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Anotace

Abstrakt: Téma této disertačńı práce je studium konečně aditivńıch měr na

strukturách bĺızkých Booleovým algebrám. Ve formulaci přijaté v teoretické

fyzice jde o vyšetřováńı stav̊u na kvantových logikách. Př́ınos této disertačńı

práce je obsažen v pěti přiložených článćıch. V prvńım z těchto článk̊u se autor

zabývá stavy s hodnotami v obecném tělese charakteristiky nula. Ćılem je zobec-

nit klasickou Hornovu-Tarského větu o rozšǐrováńı stav̊u (HT). Autor částečně

uspěl v některých speciálńıch př́ıpadech, ale obecně se ukázalo, že přirozená re-

formulace věty HT pro tělesa neplat́ı (kromě znaménkové formulace HT, kde

se podařilo p̊uvodńı reálně hodnotovou HT zobecnit na tělesovou formulaci).

V druhém článku autor vyšetřuje ortomodulárńı svazy, které dovoluj́ı zavedeńı

symetrické diference. Tyto struktury, které jsou v současné době intenzivně

studovány, byly v tomtu článku obohaceny o vhodný pojem stavu. Vznikla

pak otázka, kdy se dá daný stav rozš́ı̌rit na větš́ı logiku (př́ıpadně i takovou,

která neńı množinově reprezentovatelná). Autor ukázal, že stavová rozš́ı̌reńı jsou

možná pokud je stav definován na Booleově algebře. V obecnosti ani logiky velice

bĺızké Booleovským stavová rozš́ı̌reńı nedovoluj́ı. Ve třet́ım článku autor dále ana-

lyzoval množinově reprezentovatelné logiky. Jako hlavńı výsledky lze jmenovat

kritérium pro rozšǐrováńı stav̊u na Gudderových logikách a př́ıspěvek k jistým

fyzikálně motivovaným otázkám pro klasickou hustotńı logiku (určitý nový pohled

na Banachovy limity). Ve čtvrtém článku se autor zabývá pravděpodobnostně

motivovaným pojmem Jauchova-Pironova stavu. Autor nalezl nutnou a po-

stačuj́ıćı podmı́nku pro rozšǐrováńı stav̊u definovaných na Booleově algebře a

zachovávaj́ıćı při rozš́ı̌reńı Jauchovu-Pironovu vlastnost. Aplikaćı tohoto výsledku

je dokázána věta o rozšǐrováńı Jauchových-Pironových stav̊u na projektorovou

logiku L(H). V pátém článku je zavedeno jisté nekonečné rozš́ı̌reńı Gudder-

ovy logiky. V poněkud překvapivém kontrastu s konečnou Gudderovou logikou

je dokázáno, že tyto zobecněné logiky dovoluj́ı rozšǐrováńı stav̊u na potenčńı

množinu.

Kĺıčová slova: ortomodulárńı částečně uspořádaná množina, symetrická dife-

rence, konečně aditivńı mı́ra, stav, Booleova algebra, Hornovo-Tarského kritérium

o rozšǐrováńı stav̊u, kompaktnost stavového prostoru, Tichonovova věta
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Annotation

Abstract: The theme of the thesis is, in general terms, a study of finitely ad-

ditive measures on the structures similar to Boolean algebras. Formulating this

theme in the language of theoretical physics, it is an investigation of states on

(algebraic) quantum logic. The contribution of the thesis is based on five papers

included in the thesis. In the first paper, the author considers field-valued states

for the fields of characteristics zero. The intention is to generalize the classic

Horn-Tarski state extension theorem (HT). The author partially succeded in spe-

cial cases but in general it was shown that a natural formulation of HT cannot

be obtained (except for the signed form of HT where the original real-valued HT

result allows for the field-valued formulation). In the second paper, the author

investigated the orthomodular lattices that can be endowed with a symmetric dif-

ference. This orthomodular lattices, recently intensely studied, was enriched in

this paper with an appropriate notion of state. Then a question was asked when,

given a state, one can extend it over a bigger (possibly non-set-representable) lo-

gic. The author showed that this state extension is possible when the “domain”

logic is a Boolean algebra, but in general even “almost Boolean” logics do not

allow for a state extension. In the third paper, the author further analyzed the

set-representable logics. Main results obtained are a state extension criterion for

Gudder’s logics and a clarification of certain physically motivated questions on

the classic density logic (a certain new view of Banach limits). The fourth paper

deals with the quantum-probabilistically justified notion of Jauch-Piron states.

The author found a necessary and sufficient condition for the extension of states,

as Jauch-Piron states, defined on Boolean algebras. This result, as an applica-

tion, establishes a Jauch-Piron state extension over the projection logic L(H).

The fifth paper brings an infinite generalization of Gudder’s logics and shows, in

a slightly surprising contrast to Gudder’s logics, that the states on these gener-

alized logics allow for the extension over the power set.

Keywords: orthomodular poset, symmetric difference, finitely additive meas-

ure, state, Boolean algebra, Horn-Tarski extension criterion, compactness of the

state space, Tychonoff’s theorem
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Introduction

Quantum structures and related topics have been attractive areas for many re-

searchers in mathematics and physics for a longer time. After the celebrated

paper by G. Birkhoff and J. von Neumann [1], there has been an intense research

in algebraic and measure-theoretic problems of “quantum logics”. Typically, the

quantum logics are identified with orthomodular posets and the states on them

are identified with probability measures. Considering both the algebraic and

measure-theoretic (resp. functionally-analytic) lines, there is a series of mono-

graphs and fundamental papers on the subject (see A. Horn and A. Tarski (1948)

[7], A. Dvurečenskij [3], G. Mackey (1963) [12], P. Mittelstaedt (1970) [13], R. J.

Greechie (1971) [4], S. Gudder (1979) [9], G. Kalmbach (1983) [11], M. Navara,

P. Pták and V. Rogalewicz (1988) [10], I. Pitowski (1989) [14], P. Pták and S.

Pulmannová (1991) [15], L. Bunce and J. Wright (1992) [2], H. Weber (1994)

[17], S. S. Holland, Jr. (1995) [5], M. Rèdei (1996) [16], J. Hamhalter (2003) [6],

Handbook of Quantum Logic (2007) [8], etc.). The present state of the art of

algebraic theories offers a large area of interesting problems on the intrinsic and

state-space properties of the structures dealt with. Technically, the study mostly

concerns several types of orthomodular posets and several types of probability

measures on them. In this account, we want to contribute to the questions on the

extension of states on (typically set-representable) quantum logics. The logics

pursued lie near the so called “standard logics”, meaning they lie intrinsically

near Boolean algebras.

The questions pursued in this thesis are motivated by theoretical physics (the

mathematical foundation of quantum theories) but they are sometimes brought

in by a mere mathematical curiosity. The research reflexes the state of the art

of this part of the theory of ordered structures. More specifically, the results

obtained extend on and complement some of the recent findings.

A center theme of this thesis are problems on the extensions of states, some-

times related to subadditivity with respect to the symmetric difference. Though

the results may have a link with questions of theoretical physics, it is believed

that the results obtained in this thesis will defend themselves as regards the cri-

ticism of pure mathematicians (the specialists in orthomodular structures and in

ordered sets at large, and the specialists in generalized measure theory).

The thesis is founded on five published papers, Chapters 1–5. Let us comment



on the contents of the papers.

In the first part, Chapter 1, A note on field valued measures, one contributes

to the question of extending field-valued states (a generalized form of the Horn-

Tarski theorem). For technical reasons, we restrict ourselves to the fields of

characteristic 0 (thus, we assume that no finite sum of 1 is 0). We first find out

a link between the Farkas lemma and the famous Horn-Tarski extension result

(Theorem 1.1). We then show that if the field in question contains rational

numbers as a topologically dense subfield, we infer that the condition for the

extension of non-negative field valued assignment is equivalent of a weak form of

Farkas lemma (Theorem 1.3). In trying to obtain a full generalization of Horn-

Tarski extension result, we ended up in a rather negative conclusion—we have

been able to find a counterexample to the field valued form of the Horn-Tarski

result (Proposition 1.4). We then pass to discussing signed measures and in this

area we establish that a full extension of Horn-Tarski result is possible (Theorem

1.5).

In the second part, Chapter 2, States on orthocomplemented difference posets

(Extensions), one adds to the nowadays developing theory of orthomodular posets

with a symmetric difference (the ODPs)—we show that a state on a Boolean

subalgebra B of a general state-rich ODP, Q, extends over Q (Theorem 2.2). By a

counterexample we show that this result cannot be obtained when B is an “almost

Boolean” ODP (= when B is pseudocomplemented). This counterexample is

established in a rather elaborate construction of Theorem 2.4 that uses an insight

borrowed from other publications.

In the third part, Chapter 3, Concrete quantum logics, ∆-logics, states and ∆-

states, which is perhaps the most technically involved section of this account, we

investigate several previously considered set-representable orthomodular posets

and their symmetric-difference closures. We first subject the states studied to

certain natural properties and discuss the possibilities of their extensions. It

is, for instance, decided about extensibility of states on the divisibility logics

(Theorem 3.2). We then consider the classic density logics and proved several

new properties, e. g., we find that the ∆-closure of the density logic is the set of

all subsets which relates to the celebrated Banach construction (Theorem 3.3).

We also study almost disjoint subsets of Ω of the cardinality equal to continuum

and observe that the corresponding factor is pseudocomplemented. Finally, this

chapter contains an answer to a published open question on the archetypical
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even-coeven logics (Theorem 3.1).

In the fourth part, Chapter 4, Jauch-Piron states on quantum logics, we take

up the question of when a state on a Boolean algebra can be extended, as a Jauch-

Piron state, over a bigger logic. In the main result we found a sufficient condition

for such an extension (Theorem 4.2). As a consequence, such an extension is

showed for the projection logic L(H) (Theorem 4.3). In the appendix to this

chapter, we looked for a formally analogous extension theorem in set-representable

logics. However, we found that if we require all Dirac states Jauch-Piron, then

the logic automatically becomes the Boolean algebra (Theorem 4.4).

In the last part, Chapter 5, Quantum logics defined by divisibility conditions,

we consider a specific set-representable logics as a generalization of Gudders logics.

Suppose that p is a prime number and S is a countable set. Let us consider the

collection DivSp of all subsets of S whose cardinalities are multiples of p, and the

complements of such sets. We proved that a state on DivSp can be extended to

a state on the Boolean algebra of all subsets of S. Further, we show that each

pure state on DivSp has to be two-valued. This result may be of interest when

viewed incomparism with previous studies (it is known that if S is finite and

DivSp reduces to Gudder’s logic, then neither of the results are true) and, also,

when the results are viewed within the interpretation in theoretical physics, it is

shown that state space of a non-standard (non-Boolean) logic embeds into the

state space of a Boolean algebra.

In concluding the introduction let us mention that the author presented the

results of his doctoral thesis on several academic occasions. In order to name

the important ones related to the thesis, they are: The thirteenth Biennial IQSA

Conference Quantum Structures, July 2016, Leicester (UK); The intermediate

IQSA Quantum Structures Workshop, July 2017, Nijmegen (NED); Lecture at

the seminar of the Mathematical Institute of Slovac Academy of Sciences, Octo-

ber 2017, Bratislava (SVK); The fourteenth Biennial IQSA Conference Quantum

Structures, July 2018, Kazan (RUS); Workshop STOCHASTIKA, February 2019,

Kohútka (CZE).
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1 A note on field-valued measures

The paper enclosed appeared in Mathematica Slovaca 67 (2017), 1295–1300, ISSN

0139-9918—IF 0,314. The contribution of Michal Hroch to the contents of the

paper is 33% (agreed with the coauthor).

A note on field-valued measures

Anna De Simone, Michal Hroch and Pavel Pták 1

Abstract We consider the Horn-Tarski condition for the extension of (signed)

measures (resp., non-negative measures) in the setup of field-valued assignments.

For a finite collection C of subsets of Ω, we find that the extension from C over

the collection exp Ω of all subsets of Ω is implied by, and indeed equivalent to, a

certain type of Frobenius theorem (resp. a certain type of Farkas lemma). This

links classical notions of linear algebra with a generalized version of Horn-Tarski

condition on extensions of measures. We also observe that for a general (infinite)

C the Horn-Tarski condition guarantees the extension of signed measures (here

the standard Zorn lemma applies). However, we find out that the extensions for

non-negative ordered-field-valued measures are generally not available.

Keywords Boolean algebra, field-valued measure, Horn-Tarski condition.

Mathematics Subject Classifications 03G05, 12E99, 15A06, 06E99 and 28A60

Dedicated to Professor Paolo de Lucia with gratefulness, and thanks

1The research of first author was partially supported by the PRIN research project “Metodi
logici per il trattamento dell’informazione” (2010) of MIUR (Italian Ministry of University and
Research). The second author was supported by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS15/193/OHK3/3T/13



The Horn-Tarski condition (H-T condition, see [1] and [9]) characterizes the

situations in which real-valued assignments allow for extensions as measures. This

condition implies, for instance, the classical result that each bounded non-negative

measure on a Boolean collection C, C ⊂ exp Ω, extends over the entire exp Ω of all

subsets of Ω. Recently the H-T condition has been applied in certain questions

of quantum logics (for basics on quantum logics, see e.g. [7]), in both the finite C
(see [4] and [6]) and the infinite C (see [5]). Being partially inspired by the latter

findings and a potential application in a quantum measurement and elsewhere,

we consider field-valued measures and a field versions of H-T conditions. We then

show the results indicated in the abstract. It should be noted that the ordered

fields and the fields that contain rational numbers can be very complicated (for

instance, the so called hyper-real fields obtained as factors of rings of continuous

functions—see e.g. [10], [12] and [13]), so our contribution can be viewed as a

generalization of the hitherto known results (see [1] and [6]).

Let us introduce the notions we shall deal with in the sequel. Let F be a

field of characteristic 0 (i.e., let F = (F,+, ·, 0, 1) be a commutative ring in which

each non-zero element has an inverse and no finite sum of 1 is 0). Obviously, F

contains the field of rational numbers. Throughout the paper, let us reserve F for

a field of characteristic 0.

The following definition generalizes the classical notion of measure.

Definition 1.1. Let Ω be a set and let B be a Boolean algebra of subsets of Ω.

Then a mapping m : B → F is said to be an F -valued signed measure on B if

(i) m(∅) = 0,

(ii) if A,B ∈ B and A ∩B = ∅, then m(A ∪B) = m(A) +m(B).

Though the definition of F -valued measure concerns only the (additive) group

part of F , in certain questions about a possible extension of F -valued assignment

p : C → F , C ⊂ exp Ω, to an F -valued measure on a Boolean algebra, the field

structure of F may play a role. An important observation is that if one manages to

extend p over the Boolean algebra generated by C, the rest in extending to exp Ω

follows from the theorem that says that each group-valued measure extends over

exp Ω (in [2], the authors present the proof for the group R of real numbers but

they correctly comment that the same technique enables the proof for a general

group; for general measure-theoretic considerations on group-valued measures,

see e.g. [3]).
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Let us first consider the following type of an assignment p : C → F .

Definition 1.2. Let Ω be a set and let C be a collection of subsets of Ω. Let

p : C → F be a mapping with the following property (let us recall that χS : Ω→
{0, 1} denotes the characteristic function of S, S ⊂ Ω, where χS(x) = 1 exactly

when x ∈ S): If
∑k

i=1 χBi
=
∑l

j=1 χCj
for some B1, B2, . . . , Bk, C1, C2, . . . , Cl

in C then
∑k

i=1 p(Bi) =
∑l

j=1 p(Cj). Then we say that p : C → F fulfils the

Horn-Tarski signed condition (H-T signed condition).

We shall ask when p : C → F that fulfils the H-T signed condition allows for

an extension over a Boolean algebra as a signed measure. Let us first observe

that if C happens to be Boolean, then p : C → F has the H-T signed condition

exactly when p is a signed measure. Thus, the H-T signed condition is a conditio

sine qua non for the meaningfulness of the effort of extending p over a Boolean

algebra.

In this first part we will restrict ourselves to a finite C. In that case there

is a rather interesting link with elements of linear algebra. Let us introduce the

following notion (let us agree to call an element c of F an integer if c is a finite sum

of 1 or −1). With a usual abuse of notation, we will denote by the symbol 0 both

the zero element in a field F and the zero vector of F n, considering the context

this should not lead to a misunderstanding. Further, we will use the symbol ≤
equally in F and in F n, in the latter case we will understand it coordinatewisely.

Also, we write v > w when v ≥ w and v 6= w.

Definition 1.3. Let A be an m × n matrix with the entries 0 or 1 (0, 1 ∈ F ).

Let Ax = b be a linear system with the right-hand vector b = (b1, b2, . . . , bm)T .

This system Ax = b is said to be the 0-1 F -Frobenius if the following implication

holds true. If AT r = 0 for a vector r = (r1, r2, . . . , rm)T and all ri, i ≤ m, are

integers in F , then bT r = 0.

Our first result reads as follows (naturally, we say that two propositions are

equivalent if one of them directly provides a proof of the other).

Theorem 1.1. The following propositions are equivalent:

Prop 1: Each 0-1 F -Frobenius system Ax = b has a solution.

Prop 2: Let C be a finite collection of subsets of Ω. If p : C → F fulfils the H-T

signed condition then there is an extension of p over exp Ω as a signed measure.
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Proof. Let us first show that Prop 1 implies Prop 2. We may (and shall) as-

sume that Ω is finite (this translation to the “skeleton” of C and p is easy

and done in detail in [6]). Thus, let us assume that Ω = {1, 2, . . . , u} and

C = {A1, A2, . . . , At} ⊂ exp Ω. Let us denote by A the t×u matrix whose i-th row

consists of the characteristic functions of Ai. Set b = (p(A1), p(A2), . . . , p(At))
T .

We are to show that the system Ax = b has a solution provided p : C → F

fulfils the H-T signed condition. In view of Prop 1, it suffices to check that

bT r = 0 is valid for an integer vector r = (r1, r2, . . . , rt)
T provided AT r = 0.

Let us separate the positive and negative coordinates, r = r+ − r−, where

r+ = (q1, . . . , qt) (resp., r− = (q1, . . . , qt)) with qi = ri for ri > 0 (resp., qi = −ri
for ri < 0) and qi = 0 otherwise. Then the equality AT r = 0 can be rewrit-

ten as
∑t

i=1 r
+
i · χAi

=
∑t

j=1 r
−
j · χAj

. So we obtain the H-T signed condition

when we repeat Ai and Aj according to the multiplicities given by r+
i and r−j .

Then we have
∑t

i=1 r
+
i · p(Ai) =

∑t
j=1 r

−
j · p(Aj) but this means the equality

(p(A1), p(A2), . . . , p(At))(r1, r2, . . . , rt)
T = 0. This gives us bT r = 0 and we have

derived the implication Prop 1 implies Prop 2.

Let us prove that Prop 2 implies Prop 1. Let us start with a linear system

Ax = b, where A is a t × r matrix with the entries 0 or 1. Let us suppose

that this system is 0-1 F -Frobenius. Write b = (b1, b2, . . . , bt)
T and set Ω =

{1, 2, . . . , r}. Associate to each row of A a subset Ω that corresponds to the

characteristic function of the i-th row. Denote these subsets by Ai, i ≤ t, and

consider the assignment p : C → F by having C = {A1, A2, . . . , At} and setting

p(Ai) = bi. Take two collections B1, B2, . . . , Bk, C1, C2, . . . , Cl in C. Then define

ch = card{i : Bi = Ah} and dh = card{j : Cj = Ah}, h ≤ t. Thus, the equality∑k
i=1 χBi

=
∑l

j=1 χCj
is equivalent with AT c = ATd, c = (c1, c2, . . . , ct)

T , d =

(d1, d2, . . . , dt)
T , and bT c = bTd is equivalent with

∑k
i=1 p(Bi) =

∑l
j=1 p(Cj). This

means that the equality
∑k

i=1 χBi
=
∑l

j=1 χCj
implies

∑k
i=1 p(Bi) =

∑l
j=1 p(Cj).

Hence, since the system Ax = b is 0-1 F -Frobenius, the mapping p fulfils the H-T

signed condition and therefore there is an extension of p over exp Ω that gives us

the solution of Ax = b. We see that Prop 2 implies Prop 1.

Though we were essentially interested in extending p : C → F for a general

(infinite) C, and this problem will be addressed later on with a solution technique

of well-ordering, we found it worthwhile formulating the above equivalence to see

an explicit relation with fundamentals of linear algebra (and the similar approach

will be made use of in the sequel in ordered fields). Obviously, both statements
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of Prop 1 and Prop 2 in Theorem 1.1 are true and therefore the extension is

available in this case. Indeed, consider the statement of Prop 1. Denote by L

the linear space generated by the columns of A and by L̄ the space generated

by L ∪ b. Since the complement L⊥ of L equals to the complement (L ∪ b)⊥ of

L ∪ b (this is true since there is a basis of L⊥ consisting of vectors with integer

coordinates), we see that dim(L) = dim(L∪ b) and the system has a solution due

to the Frobenius theorem.

In the next part we will take up the extensions of non-negative p : C → F , C
finite, over the Boolean algebra B generated by C (as will be seen later, the further

extension over exp Ω may be even more difficult). Let F be an ordered field (F

is endowed with a linear ordering and this ordering cooperates well with the field

operations, see e.g. [12]). As known, each ordered field is of characteristic 0 and

therefore it contains the field Q of rational numbers. Thus, we can stick to our

convention about denoting F both the field and ordered field case.

Let B be a Boolean algebra. An assignment p : B → F is said to be a non-

negative measure if p is a signed measure with p(a) ≥ 0 for all a ∈ B. We want

to derive an equivalence analogous to Theorem 1.1. However, our effort here is

met with a weaker success.

We shall need two definitions. Let us first introduce a “non-negative” version

of Horn-Tarski condition.

Definition 1.4. Let F be an ordered field. Let C be a collection of subsets of Ω.

Let p : C → F be a mapping such that p(A) ≥ 0 for any A ∈ C. Let us suppose

that the following implication holds true: If
∑k

i=1 χBi
≤
∑l

j=1 χCj
for some sets

B1, B2, . . . , Bk, C1, C2, . . . , Cl in C, then
∑k

i=1 p(Bi) ≤
∑l

j=1 p(Cj). Then we say

that p : C → F fulfils the Horn-Tarski condition (the H-T condition).

An adequate version of the 0-1 F -Frobenius condition (called now the 0-1

F -Farkas condition) in linear systems reads as follows.

Definition 1.5. Let F be an ordered field. Let A be an m× n matrix with the

entries 0 and 1 (0, 1 ∈ F ). Consider the system Ax = b, b = (b1, b2, . . . , bm)T .

Then we say that the system Ax = b fulfils the 0-1 F -Farkas condition, if the

following implication holds true: If AT r ≥ 0 for a vector r with all coordinates

integer, then bT r ≥ 0.

We can again spell out the following equivalence.
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Theorem 1.2. Let F be an ordered field. The following two propositions are

equivalent.

Prop 1≤: Let Ax = b be a system that fulfils the 0-1 F -Farkas condition. Then

the system Ax = b has a non-negative solution.

Prop 2≤: Let C be a finite collection of subsets of Ω. Let p : C → F be a mapping

that fulfils the H-T condition. Then p can be extended over the Boolean algebra

generated by C as a non-negative measure.

The proof verbatim follows the procedure of Theorem 1.1, we only have to

exchange the sign = with the sign ≤ (see also [6], passing from the field R of reals

to a general ordered field F is routine). However, in this case this equivalence

does not seem to imply the measure extension – the statement of Prop 1≤ seems

difficult to be proved and therefore it is not seen how to prove Prop 2≤. We only

have the following partial result.

Theorem 1.3. Let F be an ordered field. If the field Q of rational numbers is

dense in F when F is considered with the order-topology given by the ordering of

F , then each system Ax = b which fulfils the 0-1 F -Farkas condition has a non-

negative solution. Thus, for an ordered field F with the above property related to

Q, if C is finite and p : C → F fulfils the H-T condition, then there is an extension

of p over the Boolean algebra generated by C as a non-negative measure.

Proof. Recall first the general version of the Farkas lemma. Let F be an ordered

field. Let A be an m × n matrix with entries in F and let us consider the

linear system Ax = b (in F ). Then the following statement holds true: The

system Ax = b has a non-negative solution x = (x1, x2, . . . , xn)T if and only if

the inequality ATv ≥ 0 (v = (v1, v2, . . . , vm)T ) implies bTv ≥ 0 (this result can be

proved without any topological considerations as demonstrated in [8]). It suffices

to show that under our assumptions the system is subject to the (full) F -Farkas

condition. It means that it suffices to show that if there is a vector v with ATv ≥ 0

and bTv < 0, then there is a column vector w with rational coordinates and, also,

ATw ≥ 0 and bTw < 0 (passing from rational to integer is then a matter of

multiplying with a natural scalar). If ATv > 0, then such a rational vector v can

be easily found in view of the density of Q in F . Suppose that some coordinates of

ATv are 0 (this also covers the case when ATv = 0). Without a lost of generality,

let us assume that (ATv)1 = (ATv)2 = . . . = (ATv)k = 0 and (ATv)l > 0 for

l > k. Since the entries of A are either 0 or 1, the orthogonal complement of
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the k first rows has a basis consisting of vectors with integer coordinates. Due

to the density of Q in F again, we can easily find such a vector w with rational

coefficients that (ATw)1 = (ATw)2 = . . . = (ATw)k = 0 and (ATw)l > 0 for

l > k. This completes the proof.

As we see, if F densely contains the rational numbers, which could occur for

many ordered fields different from the field R of real numbers (see [10], [12]), the

measure extension from C over a Boolean algebra exists. If a proper interval in F

is compact, then F is isomorphic with R and the extension can be required over

the entire exp Ω (see [1] and [6]). However, such an extension is not possible in

general.

Proposition 1.4. Let us consider the (ordered) set Q〈0,1) of rational numbers

of the interval 〈0, 1). Let B be the Boolean algebra generated by all half-open

intervals of the type 〈a, b), 0 ≤ a < b ≤ 1. Then there is a non-negative measure

m : B → Q which cannot be extended as a non-negative measure over exp〈0, 1).

Proof. It is easy to see that B consists of finite disjoint unions of generating

sets (see, e.g., [11]). Thus, if A ∈ B then A is a disjoint union of the form

A = 〈a1, b1) ∪ 〈a2, b2) ∪ . . . ∪ 〈an, bn). Consider the restriction of the Lebesgue

measure on B and denote this measure by m. Then m : B → Q can be viewed as a

non-negative Q-valued measure. This measure cannot be extended over exp〈0, 1)

as a Q-valued non-negative measure. Indeed, take an interval 〈0, z) where z is

an irrational number, z < 1. If m̄ : exp〈0, 1)→ Q were a non-negative extension

of m, then m̄(〈0, z)) ≥ q1 for each rational number q1 < z and m̄(〈0, z)) ≤ q2

for each rational number q2 > z (m̄ has to be order-preserving on the sets of

exp〈0, 1)). But this is absurd.

In the rest we want to consider an arbitrary (possibly infinite) C and an

arbitrary F (however, F is still subject to our original requirement about F

being of characteristic 0). As the previous example shows, we have to resign

on hoping to extend non-negative F -measures to non-negative F -measures. In

the case of signed measures, however, we find that the methods applied for real

valued measures (see [1] and [9]) can effectively be used in this general case as

well.

Theorem 1.5. Let F be a field (of characteristic 0). Let C be a collection of

subsets of a set Ω and let p : C → F be a mapping that fulfils the H-T signed

condition. Then p can be extended over exp Ω as a signed measure.
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We shall need two auxiliary results. Since they are proved by the known

methods (see [1]), we only indicate their proofs. Let us recall that F has to

contain the field Q of rational numbers.

Proposition 1.6. Let C be a collection of subsets of a set Ω. Let L(C) = {f :

Ω → R, f =
∑n

i=1 ri · χAi
, A1, A2, . . . , An belong to C, r1, r2, . . . , rn are rational

numbers. So L(C) is the linear space over the field Q the basis of which consists

of χAi
, Ai ∈ C. Let p : C → F be a mapping. Let us define another mapping

` : L(C) → F by putting `(
∑n

i=1 ri · χAi
) =

∑n
i=1 ri · p(Ai). Then ` is a linear

mapping exactly when p : C → F fulfils the H-T signed condition.

Proof. The result is easily seen as soon as one verifies that the definition of ` is

correct. This amounts to establishing that if
∑k

i=1 ri · χAi
=
∑t

j=1 sj · χBj
then∑k

i=1 ri · p(Ai) =
∑t

j=1 sj · p(Bj). Multiplying with a suitable integer we obtain

integers ci, dj such that
∑k

i=1 ci · χAi
=
∑t

j=1 dj · χBj
. Considering the number

of occurrence of Ai and Bj, we can again rewrite the latter equality in the form∑u
i=1 χDi

=
∑v

j=1 χEj
. But then

∑u
i=1 p(Di) =

∑v
j=1 p(Ej) and, by going back in

an analogous way, we obtain
∑k

i=1 ri · p(Ai) =
∑t

j=1 sj · p(Bj). This is what we

wanted to show.

Proposition 1.7. Let F be a field that contains Q and let C be a collection of

subsets of Ω. Let p : C → F be a mapping that fulfils the H-T signed condition.

Let A ⊂ Ω be a set that belongs to the Boolean algebra generated by C. Then there

is a mapping p̄ : C ∪{A} → F that extends p and fulfils the H-T signed condition.

Proof. Consider the linear mapping ` : L(C) → F defined in Proposition 1.6.

Let us set p̄(A) = d, where d is determined as follows. If χA ∈ L(C), then

we define d = p̄(A) = `(χA). If χA 6∈ L(C), then we choose an arbitrary d ∈
F and put d = p̄(A). We claim that if we set p̄(C) = p(C) for any C ∈ C
and p̄(A) = d, we obtain a mapping p̄ : C ∪ {A} → F that fulfils the H-T

signed condition. We only have to show (Proposition 1.6) that the corresponding

mapping ` : L(C ∪ {A}) → F is linear. It reduces to showing that ` is correctly

defined. In the case of A ∈ C, this is evident. Suppose that A 6∈ C. Then

L(C ∪ {A}) = {f + r · χA, where f ∈ L(C), r ∈ Q}. On the set L(C ∪ {A}) we

have defined ` as follows: `(f + r ·χA) = `(f) + r ·d. Let us see that ` is correctly

defined, the rest is obvious. If f1 +r1 ·χA = f2 +r2 ·χA then f1−f2 = (r2−r1) ·χA.

But χA 6∈ L(C) and therefore f1 − f2 = 0. This verifies the correctness of ` and

the proof is complete.

16



Let us return to the proof of Theorem 1.5. Consider all collections E of subsets

of Ω that satisfy two following conditions: 1. C ⊂ E and E is a subset of the

Boolean algebra generated by C, 2. there is a mapping p̄ : E → F which extends

p : C → F and fulfils the H-T condition. Let us denote by E this collection

of all such E . Let us order E by inclusion. Then E has to have a maximal

element (Zorn’s lemma). Denote this maximal element by Ē and consider the

corresponding p̄ : Ē → F . By Proposition 1.7, Ē must be the Boolean algebra

generated by C. Since p̄ is defined on a Boolean algebra and fulfils the H-T signed

condition, p̄ must be an F -valued signed measure. This measure can be extended

over exp Ω by the theorem on the group-valued signed measure extension [2].
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In this note we deal with the orthocomplemented posets with the symmetric

difference (ODPs) as introduced in [7]. Since the ODPs are found to be ortho-

modular, they can be viewed as some types of quantum logics (see e.g. [1], [4],

[5] and [13] for properties of quantum logics). We introduce states on ODPs and

find their basic properties. Then we contribute to the question on the extensions

of states. In a sense, we complement and extend on the results of the papers [2],

[3], [6], [7], [8] and [9].

Let us first recall the structure which we are going to be interested in [7].

Definition 2.1. Let P = (X,≤, ⊥, 0, 1,4), where (X,≤, ⊥, 0, 1) is an orthocom-

plemented poset and 4 is a binary operation. Let us say that P is said to be an

orthocomplemented difference poset (abbr. , an ODP) if P satisfies the following

properties:

(D1) x4(y4z) = (x4y)4z,
(D2) x41 = x⊥, 14x = x⊥,

(D3) x ≤ z and y ≤ z implies x4y ≤ z.

For the convenience of the reader, let us shortly review some basic properties

of the operations of an ODP. They can be easily verified and have been checked

in detail in [7]. Suppose that P is an ODP and x, y ∈ P . Then (1) x40 = x,

(2) x4x = 0, (3) 04x = x, (4) x4y = y4x, (5) x4y⊥ = x⊥4y = (x4y)⊥,

(6) x⊥4y⊥ = x4y, (7) x4y = 0 exactly when x = y.

For the purpose of expressing our results in a transparent form, let us review

basic notions on the morphisms in ODPs. Let P,Q be some ODPs and let f :

P → Q be an ODP morphism (in a standard manner, f is an ODP morphism if

f respects all the operations involved in the definition of ODP). If f is injective

and f−1 is again a morphism, we call f an embedding. Of course, if f : P → R

is an embedding, we can view P as a subset of R and call P a subODP of R.

Further, if f is an embedding and if f is onto then we call f an isomorphism.

Each Boolean algebra is an ODP, of course, but obviously there are many

others (see e.g. [7]).

Example 1. Let Ω = {1, 2, . . . , 2k − 1, 2k} be a set k ∈ N . Let Ωeven be the

collection of all subsets of Ω consisting of an even number of elements. Then this

Ωeven understood with the inclusion ordering and with the standard set–theoretic

symmetric difference is an ODP.
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Example 2. The projection logic L(R2) can be viewed as an ODP (one of the

proofs of that result uses the Gödel coding, see [8]). It is an open problem

(yet unsolved but with a conjecturably positive answer [9]) that L(R3) could be

embedded in an ODP.

The following notion is crucial in this paper.

Definition 2.2. Let P be an ODP. Let s : P → [0, 1] be a mapping that is

subject to the following conditions (a, b ∈ P ):

(S1) s(1) = 1,

(S2) if a ≤ b⊥, then s(a ∨ b) = s(a) + s(b),

(S3) s(a4b) ≤ s(a) + s(b).

As noted before, an ODP is automatically an orthomodular poset. Thus, the

first conditions S1, S2 of the ODP states are nothing but the standard requirement

for a state in the theory of quantum logics. Since the operation 4 models in a

sense the logical connective of “exclusive or”, it seems natural (or at least not in a

conflict with quantum considerations) to require the third condition for quantum

mechanical events a, b in a state s.

The following result brings some basic properties of the state space of an ODP.

Proposition 2.1. Let L be an ODP and let S(L) be the set of all states on L.

If S(L) is viewed as a subset of [0, 1]L, then S(L) is convex and compact.

Proof. Suppose that s1, s2 ∈ S(L). Consider the mapping v = αs1 + (1 −
α)s2, α ∈ [0, 1]. Then v obviously satisfies the conditions (S1) and (S2) of

the definition of a state. Let us verify the condition (S3). Suppose that a, b ∈ L
and compute v(a4b). We obtain

v(a4b) = αs1(a4b)+(1−α)s2(a4b) ≤ α (s1(a) + s1(b))+(1−α)(s2(a)+s2(b)) =

αs1(a) + (1− α)s2(a) + αs1(b) + (1− α)s2(b) = v(a) + v(b).

Thus, S(L) is closed under the formation of convex combinations. The com-

pactness of S(L) follows from the Tychonoff theorem – S(L) is closed under

the formation of pointwise limits and therefore S(L) is a closed subspace of the

(compact) space [0, 1]L.

Let us recall that L is said to be unital if for each a ∈ L, a 6= 0 there is a state

s ∈ S(L) such that s(a) = 1. Our next result reads as follows (the compactness

argument of [12] is adopted for the situation of ODPs).
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Theorem 2.2. Let L be a unital ODP. Let us suppose that B is a Boolean

subalgebra of L and let s be a state on B. Then s can be extended over L as a

state, i.e. there is a state, t, on L such that t(a) = s(a) for any a ∈ B. If s is

two-valued and L is unital with respect to two-valued states, then the state t can

be required two-valued, too.

Proof. We may (and shall) understand B as a subset of L. Let us consider the set

P of all partitions of B. Recall that P = {p1, p2, . . . , pn} is said to be a partition

of B, P ∈ P , where pi ∈ B, i ≤ n and the following conditions are satisfied (the

symbols ∨ and ∧ mean the supremum and infimum) : ∨ni=1pi = 1, and pi∧pj = 0

whenever i 6= j. The set P is (upon an obvious identification) a partially ordered

set with the refinement relation ≺: For two partitions P = {p1, p2, . . . , pn}
and Q = {q1, q2, . . . , qm}, we write P ≺ Q if for any pi, i ≤ n, there is a

qj, j ≤ m such that pi ≤ qj. Moreover, the ordering ≺ is directed. Indeed, if

P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qm}, then the partition P ∧ Q that

consist of all nonempty intersections {pi ∧ qj | i ≤ n, j ≤ m} is a lower bound of

P and Q. Consider a state s ∈ S(B). For each partition P = {p1, p2, . . . , pn},
let us write SP = {t ∈ S(L) | s(pi) = t(pi) for all i ≤ n}. Obviously, SP is a

closed subset of S(L). Moreover, SP 6= ∅. To see that, if pi ∈ P and pi 6= 0,

then there is a state si ∈ S(L) such that si(pi) = 1 (this state si is guaranteed

by the unitality of L). Since
∑n

i=1 s(pi) = 1, we can make use of the convexity

of S(L) and define sP =
∑n

i=1 s(pi) · si. Then sP ∈ SP and therefore SP 6= ∅ for

each partition P . In the rest we utilized the compactness of S(L). Going over

all partitions of B, we obtain a centered family SP , P ∈ P of closed subsets of

S(L). As a consequence of the compactness of S(L),
⋂
P∈P
SP 6= ∅, and if we take

a state t ∈
⋂
P∈P
SP , we easily see that t(a) = s(a) for any a ∈ B. Obviously, if s

is two-valued then t is two-valued, too. The proof is complete.

Remark. If we identify the hidden variables of a quantum system (meaning of an

ODP in our case) with a two-valued state [5], the final “two-valued” statement

of Theorem 2.2 can be rephrased as follows: Choosing a classic subsystem B

of a “reasonable” quantum system L, all two-valued states on B are traces of

hidden variables of L. Without taking any risk in intellectualizing about this

statement, the hidden variable hypothesis might be linked with another rather

bizarre circumstance—the abundance of two-valued states on B is equivalent with

the Axiom of Choice in the Set Theory.

22



Let us return to Theorem 2.2 at large. It should be noted that if L is set-

representable, this result of Theorem 2.2 has been obtained in [2]. However,

there is a huge class of unital ODPs that are not set-representable and can play

an important role in quantum theories (like e.g. the projection logic L(R3) does

in the usual quantum logic theory). The set-representable as well as non-set-

representable ODPs have been largely studied in [7], though state questions have

not been considered. In fact, the mere horizontal sum technique in ODPs provides

interesting examples of non-set-representable ODPs. To make this note self-

contained and allow the reader to see that the construction product is indeed

a unital ODP (and so are indeed all non-set-representable ODPs constructed in

[7]), let us exhibit a simple example.

Example 3. There is a finite ODP, P , which is unital and not set-representable.

Proof. Let B be a Boolean algebra of all subsets of the set {1, 2, 3, 4, 5}, thus

B = exp{1, 2, 3, 4, 5}. Let us consider the following three subalgebras of B:

B1 = {∅, {1, 2}, {3}, {4, 5}, {3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3}, {1, 2, 3, 4, 5}}
B2 = {∅, {1, 5}, {2}, {3, 4}, {2, 3, 4}, {1, 3, 4, 5}, {1, 2, 5}, {1, 2, 3, 4, 5}}
B3 = {∅, {1, 3}, {2, 4}, {5}, {2, 4, 5}, {1, 3, 5}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}}.

Let us denote by P the (orthomodular) horizontal sum of the algebras B1, B2, B3.

Since B1, B2, B3 are mutually disjoint except for ∅ and {1, 2, 3, 4, 5}, we can set

x4Py = x4By. It is easy to see that P is an ODP. Also, it is evident, that the

state space of B agrees with the state space of P , hence P is unital. On the other

hand, it can be proved that P is not set-representable. For that, let us make

use of Theorem 4.7 of [7] which asserts that, in a certain analogy with the Stone

representation of Boolean algebras, an ODP is set-representable exactly when for

two non-comparable elements x, y ∈ P there is a two-valued evaluation s (in our

terminology, a two-valued state s) on P such that s(x) = 1 and s(y) = 0. Set x =

{3} and y = {2, 3, 4}. Since x ∈ B1 and y ∈ B2, the elements x, y are obviously

non-comparable. Assume that there is a two-valued state s on P such that

s({3}) = 1 and s({2, 3, 4}) = 0. Then s({3}⊥) = s({1, 2, 4, 5}) = 0 and therefore

s({1, 2}) = s({3, 4}) = s({4, 5}) = s({2}) = 0. Since {1, 2, 3, 4} = {1, 2}4{3, 4}
and {2, 4, 5} = {4, 5}4{2}, we see that s({5}⊥) = s({1, 2}4{3, 4}) = 0, and

analogously, s({1, 3}⊥) = s({2, 4, 5}) = 0. Since {1, 3} ⊂ {5}⊥ = {1, 2, 3, 4}, we

conclude that s({1, 3}) = 0, but s({2, 4, 5}) = 0, too, and this is a contradiction.
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Let us address a potential generalization of Theorem 2.2—let us ask the same

question for pseudocomplemented ODPs. Unfortunately, we are in for a negative

answer. Let us recall that an ODP is said to be pseudocomplemented if the

following implication holds true: If a ∧ b = 0 then a ≤ b⊥. It should be noted

that this class of pseudocomplemented ODPs is of specific interest with quantum

theories because each pseudocomplemented ODP is set-representable [7] and the

relation of compatibility manifests itself “algebraically”. The elements a, b are

compatible precisely when a∧ b exists. Observe also that a pseudocomplemented

ODP is Boolean whenever it is finite or it is a lattice. So the pseudocomplemented

ODPs are rather close to Boolean algebras.

We shall need two auxiliary results. The first result is based on an idea of [2]

and we will express it in the form we shall need later.

Example 4. Let Ω = {1, . . . , 10} and let us consider the following subsets

A,B,C,D : A = {1, 2, 5, 8}, B = {1, 3, 6, 9}, C = {1, 2, 3, 4}, D = {1, 5, 6, 7}
of Ω. Let P be the set-representable ODP of subsets of Ω that is generated by

A,B,C and D. Then there is a (two-valued) state on P that does not allow for

an extension over exp Ω.

Proof. Let us set s(Ω) = 1, s(A) = 0, s(B) = 1, s(C) = 1, s(D) = 1, s(A4B) =

1, s(A4C) = 1, s(A4D) = 1, s(B4C) = 0, s(B4D) = 0, s(C4D) = 0,

s(A4B4C) = 0, s(A4B4D) = 0, s(A4C4C) = 0, s(B4C4D) = 1 and

s(A4B4C4D) = 1. We have defined a two-valued state on P . This state

does not allow for an extension over exp Ω. To see that, one first takes into ac-

count that each state t on exp Ω is a convex combination of Dirac states (i.e.,

the convex combination of states that are concentrated in singletons). But

it easily follows from the construction of the sets A,B,C,D that there is no

such t that would extend s. Indeed, let us suppose that t is such an exten-

sion. Then t({1, 3, 6, 9}) = t({1, 2, 3, 4}) = 1 and therefore t({1, 3}) = 1. But

t({1}) = t({1, 2, 5, 8}) = 0 and if follows that t({3}) = 1, and this is absurd.

The second result might also be of a certain interest in its own right.

Proposition 2.3. Each set-representable ODP can be embedded in a pseudocom-

plemented ODP.

Proof. Suppose that P is a set-representable ODP and suppose that the under-

lying set of P is X. Let us take a mapping f, f : Y → X such that f maps Y
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onto X and such that card f−1(x) > cardX for any x ∈ X. When we take the

full preimage of P with respect to f−1, we obviously obtain an ODP which is iso-

morphic with P (the preimages preserve the operations of intersection and union

as well as the operation 4 of complementation). Let us denote by Q the ODP we

have obtained, Q ⊂ expY . Let us denote by R the smallest (set-representable)

ODP that is generated by Q and all finite and co-finite subsets of Y . Then R is

a pseudocomplemented ODP and the proof is complete.

Theorem 2.4. There is a unital ODP, R, and a pseudocomplemented ODP, P ,

such that P is a subODP of R and such that we can construct a state s on P that

does not allow for an extension over R.

Proof. Let us apply the construction of Prop. 2.3 by taking for P the ODP on

Ω = {1, 2, 3, 4, 5} constructed in Example 3. Then the preimage Q under f−1

(Prop. 2.3) is isomorphic with P and therefore Q has the same state-space. We

have constructed a state s on P that cannot be extended over exp Ω. Let us

denote by t the state on R (R constructed in Prop. 2.3) obtained by lifting the

state s with f−1 and with additionally defining t(F ) = 0 for each finite subset of

Y . Then t cannot be extended over expY and this completes the proof.
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The (concrete) logics and ∆-logics have been investigated by several authors

([1], [2], [4], [3], [5], [7], [14], [15], [18], [20], [23], [24]). In this note, we extend on

this investigation.

Let us review the basic notions as we shall use them in the sequel (by exp Ω

we mean a collection of all subsets of Ω).

Definition 3.1. A concrete quantum logic (abbr., a logic) is a pair (Ω,L) where

Ω is a set and L, L ⊂ exp Ω is such a collection of sets that is subject to the

following conditions:

1. Ω ∈ L,

2. if A ∈ L, then Ω\A ∈ L,

3. if A,B ∈ L and A ∩B = ∅, then A ∪B ∈ L.

A logic is said to be a ∆-logic if it is closed under the formation of the symmetric

difference: If A,B ∈ L, then A∆B = (A\B) ∪ (B\A) ∈ L.

Let us observe that if L = (Ω,L) is a logic then the ∆-logic generated in

Ω by L consists of all elements, D, of the type D = A1 ∆A2 ∆ . . .∆An, where

Ai ∈ L. Let us denote by (Ω,∆L) the ∆-logic generated by L in Ω. Obviously,

if a collection K is closed under the formation of the symmetric difference and

Ω ∈ K, then K is a logic.

The previous research revealed a large variety of concrete logics, including

Boolean algebras, of course. It is easily seen that (Ω,L) is a Boolean algebra

exactly when A ∩ B ∈ L for any pair A,B ∈ L. (It may be noted that some

authors—including the inventor of ∆-logics P. G. Ovchinnikov [18]—preferred the

expression “symmetric logic” to ∆-logic, we feel that ∆-logic is more suggestive

and short.)

Definition 3.2. Let L = (Ω,L) be a logic. A mapping s : L → [0, 1] is said to

be a state on L (or, alternatively, s is said to be a state on L if we do not need

to refer to Ω) if

1. s(Ω) = 1,

2. if A,B ∈ L and A ∩B = ∅, then s(A ∪B) = s(A) + s(B).

If (Ω,L) is a ∆-logic and s is a state on L, then s is called a ∆-state if s(A∆B) ≤
s(A) + s(B) for any A,B ∈ L.

In the first part of the paper we ask when a state on (Ω,L) can be extended

over (Ω,∆L) as a ∆-state. This question is related to “discrete integration” as
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pursued e.g. in [11], [13], [16]—if a state on (Ω,L) allows for an extension over

(Ω,∆L) as a ∆-state, the corresponding integral is ∆-subadditive. In the ideal

case when the state s extends over exp Ω, the corresponding integral is additive.

The degree of additivity of the integral can be a significant matter in e.g. coarse-

grained measurement or in economic theories (see [4], [12]).

The first instance to be taken up is the situation when the logic (Ω,L) is

already a ∆-logic. A most natural question then reads as follows: When a state

on (Ω,L) is automatically a ∆-state? In [1] the authors asked this question. They

showed that if (Ω,L) is a non-Boolean logic and L is finite then there is always

a state on (Ω,L) that is not a ∆-state. In a certain contrast, they proved that

if L = Eeven
Ω is a logic of all even-coeven subsets of Ω and Ω is uncountable, then

each state on (Ω, Eeven
Ω ) is automatically a ∆-state. The authors of [1] omit the

case of Ω countable. In the following theorem we take care of this case.

Theorem 3.1. Let Ω be an (infinite) countable set and let Eeven
Ω be the quantum

logic of all even-coeven subsets of Ω. Let s be a state on Eeven
Ω . Then s is a

∆-state.

Proof. The proof makes use of the insight taken from [1] plus a few new obser-

vations. Let A,B ∈ Eeven
Ω . We have to show that s(A∆B) ≤ s(A) + s(B). First,

if A ∩ B ∈ Eeven
Ω , then both A\B and B\A belong to Eeven

Ω and the inequality

is obvious: s(A∆B) = s((A\B) ∪ (B\A)) = s(A\B) + s(B\A) ≤ s(A) + s(B).

Suppose therefore that A ∩ B /∈ Eeven
Ω . Then neither of the sets A\B and B\A

belong to Eeven
Ω . Let us discuss the situation by cases. Suppose first that both

A and B are infinite. Thus, A = Ω\{a1, a2, . . . , a2k} and B = Ω\{b1, b2, . . . , b2l},
where k, l are positive integers. Then A\B = {b1, b2, . . . , b2l}\{a1, a2, . . . , a2k}
and B\A = {a1, a2, . . . , a2k}\{b1, b2, . . . , b2l}. By our assumption, both A\B and

B\A are of odd cardinalities. Then there is an x ∈ A and a y ∈ B such that

both (A\B) ∪ {x} and (B\A) ∪ {y} belong to Eeven
Ω . If x 6= y, which is easy

to satisfy, then s(A∆B) = s(((A\B) ∪ {x}) ∪ ((B\A) ∪ {y})) ≤ s((A\B) ∪
{x}) + s((B\A) ∪ {y}) ≤ s(A) + s(B). Secondly, suppose that A is infinite and

B is finite. Then A = Ω\{a1, a2, . . . , a2k} and B = {b1, b2, . . . , b2l}. It means

that A\B = Ω\({a1, a2, . . . , a2k}∪{b1, b2, . . . , b2l}) and B\A = {a1, a2, . . . , a2k}∩
{b1, b2, . . . , b2l}. Suppose that the cardinality of A∩B is greater than or equal to 3.

Then we can easily find two distinct points x, y ∈ A∩B such that ((A\B)∪{x}) ∈
Eeven

Ω and ((B\A) ∪ {y}) ∈ Eeven
Ω . Then s(A∆B) = s((A\B) ∪ (B\A)) ≤
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s(((A\B)∪{x})∪((B\A)∪{y})) = s((A\B)∪{x})+s((B\A)∪{y}) ≤ s(A)+s(B).

Suppose therefore that A∩B is a singleton. Write A∩B = {c}. We are going to

show that for any ε, ε > 0, we have the inequality s(A∆B) ≤ s(A) + s(B) + ε.

This implies that s(A∆B) ≤ s(A) + s(B). Since A\B is infinite, there is an

infinite number of disjoint two-point sets in A\B. Among these two-point sets

there must be one, say {u, v}, such that s({u, v}) ≤ ε (otherwise we have a

contradiction with the additivity of s). Then we have the following inequalit-

ies: s(A∆B) = s((A\B) ∪ (B\A)) = s((A\{c}) ∪ (B\{c})) = s((A\{c, u}) ∪
((B\{c}) ∪ {u})) = s((A\{c, u})) + s((B\{c}) ∪ {u})) ≤ s(A) + s(B ∪ {u, v}) =

s(A) + s(B) + s({u, v}) = s(A) + s(B) + ε. Finally, suppose that both A and B

are finite. So A = {a1, a2, . . . , a2k} and B = {b1, b2, . . . , b2l}. If the cardinality

of A ∩ B is greater than or equal to 3, we can again find two distinct points

x, y ∈ A ∩ B such that ((A\B) ∪ {x}) ∈ Eeven
Ω and ((B\A) ∪ {y}) ∈ Eeven

Ω . As

before, s(A∆B) = s((A\B) ∪ (B\A)) ≤ s(((A\B) ∪ {x}) ∪ ((B\A) ∪ {y})) =

s((A\B) ∪ {x}) + s((B\A) ∪ {y}) ≤ s(A) + s(B). The only case that remains

is when A ∩ B is a singleton. Then we will show that for any ε, ε > 0, we

have the inequality s(A∆B) ≤ s(A) + s(B) + 2ε. Consider again infinitely

many two-point sets in Ω\(A ∪ B). If an ε, ε > 0 is given, there must be

a two-point set {u, v}, {u, v} ⊂ Ω\(A ∪ B) with s({u, v}) ≤ ε. Consider

the sets A ∪ {u, v} and B ∪ {u, v}. Then (A ∪ {u, v}) ∩ (B ∪ {u, v}) has 3

elements and, moreover, (A ∪ {u, v}) ∆(B ∪ {u, v}) = A∆B. So we obtain

s(A∆B) = s((A ∪ {u, v}) ∆(B ∪ {u, v})) ≤ s(A ∪ {u, v}) + s(B ∪ {u, v}) ≤
s(A) + ε+ s(B) + ε ≤ s(A) + s(B) + 2ε. The proof is complete.

The result above supports the conjecture that a state on Eeven
Ω extends over

the Boolean algebra of finite-cofinite sets. This question seems to be open so far.

It should be noted that in [23] the author shows that there is a ∆-logic (Ω,L)

on which each state is subadditive (a state on (Ω,L) is said to be subadditive if

for any A,B ∈ L there is a C ∈ L such that A∪B ⊂ C and s(C) ≤ s(A)+s(B)).

Since each subadditive state is a ∆-state, this example somewhat strengthens

the uncountable example of [1] and, in addition, it enjoys several other algebraic

properties (for instance, it is pseudocomplemented). The example of [23] does

require the set Ω uncountable.

Another conceptually important example is the case of the divisibility logics.

Suppose that n = mk with numbers m,n, k ∈ N and k ≥ 2. Let Ω = {1, 2, . . . , n}
and let us denote by Divk the logic of all subsets of Ω whose number of elements
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is divisible by k. Thus, the cardinality of Divk is
∑m

i=0

(
n
ik

)
. Consider the logic

(Ω, Divk). If m = 2, then problem trivializes—there is always a state on (Ω, Divk)

that cannot be extended over (Ω,∆Divk) (see [3], [21]). A rather interesting

situation occurs when k ≥ 3 and m ≥ 3. Since the case of k even reduces to

the situation covered by k = 2 (in this case ∆Divk = Div2), let us assume that

k is odd. In this case ∆Divk = exp Ω and we therefore ask whether a state

on (Ω, Divk) extends over exp Ω. This question was investigated in a nice paper

[21] with the answer that there are always states that do not extend over exp Ω

as states but that each state on (Ω, Divk) always allows for an extension over

exp Ω as a signed state. In other words, there is always a set {α1, α2, . . . , αn}
of real (not necessarily non-negative) numbers with

∑n
i=1 α1 = 1 and with the

property that the combination of the Dirac states on exp Ω with the coefficients

αi, (i ≤ n), gives us the original state s when restricted to (Ω, Divk). We would

like to contribute to this result by formulating—in the line of Farkas lemma (see

[8], [9])—a necessary condition for a state to be extended as a state (we could

strengthen it to obtain a necessary and sufficient condition but the formulation

is then perhaps less satisfactory and less elegant). To do that, we have to express

the result of [21] in more detail and fix some terminology.

Let n = mk, when k ≥ 3, m ≥ 3 and k is odd. Let us assign to the logic

(Ω, Divk) a matrix, P (Divk), in the following manner. The matrix P (Divk) is an

(n− 1)× (n− 1) matrix such that the rows of P (Divk) are the following vectors

(each vector contains k many of 1’s and (n− 1− k) many of 0’s):

r1 = (1, 1, . . . , 1, 0, 0, . . . , 0, 0, 0),

r2 = (0, 1, 1, . . . , 1, 1, 0, . . . , 0, 0),
...

rn−k−1 = (0, . . . , 0, 1, 1, . . . , 1, 1, 1, 0),

rn−k = (0, 0, . . . , 0, 1, 1, . . . , 1, 1, 1),

rn−k+1 = (1, 0, 0, . . . , 0, 1, 1, . . . , 1, 1),

rn−k+2 = (1, 1, 0, 0, . . . , 0, 1, 1, . . . , 1),
...

rn−2 = (1, 1, . . . , 1, 0, 0, . . . , 0, 1, 1),

rn−1 = (1, 1, 1, . . . , 1, 0, 0, . . . , 0, 1).

Let us assign to each vector of the row the set Ai (i ≤ n − 1) of Divk which

“copies the coordinates” (for instance, to the vector r1 = (1, . . . , 1, 0, . . . , 0) we

assign A1 = {1, 2, . . . , k}, to the vector r2 = (0, 1, . . . , 1, 0, . . . , 0) we assign A2 =
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{2, 3, . . . , k+1}, etc.). Write si = s(Ai). The author of [21] shows that the system

P (Divk) ·xT = si has a precisely one solution (det(P (Divk)) = k). In fact, by the

Cramer rule we obtain xi = det(Pi)
k

, i ≤ n− 1, where Pi is the i-th Cramer matrix

associated to P (Divk). The coordinates of the vector determine the values of the

extension of s over exp Ω. This follows from the fact proved in [21] that the sets

Ai are generators of Divk. It further shows that there is always an extension of s

over exp Ω as a signed state. A necessary condition for a non-negative extension

is given by the following version of Farkas lemma (by an additional condition, we

can even arrive to a characterization).

Theorem 3.2. Let n = mk, where k ≥ 3, m ≥ 3 and k is odd. Write Ω =

{1, 2, . . . , n} and consider the logic (Ω, Divk). Then

1) (Ω,∆Divk) = (Ω, exp Ω),

2) if s is a state on (Ω, Divk) and P (Divk) is the matrix associated to (Ω, Divk),

then the validity of the following implication is a necessary condition for s to be

extended over exp Ω as a state: If (P (Divk))
T · pT ≥ 0 for a vector p with all

coordinates integer, then (s1, s2, . . . , sn−1) · pT ≥ 0,

3) suppose that the implication in the condition 2) above is valid and suppose that

s({1, 2, . . . , k − 1, n})−
∑k−1

i=1
det(Pi)

k
≥ 0. Then s extends over exp Ω as a state.

Proof. Since P (Divk) is a matrix with the entries 0 and 1 only, we can apply the

variant of Farkas lemma proved in [6]. The condition 3) guarantees that we can

find the non-negative extension for the singleton {n}, too.

Let us note that the system of linear equations considered above may indeed

have a “properly signed” solution (thus, there is a state on (Ω, Divk) that cannot

be extended over exp Ω as a state. Take, for instance, n = 9, k = 3 and m = 3.

Thus Ω = {1, 2, . . . , 9}. Consider the evaluation e : Ω → R such that e(1) =

−1
7
, e(2) = e(3) = . . . = e(9) = 1

7
. This evaluation uniquely determines a (non-

negative) state on (Ω, Divk) by setting s(A) =
∑

a∈A e(a). The state s cannot be

extended over exp Ω as a state. This can be verified directly or it suffices to take,

in our condition 2), the vector p = (3,−2, 0, 2, 0,−2, 3,−1).

It should be noted, in connection with the theme of our paper, that an ana-

logous question about extensions of states has been asked and investigated in

[12] for so called coarse-grained logics and fully answered in [19] (for a further

extension on this type of research, see [4] and [5]). Recalling briefly the definition,

if we again write n = mk and Ω = {1, 2, . . . , n}, then the coarse-grained logic is
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the one generated by consecutive k-tuples in Ω understood mod k. Hence the

generating sets are {1, 2, . . . , k}, {2, 3, . . . , k+1}, . . ., {n−k+1, n−k+2, . . . , n},
{n − k + 2, . . . , n, 1}, . . ., {n, 1, 2, . . . , k − 1}. So the number of generators is n

(this number could be lowered but this is not a matter of our interest in this pa-

per). In a rather interesting manner, the nature of the extension problem differs

considerably from the previous situation. If m ≥ 3 and (Ω,L) is a coarse-grained

logic on Ω, then a state on (Ω,L) always allows for an extension over exp Ω as

a state, and therefore the state always allows for an extension over (Ω,∆L) as

a state. (In order to expose the structural difference of the two situations, let

us again consider the example of the previous paragraph given by the evaluation

e : Ω → R such that e(1) = −1
7
, e(2) = e(3) = . . . = e(9) = 1

7
. If understood

as a state of (Ω, Div3), it cannot be extended over exp Ω as a state. However, if

understood as a state on the coarse-grained logic (Ω,L), k = 3, it does allow for

an extension as a state (indeed, it suffices to take s({1}) = 1
7
, s({4}) = s({7}) =

3
7
, s({2}) = s({3}) = s({5}) = s({6}) = s({8}) = s({9}) = 0).

Let us introduce the final area of questions which we want to take up (and

contribute to) in this paper. Let N = {1, 2, . . . , n, . . .} be the set of all nat-

ural numbers and let L be the collection of all subsets A, A ⊂ N such that

limn→∞
card(A∩{1,2,...,n})

n
exists. Put Ω = N and let us consider (Ω,L). Let us call

(Ω,L) a d-logic (the letter d indicates “density” as sometimes referred to in the

literature). This classical structure of number theory and analysis has apparently

not been considered from the point of view of quantum logics (in the paper [26]

this example was mentioned without any further discussion). Let us formulate

and prove certain properties of (Ω,L) for a potential further investigation within

quantum logics.

Theorem 3.3. Let (Ω,L) be a d-logic. Thus, Ω = N and L consists of all subsets

of Ω that are determined by the limit condition introduced in the paragraph above.

Then

1) (Ω,L) is a (concrete) quantum logic,

2) if we write, for any A ∈ L, s(A) = limn→∞
card(A∩{1,2,...,n})

n
, then s is a state

on L,

3) L is not a lattice (and therefore L is not Boolean). In fact, any couple A, B ∈
L such that A ∩B /∈ L and A ∩B is infinite does not have an infimum,

4) ∆L = exp Ω. More explicitly, for each A, A ⊂ exp Ω there are sets B,C ∈ L
such that s(B) = s(C) = 1

2
and A = B∆C,
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5) the state s can be extended over exp Ω as a state,

6) there is a family of 2ℵ0 almost disjoint subsets of Ω, {Aα, α < 2ℵ0}, such that

s(Aα) = 0 for each α, α < 2ℵ0. A consequence: Let us consider the quantum logic

K = L/F obtained as the factor of (Ω,L) with respect to the ideal F of all finite

sets. Then K has 2ℵ0 elements and K is atomless. Moreover, this factor logic K
is pseudocomplemented (i.e., the elements A, B ∈ K are compatible exactly when

A ∧B exists).

Proof. The statements 1) and 2) can be proved by routine verifications. Let us

consider the statement 3). It is easy to check that for any couple referred to in

statement 3) the infimum does not exists (the logic L contains all finite sets).

What remains to show is that such a couple exists at all. Indeed, it suffices to

take for A the set of all odd numbers and to construct the set B as follows. First

we put into the set B the elements 2 and 3, then precisely all even numbers

from the segment (2k + 1) up to (3
2
2k) and precisely all odd numbers from the

segment (3
2
2k + 1) up to (2k+1 + 1) for all natural k, k ≥ 2. It is easy to see that

s(A) = s(B) = 1
2

and that the sequence dn = card((B∩C)∩{1,2,...,n})
n

has the values 1
4

and 1
6

for its cluster points (thus, limn→∞ dn does not exist and hence B∩C /∈ L).

Let us take up the proof of statement 4). The formal expression of B and C

would be rather difficult and cumbersome, we will indicate the construction idea

which is sufficiently intuitive. Let us consider A expressed as a union of subsets,

A =
⋃∞
i=1 Ii, where each Ii (i ∈ N) is a segment of consecutive points. Also, let

us express the set Ω\A as a union of subsets, Ω\A =
⋃∞
i=1 Hi (i ∈ N), where

each Hi is a segment of consecutive points. In our argument, let us refer to an Ii

as an “island” in A and to an Hi as a “hole” in A. If either of Ii of Hi is equal

to Ω up to a finite set, then the proof is easy. Suppose therefore that both the

families Ii and Hi (i ∈ N) are infinite and each Ii and Hi is a finite set. We

can consider Ii and Hi with its order inherited from N(= Ω). Call this order the

natural order of Ii and Hi. Let us construct the sets B and C. Firstly, consider

those islands Ii which consist of an even number of elements. In this case the set

B to be constructed contains precisely the odd elements in the Ii considered in

the natural order and, analogously, the set C to be constructed contains precisely

the even elements in the Ii. Secondly, consider the holes Hi which consist of an

even number of elements. Then we put the same points into both sets B and C,

and these sets will consist precisely of the odd elements in the Hi. It remains

to take up the odd-elements sets Ii and Hi. Then the situation is slightly more
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complicated. Let us first consider the set of all the odd-elements islands Ii. If

the latter set is empty, we do not have anything to do. Otherwise, there is the

first i (i ∈ N), some i1, such that Ii1 is the first odd-elements island. Further,

we construct the set B from all the odd-ordered elements of Ii1 and the set C

from all the even-ordered elements of Ii1 . Then all odd-elements islands Ii2k+1

will be treated equally. Next, we are to take the points from the islands of the

type Ii2k . In this case we distribute the odd-ordered points of Ii2k into the set C

and the even-ordered elements to the set B. Finally, let us consider the set of all

the odd-elements holes Hi. If the latter set is empty, we do not have anything to

do. Otherwise there is the first i (i ∈ N), some i1, such that Hi1 is the first odd-

elements hole. Then we construct both the sets B and C from the odd-ordered

elements of Hi1 . Then all holes Hi2k+1
will be treated equally. Further, we are to

take points from the holes of the type Hi2k . In this case we construct the both

sets B and C from the even-ordered points of Hi2k . By the construction of the

sets B and C, it is not difficult to check that s(B) = s(C) = 1
2
.

The statement 5) can be proved by the classical result on the Banach limits

(see e.g. [27], p. 41).

In order to show the statement 6), let us first see that there is a collection

of 2ℵ0 almost disjoint subsets of Ω. An easy proof of this known result can be

obtain as follows (see also [10]). Identify Ω with the set of all rational num-

bers Q. For each irrational number r ∈ R, let us choose a sequence (qrn)n∈N

of rational numbers that converges to r. Consider the family of the previ-

ously constructed sequences Sr = {(qrn), n ∈ N}. Let us take the collection

S = {Sr, r is an irrational number}. Then this collection is an almost disjoint

family of subsets of Q with the cardinality 2ℵ0 . Going back to Ω, we have the

required almost disjoint collection. Continuing our argument let us first observe

that each infinite subset of Ω contains a subset M with s(M) = 0. For each Sr

choose such a set Mr. WriteM = {Mr, r is an irrational number}. Since the sets

of S are pairwisely eventually almost disjoint, so are the sets of M. This proves

the first part of statement 6). To complete the proof, we only need to observe

that F consists of central elements of (Ω,L) and hence the factor L/F gives us a

quantum logic [25]. One only takes into account that the pseudocomplemented-

ness (a ≤ b′ ⇐⇒ a ∧ b = 0) can be equivalently expressed by the equivalence

(a ∧ b exists ⇐⇒ a is compatible with b, see e.g. [17]). The rest is easy.

The results above indicate certain potential for the interpretation of the d-logic
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in the realm of quantum logics. In concluding our paper, let us for instance note

a link of the d-logic with the projection logic L(H). Let us take an orthonormal

basis, E = {vi, i ∈ N}, in H. Then E understood as elements of L(H) generates a

Boolean subalgebra BE of L(H). Obviously, BE is Boolean isomorphic to expN .

Consider a state t on L(H). Let us call it an E-d-state if the restriction of t on BE

is a Banach extension of the state s on the d-logic understood as being underlied

by the set E . Observe that the E-d-states exist. Indeed, a Banach extension of

s considered as a state on exp E can be extended over the entire L(H) [22]. It

may be interesting to see what the size of the closure of the convex hull, conv(T ),

comes to (T is the set of all E-d-states for all choices of orthonormal bases E).

How smaller this conv(T ) is than the entire state space of L(H)?
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4 Jauch-Piron states on quantum logics
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Jauch-Piron states on quantum logics

Michal Hroch4 and Pavel Pták5

Abstract. We show in this note that if B is a Boolean subalgebra of the lattice

quantum logic L, then each state on B can be extended over L as a Jauch-Piron

state provided L is Jauch-Piron unital with respect to B (i.e., for each non-zero

b ∈ B, there is a Jauch-Piron state s on L such that s(b) = 1). We then discuss

this result for the case of L being the Hilbert space logic L(H) and L being a

set-representable logic.

Keywords: Boolean algebra, orthomodular lattice, quantum logic, Jauch-Piron

states, extensions of states

AMS Classifications: 06C15, 03G12, 81B10

Notions and results

Let L be a lattice quantum logic (i.e., let L = (L, 0, 1,∧,∨, ′)) be an orthomodular

lattice, see [4] and [6]). Let us reserve the letter L for a lattice quantum logic

and call L simply a logic. By a state on L we mean a mapping s : L → [0, 1]

such that s(1) = 1, and s(a ∨ b) = s(a) + s(b) provided a ≤ b′. Thus, a state on

L is a (normalized finitely additive) measure. Let us denote by S(L) the set of

all states on L. For a systematic treatment of states on a logic, see e.g. [10] and

[13].

If we identify L with a set of events of a quantum experiment and if we

identify s with a state of L, it may seem desirable, in view of quantum phenom-

ena, to assume that s satisfies the following requirement: If s(a) = s(b) = 1, then

4The author was supported by the Grant Agency of the Czech Technical University in
Prague, grant No. SGS18/131/OHK3/2T/13.

5This work was supported by the project OPVVV CAAS
CZ.02.1.01/0.0/0.0/16 019/0000778.



s(a ∧ b) = 1. Translating into probabilistic language, this means the requirement

that if a and b are “almost sure events” within the state s, then so is the con-

junction a ∧ b. The state with the latter property is said to be a Jauch-Piron

state. It is called in this way after the names of the physicists who pointed out

the importance of this property (see [1], [5], [15], etc.).

Each state on a Boolean algebra (= each state on the event structure of a

classical experiment) is Jauch-Piron, of course. The situation in general is rather

more complicated. Let us observe, in view of the formulation of our results, that

each logic can be embedded into a logic that has no Jauch-Piron states at all or,

quite curiously, that has exactly one Jauch-Piron state (both statements can be

easily derived from [3] and [10]). Consequently, each logic can be embedded in a

logic whose Jauch-Piron states form a simplex. It seems conjecturable (see [16])

that each logic can be embedded in a logic whose Jauch-Piron states form a given

compact convex set. But this may constitute a rather hard problem. As a rule,

apart from Jauch-Piron states a logic usually contains the states that are not

Jauch-Piron. So does, for instance, the prominent logic L(H) of all projectors in

a separable Hilbert space (see [5], Prop 8.2.2 and Prop. 10.1.3).

Let B be a Boolean sublogic of a logic L (thus, B ⊂ L and B forms a Boolean

algebra with respect to the operations inherited from L). We show that if s is a

state on a B and if L has an abundance of Jauch-Piron states with respect to B

then s allows for an extension over L as a Jauch-Piron state. By its mathematical

character, this result belongs to the (non-commutative) measure theory. In the

possible interpretation in theoretical physics, the result says that a state on a

classical event system allows, under natural conditions, a “desirable” extension

over a quantum event system.

The method of the proof is not entirely new, it makes use of an appropriate

modification of the technique of the paper [12]. However, since the application

of our result to the Hilbert space logic L(H) is slightly surprising, we think it

worthwhile publishing a detailed proof.

Let us first formulate a proposition concerning the Jauch-Piron states.

Proposition 4.1. Let L be a lattice logic and let SJP(L) be the set of all Jauch-

Piron states on L. Then SJP(L), when viewed as an affine and a topological

subspace of [0, 1]L, forms a convex and compact set.

Proof. If s1, s2 are Jauch-Piron states and if s = ts1 + (1− t)s2, where t ∈ [0, 1],

then s is again a Jauch-Piron state. Indeed, if s(a) = s(b) = 1 and if 0 < t < 1,
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then s1(a) = s1(b) = s2(a) = s2(b) = 1. As a result, s1(a∧b) = 1 and s2(a∧b) = 1.

Thus, s(a ∧ b) = ts1(a ∧ b) + (1− t)s2(a ∧ b) = 1.

Further, suppose that sα converges pointwisely to s, where α goes over a

directed set. Then if any sα is Jauch-Piron, we see that s is obviously Jauch-

Piron, too. We infer that the set SJP(L) of all Jauch-Piron states on L is a close

subspace of the topological product [0, 1]L and therefore (Tychonoff’s theorem)

the set SJP(L) is compact.

Theorem 4.2. Let B be a Boolean subalgebra of a quantum logic L. Let s be a

state on B. Let us suppose that for each b ∈ B, b 6= 0, there is a Jauch-Piron

state s̃ on L such that s̃(b) = 1. Then there is a state t on L such that t is

Jauch-Piron and t restricted to B coincides with s.

Proof. Let us consider the collection P of all partitions of B. By a partition of

B we mean a collection P = {p1, . . . , pn} such that pi ∧ pj = 0 in B provided

i 6= j, and ∨ni=1pi = 1 in B. The set P can be viewed as a directed partially

ordered set. Indeed, P is naturally ordered by the refinement relation �, where

P = {pi, . . . , pn} is less or equal than Q = {qi, . . . , qm} (in symbols P � Q) if

for any pi, i ≤ n, there is qj, j ≤ m, with pi ≤ qj. The ordering � on P is

obviously directed—if P = {p1, . . . , pn} and Q = {qi, . . . , qm}, then the partition

R = {pi ∧ qj, i ≤ n, j ≤ m} is a lower bound of both P and Q.

Let us consider the given state s ∈ S(B). For each partition P = {p1, . . . , pn}
of B let us set SP = {v ∈ SJP(L), v(pi) = s(pi)}. Considering the topology

of SJP(L) and making use of Proposition 4.1, this set SP is compact. By our

assumption, SP 6= ∅ for any P ∈ P . Indeed, if pi 6= 0 then the assumption

of Theorem 4.2 guarantees that there is a Jauch-Piron state s̃i on L such that

s̃i(pi) = 1. Obviously
∑n

i=1 s(pi) = 1 and the convexity property of Jauch-Piron

states gives us that sP =
∑n

i=1 s(pi)·s̃i is a Jauch-Piron state on L. Thus, sP ∈ SP
and therefore SP 6= ∅. We will end up the proof by using the compactness of the

set of all Jauch-Piron states on L. Since P is directed and each SP is non-void

for each P ∈ P , we conclude that
⋂
P∈P SP 6= ∅. Take a state t ∈

⋂
P∈P SP . By

the construction, t(b) = s(b) for each b ∈ B. The proof is complete.

The following consequence of the previous theorem seems to be unknown.

To a certain extent, it has been a motivation for our study. Let us denote by

L(H) the quantum logic of all closed subspaces in a separable Hilbert space H.

As recalled above, L(H) has Jauch-Piron states and, also, it has states that are
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not Jauch-Piron. (It may be noted that the σ-additive setup of the question

studied has a completely different character—all σ-additive states on L(H) are

Jauch-Piron, see e. g. [14].)

Theorem 4.3. Let B a Boolean sublogic of L(H). Let s be a state on B. Then

s can be extended over L(H) as a Jauch-Piron state.

Proof. If b ∈ B, b 6= 0, then b can be viewed as a non-zero element of L(H).

Thus, b is a non-zero closed subspace of H. If we take a unit vector u ∈ B

and consider the “Gleason” standard vector state su on L(H), su(A) being the

scalar product 〈u, u(A)〉 where u(A) is the projection of u into A, then su is a

Jauch-Piron state on L(H) and the result follows from the previous theorem.

It may be noted that Theorem 4.3 can be easily generalized from L = L(H) to

L = L1 × L2, where L1 is a Boolean algebra and L2 is a finite product of Hilbert

space logics, L2 = L(H1)× L(H2)× . . .× L(Hn).

Another conceptually important class of quantum logics are the set-represen-

table quantum logics as a certain antithesis of L(H) (see [4] and [13]). A set-

representable quantum logic can be identified with a collection ∆ of subsets of a

set Ω such that 1. ∆ is a lattice with respect to the ordering given by inclusion,

and 2. ∆ contains Ω and ∆ is closed under the formation of finite disjoint unions

in Ω (see e.g. [11]). These logics form a large class—they form a variety of al-

gebras (see [2], [8], etc.). Since each Boolean algebra is set-representable (Stone’s

theorem), it seems conceivable to think of a result analogous to Theorem 4.3 after

we replace Gleason’s states of L(H) with Dirac’s states of set-representable logics

(recall that a state s on the logic (Ω,∆) is said to be Dirac if there is a point

p ∈ Ω such that s(A) = 1 provided p ∈ A, otherwise s(B) = 0, A,B ∈ ∆).

However, the situation is quite different as the following result shows—we in fact

arrive at a characterization of Boolean algebras among set-representable logics.

The proof can be obtained as a consequence of results of [7], here we present a

short direct proof.

Theorem 4.4. Let L be a lattice set-representable logic. If each Dirac state on

L is Jauch-Piron, then L is a Boolean algebra.

Proof. Suppose that L is a collection, ∆, of subsets of Ω. In order to show

that L = ∆ is Boolean, it is sufficient to verify that A ∩ B ∈ ∆ for any couple

A,B ∈ ∆. Since A ∧ B exist, we infer that the complement (A ∧ B)′ belongs to
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∆ and we have the equality B ∧ (A∩ (A∧B)′) = ∅ (the set A∩ (A∧B)′ belongs

to ∆, too, as easily follows from the orthomodularity of ∆). But this means that

B ∩ (A ∩ (A ∧B)′) = ∅. Indeed, if (A ∧B) is a proper subset of (A ∩B), we see

that there is a point p such that p ∈ (A ∩ B) \ (A ∧ B). As a consequence, we

obtain for the Dirac state s given by p that s(B) = 1 and s(A ∩ (A ∧ B)′) = 1.

Since s is supposed to be Jauch-Piron, we infer that s(B ∧ (A ∩ (A ∧ B)′) = 1

which is absurd. Thus, we have B ∩ (A∩ (A∧B)′) = (B ∩A)∩ (A∧B)′ = ∅ and

therefore A ∧B = A ∩B. This completes the proof.

Let us note in concluding this paper that Theorem 4.4 obviously fails in

quantum logics L that are not lattices—it is even possible that all states are

Jauch-Piron without L being Boolean (see [9]).
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[7] Matoušek, M., Pták, P.: Characterization of Boolean Algebras in Terms of

Certain States of Jauch-Piron Type, Int. J. Theor. Phys. 54 (2015), 4476–4481.

[8] Mayet, R.: Varieties of Orthomodular Lattices Related to States, Algebra

Universalis 20 (1985), 368–386.

43



[9] Müller, V.: Jauch-Piron States on Concrete Quantum Logics, Int. J. Theor.

Phys. 30 (1993), 433–442.

[10] Navara, M., Pták, P., Rogalewicz, V.: Enlargements of Quantum Logics,

Pacific J. Math. 135 (1988), 361–369.

[11] Pták, P.: Concrete Quantum Logics, Int. J. Theor. Phys. 39 (2000), 827–837.

[12] Pták, P.: Extensions of States on Logics, Bull. Acad. Polon. Sci. Sér. Math.

33 (1985), 493–497.
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5 Quantum logics defined by divisibility condi-
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Quantum logics defined by divisibility conditions

Michal Hroch, Mirko Navara, and Pavel Pták6

Abstract. Let p be a prime number and let S be a countable set. Let us con-

sider the collection DivSp of all subsets of S whose cardinalities are multiples of p

and the complements of such sets. Then the collection DivSp constitutes a (set-

representable) quantum logic (i.e., DivSp is an orthomodular poset). We show in

this note that each state on DivSp can be extended over the Boolean algebra expS

of all subsets of S. We also prove that all pure states on DivSp are two-valued. (If

we lend to a main result a possible interpretation in terms of quantum entities,

the logics DivSp have higher degree of noncompatibility but somewhat classical

states.)

Keywords: set-representable quantum logic, state, extensions of states

AMS Classifications: 06C15, 03G12, 06E99 , 28E15, 81P10

Notions and results

Let DivSp be the quantum logic defined in the abstract. Thus, DivSp is a subset of

expS. Standardly, a mapping s : DivSp → [0, 1] is said to be a state if (i) s(S) = 1,

and (ii) if A,B ∈ DivSp and A∩B = ∅, then s(A∪B) = s(A)+s(B). If s satisfies

only the condition (ii) and if s is allowed to attain any real value, then s is called a

signed measure. We are going to show that each state s on DivSp can be extended

over the Boolean algebra expS. (Let us note that a certain inspiration for our

6The first author was supported by the Grant Agency of the Czech Technical University in
Prague, grant No. SGS18/131/OHK3/2T/13. The second and the third author were supported
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consideration comes from the paper [1] where the authors pursued the logic DivP2

for P uncountable. A related study has also been carried on in [2] and [4].)

The proof of our result makes use of the following propositions.

Proposition 5.1. Let p be a prime number and K be a set whose cardinality is

p · k for some k ∈ N, k ≥ 3. Let us denote by DivKp the collection of all subsets

of K whose cardinalities are multiples of p. Let s be a state on DivKp . Then there

exists a unique signed measure t on expK such that s(A) = t(A) for each set

A ∈ DivKp .

The proof of Prop. 5.1 can be found in [7]. It should be noted (see also [7])

that t can actually attain negative values.

Proposition 5.2. Let p be a prime number. Let S be a countable set and let

DivSp be the corresponding quantum logic defined in the abstract. Form a disjoint

covering of S with the sets Li, i ∈ N, such that card(Li) = 3p for each i ∈ N.

Thus, S =
⋃∞
i=1 Li and Li ∩ Lj = ∅ provided i 6= j. Let s be a state on DivSp and

let an ε, ε > 0, be given. Then there is an n0, n0 ∈ N, such that s(Li) ≤ ε for

each i ≥ n0.

Proof. If it were not the case, we would have infinitely many disjoint sets Li with

s(Li) > ε and this is impossible.

Theorem 5.3. Let p be a prime number. Let S be a countable set and let s be a

state on DivSp . Then s can be extended to a state on the Boolean algebra expS

of all subsets of S.

Proof. Obviously, it is only sufficient to extend s over the Boolean algebra gener-

ated by DivSp , the rest (i.e., the extension over the entire expS) follows from the

classical result (see e.g. [3]). The Boolean algebra generated by DivSp is clearly

the algebra of finite and cofinite subsets of S. Hence we have to extend s over

the Boolean algebra of all finite-cofinite subsets of S. Let us do it by induction

(we in fact find this extension unique). Let us cover S by the 3p-element sets

Li, i ∈ N, as done in Prop. 5.2. Consider L1. If s(L1) = 0 we assign 0 to all

points of L1. If s(L1) 6= 0, then by Prop. 5.1 the state s restricted to subsets of

L1 is a positive multiple of a state and it can therefore be extended to a signed

measure t on expL1. We claim that t is non-negative. Suppose on the contrary

that there is a point q, q ∈ L1, such that t(q) = u < 0. Take a positive number
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v such that v < |u|. Then there is an i0, i0 > 1, such that s(Li0) < v. Con-

sider the set L1 ∪Li0 and take into consideration Prop. 5.1 (i.e., observe that the

state s restricted to the union L1 ∪ Li0 must be defined by a signed measure on

exp(L1 ∪Li0)). It is easily seen that by exchanging a suitable point of Li0 with q

we obtain a set M such that s(M) < 0. This is impossible. As a consequence, t

must be a non-negative measure and therefore t presents an extension of s over

expL1. Suppose that we have obtained the extension over exp(
⋃m
i=1 Li) and we

want to extend it over exp(
⋃m+1
i=1 Li) to some t̃. By Prop. 5.1 again, we obtain the

signed measure on exp(
⋃m+1
i=1 Li) which has to agree with the so far defined signed

measure on exp(
⋃m
i=1 Li). If there was a point in Lm+1 for which the function t̃ is

negative, we would use Prop. 5.1 in a similar manner like to the case concerning

L1 and would obtain a contradiction. As a result of our induction procedure, we

can define the desired extension over exp(
⋃∞
i=1 Li) and the proof is complete.

One of the implications of Theorem 5.3 is the following result considered

individually in [1] and [4].

Lemma 5.4. Let p be a prime number. Let S be a countable set and let s be

a state on DivSp . Let A,B ∈ DivSp and let ∆ denote the operation of symmetric

difference for subsets of S. Let A∆B ∈ DivSp . Then s(A∆B) ≤ s(A) + s(B).

Proof. Since s can be extended over expS, the inequality reduces to the well

known inequality valid for states on Boolean algebras.

It should be noted that analogous results are in force for S of an arbitrary

cardinality—we can easily show that the state on DivSp must live on a countable

subset of S.

A state is called pure if it cannot be expressed as a non-trivial convex com-

bination of different states. (Here “non-trivial” means “with coefficients different

from 0 and 1”.) It is called two-valued if it attains only the values 0 and 1.

Obviously, two-valued states are pure in any quantum logic (and vice versa for a

Boolean logic). It is known (see [5] and [6]) that for a finite K, the logic DivKp

possesses pure states that are not two-valued. We show that this is not the case

for DivSp .

Theorem 5.5. Let p be a prime number and S be a countable set. Let s be

a state on DivSp . If s is a pure state then s is two-valued. A consequence: The

state space on DivSp is the closure of the convex hull of all two-valued states.
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Proof. Suppose that s is a state on DivSp which is not two-valued, i.e., suppose

that there exists a set M ∈ DivSp such that 0 < s(M) < 1. We may assume that

M is finite (otherwise we pass to the complement). We shall show that the state

s is not pure.

According to Theorem 5.3, s can be extended to a state t on expS. As

s(M) = t(M) =
∑

m∈M t({m}), there must be some q ∈ M such that c = t({q})
satisfies 0 < c ≤ s(M) < 1. Let us express t as a non-trivial convex combination,

t = c u+ (1− c) v ,

of the “Dirac” state u concentrated in q (determined uniquely by u({q}) = 1)

and the state v that is defined by the formula

v(A) =
1

1− c
t(A \ {q})

for all A ∈ expS. The states u and v defined on expS are distinct. The state s is

a non-trivial convex combination (with the coefficients c, 1− c) of the restrictions

of u and v to DivSp . It remains to show that these restrictions are not identical.

As in Prop. 5.2, we can find a set Q, q /∈ Q, with p − 1 elements such that

v(Q) < c. Then T = Q ∪ {q} ∈ DivSp and therefore u(T ) ≥ c whereas v(T ) < c.

The proof is complete. The “consequence” statement follows from the Krein–

Milman theorem.
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pěstováńı matematiky 108 (1983), 225–229.

[6] Ovchinnikov, P. G.: Measures on finite concrete logics, Proceedings of the

American Mathematical Society 127 (1999), 1957–1966.

[7] Prather, R. E.: Generating the k-subsets of an n-set, The American Math-

ematical Monthly 87 (1980), 740–743.
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