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Abstrakt

V předkládané disertačńı práci je nejdř́ıve provedena analýza tř́ıdy časově
zpožděných regulátor̊u podléhaj́ıćıch astatickému chováńı, které je spo-
jenému s tzv. windup efektem v regulačńıch smyčkách se saturuj́ıćımi
akčńımi členy. Analýza je realizována jak pomoćı analytických nástroj̊u, tak
i nástroj̊u spektrálńı analýzy. S d̊urazem na následné jednoduché laděńı je
navrženo tzv. anti-windup schéma založené na nelineárńım pozorovateli pro
skupinu regulátor̊u se zpožděńımi ve stavech. Snaha o zjednodušeńı laděńı
vede na pozorovatele s funkcionálńı zpětnou vazbou, která může obsahovat
časového zpožděńı. Tento př́ıstup vhodně snižuje náročnost laděńı t́ım, že
redukuje návrh na metodu předepsáńı konečného počtu kořen̊u charakter-
istické rovnice saturovaného regulátoru. Následné laděńı navrhované anti-
windup schématu je založeno na minimalizaćı integrálńıho kritéria apliko-
vaného na regulačńı odchylku v okamžiku saturace akčńı veličiny, přičemž
hledáńı minima zvoleného kritéria je prováděno s ohledem na jediný ladićı
parametr. Popisovaný př́ıstup je nejdř́ıve aplikován na tř́ıdu základńıch
model̊u se zpožděńım. Následně je schéma zobecněno s využit́ım Acker-
mannova vztahu aplikovaného na neisochronńıho pozorovatele a nasazeno
na komplexńı časově zpožděný model přenosu tepla. Jako doplňuj́ıćı téma
je zkoumán vliv saturace na chováńı uzavřené regulačńı smyčky s inverźı
tvarovače signálu ve zpětné vazbě, což je technika použ́ıvaná pro kompen-
zaci kmitavých mód̊u flexibilńı části. Studie je zakončena experimentálńım
ověřeńım pomoćı laboratorńı soustavy a simulačńıho modelu.
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Abstract

In the present dissertation thesis, an analysis of a class of time-delay con-
trollers subject to astatic behaviour associated with so-called windup effect
in control loops with saturating actuators is conducted using both analyt-
ical and spectral approach. An observer-like anti-windup scheme for the
class of controllers is proposed with an emphasis on easy subsequent tuning.
The effort to simplification leads to a functional feedback deployment which
may involve time-delay elements in it. This approach beneficially reduces
the anti-windup tuning task to a finite-spectrum assignment. The tuning
of the proposed anti-windup scheme is done by minimization of the control
error integral criterion with respect to a single tuning parameter. At first,
the proposed approach is applied to low-order models. Then, a generalized
state feedback parametrization based on Ackermann formula applied to an-
isochronic observer design is deployed to a high-order heat-transfer model.
As a complementary topic, the saturation effect to the performance of the
closed loop with the feedback inverse shaper as a oscillatory modes compen-
sator is studied. The study concludes with experimental validation using a
laboratory set-up and a simulation model.
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Chapter 1

Introduction

The control loop design and tuning based on linear dynamical models may
exhibit a strikingly different behaviour at its implementation as soon as
the always existing actuator saturation affects the operation. Primarily the
actuating variable of the digital controller is to be artificially prevented from
any possibility to exceed the saturation boundaries and particularly from
any undue getting stuck at these boundaries. This faulty effect is referred
to as windup and the schemes getting the controller saturation rid of this
fault are considered as anti-windup schemes. The control action saturation
is currently an integral part of the control design, since the designers are
overall forced to design energy-optimized devices. Therefore, actuators are
typically selected to meet the requirements for their function at the minimum
possible weight leading to involvement of their entire working range.

The anti-windup strategies and conditioning techniques are well elab-
orated for the control loops with processes and controllers considered as
rational transfer functions. On the other hand, as to the controllers involv-
ing the delay operation a number of issues remain still open. The thesis aims
at analysis and design of anti-windup schemes for controllers of time delay
systems. Both finite and infinite order controllers are considered, utilizing
both static gain and functional feedback in the anti-windup schemes. Be-
sides, saturation effect on the controllers and compensators with time delays
are studied.
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Chapter 2

State of the art

2.1 Linear time-delay systems

Delays, in general, are an essential feature of controlled process dynamics.
Especially nowadays, when high-speed control systems being used, commu-
nication delays in the loop have to be taken into account in the control
design. As a rule, such delay has been neglected due to their short duration
in comparison with reachable dynamics of control loops until recently. The
delays can be in complex processes effective not only in inputs of the system
but also in its internal feedbacks which is, for example, a typical property
of complex heat transfer systems. An overview of some recent advances and
open problems in time delay systems have been presented by Richard in [96]
with extensive list of monographs devoted to this field of active research.

From the mathematical point of view, time delay systems can be divided
according to various criterions. Based on the nature of time delays incorpo-
rated in a process model, time delay systems can be divided in systems with
lumped (point) delays and systems with distributed delays. Other classes are
stated with respect to dependence on the derivative of state vector on de-
layed values of its own. The systems with this dependence are called neutral
time-delay systems, whereas systems without it are called retarded. Most
systems that will be dealt with in this thesis will be described either exactly
or approximately by model of retarded type with lumped (point) delays.

Linear time invariant retarded continuous system with lumped delays
can be described by state-space representation

dx(t)

dt
=

N∑
j=0

Aix(t− ϑi) +

M∑
i=0

Bju(t− τj),

y(t) = Cx(t) + Du(t),

(2.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp and Ai, Bj , C, D are matrices of compatible
dimensions. The values 0 = ϑ0 < ϑ1 < · · · < ϑN , 0 = τ0 < τ1 < · · · < τM

3



represents lumped time delays. note that the initial conditions for the time-
delay system (2.1) are not only given by the values of the state variables
at the time t = 0. Since the system involves history, the initial conditions
are predetermined by a vector of function segments x(t) = ϕ(t + θ), θ ∈
[−T, 0] for T = max(ϑN , τM ) belonging to the Banach space of continuous
real functions mapping the interval [−T, 0] into R space of the appropriate
dimension and equipped with the supremum norm.

This model includes only lumped delays and as such it does not describe
all delay phenomena. It can be further substantially generalized. Next to
lumped delays, the systems may also incorporate distributed delays. These
delays occur mostly in distributed parameter systems described by partial
differential equations (i.e. long electric or hydraulic lines, thermal processes
etc.). A linear retarded system with distributed delay in both state and
control input can be represented by state equations

dx(t)

dt
=

∫ T

0
A(τ)x(t− τ) dτ +

∫ T

0
B(τ)u(t− τ) dτ,

y(t) = Cx(t) + Du(t),

(2.2)

where x ∈ Rn is a state vector, u ∈ Rm is a vector of input variables,
τ ∈ [0, T ] is a time delay variable and T is the maximum of all the time
delays in the system. Both A(τ) and B(τ) are functionals matrices which
assign the delay distributions in appropriate system interactions and also
express the corresponding static gain coefficients by their variations.

The systems (2.1) and (2.2) are also called anisochronic models (the
name originally introduced by Źıtek in [152]). The system is called aniso-
chronic because of non-synchronous role of state variables x(t). Anisochronic
state equations can be easily converted into transfer functions using Laplace
transformation. For system (2.1), it gives following equations with respect
to zero initial conditions for all variables x,u

sx(s) =

(
N∑
i=0

Ai exp(−sϑi)

)
x(s) +

 M∑
j=0

Bj exp(−sτj)

u(s)

y(s) = Cx(s) + Du(s),

(2.3)

which can be reformulated using functional (nonconstant) matrices A(s) =∑N
i=0 Ai exp(−sϑi) and B(s) =

∑M
j=0 Bj exp(−sτj) into{

sx(s) = A(s)x(s) + B(s)u(s),

y(s) = Cx(s) + Du(s).
(2.4)

To complete the survey and for the comparison, a linear time invariant
neutral time delay system is described by the following state-space represen-

4



tation 

dx(t)

dt
+

N∑
j=1

Ej
dx(t− ϑj)

dt
= A0x(t) +

N∑
j=1

Ajx(t− ϑj)

+ B0u(t) +

M∑
i=1

Biu(t− τi),

y(t) = Cx(t) + Du(t),

(2.5)

where x ∈ Rn is a vector of state variables, u ∈ Rm is a vector of inputs
and y ∈ Rp is a vector of system outputs, constant real matrices Aj ∈ Rn×n
for j = 1, . . . , N , Bi ∈ Rn×m for i = 1, . . . ,M , C ∈ Rp×n, D ∈ Rp×m,
Ek ∈ Rn×n and τi, ϑj > 0 are non-zero lumped time delays.

A general multi-input multi-output (MIMO) retarded time delay system
can be then defined as (2.5) if Ej = 0 for j = 1, . . . , N . The transfer function
matrix G(s) of the system (2.5) can be computed from the characteristic
equation

G(s) =
y(s)

u(s)
= C

[
s

(
I +

N∑
i=1

Ei exp(−sϑi)

)
−A(s)

]−1

B(s) (2.6)

or reformulated using resolvent (adjoint matrix) in order to highlight char-
acteristic polynomial

G(s) = C
1

det(sJ(s)−A(s))
adj (sJ(s)−A(s)) B(s). (2.7)

where J(s) = I +
∑N

i=1 Ei exp(−sϑi) for clarity.

Due to the presence of exponential terms the transfer function (2.7) is
transcendental, which means that numerator and denominator are not poly-
nomials but quasi-polynomials [32]. The characteristic roots of the system
(2.5) are given as a solution of characteristic equation

m(s) = det (sJ(s)−A(s)) = sn +

n∑
i=0

pi∑
j=1

mijs
i exp(−sϑij) = 0 (2.8)

According to [73], general time delay systems can be also beneficially
described using delay-differential algebraic equation (DDAE), also called
descriptor systems, of the form

E
dx(t)

dt
= A0x(t) +

N∑
i=1

Aix(t− ϑi) +
M∑
i=0

Bju(t− τj)

y(t) = Cx(t) + Du(t)

(2.9)

5



where matrix E ∈ Rn×n is the only difference compared to the retarded sys-
tem (2.1). Therefore, the same variables included in system (2.9) hold the
identical properties as defined for system (2.1). Matrix E is allowed to be
singular in order to describe interconnections using simple algebraic equa-
tions. The motivation for the system description using (2.9) in the context
of designing controllers lies in its generality on modeling interconnected sys-
tems. Systems including all types of delays (e.g. derivatives, states, inputs)
can be easily transformed into the form (2.9) by introducing slack variables
[73] to eliminate delays and direct feedthrough terms in the equations at the
expense of an extension of a system state vector. The model (2.9) can also
describe both retarded and neutral systems.

2.1.1 Stability of linear time invariant system with time de-
lays

A linear time invariant system with time delays is said to be asymptotically
stable if all its poles given as the roots of (2.8) are located in the open left
half of complex plane C−0 . Neutral systems have different root distribution
properties than retarded systems. If the matrices Ej in the characteristic
equation (2.8) are non-zero matrices a part of the spectrum, at least, is
bounded by two horizontal boundaries {S ∈ C : α ≤ <(s) ≤ β} with
α, β ∈ R;α ≤ β as described in [73]. The high-frequency roots then follow
the roots of the associative difference equation

det

I−
N∑
j=1

Ej exp(−sϑj)

 = 0. (2.10)

Property of the associated difference equation provides an important infor-
mation about stability of the neutral system. Pekař in [88] pointed out that
in neutral systems infinite strips of system poles tending to the imaginary
axis may exist. The pronounced neighborhood with imaginary axis leads to
tendency to potential instability caused by small deviations in time delays.
The neutral system can also have infinitely many unstable roots, which can
never happen for retarded systems.

In the following subsections the methods which are essential for building
the objectives or which are necessary for the proposed methods are outlined.
The first subsection deals with basic time-delay system control schemes in
order to introduce in preference the resulting controllers referenced in this
thesis. Next, an introduction into signal shapers scope is presented with
the aim to give a theoretical background necessary for the last experimental
objectives of the thesis. This part is concluded with anisochronic state
observer completed with its parametrization.
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2.2 Time-delay system control

The classical control approaches for time-delay systems are summarized in
this chapter with an emphasis on the design of the controller with internal
time delays belonging to the objectives of this thesis.

A classical controller, such as PID or any more complex one, with point
accumulations as the only dynamic elements in its structure cannot compete
with controllers primarily intended for time-delay system control. However,
it does not imply that PID cannot be used to control such systems under
any circumstances. A large number of publications (e.g. see [77] or more
recent [59, 100]) has been assigned to this problem. A recent brief survey
of PID compensation of time delayed processes with a long list of relevant
references was presented in [81].

Nevertheless, even if conventional controllers are able to achieve some
level of closed-loop performance at least for a certain class of time-delay
systems, their inherent limitations were more than sufficient reason why
alternative control schemes more suitable for time-delay systems have been
studied in recent years. Research is now heading towards a robust control
design with respect to uncertainties [67, 142, 72].

2.2.1 General form of time-delay controller

The most of the subsequently described design methods of controller for sys-
tems with time delays lead to more or less complex closed-loop controllers
containing time delays in their structure. In general, these controllers can be
described using system of delay differential equations (also called descriptor
system [70]) which is beneficial due to its generality in modelling complex
control systems or even interconnected systems [70]. Thanks to the gen-
erality of the descriptor system, inverse-feedback input shapers described
hereinafter can be involved in the controller structure, for example.

Consider a general linear time invariant single-input single-output
(SISO) controller K(t) of a retarded type [52] with lumped (point) delays
both in inputs and internal states defined by a state-space representation

K(t) :


dxK(t)

dt
=

Nϑ∑
j=0

FjxK(t− ϑj) +

Nτ∑
i=0

Gie(t− τi)

u(t) = HxK(t) + Le(t)

e(t) = r(t)− y(t)

(2.11)

where r(t) ∈ R is a reference input, y(t) ∈ R is the controlled process
output, u(t) ∈ R is the controller output and xK(t) ∈ Rn is a state variable
vector of the controller which is of nth order. The real-valued constant
matrices Fj ,Gi,H,L for i = 0, . . . , Nτ and j = 0, . . . , Nϑ are of appropriate
dimensions. For the time invariant point (lumped) non-negative time delays

7



+

+

+ +

Fig. 2.1: Block diagram of state-space realization (2.12) of the controller K(s)

τi and ϑj it holds 0 = τ0 < τ1 < . . . < τM ≤ T and 0 = ϑ0 < ϑ1 < . . . <
ϑNϑ ≤ T . If there is no general nonlinearity in a closed-loop system between
the controller K(t) and a controlled plant P (t) then the following relation
holds u(t) = û(t), where û(t) is a control input of the plant P (t) satisfying
property û(t) ∈ R. As pointed out, for example by Źıtek in [158], the state
of the model (2.11) is given not only by a vector of state variables in the
current time instant, but also by a segment of the last model history of state
and input variables — the same as for a general time-delay system described
in Chapter 2.1. Based on that, the following initial conditions, the Cauchy
problem to be solved for,

x = x0(t), u = u0(t), t ∈ [−T, 0],

cover the time interval of the length T given by the longest time delay present
in the model (2.11).

Assuming zero initial conditions for both the output u and the state vari-
ables xK and using the generic Laplace transformation, the system equations
(2.11) lead to the following representation

K(s) :


sxK(s) = F(s)xK(s) + G(s)e(s)

u(s) = Hx(s) + Le(s)

e(s) = r(s)− y(s)

(2.12)

where matrices F(s) =
∑Nϑ

j=0 Fj exp(−sϑj) and G(s) =
∑Nτ

i=0 Gi exp(−sτi)
are of a functional type with lumped time delay transforms in their elements.
The matrix F(s) can be in a general form or appropriately, for example,
in the spectrally observable Frobenius normal form due to using the nested
integration method, as indicated in [158], applied to conversion from the state
space representation (2.12) of the controller K(s) to its transfer function.
Transfer function K(s) can be expressed in terms of its state-space matrices
F, G, H, L from the representation (2.12) as follows

K(s) = L + H(sI− F(s))−1G(s) ,

[
F G

H L

]
(2.13)

where (sI− F(s))−1 is called resolvent of matrix F(s).
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The transfer function K(s), described by state-space representation
(2.13) is strictly proper fraction (m < n) of quasi-polynomials of the re-
tarded type

K(s) =
q(s)

p(s)
(2.14)

as stated in [158], with retarded quasi-polynomials of the generic form

p(s) = sn +
n−1∑
i=0

Nϑ̄∑
j=1

pi,js
i exp(−sϑ̄i,j), (2.15)

which is also characteristic (quasi-)polynomial of K(s), and

q(s) =

m∑
i=0

Nτ̄∑
j=1

qi,js
i exp(−sτ̄i,j), (2.16)

where the highest power term sn of p(s) is free of delay. For the time delay
values inequalities ϑ̄i,j , τ̄i,j ∈ R, ϑ̄i,j ≥ 0 and τ̄i,j ≥ 0 apply. The delays ϑ̄i,j ,
τ̄i,j and their numbers Nϑ̄, Nτ̄ are not the same as those in the (2.11) which
is briefly illustrated by Example 2.2.1.

Example 2.2.1. Suppose functional matrix F(s) of the controller K(s)
with two internal time delays ϑ1, ϑ2 in the following simple form

F(s) =

[
− exp(−sϑ1) 0

1 − exp(−sϑ2)

]
which has been assumed in a reduced form from a case study of hot strip
rolling solved in publication [35]. Then the characteristic (quasi-)polynomial
of the controller K(s), i.e. denominator of the transfer function, equals to

mK(s) = p(s) = det(sI− F(s))

= s2 + s(exp(−sϑ1) + exp(−sϑ2)) + exp(−s(ϑ1 + ϑ2))

which leads to three distinct time delays ϑ1, ϑ2 and ϑ1 + ϑ2 in the quasi-
polynomial p(s) compered to the two time delays in F(s). 4

2.2.2 Control of time-delay systems

Smith predictor

The Smith predictor [109] and its modifications towards unstable time-delay
systems control (e.g. [139, 62]) are well-known schemes to control commu-
nity. From the historical perspective, it is probably the first known and very
successful control scheme for time-delay systems. The main advantage of the
Smith predictor method is that time delay is eliminated from the character-
istic equation of the closed loop in an ideal case by shifting the time delay
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Fig. 2.2: Smith predictor control scheme

outside the feedback loop. Thus, the design problem for the process with
time delay can be converted to the one without delay.

The control strategy assumes a transfer function of the controlled time-
delay process model which can be expressed in the form

P̃ (s) = P̃ ∗(s) exp(−sτ̃) (2.17)

where τ̃ is a pure input time delay and P̃ ∗(s) is a delay-free part of the
controlled system model. Then, it is possible to overcome the delay by
using a model of the delay-free part of the system P̃ ∗(s) to predict “future”
behaviour of the system. The resulting Smith predictor is given by the
following relation

Z(s) = P̃ ∗(s)− P̃ ∗(s) exp(−sτ̃) (2.18)

involving models of the delay-free part P̃ (s) of the process, and the entire
process model P̃ ∗(s) exp(−sτ̃). Then, it is possible to add a second feedback
loop controlling also the difference between the process output and model
output delayed by τ to compensate for model inaccuracies and load distur-
bances. Conventional controller K̃(s) such as PI or PID controller can be
then used depending on the process being controlled. The entire control
loop is illustrated in the Fig. 2.2. The classical closed-loop controller, con-
taining both the chosen controller K̃(s) and the predictor Z(s), is given by
the transfer function

K(s) =
K̃(s)

1 + K̃(s)Z(s)
=

K̃(s)

1 + K̃(s)P̃ ∗(s)(1 + exp(−sτ̃))
(2.19)

which has a time delay operator in denominator.
Despite Smith predictor seems to be a powerful tool dealing with time-

delay systems control, it has important inherent drawbacks an limitations.
It can be used only for a limited class of time delay systems (no state delays).
However, there are many important systems that contain internal feedback
loops with considerable delays (chemical reactors, heat exchanger networks
etc.). Moreover, the input time delay is compensated and the transcenden-
tal term is removed from the characteristic equation only if the modelling
process at the beginning of the control design is perfect and parameters are
identified exactly, which is practically hard to reach [84, 71]. Last but not
least, Smith predictor tuned for good reference tracking have poor distur-
bance rejection and vice versa [139]. Despite the listed drawbacks, Smith
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predictor gives a handy approach how to deal with a basic time-delay system
control.

Finite spectrum assignment

An alternative control scheme for time delay compensation, often compared
with (Modified) Smith predictor, is a method known as a finite spectrum as-
signment (FSA), which has been pronounced as an effective control strategy
for poorly-damped or even unstable time-delay systems, e.g. see [75, 137].
One of the first attempts in the direction of the method development can
be found already in [37], followed by work of Manitius and Olbrot [68] and
comprehensively compared in [138].

FSA controller design strategy can address delays not only in the in-
put/output channel, but also in the states. The delays can be multiple,
commensurate and even distributed, as pointed Zhong in [150]. This is one
of the properties in which FSA distinctly overcomes Smith predictor — it
can bee used for a significantly more general class of time-delay systems. The
reason, why FSA can handle with delays in states, consists in involvement of
a state observer as demonstrated in [150] by observer-predictor representa-
tion of FSA. The approach can be interpreted as follows. First, a prediction
of the state variables over one delay interval is generated

xp(t) = exp(τA)x(t) +

∫ τ

0
exp(Aϑ)Bu(t− ϑ) dϑ, (2.20)

where τ is an input time delay and A, B are state and input process model
matrices respectively. Then, a linear state feedback from the predicted state

u(t) = Kxp(t) (2.21)

is applied, thereby compensating the effect of the time delay operators from
characteristic equation, if there is no model mismatch. This results in a
closed-loop system with a finite number of eigenvalues, which can be assigned
arbitrarily by the choice of K. Therefore, FSA may be considered as an
extension of the classical result on the spectral assignment of delay-free
systems (including the condition of complete controllability).

Although FSA method promises an effective time delay handling, the
main drawback of the resulting controller is that it is very sensitive to im-
plementation inaccuracies and to parameter uncertainties [33, 76, 74]. These
drawbacks have recently received attention with the aim towards robust sta-
bility, e.g. see [75]. Therein, a safe implementation has been proposed using
a predetermined closed-loop characteristic quasi-polynomial of retarded type
instead of a neutral type, which was shown to be a cause of instability in
previous FSA schemes.
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Fig. 2.3: Internal model control scheme

Internal model control

IMC scheme was discovered by several people simultaneously in the late
fifties as summarized in [42] with a detailed historical exposition referencing
to earlier overview [36]. Later, mostly in 1980s, a systematic attention to
the control scheme development was paid mostly by Morari et al. see[41, 40,
97, 29]. Currently, the IMC scheme gains attention especially in the areas
of practical applications, e.g. see [54, 113], based on previous works towards
implementation incorporating also the saturation phenomenon [149, 38, 5].
However, as Hlava in [55] referred, IMC applications to time-delay systems
are rare and limited to the simplest ones with exception of a paucity of works,
where, for example, the work of Źıtek presented in [153, 157] belongs.

Basic IMC structure is illustrated in the Fig. 2.3. The scheme consists
of two parts, which are controller Q(s) and process model P̃ (s). If there is
no difference between process and its model, the feedback is suspended and
controller Q(s) is a feedforward controller. Because IMC method is used
in examples of the thesis, more space is given to this method to provide a
brief but sufficient theoretical background. The IMC design procedure can
be described as follows.

Consider an open-loop stable process model given by the meromorphic
transfer function which describes a SISO time-delay system of retarded type

P̃ (s) =
b(s)

a(s)
exp(−sτ), (2.22)

with both a(s) and b(s) as retarded quasi-polynomials of the type

N∑
j=0

pj(s) exp(−sαj), (2.23)

where time delays satisfy a condition α0 > α1 > . . . > αN−1 > αN = 0 and

pj(s) =
∑Nj

k=0 pj,ks
k are polynomials in s of degree Nj at most n− 1 for all

pj(s) with j = 0, 1, . . . , N − 1, where n = Nj is a degree of pN (s).

Let a controller for the model (2.22) be designed using IMC strategy [77].
The selection of the IMC controller Q(s) is based on the idea of inverting
the process model (2.22) and therefore an inner and outer factorization is
necessary. The process model transfer function P̃ (s) has to be at first split
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into invertible part P̃out(s) and non-invertible part P̃in(s) with interrelation
P̃ (s) = P̃in(s)P̃out(s). Then, the IMC controller Q(s) is considered in the
following form

Q(s) =
1

P̃out(s)
F (s) =

a(s)

b(s)
F (s) =

d(s)

c(s)
, (2.24)

where F (s) is a selectable low-pass stable filter with a steady-state gain of
one (F (0) = 1). The filter F (s) can be considered, for instance, in a form

F (s) =
1

(Tfs+ 1)r
, (2.25)

where the time constant Tf of the filter F (s) is chosen according to desired
dynamic behaviour of the closed loop system and parameter r is a positive
integer which is selected so that Q(s) is at least a proper transfer function.
The filter (2.25) is a common choice giving satisfactory results. Nevertheless,
Hlava in [55] proposed a filter with integral time-weighted absolute error
(ITAE) polynomials in denominator which in general give faster responses
than binomial polynomials [94].

Classical feedback structure controller K(s) can be expressed using the
plant model transfer function P̃ (s) and the IMC controller transfer function
Q(s) as follows

K(s) =
Q(s)

1− P̃ (s)Q(s)
=

1

P̃out(s)

1
1

F (s) − P̃in(s)

=
a(s)

b(s)((Tfs+ 1)r − exp(−sτ))
=
m(s)

n(s)
,

(2.26)

which also leads to a meromorphic transfer function with delay operations
both in denominator m(s) and numerator n(s), so that they both are re-
tarded quasi-polynomials. The controller K(s) provides the well-known
property of compensating the control loop for the time delay in the ideal
case that the internal model P̃ (s) is just equal to the real process transfer
function P (s). If this equivalence is achieved the tracking transfer function
T (s) of the control loop is of the form

T (s) =
K(s)P (s)

1 +K(s)P (s)
=

exp(−sτ)

(Tfs+ 1)r
. (2.27)

In spite of the plant delay, this function does not have other poles but the
those given by the filter F (s). Nevertheless, this desirable property ceases to
hold as soon as the internal model P̃ (s) differs from the real plant properties.
Then the behaviour of the control loop is the more different from (2.27) the
more different the model P̃ (s) from the real plant P (s).

For the follow-up procedures of the system control, it is advisable to have
the classical controller transfer function K(s) converted into a state-space
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Fig. 2.4: Closed-loop system with inverse signal shaper adopted from [132]

representation (2.12). The conversion to a state-space representation can
be done, for example, using the method of nested integrations presented in
similar context in [158].

2.3 Signal shapers

Next to analysing the anti-windup scheme for time delay controllers, a par-
tial aim of the thesis is to analyse the effect of saturation for feedback loops
with input shapers—time delay compensators.

Input shaping is a well known technique for compensating undesirable
oscillatory modes of mechanical systems, see [110], [104, 107] for ZV, zero-
vibration-derivative (ZVD) and extra-insensitive (EI) shaper design, or for
example [90] for more recent techniques. For an extensive review on input
shaping over last 50 years, see [106]. Note that the oscillatory compensation
can be also done by alternative methods, e.g. trajectory shaping [11] followed
by [12].

Next to the classical feed-forward arrangement of the input shapers
which can only handle the effect of reference command, there was an impulse
to place shapers in a feedback interconnection in order to eliminate the ef-
fect of unmeasurable disturbances on the excitation of the flexible modes. In
order to handle this task, Smith [111] developed a basic scheme with a com-
pensator and a shaper in the feedback. However, it was shown in [132] that
the scheme can be applied if and only if both the controller and the system
are bi-proper as their inversion is needed in the compensator. Recently, it
was revealed in [132] that the given task of compensating the oscillations by
both the set-point changes and disturbances acting on the system main body
can be performed if and only if the input shaper is applied in the inverse
form and placed within the feedback path of the closed loop as illustrated
in Fig. 2.4.

In the subsequent work, it was shown in [57] that when the mutual
coupling between two subsystems in Fig. 2.4 takes place, a special attention
needs to be paid to deriving the mode to which the shaper is to be tuned.
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Note that as a rule, this mode is not present in the overall system dynamics.
To determine the mode an approach has been proposed in [57], based on an
input-output transformation of the multi-body system.

2.3.1 Zero vibration shaper with distributed delay

The generalized ZV shaper is given in the following form

v(t) = Aw(t) + (1−A)

∫ T

0
w(t− η) dh(η), (2.28)

where w and v are the shaper input and output, respectively, A ∈ R, 0 <
A < 1 is the gain parameter, and the delay distribution is prescribed by the
function h(·).

Note that in the classical input shapers [107, 111, 114], the lumped
delays with step-wise response are applied. As it was identified in [132],
the classical ZV shaper with lumped delays is not applicable in the inverse
implementation due to neutral distribution of its infinite chain of zeros,
which imposes neutral character to the closed loop system. In order to
mitigate this inefficiency, the distributed-delay zero-vibration (DZV) was
introduced in [133, 131] having a retarded spectrum of zeros. The transfer
function of the distributed delay shaper is given by

S(s) = A+ (1−A)
1− exp(−sT )

Ts
exp(−sτ), (2.29)

where T represents the distributed delay length, and τ is the lumped delay
value. The parameters A, T, τ of the shaper are tuned in order to compensate
the target oscillatory mode r1,2 = −ζω ± jω

√
1− ζ2 of the flexible system,

where ω is the natural frequency of the mode and ζ is the damping. As
derived in Lemma 1 of [131], selecting the length of the distributed delay

T ∈
(

0, π

ω
√

1−ζ2

]
leads to the following shaper parameters

τ =
π + ϕ

ω
√

1− ω2
, A =

m exp

(
ζ√

1−ζ2
(π + ϕ)

)
1 +m exp

(
ζ√

1−ζ2
(π + ϕ)

) , (2.30)

wherem = |Ḡ(−ωζ+jω
√

1− ζ2, T )| and ϕ = arg
(
Ḡ(−ωζ + jω

√
1− ζ2, T )

)
with transfer function Ḡ(s, T ) = 1−exp(−sT )

Ts .

2.3.2 Inverse shapers for effective feedback interconnections

The general goal of the scheme in Fig. 2.5 is to control a multibody system
without exciting its oscillatory modes, either by the setpoint changes (refer-
ence input w) or input disturbances (the signal d) as proposed by Vyhĺıdal et
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al. in [132]. The flexible mode compensator - the input shaper with transfer
function S(s) - is inverted and applied in the feedback path.

If the flexible and main body parts of the system are not coupled, as
it was considered in the preliminary work [132] and shown in Fig. 2.4, the
inverse input shaper S(s) tuning is easy, just the oscillatory mode of the flex-
ible subsystem r1,2 is targeted to. Thus, the inverse input shaper performs
the task of a notch filter.

Fig. 2.5: Inverse feedback architecture for a general multibody system

Referring to Fig. 2.4 and to original work of Vyhĺıdal et al. presented in
[132], the transfer function from reference w is

Twy(s) = C(s)G1(s)

1+C(s)G1(s) 1
S(s)

G2(s) = P (s)M(s)S(s)
S(s)Q(s)N(s)+P (s)M(s)

L(s)
H(s) , (2.31)

and the input disturbance d to the output y reads respectively

Tdy(s) = G1(s)

1+C(s)G1(s) 1
S(s)

G2(s) = Q(s)M(s)S(s)
S(s)Q(s)N(s)+P (s)M(s)

L(s)
H(s) , (2.32)

where G1(s) = x(s)
u(s)+d(s) = M(s)

N(s) is the main body transfer function, G2(s) =
y(s)
x(s) = L(s)

H(s) is the flexible part with the mode r1,2 to be compensated and

C(s) = P (s)
Q(s) is the controller. M(s), N(s), L(s), H(s), P (s) and Q(s) are

polynomials in the Laplace variable s.

The shaper transfer function S(s) appears in numerator of both the
channels. Therefore, the oscillatory pole couple r1,2 of G2(s) — i.e. roots of
H(s) — are canceled by related zeros of the shaper. As a result, neither by
the reference command, nor by the disturbance the targeted mode is excited.

Concerning the inverse shaper state-space implementation, the transfer
function 1

S(s) can be turned to the time domain representation


v(t) =

1

A
(x1(t)− (1−A) z(t))

dz(t)

dt
=

1

T
(v(t− τ)− v(t− (τ + T ))) ,

(2.33)
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where x1, v, z are input, output and internal state of the inverse shaper.
This transformation results in additional dynamics, characterized by the
introduction of an eigenvalue at zero [91] and internal time delays.

As demonstrated in [57] in the coupled case shown in Fig. 2.5, however,
the mode to be targeted by the inverse shaper needs to be isolated, as it is
neither the oscillatory mode of the flexible part, nor the mode of the coupled
system.

2.3.3 Flexible mode decomposition

The algorithm for assessment of the target mode for the inverse feedback
shaper was presented in [57]. Main ideas are summarized here in order to
illustrate the approach used in the experimental part of the thesis. The
linear multibody system of Fig. 2.5 is considered in the form of a matrix
second-order ordinary differential equation

M
d2x(t)

dt2
+ C

dx(t)

dt
+ Kx(t) = L(u(t) + d(t)), (2.34)

where x(t) ∈ Rn represents the vector of generalized coordinates (linear
and angular displacements), u(t) ∈ R is the control input, and d(t) ∈ R
represents external unmeasurable input disturbance. M ∈ Rn×n, C ∈ Rn×n
and K ∈ Rn×n and L ∈ Rn×1 are the system matrices.

As proposed in [57], in order to identify the proper target oscillatory
mode for the inverse feedback shaper, the dynamical system (2.34) is trans-
formed first into a special, x1-centric form1.

As M is considered nonsingular, (2.34) is equivalent to

d2x(t)

dt2
= E

dx(t)

dt
+ Fx(t) + Bu(t). (2.35)

Assuming the state vector ordered in the form x(t) = [x1(t),x∗(t)]
T , where

x∗(t) = [x2(t), . . . , xn(t)], the matrices are structured as follows

E =

[
e11 E1∗
E∗1 E∗∗

]
= −M−1C, F =

[
f11 F1∗
F∗1 F∗∗

]
= −M−1K,

B =

[
b1
B∗

]
= M−1L.

In order to construct the residual dynamics subsystem, the first equation of
the system (2.35),

d2x1(t)

dt2
= e11

dx1(t)

dt
+ E1∗

dx∗(t)

dt
+ f11x1(t) + F1∗x∗(t) + b1u(t), (2.36)

1To simplify notation, d = 0 is considered here.
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assuming b1 6= 0, is used to express u(t) and eliminate it from the equations
for d2x∗(t)/dt

2. After the sub-system simplification, we obtain

d2x∗(t)

dt2
=

(
E∗∗ −

1

b1
B∗E1∗

)
dx∗(t)

dt
+

(
F∗∗ −

1

b1
B∗F1∗

)
x∗(t)+

+
1

b1
B∗

d2x1(t)

dt2
+

(
E∗1 −

e11

b1
B∗

)
dx1(t)

dt

+

(
F∗1 −

f11

b1
B∗

)
x1(t).

(2.37)

The flexible mode to be targeted by the inverse shaper is then determined
as stated in the following theorem.

Theorem 2.3.1 (Theorem 1 in [57]). The oscillatory mode to be targeted
by the inverse feedback shaper according to Fig. 2.5 is a selected mode of
(2.37), received as the eigenvalues of the matrix[

0 I
F∗∗ − 1

b1
B∗F1∗ E∗∗ − 1

b1
B∗E1∗

]
where 0 and I are (n− 1)× (n− 1) zero and identity matrices respectively.

2.3.4 Anisochronic state observer

A state observer technique is a useful method of estimating the internal
states of a given system for various purposes (e.g. application of state feed-
back). Even the time-delay systems did not remain without the application
of this technique (see, for example, [56, 156, 154, 14, 56]). The anisochronic
observer introduced by Źıtek in [154] results from a functional extension of
the classical state-space observers bringing a significantly reduced number
of needed state variables compared to the standard approach. The essen-
tial difference consists in system state definition — instead of instantaneous
state vector a concept of functional system state is to be applied.

The observer estimating the state of a retarded time-delay system (2.4)
is arranged analogously to the standard structure{

sx̂(s) = A(s)x̂(s) + B(s)u(s) + L(s) (y(s)− ŷ(s)) ,

ŷ(s) = Cx̂(s) + Du(s),
(2.38)

where the feedback matrix L(s) is also functional. The dimension of L(s)
is given by the number of state variables n and measured outputs p re-
spectively, as they are defined for the system (2.4). An acceptable observer
operation can be achieved only in case of its stable and sufficient fast dy-
namics, compared with that given by matrices A(s) and B(s). To fulfil this
requirement all eigenvalues of the modified characteristic matrix

Â(s) = A(s)− L(s)C (2.39)
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must be safely located in the left half-plane (LHP) of the s-plane and suffi-
ciently far from the s-plane origin.

Using only the gain coefficients in the observer feedback for time delay
systems results in a functional system matrix Â(s) with an infinite spectrum
of the zeros of transcendental quasi-polynomial

m(s) = det
(
sI− Â(s)

)
. (2.40)

However, if the delay relations are allowed to be applied in L(s), then there
exists a possibility of arriving at an observer design where the characteristic
equation m(s) = 0 is free of any transcendental terms, i.e. algebraic. This
occasion is very convenient by giving a chance to reduce the synthesis task
to a standard placement of finite number of prescribed m(s) zeros. A proper
tool to achieve this aim is the well-known Ackermann formula.

Ackermann formula provides a useful method of designing a system state
observer with prescribed characteristic polynomial m(s). The formula for
solving the pole-placement problem in a control system design, initially pre-
sented in [3], has been originally suited for SISO systems. Nevertheless,
Valášek and Olgaç presented in [126] an extended version for MIMO systems
for both the time varying and time-invariant systems using a transformation
of a system into Frobenius canonical form. Similar work for a class of MIMO
systems has been presented earlier in [25].

The formula uses matrix form m(Â(s)) of a characteristic polynomial,
resulting from the well-known Caley-Hamilton theorem which states that
every square n× n matrix Â(s) (even if it is of a functional form [17, 130])
satisfies its own characteristic equation

m(Â(s)) =
n∑
i=0

âiÂ
i(s) = 0, (2.41)

where Â0(s) = I results from a monic property of a characteristic polynomial
m(s) and âi are appropriate coefficients of the characteristic polynomial
(2.40). The functional matrix Â(s) in (2.41) causes that the m(Â(s)) is
also a functional matrix containing time delay exponentials in its elements.
Then, if the system (2.4) is observable, the observability matrix O(s) is non-
singular for any s and its inverse O−1(s) exists. Finally, the eigenvalues of
a new state matrix Â(s) can be then arbitrarily assigned. Based on these
conditions, an observer functional feedback matrix L(s) can be determined
as follows

L(s) = m (A(s))O−1(s)


0
0
...
1

 , (2.42)
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where A(s) is functional state matrix and C output constant matrix of
the transform model (2.4). The observer functional feedback matrix L(s)
designed using the relation (2.42) assures that a system observer has the pre-
scribed characteristic pure polynomial m(s) free of any delay term although
the original characteristic polynomial could be of a quasi-polynomial form.

There are no computational constraints resulting directly from evalu-
ation of the formula (2.42) because the inverse of the observability ma-
trix O−1(s) is assumed to exist and the matrix form of the characteristic
polynomial m(A(s)) includes only powers of the regular dynamic matrix
A(s). Nevertheless, as can be expected, the resulting feedback matrix L(s)
may contain time delay terms in its elements owing to a possible functional
property of matrices A(s) and O(s). Unfortunately, these elements may
contain a ‘negative time delay’ resulting from the observability matrix in-
verse O−1(s) as it was clearly pointed out in [154]. Any result of this kind
is unfeasible in principle because of future prediction requirement. How-
ever, the possibility of prescribing a delay-free characteristic polynomial to
an observer using the delayed feedback matrix L(s) is beneficial because the
number of tuning parameters decreases significantly (only one parameter for
multiple root) at the expense of higher complexity of a resulting feedback.

Observability

A crucial condition for any state observer design is the condition of observ-
ability, which provides a property that system state variables can be recon-
structed from its measurable outputs. The same condition is also required
for application of the anisochronic state observer. Two basic concepts of
observability for linear time-delay (i.e. time-varying) systems has been sum-
marized by Źıtek in [154] - namely the infinite-time and spectral observability
[63, 83]. However, it has been proved by Lee and Olbrot in [63] that the
concepts are equivalent. The definitions of both the concepts follow.

Definition 2.3.1 (infinite-time observability [154]). System (2.4) is infinite-
time observable if for u(t) = 0, t ∈ [−T,∞), the zero output y(t) = 0 on
t ∈ [0,∞) implies that there is a t1 ≥ 0 such that x(t) = 0 on t ∈ [t1,∞).

Definition 2.3.2 (spectral observability [154, 63]). System (2.4) is spectrally
observable if all its eigenvalues are observable (i.e. λ-detectable [63]). An
eigenvalue λ ∈ R is observable if the corresponding eigensolution xλ(t) =
exp(λt)x(0), x(0) 6= 0, yields an output y(t) 6= 0 on t ∈ [0,∞).

Alternatively, the spectral observability condition has been proposed in
[82] or lately in [83] in the sense of the following theorem.

Theorem 2.3.2 (Theorem 1 in [154]). System (2.4) is spectrally observable
if and only if the following condition is met

rank

[
sI−A(s)

C

]
= n (2.43)
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for all complex s with <(s) ≥ λ.

In the sense of the described parametrization of anisochronic observer,
the approach of Silverman and Meadows [102] defines the controllability
and observability matrix for a general class of linear time-varying systems.
These matrices provide significant structural information including a neces-
sary and sufficient condition for total controllability and observability. Thus
the knowledge of the system solution is not necessarily required. The ob-
servability matrix is defined as follows

O(s) =


C

CA(s)
...

CAn−1(s)

 , (2.44)

where n is the number of state variables. Then for a system (2.4) with a
single output the following theorem combines observability condition with
the basic property of the observability matrix O.

Theorem 2.3.3 (Theorem 5 [154]). If the system (2.4) with a single output
is essentially observable then its

rankO(s) = n (2.45)

for any s ∈ C.

As a beneficial property of the system (2.4) the time delays (in states)
are multiplied by some gains in the functional matrix A(s) resulting in non-
zero elements in O(s) for any s ∈ C. Therefore, a testing the non-singularity
of O(s) has been suggested for s = 0 only in [154].
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2.4 Anti-windup

The control loop design and tuning based on linear dynamical models, no
matter if they are time-delay or delay-free, may exhibit a strikingly different
behaviour from its implementation as soon as the always existing actuator
saturation affects the operation. Primarily the actuating variable of the
digital controller is to be artificially prevented from any possibility to exceed
the saturation boundaries and particularly from any undue getting stuck
at these boundaries. This faulty effect is referred to as windup and the
schemes getting the controller saturation rid of this fault are considered as
anti-windup schemes.

2.4.1 Actuator saturation

In the most control systems nonlinear actuators are encountered, and one
of the common nonlinearities, resulting from ‘real-world’ limitations, is the
actuator saturation. The saturation nonlinearity is the ubiquitous part of
the actual control systems and it is caused by limited capabilities of the
actuator given by its physical realization. For example, a motor can not
deliver an unlimited force or torque, or a hydraulic/pneumatic actuator can
not change its position arbitrarily quickly, a heater can not cool the object
etc. Therefore, the actuator saturation is closely related to a connection
between the real system and the practical implementation of the designed
controller.

Account must be taken of the significant fact that in the case when the
control system was designed to be stable without considering the saturation,
it cannot be guaranteed, in general, the stability of the closed-loop system
[78]. When a control system, represented by a designed control algorithm
implementation, gives a request or command to an actuator, the actuator
typically produces an output (force, torque, displacement, electrical current
etc.), within its realisable operating range, that is closest to the requested
value. Values outside the actuator’s amplitude limits are mapped into the
range of capabilities to the nonlinear saturation function described mathe-
matically by the following equation

us(t) = sat(u(t)) :=


umax, if u(t) > umax

u(t), if umin ≤ u(t) ≤ umax

umin, if u(t) < umin

(2.46)

where umin and umax correspond to the minimal and maximal attainable ac-
tuator limits, which may not be necessarily symmetrical (i.e. umin = −umax).
When the control signal u(t) is small, it means between the stated limits,
it coincides with its saturation output sat(u(t)) and so there is identity re-
lation between them. However, when u(t) becomes too large or small, the
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Fig. 2.6: Static characteristic of the saturation nonlinearity (a) and its block diagram
symbol (b)

amplitude of its saturated version sat(u(t)) is strictly limited to the given,
rather physical, limits despite the determined controller output.

In the case of multi-input control system, the vector-valued saturation
function corresponds to the decentralized saturation function [146] which
consists of a vector of scalar saturation functions and the ith function de-
pends only on the ith component of the input vector - which implies that
the inequality (2.46) is understood in a component-wise sense. The vector-
valued decentralized function has the form

σ(u(t)) :=


sat1(u1(t))
sat2(u2(t))

...
satm(um(t))

 (2.47)

where m is in general the number of control outputs ui(t) for i = 1, . . . ,m
and sati(·) matches the definition (2.46) with appropriate saturation limits
which may vary for each element in σ(·). Minimum and maximum attainable
constant limit values of control signals are then located in time-invariant
vectors umin and umax respectively.

As a result of the control action saturation a general SISO linear retarded
controller with saturating output based on the form (2.12) is given by the
following state-space Laplace transform representation

K̂(s) :


sxK̂(s) = F(s)xK̂(s) + G(s)e(s)

u(s) = HxK̂(s) + Le(s)

us(s) = sat(u(s))

e(s) = r(s)− y(s)

(2.48)

where saturated us is a new limited control input of a controlled process
P (s) instead of the original control variable u.

2.4.2 Controller windup

The windup problem in the controller is closely related to the control input
saturation. In general, it can be described as a lack of consistency in the
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internal states of the controller in the presence of a nonlinearity defined
by the inequalities (2.46). As soon as any of the saturation boundaries
umin or umax is reached during controller operation the saturated variable
û(t) cannot follow desired value of the controller output u(t) anymore and
becomes stuck at the appropriate boundary value. Then û(t) 6= u(t) and the
controller internal states no longer correspond to the effective output û(t)
actually acting to a controlled plant. In that case, the feedback control loop
is broken and the astatic (or unstable) modes of the controller may drift to
undesirable values causing a prolongation of a settling time after an upset
or even instability of an entire closed-loop system. Practically, internal
integrals keep integrating which causes increase of u(t) over the reached
saturation limit because the error signal e(t) is nonzero at that moment due
to missing ‘energy’ undelivered by the saturated control action. Then, after
the error e(t) changes its sign, it may take a considerable time to decrease the
controller output u(t) between the feasible boundaries because of the large
integral value preventing a controller from resuming ‘normal operations’
quickly. The main task of the AWC is then to restore this consistency of
the controller states. The restoration effect basically depends on a structure
and parameters of the anti-windup compensator.

2.4.3 General anti-windup methods

There are two general commonly proposed solutions how to deal with the
control input saturation, declared in [116] — so called AWC and direct
control design (DCD).

The first ‘a posteriori’ approach, called AWC, consists of two following
separated steps

1. designing a controller for a process that ensures a satisfactory control
performance in the absence of actuator saturation

2. then, a static or dynamic (anti-windup) compensator with a various
architecture is designed to minimize the impact of actuator saturation
on the closed-loop performance

It means that this approach performs some separation in the controller
such that one part is devoted to achieving nominal (mostly linear) perfor-
mance and the other part is devoted to constraint handling. The goal of
AWC is to recover as much as possible ‘unconstrained’ performance (and,
at the very least, stability) also for large signals, for which the saturation
nonlinearity operates in its nonlinear region as stated in [147]. The impli-
cation of the above is that AWC techniques can be retro-fitted to existing
controllers which may function very well except during control input satura-
tion, making them a popular choice with practicing engineers. Therefore, it
is the most commonly used and currently studied approach nowadays (e.g.
see [10, 95, 115].
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In contrast to AWC approach, the DCD method refers to as the one step
approach. The control input constraints are taken into account ‘a priori’
immediately at a controller design phase. While this approach is satisfactory
in a principle, and has a significant portion of the literature devoted to it
(see e.g. [99, 43, 27, 123]), it has often been criticised (e.g. in [119]) because
of its conservatism, lack of intuition (in terms of tuning rules etc.) and lack
of applicability to some practical problems. However, DCD problem for a
class of linear time-delay systems with actuator saturation has been recently
investigated in [148].

With respect to a structure of AWC, the resulting compensation part
of a controller can be either static, or dynamic, depending on a dynamical
behaviour prescribed to the AWC. The static AWC implies only static be-
haviour without any dynamic elements. It is a block with no memory, which
means that it consists of simple time independent gains. The most of orig-
inal AWC approaches are inseparably linked with the static structure [28,
9]. Nevertheless, even recent works (e.g. [122, 101]) try to deal with windup
problem using just a static approach incorporating linear matrix inequal-
ity (LMI) tools, in most cases. The reason for a static AWC deployment
is that it offers reasonable satisfactory performance (very effective on some
systems) with considerable simplicity. On the contrary, the dynamic AWC,
in general, contains a more complicated dynamics resulting from various
parameterizations approaches. For example, the dynamic anti-windup syn-
thesis for state-delayed systems using the LMI procedure has been recently
addressed in [44, 118]. An other dynamic, observer-based, AWC has been
proposed in [85, 86, 143].

The history of anti-windup arrangements has gone through a variety of
opinions and schemes of digital techniques in controller implementation, see
chronological bibliography [13] or more recent overviews [119, 39]. The anti-
windup design problem has been qualitatively stated already from the 1950’s
both in the analog [66] and in the digital control framework [34]. The most
of the proposed anti-windup schemes are based on an observer-like state
feedback closed from the saturation error, i.e. from the difference between
the original and the saturated signal. These observer-like schemes have been
investigated by Åström and Rundqwist [9] and later by Kapoor et al. [60].
A survey of anti-windup schemes, based on the observer theory, with the so-
called bumpless transfer compensation has been presented by Kothare et al.
[61]. The observer-like feedback added to the controller serves to estimate
the controller states in the face of actuator saturation and in this way, as soon
as possible to restore a consistency between both the controller state and its
constrained output. Recently, the observer-based anti-windup scheme has
been presented in [144] with two-stage controller design by the loop shaping
approach. Subsequently, in [143], the control action reduction caused by
saturation is considered as an input/output controller disturbance. In this
work, an LMI approach for finding parameters of the anti-windup scheme
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has also been proposed.
A more general approach to the anti-windup issue has been introduced

by Hanus et al. [53] and Doyle et al. [28] as the conditioning technique. The
crucial aim of this technique is to get the controller state back to the normal
mode as promptly as possible and to minimize the intervals of saturation
effects. In [61], a unified conditioning is proposed as an achievement of
‘graceful deterioration’ of the closed-loop performance due to implementing
the actuator saturation. The conditioning schemes were further investi-
gated and developed by Edwards and Postlethwaite, [30], and Weston and
Postlethwaite [141] with the extension towards the multivariable systems.
A low-order observer scheme is presented in [122] and the robustness issue
of the anti-windup scheme design was investigated in [124].

To conclude, a recent survey on modern anti-windup techniques includ-
ing open problems discussion such as the presence of time delays in a control
loop has been presented in [119, 116].

Back-calculation anti-windup scheme for a PI controller

Probably the most common initial solution of the anti-windup problem is
the so-called back-calculation technique (also known as tracking anti-windup)
introduced by Fertik and Ross already in [34], which is designed for PI
controller and shown in Fig. 2.7. Supposing PI controller transfer function

KPI(s) =
u(s)

e(s)
=
kps+ ki

s
, (2.49)

where e = w − y is the control error, with w representing the set-point
value. The parameters are the proportional kp and integration ki = kp/Ti

gains (both supposed to be positive kp, ki ∈ R; kp, ki > 0), where Ti > 0 is
an integration time constant. In order to handle the anti-windup task, the
state equation of the PI controller

KPI :

{
dx(t)

dt = kie(t)
u(t) = x(t) + kpe(t),

(2.50)

is extended by a feedback to the observer-like form

dx(t)

dt
= kie(t) +

1

Tt
(us(t)− u(t)) (2.51)

where Tt is a single tuning parameter commonly called tracking time con-
stant and us denotes the saturated control action (2.46) with saturation
limits umin and umax which then acts as the system (5.2) input.

The primary objective for introducing the feedback is to remove the
controller astatism when the control signal gets to the saturation points.
Once the controller output exceeds the saturation limits, a feedback signal
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Fig. 2.7: PI controller with back calculation anti-windup

is generated from the difference of the saturated and the unsaturated control
action in order to adjust controller state value. Thus, the feedback is active
if and only if u(t) > umax or u(t) < umin. Otherwise, us(t) = u(t).

Expanding (2.51) to the full state space form

dx(t)

dt
= kie(t) +

1

Tt
(us(t)− x(t)− kpe(t)) (2.52)

it can be easily seen that the parameter Tt determines the time constant
of the first order dynamics, i.e. the single pole, when back calculation is
employed. Thus, the stability condition reduces to the condition Tt > 0. It
can be seen, that smaller parameter Tt resets the integrator more rapidly,
which may seem to be an advantage at first sight, but it brings slow response
of the process [69]. On the other hand, bigger values of Tt cause overshoot
in process output due to the stronger integration causing control variable
windup.

Finding a suitable value of the parameter Tt has been studied in many
works since the back calculation anti-windup method was developed. For
example, a basic rule of thumb for the setting of the tracking time Tt for
PID controller (with integral time constant Ti and derivative time constant
Td) has been recommended Tt = Ti in [16] or Tt =

√
TiTd in [8]. In [69] two

stage adjustment procedure of the tracking time constant Tt was proposed.
First, the parameter is chosen large (Tt = 10Ti), which causes long stay
at saturation limit. Then, after the process output reaches to a certain
percentage value of system reference, the parameter is decreased (Tnewt =
αTi). This leads to a fast response time (big Tt) with a satisfactory (reduced)
overshoot (small Tt).

A simple switching condition for two degrees of freedom PID has been
also proposed in [128]. The method is focused on processes with different
normalised dead times described by the model (5.2). The proposed scheme
should be able to provide a good performance over a wide range of processes
without the need to tune an additional parameter of the controller, i.e.
tracking time constant Tt. Based on the presented experiments, the results
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of the method were always satisfactory despite the value of the tracking
time constant Tt (Tt = 0.03Ti in that case). Properties of the listed switching
methods and their comparison have been presented in [129]. Other practical
discussion about proper selection of Tt can be found in [121]. To conclude
this short survey, let us remark that the default value of Tt in the saturated
PID controller in Matlab is Tt = 1.

2.4.4 Anti-windup for time-delay systems

The anti-windup strategies and conditioning techniques are well elaborated
for the control loops with plants and controllers considered as rational trans-
fer functions. On the other hand, as to the controllers involving the delay
operation some issues remain still open. The anti-windup compensation for
time delay systems, has been recently addressed, for instance, in [86, 118,
147, 48, 21]. As it is clear from a number of recent works, the interest in
AWC schemes for time-delay systems (both controllers and controlled pro-
cesses) has raised recently, and it continues to persist. The AWC methods
differs from each other in intended time-delay systems and, of course, in
chosen approaches to design the optimal solution. The most common con-
necting element of the recent works is the state-space representation of a
system, giving the ability to describe more complex systems, and LMI ap-
proach, offering a powerful tool for designing the AWC schemes with strong
computer support.

In [86, 143, 147] only plants subject to input and/or output time delays
have been considered. The work in [147] is a generalization of the approach
presented in [120]. It should be pointed out, that the results presented in
[147] can be applied only to stable open-loop systems and that the approach
does not consider systems presenting time delays in state variables. Anti-
windup design for linear time-delay control systems addressed in [86] even
supposes that the open-loop plant is not only characterized by a Hurwitz
matrix, but also some additional technical assumptions have to be fulfilled.
The dynamic anti-windup synthesis for state-delayed systems has been re-
cently addressed in [44] and [118]. The results presented in [44] can be even
applied to both stable and unstable open-loop systems.

A basic AWC for IMC scheme

A special kind of meromorphic controllers results from applying the scheme
of IMC to time-delay systems [156]. Because the IMC scheme is used in
illustrating examples of some proposed method in the next chapter, basic
ideas how to deal with the control input saturation in the scheme are given
in this chapter. However, the listed AWC method have never been intended
to deal with time-delay systems and related resulting controllers.

An early investigation of the anti-windup issue in the scheme of IMC is
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Fig. 2.8: IMC with saturation on process input and alternatively on model input (dashed
line)

presented in [149]. However, IMC scheme has never been intended to be
an anti-windup scheme [149, 61]. Nonetheless, as pointed out in [19, 28,
136], it has a potential for application to the anti-windup problem for the
case where the system is open loop stable. The standard IMC design proce-
dure does not consider the saturation constraints explicitly at the controller
design stage. Thus, an additional anti-reset windup compensator needs to
be introduced to deal with the performance degradation caused due to the
actuator saturation, e.g. see original methods in [149, 18] or recent modified
approach [6].

A basic anti-windup strategy for IMC scheme presented already in [77,
149] is illustrated in Fig. 2.8 using a dashed line. It is based on saturating
the model G̃(s) input as well, which ensures that internal state variables of
the process and its model are the same during and after saturation. How-
ever, new problems arise, because the relation from u to y is nonlinear, thus
the controller Q(s) is no longer a straightforward inverse of the process. Ad-
ditionally, control error e and control action u are completely independent
of the saturation. The IMC controller Q(s) never “sees” the effect of the
saturation on the plant output y, because both the model G̃ and the plant
G are driven by the same saturated control action û giving zero difference
of their outputs as referred by Campo and Morari in [19]. Then, u is only
a function of the set point w and output disturbance d, as it was pointed
in [19]. Unfortunately, the cost to be paid for global stability of the IMC
implementation is in the form of somewhat sluggish performance especially
when the plant has lightly damped modes, slow dynamics or non-minimum
phase zeros [6]. This effect is the most pronounced when the IMC controller
has fast dynamics which is chopped off by saturation.A two degrees of free-
dom IMC extension of the basic anti-windup scheme has been discussed in
[61].

The above described basic anti-windup compensation can be improved
by the method proposed by Zheng et al. in [149]. The proposed method is
based on feedback factorization of the controller Q. The controller factor-
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Fig. 2.9: Modified IMC scheme with AWC using controller Q factorization

ization gives, as a result, the opportunity to tune the AWC scheme. The
common choice of the factorization results in the modified scheme illustrated
in Fig. 2.9 where

q∞ = lim
s→∞

Q(s) 6= 0.

is a high frequency gain. In this scheme, the controller state is updated based
on the saturated controller action which is effectively applied to the linear
plant. Although the method, at first sight, tenders to give the straightfor-
ward solution, the factorization of the controller is not examined in detail.
Nevertheless, the modified scheme was a subject for further study using
modern design methods [4, 6].
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Chapter 3

Aims and objectives

Problem statement

In the mainstream of time delay system theory, the controller saturation and
related anti-windup issues are not systematically taken into account in the
controller design. Compared to delay-free systems, this fact can bring even
more dramatic consequences to the closed loop performance and stability.
This is given by the distributed nature of the system state (an internal mem-
ory) which can even be transferred to the controller structure, e.g. within
IMC design, in case the delays are dominant and need be compensated via
including them into the controller structure.

Despite the fact that considerably more attention has been paid to solv-
ing anti-windup for delay-free systems, recently, solving this task for time-
delay systems has received an enhanced attention, as outlined in the state
of the art Chapter 2.4. The proposed methods predominantly aim at sta-
bility analysis under the introduced nonlinearity by saturation, which leads
to application of Lyapunov methods [20, 151], known for their conservatism
and standard solution by LMI methods of enhanced complexity [117, 116,
44, 51].

A general aim of the dissertation is to investigate a possibility of reduc-
ing a negative effect of the control signal saturation on the performance of a
control loop with time delays by a modification of an anti-windup compen-
sation included in the controller. As a rule, the saturation causes that an
actual control process behaviour fails to achieve a quality of process consid-
ered in a theoretical design, i.e. it is worse than a modelled (linear) solution.
Due to the fact that a control variable cannot exceed its saturation limits
a certain lack of action is caused, which usually results in a longer settling
time with greater fluctuations in control error variable.

As demonstrated in literature mainly in the subject of delay-free systems
[60, 128], the performance of the closed loop with saturated control can be
tuned by proper parametrization of the anti-windup scheme. Instead of
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vigorously stopping and triggering integration during the saturation, it is
possible to improve the closed loop behavior by intentional prolonging the
time at the saturation, even after the control error indicates by its sign
change that the control action should decrease below the limit. For this
purpose, the observer based anti-windup techniques proved efficient. The
extension of these techniques towards time-delay control schemes form the
second and third objectives of the thesis.

Next to the above defined main and general topic of the anti-windup, an
attention is also to be paid to analysis of time-delay system controllers. In
particular, the astatism (integration) nature brought by applying the IMC
method is to be studied. This so-far unsolved task is crucial for under-
standing the windup effect nature under the projection of time distributed
state of the controller. Analysis of this problem forms the first, preliminary
objective of the thesis.

The last task and open problem to be solved arises from the work on the
projects GAČR (16-17398S): Time delay compensators for flexible systems
(performed under the leadership by prof. V. Kučera, CTU in Prague) and
INTER-ACTION (LTAUSA17103): Time-delay control laws for innovative
transportation UAV systems (performed under collaboration with prof. W.
Singhose, Georgia Tech., Atlanta), which are focused on design and appli-
cation of time-delay compensators. The problem is related to the general
topic of the thesis via studying the effect of controller saturation on the per-
formance of time delay compensator – an inverse shaper recently proposed
and analyzed in [132] and [57] for compensating the oscillatory modes of the
attached flexible subsystem. In particular, the representation of the satu-
ration as a system input disturbance and its impact on the performance of
the closed loop to the flexible mode compensation forms the last objective,
together with the validation of theoretical findings on case study examples.

Objectives

Based on the state of the art analysis and the above defined problem state-
ment, the thesis objectives have been stated as follows:

Objective 1

The first objective, which can be considered as preliminary, is to analyze the
astatism of controllers arising from application of the IMC control design
method to time-delay systems. Their characteristic equation is typically in
the form

m(s) = sQ(s) + 1− exp(−sτ) = 0

where Q(s) can be either polynomial or quasi-polynomial. The controller
astatism brought by the above equation is not obvious and its nature is to
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be analyzed by time domain and spectral methods. The understanding of
this phenomenon is essential towards studying the windup nature for time
delay controllers.

Objective 2

The second objective aims at analysis and design of anti-windup schemes
of low-order systems with input time delay often used in process control for
approximating wide range of systems. Applying the dimensionless model
forms, the objective is to propose general procedures for parametrization
of anti-windup schemes for both finite and infinite-order (time-delay) con-
trollers with the task to minimize the negative effect of control input satu-
ration on the closed loop responses.

Objective 3

The subsequent objective is to generalize the anti-windup design task solved
within Objective 2 towards internal model controllers of higher order time-
delay systems. The subsequent task is to validate and demonstrate the
results on a complex case study application example.

Objective 4

Aside to anti-windup schemes for time-delay systems targeted in Objectives
2 and 3, the last objective of this thesis aims at studying effects of saturation
to the performance of the closed loop with deployed inverse shaper — a
time-delay compensator of oscillatory modes of flexible subsystems. The
particular tasks are to

(i) study the saturation and its impact on the flexible mode compensation
from the perspective of system input disturbance

(ii) study the effect on simulation and experimental case studies.
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Chapter 4

Astatic effect of time-delay
feedback

4.1 Introduction

Time delay control systems also reveal some problems commonly found in
other control strategies like the PID control in the presence of the so-called
hard nonlinearity such as saturation or even static friction as it was shortly
pointed out by Chang and Park in [22]. A large overshoot, limit cycles,
or even unstable responses have been observed when the saturation limits
are reached by control variable in time-delay control systems. The authors
briefly addressed these phenomenon to inherent integral effect in time delay
control due to the time delay term. The intent of this chapter is to survey
the integral effect of controller internal delays in more detail in a manner
published by Sipahi et al. in [108]. The effort is to show that time delays
must be seriously taken into account if saturation occurs in the control loop.
To illustrate the described issue some examples of simple time delay control
loops give a strong support to the following text. The following survey has
been accepted [B11] as a preliminary study.

4.2 Astatic effect analysis of time delay feedback

Suppose for illustration, without loss of generality, a simple artificial process
model P̃ (s) given by the following transfer function

P̃ (s) = exp(−sτ) (4.1)

with a single nonzero input time delay τ ∈ R, τ > 0. Process model P̃ (s) is
free of any other dynamic behaviour, except the delay.

Let’s design a controller for this model which compensates the delay
term exp(−sτ) using the well-known IMC design method described in Chap-
ter 2.2.2. The IMC controller Q(s) for the process model P̃ (s) after applying
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inner-outer factorization is then simply

Q(s) = 1 (4.2)

determined just by the inversion of the process model invertible part. In
this case, there is no need to employ an auxiliary filter in order to assure
that the IMC controller Q(s) is proper because it consists only of the unit
gain. The feasibility problem of the controller involving a filter design is not
present in this case.

A classical feedback controllerK(s) based on the designed IMC controller
Q(s) with the process model P̃ (s) has the following form with respect to the
structure of IMC control loop

K(s) =
Q(s)

1−Q(s)P̃ (s)
=

1

1− exp(−sτ)
(4.3)

with a simple quasi-polynomial 1 − exp(−sτ) in the denominator with the
time delay τ . Then an elementary characteristic equation of the feedback
controller K(s) is

m(s) = 1− exp(−sτ) = 0 (4.4)

which will be used to outline some properties of internal time delays as
basic elements of time delay control systems. The aim of the investigation
is to show the influence of the internal delays on these control systems in a
context of control input saturation.

Complex roots (i.e. characteristic roots) of the characteristic equation
(4.4) can be found analytically using the well-known Euler’s formula ap-
plied in a complex number theory in this simple case. Separating real and
imaginary part in a complex variable s = β+jΩ and substituting a complex
exponential part of exp(−sτ) = exp(−(β+jΩ)τ) with its trigonometric form
the characteristic equation (4.4) becomes

exp(−τβ)(cos(τΩ)− j sin(τΩ)) = 1. (4.5)

Because there is only a real constant on the right side of the characteristic
equation (4.5) and there is no imaginary part, the term sin(τΩ) has to be
equal to zero, which due to periodicity of the sine function leads to condition
Ω = kπ

τ where k ∈ Z. Finally, the solution

pk = j
2kπ

τ
, k ∈ Z (4.6)

of the characteristic equation (4.4) is acquired by comparing only the real
terms cos(kπ) = 1

exp(−τβ) of the equation (4.5) taking into account the fact

that ∀s ∈ C, τ > 0, 1
exp(−τβ) > 0 and so an argument of the cosine function

has to assure positive values which only even multiples of π satisfy ensured
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Fig. 4.1: Solution of the characteristic equation (4.4) (black cross) for time delay τ = 1 s
graphically represented in complex plane by intersection of the real <(m(s)) and the
imaginary =(m(s)) part of m(s)

by the term 2kπ. Then, ∀k ∈ Z, cos(2kπ) = 1 and the real part of the
characteristic roots pk is zero (β = 0) to assure that exp(−τβ) = 1 for
τ > 0. Thus, all characteristic roots of (4.4) lie on the imaginary axis
equally spaced and all separated by the exact distance of 2π

τ j with one

single root p0 = 0 for k = 0. For the sake of completeness, the term 2kπ
τ in

pk denotes angular velocity ωk, so the characteristic roots may be written
in the form pk = jωk where ωk = 2kπ

τ = kω, k ∈ Z. Suppose τ = 1 s, then
the characteristic roots of (4.4) are pk = 2kπ, k ∈ Z and their placement
in the complex plane is outlined in the Figure 4.1. A distance between the
characteristic roots increases for τ → 0, causing the characteristic roots of
m(s) moving far away from the origin of the complex plane. Only the root
p0 = 0 with its integrating character stays at the origin for an arbitrary time
delay τ . This root is responsible for astatic nature of the controller (4.3).

Astatic nature of (4.3) would be also revealed using Laplace transform
final value theorem applied to a transfer function (4.3). However, there
are infinitely many poles pk of the transfer function (4.3) on the imaginary
axis according to the solution (4.6). Therefore, the final value theorem,
as defined by default, can not be used with respect to given conditions as
namely reported for example in [105], where usage of the final value theorem
for function sin(t) was denoted as ”misapplication”. The pairs of complex
conjugate poles pk on the imaginary axis in general cause that a function
gK(t) = L−1{K(s)} contains sinusoidal (i.e. periodic) components and so
gK(∞) = limt→∞ gK(t) is not defined, which is one condition for applica-
bility of the final value theorem. Gluskin in [46] published a generalization
of the final value theorem for periodic or asymptotically periodic functions,
and almost periodic functions that can be given by finite sums of periodic
functions (which has been recently extended in [45]).

Theorem 4.2.1. Suppose that g : [0,∞) 7→ R is a periodic function of a
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period τ > 0, i.e. g(t + τ) = g(t) for all t ≥ 0. If the Laplace transform of
g exists, then

G(s) =

∫ τ
0 g(t) exp(−st) dt

1− exp(−sτ)
. (4.7)

Proof. We have

G(s) =

∫ ∞
0

g(t) exp(−st) dt =

∞∑
n=0

∫ (n+1)τ

nτ
g(t) exp(−st) dt

= |u = t− nτ | =
∞∑
n=0

∫ τ

0
g(u+ nτ) exp(−su− snτ) du

=
∞∑
n=0

exp(−snτ)

∫ τ

0
g(u) exp(−su) du

=

(∫ τ

0
g(u) exp(−su) du

) ∞∑
n=0

exp(−snτ)

=
1

1− exp(−sτ)

∫ τ

0
g(u) exp(−su) du

(4.8)

considering the fact that a term
∑∞

n=0 exp(−snτ) is a geometric series with
common ratio 0 < exp(−sτ) < 1 for s > 0 leading to a sum 1

1−exp(−sτ) .

The denominator of the Laplace transform (4.7) of a general periodic
function g(t) according to the Theorem 4.2.1 consists of the elementary
quasi-polynomial m(s) = 1− exp(−sτ) same as it is stated in the character-
istic equation (4.4). If the periodic function g(t) in (4.7) is considered as unit
impulse δ(t) (also called Dirac delta function) periodically repeating every
time period τ , then the numerator of (4.7) equals to one and the transfer
function (4.7) becomes (4.3) which follows from Laplace transform of the
Dirac delta function L{δ(t)} = 1. The numerator b(s) = 1 of the transfer
function (4.3) has the simplest form for the periodic function presumed in
the Gluskin’s generalized final value theorem. Before proceeding to a defini-
tion of the theorem, it can be noted that the described periodic function g(t)
consisting of the infinite series of Dirac delta functions is called Dirac comb
with spacing τ and it is defined as Xτ (t) :=

∑∞
k=−∞ δ(t− kτ), k ∈ Z which

for the time interval t ∈ [0,∞) is reduced to the above depicted function
gK(t) in the following form

gK(t) =

∞∑
k=0

δ(t− kτ). (4.9)

Theorem 4.2.2 (Generalized final value theorem [46]). Let g be a real-
valued function, continuous and absolutely integrable in [0,∞), which is
asymptotically equal to (a sum of) periodic function(s), gas, that is
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|g(t)− gas(t)| < φ(t)

with φ absolutely integrable in [0,∞) and vanishing at infinity. Then

lim
t→∞

g(t) = lim
s→0+

sG(s) = lim
t→∞

1

t

∫ t

0
g(λ) dλ = 〈g〉 (4.10)

where G is the Laplace transform of g and 〈g〉 is the time average of the
function g(t).

Proof. Detailed proof can be found in [46] and therefore it is omitted here.

For a periodic function g(t) the average 〈g〉 over the infinite time interval
t ∈ [0,∞) equals its average just over the period τ such that the equation
(4.10) reduces to

lim
t→∞

g(t) = lim
s→0+

sG(s) =
1

τ

∫ τ

0
g(t) dt. (4.11)

However, the function (4.9) is not actually a real-valued function but dis-
tribution (integrable on every interval), because it consists of unit impulses
periodically repeating. As a result, the generalized final value theorem (4.10)
according to the Theorem 4.2.2 can not be directly applied. But, this re-
striction can be overcome using Dirac delta function approximation based
on the rectangular function defined as

f(t, ε) =

{
1
ε , if0 ≥ t ≥ ε
0, otherwise.

(4.12)

The Laplace transform of (4.9) can be formulated using the approximation
(4.12) as

L{gK(t)} ≈ lim
ε→0
L{f(t, ε)} =

1

1− exp(−sτ)
. (4.13)

Moreover, the time integral in (4.11) is equal to one for gK(t) because the
approximation (4.12) holds∫ τ

0
gK(t) dt =

∫ τ

0
δ dt = ε

1

ε
= 1 (4.14)

and limt→∞ gK(t) = 1
τ . The time function gK(t) is the impulse response of

the system described by the transfer function (4.3), hence its step response
hK(t) can be obtained by integrating the impulse function gK(t) and so in
Laplace transform it gives

H(s) =
1

s
K(s) =

1

sτ
(4.15)
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which is a simple integrator with an integral time constant given by the
time delay τ . Therefore, the input time delay τ of the process model P̃ (s)
determines the time constant of the equivalent integration.

The integral nature of a controller K(s) is also preserved if there is
a quasi-polynomial of higher degree in characteristic equation of controller
K(s) as illustrated in Example 4.2.1 or even if there are multiple time delays
in characteristic equation of a controller provided that there is a zero pole
s = 0. The presence of zero pole is caused by the quasi-polynomial (2.15)
coefficients in the denominator of (2.14) fulfilling

Nϑ̄∑
j=1

p0,j = 0 (4.16)

where Nϑ̄ is a number of different time delays and p0,j ∈ R,∀j = 1, . . . , Nϑ̄

are the coefficients of zeroth s-powers. The proof of the condition (4.16) is
straightforward. Consider (2.15) in the slightly modified form

p(s) = s

sn−1 +
n−2∑
i=1

Nϑ̄∑
j=1

pi,js
i exp(−sϑ̄j)


+

Nϑ̄∑
j=0

p0,j exp(−sϑ̄j).

(4.17)

As the first part of the main sum in (4.17) holds the partial property

lims→0 s
(
sn−1 +

∑n−2
i=1

∑Nϑ̄
j=1 pi,js

i exp(−sϑ̄j)
)

= 0, the controller (2.14) as-

tatism condition lims→0 p(s) = 0 leads to the requirement (4.16).

When the pure integral behaviour is not present the time delay term
causes in general a delayed reaction to saturation recovery which may in-
crease a negative effect of windup to a closed-loop system performance.

Example 4.2.1 (Smith predictor example). The integral character ofK(s)
can be also observed in Smith predictor controller design method. A stable
minimum phase process model P̃ (s) = exp(−s)

s+1 and pole-zero cancellation

based setting of controller K̃(s) = s+1
s produce a classical feedback controller

K(s) with a time delay τ = 1 s in the denominator. The feedback controller
K(s) is given by the following transfer function

K(s) =
s+ 1

s+ 1− exp(−s)
(4.18)

with respect to Smith predictor controller design defined by (2.19).

Smith predictor control scheme may be rearranged into an equivalent
IMC control scheme as described in [2]. The equivalent IMC controller for
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Fig. 4.2: Zeros of the characteristic polynomial of the controller K(s) based on the design
using Smith predictor scheme (left) and step response of the controller supplemented by
the step response of a pure integral with corresponding integral time constant Ti (right)

the chosen process model P̃ (s) and the controller K̃(s) is given as follows

Q(s) =
K̃(s)

1 + K̃(s) 1
s+1

= 1

The rearrangement between the Smith and IMC control scheme is possible
only if there is no nonlinearity included in a control loop. So the saturation
nonlinearity makes the conversion impossible as it was pointed out in [2].

The closed-loop controller K(s) given by (4.18) has a characteristic
quasi-polynomial with a single delay but compared to the controller (4.3) this
quasi-polynomial is of degree one leading to an additional initial dynamic
behaviour illustrated in Fig. 4.2 by a step response hK(t) of the controller.
The step response begins with an initial unit step lasting for 1 s which is the
exact duration of the input time delay of the process P̃ (s). After that, the
dynamic behaviour follows with some slight fluctuations from a pure inte-
gral action. Finally, a true integral action appears after approximately 2 s
from the beginning of the response. A strength of integral action expressed
by an integral gain g∞ can be revealed by application of final value theorem
supported by L’Hôpital’s rule to impulse transfer function of the controller
(4.18) as indicated below

gK,∞ =
1

Ti
= lim

s→0
sK(s)

(H)
= lim

s→0

2s+ 1

1 + exp(−s)
=

1

2

where Ti is an integral time constant. A value of the integral gain is ruled
not only by the value of time delay but also by the value of the zero degree
term in the numerator and the value of the first degree term in the denomi-
nator. A simple integral 1/(Tis) with the gain 0.5 s−1 (Ti = 2 s) is placed in
the Fig. 4.2 to demonstrate the pronounced latent integral character of the
controller (4.18) designed using Smith predictor scheme. 4
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4.2.1 Time delay approximations

A time delay term system models is commonly substituted using various
approximating methods leading to rational functions and even for them
the astatic behaviour of (4.3) is preserved. For example, Maclaurin series,
suggested in [47] and revised in [125], can be used by taking only a finite
number of the first n-terms. This leads to a rational function with zero order
numerator dynamics

exp(−sτ) ≈ R0,n(s) =
1∑n

k=0
(sτ)k

k!

=
1

1 + sτ + (sτ)2

2! + · · ·+ (sτ)n

n!

. (4.19)

However, the rational function R0,n(s) in (4.19) exhibits right-half plane
poles as n increases (specifically for n > 4, as it is mentioned in [125]). Al-
though the approximation accuracy in the s-domain increases as n grows,
the transfer function R0,n(s) becomes unstable, which is undesirable be-
haviour. The same destabilizing effect for n > 4 is preserved even if the
time delay term exp(−sτ) is approximated in the transfer function (4.3)
using the rational function (4.19).

The astatic behaviour of a time delay can be also observed if the method
called Padé approximation is used for approximating the time delay term in
(4.3). A survey of some time delay approximations can be found for example
in [89]. The approximation has a form of a rational function mostly with
equal numerator and denominator degree. The general Padé approximation
of degree (m,n) is defined to be a rational function Rm,n(s) in fractional
form

Rm,n(s) =
Pm(s)

Qn(s)
(4.20)

where Pm(s) and Qn(s) are real polynomials with coefficients p0, . . . , pm and
q0, . . . , qn expressed for the time delay exp(−sτ) by the following recursive
relations resulting from a condition that the first (m + n + 1) terms in the
Maclaurin series of the function exp(−sτ) disappear (assuming q0 = 1)

Pm(s) =
m∑
k=0

(m+ n− k)!m!

(m+ n)!k!(m− k)!
(−sτ)k

Qn(s) =
n∑
k=0

(m+ n− k)!n!

(m+ n)!k!(n− k)!
(sτ)k.

(4.21)

If the same degree of the polynomials Pm(s) and Qn(s) (i.e. m = n) is
supposed Padé approximation is of the form

exp(−sτ) ≈ Qn(−s)
Qn(s)

Qn(s) =

n∑
k=0

(
n

k

)
(2n− k)!

(2n)!
(sτ)k

(4.22)
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and the first three approximations of the time delay exp(−sτ) according to
(4.22) are for clarity

exp(−sτ) ≈ 1− k1s

1 + k1s
, k1 =

τ

2

exp(−sτ) ≈ 1− k1s+ k2s
2

1 + k1s+ k2s2
, k1 =

τ

2
, k2 =

τ2

12
(4.23)

exp(−sτ) ≈ 1− k1s+ k2s
2 − k3s

3

1 + k1s+ k2s2 + k3s3
, k1 =

τ

2
, k2 =

τ2

10
, k3 =

τ3

120

with a symmetrical pole-zero configuration inducing the same constant
amplitude over all frequencies as well as for the substituted time delay
exp(−sτ), but exhibiting an undesirable jump at t = 0 in a step time
response.

Then, the time delay term exp(−sτ) in the transfer function (4.3) can
be replaced by its Padé approximation, for instance of the degree three
(m = n = 3), resulting in the following rational transfer function

K(s) =
1

1− exp(−sτ)
≈ 1 + k1s+ k2s

2 + k3s
3

2k1s
(

1 + k3
k1
s2
) (4.24)

which is astatic due to the zero root occurring in the denominator and its
step response exhibits a jump at t = 0 of the value 1/2 as it is clear by
applying initial value theorem to the substituting rational transfer function.
The value of the initial jump is the same for every degree m ≥ 0, n = m
due to alternating sign of the coefficients in the numerator Pm(s) of the
Padé approximation applied to the transfer function (4.3). For m 6= n this
relations is not strictly valid any more. In contrast to that, the initial jump
of the step response of the original K(s) is 1 because applying initial value
theorem to the function H(s) = 1

sK(s) one gets

lim
t→0

hK(t) = lim
s→∞

sH(s) = lim
s→∞

sK(s)
1

s
= lim

s→∞

1

1− exp(−sτ)
= 1. (4.25)

So the step response of is not retained in the Padé approximation. Next
to the astatic behaviour and different initial jump the approximation (4.24)
has also undamped oscillations with natural frequency Ω =

√
60/τ caused

by the term
(

1 + k3
k1
s2
)

. These oscillations are not present in the original

transfer function (4.3) as can be also seen in Figure 4.3 where both the step
responses of the original controller and its approximations are shown.

4.2.2 Another effects of time delay terms

The time delay term in a transfer function can also have another behaviour
than the above outlined integral nature as described in [108]. In general, it
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Fig. 4.3: Comparison of time delay approximations applied to the transfer function (4.3)
for τ = 1 s: system poles (left); step responses (right)

can have both stabilizing [1, 79] or destabilizing effect so the presence of de-
lays may be either beneficial or detrimental to the operation of a dynamical
system. Next to the integral nature brought in simplicity by (1− exp(−sτ))
term in the denominator of a controller transfer function, the delay can
also be used as a derivative feedback which has been successfully applied in
proportional-integral-retarded (PIR) controller introduced in [24]. Although
the PIR controller has been originally published a long time ago recent stud-
ies [127] show that it is still worth the attention due to positive aspects of
a practical implementation, for example a servo drive positioning presented
in [65]. To document the topicality, the PIR controller has been recently
studied in [93] where a design technique for a general class of second-order
linear time-invariant (LTI) systems has been proposed.

4.3 Concluding remarks

The inherent astatic effect of time delay feedback, possibly appearing in
some class of time delay compensating controllers, has been described with
support of a simple example completed with analytical solution. The condi-
tion for astatism of time-delay controllers with characteristic equation in a
quasi-polynomial form has been pronounced. In order to highlight the inte-
grating part of the mentioned controllers the generalized final value theorem
has been used giving a clear insight into an action equivalent to integration
in time. Because time delay approximations are commonly used in various
control system design techniques some of them have been shown to have
quite similar integral nature if they are applied to substitute pure time de-
lay terms. Last but not least, another possible effects of time delay terms
have been briefly introduced to clarify a diversity of time delay utilization.
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Chapter 5

IAE optimum AWC tuning
for low-order time-delay
system controllers

5.1 Introduction

The schemes of anti-windup and conditioning are well developed for the
controllers with the rational transfer function structure as it is summarized
in Chapter 2.4.3. However, the specific design methods for the time-delay
precesses also lead to controllers whose transfer functions may become mero-
morphic, i.e. involving delays in their structure. As a particular case of
Youla affine parameterization the most specific method in this area is the
well-known IMC [49].

The chapter is focused on IAE based tuning of the anti-windup feedback
in a controller of a FOPTD and a SOPTD models which are basic models
commonly used for approximating higher order systems. The problem is
addressed to two types of controllers, finite order PI controller and infinite
order IMC controller with the delay compensation. At first, a classical finite
order anti-windup feedback known as back-calculation method is utilized
with extension to an observer-based anti-windup. Then, a novel functional
(dynamic) feedback for the IMC controller, is proposed with an effort to
simplify the related tuning as much as possible. For both the cases, the
feedback setting is optimized with respect to minimizing the IAE criterion.
The analysis is performed on a dimensionless form of the models so that the
results are valid to a broad class of systems.

The presented results are an extension of the original publications [B2]
and [B6] with an emphasis on the systematic description of the solved
problems and their results. The proposed anti-windup functional feedback
method is a preliminary case study for deploying in more complex time delay
controllers which is presented in the following chapter.
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5.2 Considered time delay plant models

In this section two basic time delay plant models are stated concisely to
introduce a class of systems for subsequently presented case study dealing
with AWC design and its tuning with respect to a chosen criterion. Di-
mensionless approach is appropriately used to generalise a validity of the
presented results.

5.2.1 FOPTD model

As the first representative the fundamental first order stable plant model
with an input time delay is considered due to its simple dynamics offering
easy comprehension of the proposed method. The model is given by the
differential equation

T
dy(t)

dt
+ y(t) = ku(t− τ) (5.1)

where y, u denote the system input and output, respectively. The system
parameters k, T, τ ∈ R are static gain k > 0, time constant T > 0, and time
delay τ > 0. Plant model (5.1) can be reformulated to the following transfer
function

P1(s) =
y(s)

u(s)
=
k exp(−sτ)

Ts+ 1
. (5.2)

Following the approach proposed by Źıtek et al. in [155] for the second
order model with time delay, scaling the dimension of the control input with
respect to k by introducing ū = ku and subsequently scaling the time t
with respect to time constant t̄ = 1

T t, the first order model (5.2) can be
considered in the universal dimensionless form

P1(s̄) =
y(s̄)

ū(s̄)
=

exp(−s̄τ̄)

s̄+ 1
(5.3)

where the single parameter is the scaled time delay τ̄ = τ/T . Note also that
s̄ = sT is the dimensionless Laplace operator. Thus, the results derived for
this system (5.3) will be valid for a whole class of systems which have the
equivalent ratio τ/T .

5.2.2 SOPTD model

For a more general investigation of the efficiency of the observer-based anti-
windup scheme (??) a sufficiently generic model of the plant has been chosen
in [B2]. The model is able to describe a wider class of plants than model
(5.1) thanks to more optional parameters. However, this complexity has
to be naturally reflected in a controller design and a related anti-windup
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scheme. A stable linear time delay plant P2 described by second order
differential equation

d2y(t)

dt2
+ a1

dy(t)

dt
+ a0y(t) = ka0u(t− τ), (5.4)

with a0, a1, τ > 0 and K 6= 0, has been assumed to express the dynamics of a
rather wide class of stable plants free of right half-plane (RHP) zero effects.
Compared to the simpler first order model (5.1) the second order model
can describe a wider class of plants with a slight increase in the number
of parameters as pointed out at the beginning of this section. To solve
the parameter increase Źıtek et al. favourably rearranged this model to a
generic dimensionless form in [155] by means of the following dimensionless
similarity numbers

λ =
a0

a2
1

, ϑ = a1τ (5.5)

introduced as the so-called swingability λ and laggardness ϑ similarity num-
bers respectively. The dimensional analysis leading to this selection is pre-
sented in detail in [155] and therefore only main results are presented here to
introduce the approach. To obtain a totally dimensionless model also time t
is to be replaced by the ratio t̄ = t/τ and the Laplace operator is accordingly
substituted by s̄ = sτ in the same way as for previously described the first
order time delay plant (5.1). Then applying these variables and parameters
in (5.4) all plants of this type may be described by a common dimensionless
model

d2y(t̄)

dt̄2
+ ϑ

dy(t̄)

dt̄
+ ϑ2λ y(t̄) = kϑ2λu(t̄− 1) (5.6)

and the plants with the same λ and ϑ are referred to as dynamically similar.
It means that for a pair of such plants whose u(t̄) are identical their responses
y(t̄) are identical as well (e.g. the step responses considered in the common
relative time t̄). The other advantage of model (5.6) is the reduced number
of parameters: instead of four parameters in (5.4) only three numbers λ, ϑ, k
determine the set of dynamically similar plants, i.e. the plants with different
a0, a1, τ, k but the same λ, ϑ, k.

An application potential of the dimensionless plant model (5.6) has been
discussed in [B2] with a reference to a more detailed explanation presented
by Źıtek et al. in [155] where related statements are proved. Briefly summa-
rized, it has been pointed out that the chosen model (5.6) step response h(t̄)
is able to appropriately describe a widely variable dynamics - either aperi-
odic or oscillatory and characterized by a dead time. Only one assumption
holds for the plant (5.6) deployment demanding that h(t̄) is not affected by
typical effects of the RHP zeros.

To conclude this part briefly describing the considered dimensionless
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approach applied to plant (5.4), the transfer function of (5.6) is as follows

P2(s̄) =
k exp(−s̄)

s̄2(λϑ2)−1 + s̄(λϑ)−1 + 1
(5.7)

with respect to the proposed Laplace operator substitution s̄ = sτ .

5.3 Anti-windup optimization issue

The original aim of tuning an anti-windup scheme is to minimize the time
intervals when saturation affects the actuating variable, i.e. to minimize
the saturation error v(t̄) = us(t̄)− û(t̄) [53], which means to keep the actu-
ating variable as much as possible close to its ideal predetermined action.
This requirement is reformulated for higher order controllers in the sense
of trying to keep internal states of the controller to the ones corresponding
to saturated control output [86, 143]. But anti-windup as deployed in this
chapter is an inherent part of a controller and therefore the minimization of
control error e(t̄) = r(t̄)− y(t̄) is to be preferred to a strict minimization of
the saturation error, us(t̄)− û(t̄). Therefore the optimization of anti-windup
parameters is made from the aspect that not an optimization of the satura-
tion error us(t̄)− û(t̄) but the best attainable performance of control error
e(t̄) is searched in the anti-windup tuning.

In what follows, the performance of the control loop is analyzed with the
objective to determine the optimum value of anti-windup parameters in the
sense of minimizing the IAE criterion

IIAE =

∫ ∞
0
|e(t)|dt (5.8)

in the cases when the control action, induced by either set-point or input
disturbance, is saturated.

5.4 Static AWC tuning

A classical finite order (static) anti-windup feedback known as back-
calculation method is utilized in this section. The technique is applied
first to a simple PI controller with the FOPTD model. Then, an extension
to observer-based anti-windup is deployed to meromorphic IMC controller
designed for the SOPTD model to show a satisfactory closed-loop perfor-
mance preservation even for a static feedback.

5.4.1 FOPTD and PI controller

Concerning the control strategy for a FOPTD model, a PI controller (2.49)
is at first considered with the state-space model given by (2.50). Let us note
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that the PI controller is preferred here from the PID due to transparency
of the results when the control saturation is in action. The action of the
derivative part highly depends on the selected filter ensuring the controller
implementation which makes the problem more difficult to handle.

The focus is on the closed loop responses to the set-point r change, in
which the control signal saturation plays the key role. It is the other case
than presented in [B2] where the performance under input disturbance has
been considered. The closed-loop transfer function consisting of (5.2) and
(2.49) reads

G1,PI(s) =
y(s)

r(s)
=

k(kps+ ki) exp(−sτ)

Ts2 + (1 + kkp exp(−sτ))s+ kki exp(−sτ)
. (5.9)

Let us remark that the spectrum of the system poles, given as the solution
of the characteristic equation

Ts2 + (1 + kkp exp(−sτ))s+ kki exp(−sτ) = 0, (5.10)

is infinite because of its transcendental nature. As the controller (2.49)
is of finite order, the achievable closed loop performance is rather limited
concerning the length of the input delay τ . For the cases where the delay τ
length is substantial with respect to the time constant T , rather an infinite
order controller compensating the delay should be applied. An efficient
scheme for such a case is for example the IMC scheme, which is addressed
in the next part of this chapter using a dynamic AWC approach.

Optimizing the anti-windup feedback for PI controller

The key objective of this section is to tune the anti-windup feedback based
on back-calculation scheme described in Chapter 2.4.3 to obtain the optimal
response to the step change of the set-point value r in the cases where the
saturation boundary is reached. The optimality is considered according to
the chosen IAE criterion (5.8).

Even though a relatively large number of references can be found to han-
dle the task of tuning the tracking time constant Tt as referenced in Chap-
ter 2.4.3, a general agreement on its optimal value has not been reached.
Thus, the key objective of this section is to contribute to this tuning task
by an optimization study performed for a model (5.2), which is widely used
for approximating processes with non oscillatory dynamical properties and
dead time.

As the first step, similarly as for the system model (5.2), with the ob-
jective to generalize the achieved results, also the controller (2.49) is turned
to the dimensionless form

KPI(s̄) =
ū(s̄)

e(s̄)
=
k̄ps̄+ k̄i

s̄
, (5.11)
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where k̄p = kkp and k̄i = kTki. The state equation with the anti-windup
feedback then changes from the original form (2.52) to

dx(t̄)

dt̄
= k̄ie(t̄) +

1

T̄t
(ūs(t̄)− x(t̄)− k̄pe(t̄)) (5.12)

recalling that ūs(t̄) = sat(ū(t̄)) as defined in Chapter 2.4.3. Before optimiz-
ing the parameter T̄t of the anti-windup scheme, the parameters of the PI
controller are optimized with respect to minimizing IAE criterion (5.8) for
the unsaturated case. As a preliminary step, we demonstrate the dependence
of the closed loop responses on T̄t in Fig. 5.1. Next to the unsaturated IAE
optimal response, saturated closed loop responses with ūmax = 3 are shown
for the anti-windup feedback values ranging from 1

T̄t
= 0 to 1

T̄t
= 1000. As

can be seen, the response with 1
T̄t

= 0, i.e. without any anti-windup action,
results in undesirable overshoot. On the other hand, the very large value of
the gain 1

T̄t
= 1000 results in a rather sluggish response.

0 0.5 1 1.5 2 2.5 3
t̄

0
1
2
3
4
5
6
7

ū

0 0.5 1 1.5 2 2.5 3
t̄

0
0.2
0.4
0.6
0.8

1
1.2

y

Fig. 5.1: Closed loop ((5.3) with τ̄ = 0.1 and (5.11)) responses for i) IAE optimal unsat-
urated controller (black), and ii) saturated controller with ūmax = 3 for the anti-windup
feedback gain 1

T̄t
∈ [0, 1, 3, 10, 1000], colored from blue (0) to purple (1000).

In order to find an optimal value of T̄t that minimizes the IAE criterion,
the brute-force method has been applied based on sweeping the parameter
1
T̄t

over the interval [0, 10] and evaluating the criterion (5.8) for every grid
point. This procedure has been applied for three classes of systems with
τ̄1 = 0.1, τ̄2 = 0.5 and τ̄3 = 1 and various values of the ūmax for each of the
system classes. The results of this straightforward optimization procedure
are shown in Figs. 5.2, 5.3 and 5.4. Next to the IIAE with respect to 1

T̄t
, the

optimal responses are shown for each of the considered values of ūmax.
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Fig. 5.2: Results of optimizing the IAE criterion for the system class (5.3) with τ̄ = 0.1, PI
controller (5.11) with the anti-windup feedback (5.12) (up-most figure), and the optimal
responses for the considered values of the control signal saturation

For τ̄1 = 0.1 system (5.3) class with results shown in Fig. 5.2, the optimal
IAE setting is close to 1

T̄t
= 1, which is almost independent of the value of

considered ūmax. Note that for the dimensional anti-windup feedback in
(2.52) this would correspond to the equality Tt = T .

For the system classes with larger values of τ̄ , the optimum is reached
for 1

T̄t
< 1, i.e. for Tt > T . More specifically, for τ̄2 = 0.5 shown in Fig. 5.3

the optimum is still fairly close to Tt = T , but it is not the case for τ̄3 = 1
shown in Fig. 5.4 where Tt should be considerably larger. Note, however,
that for this last considered system class, the control saturation effect on the
response is relatively small. In order to achieve “faster” responses for the
systems with τ̄ > 0.5, an infinite order controller compensating the delay
needs to be used, e.g. the IMC controller (5.24) which will be addressed in
the next section describing a dynamic anti-windup scheme.
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Fig. 5.3: Results of optimizing the IAE criterion for the system class (5.3) with τ̄ = 0.5, PI
controller (5.11) with the anti-windup feedback (5.12) (up-most figure), and the optimal
responses for the considered values of the control signal saturation

5.4.2 SOPTD and IMC controller

In order to extend the class of involved plant models the SOPTD model
(5.4) is considered in this section in combination with IMC controller. The
aim of this chapter is to define a similar (static) anti-windup scheme tun-
ing presented for FOPTD model and PI controller. Compared to the PI
controller an increase of tuning parameters can be expected due to higher
complexity of IMC scheme and resulting controller. Despite that, the effort
of the following optimization task is to obtain a simple anti-windup tuning
rule.

To apply consistent dimensionless variables and parameters as in the
plant model (5.6) a dimensionless Laplace operator s̄ = sτ is further used
instead of s. The internal plant model corresponding to (5.6) is supposed
as P̃2(s̄) and considered in a parallel linkage with the plant P2(s̄) while the
feedback is formed by the control function Q(s̄). It holds for this parameter-
ization that if Q(s̄) is any proper and stable function and the plant is stable
then, the classical control loop with controller parameterized according to
(2.24) is always internally stable [49]. On the other hand the plant stability
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ū

Fig. 5.4: Results of optimizing the IAE criterion for the system class (5.3) with τ̄ = 1, PI
controller (5.11) with the anti-windup feedback (5.12) (up-most figure), and the optimal
responses for the considered values of the control signal saturation

is a necessary condition of the direct application of the IMC design.

The selection ofQ(s̄) is based on the idea of inverting the plant model and
therefore an inner-outer factorization [50] of P̃2(s̄), P̃2(s̄) = P̃in(s̄)P̃out(s̄) is
necessary, separating the outer factor P̃out(s̄) as invertible. Then the appli-
cable Q(s̄) is considered in the manner of (2.24) where a stable filter transfer
function F (s̄), with the unit static gain F (0) = 1, is selected to predeter-
mine the desirable dynamics of the control closed loop. To predetermine a
dimensionless conjugate pair p̄1,2 = Φ(−δ ± j) as the dominant poles of the
control loop, this function is to be selected as

F (s̄) =
Φ2(δ2 + 1)

(s̄+ δΦ)2 + Φ2
(5.13)

Apparently, Φ in p̄1,2 is a frequency angle connected with the desirable nat-
ural frequency Ω of the control loop, Φ = Ωτ , and δ is the damping ratio of
the corresponding oscillations. Since the invertible factor of model (5.6) is

53



P̃out(s̄) = kϑ2λ(s̄2 + ϑs̄+ ϑ2λ)−1 the control function (2.24) results as

Q(s̄) =
(s̄2 + ϑs̄+ ϑ2λ)(δ2 + 1)Φ2

kϑ2λ[(s̄+ δΦ)2 + Φ2]
(5.14)

Then from the parameterization (2.26) the following meromorphic controller
is obtained

K2,IMC(s̄) =
(s̄2 + ϑs̄+ ϑ2λ)(δ2 + 1)Φ2

kϑ2λ [s̄2 + 2δΦ s̄+ (1 + δ2)Φ2(1− exp(−s̄))]
(5.15)

Notice that nothing but the plant parameters λ, ϑ, k and the pair p̄1,2 spec-
ification by Φ, δ are used in this formula. The controller (5.15) provides the
well known property of compensating the control loop for the time delay in
the ideal case that internal model P̃2(s̄) is just equal to the real plant trans-
fer function P2(s̄), i.e. P̃2(s̄) = P2(s̄) exactly. If this equivalence is achieved
the tracking transfer function (complementary sensitivity function) of the
control loop is of the form

T (s̄) =
K2,IMC(s̄)P2(s̄)

1 +K2,IMC(s̄)P2(s̄)
=

(1 + δ2)Φ2 exp(−s̄)
(s̄+ δΦ)2 + Φ2

(5.16)

In spite of the plant delay this function does not have other poles but the
predetermined pair p̄1,2. Nevertheless, this desirable property ceases to hold
as soon as the internal model differs from the real plant properties. Then
the behaviour of the control loop is the more different from (5.16), the more
different the model P̃2(s̄) from the real plant is.

The classical closed-loop controller transfer function (5.15) is not simply
rational – it involves a delay operation in controller structure and its mero-
morphic nature has to be considered in the design of anti-windup scheme too.
For this reason the state-space formulation (2.12) of K2,IMC(s̄) is needed.
A possible conversion of controller (5.15) to an equivalent state description
can be obtained by the method of nested integrations with the following
resulting state matrices

F(s̄) =
[

0, −(1+δ2)Φ2(1−exp(−s̄))
1, −2δΦ

]
, G(s̄) =

[
1− (1+δ2)Φ2

ϑ2λ
(1−exp(−s̄))

1
ϑλ(1− 2δΦ

ϑ )

]
,

H =
[

0,
(1+δ2)Φ2

k

]
, L =

[
(1+δ2)Φ2

kϑ2λ

] (5.17)

supposing zero initial condition. The detailed procedure for obtaining this
state-space representation is described in [B2] by a Proposition 1.

This model holds as long as the actuating variable remains within its
operating range, and as soon as any of the saturation boundaries are reached
an anti-windup scheme is to be applied.

The following characteristic equation of the controller K2,IMC(s̄) results
from matrix F(s̄) in (5.17)

det (s̄I− F(s̄)) = s̄(s̄+ 2δΦ) + (1 + δ2)Φ2(1− exp(−s̄)) = 0, (5.18)
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from where it is apparent that the controller dynamics are given only by
prescribing the filter poles by Φ and δ independently of the plant properties.
Due to the factor (1− exp(−s̄)) the value s̄ = 0 is always a solution of (5.18)
being the rightmost pole of (5.15) which provides its inherent integrating
character. It must be emphasized that there is an infinite number of poles
in the solution of (5.18) besides the zero pole s̄ = 0 resulting from the delay
term exp(−s̄).

An integral part of the design of close loop is tuning of a controller which
is in this case based on a concept of ultimate angle presented by Źıtek et al.
in [155] applied to the IMC controller (5.15). So far frequency angle Φ was
supposed to be an optional parameter of the filtering function F (s̄) used
in the IMC design. On the other hand, in (5.16) we saw that in case of a
well fitting model angle Φ determines also the natural frequency Ω = Φ/τ
of the control loop, i.e. the imaginary part of p̄1,2 = Φ(−δ ± j) which
are supposed to be the dominant ones. However, from the dominant pole
placement techniques, it is well known that just the ultimate frequency ωk of
the plant plays the key role in tuning the controller. Particularly with regard
to reach the poles p̄1,2 as dominant, it is advisable to suppose the ultimate
frequency as the well fitting natural frequency for the control loop. Trying
to prescribe Ω higher than ωk often results in emerging an undesirable lower
frequency in the system response which spontaneously becomes dominant
instead of the prescribed one.

The ultimate gain and the corresponding ultimate frequency result from
the characteristic equation of plant (5.6) as pointed out in [B2]. As it results
from the dimensional analysis in [155] the ultimate angle, Φk = ωkτ , is the
similarity number corresponding to the ultimate frequency. With respect to
the Buckingham π-theorem a dimensionless relationship must exist between
Φk of plant (5.6) and the parameters ϑ, λ, k. The relationship is in detail
described in [B2] by a theorem previously proved in [155].

If the ultimate angle Φk is set as Φ = Φk, and if the relationship Φk =
Φk(λ, ϑ) introduced in [155] is applied the whole IMC control loop composed
of (5.6) and (5.15) is determined by the similarity numbers λ, ϑ and the
damping ratio δ only, while the gain parameter k is cancelled. If moreover δ
is kept constant any of the considered control loop performance properties
is unambiguously tied only with a pair of λ, ϑ values. Therefore it is evident
that any performance measure of the considered control loop can be mapped
over the admissible area of λ, ϑ given by intervals λ ∈ [0, 2] and ϑ ∈ [0.5, 3.0]
which have been extensively discussed in [B2] considering a relevant closed-
loop behaviour regrading to extreme values of the parameters λ, ϑ. In these
ranges the required damping ratio δ may be supposed as prescribed constant
the same as presented in [155], δ ∼= 0.35.
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Static observer-based anti-windup for the IMC controller

In fact, the real operation of the IMC controller can follow the state model
formulation (2.12) only as long as the actuating variable remains within the
actuator working range, umin < u(t̄) < umax. As soon as any of the satu-
ration boundaries is reached the saturated output cannot follow this model
any more and becomes stuck at this boundary value until the applied anti-
windup procedure restores the normal operation so that such a nonlinear
system results. Therefore, two controller outputs need to be distinguished,
namely the actual saturated us(t̄) and an auxiliary, internally estimated
û(t̄) in the same way like in back-calculation anti-windup scheme intended
for PI(D) controller. Because controller (5.15) is of the second order the
scheme referred to windup observer is applied for this estimation.

Consider a saturation free controller described by (2.11), i.e. by the
Laplace transform equations (2.12) with matrices given in (5.17). Let the
system operating according to the following equations

s̄x̂(s̄) = F(s̄)x̂(s̄) + G(s̄)e(s̄) + W[us(s̄)−Hx̂(s̄)− Le(s̄)] =

= [F(s̄)−WH]x̂(s̄) + [G(s̄)−WL]e(s̄) + Wus(s̄)
(5.19)

with an ordinary gain matrix W = [w1, w2]T be introduced as the windup
observer where W is to be set by an anti-windup tuning procedure. In this
case, the matrix W has constant elements trying to deal effectively with
windup effect of meromorphic controller, which leads to so-called static anti-
windup compensation. The auxiliary output variable û(t̄) results from the
state estimate x̂(t̄) and from the control error e(t̄) as û(t̄) = Hx̂(t̄) + Le(t̄).

The scheme given by (5.19) should not be confused with a genuine state
observer. The observer-like feedback in equation (5.19) acts intermittently,
being switched on and off in the instants of saturation. For instance the
characteristic equation of (5.19)

det (sI− F(s̄) + WH) =

= s̄2 + (2δΦ + w2C2)s̄+ (1 + δ2)Φ2 (1− exp(−s̄)) + w1C2 = 0
(5.20)

C2 = (1 + δ2)Φ2/k, contains terms originating from this feedback but due
to the intermittent operation (5.20) cannot properly represent the actual
dynamics of system (5.19) which is nonlinear in fact. Only intuitively we can
reckon with a quicker observer response with increasing w1, w2. The state
vector x̂(t̄) has a passing role only and with respect to its different purpose
the feedback in (5.19) is used to be rearranged to a scheme with feedback
closed from the controller output using the equality, Hx̂(t̄) + Le(t̄) = û(t̄)
given by the equation

s̄x̂(s̄) = F(s̄)x̂(s̄) + G(s̄)e(s̄) + W[us(s̄)− û(s̄)] (5.21)
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where the difference us(t̄)− û(t̄) is the saturation error. This scheme repre-
sents an inherent part of the controller itself. Whenever the saturation does
not occur the identity û(t̄) ≡ us(t̄) makes the last feedback term zero while
during the saturation the error affects the dynamics of the state estimate
x̂(t̄). Just switching on and off of this feedback makes the scheme (5.21)
nonlinear and thus different from the genuine observer.

The following proposition holds for tuning the feedback gain W =
[w1, w2]T .

Proposition 5.4.1. Let the quality of control error e(t̄) be evaluated by its
absolute error integral (IAE). The symbols ê(t̄) and es(t̄) are introduced to
distinguish between the saturation free and saturated alternatives of control
loop performance respectively. For both of them the appropriate IAE func-
tions are then as follows

ÎA =

∫ t̄

0
|ê(σ)|dσ, IAS =

∫ t̄

0
|es(σ)|dσ (5.22)

and their limits for t̄ → ∞ are used as performance criteria leading to
ÎA = limt̄→∞ ÎA(t̄) and IAS = limt̄→∞ IAS(t̄). The ratio of them

RAE =
IAS

ÎA

is then considered as the performance criterion evaluating the impact of the
windup observer (5.19) involvement in the control loop. The usual value
RAE > 1 indicates that the IAE performance becomes worse due to satura-
tion, while RAE < 1 indicates an improvement.

A novelty of the presented approach given by Proposition 5.4.1 consists
in considering the plant properties in the tuning. However, it is easy to see
that this way of setting the gains w1, w2 is feasible only due to the consistent
use of the dimensionless model of the control loop. For a set of similar plants
(5.6) with common λ, ϑ the IMC controller is designed according to (5.15)
with specifying the filter dynamics by p̄1,2 = Φk(−δ ± j). After applying
relation for the ultimate angle presented in [155] angle Φk can be eliminated
and the whole IMC control loop is then completely identifiable only with
the parameters λ, ϑ and the damping ratio δ. This property keeps hold
even if controller (5.15) is rearranged to the state-space form (2.12), (5.17).
The involvement of the windup observer (5.19) is tuned by the gains w1, w2

which remain the only parameters to be optimized according to the RAE

ratio as the selected performance criterion. As to the damping ratio it was
proved in [155] that for the dominance of the prescribed p̄1,2 = Φk(−δ ± j)
the optimum value is approximately δ ∼= 0.35. With this fixation only the
numbers λ, ϑ identify each of the investigated options of the plant and IMC
control loop.
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For the class of selected IMC control loops given by a common option of
λ, ϑ the best w1, w2 setting is then found as the minimum of RAE(w1, w2)
over the w1,2 area. This setting provides the saturating controller with
the best attainable control error while the saturation error is primarily not
regarded in criterion RAE. In the next section the special radial shape of the
criterion RAE(w1, w2) for a fixed λ, ϑ is presented which makes it possible to
respect both the errors e(t̄) and us− û in applying the control error criterion
RAE(w1, w2).

Application example and the tuning rule

Consider the class of similar plants as in (5.4) where the parameters λ =
a0/a

2
1 = 0.2 and ϑ = a1τ = 2. All these plants have the same ultimate

angle as referenced by theorem in [155]. The ultimate angle is Φk = 1.2647
and therefore their IMC controller according to (5.15), with Φ = Φk and
the damping δ = 0.35, results in the following common transfer function
K2,IMC(s̄)

K2,IMC(s̄) =
1.7954(s̄2 + 2s̄+ 0.8)

k [0.8s̄2 + 0.7082s̄+ 1.4363(1− exp(−s̄))]
(5.23)

This controller is transformed into the state-space form (2.12), (5.17), and
the windup observer feedback as in (5.19) is added. The control loop with
saturation resulting from this controller and the considered plant may now
be tested in repeated simulations on its disturbance rejection responses with
various options of the gains w1, w2. For each of the simulations the criterion
ratio RAE(w1, w2) is evaluated and the result of this testing over a sufficiently
wide area of w1, w2 is in Fig. 5.5. The shape of the criterion RAE(w1, w2)
is displayed by means of the contour lines RAE = const. and the linear
radial character of these lines reveals the following result: The RAE(w1, w2)
optimum is not a specific setting point w1, w2 but a straight ‘hollow’ so that
it is provided by any pair w1, w2 satisfying a proportionality w2 = aw1 + b.
For the presented example this proportionality is given by a = 6.29, b =
−0.41 and is drawn by the dashed line in Fig. 5.5. In view of this property
in evaluating the criterion RAE(w1, w2) it is possible to take into account not
only the optimum of control error but also the least obtainable saturation
error. Apparently the higher the gains w1, w2 the lower the saturation error
is obtained. Therefore if any of the settings satisfying w2 = aw1 + b are
optimum as to RAE(w1, w2), then the maximum values of w1, w2 satisfying
this relation provide an optimum for both the control and the saturation
errors respectively. Hence the recommended setting in this example is w1 =
3.24, w2 = 20. The step responses of the disturbance rejection with and
without saturation are in Fig. 5.6. The selection of as high values of the
gains is explained below.
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Fig. 5.5: Criterion RAE values over area w1, w2 with optimum locus (dashed line)

From the extensive set of simulation experiments it has resulted that
the above demonstrated optimum achieved by a proportionality between w1

and w2 is not an exception but a rule. The radial shape of RAE(w1, w2)
criterion is a feature that is characteristic for the plants (5.6) in general,
only the constants a and b change with varying λ and ϑ. For any plant
option given by λ and ϑ one can identify the corresponding values of a and
b. The straight lines w2 = aw1 + b, as in Fig. 5.5 determine the RAE(w1, w2)
minimum by almost all of their points with the exception of an area around
the w1, w2 origin. In fact the higher |w1,2| the better the appropriate part
of the straight line describes the minimum. Besides, the higher values of
w1, w2 the quicker is the compensation of the saturation error. That is why
the highest w1, w2 values from the obtained optimum line are taken. During
the numerous experiments with w1, w2 variations it has been found that
increasing the gains over 20, approximately, is inefficient in the observer
performance. That is why this value is chosen as the upper bound of both
w1, w2.

After investigating a representative set of plants from the ranges λ ∈
[0, 1.5] and ϑ ∈ [0.5, 3] and evaluating their RAE(w1, w2) criterion the ap-
propriate proportionality constants a and b can be assessed for each of the
pairs λ, ϑ. The obtained results are presented in Tab. 5.1 and Tab. 5.2.
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Fig. 5.6: Disturbance rejection response obtained with controller (5.23) with saturation
(solid line) and without saturation (dashed line)

a
ϑ

0.5 0.7 1.0 1.5 2.0 2.5

λ

0.1 91.2 91.2 91.2 91.2 91.2 91.2
0.2 91.2 91.2 91.2 91.2 6.3 2.7
0.3 91.2 15.5 4.3 1.3 0.6 0.3
0.5 2.5 1.0 0.4 0.2 0.1 0.1
1.0 0.2 0.1 0 0 0.1 0.2
1.5 0.1 0 0 0 0.2 0.4

Tab. 5.1: Values of the coefficients a for selected λ, ϑ combinations

5.5 Dynamic AWC tuning

A novel functional (dynamic) feedback for IMC controller is proposed in
this section in order to make the anti-windup scheme tuning easy to handle
concerning a number of tunable parameters.

5.5.1 FOPTD and IMC controller

Taking into account the system classes with large values of τ̄ , a closed-loop
controller based on IMC design method [41] for the model (5.2) is given as
follows

KIMC(s) =
Ts+ 1

k(Tfs+ 1− exp(−sτ))
. (5.24)

The single tuning parameter Tf determines the time constant of the closed
loop

G1,IMC(s) =
y(s)

r(s)
=

exp(−sτ)

Tfs+ 1
, (5.25)
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b
ϑ

0.5 0.7 1.0 1.5 2.0 2.5

λ

0.1 0.29 0.29 0.29 0.29 0.29 0.29
0.2 0.29 0.29 0.29 0.29 -0.41 -1.33
0.3 0.29 1.08 -0.44 -0.66 -0.77 -0.42
0.5 -0.35 -0.27 0.07 -0.46 -0.60 -0.47
1.0 0.57 -0.60 0 -0.22 0.55 1.87
1.5 -0.30 0 0 0.40 3.54 4.83

Tab. 5.2: Values of the coefficients b for selected λ, ϑ combinations

which is of the first order dynamics for the nominal case. Let us note that
the dynamical properties still need to be considered as infinite order due
to always present mismatch between the design and true parameters of the
system, i.e. the compensation is never entire. However, if the differences be-
tween nominal and true parameters are small, the infinite spectrum chains
are located far to the left of the stability boundary and the dynamics prop-
erties are predominantly given by the rightmost pole with the nominal value
s1 = − 1

Tf
. Such a case will be considered further on in this chapter.

The state-space model of the IMC controller, is given by

KIMC :

{
dx(t)

dt = 1
Tf

(x(t− τ)− x(t)) + T
Tf

(e(t− τ)− e(t)) + e(t)

u(t) = 1
kTf

(Te(t) + x(t))
(5.26)

Unlike PI controller, which has a single pole s1 = 0, the number of poles of
the IMC controller, given as solutions of the characteristic equation

Tfs+ 1− exp(−sτ) = 0, (5.27)

is infinite. However, the controller is still astatic with a dominant pole s1 = 0
as discussed in detail in Chapter 4.

Anti-windup feedback for IMC controller

Analogously to the PI controller, the IMC controller (5.26) can be extended
by a general anti-windup back-calculation feedback

K̂IMC :



dx(t)

dt
=

1

Tf
(x(t− τ)− x(t)) +

T

Tf
(e(t− τ)− e(t)) + e(t)

+ w

(
us(t)−

1

kTf
(Te(t) + x(t))

)
u(t) =

1

kTf
(Te(t) + x(t))

us(t) = sat(u(t))

(5.28)

61



where w is the anti-windup tuning parameter and us is the plant real control
input limited by saturation block. The characteristic equation of (5.28) then
reads

Tfs+ 1 +
w

k
− exp(−sτ) = 0. (5.29)

Due to its quasi-polynomial nature, the anti-windup feedback system has
infinitely many roots. This fact makes the tuning of the parameter w con-
siderably more difficult compared to the tuning of Tt in the PI controller
case presented in Chapter 5.4.1. Even though design and spectral analysis
tools are available to handle such a design task, the fact that only one of
the infinitely many poles can be assigned by a single parameter is likely to
bring considerable constraints concerning the stability perspective. In order
to avoid this issue, a functional anti-windup feedback is introduced which
will simplify noticeably the anti-windup design task.

The newly designed IMC state-space equation with the functional anti-
windup feedback is given by

K̂IMC :



dx(t)

dt
=

1

Tf
(x(t− τ)− x(t)) +

T

Tf
(e(t− τ)− e(t)) + e(t)

+

∫ τ

0

(
us(t− ϑ)− 1

kTf
(Te(t− ϑ)

+ x(t− ϑ))

)
dw(ϑ)

u(t) =
1

kTf
(Te(t) + x(t))

us(t) = sat(u(t))

(5.30)

where the functional feedback is considered in the form of a Stieltjes integral
with w(ϑ) as the delay term distribution. The characteristic equation of
(5.30) is then given by

Tfs+ 1 +
w(s)

k
− exp(−sτ) = 0. (5.31)

Analogously to the scheme of the PI controller (2.52), the objective is to
design such a feedback term w(s) to obtain dynamics determined by a single
pole s1 = − 1

Tt
, i.e. with the characteristic equation

Tts+ 1 = 0. (5.32)

Dividing (5.31) by Tf and (5.32) by Tt, and comparing the terms correspond-
ing to the zeroth power of s, the functional feedback term is determined as

w(s) = k

(
Tf

Tt
− 1 + exp(−sτ)

)
. (5.33)
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Fig. 5.7: Results of optimizing the IAE criterion for the system class (5.3) with τ̄ = 1,
IMC controller with Tf = 1

3
and the anti-windup functional feedback (5.34)-(5.35) (up-

most figure), and the optimal responses for the considered values of the control signal
saturation

To simplify the time-domain expression of (5.30) with (5.33), let the
saturation error be recalled as

v(t) = us(t)− u(t) = us(t)−
1

kTf
(Te(t) + x(t)). (5.34)

Then, the final form of the IMC controller with functional anti-windup feed-
back is given by

K̂IMC :



dx(t)

dt
=

1

Tf
(x(t− τ)− x(t)) +

T

Tf
(e(t− τ)− e(t)) + e(t)

+ k

((
Tf

Tt
− 1

)
v(t) + v(t− τ)

)
u(t) =

1

kTf
(Te(t) + x(t))

us(t) = sat(u(t))

v(t) = us(t)− u(t)

(5.35)
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Fig. 5.8: IAE optimal value of Tt with respect to the single tuning parameter of the IMC
controller Tf designed for the system (5.3) for several values of saturation value considered
with respect to the unit step of the set-point.

The full IMC controller scheme is also given in Fig. 5.9 with highlighted
artificial variables to illustrate concept of the functional AWC feedback w(s).

Analogously to the PI controller, the parameter Tt was optimized with
respect to the IAE criterion applied to the dimensionless model (5.3). As
the time delay τ̄ is compensated by the controller, the control action is inde-
pendent of the delay length. Therefore, the optimization task and saturated
responses have been simulated only for a single value of τ̄ = 1, see Fig. 5.7
where the results are shown for T̄f = 1

3 . It can be seen that similarly to the
PI controller case, the optimal value of Tt is close to the time constant of
the system for this particular setting of the IMC.

Results of more comprehensive simulation based analysis to obtain the
optimal value of Tt are given in Fig. 5.8 where IAE optimal value of this
feedback parameter is given with respect to the IMC controller parameter
Tf . The analysis has been performed for four saturation values us given as
multiples of the set-point unit step. In fact, this figure covers a whole rea-
sonable values of Tf (considering T being the time unit of the dimensionless
model). For Tf <

T
10 we obtain very aggressive control actions whereas for

Tf >
T
2 it is vice-versa. Note that for Tf = T a step-wise control action is

achieved as the response to the step change of the control action. This figure
also demonstrates that the choice Tt = T is a reasonable choice as it guaran-
tees close to optimum responses when the saturation limit cuts considerably
the non-saturated control action peak value. As demonstrated in Fig. 5.7,
if the cut part of the ideal control action response is not substantial, the
dependence of the objective function IIAE on the parameter Tt is relatively
low.
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Fig. 5.9: IMC controller scheme with functional anti-windup feedback given by term w(s)
in (5.33)

5.6 Concluding remarks

The key contribution of the chapter is in a simulation based tuning of the
anti-windup feedback with respect to the IAE criterion for low-order time-
delay models. Unlike the commonly used approach to the windup problem
the actuator saturation is not regarded as a separate nonlinearity but as an
inseparable property of the controller. From this point of view the control
error rather than saturation error is preferred in tuning the anti-windup
scheme parameters.

First, the task has been solved for a conventional PI controller for which
various rules exist in literature. As a rule, the anti-windup feedback time
constant is related to the integration time constant of the PI(D) controller.
The analysis performed in this chapter for a FOPTD model and PI controller
also tuned with respect to IAE criterion shows however that the optimal
value of the parameter should rather be related to the time constant of the
system.

Then, the IMC control loop with a meromorphic controller is investigated
from the point of view of the actuator saturation. It has been demonstrated
that the usual observer-like scheme with static feedback is applicable with
satisfactory results to the meromorphic controller function too. Although
the windup observer feedback is closed from the saturation error its tuning is
performed primarily subject to the IAE control error performance criterion.

In the second part, a novel structural solution of the anti-windup feed-
back scheme has been proposed for an IMC controller, also considered and
tuned for the FOPTD model. Due to the time delay that is projected to the
structure of the IMC controller, the anti-windup feedback system is of infi-
nite order. This problem is handled by a functional feedback that turns the
dynamics of saturated controller to the equivalent finite order form of the
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PI case. Consequently, similarly as for the PI controller, a simulation based
optimization task has been performed for tuning the anti-windup feedback
time constant. Its optimal value is also close to the time constant of the
system. An important aspect of the analysis is that it has been performed
on the dimensionless nominal system with both scaled gain and time con-
stant. Thus the results derived on a relatively low set of simulations can be
generalized to a broad class of systems.
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Chapter 6

Observer-based anti-windup
compensator with
anisochronic feedback

6.1 Introduction

Based on the results achieved in Chapter 5 for low-order systems, the
observer-based AWC technique in combination with the anisochronic state
observer described in Chapter 2.3.4 has been utilized in [B10] in order to
deal with control input saturation for a controller of a retarded type (2.11).
The aim of the proposed approach is to get a low number of AWC tuning
parameters which are then determined using a performance criterion that
captures the behavior not only of the controller corrupted by the saturation,
but of the entire closed loop including a controlled process. A higher order
example completes the proposed approach.

6.2 Observer-based AWC parametrization

Let us suppose a SISO controller K̂(s) (2.48) of retarded type burdened by
saturation (2.46). The task is to design AWC for the controller with the aim
of achieving the least possible closed-loop deterioration caused by the present
saturation. A general observer-based AWC, has been chosen for this task
thanks to the ability to directly influence the internal states of controller.
Using the state feedback W from saturation error us − û, it is possible
to prescribe the dynamic behaviour of the controller when the saturation
occurs. A two-step approach has been chosen for the proposed AWC design:
at first, the AWC state-feedback form is determined (i.e. elements of the
feedback matrix W); then, the available parameters are optimized with
respect to a chosen criterion.
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In order to simplify the follow-up optimization task, only one parameter
is determined for tuning in the first step determining the form of the AWC
feedback. with this aim the prescribed characteristic polynomial mK̂(s) of
the saturated controller is chosen in the following form

mK̂(s) = (s+ σ)n =

n∑
k=0

(
n

k

)
sn−kσk, (6.1)

where n is the number of state variables and also the multiplicity of σ.
Because the controller may have delays in states, the state feedback W(s)
has to be chosen so that all time delays in characteristic equation of (2.12)
are compensated when the saturation occurs. The controller involving such
functional AWC feedback is given by

K̂(s) :



sxK̂(s) = F(s)xK̂(s) + G(s)e(s) + W(s)(û(s)− us)

= F̄(s)xK̂(s) + Ḡ(s)e(s)−W(s)us

û(s) = HxK̂(s) + Le(s)

us = sat(û(s))

e(s) = r(s)− y(s),

(6.2)

where F̄(s) = (F(s) + W(s)H) and Ḡ(s) = (G(s) + W(s)L) are state and
input matrix, respectively.

The requirement on the finite spectrum (6.1) yields the following condi-
tion

mK̂(s) = det(sI− F(s)−W(s)H)
!

= (s+ σ)n. (6.3)

This imply that the elements of W(s) may not be constant but functions
of s, i.e. functional. In general, a root of a characteristic equation may be
σ ∈ C, =(σ) = 0 and <(σ) < 0 in accordance with (6.1). As a result, a stable
non-oscillatory behaviour of AWC is acquired, ensuring that internal states
of the saturated controller ensure convergence of the controller output to
appropriate saturation limit. Although, at the first sight, the single tuning
parameter σ does not give a sufficient freedom in the design of AWC dynamic
behaviour, the single-parametric tuning is straightforward having a respect
to possible infinite dimensionality of the controller. AWC optimization task
is then reduced to standard pole placement of a multiple prescribed mK̂(s)
zeros. An so far unsolved task of the AWC design is then a method how to
satisfy the equality (6.3).

An approach involving anisochronic state observer with Ackermann for-
mula, outlined in Chapter 2.3.4, is chosen to deal with determining func-
tional elements of W(s) in order to meet the condition (6.3). Applying the
Ackermann form (2.42) in (2.48) the feedback matrix W(s) is obtained in
the form

W(s) = mK̂ (F(s))O−1(s)
[
0 0 . . . 1

]T
, (6.4)
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which is to be identified with (6.1). It has to be recalled, that observability
of the saturation-free controller K(s) has to be examined beforehand using
(2.44), for example.

+

+

+ +

+ _
+

functional state feedback

Fig. 6.1: Block diagram of the proposed observer-based AWC with the functional state
feedback matrix W(s)

Unlike the original approach [158] dealing with a process state estima-
tion, the proposed method applies the observer to the saturated controller
K̂(s), where the observed output is the saturated control input us as illus-
trated in Fig. 6.1.

Because the anisochronic controller K̂(s) is a mathematical model and
therefore there is no mismatch between the controller and a physical real-
ization, there is no possibility to have an error in parameters which could in
time delay systems lead to undesired (unstable) behaviour. However, it must
be noted, that Ackermann formula imposes a hard limitations in applying
the above described method to systems (i.e. in this context controllers) with
more than one output.

The tuning of the AWC scheme characterized by the state feedback W(s)
(6.4) is then limited to finding an optimal setting with the single tuning
parameter σ subject to a chosen criterion. The chosen criterion is integral
square error (ISE) given by the following time integral over infinite time

JISE =

∫ ∞
0

e2(t) dt (6.5)

where e(t) = r(t)− y(t) is an error variable expressing a difference between
a set-point and a controlled variable. The time signal e(t) is supposed to
be zero-valued for t < 0 according to assumption of the zero initial condi-
tions. The chosen criterion JISE is slightly different in a comparison with
the generally used observer-based approaches (for example [85, 86, 143])
that attempts to minimize controller internal states error instead of entire
closed-loop optimization.

It should be emphasized that ISE criterion minimization results have a
longer settling time in comparison with IAE but the IAE criterion allows a
larger deviation in variable e(t). The reason for the smaller deviations in ISE
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criterion is a penalization of large deviations of the error e(t) originating from
the square power term in the integral (6.5). The windup effect is commonly
related to a possible presence of an overshoot in a time response leading
to a control performance degradation. Thus, the criterion penalizing large
overshoots should be preferred.

ISE criterion is closely related to L2-norm, denoted ‖·‖2, and given by

‖e‖2 =

(∫ ∞
0

e2(t) dt

) 1
2

(6.6)

for a signal e(t) ∈ L2 (supposing e(t) = 0 for t < 0), where L2 is the
set of square integrable signals [23], i.e. L2 =

{
e(t) ∈ R :

∫∞
0 e2(t) dt <∞

}
.

Moreover, the square of this norm, namely ‖e‖22, represents the total energy
contained in the signal which is exactly the chosen ISE criterion (6.5). A
beneficial property of this norm is its correspondence with frequency-domain
solution described by Parseval’s theorem stating

‖e‖2 =

(
1

2π

∫ ∞
−∞
|E(jω)|2 dω

) 1
2

(6.7)

where E(jω) is the Fourier transform of the signal e(t). As the resulting
closed-loop system is nonlinear due to the presence of the saturation, an
analytical evaluation of the criterion both in time- or frequency-domain is
rather hard to implement even if some approaches for a nonlinear system
behaviour investigation in frequency-domain have been formulated (see e.g.
[15, 87]). Therefore, the criterion (6.5) has been evaluated for discrete points
in the time domain for a finite time t1 < ∞. The final time t1 has been
chosen sufficiently long in order to capture most of the dynamical changes
in a time response.

The resulting optimization problem is defined as follows

min
σ

JISE =

∫ t1

t0

e2(t) dt (6.8)

with the finite time interval t ∈ [t0, t1] starting from t0 = 0.

6.3 Application example

A higher order SISO model of a simple heat transfer process with significant
time delays illustrated in Fig. 6.2 combined with IMC design of a controller
have been chosen in order to demonstrate a parametrization of the observer-
based AWC for a controller of a retarded type.

The illustrated process, which has been taken from [103], consists of two
separate heating circuits. The primary circuit is equipped with a heater
where the water is warmed up to the outlet temperature ϑ1(t). The water

70



heater

u

heater

heat
exchanger

cooler

ϑ1

ϑ2

ϑ3

ϑ4

Fig. 6.2: Scheme of the laboratory heat transfer set-up model (scheme taken from [103])

cools down to the temperature ϑ2(t) by passing a heat exchanger between
the primary and the secondary circuit. In the secondary circuit the warmed
water at the outlet of the heat exchanger with the temperature ϑ3(t) is
supplied to an air-water cooler where it cools to the outlet temperature ϑ4(t).
The considerable time delays in a process model originate from connection
between the listed components which are connected with substantially long
pipelines with negligible thermal losses. The circulation of the water in both
heating circuits is forced by electrical water pumps with constant power set.
The adjustable voltage of the electrical heater controlling its heat power is
considered as the system input u(t). The system output is the temperature
ϑ4(t) at the output of the cooler in the secondary circuit. The described
process can be considered as a simplified model of a heating system of a
small house.

The higher order mathematical model of the described heat transfer pro-
cess is based on the interconnection of the elementary subsystems modelled
using basic time delay models. The detailed system model design and the
identification of its parameters can be found in [103]. Both procedures are
omitted here because this is not the point of the presented methodology.
The assumed differential equations describing the heat transfer model P̃ are
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as follows

T1
dϑ1(t)

dt
+ ϑ1(t) = K1u(t− τ1)

T2
dϑ2(t)

dt
+ ϑ2(t) = ϑ1(t− τ2)−K2∆ϑ(t)

T3
dϑ3(t)

dt
+ ϑ3(t) = ϑ4(t− τ4) +K3∆ϑ(t)

T4
dϑ4(t)

dt
+ ϑ4(t) = K4ϑ3(t− τ3)

y(t) = ϑ4(t)

(6.9)

where the temperature difference ∆ϑ(t) is approximated as follows

∆ϑ(t) =
1

2
(∆ϑi(t) + ∆ϑo(t))

∆ϑi(t) = ϑ1(t− τ2)− ϑ4(t− τ4)

∆ϑo(t) = ϑ2(t)− ϑ3(t)

(6.10)

with appropriate heat exchange static gains K1 = 1, K2 = 0.9, K3 = 0.9,
K4 = 0.9, time delays τ1 = 0 s, τ2 = 5 s, τ3 = 30 s, τ4 = 30 s resulting from
distributed parameters of heat exchange and accumulation time constants
T1 = 10 s, T2 = 3 s, T3 = 3 s, T4 = 10 s. The numeric values of the listed
parameters have been taken from an example presented in [103], where the
parameters (i.e. static gains and time constants) and the time delays were
separately identified using adapted least square method algorithm supported
by Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization method [64].

State-space representation of the heat transfer model described by the
system of delay differential algebraic equations (6.9) is of order N = 4 with
following matrices in Laplace transform, respecting relaxed (zero) initial
conditions (x(0) = 0),

A(s) =


− 1
T1

0
1
T2

(
1− K2

2

)
exp(−sτ2) − 1

T2

(
1 + K2

2

)
K3
2T3

exp(−sτ2) K3
2T3

0 0

0 0
K2
2T2

K2
2T2

exp(−sτ4)

− 1
T3

(
1 + K3

2

)
1
T3

(
1− K3

2

)
exp(−sτ4)

K4
T4

exp(−sτ3) − 1
T4

 (6.11)

B(s) =
[
K1
T1

exp(−sτ1) 0 0 0
]T

C =
[
0 0 0 1

]
,D =

[
0
]

with the state vector x(s) =
[
ϑ1(s) ϑ2(s) ϑ3(s) ϑ4(s)

]T
. Even though

all the temperatures are available measured outputs, the sufficient single
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Fig. 6.3: Poles and zeros of the heat transfer system model (left) and the system output
y(t) time response to a unit step change of the control input u(t) (right)

system output is the temperature at the cooler output y(s) = ϑ4(s) in this
example. The system control input is the adjustable voltage of the heater
u(s).

Because of the time delays present in the states of the system model
(6.11), leading to a characteristic polynomial of the system model in a quasi-
polynomial form, the model has infinitely many poles. The poles of the
system have been found using software Quasi-Polynomial Mapping Based
Rootfinder (QPmR) [134] applied to the quasi-characteristic polynomial

mP̃ (s) = det(sI−A(s)) (6.12)

where the functional matrix A(s) is given by (6.11).

The poles are located in the left-half of the s-plane, hence the system
model is stable with a time response shown in Fig. 6.3 together with system
spectrum. Static gain of the system model (6.11) can be calculated using
the initial value theorem applied to the system transfer function acquired
from the state-space representation with the matrices stated in (6.11). The
value 0.81 of the gain is then obtained by evaluating the following limit

lim
s→0

P̃ (s) = C(sI−A(s))−1B(s) + D. (6.13)

The system model is minimum-phase and it has single zero with negative
real part, thanks to that the zero can be included in the system model
inversion necessary for following the IMC controller design.

The state-space representation (6.11) has to be reformulated into a trans-
fer function in order to apply IMC design. The transfer function P̃ (s) of
the model acquired from the delay differential algebraic equations (6.9) by
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putting them together using suitable substitutions is stated as follows

P̃ (s) =
b(s) exp(−sτb)

a(s)
=

(b1s+ b0) exp(−sτb)
1∑
i=0

N∑
j=0

ai,jsj exp(−sτa,i)
(6.14)

where all coefficients ai,j and bi are real numbers with the following values

a0,4 = 2T1T2T3T4

a0,3 = K2T1T3T4 +K3T1T2T4 + 2T1T2T3 + 2T1T2T4 + 2T1T3T4 + 2T2T3T4

a0,2 = K3T1T4 + 2T1T2 +K2T1T3 +K2T1T4 +K2T3T4 +K3T1T2

+K3T2T4 + 2T2T3 + 2T2T4 + 2T1T3 + 2T1T4 + 2T3T4

a0,1 = K2T1 +K2T3 +K2T4 +K3T1 +K3T2 +K3T4 + 2T1

+ 2T2 + 2T3 + 2T4

a0,0 = K3 +K2 + 2, τa,0 = 0 s

a1,4 = 0, a1,3 = 0, a1,2 = K4T2T1(K3 − 2)

a1,1 = K4(K3T2 +K3T1 − 2T2 − 2T1 −K2T1)

a1,0 = K4(K3 −K2 − 2)

τa,1 = τ3 + τ4

b1 = T2K4K3K1, b0 = 2K4K3K1, τb = τ1 + τ2 + τ3.

Based on the presence of time delays, only the polynomial a(s) in the trans-
fer function (6.14) is a quasi-polynomial, but advantageously, with all stable
poles. The transfer function P̃ (s) may be then decomposed into the invert-

ible P̃o(s) = b(s)
a(s) and the non-invertible part P̃i(s) = exp(−sτb).

For completeness, the transfer function (6.14) can be more conveniently
obtained with the identical result from the state-space representation (6.11)
using the same formula (2.7) above utilized for getting the static gain of the
system model.

Knowing the transfer function of the system model P̃ (s), the IMC con-
troller Q(s) according to the equation (2.24) with a simple low-pass filter
F (s) of a degree NF is in the form

Q(s) =
a(s)

b(s)
F (s) =

1∑
i=0

N∑
j=0

ai,js
j exp(−sτa,i)

(b1s+ b0)(Tfs+ 1)r
. (6.15)

The degree of the filter NF has been chosen to ensure that the controllerQ(s)
is at least proper (it can be even strictly proper) and so NF = N−Nb, where
Nb = 1 is the order of the polynomial b(s) from the system model transfer
function (6.14). For the purpose of correct application of AWC scheme
demanding a compact form of the controller, the IMC scheme is reformulated
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into a classical feedback control form with controller K(s) described by the
equation (2.26). This leads to the following transfer function

K(s) =
a(s)

n(s)
=

1∑
i=0

N∑
j=0

ai,js
j exp(−sτa,i)

Nb+NF∑
i=0

ni,jsj exp(−sτn,i)
(6.16)

with quasi-polynomials both in numerator and in denominator with real
constant coefficients

n0,0 = b0 n0,4 = T 3
f b1 n1,3 = 0

n0,1 = 3Tfb0 + b1 n1,0 = −b0 n1,4 = 0

n0,2 = 3T 2
f b0 + 3Tfb1 n1,1 = −b1 τn,0 = 0 s

n0,3 = T 3
f b0 + 3T 2

f b1 n1,2 = 0 τn,1 = τb

(6.17)

The classical feedback controller K(s) can be simply transformed into a
state-space representation of a general form (2.12) using various approaches
giving the identical input/output dynamics. In this example, the observ-
able canonical form, which is referred to as the nested integration method
[26, 140], has been chosen to represent the controller K(s) in a state-space
representation. The closed loop controller K(s) is then defined in the state-
space representation by the following functional matrices

F(s) =


0 0 0 − 1

n0,4
(n0,0 + n1,0 exp(−sτn,1))

1 0 0 − 1
n0,4

(n0,1 + n1,1 exp(−sτn,1))

0 1 0 − 1
n0,4

n0,2

0 0 1 − 1
n0,4

n0,3

 ,

G(s) =


a0,0 + a1,0 exp(−sτa,1)− a0,4

n0,4
(n0,0 + n1,0 exp(−sτn,1))

a0,1 + a1,1 exp(−sτa,1)− a0,4

n0,4
(n0,1 + n1,1 exp(−sτn,1))

a0,2 + a1,2 exp(−sτa,1)− a0,4

n0,4
n0,2

a0,3 − a0,4

n0,4
n0,3

 , (6.18)

H =
[
0 0 0 1

n0,4

]
,

L =
a0,4

n0,4
(6.19)

respecting zero coefficients introduced in (6.17). The characteristic quasi-
polynomial of the linear controller K(s) has the form

mK(s) = det (sI− F(s)) = s4 +
T 3

f b0 + 3T 2
f b1

T 3
f b1

s3 +
3Tfb1 + 3T 2

f b0
T 2

f b1
s2

+
3Tfb0 + b1(1− exp(−sτb))

T 3
f b1

s+
b0(1− exp(−sτb))

T 3
f b1

(6.20)
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Fig. 6.4: Poles and zeros of the closed loop controller K(s) with the time constant Tf = 5 s
(left) and the controller ideal (i.e. unsaturated) output u(t) time response to a unit step
change of the error input e(t) (right) including substitute PI controller with a comparable
dynamics

which, as expected, equals to the quasi-polynomial n(s) in denominator of
the transfer function (6.16) divided by the coefficient n0,4 in order to satisfy
the property that a characteristic (quasi-)polynomial should be monic.

The only tuning parameter of the controller K(s), in this case, is the
time constant Tf of the filter F (s) determining the closed loop dynamics
and related aggressiveness of the controller. The poles and zeros of the con-
troller K(s) for the value Tf = 5 s (here chosen at random, but sufficiently
fast) are shown in the Fig. 6.4. The location of the controller zeros reflects
the location of the poles of the system model (Fig. 6.3) as it follows from the
procedure of the controller design. However, the location of the poles in the
complex plane is more important. Leaving aside one stable real pole origi-
nating from the polynomial b(s) and intended to compensate input dynamics
of the heat transfer process, there are infinitely many left half s-plane poles
along the imaginary axis due to presence of the time delay τb in the denom-
inator of the controller transfer function K(s). Only a single pole is exactly
at the s-origin, giving the controller integral nature and being the rightmost
pole. The rest of the poles are high frequency poles tending to negative in-
finity with their real parts, having less and less impact on the step response
of the controller with time passing. Consequently, the controller K(s) can be
then, for highlighting its integral property, substituted by the PI controller
with a similar dynamics given by transfer function KPI(s) =

kps+ki

s . The
step response of the substitute PI controller is shown in the Fig. 6.4 with ini-
tial jump defined by the proportional gain kp = lims→∞ s

K(s)
s = 1.185 and

integral part characterized by the integral gain ki = lims→0 sK(s) = 0.0246.
The integral gain ki is, among others, affected by the choice of the time con-
stant Tf in the denominator of the transfer function K(s), which is obvious
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Fig. 6.5: Step responses of the controller K(s) for various values of the time constant Tf

from the following symbolic expression of the final value theorem applied to
the transfer function of the controller K(s) (getting steady state value of its
impulse response)

ki = lim
s→0

sK(s) =
a0,0 + a1,0

b0 (τb + 3Tf)
. (6.21)

The effect of the controller parameter Tf might be also revealed by
Fig. 6.5, where step responses of the controller K(s) are shown for various
values of the time constant Tf . Moreover, as can be expected, the integral
constant ki reflects dynamics of the system model P̃ (s), specifically with the
constants a0,0, a1,0, b0 and the time delay τb. Because the time delay τb is
significantly large (35.1 s), the effect of the time constant Tf to the integral
gain ki decreases for a reasonably fast chosen overall closed-loop dynamics.

To complete the description of the controller behaviour, a reference must
be made to the harmonic component present in the controller step response
illustrated in the Fig. 6.5, which is very noticeable especially for small values
of filtering parameter Tf . The referenced phenomenon is described in detail
in Chapter 4 using a preliminary study.

The overall closed loop dynamic is characterized by the choice of the
time constant Tf . If there is no mismatch between the process P (s) and
the process model P̃ (s) in the linear closed loop (i.e. without any nonlinear
element) the dynamic closed-loop behaviour is given only by the input time
delay τb and the filter F (s) (see Fig. 6.6).

6.3.1 AWC parametrization

The purpose of the proposed setting of AWC scheme is to assure a simple
tuning method by eliminating all transcendental terms in the characteristic
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Fig. 6.6: Step response of the closed loop system with the controller K(s) (Tf = 5 s)

equation of the saturated closed-loop controller K̂(s), i.e. to make it al-
gebraic only with a single root of the appropriate multiplicity. Therefore,
the intended monic polynomial (6.1) of fourth order (i.e. n = N = 4) is
considered as the characteristic polynomial mK̂(s) with the following form

mσ(s) = s4 + 4σs3 + 6σ2s2 + 4σ3s+ σ4. (6.22)

Dynamic behaviour given by the characteristic polynomial (6.22) will be
active only when a saturation occurs because of nonzero saturation error,
otherwise the original dynamic properties of the controller, described by the
transfer function K(s), are preserved.

The proposed AWC scheme (6.2) parametrization utilizes a feedback
matrix W(s) to attain a desirable properties of a saturated controller K̂(s).
In this case, the task of the feedback matrix W(s) is to assure the desired
polynomial form (6.22). The elements of the AWC observer feedback matrix
W(s) = [w0(s), w1(s), w2(s), w3(s)]T can be determined using various ap-
proaches which differ in complexity of a procedure. The proposed approach
uses the well-known Ackermann formula described in Chapter 2.3.4 for an
observer design. Before the formula can be applied, observability property
of a observed system has to be examined first. This will be achieved by
using an observability matrix (2.44). The observability matrix of the linear
controller K(s) is

O(s) =


0 0 0 1

T3
f
b1

0 0 1

T3
f
b1

− 3b1+Tfb0
T4

f
b21

0 1

T3
f
b1

− 3b1+Tfb0
T4

f
b21

T2
f b

2
0+3Tfb0b1+6b21

T5
f
b31

1

T3
f
b1
− 3b1+Tf b0

T4
f
b21

T2
f b

2
0+3Tf b0b1+6b21

T5
f
b31

O4,4(s)

 (6.23)

where the element in the last row and column of the observability matrix is
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O4,4(s) = −(10b31−b31exp(−sτb)+T 3
f b

3
0 +3T 2

f b
2
0b1 +6Tfb0b

2
1)/(T 6

f b
4
1). Because

all parameters in the observability matrix O(s) are supposed to be positive
and nonzero, the matrix (6.23) is of the lower anti-triangular form [80] with
a determinant given by a product of diagonal elements. The determinant of
the matrix (6.23) is just a simple fraction in the following form

det (O(s)) =
1(

T 3
f b1
)4 (6.24)

which is nonzero for every nonzero parameters involved and for every s ∈ C.
Therefore, the observability matrix (6.23) is nonsingular and, related to
that, also invertible (i.e. of full rank: rank(O(s)) = N). The inversion of
the observability matrix

O−1(s) =

 3Tfb0+b1(1−exp(−sτb)) 3b0T 2
f +3b1Tf T 2

f (3b1+Tfb0) T 3
f b1

3b0T 2
f +3b1Tf T 2

f (3b1+Tfb0) T 3
f b1 0

T 2
f (3b1+Tfb0) T 3

f b1 0 0

T 3
f b1 0 0 0

 (6.25)

is the anti-triangular matrix as well, but the upper one. The feedback matrix
W(s) may be then obtained using the formula (6.4) leading to the solution

W(s) =


T 3

f b1σ
4 − b0 + b0 exp(−sτb)

4T 3
f b1σ

3 − 3Tfb0 − b1 + b1 exp(−sτb)
6T 3

f b1σ
2 − 3T 2

f b0 − 3Tfb1
4T 3

f b1σ − T 3
f b0 − 3T 2

f b1

 =


w0(s)
w1(s)
w2

w3

 (6.26)

which is exactly the same solution which would be obtained by applica-
tion of the approach described in Remark 6.3.1 concluded with the system
of linear equations (6.28) resulting from the comparison of characteristic
(quasi-)polynomials.

Regarding to feasibility of the proposed result, the feedback matrix (6.26)
has a delay term in two elements, namely w0(s) and w1(s), remaining ele-
ments are constant. The delays are positive so there is no obstacle to imple-
ment such a feedback with the matrix W(s) because there are no unfeasible
anticipative delays involved.

Remark 6.3.1. The alternative straightforward, but suitable for low-order
systems, approach how to determine coefficients of the proposed AWC feed-
back matrix W(s) is based on the direct comparison of the characteristic
(quasi-)polynomial coefficients. The (quasi-)polynomials to be compared
are the desired characteristic polynomial (6.22) and a characteristic quasi-
polynomial of the nonlinear controller K̂(s) with the integrated AWC. The

79



characteristic polynomial of the saturated controller K̂(s) of the form

mK̂(s) = det (sI− (F(s) + W(s)H))

= s4 +
b0T

3
f + 3b1T

2
f − w3(s)

T 3
f b1

s3 +
3b0T

2
f + 3b1Tf − w2(s)

T 3
f b1

s2

+
3Tfb0 + b1 − b1 exp(−sτb)− w1(s)

T 3
f b1

s

+
b0 − b0 exp(−sτb)− w1(s)

T 3
f b1

(6.27)

includes extra terms w0(s), . . . , w3(s) compare to the characteristic polyno-
mial (6.20) of the linear controller K(s). The terms w0(s), . . . , w3(s) are
brought about by the AWC feedback having a general quasi-polynomial na-
ture. Comparing coefficients of the appropriate polynomial terms and solv-
ing the following system of linear equations in the variables w0(s), . . . , w3(s)

4σ =
b0T

3
f + 3b1T

2
f − w3(s)

T 3
f b1

6σ2 =
3b0T

2
f + 3b1Tf − w2(s)

T 3
f b1

4σ3 =
3Tfb0 + b1 − b1 exp(−sτb)− w1(s)

T 3
f b1

(6.28)

σ4 =
b0 − b0 exp(−sτb)− w1(s)

T 3
f b1

the elements of the matrix W(s) are obtained. There is a unique solution
of a system of linear equations if they are independent of each other. For
the system of equations (6.28) is the condition of independence satisfied and
the unique solution exists. ©

6.3.2 AWC tuning

The effect of saturation limits on the chosen criterion (6.5) is crucial for the
resulting time response. The more is a control signal limited, the more is a
windup effect distinct and a control-loop behaviour deteriorates. For sim-
plification purpose, the symmetric saturation limits umin and umax around
zero value of the control signal have been chosen with the assumption that
the initial conditions ensure that the actuator is in the middle of its working
range. So the saturation limits hold umin = −umax for umax > 0. A linear
region of a control loop behaviour then applies for u ∈ [umin, umax].

To relate the optimization results for various settings of the controller
(6.16), given by the value of the time constant Tf , relative saturation limit
δ(umax) has been introduced with the relation

δ(umax) =
ū− umax

ū− u∞
(6.29)
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where ū = supt∈[0,∞) u(t) and u∞ = limt→∞ u(t) evaluated for the unit set-
point r(t) step response in the linear closed loop. The value of u∞ can be
obtained using simulation as an estimate or exactly by evaluation of the
following limit

u∞ = lim
t→∞

u(t) = lim
s→0

s
K(s)

1 +K(s)P̃ (s)

1

s
=

a(s)

n(s) + b(s) exp(−sτb)
(6.30)

where K(s)

1+K(s)P̃ (s)
is noise sensitivity function [7] with input r(s) (r(s) = 1

s

for step response) and output u(s). Compared to that, the quantification
of ū is more complicated because it requires a knowledge of a time response
of the control variable u(t) which is difficult, but not impossible, to obtain

by inverse Laplace transform applied to the transfer function 1
s

K(s)

1+K(s)P̃ (s)
.

However, the knowledge of the precise value ū does not bring any significant
benefits for the optimization procedure (6.8), so the value has been evaluated
using a simulation. For a more detailed explanation, δ(umax) = 0 means that
ū = umax and so there is no limitation caused by saturation, compared to
that, δ(umax) = 1 indicates that the control action is limited to the value
of the relaxed control action u∞ meaning that the control action is ‘fully’
limited but the set-point value is still reachable. Reason for introducing such
an auxiliary variable δ(umax) is the different behaviour of the controller K(s)
(i.e. control action variable) for the values of the time constant Tf leading
to differing maxima of the control action variable u(t). The values of the
time constant Tf to be followed up have been chosen sufficiently small (i.e.
aggressive) in order to achieve noticeable windup effect due to a strong
integral part of the controller as discussed earlier using the integral gain
(6.21). Otherwise, the windup effect is not so noticeable and the AWC
optimization results are less obvious.

To illustrate clearly a deterioration of the closed-loop performance when
the saturation is present the following ratio variable has been adopted

RISE(σ, umax) =
ĴISE(σ, umax)

JISE
(6.31)

where JISE is a value of the chosen ISE criterion (6.5) for the case where
there is no saturation in a closed loop, which corresponds to an ideal designed
behaviour, and ĴISE is the value of the criterion for a saturated control loop
with respect to AWC setting (given by σ) and saturation limit (given by
δ(umax)). Because JISE describes a linear behaviour it does not change
for any value of σ or δ(umax) in the ratio (6.31). Then the optimization
procedure (6.8) can be then replaced with

min
σ

RISE (6.32)

without losing the original idea. The ratio RISE helps to understand how
much performance of the closed loop deteriorates (expressed as a percentage
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value) subject to saturation. Obviously, the effort of the AWC optimization
procedure is to find a minimum of RISE for the specific settings. In fact, it
means to get closer to RISE = 1 if a control process performance deteriora-
tion will be always assumed. It is very unlikely that saturation would have
a positive effect on the closed-loop performance expressed by the criterion
(6.5).
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Fig. 6.7: Step responses of the saturated closed loop (Tf = 5 s and δ(umax) = 40%) with
unsatisfactory setting of the proposed AWC given by a value of the parameter σ - too
small value (left), too large value (right)

The values of ratio RISE have been obtained by simulations for combina-
tions of the parameters σ ∈ [0.1, 4] and δ(umax) ∈ [0, 1]. The interval of the
AWC parameter σ has been chosen in order get feasible results. Although
the resulting internal dynamics of the saturated controller K̂(s) is stable
for 0 < σ < 0.1, thanks to the chosen characteristic polynomial (6.22), it
is noticeably slow which results in the windup effect emphasization. The
slow response for strong limitations of the control variable (i.e. higher val-
ues of δ(umax)) causes that the control input û(t) to the process remains
stuck at the saturation limit too long leading to an undesirably small but
long-lasting overshoot of the controlled variable y(t), an unsatisfactory time
response (see Fig. 6.7 (left)) or even unstable closed-loop time response for
σ → 0. On the other hand, too aggressive dynamics caused by the AWC
generates hectic reactions to the exceeding the saturation limits. In such
a case, the AWC tries to recklessly reach the state u(t) = û(t) again re-
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gardless of the control process negatively influencing a linear behaviour of
the controller (see Fig. 6.7 (right)). However, this behaviour can even lead
to unstable closed-loop responses. The interval of the parameter δ(umax)
covers all reasonable constraint levels as discussed for the auxiliary variable
definition (6.29).
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Fig. 6.8: Simulation results of AWC settings (given by the parameter σ) expressed in the
values of RISE for various values of the time constant Tf with respect to different relative
saturation limit δ(umax) completed with locally optimal values of σ (red line)

Simulation results for various settings of the controller K̂(s) are shown in
Fig. 6.8. The values of the ratio RISE are depicted using contour plots which
provide a clear insight into the effect of AWC settings. The influence of the
parameter σ selection to RISE for small values of δ(umax) is negligible which
is obvious from an enlarging area of minimal ratio values for δ(umax) → 0
(regardless of Tf). However, as the saturation constraint more and more
limits the controller output u(t) (for δ(umax) → 1) the interval of σ, assur-
ing as small performance deterioration as possible (RISE(σ, umax) ≤ 1.01),
is getting smaller resulting in a noticeable local minimum of RISE with re-
spect to δ(umax). This beneficial property is better comprehensible from the
Fig. 6.9 where the same results from Fig. 6.8 are shown for distinct values
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of δ(umax). The minimum of RISE, representing indirectly the optimization
criterion, can be found for every simulated level of δ(umax) separately, gen-
erating an interval of some locally optimal values σ. The interval is almost
the same for all simulated values Tf as can be seen from Fig. 6.9.
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Fig. 6.9: RISE(σ, umax) values obtained by simulations presented for distinct levels of
δ(umax) completed with the interval of locally optimal values of σ (red line)

The overall goal is to choose a single constant σ which gives satisfactory
results for most of the feasible saturation levels described by δ(umax) ∈ [0, 1]
for a specific setting of Tf (i.e. for a chosen linear closed-loop behaviour).
Because the optimal values of σ vary for different δ(umax) a compromise
settings must be adopted. The slope of evaluated criterion dramatically
increases for σ → 0, therefore, it is safe to choose an optimal value sufficiently
distant from σ = 0. Based on this request the maximum locally optimal
value of the parameter σ has been chosen as the ‘globally’ optimal setting
for the proposed AWC.

Some simulation results with the optimal value of the AWC parameter
σ are illustrated in the Fig. 6.10 for various levels of δ(umax) and the con-
troller parameter Tf . The value of the AWC parameter σ has been chosen
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the same for all levels of δ(umax) in order to show that even for a uniform
value the proposed single-parameter AWC tuning gives satisfactory results
compared to the situation when there is no AWC involved. The resulting
time responses of the process output y(t) do not exhibit the feared large
overshoots resulting from the integral action even for the hard constraints
given by the relative saturation limit δ(umax) = 95%. For smaller values
of δ(umax) the rise time is significantly improved. Note that the resulting
optimized behaviour of the control action u(t) under the saturation is con-
tradictory to a general requirement that a control action should not stay
at a saturation limit longer than it was predefined by a linear design. This
requirement is equivalent to an effort of the swift controller internal states
recovery after the saturation run out (see, for example [86, 145]). Compared
to that, the resulting AWC causes that the control action continue to stay
at the saturation boundary for a “little” longer in the sense of the chosen
optimality. This continuance may be regarded to an additional supply of
missing energy which has not been delivered to a controlled process due to
the saturation. The described prolongation is highlighted in the Fig. 6.11
where an example of the optimized control action behaviour is shown next
to the ideal case free of any saturation.

6.3.3 Concluding remarks

Observer-based AWC design using anisochronic observer feedback for the
controller of the retarded type with delays in internal states has been pro-
posed and applied. It has been shown that the anisochronic observer is
beneficial because it assures that there is only one tuning parameter in the
AWC tuning procedure although the original (linear) controller dynamics
is of infinite dimension. The value of the AWC parameter has been deter-
mined with respect to ISE criterion optimizing the performance of entire
closed loop subject to the present control action saturation. Rather heuris-
tic tuning of the parameter was adopted but it does not undermine in any
way the nature of the proposed AWC method.
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Fig. 6.10: Simulation results for the optimal settings of the proposed AWC design for the
controller K̂ (Tf = 2 s) with the shared value of σ = 0.20 s−1 evaluated for three levels
of saturation limit δ(umax) = 50% (top), 80% and 95% (bottom) compared to the linear
(unconstrained) control loop (ulin(t) and ylin(t)) and the constrained loop without AWC
(ysat(t))
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Chapter 7

Saturation effect in flexible
mode compensation systems
with inverse shaper

7.1 Introduction

An input shaping architecture for vibration suppression of flexible systems
(briefly described in Section 2.3) controlled with magnitude saturated ac-
tuators as in Fig 7.1 is considered in this Chapter. It is shown that the
distributed-delay shaper with the inverse form in the feedback path (see
Fig. 2.4) has the capability of canceling the undesired vibration caused by
the actuator saturation. The main idea is to treat the saturation effect as a
disturbance on the control input of the actuator which can be canceled by
the shaper in the feedback control loop. This research was initially moti-
vated by the collaboration on the project dealing with time-delay algorithms
for vibration suppression. A laboratory set-up [B1] has been designed within
this project and measurements were made during which real limitations oc-
curred in the form of actuator saturation.

In this chapter two simulation and experimental validations of the ap-
proach are presented using both coupled and uncoupled laboratory example
— namely, a laboratory set-up of a cart and a simulation model of a quad-
copter both with a suspended pendulum as a flexible part. Note that the core
results presented in this chapter were included in the publications [B3, B5]
and [B7] (previously briefly presented in [B8]) as a contribution of author.
The research continues with recent work [B12] which deals with oscillation
damping using up and down movement with focus on UAV application in
limited available space. The motivation for further research came from the
partial work [B4] successfully treating oscillations using nonlinear time-delay
feedback.
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Fig. 7.1: Closed-loop system with saturated actuator connected to flexible system

7.2 Inverse feedback shaper for effective satura-
tion effect avoidance

The effect of magnitude saturation on input shaping for the system with
a flexible part shown in Fig. 7.1 was illustrated both in [31, 98] when the
reference input w(t) is filtered by ZV shaper to compensate the oscilla-
tory modes of F (s) as shown in Fig. 7.2. However, the saturated control
input causes vibrations on the flexible sub-system response y(t) with a fre-
quency lower than the natural frequency of the system itself. Thus, the
ZV shaper placed at reference input is not able to cancel the vibrations
caused by the saturation effect. In particular, Robertson and Erwin [98]
proposed saturation-reducing zero-vibration (SRZV) shaper which creates
commands holding control input between the saturation limits. However, it
is not able to reject disturbances and it is not robust against uncertain dy-
namics due to its application in feed-forward path outside of the closed-loop.
The zero-vibration saturation-compensating (ZVSC) proposed in [31] holds
the similar deficiencies due to feed-forward application as well as algorithm
computational load arising from the simulation based optimization.

Fig. 7.2: Closed-loop system with flexible part and input shaper at reference

A more recent technique to overcome saturation effect, the modified
closed-loop input shaping control architecture shown in Fig. 7.3 where z is
the input of F (s), was utilized in [112] and followed by more extensive study
[58] aiming to disturbance rejection and hard nonlinearity accommodation.
An artificial saturator with the same saturation limits as the actual actuator
saturator has been added to the feed-forward path to modify control input.
The artificial saturation block is followed by a ZV shaper. The aim of this
modified architecture is to assure that the control input remains within the
saturation limits, and thus to prevent vibrations due to saturation effect.
Even the method works for compensation of the saturation effect, difficulty
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of tuning the controller parameters which assure closed-loop stability has
been noticed in [112]. As Huey et al. [58] themselves further warn, input
disturbance can not be handled by the modified architecture due to direct
acting of the disturbance on the plant. However, output disturbance rejec-
tion gives a satisfactory results.

Fig. 7.3: Closed-loop input shaping control architecture with artificial saturation block
serially interconnected with ZV shaper

For simplicity, PD controller is considered to control the variable z (i.e.
the trolley position in crane applications) for which no anti-windup is needed
and thus the saturation can be considered as hard. Then, the control scheme
can be considered as illustrated in the upper part of Fig. 7.4, where the
saturated control input us is given as the output of nonlinear function (2.46).
The same effect limiting the control input us within the interval [umin, umax]
can be achieved if the saturation is substituted by introducing an artificial
disturbance at the system input

ds(t) =


umax − u(t), if u(t) > umax

0, if umin ≤ u(t) ≤ umax

umin − u(t), if u(t) < umin

(7.1)

as shown in the lower part of Fig. 7.4. In fact, the disturbance variable
is closely tied to the control action u and its value is determined by the
saturation limit violation. Even though this disturbance is introduced in-
tentionally by the saturation nonlinear function, the inverse shaper scheme
can handle its effect, as the zero-pole cancellation between S(s) and F (s) is
still achieved in the channel ds → y as demonstrated in Section 2.3. Thus,
supposing that the closed-loop system will be stable and with sufficiently fast
dynamics compared to the mode to be compensated, the closed-loop with
the saturation and the inverse shaper will effectively pre-compensate the os-
cillations of the flexible sub-system F (s). This will be demonstrated in the
following case study examples by both the simulations and the experiment.

7.3 Experimental validation using a benchmark
system: a cart with suspended pendulum

The first example illustrating the approach to a control action saturation
in a control loop with inverse feedback DZV shaper is presented in this
section. A pendulum attached to a controlled cart shown in Fig. 7.5 can be

91



Fig. 7.4: Interpretation of the saturation nonlinear function as a disturbance (7.1) at the
system input in the flexible mode compensation loop

considered as a gantry crane simplified demonstrator. Because the weight
of the pendulum is noticeably smaller than the weight of the cart and the
stiffness of a belt actuator is not negligible the laboratory set up is considered
as uncoupled.

The position servo-mechanism, the controlled cart on sliding rails, with
an attached force actuator (servo motor in torque mode) is built first. Next,
a load is suspended from the controlled cart. The controlled cart is fixed
to a belt underneath which is powered by an AC servo drive with an axial
transmission. The drive is controlled by an industrial control unit (ESTUN
- Pronet-E-04A) controlled by the analog signal from an attached PC with
MATLAB, Simulink and Real Time Windows Target. The control unit is
operated in the torque-generator mode - the generated torque and thus the
force u is proportional to the analog voltage control signal. The position of
the cart is measured by an incremental rotary sensor located in the actuator
shaft. The pendulum represents a lightly damped oscillatory load. The
pendulum angle y is measured by a magnetic angular position sensor fixed
to a shaft which is set in bearings.

The transfer function of the cart itself (i.e. without the pendulum), be-
tween the control action force u[N] exerted by the electro-motor and the
position displacement z[m] of the cart is considered as

G(s) =
1

Ms2 +Bs
(7.2)

where M = 1.85 kg, B = 0.9 kg s−1 (identified experimentally) is the mass
and the viscous friction coefficient of the controlled cart, respectively.
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Fig. 7.5: Laboratory set-up (rebuilt from original set-up [B1]) consisting of the pendulum
suspended from the controlled cart

The transfer function of the flexible system (the pendulum), linking the
cart’s displacement z and the angle y of the pendulum from vertical, is given
by

F (s) =
y(s)

z(s)
=

−(1/R)s2

s2 + (b/mR2)s+ (g/R)
. (7.3)

where R = 0.4 m is the pendulum length, b = 0.0045 kg m2 s−1 is the joint
viscous friction coefficient and m = 0.96 kg is the pendulum weight. The
weight of pendulum is not high enough to actually sway the cart as a reaction
because of friction in the rails and in the actuator. However, if the weight
is higher the coupled case of the system has to be taken into account as
discussed in [B3] with an appropriate transfer function example.

The natural frequency and the damping ratio for the flexible part are
found as and ζ = 0.0033, respectively, yielding a couple of oscillatory poles
of (7.3) at r1,2 = −0.0016± 4.9522j. With these transfer functions G1(s) =
G(s) and G2(s) = F (s), the overall system scheme matches the one in
Fig. 2.4 when supplemented by an inverse shaper and the controller.

Considering dynamical properties of the controlled cart, a two-degree
of freedom PD controller, with the derivative part acting on the measured
output only, in the form of

C(s) = kp + kd
Ns

s+N
(7.4)

with proportional gain kp = 200, derivative gain kd = 32 and derivative filter
constant N = 200 has been designed to achieve a fast response of the cart.
The fast response is required for the proper functioning of the inverse shaper
scheme, as proposed in [132], in order to transfer the filtering properties of
the shaper S(s) to the closed-loop channels. The force of the servo drive
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(i.e. control variable) is limited to [−8N, 8N] in order to show efficiency of
the proposed scheme with inverse input shaper regarding to the saturation.

DZV shaper (2.29) is applied to the described flexible system as the
inverse shaper in the feedback loop shown in Fig. 2.4. The shaper is pa-
rameterized by the formulas (2.30) stated in Section 2.3 as A = 0.3887 and
τ = 0.3173 s where the distributed delay is chosen as T = τ = 0.3173 s.

7.3.1 Simulation and experiment results

As the main outcome of the example, results from simulations and the mea-
surements shown in Fig. 7.6 and Fig. 7.7, respectively, when u is saturated
with the lower and upper force constraints [−8N, 8N]. Minor differences
between the simulation and experimental results are mainly due to friction
forces that are not included in the model for simulations. In the simulation
example, in agreement with the theoretical propositions presented above,
none residual vibrations appear for the proposed scheme with the inverse
shaper. On the other hand, reaching the saturation affected negatively the
performance of the scheme with just the shaped reference, even though the
residual vibrations have been reduced compared to the case with no shaper.
This applies for both simulations and measurements.

In the measured response of y for the scheme with inverse shaper, com-
pared to the ideal simulation case, small residual vibrations appear. These
are caused by the dead zone effect in the cart motion close to the equilib-
rium when the action force is so small that it does not overcome the friction
force between the cart and the rails. Due to the dead zone effect, small
oscillations can be also observed in the action force, that correspond to the
oscillatory mode introduced by the shaper. Still, the reduction of the resid-
ual vibrations is substantial, which proves the functioning of the proposed
approach despite the present saturation.

7.3.2 Concluding remarks

It has been shown by the experiment with the laboratory cart-pendulum set
up that the recently proposed control architecture with an inverse feedback
DZV shaper can also successfully handle with actuator saturation. Although
a simple uncoupled model not describing all dynamic properties of the cart
(i.e. cart-rails friction) has been used, the control scheme gives very good
results pursuant the flexible mode compensation.

It must be emphasized, that the proposed substitution of the control
action saturation in the flexible mode compensation loop is restricted to PD
controller for now. Although, the feedback loop with an inverse shaper has a
potential to be effective even if PI or PID controllers are applied. However,
the interpretation of the effect of controller saturation as a disturbance cov-
ering the difference between the saturated and unsaturated control action
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Fig. 7.6: Simulation responses with saturation for the experimental set-up when reference
and inverse feedback shaper are applied (dashed - the reference w change; dash dotted -
the reference shaped by the shaper S(s)).
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Fig. 7.7: Experimental measurements with saturation for the experimental set-up when
reference and inverse feedback shaper are applied (dashed - the reference w change; dash
dotted - the reference shaped by the shaper S(s))
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would not be that straightforward. It would be hardly dependent on the
anti-windup scheme applied to the controller.

7.4 Simulation validation using a benchmark sys-
tem: a quadcopter with suspended pendulum

The objective of this section is to propose a scheme for controlling a quad-
copter planar model with a control signal saturation considered which possi-
bly requires an anti-windup scheme deployment. A classical cascade scheme
will be applied, usual in UAV applications, see e.g. [92]. In order to prevent
the payload swing during the maneuvers, an inverse input shaper is to be
placed to a low-level (slave) feedback loop causing a presence of an artificial
time delay in the entire closed-loop system. Despite the present saturation
it will be shown that the control scheme with inverse feedback DZV shaper
preserves good performance. Compared to the previous cart-pendulum ex-
periment the following simulation-based example exhibits coupling between
the masses demanding preliminary decoupling procedure deployment as de-
scribed in Section 2.3. In [B9], an alternative transfer function based method
was proposed to handle this task. Due to the involvement of time delays in
the shaper structure which causes the infinite dimensionality of the closed
loop, the controller design is not an easy task as well as to the subsequent
anti-windup compensator design. Therefore, considering the controller de-
sign, a systematic spectral optimization method was proposed in [B9] to
tune the controller of the feedback loop with an inverse shaper.

7.4.1 Model of quadcopter with suspended load

Dynamics of the quadcopter planar model carrying the suspended load is
given by the following system of second order nonlinear differential equations

M(x(t))
d2x(t)

dt2
+ C(x(t))

dx(t)

dt
+ K(x(t))x(t) + Q(x(t)) =

L(x(t))u(t) (7.5)

where x(t) = [θ(t), x(t), y(t), β(t)]T with x(t), y(t) denoting position coor-
dinates of the quadcopter’s center of the mass in the global system, θ(t) is
the pitch of the quadcopter and β(t) is the angle between vertical y-axis
of the global coordinate system and load’s string as indicated in Fig. 7.8.
Vector u(t) = [F1(t), F2(t)]T is the vector of controls - the thrust from both
motors. The state dependent mass-damping-stiffness matrices of motion
M(x(t)),C(x(t)),K(x(t)) are given in the Appendix A. Time-dependent
matrix Q(x(t)) holds some nonlinear terms which can not be strictly sepa-
rated according to the state vector variables.
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Fig. 7.8: Quadcopter planar model with suspended load geometry

For the purpose of a controller and an input shaper subsequent design,
the model (7.5) is linearized for the equilibrium x(0) = 0, dx(0)/ dt = 0
corresponding to steady-state hovering of the quadcopter. The model form
(2.34) is obtained with the matrices

M =


m2a

2
3 + I1 a3m2 0 a3lm2

a3m2 m1 +m2 0 lm2

0 0 m1 +m2 0
a3lm2 lm2 0 l2m2



C =


cθ 0 0 0
0 cx 0 0
0 0 cy 0
0 0 0 0

 K =


a3m2g 0 0 0

(m1 +m2)g 0 0 0
0 0 0 0
0 0 0 lm2g


(7.6)

The flexible mode decomposition method briefly described in Section 2.3 is
crucial for the input shaper design. The method assumes matrix L with
single column so that the control input u alone directly influences the gener-
alized variable x1 (in this case, the pitch angle θ in the model). To fulfill this
assumption in the linearized model of the quadcopter, the original double-
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a1 0.20 m m1 1.00 kg cx 1.5 N s m−1

a3 0.05 m m2 0.25 kg cy 3.0 N s m−1

l 1.00 m I1 0.05 kg m2 cθ 0.1 N m s rad−1

Tab. 7.1: Quadcopter physical parameters

column matrix L has been transformed to the following one-column form

L =


−a1 a1

0 0
1 1
0 0

→ ∆L =


−a1

0
1
0

−

a1

0
1
0

 =


−2a1

0
0
0

 , (7.7)

and the control input changed from u(t) = [F1(t), F2(t)]T to u(t) =
[∆F (t)] = [F1(t)−F2(t)]. Note that for the equilibrium operation, the equal-
ity F1(0)+F2(0) = g(m1+m2) with gravitational acceleration g = 9.81 m s−2

needs to be satisfied. Regarding the physical parameters of the quadcopter
model, for the numerical analysis, the parameters are listed in Tab. 7.1.

The classical cascade control scheme shown in Fig. 7.9 will be applied to
the above described model. A slave pitch control loop with an input shaper
included forms the key part of the proposed control scheme. A governing
master loop takes care of horizontal velocity control. The vertical movement
is supposed to be steady according to the presumed equilibrium point and
to the property of linearized model (7.6) that a change of pitch angle does
not influence a horizontal position.
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ẋ

1

s β

d

dt

v
x,set

−1

a
x

α

Fig. 7.9: Overall cascade control scheme for quadcopter with suspended load consisting
of the master PID velocity vx controller, slave PD pitch θ controller and inverse shaper
in the feedback path, including control action saturation and anti-windup scheme in the
master PID.

7.4.2 Pitch control with input shaper

For the pitch control, which is fundamental for a quadcopter maneuvering
in the reduced planar model, a PD controller with two degree of freedom

u(t) = r0(θset(t)− θ(t))− rd
dθ(t)

dt
, (7.8)
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is considered, where r0 ∈ R, r0 > 0 and rd ∈ R, rd > 0 are the proportional
and derivative gains. Variable θset(t) is the pitch angle set point. The con-
troller is supplemented by an inverse shaper in the feedback loop, according
to the general scheme in Fig. 2.5. The function of the inverse shaper is to
suppress the pendulum oscillations caused by maneuvers.

Input shaper design

Due to the enhanced complexity of the dynamics of the quadcopter-payload
system and due to the fact that the weight of the load m2 is not negligible
compared to the weight of the quadcopter m1, the dynamics of (7.5), (2.34)
respectively, is to be considered as coupled. Thus, turning the model struc-
ture to the form (2.35) and eliminating the control action u(t), the reduced
model (2.37) is derived. As given in Theorem 1 of [57], the mode to be tar-
geted by the input shaper is given as a dominant oscillatory mode of arising
subsystem (2.37). The spectrum of the subsystem is shown in Fig. 7.10,
together with the pole spectrum of the overall system (2.34) and (7.6). The
target oscillatory mode can be easily determined as r1,2 = −0.134± 3.452j
(ω = 3.455 s−1, ζ = 0.039) as it is the only oscillatory mode of the reduced
model part. The mode lies approximately in between the oscillatory mode
of the whole system and the mode of the isolated ideal pendulum with the

frequency ω =
√

g
l , which is also shown in Fig. 7.10. Pre-selecting the length

of the distributed delay part T = 0.5 s, the input shaper (2.29) parameters
A = 0.499, τ = 0.91 s result from (2.29).

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
0
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5
flexible
system
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pendulum

Fig. 7.10: Spectra of poles of the overall system (2.34) and (7.6), poles of the pendulum
alone, the flexible part subsystem (2.37) determined by Theorem 1, and the shaper zeros.
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PD controller tuning

Applying the procedure proposed in [132], a loop shaping approach (by Mat-
lab SISOtool) has been applied to tune a PD controller for the shaper-free
finite order system. Balancing the requirement on the fast non-oscillatory
response and sufficient gain and phase margins, the setting r0 = 20, rd = 2
has been selected. As can be seen from the Bode plot in Fig. 7.11, the given
setting provides a reasonable phase margin (67.6◦) while the gain margin is
infinite. The given properties are more or less kept when the inverse shaper
is included to the loop (phase margin slightly increases to 70.7◦). This con-
firms the claim made in [132] that applying the inverse shaper in the loop
does not bring critical decay of stability posture, as a rule.
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Fig. 7.11: Open loop Bode plots with (thin) and without inverse shaper (thick) in the
pitch θ control

Favorable responses presented in Fig. 7.12 confirm the applicability of
the given PD controller setting. The closed loop responses of the pitch an-
gle θ are both well damped and sufficiently fast to follow the character of
the shaped signal, which is important for shaper functioning in the mode
compensation, as discussed in [132]. The full compensation of the derived
flexible mode of the suspended load (expressed by the angle β) can be seen
in the set-point responses in Fig. 7.12 of the scheme with reference input
shaper and the scheme with the inverse shaper in the feedback path. How-
ever, only the inverse shaper scheme is effective in the mode compensation,
when it is excited by the disturbance change. For comparison, the responses
of the scheme without shaper are included where the substantial payload os-
cillations can be seen. To sum-up, the scheme with the inverse input shaper
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gives the best results.
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Fig. 7.12: Closed loop responses of pitch control scheme i) without shaper, ii) with input
shaper at the reference, iii) inverse shaper in the feedback path. Set-point response starting
at t = 1 s and disturbance d = −2 rejection at t = 10 s.

From the practical control scheme implementation point of view, an
important aspect is behavior of the closed loop system when reaching the
saturation limits of the control action. Recently, it has been recognized in
[B3] that the mode compensation features of the inverse shaper scheme are
not disrupted by reaching the control action saturation limits. This is due
to the fact that limiting the control action can be interpreted as the input
disturbance and as such, it can be handled by the proposed scheme with
inverse shaper. This property is demonstrated in Fig. 7.13. The saturation
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point of the limited control u ∈ [−2, 2] is reached in both the set-point
change and the disturbance rejection - note that unlike in Fig. 7.12, the
disturbance is not step-wise, but it is strengthened at its starting phase.
The suspended load oscillations are well damped even under the saturation
limits.
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Fig. 7.13: Closed loop responses of pitch control scheme under reaching control saturation
limits

However, when including the inverse shaper with time delays to the feed-
back loop, one needs to take into consideration the infinite dimensionality of
the scheme. In order to check the stability picture of the infinite dimensional
system, a spectral approach is applied. For this task with help of (2.33), the
overall feedback loop is formulated as an interconnected system [70] (2.9)
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with time delays

dX(t)

dt
= AX(t) + Bu(t),

0 = −v(t) +
1

A

(
dθ(t)

dt
− (1−A) z(t)

)
,

dz(t)

dt
=

1

T
(v(t− τ)− v(t− (τ + T ))) ,

dq(t)

dt
= v(t),

0 = −u(t) + r0(θset(t)− q(t))− rdv(t),

(7.9)

where the interconnected system state vector is considered as X(t) = [x(t)T

(dx(t)/dt)T ]T , and the matrices are

A =

[
0 I

−M−1K −M−1C

]
, B =

[
0

−M−1∆L

]
. (7.10)

As it is clear from (7.9), the formulated system does not take into account
a saturation nonlinearity because only the functionality of the controller is
being investigated. The set of equations has two nonphysical eigenvalues in
the origin. The first one is caused by the inverse shaper implementation. The
other eigenvalue is brought by including the equation dq(t)/ dt = v(t), by
which the signal shaping in both the feedback paths from θ(t) and dθ(t)/ dt
is represented in the model. In the control scheme implementation, however,
the inverse shaper needs to be implemented in both the paths.

The equations (7.9) can be rewritten into a compact form

Ē
dX̄(t)

dt
= Ā0X̄(t) + Ā1X̄(t− τ) + Ā2X̄(t− τ − T ) + B̄θset(t) (7.11)

where X̄(t) = [X(t)T , v(t), z(t), q(t), u(t)]T is the extended state vector. The
system stability and dynamics is then determined by the roots of the char-
acteristic equation

det
(
sĒ− Ā0 − Ā1e

−sτ − Ā2e
−s(τ+T )

)
= 0. (7.12)

The rightmost part of the closed loop spectra, computed by QPmR algo-
rithm [135], is shown in Fig. 7.14. All poles are located safely to the left of
the imaginary axis, except the uncontrollable poles in the origin correspond-
ing to the motion in x and y axis which are to be stabilized by additional
feedback loops. The spectrum of closed loop poles tends to follow the re-
tarded chain of input shaper zeros which is departing of the imaginary axis
as the root moduli increase. Thus, the favorable distribution of high fre-
quency zeros reconsigned in [133, 132] is projected to the distribution of the
high frequency poles of the pitch control loop.
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Fig. 7.14: Spectra of the pitch angle closed-loop system poles and the input shaper zeros.

7.4.3 Horizontal velocity control

For the horizontal velocity vx(t) = dx(t)/ dt control, the two-degree of free-
dom PID controller

θset(t) = −
(
rv,0

(
vx,set(t)−

dx(t)

dt

)
+

rv,i

∫ t

0

(
vx,set(ϑ)− dx(ϑ)

dt

)
dϑ− rv,d

d2x(t)

dt2

)
, (7.13)

is considered, where rv,0, rv,i and rv,d are the proportional, integral and
derivative positive gains rv,0, rv,i, rv,d ∈ R. The negative sign at the right
hand side of the equation is due to mutual orientation of θ(t) and x-axis.
Analogously as for the pitch control scheme, the parameters of the PID
controller have been tuned to achieve fast and well damped responses of the
linear (unsaturated) system, which resulted to the setting rv,0 = 0.30, rv,i =
0.15 and rv,d = 0.12.

Simulation results for the current PID controller setting are given in
Fig. 7.15 showing favorable responses in both the set-point change and the
disturbance rejection. The flexible mode is well compensated thanks to the
inverse shaper included. The slight oscillation of β(t) can be accounted to
the slightly oscillatory behavior of the master PID loop.

In order to prevent a windup in the PID controller, an established solu-
tion based on including an internal feedback path from the saturation error
weighted by the high value gain α (here we apply α = 1000) is considered.
The anti-windup scheme corresponds to the well-known back-calculation
method described in Chapter 2.4.3. It has to be emphasized that no opti-
mization task regarding to the anti-windup scheme of master velocity control
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Fig. 7.15: Closed loop responses of velocity PID control scheme with slave pitch controller
supplemented by the inverse shaper

loop has been established in this simulation example. The main objective is
to show the influence of the saturation in slave pitch control loop containing
the inverse input shaper.

The overall master-slave (velocity-pitch) control scheme for the quad-
copter with suspended load is shown in Fig. 7.9, including the inverse shaper
in the pitch feedback, the saturation limits and the anti-windup solution.

7.4.4 Concluding remarks

Using a simulation-based example, a beneficial saturation-tolerant behaviour
of the inverse DZV shaper (2.29) placed in the feedback path has been illus-
trated. It has been shown that despite the fact that inclusion of the inverse
shaper with delays to the feedback loop causes infinite dimensionality of the
entire closed-loop system dynamics, it has positive impact on the overall
control system with master PID and slave PD controller both burdened by
control action saturation.

The presented simulation results are to be considered as preliminary to
the experimental study with a quadcopter physical model, which is currently
under development. As a introductory experimental set-up, an one degree
of freedom set-up consisting of a quadcopter with suspended load attached
to a cart moving on a single rail has been built.
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Chapter 8

Conclusion

Design and optimization of the anti-windup schemes for time delay con-
trollers is solved as the core topic of the thesis. As soon as time delays are
involved in the controller structure, the controller forms an infinite dimen-
sional system and its state is of functional nature. This makes the design
of the anti-windup scheme a considerably more difficult task, compared to
the delay free controllers. Starting from the controllers of simple structure
systems with input time delay, which are often used for approximation of
higher order distributed parameter systems within process control field, anti-
windup of both static and functional feedback are proposed and validated.
Note that the latter allows to compensate the internal time delays in the
anti-windup feedback scheme. By this, the infinite dimensional design task
can be turned to finite dimensional one. Consequently, the functional char-
acter of the anti-windup scheme is extended to handle time delay controllers
of enhanced structure, arising from application of the internal model prin-
ciple, in particular. For designing the functional feedback, the Ackermann
method modified for designing the time delay system is applied.

Throughout the thesis, the objective is to tune the anti-windup scheme
in order to compensate, at least partly, the loss in actuation due to the
controller saturation. As a rule, it leads to considerably milder gains in the
anti-windup feedback allowing a certain level of the control signal windup.
This prolongs the time during which the control signal is stuck at the sat-
uration level. Consequently, the entire power transferred to the system by
the saturated actuation is enhanced by this setting, which can bring the
saturated closed loop responses closer to the nominal closed loop responses
without saturation. As the last topic of the thesis, the effect of saturation
to the closed loop systems with applied time delay compensator, an inverse
input shaper, is studied. Via interpreting the saturation effect as a distur-
bance at the system input, it is shown that the compensation performance is
preserved under the saturation. Validation of this concept is performed on
two case study examples. In what follows, the particular objectives, stated

107



in Chapter 3 are outlined:

Objective 1

This objective targeting the character of the astatism of the so-called time
delay feedback has been solved in Chapter 4. The astatic nature of the
controllers with feedback time delays, arising e.g. from application of IMC
scheme, does not need to be visible at the first sight, as it is the case for
the astatic finite dimensional controllers with the polynomial characteristic
equation. Besides, the functional nature of the controller state may bring
different nature of the astatism, typically of staircase nature. These as-
pects have been studied by applying both analytical approach, and spectral
tools. It has been shown that the feedback (state) delays, forming quasi-
polynomials in a characteristic equation of a controller in a general, have
potential to bring astatic behaviour when combined properly with the static
gain. This needs to be taken into account while AWC is designed for such
a controller. The feedback time delay has the same tendency to the windup
effect as the pure integration. Moreover, the pronounced behaviour is even
preserved for time-delay approximations commonly used for substituting
pure time delays in order to obtain a delay-free (rational) transfer function.
All pronounced statements are completed with some demonstration exam-
ples. Last but not least, another possible effects of time delay terms have
been briefly introduced to clarify a diversity of time delay utilization.

Objective 2

Using beneficial dimensionless model forms, a general procedure for param-
eterization of observer-like AWC for low-order process models (FOPTD and
SOPTD) controlled by both finite and infinite-order (time-delay) controllers
have been proposed. Thus, the results derived on a relatively low set of
simulations can be generalized to a broad class of systems. At first, the
parametrization for a static AWC is studied giving a suggestion how to
choose static parameters of AWC. Then, a novel functional AWC feedback
is proposed in order to decrease the number of tuning parameters. More-
over, the functional feedback turns the dynamics of saturated controller to
the equivalent finite order form of original back-calculation technique for PI
controller. The tuning of the proposed AWC has been performed using IAE
criterion applied to the control error in contrast with a general approach
trying to minimize the saturation error. Thanks to that, the negative effect
of control input saturation to the closed loop responses is minimized.

Objective 3

Based on the results obtained by the study of AWC for low-order controllers
in Objective 2, the observer-like AWC scheme involving a functional state
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feedback has been generalized using anisochronic observer design. The de-
ployment of the anisochronic observer facilitates the subsequent tuning,
because it turns the procedure into finite-order pole assignment although
the original dynamics of a controller may be of an infinite order. The
parametrization of functional feedback is utilized by Ackermann formula
extended for anisochronic systems. As a result, a single tuning parameter is
determined to optimize the behaviour of the closed loop when the saturation
vanishes. The subsequent tuning is performed with respect to ISE criterion
applied to the control error. An example consisting of high-order time-delay
model controlled by IMC controller with application of the proposed AWC
concludes the chapter.

Objective 4

As an outcome of participation in the related research subject, a study of
the saturation effect to the performance of the closed loop with the feedback
inverse shaper as an oscillatory mode compensator has been conducted. It
has been shown, that the inverse DZV placed in the feedback path has a
saturation-tolerant behaviour in combination with a stable controller. This
behaviour is attributed to the disturbance rejection of such an arrangement
with regard to the fact that the control input saturation is also pronounced
as the artificial disturbance. Further, the mentioned saturation-tolerant
behaviour has been verified using the experiment executed on set-up of a
cart with a suspended pendulum and completed with simulation based case
study of UAV planar motion cascade control.

From the above outline of the results presented in the thesis, it can be
concluded, that all the stated objectives have been fulfilled.
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Appendix A

State dependent nonlinear
matrices of the quadcopter
model

The state dependent matrices of the nonlinear model (7.5) are given as
follows

M(x(t)) =


m2a3

2 + I1 a3m2 cos(θ(t))
a3m2 cos(θ(t)) m1 +m2

a3m2 sin(θ(t)) 0
a3lm2 cos(β(t)− θ(t)) lm2 cos(β(t))

a3m2 sin(θ(t)) a3lm2 cos(β(t)− θ(t))
0 lm2 cos(β(t))

m1 +m2 lm2 sin(β(t))
lm2 sin(β(t)) m2l

2



C =


cθ 0 0 0
0 cx 0 0
0 0 cy 0
0 0 0 0

 ,L(x(t)) =


−a1 a1

− sin(θ(t)) − sin(θ(t))
cos(θ(t)) cos(θ(t))

0 0


Q(x(t)) =

−a3lm2 sin(β(t)− θ(t))
(
dβ(t)
dt

)2
+ a3m2g sin(θ(t))

−lm2 sin(β(t))
(
dβ(t)
dt

)2
− a3m2 sin(θ(t))

(
dθ(t)
dt

)2

lm2 cos(β(t))
(
dβ(t)
dt

)2
+ a3m2 cos(θ(t))

(
dθ(t)
dt

)2
+ (m1 +m2)g

a3lm2 sin(β(t)− θ(t))
(
dθ(t)
dt

)2
+ lm2g sin(β(t))



(A.1)

and K(x(t)) = 0 (the nonzero terms in K of model (7.6) are accounted to
linearization of the matrix Q(x(t)) in the selected equilibrium point). The
model parameters are described and given in Section 7.4.
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delay algorithms for damping oscillations of suspended payload
by adjusting the cable length”. In: IEEE/ASME Transactions on
Mechatronics 22.5 (Oct. 2017), pp. 2319–2329. issn: 1083-4435. doi:
10.1109/TMECH.2017.2736942.
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rithms for control of a quadcopter with suspended load”. 14th IFAC
workshop on time delay systems. 2018.

[B9] D. Pilbauer, W. Michiels, J. Bušek, D. Osta, and T. Vyhĺıdal. “Con-
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tributed delay: Spectral analysis and design”. In: Automatica 49.11
(2013), pp. 3484–3489. doi: 10.1016/j.automatica.2013.08.029.
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