or modeled in CST microwave studio for any other antenna type. This

means that the first level of calculation, impedance matrix and a radiation intensity vector,

is done in MATLAB for dipole array. This level, the impedance matrix and the radiation

patterns of elements, can be solely evaluated in CST and imported into MATLAB. Based

on the feeding port in CST, there is a need to convert radiation patterns of elements to

a modal patterns. The advantage of the calculation of array in MATLAB is that the

radiation intensity vector is calculated and one can calculate the total radiation pattern

including requested feeding (amplitude and phase).

The native theory of modal decomposition routine needs as an input only impedance

matrix for characteristic mode decomposition, radiation intensity vector for directivity

decomposition and optional vectors of loading impedance and output impedance for loss

calculation. As an additional input, impedance matrix of loads Zload and sources Zoutput

can be inserted into the computing routine. Beyond classical characteristic modes, the

output from the modal decomposition is maximum achievable directivityDmodal, minimum

observable quality factor Qmodal or efficiency of the modes. Also appropriate current

distribution of an array for observing these values.

The term modal normalized pattern of the array refers to the state when the elements

of the array are excited by the currents Ip = [I1p, · · · , Inp, · · · , INp]T where Inp is an

excitation current of n-th element corresponding to p-th mode. Various types of the modes

of the array can be considered. The routine ”conversion to modal pattern” transforms the

loaded (or also so-called embedded) normalized far-fields to modal normalized far-fields.

With these results and prescribed required far-field from user, the code will calculate the

weights of the modes to obtain the proper radiation pattern. A simple schematic diagram

of the antenna array program is depicted in Figure C.1 with simplified MATLAB code for

three element dipole array far-field calculation in Figure C.2.
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x APPENDIX C. DESCRIPTION OF THE DEVELOPED MATLAB CODE

Figure C.1: A schematic diagram of the antenna array application

f = 1e9; % frequency [Hz]

lam = 3e8/f; % wavelength [m]

N = 3; % number of dipoles

L = 0.5*lam; % dipole length [-]

a = 0.001*lam; % dipole radius [-]

or = [0 1 0]; % dipole orientation

dx = linspace(0.1*lam,1*lam,10);

% mutual spacing between dipoles

h = 0.2*lam; % height of dipole

shape = 'matrix'; % shape of the array

calcAlg = 'mode'; % calculation mode

%--------------------------

array = GetPosition(N,L,a,or,dx,h,shape);

% create array

arraySweep = Meshgrid(array,'imped',calcAlg);

% create all combinations of properties

arrayImped = MutualImped3Term(arraySweep);

% impedance matrix calculation

ReZ = real(arrayImped.Z); % Re(Z)

ImZ = imag(arrayImped.Z); % Im(Z)

[Vec,Num] = eig(ImZ,ReZ); % naive TCM

arrayInt = MutualRadI3Term(arrayImped);

% radiation intensity vector

nTheta = 180; % number of theta points

nPhi = 360; % number of phi points

arrayPat = RadPat(arrayInt,'total',nT,nP,calcAlg);

% modal patterns calculation

givenRadPat.ffTheta =sin(theta)*cos(phi)^2;

% given radiation vector in theta

givenRadPat.ffPhi =0;

% given radiation vector in phi

modalCoef = CalcModalCoef(givenRadPat,arrayPat);

% excitation coefficient calculation

% Results:

plotPattern(arrayPat,'total','log',[-20 20],'d');

Cannot find an exact (case-sensitive) match for 'GetPosition'

The closest match is: getPosition in C:\Users\admin\Desktop

\dipole_array_Kracek\2018\clanek_popis_kodu\getPosition.m

Error in pseudokod_celkovy (line 13)

array = GetPosition(N,L,a,or,dx,h,shape);

Published with MATLAB® R2018a

1

Figure C.2: Simple code of the MATLAB part calculation
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