HP 3D High Reusability PA 12

Strong, lowest cost,¹ quality parts

Produce strong, functional, detailed complex parts

- Robust thermoplastic produces high-density parts with balanced property profiles and strong structures.
- Provides excellent chemical resistance to oils, greases, aliphatic hydrocarbons, and alkalies.²
- Ideal for complex assemblies, housings, enclosures, and watertight applications.
- Biocompatibility certifications—meets USP Class I-VI and US FDA guidance for Intact Skin Surface Devices.³

Quality at the lowest cost per part¹

- Achieve the lowest cost per part¹ and reduce your total cost of ownership.⁴
- Minimize waste—reuse surplus powder batch after batch and get functional parts, no throwing away anymore.⁵
- Get consistent performance while achieving 80% surplus powder reusability.⁶
- Optimize cost and part quality—cost-efficient material with industry-leading surplus powder reusability.⁵

Engineered for HP Multi Jet Fusion technology

- Designed for production of functional parts across a variety of industries.
- Provides the best balance between performance and reusability.⁷
- Achieves watertight properties without any additional post-processing.
- Engineered to produce final parts and functional prototypes with fine detail and dimensional accuracy.

For more information, please visit hp.com/go/3DMaterials

Picture taken after graphite post-processing
Based on using recommended packing densities and compared to selective laser sintering (SLS) technology, HP 3D High Reusability PA 12 powder provides 80% post-production surplus powder reusability, producing functional parts batch after batch. For testing, material is aged in real printing conditions and powder is tracked by generations (worst case for recyclability). Parts are then made from each generation and tested for mechanical properties and accuracy.

Compared to selective laser sintering (SLS) technology. Tested according to ASTM D638 and MFI test.

The following technical information should be considered representative of averages or typical values and should not be used for specification purposes. These values refer to a balanced print mode with PW B&D.

Typical values refer to the test conditions and powder is tracked by generations (worst case for recyclability). Parts are then made from each generation and tested for mechanical properties and accuracy.

Compared to selective laser sintering (SLS) technology. Tested according to ASTM D638 and MFI test.

Comparing to selective laser sintering (SLS) technology. Tested according to ASTM D638 and MFI test using HDT at different loads with a 3D scanner for dimensional stability. Testing monitored using statistical process controls. Leters refers to the materials container size and not the actual materials volume. Materials are measured in kilograms.

Compared to manual print retrieval process used by other powder-based technologies. The term “cleaner” does not refer to any indoor air quality requirements and/or consider related air quality regulations or testing that may be applicable.

Manufacturers do not meet the criteria for classification as hazardous according to Regulation (EC) 1272/2008 as amended.

Laters refers to the materials container size and not the actual materials volume. Materials are measured in kilograms.

The HP powder and agents do not meet the criteria for classification as hazardous according to Regulation (EC) 1272/2008 as amended.

Comparing to Powder-specific processing methods. The term “cleaner” does not refer to any indoor air quality requirements and/or consider related air quality regulations or testing that may be applicable.

Comparing to Powder-specific processing methods. The term “cleaner” does not refer to any indoor air quality requirements and/or consider related air quality regulations or testing that may be applicable.

This is an HP Indigo digital print.