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ABSTRACT 

The aim of this Ph.D. thesis is to evaluate the potential of machine learning algorithms as 

an intraocular lens power calculation improvement for clinical workflow. Current 

intraocular lens power calculation methods offer limited accuracy, and in eyes with an 

unusual ocular dimension, the accuracy may decrease. In the case where the power of the 

intraocular lens used in cataract or refractive lens exchange surgery is improperly 

calculated, there is a risk of re-operation or further refractive correction. This may 

potentially induce complications and discomfort to the patient. A dataset containing 

information about 2194 eyes was obtained using a data mining process from the 

Electronic Health Record system database of the Gemini Eye Clinic. The dataset was 

optimized and split into a Selection set (used in the design of models and training), and a 

Verification set (used in the evaluation). A set of prediction errors and a distribution of 

predicted refractive errors were evaluated for all models and clinical results. In 

retrospective comparison to the method currently used in a clinical setting, most of the 

machine learning models have achieved significantly better results in intraocular lens 

calculations, and therefore, there is a strong potential for improved clinical cataract 

refractive outcomes. This statement is supported by the prospective results achieved 

using the CS2_radbas model which was selected for prospective evaluation. Rapid 

improvement occurred in all monitored error categories when compared to the clinical 

results and to the accuracy presented in the state-of-the-art literature. 

Keywords: machine learning; artificial neural networks; calculation; cataract; intraocular 

lens power; refraction 
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ABSTRAKT 

Cílem této disertační práce je zhodnotit potenciál algoritmů strojového učení pro 

zpřesnění výpočtů optické mohutnosti nitrooční čočky v klinickém provozu. Aktuální 

metody výpočtu optické mohutnosti nitrooční čočky nabízejí omezenou přesnost a 

zejména u očí s neobvyklými biometrickými parametry může přesnost ještě klesnout. V 

případě nesprávně vypočtené nitrooční čočky při kataraktovém nebo refrakčním 

chirurgickém zákroku existuje riziko nutnosti opětovné operace nebo další refrakční 

korekce. To může potenciálně vyvolat komplikace a nepohodlí pro pacienta. Pomocí 

procesu vytěžování dat (data mining) z database informačního systému Oční kliniky 

Gemini byl získán soubor dat obsahující informace o 2194 očích. Tento soubor dat byl 

optimalizován a rozdělen do “Selection setu” (používaného při návrhu modelů a tréninku) 

a “Verification setu” (použitého při hodnocení). Byla vyhodnocena sada středních chyb 

předpovědi a distribuce předpovězené refrakční chyby u všech modelů a pro skutečné 

klinické výsledky. V porovnání s metodou, která se v současné době používá v klinickém 

prostředí, většina modelů strojového učení dosáhla výrazně lepších výsledků ve výpočtech 

nitrooční čočky, a proto existuje silný potenciál ke zlepšení klinických refrakčních výsledků 

katarakty. Toto tvrzení je podpořeno prospektivními výsledky dosaženými pomocí modelu 

CS2_radbas, který byl vybrán pro prospektivní testování. Ve srovnání s klinickými výsledky 

a přesností kalkulací prezentovanou v nejmodernější literatuře došlo k rapidnímu zlepšení 

ve všech sledovaných kategoriích chyb.  

Klíčová slova: strojové učení; umělé neuronové sítě; kalkulace; šedý zákal; optická 

mohutnost nitrooční čočky; refrakce; 
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1. INTRODUCTION AND MOTIVATION 

1.1. Introduction 
Cataract surgery is the major refractive surgical procedure performed in adult patients 

and one of the most commonly performed surgical procedures today [1]. Every year, over 

11 million people undergo cataract surgery with intraocular lens (IOL) implantation 

worldwide. In 1990, an estimated 37 million people were blind worldwide, 40% of them 

because of cataracts [2]. 20 years later, in 2010, there were 10.8 million blind people 

across the globe due to cataracts, accounting for a third of all blind people worldwide [3–

5]. The World Health Organization has estimated that this number will increase to 40 

million in 2025 as the earth’s population grows [5]. In many countries, cataract surgery 

remains one of the most commonly performed surgical procedures [6–10].  

Phacoemulsification and IOL implantation is currently the most common method 

of treating cataracts and many refractive vision errors for which other conventional 

methods are not suitable [11] and offers significant improvements to the quality of life for 

patients of all ages [12–14]. Modern cataract surgery is an efficacious and safe procedure 

[4, 15]. Numerous developments have led to improved results after IOL implantation [16–

23]. The primary aim of cataract surgery is to improve the throughput of the optical 

medium caused by the cataractous lens and achieve complete postoperative 

independence of ocular correction. With the significant developments of cataract and 

refractive surgeries over the past 20 years, we are now even closer in meeting this target, 

although there are still areas we can improve.    

The quality of the patient's post-operative vision depends on the correct choice 

of IOL optical power, which influences the residual post-operative refraction. 

Improvement of the refractive result of the cataract surgery is a challenge for the IOL 

manufacturers but also for the methods used in the calculation of suitable IOL power.  

1.2. Problem definition 
The refractive power of the human eye depends on the power of the cornea, lens, axial 

length (AL) of the eye and the axial position of the lens. All of these factors play a major 

role in determining postoperative visual outcomes [24]. Good refractive predictability is 

mandatory for any cataract or refractive procedure.  

Despite advances in modern IOL power calculations, the inability to accurately 

predict pseudophakic anterior chamber depth (ACD) and hence, postoperative effective 

lens position (ELP), is a significant roadblock in calculation accuracy. The formulas used 

today implement a more refined ACD algorithm that increases accuracy when predicting 

pseudophakic ACD. It has been previously shown that prediction error of postoperative 

ACD likely account for between 20% and 40% of the refractive prediction error at 

spectacle plane [25, 26]. An incorrect IOL power calculation resulting from incorrect 

measurements of the eye is the most likely cause of refractive errors after cataract surgery 

with IOL implantation [27, 28]. Furthermore, current standards regarding IOL power 
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labeling allow a certain tolerance, and therefore, the power on the IOL label might not be 

the precise power of the IOL itself [27, 29].  

Even though refractive outcomes after IOL implantation have improved 

considerably over time, patient demands and expectations for precise healthcare as well 

as favorable postoperative refractive outcomes are continuously increasing. During the 

last several years, a great deal of energy has been put forth in realizing spectacle 

independence through improvements in the operative techniques, acquisition of 

biometric data, and refinement of IOL power formulae [30–33]. The prediction of 

refractive outcomes following cataract surgery has steadily improved, with more recent 

IOL power formulas generally outperforming those of prior generations [32, 34, 35]. 

However, there are many schools of thought regarding the formula that is the most 

accurate in predicting refraction. Unfortunately, research supports the claim that there 

isn’t one formula that demonstrates high levels of accuracy on eyes of varying 

characteristics. As such, some researchers recommend that different formulas be used to 

support cataract surgery depending on the ocular dimension of the eye in question [34, 

36, 37]. Numerous studies have sought and failed to find a perfect IOL power calculation 

formula for such eyes, so the search for a more accurate IOL calculation method must 

continue.  

Several recent publications also state that the refractive outcome of each surgery 

is not influenced only by artificial lens optical properties in relation to eye anatomy [38, 

39] but by many other factors [25], such as the examination methodology [40], 

measurement accuracy [41], the surgeon's habits and the clinical workflow [42–45]. That 

means that in order to achieve an accurate IOL power calculation, a series of scientific and 

therapeutic approaches need to be made; accurate determination of the reason for the 

vision loss [46], preoperative ocular surface preparation, patient visual preferences, eye 

biometric measurements [41, 47], precise eye surgery and IOL positioning [48], and last 

but certainly not least, an accurate IOL power calculation method [25, 44].  

So, no matter how difficult the clinical assumptions are or the eye models the 

specific calculation formula is based on, it is complicated to take all these factors into 

account. In the case of an improperly calculated power of the IOL, there is a risk of re-

operation or further refractive correction, which may potentially induce complications for 

the patient. There are, therefore, sufficient motivating factors to find the most accurate 

IOL calculation method [49]. 

1.3. State-of-the-art 
In order to determine the optimal IOL power, calculation formulas are used. These 

formulas use data from preoperative measurements, examinations and IOL parameters, 

which may all influence the overall outcome.  

The calculation formulas can be divided into Refraction, Regression, Vergence, 

Artificial Intelligence and Ray Tracing categories based on their calculation method [50]. 

Currently, the most commonly used formulas are from the Vergence formula category 

and are based on different clinical assumptions or eye models, but all of the formulas 
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work as universal calculators for different types of artificial IOLs. Particular lens type 

optical behavior is specified by one numeric constant as it is in Holladay [51], SRK/T [52], 

Hoffer Q [53], Olsen [54], Hill-RBF [55], and Barrett [56] formulas or by several numeric 

constants as it is in the Haigis formula [57].  

The accuracy of individual calculation formulas is presented in many 

contemporary works. In relation to the accuracy of calculations, the influence of various 

factors, such as the biometrics of a particular eye, the design and type of IOL, the method 

of surgery, and the occurrence of any previous ophthalmic surgeries is examined.  

In [58], a comparison of the current new generation of formulas used for 400 

patients undergoing cataract and lens replacement surgery is presented. All presented 

formulas achieved better than 78.3% of the intended eye refraction prediction error 

within ±0.5 diopters (D). The Hill-RBF and Barrett formulas are better in short and long 

eyes, respectively, and the Barrett Universal II formula had the lowest number of 

refractive surprises higher than 1 D.  

Accuracy comparison of Holladay 1, SRK/T, Hoffer Q, Haigis, Barrett Universal II, 

Holladay 2, and Olsen formulas for eyes with an axial length longer than 26.0 mm is 

provided by [59]. SRK/T, Hoffer Q, Haigis, Barrett Universal II, Holladay 2, and Olsen 

formulas have a prediction error of ±0.5 D in at least 71.0% of the eyes and ±1.0 D in 93.0% 

of the eyes.  

A calculation for 53 eyes across 36 patients with axial length more than 27.0 mm 

by the IOL Master is evaluated in [60] for the Holladay 1, Holladay 2, SRK/T, Hoffer Q, and 

Haigis formulas. For eyes longer than 27.0 mm, the Haigis formula is found to be most 

accurate followed by SRK/T, Holladay 2, Holladay 1 and then Hoffer Q. All formulas 

predicted a more myopic outcome than the actual results achieved by the surgery.  

Refractive outcomes for small eyes and calculations associated with Hoffer Q, 

Holladay 1, Holladay 2, Haigis, SRK-T, and SRK-II are observed in [61]. The Hoffer Q formula 

provided the best refractive outcomes, where 39%, 61%, and 89% of the eyes had final 

refraction within ±0.5 D, ±1.0 D, and ±2.0 D of the target, respectively.  

The Artificial Neural Network (ANN) based IOL calculating method, which dates 

back to nineties, is provided by [62]. The accuracy of ANN and the Holladay 1 formula is 

compared. In 72.5% of cases that used ANN and in 50% of cases that used the Holladay 1 

formula, an error of less than ±0.75 D was achieved. ANN performed significantly better. 

The concept for the Ray Tracing IOL power estimation is presented in [54]. Haigis, 

Hoffer Q, Holladay 1 and SRK/T formulas are compared to the Olsen formula using the C 

constant. There was no significant difference found when using the Haigis, Hoffer Q, 

Holladay 1, and SRK/T formulas. Compared to the SRK/T formula, the Olsen formula 

showed an improvement of 14% in the mean absolute error and an 85% reduction in the 

number of errors higher than 1.0 D.  

The accuracy of Hoffer Q and Haigis formulas according to the anterior chamber 

depth in small eyes is evaluated in [63]. 75 eyes of 75 patients with an axial length of less 



13 
 

than 22.0 mm were included in the study. In eyes with short axial lengths, the predicted 

refractive error difference between the Haigis and Hoffer Q formulas increased as ACD 

decreased. No significant difference was found when the anterior chamber depth was 

longer than 2.40 mm.  

The IOL power calculation of 50 eyes of an axial length shorter than 22 mm were 

analyzed by Shrivastava [64] with the result that there were no significant differences in 

accuracy between Barrett Universal II, Haigis, Hoffer Q, Holladay 2, Hill-RBF and SRK/T 

formulas.  

Accuracy of Barrett Universal II, Haigis, Hill-RBF, Hoffer Q, Holladay 1, Holladay 2, 

Olsen, SRK/T, and T2 formulas were evaluated by Shajari [65] with results that suggested 

that using the Barrett Universal II, Hill-RBF, Olsen, or T2 formulas will ensure 80% of the 

cases fall within ±0.50 D range.  

The effect of anterior chamber depth length on the accuracy of eight IOL 

calculation formulas in patients with normal axial lengths is investigated by Gökce [26].  

IOL power calculations of 171 eyes with high and low keratometry readings were 

evaluated by Reitblat [66].  

A study by Melles [34] showed that the Barrett Universal II formula had the lowest 

prediction error for two specific IOLs. 

The only currently used IOL calculation approach using Artificial Intelligence is the 

Hill-RBF formula, which has a reported accuracy of 91% of the eyes within ±0.5 D range 

from the intended target refraction [67]. However, there are a number of papers 

indicating that Hill-RBF accuracy is not significantly different from the Vergence formula 

category [31, 58, 65]. Unfortunately, there is no research that addresses the Hill-RBF 

principle in any peer-reviewed scientific journal, so the only information about the 

principle itself must be obtained from widely available resources on the Internet. Based 

on this accessible information, it is possible to determine that the Hill-RBF core is a Radial 

Basis Function and that the algorithm was trained on the data of more than 12,000 eyes. 

There is no evidence whatsoever that identifies the specific machine learning method that 

was used [67–70]. 
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2. GOALS OF THE THESIS 

This research is aimed at exploring the use of artificial neural networks (ANN) and machine 

learning methods in relation to IOL power calculations. The following goals of this doctoral 

thesis were established: 

1) Investigate the state-of-the-art IOL power calculations and determine the 

accuracy of the current calculation methods and the factors that can affect them. 

 

2) Describe the methodology of selecting and optimizing a dataset suitable for 

training and evaluation of ANN and machine learning models. 

 

3) Select the appropriate ANN topologies and compare ANN performance for Radial 

Basis, Hyperbolic Tangent Sigmoid, Log-sigmoid, and Linear transfer functions. 

Compare ANN accuracy with other appropriate machine learning algorithms. 

 

4) Evaluate all ANN and machine learning models in relation to clinical results. 

Mutually evaluate all models and select the best model for prospective testing. 

 

5) With regard to safety, perform a prospective evaluation of the best model and 

assess the potential shortcomings of this approach. 
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3. MATERIALS AND METHODS 

This chapter is structured into three main parts: Dataset Preparation, Model Design & 

Training, and Evaluation (Figure 1).  

 

Figure 1. Research diagram 

The data preparation part focuses on the methods used in data collection, storing 

data in the Electronic Health Record (EHR) database, as well as data mining, cleaning, and 

optimizing in order to obtain a suitable dataset for training and evaluation. Incorrect 

integration of these processes could lead to a degradation of data sources and the 

distortion of the result’s quality. 

The model design and training part focuses on the set-up of suitable ANN and 

machine learning models and their training using the dataset. 

The evaluation part describes the outcome measures and how the data was 

analyzed.  

This study used the data of patients who underwent cataract or refractive lens 

exchange surgery from December 2014 to November 2018 at the Gemini Eye Clinic in the 

Czech Republic. This study was approved by the Institutional Ethics Committee of the 

Gemini Eye Clinic (IRB approval number 2019-04) and adhered to the tenets of the 

Declaration of Helsinki. 
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3.1. Data acquisition 
Data was acquired, recorded and entered by skilled staff into the central EHR system at 

the Gemini Eye Clinic usually before surgery and during follow up visits and post-operative 

examinations.  

The preoperative patient evaluation included distance objective refraction (Rxpre), 

distance subjective refraction, mean keratometry (K), ACD, axial length of the eye (AL), 

uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), slit 

lamp examination, retinal examination and intraocular pressure examination. Anterior 

and posterior segment evaluations and biometry measurements were conducted on all 

patients in the dataset. All biometry examinations (K, ACD, AL) were conducted using a 

Carl Zeiss IOL Master 500 (Carl Zeiss, Jena, Germany) [71]. All measurements of objective 

refraction and intraocular pressure were conducted using a Nidek Tonoref II Auto 

Refractometer (Nidek, Gamagori, Japan). 

All patients in the dataset underwent surgeries using a clear corneal incision made 

by a Stellaris PC (Bausch and Lomb, Bridgewater, New York, USA) surgical device. 

Continuous curvilinear capsulorhexis, phacoaspiration and IOL implantation in the 

capsular bag were performed such that the eye was stabilized using an irrigating 

handpiece introduced into the eye through a side port incision. In some cases, a 4.8 mm 

diameter laser-capsulotomy and laser fragmentation in combination with two circular and 

six radial cuts were performed using a Victus laser platform (Bausch and Lomb, 

Bridgewater, New York, USA). A FineVision Micro F Trifocal IOL (Physiol, Lüttich, Belgium) 

was then implanted. All IOLs in the dataset were calculated using the SRK/T formula [52] 

with an A constant equal to 119.1. In some rare cases, the optical power of the IOL was 

adjusted at the discretion of the surgeon, especially for eyes with non-standard biometric 

specificities. All patients’ targeted refraction was on emmetropia.  

At each follow-up visit, a complete slit-lamp evaluation, non-contact tonometry, 

distance objective refraction (Rxpost), distance subjective refraction, near subjective 

refraction, keratometry, UDVA, CDVA, uncorrected near visual acuity (UNVA), and 

corrected near visual acuity (CNVA) measurements were performed.  

All refraction values are expressed using a spherical equivalent. The post-

operative examinations were collected after at least 25 days following surgery, which is 

the shortest time considered suitable for sufficient vision recovery based on conclusions 

from the work of Conrad-Hengerer [72]. 

3.2. Feature selection 
Based on the database data integrity, we selected K, ACD, AL, Age, and Rxpre as our model 

input parameters (input features). Rxpost and the optical power of the implanted IOL 

(IOLImplanted) were used in training target definition. A potential limitation of this selection 

is discussed further in the Discussion and Conclusions chapter.  
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3.3. Data mining and optimization 
The EHR system data is stored using SQL Server (Microsoft, Redmond, USA) relational 

database technology. A single purpose SQL script was designed to obtain an initial data 

view, which was then further data mined to obtain a master dataset (MD). The following 

inclusion and exclusion criteria were used in order to filter the data from physiologically 

implausible entries and non-standard surgical cases. 

The following inclusion criteria were used to obtain an MD: 

- ACD between 1 and 5 mm  

- Preoperative and postoperative UDVA > CDVA in [logMAR] 

- AL between 15 and 40 mm 

- Mean K between 30 and 60 D 

- Patient age between 18 and 99 

- Optical power of the implanted IOL between 6 and 35 D 
 

Examinations and values were excluded from the MD for each eye in case of: 

- Non-standard surgical procedure used or intraoperative complications or any 

other complications affecting postoperative vision recovery 

o Surgery record contains any of the following strings: “ruptura“, 

“fenestrum“, “vitrektom“, “praskl“, “sklivec“, “prolaps“, “explant“, 

“sulc“, “sulk“, “rzp“, “key hole“ 

- Ocular disease or any corneal pathology 

o Patient record contains any of the following strings: “otok”, “striat”, 

“edem”, “odchlípen”, “PEX”, “jizv”, “amoc”, “aparát”, “defekt”, 

“degener”, “endotelpati”, “fibrin”, “guttat”, “haze”, “hemoftalm”, 

“hemophtalm”, “luxov”, “membrán”, “precip”, “zonul” 

- Previous intraocular surgery or corneal refractive surgery 

o Patient diagnosis record contains any of the following strings: “LASIK”, 

“LASEK”, “PRK”, “LASER”, “RELEX”, “DMEK”, “DALK”, “PKP” 

- Post-operative CDVA higher than 0.3 logMAR, which is widely considered the 

driving standard limit (Visual Standards for Driving in Europe, Consensus 

paper, European Council of Optometry and Optics)  

- Incomplete biometry and refraction measurements 

- Preoperative corneal astigmatism of more than 3.0 diopters 

- Incomplete EHR documentation 

- The difference in AL to the second eye > 1 mm  

All of the excluded cases, which were identified using strings, comes from Czech medical 

terminology and indicate an undesirable contraindication for our application. 
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All samples containing outliers for K, ACD, AL, Age, Rxpre, Rxpost were excluded from 

the MD based on a ±3 sigma rule as these samples can be considered errors in 

measurement and inappropriate for model training [73, 74]. 

The principle of preparing data suitable for machine learning model training is to 

find the ideal value for the already implanted IOL (IOLIdeal). IOLIdeal is considered to be an 

IOL that will not induce any residual postoperative refraction for the patient’s eye or will 

not deviate from the intended target refraction (for distance vision this was considered 

as 0 D). To find such an IOLIdeal, the following information is needed: 

- Optical power of the IOLImplanted  

- Measured residual refraction Rxpost 

- Interrelationship of Rxpost and IOLImplanted 

It is generally known that 1.0 D of IOL prediction error produces approximately 0.7 D of 

refractive prediction error at the spectacle plane [34]. However, this is a general 

assumption, and since the eye is a complex optical system, it may not reach sufficient 

accuracy in all eyes. The interrelationship between Rxpost and IOLImplanted thus should also 

consider eye biometrical parameters representative of the optical system of the eye, such 

as the eye AL and the power of the cornea K. The interrelationship of these two variables 

was determined using the reversed Eye Vergence Formula Eq. (1) [75, 76].  
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Equation 1. Reversed eye vergence formula 

RxtheorPost is the calculated refraction for the eye with specific K in [D], AL in [mm], 
V (vertex distance) in [mm], IOL power in [D] and Effective Lens Position (ELP) in [mm] 
calculated using recommendations by [52]. 

The change in refraction at the spectacle plane as a result of changing the IOL 

power value was computed using Eq. (2), and then the IOLIdeal calculation is expressed by 

Eq. (3) 

𝑅𝑥05𝐼𝑂𝐿 =  𝑅𝑥𝑡ℎ𝑒𝑜𝑟𝑃𝑜𝑠𝑡(𝐼𝑂𝐿) −  𝑅𝑥𝑡ℎ𝑒𝑜𝑟𝑃𝑜𝑠𝑡(𝐼𝑂𝐿 + 0.5)  

Equation 2. Dioptric change of refraction at the spectacle plane in case of an IOL value change of 0.5 [D] 

𝐼𝑂𝐿𝐼𝑑𝑒𝑎𝑙 = 𝐼𝑂𝐿𝐼𝑚𝑝𝑙𝑎𝑛𝑡𝑒𝑑 + (
𝑅𝑥𝑝𝑜𝑠𝑡
𝑅𝑥05𝐼𝑂𝐿

) ∗ 0.5 

Equation 3. Calculation of the ideal power value of an IOL for the specific eye 
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MD was then randomly divided into the Selection set or the Verification set in a 

70% to 30% proportion, respectively. The Selection set variables were normalized using 

the mapminmax Matlab 2017a (MathWorks, Natick, MA, USA) routine, which maps row 

minimal and maximal values between -1 and 1. Every Verification set variable was cleared 

of samples outside of the minimum and maximum range of the Selection set to avoid a 

prediction error on non-trained data. The Verification set variables were then normalized 

using mapminmax with the same normalization parameters.  

3.4. Dataset population characteristics 
After a retrospective analysis, we identified 2194 eyes (1111 right eyes, 1083 left eyes) of 

1759 patients (812 male, 947 female) who underwent IOL replacement surgery and met 

all discussed dataset criteria. The mean patient age was 56.85 ± 7.42 (35 – 78) years (mean 

± standard deviation (minimum - maximum)). The MD population characteristics are 

summarized in Table 1. 

Parameter Value 

Patients [count] 1759 

Male 812 

Female 947 

Eyes [count] 2194 

Right 1111 

Left 1083 

Mean Age [years] 56.85 

Std 7.42 

Min 35 

Max 78 
Table 1. Master dataset population characteristics 

3.4.1. Selection set population characteristics 

The Selection set contained 70% randomly chosen eyes from the whole dataset. That 

means 1539 eyes (771 right eyes, 768 left eyes) of 1080 patients (540 male, 628 female) 

were selected. The mean patient age was 56.89 ± 7.25 (36 – 78) years.  

To statistically describe the Selection set, the Mean, Median, Standard Deviation 

(Std), Minimum (Min) and Maximum (Max) indicators were calculated. Shapiro-Wilk (PSW) 

and D'Agostino-Pearson's K2 (PDP) test p values were calculated to assess whether the 

data came from a normal distribution. The significance level alfa for the test was 0.001. 

The Selection set population characteristics are summarized in Table 2, and histograms of 

the individual variables are presented in Figure 2.   

 Age failed in normality by Shapiro-Wilk, but normality was confirmed by the 

D'Agostino-Pearson's K2 test and the mean to median difference and histogram analysis. 

Rxpre and IOLIdeal failed the normality assessment by both normality tests. However, the 

mean to median and histogram analysis tended to confirm normality. 
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Mean Median Std Min Max PSW PDP 

Age [years] 56.89 57.00 7.25 36.00 78.00 0.000 0.091 

K [D] 43.27 43.25 1.40 39.39 47.51 0.252 0.547 

ACD [mm] 3.10 3.10 0.32 2.21 4.10 0.189 0.350 

AL [mm] 23.03 23.07 0.92 19.94 26.26 0.010 0.111 

Rxpre [D] 1.85 1.88 1.52 -3.88 6.63 0.000 0.000 

IOLIdeal [D] 22.80 22.50 2.74 12.62 34.17 0.000 0.000 
Table 2. Selection set population characteristics 

 

  

  

  
Figure 2. Selection set variables histograms. (1,1) Age, (1,2) Mean Keratometry (K), (2,1) Anterior Chamber 
Depth (ACD), (2,2) Axial Length (AL), (3,1) Objective Distance Spherical Equivalent Rxpre, (3,2) Ideal 
Intraocular Lens Power (IOLIdeal) 
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3.4.2. Verification set population characteristics 

The Verification set contained the remaining 30% of the eyes from the entire dataset. That 

means 655 eyes (340 right eyes, 315 left eyes) of 591 patients (272 male, 319 female) 

were selected. The mean patient age was 56.83 ± 7.29 (37 – 76) years. 

In order to statistically describe the Verification set, the same analyses were 

performed like that for the Selection set case. The population characteristics are 

summarized in Table 3, and histograms of the individual variables are presented in Figure 

3.   

  

  

  
Figure 3. Verification set variables histograms. (1,1) Age, (1,2) Mean Keratometry (K), (2,1) Anterior Chamber 
Depth (ACD), (2,2) Axial Length (AL), (3,1) Objective Distance Spherical Equivalent Rxpre, (3,2) Ideal 
Intraocular Lens Power (IOLIdeal) 
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Only Rxpre and IOLIdeal failed the normality assessment using both normality tests. 

However, the mean to median and histogram analysis tended to confirm normality. 

 
 

Mean Median Std Min Max PSW PDP 

Age [years] 56.83 56.00 7.29 37.00 76.00 0.003 0.161 

K [D] 43.33 43.30 1.33 39.41 46.92 0.263 0.199 

ACD [mm] 3.11 3.10 0.32 2.29 4.06 0.183 0.206 

AL [mm] 23.03 22.99 0.90 20.17 25.88 0.530 0.417 

Rxpre [D] 1.83 1.75 1.49 -3.88 6.63 0.000 0.000 

IOLIdeal[D] 22.71 22.42 2.64 15.32 33.51 0.000 0.000 
Table 3. Verification set population characteristics 
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3.5. Main principal and used algorithms 
For the design and training of each model, the Selection set was used. The Verification set 

was used for results evaluation. No samples from the Verification set were introduced to 

the model during the design and training phase, and vice versa no samples from the 

Selection set were used for model evaluation. Our model predictors are variables 

mentioned in the Feature selection section as K, ACD, AL, Age, and Rxpre. The training 

target was IOLIdeal , and the prediction outcome was IOLPredicted. 

This work focuses on the application of artificial neural networks (ANN) in the field 

of artificial intraocular lens power calculations. Within this research, a total of 17 ANN 

models of two ANN architectures with four transfer functions (also called activation 

functions) were evaluated. However, since ANN isn’t the only machine learning algorithm 

used for regression, function fitting, and interpolation and approximation, several other 

machine learning algorithms were also evaluated: 

- Feed-Forward Multilayer Neural Networks (MLNN) 

o One hidden layer 

 Radial Basis transfer function (FF1_radbas) 

 Hyperbolic Tangent Sigmoid transfer function (FF1_tansig) 

 Log-sigmoid transfer function (FF1_logsig) 

 Linear transfer function (FF1_purelin) 

o Two hidden layers 

 Radial Basis transfer function (FF2_radbas) 

 Hyperbolic Tangent Sigmoid transfer function (FF2_tansig) 

 Log-sigmoid transfer function (FF2_logsig) 

 Linear transfer function (FF2_purelin) 

o Three hidden layers 

 Radial Basis transfer function (FF3_radbas) 

- Cascade-Forward Multilayer Neural Networks 

o One hidden layer 

 Radial Basis transfer function (CS1_radbas) 

 Hyperbolic Tangent Sigmoid transfer function (CS1_tansig) 

 Log-sigmoid transfer function (CS1_logsig) 

 Linear transfer function (CS1_purelin) 

o Two hidden layers 

 Radial Basis transfer function (CS2_radbas) 

 Hyperbolic Tangent Sigmoid transfer function (CS2_tansig) 

 Log-sigmoid transfer function (CS2_logsig) 

 Linear transfer function (CS2_purelin) 

- Support Vector Machine (SVM) 

- Binary Regression Decision Tree (BRDT) 

- Gaussian Process Regression (GPR) 

- Boosted Regression Tree Ensembles (BRTE) 

- Stepwise Regression (SR) 
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Abbreviations used in the mutual evaluation section are listed in parentheses after the 

name of each algorithm in the previous list.  

All presented models were designed, trained and tested using Matlab 2017a 

(MathWorks, Natick, MA, USA). A description of all the functions and features used (in the 

text highlighted by bold) can be found in the software documentation [77].  

 

Figure 4. Feed-forward MLNN model with one hidden layer, an f(x) transfer function and N hidden layer 
neurons 

Feed-forward and Cascade-forward ANN are known for their exceptional ability 

to approximate continuous functions [78, 79]. This pattern recognition method is able to 

effectively approximate the environment that affects the refractive result for a particular 

artificial IOL type. The refraction result of the surgery is a function of all known and 

unknown variables which are implemented into the ANN during the learning process. ANN 

has been widely used in function approximation, prediction, recognition and classification 

[62, 80–82]. ANN consists of a collection of inputs and processing units known as neurons 

which are organized in the ANN layers. Neuron parameters are set up by the training 

process. The learning process consists of minimizing the error function between the 

desired and actual output [83, 84]. 

 

Figure 5. Feed-forward MLNN model with two hidden layers, an f(x) transfer function and Nx hidden layer 
neurons 

 

Figure 6. Feed-forward MLNN model with three hidden layers, an f(x) transfer function and Nx hidden layer 
neurons 

Feed-forward and Cascade-forward Multilayer Neural Network (MLNN) models 

were designed and trained by using fitnet and cascadeforwardnet functions and had one, 
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two or three hidden layers and one output layer with one neuron with a linear transfer 

function (Figure 4 – 8). The internal structure and links of MLNN are described, for 

example, by Tuckova [85], Haykin [86], Novák [87] or in Matlab 2017a documentation 

[77]. The Levenberg-Marquardt backpropagation algorithm was used for model training 

using the trainlm method [88].  

 

Figure 7. Cascade-forward MLNN model with one hidden layer, an f(x) transfer function and N hidden layer 
neurons 

MLNN performance was improved using the ensemble median. This seems a 

better alternative to ensemble averaging [89]. The ensemble median factor was set to 10, 

which means that 10 MLNN models were trained using the Selection set in order to 

produce the desired output taken as a median of all outputs. Weights and biases were 

initialized by the Nguyen-Widrow initialization function for each ensemble training cycle 

[90].  

 

Figure 8. Cascade-forward MLNN model with two hidden layers, an f(x) transfer function and Nx hidden layer 
neurons 

The Selection set was randomly divided into three groups (training, validation and 

testing subset) in a 70:15:15 ratio, respectively [91]. An early stopping algorithm was used 

to prevent the model from overfitting each ensemble training cycle. The mean squared 

normalized error (MSE) was used as a measure of model performance. Model training was 

stopped when the performance assessed using the validation subset group failed to 

improve or remained the same for 20 epochs. The weights and biases at the minimum of 

the validation error were returned for each ensemble model.  
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Figure 9. Radial Basis transfer function (radbas) 

            𝑓(𝑥) = 𝑒−𝑥
2
  

         Equation 4. Radial Basis transfer function 

 

 

 

 

Figure 10. Hyperbolic Tangent Sigmoid transfer function (tansig) 

𝑓(𝑥) =
2

(1 + 𝑒(−2𝑥))
− 1 

 

             Equation 5. Hyperbolic Tangent Sigmoid transfer function 
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The optimal number of neurons in hidden layers (or optimal ANN topology, in 

other words) for all evaluated MLNN models were found iteratively. All possible 

combinations of neurons in hidden layers were combined to the maximum count of 100 

neurons in each hidden layer for every evaluated MLNN model. For each MLNN ensemble 

(hidden neurons combination), the median and standard deviation from MSE of the 

testing subset was calculated. The optimal topology was the one that had the smallest Serr 

(Eq.6) value. This process is described in Figure 11. 

 

Figure 11. Optimal hidden layer neuron number selection process 

 

           𝑺𝐄𝐫𝐫 = 𝑴𝒆𝒅𝒊𝒂𝒏(𝑴𝑺𝑬𝑻𝒆𝒔𝒕) + 𝑺𝑫(𝑴𝑺𝑬𝑻𝒆𝒔𝒕)   [-]  

Equation 6. Serr for optimal topology selection 
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The Radial Basis transfer Function (radbas) (Figure 9, Eq.(4)), Hyperbolic Tangent 

Sigmoid transfer Function (tansig) (Figure 10, Eq.(5)), Log-sigmoid transfer Function 

(logsig) (Figure 12, Eq.(7)) and Linear transfer Function (purelin) (Figure 13, Eq.(8)) were 

evaluated in the hidden layers. Radbas, tansig and logsig functions are presented for their 

good ability to approximate multivariate functions [79, 81, 92–95] and purelin to evaluate 

regression power in the nonlinear space. 

 

Figure 12. Log-sigmoid transfer function (logsig) 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
  

   Equation 7. Log-sigmoid transfer function  

 

 

 

 

Figure 13. Linear transfer function (purelin) 

𝑓(𝑥) = 𝑥  

     Equation 8. Linear transfer function  
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SVM is a supervised machine learning method that serves mainly for classification 

and, in our case, for regression analysis. The aim of this algorithm is to find a super-plane 

that optimally splits the feature space so that training data belonging to different classes 

lie in separable spaces. To find such a super-plane for non-linear data, a kernel trick is 

used which takes the existing feature space data and maps it into space with a greater 

number of dimensions where it is already linearly separable [96, 97]. SVM methods find 

their application, for example, in the field of financial forecasting [98], travel time 

prediction [99] and flood forecasting [100]. 

This particular SVM model was designed and trained using the fitrsvm method. 

Determining the appropriate hyperparameters for a given task is one of the most 

important steps in designing the model, and for which the duration of training and testing, 

but above all, the accuracy of the model depends [101]. A sequential minimal optimization 

algorithm [102] with 30% randomly selected data for holdout validation was used. The 

optimal hyperparameters of the model were identified using OptimizeHyperparameters. 

The Bayesian Optimizer (BO) [103] with an Expected Improvement Plus (EIP) Acquisition 

Function, which is considered a better alternative to a grid or random search [104], 

searched for the optimal kernel function, kernel scale, epsilon, box constraint and 

polynomial order.  

BRTE is a machine learning algorithm that consists of a sequence of decisions that 

results in the inclusion of an object into one of the end nodes based on the properties of 

the object under investigation. In each leaf node, the variable is determined by two 

conditions; how the data file is divided and the boundary that determines where the split 

is to be performed. The root of the tree contains the entire data file. Each tree node grows 

into two more branches. Each end node is assigned a value that is calculated as the 

arithmetic mean of all object values in the relevant sheet [105]. Decision tree regression 

is used for diabetes prediction [106], soft classification [107] or feature selection [108]. 

Our BRTE model was designed and trained using the fitrtree method. 

OptimizeHyperparameters using BO with the EIP Acquisition Function searched for the 

minimal number of leaf node observations and the maximal number of branch nodes. 

Individual ensemble learning models, and in our case regression trees, are 

composed of a weighted combination of several regression trees to yield a final model 

with increased predictive performance. Boosting is the technique where the models are 

built sequentially in series, and the parameters of each new model are adjusted based on 

the learning success of the previously trained model [109, 110]. Ensembling was also used 

for all ANN models presented in this work. The ensemble median is calculated for several 

randomly trained ANN models as proposed since it has shown to be a better technique 

for error elimination than average [111].  

The ensemble model was designed and trained using the fitrensemble method. 

OptimizeHyperparameters using BO with the EIP Acquisition Function searched for the 

ensemble aggregation method, optimal number of predictors to select at random for each 

split, number of ensemble learning cycles, learn rate, minimal number of leaf node 
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observations, maximal number of branch nodes and number of predictors to select at 

random for each split. 

GPR regression is a probabilistic nonparametric algorithm and a simple extension 

to the linear regression model. It shows that any finite collection of observations has a 

multivariate normal distribution, and its characteristics can be completely specified by 

their mean function or kernel (covariance) function. The response of the model is 

modeled using a probability distribution over a space of functions. Whereas the Gaussian 

process is probabilistic, it is possible to compute the prediction intervals using the trained 

model. The largest variance occurs in regions with several training sessions, while the 

highest degree of certainty is in regions with a significant number of training sessions 

[112]. Gaussian process regression is ubiquitous in spatial statistics, surrogate modeling 

of computer simulation experiments, and ordinal or large dataset regression [113, 114].  

Our GPR model was designed and trained using the fitrgp method. 

OptimizeHyperparameters using BO with the EIP Acquisition Function searched for the 

explicit basis function in the GPR model, optimal covariance function, value of the kernel 

scale parameter and initial value for the standard deviation of noise of the Gaussian 

process model. 

SR is a method of finding a model with the highest quality of prediction and the 

lowest number of independent inputs. The principle of SR is that the regression model is 

built step-by-step so that at each step, we examine all the predictors and find out which 

one describes the best variability of the dependent variable. An algorithm that controls 

the order of the variables entering the model can work either in a forward or backward 

mode. In forward mode, predictors are added to the final model and, conversely, are 

excluded in the backward mode. The insertion of the predictor into the model or its 

exclusion is done by sequential F-tests. After selecting the model variables, the linear 

regression function parameters are estimated, and the regression quality is evaluated by 

the determination index [115]. Application of stepwise regression can be found in the field 

of electric energy consumption prediction [116] or plant health detection [117]. 

The SR model was designed and trained using the stepwiselm method. The 

starting model for stepwise regression contained and intercept, linear terms for each 

predictor, and all products of pairs of distinct predictors. The P-value criterion for an F-

test of the change in the sum of the squared error that determines whether to add or 

remove the terms was set to 0.05. Any linearly dependent term was removed. The specific 

model is described by Wilkinson notation [118]. 

Unless otherwise mentioned, the default values of the Matlab functions were 

used and can be found in the Matlab documentation [77]. As a conclusion drawn from the 

above, all these machine learning algorithms should be able to effectively approximate 

the environment that affects the refractive result for a particular artificial IOL type. 
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3.6. Results evaluation and statistical analysis 
The results predicted by each model were compared to the achieved clinical results (CR), 

and all models were compared mutually at the end of the results chapter. In the results 

evaluation and statistical analysis, the recommendations described in the work of Wang 

[119] were followed. The mean numerical prediction error (ME), mean absolute 

prediction error (MAE), median absolute prediction error (MedAE), standard deviation 

(STD), minimum prediction error (Min), and maximum prediction error (Max) as well as 

the percentage of eyes within prediction error (PE) targets of ±0.25 D, ±0.50 D, ±0.75 D, 

±1.00 D were determined for Rxpost  in the case of the CR and for the refraction calculated 

from IOLPredicted (Rxpredicted) in the case of the result predicted by the model (MPR). The 

Rxpredicted calculation is described by Eq.(9). 

𝑅𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = (
𝐼𝑂𝐿𝐼𝑚𝑝𝑙𝑎𝑛𝑡𝑒𝑑 − 𝐼𝑂𝐿𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

0.5
) ∗ 𝑅𝑥05𝐼𝑂𝐿 + 𝑅𝑥𝑝𝑜𝑠𝑡 

Equation 9. Calculation of Rxpredicted from IOLPredicted 

Since axial length (AL) of the eye is considered the most important characteristic 

in predicting IOL power [120], the evaluation process is usually divided into subgroups 

based on AL [119]. The Verification set was thus divided into the following AL subgroups: 

- SHORT eyes group – eyes with AL <= 22 mm (81 samples) 

- MEDIUM eyes group – eyes with 22 mm < AL < 24 mm (480 samples) 

- LONG eyes group – eyes with AL => 24 mm (94 samples) 

- ALL eyes group – entire Verification set of all eyes (655 samples) 

The statistical analysis was performed using Matlab 2017a (MathWorks, Natick, MA, 

USA). 

The Wilcoxon test [121] was used to asses MAE and MedAE differences between 

the CR and MPR. The McNemar test with Yates' correction [122] was used to evaluate the 

difference in the percentage of eyes of certain PE diopter groups between CR and MPR. 

Statistical significance of ME is reported only for MPR in case of its significant difference 

from zero evaluated using one sample T-Test. The Cochran Q test [123] was used to test 

the difference across models. Since some statisticians recommend not ever correcting for 

multiple comparisons, all individual P values and significance levels (P<.05, P<.01, P<.001, 

P<.0001) were reported [124, 125]. 

In the mutual evaluation section, the best models were selected based on the 

following criterion: 

- Best result in the ±0.25 D PE group 

- Best or insignificantly worse results in the ±0.50 D, ±0.75 D and ±1.00 D PE 

groups as compared to all models with higher accuracy tested using the 

McNemar test with Yates' correction 
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4. RESULTS 

The results of the evaluated algorithms are separated into tables for clarity. First, the 

model parameter tables obtained in the design and training phase using the Selection set 

are presented. The MPR – model prediction results for ALL, SHORT, MEDIUM, and LONG 

eyes that were obtained using the Verification set are presented in context to the CR – 

clinical results. At the end of this chapter, the results of all methods are summarized and 

mutually compared and then disc insignificantlyussed in the Discussion and Conclusions 

chapter. 

4.1. Feed-Forward MLNN - One hidden layer  

4.1.1. Radial Basis transfer function 
The model had one hidden layer with six hidden layer neurons (Table 4). 

Layer Neurons Transfer function 

Input 5 - 

Hidden 6 radbas 

Output 1 purelin 
Table 4. ANN topology description - One hidden layer (radbas) 

 

The model’s train, validation, and test performances are presented in Table 5. 

Parameter Mean Median Std Min Max 

Train 0.00302 0.00298 0.00008 0.00288 0.00313 

Validation 0.00322 0.00321 0.00015 0.00300 0.00349 

Test 0.00332 0.00323 0.00024 0.00293 0.00380 

Epoch 26.4 19 18.1 9 70 
Table 5. ANN model performance - One hidden layer (radbas) 
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MPR for the ALL eyes group are presented in Table 6. Compared to the CR, the ANN model 

with one hidden layer using RBF as a transfer function produces better results for all 

evaluated parameters. Compared to CR, all statistically tested parameters are significantly 

better at the level of significance 0.0001. The maximum prediction error is slightly worse 

for the ANN model. 

PE [D] CR MPR P value 

ME -0.46 -0.01 CR: < .0001, MPR: 0.68 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.26 

Std 0.43 0.39 - 

Min -1.87 -1.51 - 

Max 1.12 1.31 - 

Eyes within PE [%]    

±0.25 33.4 48.8 < .0001 

±0.50 57.7 82.3 < .0001 

±0.75 79.3 93.9 < .0001 

±1.00 91.7 97.6 < .0001 
Table 6. Prediction errors in the ALL axial length group - One hidden layer (radbas) 

 

MPR for the SHORT eyes group are presented in Table 7. Compared to the CR, the ANN 

model performs better for most cases. Only the ±0.25 and ±1.00 prediction error groups 

fail to prove significance at a level of 0.05.   

PE [D] CR MPR P value 

ME -0.37 0.05 CR: < .0001, MPR: 0.28 

MAE 0.46 0.32 
< .0001 

MedAE 0.50 0.25 

Std 0.46 0.40 - 

Min -1.50 -0.92 - 

Max 1.13 1.01 - 

Eyes within PE [%]    

±0.25 40.7 51.9 0.21 

±0.50 62.9 77.8 < .05 

±0.75 85.1 95.1 < .05 

±1.00 92.5 98.8 0.13 
Table 7. Prediction errors in the SHORT axial length group - One hidden layer (radbas) 
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MPR for the MEDIUM eyes group are presented in Table 8. Compared to the CR, the ANN 

model performs significantly better for all statistically tested cases at the level 0.0001 

except the ±1.00 PE group where the result was significantly better at the level 0.001. The 

maximum prediction error is slightly worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 -0.01 CR: < .0001, MPR: 0.82 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.26 

Std 0.42 0.40 - 

Min -1.88 -1.52 - 

Max 0.88 1.31 - 

Eyes within PE [%]    

±0.25 33.1 48.5 < .0001 

±0.50 56.8 82.7 < .0001 

±0.75 79.7 93.8 < .0001 

±1.00 92.9 97.7 < .001 
Table 8. Prediction errors in the MEDIUM axial length group - One hidden layer (radbas) 

 

MPR for the LONG eyes group are presented in Table 9. Compared to the CR, the ANN 

model performs significantly better for all statistically tested cases; for the MAE, MedAE, 

±0.50 PE group and ±0.75 PE group at the level 0.0001, for the ±1.00 PE group at the level 

0.001 and for the ±0.25 PE group at the level 0.05. The maximum prediction error is 

slightly worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.08 CR: < .0001, MPR: 0.08 

MAE 0.57 0.31 
< .0001 

MedAE 0.50 0.26 

Std 0.44 0.40 - 

Min -1.63 -1.03 - 

Max 0.88 1.32 - 

Eyes within PE [%]    

±0.25 28.7 47.9 < .05 

±0.50 57.4 84.0 < .0001 

±0.75 72.3 93.6 < .0001 

±1.00 85.1 95.7 < .001 
Table 9. Prediction errors in the LONG axial length group - One hidden layer (radbas) 

  



35 
 

4.1.2. Hyperbolic Tangent Sigmoid transfer function 
The model had one hidden layer with 13 hidden layer neurons (Table 10). 

Layer Neurons Transfer function 

Input 5 - 

Hidden 13 tansig 

Output 1 purelin 
Table 10. ANN topology description - One hidden layer (tansig) 

 

The model’s train, validation, and test performances are presented in Table 11. 

Parameter Mean Median Std Min Max 

Train 0.00285 0.00289 0.00007 0.00267 0.00297 

Validation 0.00330 0.00327 0.00025 0.00292 0.00385 

Test 0.00338 0.00336 0.00038 0.00295 0.00399 

Epoch 9.6 8 5.2 5 20 
Table 11. ANN model performance - One hidden layer (tansig) 

 

MPR for the ALL eyes group are presented in Table 12. Compared to CR the ANN model 

with one hidden layer using Hyperbolic Tangent Sigmoid as a transfer function produces 

better results for all evaluated parameters. All statistically tested parameters prove that 

results are significantly better at the level of significance 0.0001. The maximum prediction 

error is slightly worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.00 CR: < .0001, MPR: 0.58 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.26 

Std 0.43 0.39 - 

Min -1.87 -1.54 - 

Max 1.12 1.29 - 

Eyes within PE [%]    

±0.25 33.4 47.6 < .0001 

±0.50 57.7 82.6 < .0001 

±0.75 79.3 93.7 < .0001 

±1.00 91.7 97.6 < .0001 
Table 12. Prediction errors in the ALL axial length group - One hidden layer (tansig) 
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MPR for the SHORT eyes group are presented in Table 13. Compared to the CR, the ANN 

model performs significantly better for most cases; for MAE and MedAE at the level 

0.0001, for the ±0.50, ±0.75 and ±1.00 PE groups at the level 0.05. Only ±0.25 prediction 

error group fails to prove significance at the level of 0.05.   

PE [D] CR MPR P value 

ME -0.37 0.00 CR: < .0001, MPR: 0.76 

MAE 0.46 0.33 
< .0001 

MedAE 0.50 0.29 

Std 0.46 0.40 - 

Min -1.50 -0.95 - 

Max 1.13 0.89 - 

Eyes within PE [%]    

±0.25 40.7 48.1 0.40 

±0.50 63.0 77.8 < .05 

±0.75 85.2 95.1 < .05 

±1.00 92.6 100.0 < .05 
Table 13. Prediction errors in the SHORT axial length group - One hidden layer (tansig) 

 

MPR for the MEDIUM eyes group are presented in Table 14. Compared to the CR, the ANN 

model performs significantly better for all statistically tested cases at level 0.0001. The 

maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 0.01 CR: < .0001, MPR: 0.42 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.26 

Std 0.42 0.40 - 

Min -1.88 -1.55 - 

Max 0.88 1.30 - 

Eyes within PE [%]    

±0.25 33.1 48.3 < .0001 

±0.50 56.9 83.1 < .0001 

±0.75 79.8 93.5 < .0001 

±1.00 92.9 97.1 < .0001 
Table 14. Prediction errors in the MEDIUM axial length group - One hidden layer (tansig) 
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MPR for the LONG eyes group are presented in Table 15. Compared to the CR, the ANN 

model performs significantly better for most cases at level 0.0001. Only the ±0.25 

prediction error group fails to prove significance at the level of 0.05. 

PE [D] CR MPR P value 

ME -0.53 -0.04 CR: < .0001. MPR: 0.42 

MAE 0.57 0.31 < .0001 

MedAE 0.50 0.28 - 

Std 0.44 0.39 - 

Min -1.63 -1.01 - 

Max 0.88 1.25 - 

Eyes within PE [%]    

±0.25 28.7 43.6 0.06 

±0.50 57.4 84.0 < .0001 

±0.75 72.3 93.6 < .0001 

±1.00 85.1 97.9 < .0001 
Table 15. Prediction errors in the LONG axial length group - One hidden layer (tansig) 

 

4.1.3. Log-Sigmoid transfer function 
The model had one hidden layer with five hidden layer neurons (Table 16). 

Layer Neurons Transfer function 

Input 5 - 

Hidden 5 logsig 

Output 1 purelin 
Table 16. ANN topology description - One hidden layer (logsig) 

 

The model’s train, validation, and test performances are presented in Table 17. 

Parameter Mean Median Std Min Max 

Train 0.00302 0.00304 0.00011 0.00286 0.00320 

Validation 0.00320 0.00313 0.00032 0.00287 0.00378 

Test 0.00333 0.00330 0.00025 0.00293 0.00381 

Epoch 21.9 20 11.1 9 46 
Table 17. ANN model performance - One hidden layer (logsig) 
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MPR for the ALL eyes group are presented in Table 18. Compared to the CR, the ANN 

model with one hidden layer using Log-Sigmoid as a transfer function produces better 

results for all evaluated parameters. All statistically tested parameters prove that results 

are significantly better at the level of significance 0.0001. The maximum prediction error 

is slightly worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.48 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.26 

Std 0.43 0.40 - 

Min -1.88 -1.52 - 

Max 1.13 1.35 - 

Eyes within PE [%]    

±0.25 33.4 48.4 < .0001 

±0.50 57.7 82.6 < .0001 

±0.75 79.4 93.4 < .0001 

±1.00 91.8 97.9 < .0001 
Table 18. Prediction errors in the ALL axial length group - One hidden layer (logsig) 

 

MPR for the SHORT eyes group are presented in Table 19. Compared to the CR, the ANN 

model performs significantly better for MAE and MedAE at level 0.0001, and for ±0.50 

and ±0.75 PE groups at level 0.05. Only the ±0.25 and ±1.00 prediction error groups fail to 

prove significance at level 0.05.  

PE [D] CR MPR P value 

ME -0.37 0.02 CR: < .0001, MPR: 0.42 

MAE 0.46 0.33 
< .0001 

MedAE 0.50 0.27 

Std 0.46 0.41 - 

Min -1.50 -1.03 - 

Max 1.13 0.95 - 

Eyes within PE [%]    

±0.25 40.7 46.9 0.52 

±0.50 63.0 76.5 < .05 

±0.75 85.2 93.8 < .05 

±1.00 92.6 98.8 0.07 
Table 19. Prediction errors in the SHORT axial length group - One hidden layer (logsig) 
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MPR for the MEDIUM eyes group are presented in Table 20. Compared to the CR, the ANN 

model performs significantly better for all statistically tested cases at level 0.0001. The 

maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 0.01 CR: < .0001, MPR: 0.50 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.25 

Std 0.42 0.40 - 

Min -1.88 -1.52 - 

Max 0.88 1.34 - 

Eyes within PE [%]    

±0.25 33.1 49.2 < .0001 

±0.50 56.9 83.3 < .0001 

±0.75 79.8 93.3 < .0001 

±1.00 92.9 97.5 < .0001 
Table 20. Prediction errors in the MEDIUM axial length group - One hidden layer (logsig) 

 

MPR for the LONG eyes group are presented in Table 21. Compared to the CR, the ANN 

model performs significantly better for most cases at level 0.0001 except for the ±0.25 PE 

group, which is significantly better at level 0.05. The maximum prediction error is worse 

for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.03 CR: < .0001, MPR: 0.56 

MAE 0.57 0.32 
< .0001 

MedAE 0.50 0.28 

Std 0.44 0.40 - 

Min -1.63 -0.99 - 

Max 0.88 1.35 - 

Eyes within PE [%]    

±0.25 28.7 45.7 < .05 

±0.50 57.4 84.0 < .0001 

±0.75 72.3 93.6 < .0001 

±1.00 85.1 98.9 < .0001 
Table 21. Prediction errors in the LONG axial length group - One hidden layer (logsig) 
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4.1.4. Linear transfer function 
The model had one hidden layer with five hidden layer neurons (Table 22). 

Layer Neurons Transfer function 

Input 5 - 

Hidden  5 purelin 

Output 1 purelin 
Table 22. ANN model topology - One hidden layer (purelin) 

 

The model’s train, validation, and test performances are presented in Table 23. 

Parameter Mean Median Std Min Max 

Train 0.00345 0.00341 0.00010 0.00335 0.00370 

Validation 0.00331 0.00327 0.00034 0.00286 0.00393 

Test 0.00347 0.00352 0.00028 0.00303 0.00395 

Epoch 3.5 3.5 0.5 3 4 
Table 23. ANN model performance - One hidden layer (purelin) 

 

MPR for the ALL eyes group are presented in Table 24. Compared to the CR, the ANN 

model with one hidden layer using the Linear transfer function produces better results for 

all evaluated parameters. All statistically tested parameters are significantly better at the 

level of significance of 0.0001. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.67 

MAE 0.52 0.33 
< .0001 

MedAE 0.50 0.28 

Std 0.43 0.42 - 

Min -1.88 -1.57 - 

Max 1.13 2.05 - 

Eyes within PE [%]    

±0.25 33.4 45.3 < .0001 

±0.50 57.7 79.8 < .0001 

±0.75 79.4 93.4 < .0001 

±1.00 91.8 97.9 < .0001 
Table 24. Prediction errors in the ALL axial length group - One hidden layer (purelin) 
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MPR for the SHORT eyes group are presented in Table 25. Compared to the CR, the ANN 

model performs insignificantly worse for the ±0.25 PE group. MAE and MedAE are 

significantly better at level 0.0001. All other prediction error groups are insignificantly 

better. The standard deviation appears to be the same. ME is significantly different from 

zero for the model. 

PE [D] CR MPR P value 

ME -0.37 0.19 CR: < .0001, MPR: < .001 

MAE 0.46 0.39 
< .0001 

MedAE 0.50 0.36 

Std 0.46 0.46 - 

Min -1.50 -0.65 - 

Max 1.13 1.85 - 

Eyes within PE [%]    

±0.25 40.7 38.3 0.88 

±0.50 63.0 71.6 0.32 

±0.75 85.2 93.8 0.12 

±1.00 92.6 96.3 0.45 
Table 25. Prediction errors in the SHORT axial length group - One hidden layer (purelin) 

 

MPR for the MEDIUM eyes group are presented in Table 26. Compared to the CR, the ANN 

model performs significantly better for all prediction error groups. ME is significantly 

different from zero for the model. MAE is significantly better for the ANN model. MedAE 

is better for the ANN model. The maximum prediction error is worse for the ANN model.  

PE [D] CR MPR P value 

ME -0.47 -0.05 CR: < .0001, MPR: < .05 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.27 

Std 0.42 0.39 - 

Min -1.88 -1.57 - 

Max 0.88 1.27 - 

Eyes within PE [%]    

±0.25 33.1 46.3 < .0001 

±0.50 56.9 82.5 < .0001 

±0.75 79.8 93.5 < .0001 

±1.00 92.9 98.1 < .0001 
Table 26. Prediction errors in the MEDIUM axial length group - One hidden layer (purelin) 
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MPR for the LONG eyes group are presented in Table 27. Compared to the CR, the ANN 

model performs significantly better for MAE and MedAE at level 0.0001 and for the ±0.25, 

±0.50, ±0.75 and ±1.00 PE groups at level 0.05. The maximum prediction error and 

standard deviation are worse for the ANN model. ME is significantly different from zero 

for the model. 

PE [D] CR MPR P value 

ME -0.53 0.14 CR: < .0001, MPR: < .05 

MAE 0.57 0.36 
< .0001 

MedAE 0.50 0.29 

Std 0.44 0.46 - 

Min -1.63 -0.80 - 

Max 0.88 2.05 - 

Eyes within PE [%]    

±0.25 28.7 46.8 < .05 

±0.50 57.4 73.4 < .05 

±0.75 72.3 92.6 < .05 

±1.00 85.1 97.9 < .05 
Table 27. Prediction errors in the LONG axial length group - One hidden layer (purelin) 
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4.2. Feed-Forward MLNN - Two hidden layers 

4.2.1. Radial Basis transfer function 
The model had two hidden layers with 10 hidden layer neurons in the first hidden layer 

and three hidden layer neurons in the second hidden layer (Table 28).  

Layer Neurons Transfer function 

Input 5 - 

Hidden - First 10 radbas 

Hidden - Second 3 radbas 

Output 1 purelin 
Table 28. ANN topology description - Two hidden layers (radbas) 

 

The model’s train, validation, and test performances are presented in Table 29. 

Parameter Mean Median Std Min Max 

Train 0.00300 0.00297 0.00020 0.00273 0.00332 

Validation 0.00357 0.00360 0.00040 0.00304 0.00413 

Test 0.00354 0.00368 0.00038 0.00284 0.00398 

Epoch 18.5 15 10.1 11 45 
Table 29. ANN model performance - Two hidden layers, Radial Basis transfer Function 

 

MPR for the ALL eyes group are presented in Table 30. All tested parameters are 

significantly better than CR. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.00 CR: < .0001, MPR: 0.62 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.26 

Std 0.43 0.40 - 

Min -1.88 -1.49 - 

Max 1.13 1.31 - 

Eyes within PE [%]    

±0.25 33.4 47.8 < .0001 

±0.50 57.7 82.1 < .0001 

±0.75 79.4 93.6 < .0001 

±1.00 91.8 97.7 < .0001 
Table 30. Prediction errors in the ALL axial length group - Two hidden layers (radbas) 
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MPR for the SHORT eyes group are presented in Table 31. MAE and MedAE are 

significantly better for the ANN model. MPR for PE groups ±0.25, ±0.50, ±0.75 and ±1.00 

are insignificantly better. The maximum prediction error is worse for the ANN model.  

PE [D] CR MPR P value 

ME -0.37 0.07 CR: < .0001, MPR: 0.12 

MAE 0.46 0.34 
< .0001 

MedAE 0.50 0.28 

Std 0.46 0.42 - 

Min -1.50 -0.99 - 

Max 1.13 1.31 - 

Eyes within PE [%]    

±0.25 40.7 46.9 0.54 

±0.50 62.9 74.1 0.15 

±0.75 85.1 93.8 0.10 

±1.00 92.5 98.8 0.13 
Table 31. Prediction errors in the SHORT axial length group - Two hidden layers (radbas) 

 

MPR for the MEDIUM eyes group are presented in Table 32. Most of the tested variables 

are significantly better for the ANN model at level 0.0001. PE group ±1.00 is significantly 

better at level 0.001. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 0.00 CR: < .0001, MPR: 0.66 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.25 

Std 0.42 0.39 - 

Min -1.88 -1.49 - 

Max 0.88 1.28 - 

Eyes within PE [%]    

±0.25 33.1 48.5 < .0001 

±0.50 56.9 83.1 < .0001 

±0.75 79.8 93.5 < .0001 

±1.00 92.9 97.5 < .001 
Table 32. Prediction errors in the MEDIUM axial length group - Two hidden layers (radbas) 
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MPR for the LONG eyes group are presented in Table 33. All tested variables are 

significantly better for the ANN model; MAE, MedAE, ±0.50 PE group and ±0.75 PE group 

at level 0.0001 and ±0.25 and ±0.75 PE group at level 0.05. The maximum prediction error 

is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.06 CR: < .0001, MPR: 0.22 

MAE 0.57 0.32 
< .0001 

MedAE 0.50 0.27 

Std 0.44 0.39 - 

Min -1.63 -1.05 - 

Max 0.88 1.09 - 

Eyes within PE [%]    

±0.25 28.7 44.7 < .05 

±0.50 57.4 84.0 < .0001 

±0.75 72.3 93.6 < .0001 

±1.00 85.1 97.9 < .05 
Table 33. Prediction errors in the LONG axial length group - Two hidden layers (radbas) 

 

4.2.2. Hyperbolic Tangent Sigmoid transfer function 
The model had two hidden layers with five hidden layer neurons in the first hidden layer 

and four hidden layer neurons in the second hidden layer (Table 34).  

Layer Neurons Transfer function 

Input 5 - 

Hidden - First 5 tansig 

Hidden - Second 4 tansig 

Output 1 purelin 
Table 34. ANN topology description - Two hidden layers (tansig) 

 

The model’s train, validation, and test performances are presented in Table 35. 

Parameter Mean Median Std Min Max 

Train 0.00297 0.00297 0.00013 0.00278 0.00327 

Validation 0.00339 0.00335 0.00030 0.00293 0.00397 

Test 0.00353 0.00361 0.00032 0.00298 0.00394 

Epoch 16.7 15 6.2 9 27 
Table 35. ANN model performance - Two hidden layers (tansig) 
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MPR for the ALL eyes group are presented in Table 36. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.44 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.25 

Std 0.43 0.39 - 

Min -1.88 -1.52 - 

Max 1.13 1.34 - 

Eyes within PE [%]       

±0.25 33.4 47.8 < .0001 

±0.50 57.7 82.6 < .0001 

±0.75 79.4 94.0 < .0001 

±1.00 91.8 97.9 < .0001 
Table 36. Prediction errors in the ALL axial length group - Two hidden layers (tansig) 

 

MPR for the SHORT eyes group are presented in Table 37. MAE and MedAE are 

significantly better than CR at level 0.0001. The ±0.50 and ±0.75 PE groups at level 0.05 

and the ±0.25 and ±1.00 PE groups fail to prove significance at level 0.05.   

PE [D] CR MPR P value 

ME -0.37 0.01 CR: < .0001, MPR: 0.57 

MAE 0.46 0.32 < .0001 
 MedAE 0.50 0.28 

Std 0.46 0.40 - 

Min -1.50 -0.97 - 

Max 1.13 1.07 - 

Eyes within PE [%]       

±0.25 40.7 46.9 0.635 

±0.50 63.0 74.1 < .05 

±0.75 85.2 93.8 < .05 

±1.00 92.6 98.8 0.131 
Table 37. Prediction errors in the SHORT axial length group - Two hidden layers (tansig) 
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MPR for the MEDIUM eyes group are presented in Table 38. All tested parameters are 

significantly better than CR at level 0.0001 and 0.001 for ±1.00 PE group. The maximum 

prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 0.01 CR: < .0001, MPR: 0.42 

MAE 0.52 0.30 
< .0001 

MedAE 0.50 0.25 

Std 0.42 0.39 - 

Min -1.88 -1.52 - 

Max 0.88 1.34 -  

Eyes within PE [%]       

±0.25 33.1 48.5 < .0001 

±0.50 56.9 83.1 < .0001 

±0.75 79.8 93.5 < .0001 

±1.00 92.9 97.5 < .001 
Table 38. Prediction errors in the MEDIUM axial length group - Two hidden layers (tansig) 

 

MPR for the LONG eyes group are presented in Table 39. Most of the parameters tested 

are significantly better than CR; MAE, MedAE, ±0.50 PE group and ±0.75 PE group at level 

0.0001; PE group ±1.00 at level 0.001. PE group ±0.25 is insignificantly better. The 

maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.02 CR: < .0001, MPR: 0.68 

MAE 0.57 0.31 < .0001 
 MedAE 0.50 0.28 

Std 0.44 0.39 - 

Min -1.63 -0.99 - 

Max 0.88 1.29 - 

Eyes within PE [%]       

±0.25 28.7 44.7 0.05 

±0.50 57.4 84.0 < .0001 

±0.75 72.3 93.6 < .0001 

±1.00 85.1 97.9 < .001 
Table 39. Prediction errors in the LONG axial length group - Two hidden layers (tansig) 
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4.2.3. Log-Sigmoid transfer function 
The model had two hidden layers with five hidden layer neurons in the first hidden layer 

and four hidden layer neurons in the second hidden layer (Table 40).  

Layer Neurons Transfer function 

Input 5 - 

Hidden - First 5 logsig 

Hidden - Second 4 logsig 

Output 1 purelin 
Table 40. ANN topology description - Two hidden layers (logsig) 

 

The model’s train, validation, and test performances are presented in Table 41. 

Parameter Mean Median Std Min Max 

Train 0.00294 0.00294 0.00010 0.00273 0.00306 

Validation 0.00329 0.00325 0.00022 0.00303 0.00369 

Test 0.00335 0.00337 0.00036 0.00286 0.00400 

Epoch 19 16.5 10.5 8 41 
Table 41. ANN model performance - Two hidden layers (logsig) 

 

MPR for the ALL eyes group are presented in Table 42. All tested parameters are 

significantly better than CR. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.00 CR: < .0001, MPR: 0.62 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.43 0.39  - 

Min -1.88 -1.53  - 

Max 1.13 1.36  - 

Eyes within PE [%]       

±0.25 33.4 48.1 < .0001 

±0.50 57.7 82.3 < .0001 

±0.75 79.4 93.6 < .0001 

±1.00 91.8 97.6 < .0001 
Table 42. Prediction errors in the ALL axial length group - Two hidden layers (logsig) 
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MPR for the SHORT eyes group are presented in Table 43. MAE and MedAE are 

significantly better at level 0.0001 and PE group ±0.50 and ±0.75 at level 0.05. Only the 

±0.25 and ±1.00 PE groups are insignificantly better.  

PE [D] CR MPR P value 

ME -0.37 0.00 CR: < .0001, MPR: 0.76 

MAE 0.46 0.32 < .0001 
 MedAE 0.50 0.28 

Std 0.46 0.40 - 

Min -1.50 -1.07 - 

Max 1.13 1.03 - 

Eyes within PE [%]       

±0.25 40.7 45.7 0.63 

±0.50 63.0 72.8 < .05 

±0.75 85.2 93.8 < .05 

±1.00 92.6 97.5 0.22 
Table 43. Prediction errors in the SHORT axial length group - Two hidden layers (logsig) 

 

MPR for the MEDIUM eyes group are presented in Table 44. The ANN model performed 

significantly better for all variables at level 0.0001 except for the ±1.00 PE group, which 

was significant at level 0.001. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 0.01 CR: < .0001, MPR: 0.47 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.25 

Std 0.42 0.39  - 

Min -1.88 -1.53  - 

Max 0.88 1.30  - 

Eyes within PE [%]       

±0.25 33.1 49.0 < .0001 

±0.50 56.9 83.5 < .0001 

±0.75 79.8 93.5 < .0001 

±1.00 92.9 97.5 < .001 
Table 44. Prediction errors in the MEDIUM axial length group - Two hidden layers (logsig) 
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MPR for the LONG eyes group are presented in Table 45. The ANN model performed 

significantly better for all variables; for MAE, MedAE, ±0.50 PE group and ±0.75 PE group 

at level 0.0001, for ±0.25 PE group and ±0.75 PE group at level 0.05 and 0.001, 

respectively. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.04 CR: < .0001, MPR: 0.47 

MAE 0.57 0.31 < .0001 
 MedAE 0.50 0.28 

Std 0.44 0.40 - 

Min -1.63 -1.00 - 

Max 0.88 1.36 - 

Eyes within PE [%]       

±0.25 28.7 45.7 < .05 

±0.50 57.4 84.0 < .0001 

±0.75 72.3 93.6 < .0001 

±1.00 85.1 97.9 < .001 
Table 45. Prediction errors in the LONG axial length group - Two hidden layers (logsig) 

 

4.2.4. Linear transfer function 
The model had two hidden layers with 17 hidden layer neurons in the first hidden layer 

and seven hidden layer neurons in the second hidden layer (Table 46).  

Layers Neurons Transfer function 

Input 5 - 

Hidden - First 17 purelin 

Hidden - Second 7 purelin 

Output 1 purelin 
Table 46. ANN model topology - Two hidden layers (purelin) 

 

The model’s train, validation, and test performances are presented in Table 47. 

Parameter Mean Median Std Min Max 

Train 0.00344 0.00344 0.00003 0.00339 0.00349 

Validation 0.00339 0.00341 0.00022 0.00314 0.00383 

Test 0.00337 0.00332 0.00025 0.00310 0.00386 

Epoch 3.8 4 1.0 2 5 
Table 47. ANN model performance - Two hidden layers (purelin) 
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MPR for the ALL eyes group are presented in Table 48. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.54 

MAE 0.52 0.33 < .0001 
 MedAE 0.50 0.28 

Std 0.43 0.42  - 

Min -1.88 -1.57  - 

Max 1.13 2.04  - 

Eyes within PE [%]       

±0.25 33.4 45.5 < .0001 

±0.50 57.7 80.3 < .0001 

±0.75 79.4 92.8 < .0001 

±1.00 91.8 97.9 < .0001 
Table 48. Prediction errors in the ALL axial length group - Two hidden layers (purelin) 

 

MPR for the SHORT eyes group are presented in Table 49. PE groups ±0.50, ±0.75, and 

±1.00 are insignificantly better than CR. The maximum prediction error is worse for the 

ANN model. The standard deviation is the same for CR and MPR. ME is better but 

significantly different from zero for the ANN model. MAE and MedAE are significantly 

better for the ANN model. PE group ±0.25 is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.37 0.20 CR: < .0001, MPR: < .001 

MAE 0.46 0.39 < .0001 
 MedAE 0.50 0.37 

Std 0.46 0.46 - 

Min -1.50 -0.64 - 

Max 1.13 1.87 - 

Eyes within PE [%]       

±0.25 40.7 38.3 0.89 

±0.50 63.0 70.4 0.42 

±0.75 85.2 90.1 0.48 

±1.00 92.6 96.3 0.45 
Table 49. Prediction errors in the SHORT axial length group - Two hidden layers (purelin) 

  



52 
 

MPR for the MEDIUM eyes group are presented in Table 50. All tested parameters are 

significantly better than CR at level 0.0001. ME is better but significantly different from 

zero for the ANN model. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 -0.04 CR: < .0001, MPR: < .05 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.27 

Std 0.42 0.40 -  

Min -1.88 -1.57 -  

Max 0.88 1.28 -  

Eyes within PE [%]       

±0.25 33.1 46.5 
< .0001 

 

±0.50 56.9 83.1 < .0001 

±0.75 79.8 93.3 < .0001 

±1.00 92.9 98.1 < .0001 
Table 50. Prediction errors in the MEDIUM axial length group - Two hidden layers (purelin) 

 

MPR for the LONG eyes group are presented in Table 51. All tested parameters are 

significantly better than CR. For MAE and MedAE at level 0.0001, for ±0.75 PE group at 

level 0.001, for ±0.25, ±0.50, ±1.00 PE groups at level 0.05. ME is better but significantly 

different from zero for the ANN model. The maximum prediction error is worse for the 

ANN model. 

PE [D] CR MPR P value 

ME -0.53 0.13 
CR: < .0001, MPR: < .05 

 

MAE 0.57 0.36 < .0001 
 MedAE 0.50 0.29 

Std 0.44 0.45 - 

Min -1.63 -0.81 - 

Max 0.88 2.04 - 

Eyes within PE [%]       

±0.25 28.7 46.8 < .05 

±0.50 57.4 74.5 < .05 

±0.75 72.3 92.6 
< .001 

 

±1.00 85.1 97.9 < .05 
Table 51. Prediction errors in the LONG axial length group - Two hidden layers (purelin) 
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4.3. Feed-Forward MLNN - Three hidden layers 

4.3.1. Radial Basis transfer function 
The model had three hidden layers with two hidden layer neurons in the first hidden layer, 

four hidden layer neurons in the second hidden layer and 14 hidden layer neurons in the 

third layer (Table 52).  

Layer Neurons Transfer function 

Input 5 - 

Hidden - First 2 radbas 

Hidden - Second 4 radbas 

Hidden - Third 14 radbas 

Output 1 purelin 
Table 52. ANN topology description - Three hidden layers (radbas) 

 

The model’s train, validation, and test performances are presented in Table 53. 

Parameter Mean Median Std Min Max 

Train 0.00503 0.00372 0.00394 0.00302 0.01592 

Validation 0.00667 0.00458 0.00665 0.00318 0.02529 

Test 0.00628 0.00415 0.00547 0.00337 0.02126 

Epoch 50 39 28.8 25 117 
Table 53. ANN model performance - Three hidden layers (radbas) 

 

MPR for the ALL eyes group are presented in Table 54. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the ANN model. 

PE [D] CR MPR P value 

ME -0.46 -0.01 CR: < .0001, MPR: 0.54 

MAE 0.52 0.32 < .0001 
 MedAE 0.50 0.27 

Std 0.43 0.41  - 

Min -1.88 -1.53  - 

Max 1.13 1.48  - 

Eyes within PE [%]       

±0.25 33.4 47.0 < .0001 

±0.50 57.7 80.3 < .0001 

±0.75 79.4 93.9 < .0001 

±1.00 91.8 98.0 < .0001 
Table 54. Prediction errors in the ALL axial length group - Three hidden layers (radbas) 
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MPR for the SHORT eyes group are presented in Table 55. The ANN model PE groups 

±0.25, ±0.50, ±0.75 and ±1.00 are insignificantly better than CR. The maximum prediction 

error is worse for the ANN model. Standard deviation is the same for CR and MPR. MAE 

and MedAE are significantly better for the ANN model at level 0.0001.  

PE [D] CR MPR P value 

ME -0.37 0.08 CR: < .0001, MPR: 0.14 

MAE 0.46 0.36 < .0001 
 MedAE 0.50 0.31 

Std 0.46 0.45 -  

Min -1.50 -0.75 -  

Max 1.13 1.48 - 

Eyes within PE [%]       

±0.25 40.7 43.2 0.87 

±0.50 63.0 70.4 0.39 

±0.75 85.2 93.8 0.12 

±1.00 92.6 97.5 0.29 
Table 55. Prediction errors in the SHORT axial length group - Three hidden layers (radbas) 

 

MPR for the MEDIUM eyes group are presented in Table 56. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the ANN model. 

PE [D] CR MPR P value 

ME -0.47 -0.02 CR: < .0001, MPR: 0.34 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.42 0.39 - 

Min -1.88 -1.53 - 

Max 0.88 1.41 - 

Eyes within PE [%]       

±0.25 33.1 48.3 < .0001 

±0.50 56.9 82.9 < .0001 

±0.75 79.8 94.4 < .0001 

±1.00 92.9 97.9 
< .0001 

 
Table 56. Prediction errors in the MEDIUM axial length group - Three hidden layers (radbas) 
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MPR for the LONG eyes group are presented in Table 57. All tested parameters are 

significantly better than CR except PE group ±0.25; MAE and MedAE at level 0.0001; PE 

group ±0.75 at level 0.001; ±0.50 and ±0.75 at level 0.05. The maximum prediction error 

is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.04 CR: < .0001, MPR: 0.38 

MAE 0.57 0.35 
< .0001 

MedAE 0.50 0.29 

Std 0.44 0.43  - 

Min -1.63 -0.96  - 

Max 0.88 1.22  - 

Eyes within PE [%]       

±0.25 28.7 43.6 0.05 

±0.50 57.4 75.5 < .05 

±0.75 72.3 91.5 < .001 

±1.00 85.1 98.9 < .05 
Table 57. Prediction errors in the LONG axial length group - Three hidden layers (radbas) 

 

4.4. Cascade-Forward MLNN - One hidden layer  

4.4.1. Radial Basis transfer function 
 The model had one hidden layer with 12 hidden layer neurons (Table 58). 

Layer Neurons Transfer function 

Input 5 - 

Hidden 12 radbas 

Output 1 purelin 
Table 58. ANN topology description - One hidden layer (radbas) 

 

The model’s train, validation, and test performances are presented in Table 59. 

Parameter Mean Median Std Min Max 

Train 0.00292 0.00290 0.00012 0.00270 0.00312 

Validation 0.00325 0.00328 0.00029 0.00293 0.00393 

Test 0.00324 0.00325 0.00030 0.00277 0.00371 

Epoch 5.6 5.5 1.4 4 8 
Table 59. ANN model performance - One hidden layer (radbas) 
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MPR for the ALL eyes group are presented in Table 60. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.00 CR: < .0001, MPR: 0.83 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.43 0.40  - 

Min -1.88 -1.50  - 

Max 1.13 1.47  - 

Eyes within PE [%]       

±0.25 33.44 48.9 < .0001 

±0.50 57.71 82.7 < .0001 

±0.75 79.39 93.6 < .0001 

±1.00 91.76 97.6 < .0001 
Table 60. Prediction errors in the ALL axial length group - One hidden layer (radbas) 

 

MPR for the SHORT eyes group are presented in Table 61. The ANN model performs better 

for all prediction error groups, but the ±0.25, ±0.50 and ±1.00 prediction error groups fail 

to prove significance at the level of 0.05. MAE and MedAE are significantly better for the 

ANN model at level 0.0001. The ±0.75 PE group is significantly better at level 0.05. The 

maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.37 0.03 CR: < .0001, MPR: 0.37 

MAE 0.46 0.33 < .0001 
 MedAE 0.50 0.28 

Std 0.46 0.40 -  

Min -1.50 -0.91 -  

Max 1.13 1.15 - 

Eyes within PE [%]       

±0.25 40.74 48.1 0.42 

±0.50 62.96 75.3 0.07 

±0.75 85.19 95.1 < .05 

±1.00 92.59 98.8 0.13 
Table 61. Prediction errors in the SHORT axial length group - One hidden layer (radbas) 
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MPR for the MEDIUM eyes group are presented in Table 62. All tested parameters are 

significantly better for the ANN model at level 0.0001 except for the ±1.00 PE group, which 

is at level 0.001. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 0.00 CR: < .0001, MPR: 0.94 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.42 0.40   

Min -1.88 -1.50   

Max 0.88 1.25   

Eyes within PE [%]       

±0.25 33.13 49.0 < .0001 

±0.50 56.88 84.0 < .0001 

±0.75 79.79 93.3 < .0001 

±1.00 92.92 97.5 < .001 
Table 62. Prediction errors in the MEDIUM axial length group - One hidden layer (radbas) 

 

MPR for the LONG eyes group are presented in Table 63. All tested parameters are 

significantly better for the ANN model; MAE, MedAE and ±0.75 PE group at level 0.0001, 

±0.50 PE group at level 0.001 and ±0.25 with ±1.00 PE group at level 0.05. The maximum 

prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.03 CR: < .0001, MPR: 0.59 

MAE 0.57 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.44 0.40 -  

Min -1.63 -1.05 -  

Max 0.88 1.47 -  

Eyes within PE [%]       

±0.25 28.72 48.9 < .05 

±0.50 57.45 83.0 < .001 

±0.75 72.34 93.6 < .0001 

±1.00 85.11 96.8 < .05 
Table 63. Prediction errors in the LONG axial length group - One hidden layer (radbas) 
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4.4.2. Hyperbolic Tangent Sigmoid transfer function 
The model had one hidden layer with 12 hidden layer neurons (Table 64). 

Layer Neurons Transfer function 

Input 5 - 

Hidden 12 tansig 

Output 1 purelin 
Table 64. ANN topology description - One hidden layer (tansig) 

 

The model’s train, validation, and test performances are presented in Table 65. 

Parameter Mean Median Std Min Max 

Train 0.00300 0.00300 0.00008 0.00284 0.00316 

Validation 0.00323 0.00324 0.00023 0.00294 0.00369 

Test 0.00317 0.00321 0.00023 0.00272 0.00344 

Epoch 5.2 4 3.7 3 14 
Table 65. ANN model performance - One hidden layer (tansig) 

 

MPR for the ALL eyes group are presented in Table 66. All statistically tested parameters 

are significantly better for MPR at level 0.0001. The maximum prediction error is worse 

for the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.52 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.43 0.40 - 

Min -1.88 -1.53 - 

Max 1.13 1.47 - 

Eyes within PE [%]       

±0.25 33.44 47.9 < .0001 

±0.50 57.71 82.6 < .0001 

±0.75 79.4 93.9 < .0001 

±1.00 91.8 97.7 < .0001 
Table 66. Prediction errors in the ALL axial length group - One hidden layer (tansig) 
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MPR for the SHORT eyes group are presented in Table 67. The ANN model performs better 

for all prediction error groups, but the ±0.25, ±0.50 and ±1.00 prediction error groups fail 

to prove significance at level 0.05. MAE and MedAE are significantly better for the ANN 

model at level 0.0001. PE group ±0.75 is significantly better at level 0.05. 

PE [D] CR MPR P value 

ME -0.37 0.06 CR: < .0001, MPR: 0.13 

MAE 0.46 0.33 < .0001 
 MedAE 0.50 0.28 

Std 0.46 0.40  - 

Min -1.50 -0.93  - 

Max 1.13 1.08  - 

Eyes within PE [%]       

±0.25 40.7 45.7 0.64 

±0.50 63.0 76.5 0.06 

±0.75 85.2 95.1 < .05 

±1.00 92.6 98.8 0.13 
Table 67. Prediction errors in the SHORT axial length group - One hidden layer (tansig) 

 

MPR for the MEDIUM eyes group are presented in Table 68. Compared to the CR, the ANN 

model performs significantly better for all statistically tested cases at level 0.0001 except 

the ±1.00 PE group, which was statistically significant at level 0.001. The maximum 

prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 0.00 CR: < .0001, MPR: 0.82 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.42 0.39  - 

Min -1.88 -1.53  - 

Max 0.88 1.30  - 

Eyes within PE [%]       

±0.25 33.1 48.3 < .0001 

±0.50 56.9 83.3 < .0001 

±0.75 79.8 93.5 < .0001 

±1.00 92.9 97.5 < .001 
Table 68. Prediction errors in the MEDIUM axial length group - One hidden layer (tansig) 
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MPR for the LONG eyes group are presented in Table 69. Compared to the CR, the ANN 

model performs significantly better for all cases; for MAE, MedAE, ±0.50 PE group and 

±0.75 PE group at level 0.0001, for ±0.25 and ±1.00 PE groups at level 0.05. The maximum 

prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.02 CR: < .0001, MPR: 0.76 

MAE 0.57 0.31 < .0001 
 MedAE 0.50 0.27 

Std 0.44 0.41  - 

Min -1.63 -1.06  - 

Max 0.88 1.47  - 

Eyes within PE [%]       

±0.25 28.7 46.8 < .05 

±0.50 57.4 84.0 < .0001 

±0.75 72.3 94.7 < .0001 

±1.00 85.1 97.9 < .05 
Table 69. Prediction errors in the LONG axial length group - One hidden layer (tansig) 

 

4.4.3. Log-Sigmoid transfer function 
The model had one hidden layer with 13 hidden layer neurons (Table 70). 

Layer Neurons Transfer function 

Input 5 - 

Hidden 13 logsig 

Output 1 purelin 
Table 70. ANN topology description - One hidden layer (logsig) 

 

The model’s train, validation, and test performances are presented in Table 71. 

Parameter Mean Median Std Min Max 

Train 0.00302 0.00302 0.00013 0.00281 0.00328 

Validation 0.00304 0.00313 0.00018 0.00276 0.00325 

Test 0.00318 0.00315 0.00021 0.00287 0.00360 

Epoch 4.9 5 2.1 2 8 
Table 71. ANN model performance - One hidden layer (logsig) 
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MPR for the ALL eyes group are presented in Table 72. Compared to the CR, the ANN 

model with one hidden layer using Log-Sigmoid as a transfer function produces better 

results for all evaluated parameters. All statistically tested parameters are significantly 

better at level 0.0001. The maximum prediction error is slightly worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.48 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.43 0.40 - 

Min -1.88 -1.49 - 

Max 1.13 1.54 - 

Eyes within PE [%]       

±0.25 33.44 48.9 < .0001 

±0.50 57.71 82.0 < .0001 

±0.75 79.39 94.0 < .0001 

±1.00 91.76 97.6 < .0001 
Table 72. Prediction errors in the ALL axial length group - One hidden layer (logsig) 

 

MPR for the SHORT eyes group are presented in Table 73. Compared to the CR, the ANN 

model performs significantly better for MAE and MedAE at level 0.0001 and the ±0.75 PE 

group at level 0.05. PE group ±0.25, ±0.05 and ±1.00 are insignificantly better. The 

maximum prediction error is slightly worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.37 0.04 CR: < .0001, MPR: 0.27 

MAE 0.46 0.32 < .0001 
 MedAE 0.50 0.26 

Std 0.46 0.40 - 

Min -1.50 -0.85 - 

Max 1.13 1.14 - 

Eyes within PE [%]       

±0.25 40.74 49.4 0.34 

±0.50 62.96 75.3 0.09 

±0.75 85.19 95.1 < .05 

±1.00 92.59 98.8 0.13 
Table 73. Prediction errors in the SHORT axial length group - One hidden layer (logsig) 
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MPR for the MEDIUM eyes group are presented in Table 74. Compared to the CR, the ANN 

model performs significantly better for all statistically tested cases at level 0.0001 except 

±1.00 PE group, which is significantly better at level 0.001. The maximum prediction error 

is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.47 0.01 CR: < .0001, MPR: 0.52 

MAE 0.52 0.31 
< .0001 

MedAE 0.50 0.25 

Std 0.42 0.40 - 

Min -1.88 -1.49 - 

Max 0.88 1.33 - 

Eyes within PE [%]       

±0.25 33.13 49.4 < .0001 

±0.50 56.88 82.9 < .0001 

±0.75 79.79 94.0 < .0001 

±1.00 92.92 97.5 < .001 
Table 74. Prediction errors in the MEDIUM axial length group - One hidden layer (logsig) 

 

MPR for the LONG eyes group are presented in Table 75. Compared to the CR, the ANN 

model performs significantly better for all cases; for MAE, MedAE and the ±0.75 PE group 

at level 0.0001, for ±0.50 and ±1.00 PE groups at level 0.001 and for ±0.25 PE group at 

level 0.05. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.03 CR: < .0001, MPR: 0.53 

MAE 0.57 0.32 < .0001 
 MedAE 0.50 0.26 

Std 0.44 0.41 - 

Min -1.63 -1.03 - 

Max 0.88 1.54 - 

Eyes within PE [%]       

±0.25 28.72 45.7 < .05 

±0.50 57.45 83.0 < .001 

±0.75 72.34 93.6 < .0001 

±1.00 85.11 96.8 < .001 
Table 75. Prediction errors in the LONG axial length group - One hidden layer (logsig) 
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4.4.4. Linear transfer function 
The model had one hidden layer with 13 hidden layer neurons (Table 76). 

Layer Neurons Transfer function 

Input 5 - 

Hidden 13 purelin 

Output 1 purelin 
Table 76. ANN model topology - One hidden layer (purelin) 

 

The model’s train, validation, and test performances are presented in Table 77. 

Parameter Mean Median Std Min Max 

Train 0.00341 0.00341 0.00006 0.00331 0.00351 

Validation 0.00333 0.00334 0.00021 0.00299 0.00379 

Test 0.00359 0.00355 0.00035 0.00307 0.00429 

Epoch 2.7 2.5 0.8 2 4 
Table 77. ANN model performance - One hidden layer (purelin) 

 

MPR for the ALL eyes group are presented in Table 78. Compared to the CR, the ANN 

model with one hidden layer using the Linear transfer function produces better results 

for all evaluated parameters. All statistically tested parameters are significantly better at 

the level of significance of 0.0001. The maximum prediction error is worse for the ANN 

model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.63 

MAE 0.52 0.33 < .0001 
 MedAE 0.50 0.28 

Std 0.43 0.42 - 

Min -1.88 -1.57 - 

Max 1.13 2.06 - 

Eyes within PE [%]       

±0.25 33.4 45.8 < .0001 

±0.50 57.7 79.7 < .0001 

±0.75 79.4 93.1 < .0001 

±1.00 91.8 97.9 < .0001 
Table 78. Prediction errors in the ALL axial length group - One hidden layer (purelin) 
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MPR for the SHORT eyes group are presented in Table 79. Compared to the CR, the ANN 

model performs worse for the ±0.25 prediction error group. All other prediction error 

groups are insignificantly better. The standard deviation appears to be the same, ME is 

better but significantly different from zero, and MAE and MedAE are significantly better 

at level 0.0001. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.37 0.19 CR: < .0001, MPR: < .001 

MAE 0.46 0.39 < .0001 
 MedAE 0.50 0.36 

Std 0.46 0.46 -  

Min -1.50 -0.65 -  

Max 1.13 1.85 - 

Eyes within PE [%]       

±0.25 40.7 39.5 1.00 

±0.50 63.0 71.6 0.32 

±0.75 85.2 93.8 0.12 

±1.00 92.6 96.3 0.45 
Table 79. Prediction errors in the SHORT axial length group - One hidden layer (purelin) 

 

MPR for the MEDIUM eyes group are presented in Table 80. Compared to the CR, the ANN 

model performs significantly better for all prediction error groups at level 0.0001. MAE 

and MedAE are significantly better for the ANN model. ME is better for the ANN model 

but significantly different from zero at level 0.05. The maximum prediction error is worse 

for the ANN model.  

PE [D] CR MPR P value 

ME -0.47 -0.04 CR: < .0001, MPR: < .05 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.27 

Std 0.42 0.39  - 

Min -1.88 -1.57  - 

Max 0.88 1.29  - 

Eyes within PE [%]       

±0.25 33.1 46.5 < .0001 

±0.50 56.9 82.5 < .0001 

±0.75 79.8 93.1 < .0001 

±1.00 92.9 98.1 < .0001 
Table 80. Prediction errors in the MEDIUM axial length group - One hidden layer (purelin) 
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MPR for the LONG eyes group are presented in Table 81. Compared to the CR, the ANN 

model performs significantly better for all tested variables except the ±0.50 PE group; for 

MAE and MedAE at level 0.0001 and for ±0.25, ±0.75 and ±1.00 PE groups at level 0.05. 

The maximum prediction error is considerably worse for the ANN model. The standard 

deviation is higher for the ANN model. ME is significantly different from zero for MPR at 

level 0.05. 

PE [D] CR MPR P value 

ME -0.53 0.14 CR: < .0001, MPR: < .05 

MAE 0.57 0.36 < .0001 
 MedAE 0.50 0.29 

Std 0.44 0.46 -  

Min -1.63 -0.79 -  

Max 0.88 2.06 -  

Eyes within PE [%]       

±0.25 28.7 47.9 < .05 

±0.50 57.4 72.3 0.05 

±0.75 72.3 92.6 < .05 

±1.00 85.1 97.9 < .05 
Table 81. Prediction errors in the LONG axial length group - One hidden layer (purelin) 

 

4.5. Cascade-Forward MLNN - Two hidden layers  

4.5.1. Radial Basis transfer function 
The model had two hidden layers with one hidden layer neuron in the first hidden layer 

and 13 hidden layer neurons in the second hidden layer (Table 82).  

Layer Neurons Transfer function 

Input 5 - 

Hidden - First 1 radbas 

Hidden - Second 13 radbas 

Output 1 purelin 
Table 82. ANN topology description - Two hidden layers (radbas) 

 

The model’s train, validation, and test performances are presented in Table 83. 

Parameter Mean Median Std Min Max 

Train 0.00305 0.00307 0.00020 0.00277 0.00347 

Validation 0.00310 0.00306 0.00023 0.00273 0.00360 

Test 0.00337 0.00343 0.00033 0.00282 0.00381 

Epoch 3.9 3.5 1.5 2 7 
Table 83. ANN model performance - Two hidden layers (radbas) 
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MPR for the ALL eyes group are presented in Table 84. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.40 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.25 

Std 0.43 0.40  - 

Min -1.88 -1.51  - 

Max 1.13 1.58  - 

Eyes within PE [%]       

±0.25 33.4 49.9 < .0001 

±0.50 57.7 82.0 < .0001 

±0.75 79.4 94.0 < .0001 

±1.00 91.8 97.7 < .0001 
Table 84. Prediction errors in the ALL axial length group - Two hidden layers (radbas) 

 

MPR for the SHORT eyes group are presented in Table 85. The ANN model performs 

better for all prediction error groups, but the results are not significant in the ±0.25 and 

±1.00 PE groups. The maximum prediction error is worse for the ANN model. MAE and 

MedAE are significantly better for the ANN model at level 0.0001. 

PE [D] CR MPR P value 

ME -0.37 0.02 CR: < .0001, MPR: 0.52 

MAE 0.46 0.33 < .0001 
 MedAE 0.50 0.26 

Std 0.46 0.41 - 

Min -1.50 -0.94 - 

Max 1.13 1.20 - 

Eyes within PE [%]       

±0.25 40.74 48.1 0.42 

±0.50 62.96 77.8 < .05 

±0.75 85.19 95.1 < .05 

±1.00 92.59 98.8 0.13 
Table 85. Prediction errors in the SHORT axial length group - Two hidden layers (radbas) 
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MPR for the MEDIUM eyes group are presented in Table 86. All tested parameters are 

significantly better than CR at level 0.0001 except for the ±1.00 PE group, which is 

significantly better at level 0.001. The maximum prediction error is worse for the ANN 

model. 

PE [D] CR MPR P value 

ME -0.47 0.01 CR: < .0001, MPR: 0.41 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.25 

Std 0.42 0.39  - 

Min -1.88 -1.51  - 

Max 0.88 1.31  - 

Eyes within PE [%]       

±0.25 33.1 50.4 < .0001 

±0.50 56.9 82.9 < .0001 

±0.75 79.8 93.8 < .0001 

±1.00 92.9 97.5 < .001 
Table 86. Prediction errors in the MEDIUM axial length group - Two hidden layers (radbas) 

 

MPR for the LONG eyes group are presented in Table 87. All tested parameters are 

significantly better than CR; MAE, MedAE and the ±0.75 PE group at level 0.0001, ±0.50 

PE group at level 0.001 and ±0.25 and ±1.00 PE groups at level 0.05. The maximum 

prediction error is worse for the ANN model.  

PE [D] CR MPR P value 

ME -0.53 -0.01 CR: < .0001, MPR: 0.79 

MAE 0.57 0.32 < .0001 
 MedAE 0.50 0.27 

Std 0.44 0.41   

Min -1.63 -1.02   

Max 0.88 1.58   

Eyes within PE [%]       

±0.25 28.7 48.9 < .05 

±0.50 57.4 80.9 < .001 

±0.75 72.3 94.7 < .0001 

±1.00 85.1 97.9 < .05 
Table 87. Prediction errors in the LONG axial length group - One hidden layer (radbas) 
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4.5.2. Hyperbolic Tangent Sigmoid transfer function 
The model had two hidden layers with three hidden layer neurons in the first hidden layer 

and four hidden layer neurons in the second hidden layer (Table 88).  

Layer Neurons Transfer function 

Input 5 - 

Hidden - First 3 tansig 

Hidden - Second 4 tansig 

Output 1 purelin 
Table 88. ANN topology description - Two hidden layers (tansig) 

 

The model’s train, validation, and test performances are presented in Table 89. 

Parameter Mean Median Std Min Max 

Train 0.00299 0.00298 0.00015 0.00283 0.00334 

Validation 0.00322 0.00331 0.00024 0.00261 0.00341 

Test 0.00337 0.00341 0.00031 0.00287 0.00392 

Epoch 7 6 3.3 3 14 
Table 89. ANN model performance - Two hidden layers (tansig) 

 

MPR for the ALL eyes group are presented in Table 90. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.00 CR: < .0001, MPR: 0.62 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.43 0.40  - 

Min -1.88 -1.56  - 

Max 1.13 1.43  - 

Eyes within PE [%]       

±0.25 33.4 48.7 < .0001 

±0.50 57.7 82.9 < .0001 

±0.75 79.4 93.6 < .0001 

±1.00 91.8 97.6 < .0001 
Table 90. Prediction errors in the ALL axial length group - Two hidden layers (tansig) 
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MPR for the SHORT eyes group are presented in Table 91. MAE and MedAE are 

significantly better at level 0.0001. The ±0.50 and ±0.75 PE groups are significantly better 

at level 0.05. The ±0.25 and ±1.00 PE groups are insignificantly better.   

PE [D] CR MPR P value 

ME -0.37 0.05 CR: < .0001, MPR: 0.21 

MAE 0.46 0.33 
< .0001 

MedAE 0.50 0.27 

Std 0.46 0.40 - 

Min -1.50 -0.94 - 

Max 1.13 1.09 - 

Eyes within PE [%] 
   

±0.25 40.7 46.9 0.53 

±0.50 63.0 77.8 < .05 

±0.75 85.2 96.3 < .05 

±1.00 92.6 98.8 0.13 
Table 91. Prediction errors in the SHORT axial length group - Two hidden layers (tansig) 

 

MPR for the MEDIUM eyes group are presented in Table 92. All tested parameters are 

significantly better than CR at level 0.0001 except for the ±1.00 PE group, which is 

significantly better at level 0.001. The maximum prediction error is worse for the ANN 

model. 

PE [D] CR MPR P value 

ME -0.47 0.00 CR: < .0001, MPR: 0.73 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.25 

Std 0.42 0.40  -  

Min -1.88 -1.56 - 

Max 0.88 1.35 - 

Eyes within PE [%]       

±0.25 33.1 50.0 < .0001 

±0.50 56.9 83.5 < .0001 

±0.75 79.8 93.1 < .0001 

±1.00 92.9 97.5 < .001 
Table 92. Prediction errors in the MEDIUM axial length group - Two hidden layers (tansig) 
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MPR for the LONG eyes group are presented in Table 93. MAE, MedAE, the ±0.50 PE group 

and the ±0.75 PE group are significantly better at level 0.0001. The ±1.00 PE group is better 

at level 0.05. The maximum prediction error is worse the for ANN model. The ±0.25 PE 

group is insignificantly better.   

PE [D] CR MPR P value 

ME -0.53 -0.04 CR: < .0001, MPR: 0.44 

MAE 0.57 0.31 < .0001 

MedAE 0.50 0.27   

Std 0.44 0.40   

Min -1.63 -1.04   

Max 0.88 1.43   

Eyes within PE [%]       

±0.25 28.7 43.6 0.07 

±0.50 57.4 84.0 < .0001 

±0.75 72.3 93.6 < .0001 

±1.00 85.1 96.8 < .05 
Table 93. Prediction errors in the LONG axial length group - Two hidden layers (tansig) 

 

4.5.3. Log-Sigmoid transfer function 
The model had two hidden layers with two hidden layer neurons in the first hidden layer 

and 11 hidden layer neurons in the second hidden layer (Table 94).  

Layer Neurons Transfer function 

Input 5 - 

Hidden - First 2 logsig 

Hidden - Second 11 logsig 

Output 1 purelin 
Table 94. ANN topology description - Two hidden layers (logsig) 

 

The model’s train, validation, and test performances are presented in Table 95. 

Parameter Mean Median Std Min Max 

Train 0.00305 0.00305 0.00013 0.00288 0.00335 

Validation 0.00307 0.00317 0.00023 0.00250 0.00327 

Test 0.00307 0.00310 0.00021 0.00268 0.00340 

Epoch 5.4 5 2.7 2 9 
Table 95. ANN model performance - Two hidden layers (logsig) 
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MPR for the ALL eyes group are presented in Table 96. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the ANN model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.47 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.43 0.40 - 

Min -1.88 -1.53 - 

Max 1.13 1.47 - 

Eyes within PE [%]       

±0.25 33.4 47.2 < .0001 

±0.50 57.7 81.8 < .0001 

±0.75 79.4 93.6 < .0001 

±1.00 91.8 97.4 < .0001 
Table 96. Prediction errors in the ALL axial length group - Two hidden layers (logsig) 

 

MPR for the SHORT eyes group are presented in Table 97. MAE and MedAE are 

significantly better at level 0.0001, and the ±0.50 PE group is significantly better at level 

0.05. The ±0.25, ±0.75 and ±1.00 PE groups are insignificantly better. 

PE [D] CR MPR P value 

ME -0.37 0.04 CR: < .0001, MPR: 0.31 

MAE 0.46 0.33 < .0001 
 MedAE 0.50 0.27 

Std 0.46 0.41  - 

Min -1.50 -1.03  - 

Max 1.13 1.12  - 

Eyes within PE [%]       

±0.25 40.7 45.7 0.63 

±0.50 63.0 77.8 < .05 

±0.75 85.2 93.8 0.05 

±1.00 92.6 97.5 0.22 
Table 97. Prediction errors in the SHORT axial length group - Two hidden layers (logsig) 
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MPR for the MEDIUM eyes group are presented in Table 98. The ANN model performed 

significantly better for all variables at level 0.0001 except for the ±1.00 PE group, which 

was significantly better at level 0.001. The maximum prediction error is worse for the ANN 

model. 

PE [D] CR MPR P value 

ME -0.47 0.01 CR: < .0001, MPR: 0.53 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.42 0.40 - 

Min -1.88 -1.53 - 

Max 0.88 1.34 - 

Eyes within PE [%]       

±0.25 33.1 48.1 < .0001 

±0.50 56.9 82.5 < .0001 

±0.75 79.8 93.5 < .0001 

±1.00 92.9 97.5 
< .001 

 
Table 98. Prediction errors in the MEDIUM axial length group - Two hidden layers (logsig) 

 

MPR for the LONG eyes group are presented in Table 99. MAE, MedAE and the ±0.75 PE 

group are significantly better at level 0.0001, ±0.50 PE group is significantly better at 

level 0.001 and ±1.00 PE group is significantly better at level 0.05. The ±0.25 PE group is 

insignificantly better for the ANN model. The maximum prediction error is worse for the 

ANN model. 

PE [D] CR MPR P value 

ME -0.53 -0.03 CR: < .0001, MPR: 0.57 

MAE 0.57 0.32 < .0001 
 MedAE 0.50 0.28 

Std 0.44 0.41  - 

Min -1.63 -1.04  - 

Max 0.88 1.47  - 

Eyes within PE [%]       

±0.25 28.7 43.6 0.06 

±0.50 57.4 81.9 < .001 

±0.75 72.3 93.6 < .0001 

±1.00 85.1 96.8 < .05 
Table 99. Prediction errors in the LONG axial length group - Two hidden layers (logsig) 
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4.5.4. Linear transfer Function 
The model had two hidden layers with 23 hidden layer neurons in the first hidden layer 

and two hidden layer neurons in the second hidden layer (Table 100).  

Layer Neurons Transfer function 

Input 5 - 

Hidden - First 23 purelin 

Hidden - Second 2 purelin 

Output 1 purelin 
Table 100. ANN model topology - Two hidden layers (purelin) 

 

The model’s train, validation, and test performances are presented in Table 101. 

Parameter Mean Median Std Min Max 

Train 0.00338 0.00341 0.00008 0.00322 0.00346 

Validation 0.00347 0.00342 0.00026 0.00309 0.00389 

Test 0.00356 0.00351 0.00032 0.00318 0.00419 

Epoch 2.5 2 0.7 2 4 
Table 101. ANN model performance - Two hidden layers (purelin) 

 

MPR for the ALL eyes group are presented in Table 102. All tested parameters are 

significantly better than CR at level 0.0001 except for the ±0.25 PE group, which is 

significantly better at level 0.001. The maximum prediction error is worse for the ANN 

model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.69 

MAE 0.52 0.33 < .0001 
 MedAE 0.50 0.28 

Std 0.43 0.42 - 

Min -1.88 -1.57 - 

Max 1.13 2.02 - 

Eyes within PE [%]       

±0.25 33.4 45.8 < .001 

±0.50 57.7 79.8 < .0001 

±0.75 79.4 92.8 < .0001 

±1.00 91.8 97.9 < .0001 
Table 102. Prediction errors in the ALL axial length group - Two hidden layers (purelin) 
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MPR for the SHORT eyes group are presented in Table 103. ME is significantly different 

from zero at level 0.001. MAE and MedAE are significantly better at level 0.0001. The 

±0.50, ±0.75, and ±1.00 PE groups are insignificantly better than CR. The maximum 

prediction error is worse for the ANN model. The standard deviation is the same for CR 

and MPR. The ±0.25 PE group is worse for the ANN model. ME is significantly different 

from zero for the model. 

PE [D] CR MPR P value 

ME -0.37 0.21 CR: < .0001, MPR: < .001 

MAE 0.46 0.40 
< .0001 

MedAE 0.50 0.37 

Std 0.46 0.46 - 

Min -1.50 -0.64 - 

Max 1.13 1.88 - 

Eyes within PE [%] 
   

±0.25 40.7 37.0 0.77 

±0.50 63.0 70.4 0.42 

±0.75 85.2 90.1 0.48 

±1.00 92.6 96.3 0.45 
Table 103. Prediction errors in the SHORT axial length group - Two hidden layers (purelin) 

 

MPR for the MEDIUM eyes group are presented in Table 104. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the ANN model. ME is significantly different from zero for the model. 

PE [D] CR MPR P value 

ME -0.47 -0.04 CR: < .0001, MPR: < .01  

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.27 

Std 0.42 0.39 - 

Min -1.88 -1.57 - 

Max 0.88 1.27 - 

Eyes within PE [%]       

±0.25 33.1 46.9 < .0001 

±0.50 56.9 82.5 < .0001 

±0.75 79.8 93.3 < .0001 

±1.00 92.9 98.1 < .0001 
Table 104. Prediction errors in the MEDIUM axial length group - Two hidden layers (purelin) 
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MPR for the LONG eyes group are presented in Table 105. All tested parameters are 

significantly better than CR; MAE and MedAE at level 0.0001, ±0.75 PE group at level 0.001 

and ±0.25, ±0.50, ±1.00 PE groups at level 0.05. ME is significantly different from zero for 

MPR at level 0.05. The maximum prediction error is worse for the ANN model. 

PE [D] CR MPR P value 

ME -0.53 0.12 CR: < .0001, MPR: < .05 

MAE 0.57 0.36 < .0001 
 MedAE 0.50 0.28 

Std 0.44 0.45 - 

Min -1.63 -0.82 - 

Max 0.88 2.02 - 

Eyes within PE [%]       

±0.25 28.7 47.9 < .05 

±0.50 57.4 74.5 < .05 

±0.75 72.3 92.6 < .001 

±1.00 85.1 97.9 < .05 
Table 105. Prediction errors in the LONG axial length group - Two hidden layers (purelin) 

 

4.6. Support Vector Machines 
Support Vector Machine (SVM) model parameters are presented in Table 106. 

Kernel function Polynomial 

Kernel Scale 1 

Epsilon 0.0261 

Box constraint 0.1528 

Polynomial order 3 

Number of iterations 4255 

Verification set MSE 0.0028 

Verification set RMSE 0.0527 
Table 106. SVM model parameters 
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MPR for the ALL eyes group are presented in Table 107. Compared to the CR, the SVM 

model performs better for all evaluated parameters at level 0.0001. The maximum 

prediction error is slightly worse for the SVM model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.43 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.43 0.40 - 

Min -1.88 -1.52 - 

Max 1.13 1.31 - 

Eyes within PE [%]      

±0.25 33.44 48.9 < .0001 

±0.50 57.71 83.5 < .0001 

±0.75 79.39 93.6 < .0001 

±1.00 91.76 97.4 < .0001 
Table 107. Prediction errors in the ALL axial length group - SVM 

 

MPR for the SHORT eyes group are presented in Table 108. MAE and MedAE are 

significantly better at level 0.0001. The ±0.50 and ±1.00 PE groups are significantly better 

at level 0.05. The ±0.25 and ±0.75 PE groups are insignificantly better.   

PE [D] CR MPR P value 

ME -0.37 -0.01 CR: < .0001, MPR: 0.95 

MAE 0.46 0.33 < .0001 
 MedAE 0.50 0.27 

Std 0.46 0.40  - 

Min -1.50 -1.14  - 

Max 1.13 0.81  - 

Eyes within PE [%]      

±0.25 40.74 48.1 0.40 

±0.50 62.96 77.8 < .05 

±0.75 85.19 95.1 < .05 

±1.00 92.59 98.8 0.07 
Table 108. Prediction errors in the SHORT axial length group - SVM 
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MPR for the MEDIUM eyes group are presented in Table 109. Compared to the CR, the 

SVM model performs significantly better for all statistically tested cases at level 0.0001 

except for the ±1.00 PE group, which is significantly better at level 0.001. The maximum 

prediction error is higher for the SVM model. 

PE [D] CR MPR P value 

ME -0.47 0.02 CR: < .0001, MPR: 0.59 

MAE 0.52 0.30 < .0001 
 MedAE 0.50 0.25 

Std 0.42 0.39 - 

Min -1.88 -1.52 - 

Max 0.88 1.31 - 

Eyes within PE [%]      

±0.25 33.13 49.6 < .0001 

±0.50 56.88 84.2 < .0001 

±0.75 79.79 93.3 < .0001 

±1.00 92.92 97.5 < .001 
Table 109. Prediction errors in the MEDIUM axial length group - SVM 

 

MPR for the LONG eyes group are presented in Table 110. Compared to the CR, the SVM 
model performs significantly better for most cases; for MAE, MedAE, ±0.50 PE group and 
±0.75 PE group at level 0.0001 and for ±1.00 PE group at level 0.001. The ±0.25 PE group 
is significantly better at level 0.05. 
 

PE [D] CR MPR P value 

ME -0.53 -0.06 CR: < .0001, MPR: 0.20 

MAE 0.57 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.44 0.40 - 

Min -1.63 -1.30 - 

Max 0.88 1.19 - 

Eyes within PE [%]      

±0.25 28.72 45.7 < .05 

±0.50 57.45 85.1 < .0001 

±0.75 72.34 93.6 < .0001 

±1.00 85.11 95.7 < .001 
Table 110. Prediction errors in the LONG axial length group - SVM 
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4.7. Binary Regression Decision Tree 
Binary Regression Decision Tree (BRDT) model parameters are presented in Table 111. 

Nodes 401 

Minimal observations 
per leaf 

6 

Minimal observations 
per parent 

12 

Split criterion MSE 

Verification set MSE 0.0055 

Verification set RMSE 0.0741 
Table 111. BRDT model parameters 

 

MPR for the ALL eyes group are presented in Table 112. The maximum prediction error 

and standard deviation are higher for the BRDT model. Performance in ±1.00 PE group is 

insignificantly better for the BRDT model. The ±0.25 PE group is insignificantly better for 

the BRDT model. The ±0.50 and ±0.75 PE groups are significantly better for the BRDT 

model at levels 0.0001 and 0.05, respectively. 

PE [D] CR MPR P value 

ME -0.46 0.04 CR: < .0001, MPR: 0.13 

MAE 0.52 0.43 
< .0001 

MedAE 0.50 0.35 

Std 0.43 0.56  - 

Min -1.88 -2.12  - 

Max 1.13 1.98  - 

Eyes within PE [%]      

±0.25 33.44 37.3 0.16 

±0.50 57.71 66.6 < .0001 

±0.75 79.39 84.0 < 0.05 

±1.00 91.76 92.1 0.75 
Table 112. Prediction errors in the ALL axial length group - BRDT 
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MPR for the SHORT eyes group are presented in Table 113. The maximum prediction 

error, performance in all PE groups, MAE, MedAE and standard deviation are worse for 

the BRDT model; insignificantly for MAE, MedAE, ±1.00 and ±0.50 PE groups, significantly 

for ±0.25 and ±0.75 PE groups at level 0.05. 

PE [D] CR MPR P value 

ME -0.37 -0.01 CR: < .0001, MPR: 0.79 

MAE 0.46 0.58 < .001 
 MedAE 0.50 0.51 

Std 0.46 0.69  - 

Min -1.50 -1.58  - 

Max 1.13 1.39  - 

Eyes within PE [%]   666   

±0.25 40.74 19.8 < 0.05 

±0.50 62.96 49.4 0.09 

±0.75 85.19 71.6 < 0.05 

±1.00 92.59 85.2 0.15 
Table 113. Prediction errors in the SHORT axial length group - BRDT 

 

MPR for the MEDIUM eyes group are presented in Table 114. The maximum prediction 

error and standard deviation are worse for the BRDT model. The ±1.00 PE group is 

insignificantly better for the BRDT model. The ±0.50 and ±0.75 PE groups are significantly 

better for the BRDT model at level 0.0001. The ±0.25 PE group is significantly better at 

level 0.05. ME is significantly different from zero for MPR. 

PE [D] CR MPR P value 

ME -0.47 0.06 CR: < .0001, MPR: <.05 

MAE 0.52 0.40 < .0001 
 MedAE 0.50 0.33 

Std 0.42 0.51  - 

Min -1.88 -2.12  - 

Max 0.88 1.78  - 

Eyes within PE [%]      

±0.25 33.13 41.0 < .05 

±0.50 56.88 69.4 < .0001 

±0.75 79.79 86.9 < .0001 

±1.00 92.92 93.8 0.68 
Table 114. Prediction errors in the MEDIUM axial length group - BRDT 
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MPR for the LONG eyes group are presented in Table 115. The Minimum prediction error, 

maximum prediction error and standard deviation are worse for the BRDT model. 

Performance in all PE groups is insignificantly better for the BRDT model.  

PE [D] CR MPR P value 

ME -0.53 -0.07 CR: < .0001, MPR: 0.27 

MAE 0.57 0.47 < .0001 
 MedAE 0.50 0.35 

Std 0.44 0.62 - 

Min -1.63 -1.92 - 

Max 0.88 1.98 - 

Eyes within PE [%]      

±0.25 28.72 33.0 0.60 

±0.50 57.45 67.0 0.18 

±0.75 72.34 79.8 0.23 

±1.00 85.11 89.4 0.48 
Table 115. Prediction errors in the LONG axial length group - BRDT 

 

4.8. Gaussian Process Regression 
Gaussian Process Regression (GPR) model parameters are presented in Table 116. 

Kernel Function SquaredExponential 

Basis Function Constant 

Sigma 0. 0606 

Beta 2.2608 

Fit/Predict method exact 

Verification set MSE 0.0028 

Verification set RMSE 0.0526 
Table 116. GPR model parameters 
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MPR for the ALL eyes group are presented in Table 117. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the GPR model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MPR: 0.31 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.25 

Std 0.43 0.39  - 

Min -1.88 -1.49  - 

Max 1.13 1.41  - 

Eyes within PE [%]      

±0.25 33.44 48.1 
< .0001 

 

±0.50 57.71 82.7 
< .0001 

 

±0.75 79.39 93.7 
< .0001 

 

±1.00 91.76 97.6 < .0001 
Table 117. Prediction errors in the ALL axial length group - GPR 

 

MPR for the SHORT eyes group are presented in Table 118. The GPR model performs 

significantly better for MAE and MedAE at level 0.0001, and the ±0.50 and ±0.75 PE groups 

at level 0.05. The ±0.25 and ±1.00 PE groups are insignificantly better. 

PE [D] CR MPR P value 

ME -0.37 0.03 CR: < .0001, MPR: 0.42 

MAE 0.46 0.32 < .0001 
 MedAE 0.50 0.26 

Std 0.46 0.40 -  

Min -1.50 -0.89 -  

Max 1.13 1.07  - 

Eyes within PE [%]      

±0.25 40.74 48.6 0.41 

±0.50 62.96 77.8 < .05 

±0.75 85.19 95.1 < .05 

±1.00 92.59 98.8 0.13 
Table 118. Prediction errors in the SHORT axial length group - GPR 
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MPR for the MEDIUM eyes group are presented in Table 119. All tested variables are 

significantly better for the GPR model at level 0.0001 except for the ±1.00 PE group, which 

is significantly better at level 0.001. The maximum prediction error is worse for the GRP 

model. 

PE [D] CR MPR P value 

ME -0.47 0.01 CR: < .0001, MPR: 0.45 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.25 

Std 0.42 0.39  - 

Min -1.88 -1.51  - 

Max 0.88 1.40  - 

Eyes within PE [%]      

±0.25 33.13 49.2 < .0001 

±0.50 56.88 83.1 < .0001 

±0.75 79.79 93.3 < .0001 

±1.00 92.92 97.3 < .001 
Table 119. Prediction errors in the MEDIUM axial length group - GPR 

 

MPR for the LONG eyes group are presented in Table 120. Most of the parameters tested 

are significantly better than CR; MAE, MedAE, the ±0.50 and ±0.75 PE groups at level 

0.0001 and the ±1.00 PE group at level 0.05. The ±0.25 PE group is insignificantly better. 

The maximum prediction error is worse for the GPR model.  

PE [D] CR MPR P value 

ME -0.53 -0.02 CR: < .0001, MPR: 0.73 

MAE 0.57 0.31 < .0001 
 MedAE 0.50 0.27 

Std 0.44 0.39 - 

Min -1.63 -1.00 - 

Max 0.88 1.24 - 

Eyes within PE [%]      

±0.25 28.72 42.6 0.07 

±0.50 57.45 85.1 < .0001 

±0.75 72.34 94.7 < .0001 

±1.00 85.11 97.9 < .05 
Table 120. Prediction errors in the LONG axial length group - GPR 
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4.9. Boosted Regression Tree Ensembles 
Boosted Regression Tree Ensemble (BRTE) model parameters are presented in Table 121. 

Method LSBoost 

Training cycles 414 

Learn rate 0.06928 

Minimal observations 
per leaf 

8 

MaxNumSplits 6 

Verification set MSE 0.0035 

Verification set RMSE 0.0589 
Table 121. BRTE model parameters 

 

MPR for the ALL eyes group are presented in Table 122. MAE, MedAE, the ±0.50 PE group 

and the ±0.75 PE group are significantly better at level 0.0001. The ±0.25 PE group and 

the ±1.00 PE group are significantly better at level 0.05. The maximum prediction error 

and standard deviation are worse for the BRTE model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: 4.67e-82, MPR: 0.87 

MAE 0.52 0.39 < .0001 
 MedAE 0.50 0.34 

Std 0.43 0.51  - 

Min -1.88 -1.48  - 

Max 1.13 1.99  - 

Eyes within PE [%]       

±0.25 33.44 44.7 < .05 

±0.50 57.71 77.1 < .0001 

±0.75 79.39 90.2 < .0001 

±1.00 91.76 96.2 < .05 
Table 122. Prediction errors in the ALL axial length group - BRTE 
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MPR for the SHORT eyes group are presented in Table 123. Compared to the CR, the BRTE 

model produces worse results for most of the evaluated parameters. The maximum 

prediction error, performance in all prediction error groups and the standard deviation 

are worse for the BRTE model. ME is significantly different from zero at level 0.05. 

PE [D] CR MPR P value 

ME -0.37 0.19 CR: < .0001, MPR: < .05 

MAE 0.46 0.55 < .0001 
 MedAE 0.50 0.49 

Std 0.46 0.67  - 

Min -1.50 -1.00  - 

Max 1.13 1.99  - 

Eyes within PE [%]       

±0.25 40.74 27.2 0.44 

±0.50 62.96 55.6 0.26 

±0.75 85.19 81.5 0.08 

±1.00 92.59 88.9 0.30 
Table 123. Prediction errors in the SHORT axial length group - BRTE 

 

MPR for the MEDIUM eyes group are presented in Table 124. Compared to the CR, the 

BRTE model performs significantly better for all statistically tested parameters; for MAE, 

MedAE, ±0.50 PE group and ±0.75 PE group at level 0.0001, for ±1.00 PE group at level 

0.001 and for ±0.25 PE group at level 0.05. The maximum prediction error and standard 

deviation are worse for the BRTE model.  

PE [D] CR MPR P value 

ME -0.47 0.02 CR: < .000, MPR: 0.34 

MAE 0.52 0.36 < .0001 
 MedAE 0.50 0.31 

Std 0.42 0.45  - 

Min -1.88 -1.31  - 

Max 0.88 1.64  - 

Eyes within PE [%]       

±0.25 33.13 47.7 < .05 

±0.50 56.88 80.8 < .0001 

±0.75 79.79 91.5 < .0001 

±1.00 92.92 93.8 < .001 
Table 124. Prediction errors in the MEDIUM axial length group - BRTE 
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MPR for the LONG eyes group are presented in Table 125. Compared to the CR, the BRTE 

model performs insignificantly better for all tested PE groups. MAE and MedAE are 

significantly better for the BRTE model at level 0.0001. The maximum prediction error and 

standard deviation are worse for the BRTE model. ME is significantly different from zero 

for MPR. 

PE [D] CR MPR P value 

ME -0.53 -0.19 CR: < .0001, MPR: < .001 

MAE 0.57 0.45 < .0001 
 MedAE 0.50 0.39 

Std 0.44 0.53  - 

Min -1.63 -1.48  - 

Max 0.88 1.44  - 

Eyes within PE [%]       

±0.25 28.72 44.7 0.51 

±0.50 57.45 76.6 0.16 

±0.75 72.34 91.5 0.07 

±1.00 85.11 97.9 0.07 
Table 125. Prediction errors in the LONG axial length group - BRTE 

 

4.10. Stepwise Regression 
Stepwise Regression (SR) model parameters are presented in Tables 126 and 127. 

 Estimate SE tStat P value 

(Intercept) -0.10622 0.0017521 -60.621 0 

KM -0.4617 0.007346 -62.85 0 

ACD 0.062351 0.005817 10.719 6.7192e-26 

AL -1.025 0.012501 -81.995 0 

Age -0.00078272 0.0050178 -0.15599 0.87606 

Rx-pre 0.052386 0.0076388 VI.79 1.0111e-11 

KM:AL -0.10609 0.013945 -7.6074 4.8571e-14 

ACD:Age -0.045833 0.011859 -3.8646 0.00011591 

AL:Rx-pre -0.10588 0.012255 -8.6402 1.388e-17 
Table 126. SR design parameters 

Regression model 𝐼𝑂𝐿𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  ~ 1 +  𝐾𝑀 ∗ 𝐴𝐿 +  𝐴𝐶𝐷 ∗ 𝐴𝑔𝑒 +  𝐴𝐿 ∗ 𝑅𝑥𝑝𝑟𝑒  

Verification set MSE 0.0035 

Verification set RMSE 0.0589 
Table 127. Regression model notation and errors 
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MPR for the ALL eyes group are presented in Table 128. All tested parameters are 

significantly better than CR at level 0.0001. The maximum prediction error is worse for 

the SR model. 

PE [D] CR MPR P value 

ME -0.46 0.01 CR: < .0001, MRS: 0.50 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.27 

Std 0.43 0.40 -  

Min -1.88 -1.51 -  

Max 1.13 1.40 - 

Eyes within PE [%]       

±0.25 33.44 46.3 < .0001 

±0.50 57.71 82.9 < .0001 

±0.75 79.39 94.0 < .0001 

±1.00 91.76 97.4 < .0001 
Table 128. Prediction errors in the ALL axial length group - SR 

 

MPR for the SHORT eyes group are presented in Table 129. The SR model performs better 

for all PE groups at level 0.05 except for the ±0.25 PE group, which is insignificantly better. 

MAE and MedAE are significantly better for the SR model at level 0.0001. 

PE [D] CR MPR P value 

ME -0.37 0.02 CR: < .0001, MPR: 0.59 

MAE 0.46 0.32 < .0001 
 MedAE 0.50 0.29 

Std 0.46 0.40  - 

Min -1.50 -0.93  - 

Max 1.13 1.00  - 

Eyes within PE [%]       

±0.25 40.74 44.4 0.74 

±0.50 62.96 79.0 < .05 

±0.75 85.19 95.1 < .05 

±1.00 92.59 100.00 < .05 
Table 129. Prediction errors in the SHORT axial length group - SR 
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MPR for the MEDIUM eyes group are presented in Table 130. All tested variables are 

significantly better for the SE model at level 0.0001 except for the ±1.00 PE group, which 

is significantly better at level 0.05. The maximum prediction error is worse for the SR 

model. 

PE [D] CR MPR P value 

ME -0.47 0.01 CR: < .0001, MP: 0.50 

MAE 0.52 0.31 < .0001 
 MedAE 0.50 0.26 

Std 0.42 0.40 - 

Min -1.88 -1.51 - 

Max 0.88 1.40 - 

Eyes within PE [%]       

±0.25 33.13 47.7 < .0001 

±0.50 56.88 83.3 < .0001 

±0.75 79.79 93.5 < .0001 

±1.00 92.92 97.1 < .05 
Table 130. Prediction errors in the MEDIUM axial length group - SR 

 

MPR for the LONG eyes group are presented in Table 131. All tested parameters are 

significantly better than CR at level 0.0001 except for the ±0.25 PE group, which is 

insignificantly better. The maximum prediction error is worse for the SR model.  

PE [D] CR MPR P value 

ME -0.53 -0.02 CR: < .0001, MPR: 0.79 

MAE 0.57 0.32 < .0001 
 MedAE 0.50 0.29 

Std 0.44 0.40  - 

Min -1.63 -1.11  - 

Max 0.88 1.27  - 

Eyes within PE [%]       

±0.25 28.72 40.4 0.13 

±0.50 57.45 84.0 < .0001 

±0.75 72.34 95.7 < .0001 

±1.00 85.11 96.8 < .0001 
Table 131. Prediction errors in the LONG axial length group - SR 
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4.11. Mutual Evaluation 

4.11.1. ALL axial length subgroup 
Mutual comparison (Table 132.) of the ALL axial length subgroup using all evaluated 

models proved that there is not the significantly same proportion of success between the 

models in ±0.25 D, ±0.50 D, ±0.75 D and ±1.00 D PE groups at the level of P<.0001. 

The best model in the ±0.25 D PE group was CS2_radbas. Therefore, every model 

for each PE group was statistically compared to this model. 

In the ±0.25 D PE group SVM, CS1_radbas, FF1_radbas, CS1_logsig, CS2_tansig, 

FF1_logsig, GPR, FF2_logsig, FF2_tansig, FF2_radbas, FF1_tansig and FF3_radbas models 

were insignificantly worse. CS1_tansig, CS2_logsig, SR, CS2_purelin, CS1_purelin, 

FF2_purelin, and BRTE models were significantly worse at the level of P<.05. The 

FF1_purelin model was significantly worse at P<.001 and the BRTE model was significantly 

worse at the level of P<.0001. 

In the ±0.50 D PE group SVM, the CS2_tansig, SR, GPR, CS1_radbas, FF2_tansig, 

FF1_logsig, CS1_tansig, FF1_tansig, FF1_radbas, FF2_logsig and FF2_radbas models were 

insignificantly better and the CS1_logsig, CS2_logsig, FF3_radbas, FF2_purelin and 

FF1_purelin models were insignificantly worse. The CS2_purelin and CS1_purelin models 

were significantly worse at the level of P<.05, and the BRTE and BRDT models were 

significantly worse at the level of P<.0001.  

In the ±0.75 D PE group SR, the FF2_tansig and CS1_logsig performed the same. 

The CS1_tansig, FF1_radbas, FF3_radbas, GPR, FF1_tansig, SVM, CS2_tansig, CS1_radbas, 

FF2_logsig, FF2_radbas, CS2_logsig, FF1_logsig, FF1_purelin, CS1_purelin, FF2_purelin 

and CS2_purelin models performed insignificantly worse. The BRTE and BRDT models 

performed significantly worse at the level of P<.0001. 

In the ±1.00 D PE group, the FF3_radbas, FF2_tansig, FF1_logsig, FF1_purelin, 

CS1_purelin, FF2_purelin and CS2_purelin models performed insignificantly better. The 

CS1_tansig, FF2_radbas, CS1_logsig, FF1_radbas, GPR, FF1_tansig, CS2_tansig, 

CS1_radbas, FF2_logsig, SR, SVM and CS2_logsig models performed the same or 

insignificantly worse. The BRTE and BRDT models performed significantly worse at the 

level of P<.05 and P<.0001, respectively. 
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Model 

PE 

±0.25 D ±0.50 D ±0.75 D ±1.00 D 

[%] P value [%] P value [%] P value [%] P value 

CS2_radbas 49.9 n1=n2 82.0 n1=n2 94.0 n1=n2 97.7 n1=n2 

SVM 48.9 0.43 83.5 0.09 93.6 0.32 97.4 0.48 

FF1_radbas 48.9 0.35 82.3 0.69 93.9 0.65 97.6 0.56 

CS1_radbas 48.9 0.32 82.7 0.23 93.6 0.26 97.6 0.56 

CS1_logsig 48.9 0.29 82.0 1.00 94.0 1.00 97.6 0.56 

CS2_tansig 48.7 0.27 82.9 0.22 93.6 0.26 97.6 0.56 

FF1_logsig 48.4 0.16 82.6 0.39 93.4 0.10 97.9 0.65 

FF2_logsig 48.1 0.10 82.3 0.67 93.6 0.37 97.6 0.56 

GPR 48.1 0.09 82.7 0.25 93.7 0.48 97.6 0.56 

FF2_tansig 47.8 0.05 82.6 0.39 94.0 1.00 97.9 0.56 

FF2_radbas 47.8 0.07 82.1 0.84 93.6 0.32 97.7 1.00 

CS1_tansig 47.8 <.05 82.6 0.35 93.9 0.71 97.7 1.00 

FF1_tansig 47.6 0.05 82.6 0.43 93.7 0.48 97.6 0.65 

CS2_logsig 47.2 <.05 81.8 0.81 93.6 0.18 97.4 0.32 

FF3_radbas 47.0 0.06 80.3 0.15 93.9 0.82 98.0 0.41 

SR 46.3 <.05 82.9 0.16 94.0 1.00 97.4 0.32 

CS2_purelin 45.8 <.05 79.8 <.05 92.8 0.07 97.9 0.71 

CS1_purelin 45.8 <.05 79.7 <.05 93.1 0.16 97.9 0.71 

FF2_purelin 45.5 <.05 80.3 0.11 92.8 0.07 97.9 0.71 

FF1_purelin 45.3 <.001 79.8 0.05 93.4 0.35 97.9 0.71 

BRTE 44.7 <.05 77.1 <.001 90.2 <.0001 96.2 <.05 

BRDT 37.3 <.0001 66.6 <.0001 84.0 <.0001 92.1 <.0001 

Mutual P < .0001 < .0001 < .0001 < .0001 

Table 132. Mutual evaluation of the PE results in the ALL axial length group. Equation n1(i)=n2(i) means that 
the compared vectors of prediction results were equal for all data entries. 
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4.11.2. SHORT axial length subgroup 
Mutual comparison (Table 133.) of the SHORT axial length subgroup using all evaluated 

models proved that there is not the significantly same proportion of success between the 

models in the ±0.25 D, ±0.50 D, ±0.75 D and ±1.00 D PE groups at the level of P<.0001. 

The best model in the ±0.25 D PE group was FF1_radbas. Therefore, every model 

for each PE group was statistically compared to this model. 

In the ±0.25 D PE group, the CS1_logsig, GPR, SVM, CS2_radbas, FF1_tansig, 

CS1_radbas, CS2_tansig, FF1_logsig, FF2_radbas and FF3_radbas models were 

insignificantly worse.  

The CS2_logsig, CS1_tansig, FF2_tansig, FF2_logsig, SR, CS1_purelin, FF1_purelin, 

FF2_purelin, CS2_purelin and BRTE models were significantly worse at the level of P<.05. 

The BRTE model was significantly worse at the level of P<.0001. 

In the ±0.50 D PE group, the SR model was insignificantly better and the 

CS1_logsig, GPR, SVM, CS2_radbas, FF1_tansig, CS1_radbas, CS2_tansig, FF1_logsig, 

FF2_radbas, CS2_logsig, CS1_tansig, FF2_tansig, FF2_logsig, FF3_radbas, CS1_purelin, 

FF1_purelin, FF2_purelin and CS2_purelin models performed insignificantly worse or the 

same. The BRTE and BRDT models were significantly worse at the level of P<.001.  

In the ±0.75 D PE group, the CS2_tansig model performed insignificantly better, 

and the CS1_logsig, GPR, SVM, CS2_radbas, FF1_tansig, CS1_radbas, CS1_tansig, 

FF2_tansig and SR models performed the same. The FF1_logsig, FF2_radbas, CS2_logsig, 

FF2_logsig, FF3_radbas, CS1_purelin, FF1_purelin, FF2_purelin and CS2_purelin models 

performed insignificantly worse. The BRTE and BRDT models performed significantly 

worse at the level of P<.001 and P<.0001, respectively. 

In the ±1.00 D PE group, the FF1_tansig, FF2_tansig and SR models performed 

insignificantly better. The CS2_tansig, CS1_logsig, GPR, SVM, CS2_radbas, CS1_radbas, 

CS1_tansig, FF1_logsig and FF2_radbas models performed the same. The CS2_logsig, 

FF2_logsig, FF3_radbas, CS1_purelin, FF1_purelin, FF2_purelin and CS2_purelin models 

performed insignificantly worse. The BRTE and BRDT models performed significantly 

worse at the level of P<.05. 
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Model 

PE 

±0.25 D ±0.50 D ±0.75 D ±1.00 D 

[%] P value [%] P value [%] P value [%] P value 

FF1_radbas 51.8 n1(i)=n2(i) 77.8 n1(i)=n2(i) 95.1 n1(i)=n2(i) 98.8 n1(i)=n2(i) 

CS1_logsig 49.3 0.32 75.3 0.32 95.1 n1(i)=n2(i) 98.8 n1(i)=n2(i) 

GPR 48.1 0.08 77.8 1.00 95.1 n1(i)=n2(i) 98.8 n1(i)=n2(i) 

SVM 48.1 0.32 77.8 1.00 95.1 1.00 98.8 1.00 

CS2_radbas 48.1 0.18 77.8 1.00 95.1 n1(i)=n2(i) 98.8 n1(i)=n2(i) 

FF1_tansig 48.1 0.18 77.8 1.00 95.1 1.00 100.0 0.32 

CS1_radbas 48.1 0.08 75.3 0.41 95.1 n1(i)=n2(i) 98.8 n1(i)=n2(i) 

CS2_tansig 46.9 0.05 77.8 1.00 96.3 0.32 98.8 n1(i)=n2(i) 

FF1_logsig 46.9 0.10 76.5 0.65 93.8 0.32 98.8 1.00 

FF2_radbas 46.9 0.05 74.1 0.08 93.8 0.56 98.8 n1(i)=n2(i) 

CS2_logsig 45.6 <.05 77.8 1.00 93.8 0.32 97.5 0.32 

CS1_tansig 45.6 <.05 76.5 0.56 95.1 n1(i)=n2(i) 98.8 n1(i)=n2(i) 

FF2_tansig 45.6 <.05 76.5 0.56 95.1 1.00 100.0 0.32 

FF2_logsig 45.6 <.05 72.8 0.10 93.8 0.56 97.5 0.32 

SR 44.4 <.05 79.0 0.65 95.1 n1(i)=n2(i) 100.0 0.32 

FF3_radbas 43.2 0.05 70.4 0.06 93.8 0.65 97.5 0.32 

CS1_purelin 39.5 <.05 71.6 0.10 93.8 0.65 96.3 0.16 

FF1_purelin 38.2 <.05 71.6 0.10 93.8 0.65 96.3 0.16 

FF2_purelin 38.2 <.05 70.4 0.06 90.1 0.16 96.3 0.16 

CS2_purelin 37.0 <.05 70.4 0.06 90.1 0.16 96.3 0.16 

BRTE 27.1 <.05 55.6 <.001 81.5 <.001 88.9 <.05 

BRDT 19.7 <.0001 49.4 <.001 71.6 <.0001 85.2 <.05 

Mutual P < .0001 < .0001 < .0001 < .0001 

Table 133. Mutual evaluation of the PE results in the SHORT axial length group. Equation n1(i)=n2(i) means 
that the compared vectors of prediction results were equal for all data entries. 
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4.11.3. MEDIUM axial length subgroup 
Mutual comparison (Table 134.) of the MEDIUM axial length subgroup using all evaluated 

models proved that there is not the significantly same proportion of success between the 

models in the ±0.25 D, ±0.50 D, ±0.75 D and ±1.00 D PE groups at the level of P<.0001. 

The best model in ±0.25 D PE group was CS2_radbas. Therefore, every model for 

each PE group was statistically compared to this model. 

In the ±0.25 D PE group, the CS2_tansig, SVM, CS1_logsig, GPR, FF1_logsig, 

CS1_radbas, FF2_logsig, FF2_tansig, FF1_radbas, FF2_radbas, CS1_tansig, FF1_tansig, 

FF3_radbas, CS2_logsig, BRTE and SR models were insignificantly worse. The CS2_purelin, 

CS1_purelin, FF2_purelin, FF1_purelin and BRDT models were significantly worse at the 

level of P<.05. 

In the ±0.50 D PE group, the SVM, CS1_radbas, CS2_tansig, FF2_logsig, FF1_logsig, 

FF2_tansig, CS1_tansig, SR, GPR, FF2_radbas and FF1_tansig models were insignificantly 

better and the CS1_logsig, FF3_radbas, FF1_radbas, CS2_logsig, CS2_purelin, CS1_purelin, 

FF1_purelin and BRTE models performed insignificantly worse or same. The BRDT model 

was significantly worse at the level of P<.0001.  

In the ±0.75 D PE group, the FF3_radbas, FF2_tansig and CS1_logsig models 

performed insignificantly better, and the FF1_radbas model performed the same. The 

FF2_logsig, CS1_tansig, SR, FF2_radbas, FF1_tansig, CS2_logsig, FF1_purelin, SVM, 

CS1_radbas, FF1_logsig, GPR, FF2_purelin, CS2_purelin, CS2_tansig and CS1_purelin 

models performed insignificantly worse. The BRTE and BRDT models performed 

significantly worse at the level of P<.05 and P<.0001, respectively. 

In the ±1.00 D PE group, the FF1_purelin, FF2_purelin, CS2_purelin, CS1_purelin, 

FF3_radbas and FF1_radbas models performed insignificantly better. The FF2_tansig, 

CS1_logsig, CS2_radbas, FF2_logsig, CS1_tansig, FF2_radbas, CS2_logsig, SVM, 

CS1_radbas, FF1_logsig and CS2_tansig models performed the same. The GPR, SR, 

FF1_tansig and BRTE models performed insignificantly worse. The BRDT model performed 

significantly worse at the level of P<.001.  
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Model 

PE 

±0.25 D ±0.50 D ±0.75 D ±1.00 D 

[%] P value [%] P value [%] P value [%] P value 

CS2_radbas 50.4 n1(i)=n2(i) 82.9 n1(i)=n2(i) 93.8 n1(i)=n2(i) 97.5 n1(i)=n2(i) 

CS2_tansig 50.0 0.74 83.5 0.44 93.1 0.18 97.5 1.00 

SVM 49.6 0.57 84.2 0.16 93.3 0.41 97.5 1.00 

CS1_logsig 49.4 0.37 82.9 1.00 94.0 0.56 97.5 1.00 

GPR 49.2 0.30 83.1 0.78 93.3 0.41 97.3 0.32 

FF1_logsig 49.2 0.33 83.3 0.62 93.3 0.32 97.5 1.00 

CS1_radbas 49.0 0.22 84.0 0.13 93.3 0.41 97.5 1.00 

FF2_logsig 49.0 0.27 83.5 0.44 93.5 0.71 97.5 1.00 

FF2_tansig 48.8 0.17 83.3 0.59 94.0 0.71 97.5 1.00 

FF1_radbas 48.5 0.17 82.7 0.80 93.8 1.00 97.7 0.32 

FF2_radbas 48.5 0.14 83.1 0.78 93.5 0.65 97.5 1.00 

CS1_tansig 48.3 0.08 83.3 0.53 93.5 0.65 97.5 1.00 

FF1_tansig 48.3 0.13 83.1 0.81 93.5 0.65 97.1 0.16 

FF3_radbas 48.3 0.21 82.9 1.00 94.4 0.37 97.9 0.32 

CS2_logsig 48.1 0.05 82.5 0.53 93.5 0.56 97.5 1.00 

BRTE 47.7 0.22 80.8 0.14 91.5 <.05 97.1 0.48 

SR 47.7 0.05 83.3 0.59 93.5 0.65 97.1 0.16 

CS2_purelin 46.9 <.05 82.5 0.71 93.3 0.41 98.1 0.08 

CS1_purelin 46.5 <.05 82.5 0.72 93.1 0.26 98.1 0.08 

FF2_purelin 46.5 <.05 83.1 0.85 93.3 0.41 98.1 0.08 

FF1_purelin 46.3 <.05 82.5 0.72 93.5 0.71 98.1 0.08 

BRDT 41.0 <.05 69.4 <.0001 86.9 <.0001 93.8 <.001 

Mutual P < .0001 < .0001 < .0001 < .0001 

Table 134. Mutual evaluation of the PE results in the MEDIUM axial length group. Equation n1(i)=n2(i) 
means that the compared vectors of prediction results were equal for all data entries. 
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4.11.4. LONG axial length subgroup 
Mutual comparison (Table 135.) of the LONG axial length subgroup using all evaluated 

models proved that there is not the significantly same proportion of success between the 

models in ±0.25 D, ±0.50 D, ±0.75 D and ±1.00 D PE groups at the level of P<.0001. 

The best models in the ±0.25 D PE group were CS2_radbas and CS1_radbas. Since 

CS2_radbas was better in two other PE groups (±0.75 D and ±1.00 D), we deemed this 

model to be the best. Therefore, every model for each PE group was statistically compared 

to this model. 

In the ±0.25 D PE group, the CS1_radbas model performed the same. The 

CS1_purelin, CS2_purelin, FF1_radbas, FF2_purelin, FF1_purelin, CS1_tansig, SVM, 

FF1_logsig, FF2_logsig, CS1_logsig, BRTE, FF2_radbas, FF2_tansig, FF3_radbas, 

FF1_tansig, CS2_tansig, CS2_logsig and GPR models were insignificantly worse. The SR and 

BRDT models were significantly worse at the level of P<.05. 

In the ±0.50 D PE group, the SVM, GPR, FF1_radbas, CS1_tansig, FF1_logsig, 

FF2_logsig, FF2_radbas, FF2_tansig, FF1_tansig, CS2_tansig, SR, CS1_radbas and 

CS1_logsig models were insignificantly better and BRTE and FF3_radbas performed 

insignificantly worse. The CS2_purelin, FF2_purelin, FF1_purelin, CS1_purelin and BRDT 

models performed significantly worse at the level of P<.05.  

In the ±0.75 D PE group, the SR model performed insignificantly better, and the 

GPR, CS1_tansig models performed the same. The SVM, FF1_radbas, FF1_logsig, 

FF2_logsig, FF2_radbas, FF2_tansig, FF1_tansig, CS2_tansig, CS1_radbas, CS1_logsig, 

CS2_logsig, CS2_purelin, FF2_purelin, FF1_purelin, CS1_purelin, BRTE and FF3_radbas 

models performed insignificantly worse. The BRDT model performed significantly worse 

at the level of P<.001. 

In the ±1.00 D PE group, the FF1_logsig and FF3_radbas models performed 

insignificantly better. The GPR, CS1_tansig, CS2_radbas, FF2_logsig, FF2_radbas, 

FF2_tansig, FF1_tansig, CS2_purelin, FF2_purelin, FF1_purelin, CS1_purelin and BRTE 

models performed the same. The SR, CS2_tansig, CS1_radbas, CS1_logsig, CS2_logsig, 

SVM and FF1_radbas models performed insignificantly worse. The BRDT model 

performed significantly worse at the level of P<.05. 
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Model 

PE 

±0.25 D ±0.50 D ±0.75 D ±1.00 D 

[%] P value [%] P value [%] P value [%] P value 

CS2_radbas 48.9 n1(i)=n2(i) 80.9 n1(i)=n2(i) 94.7 n1(i)=n2(i) 97.9 n1(i)=n2(i) 

CS1_radbas 48.9 1.00 83.0 0.16 93.6 0.32 96.8 0.32 

CS1_purelin 47.9 0.83 72.3 <.05 92.6 0.41 97.9 1.00 

CS2_purelin 47.9 0.82 74.5 <.05 92.6 0.41 97.9 1.00 

FF1_radbas 47.9 0.74 84.0 0.18 93.6 0.32 95.7 0.16 

FF2_purelin 46.8 0.65 74.5 <.05 92.6 0.41 97.9 1.00 

FF1_purelin 46.8 0.65 73.4 <.05 92.6 0.41 97.9 1.00 

CS1_tansig 46.8 0.53 84.0 0.08 94.7 1.00 97.9 1.00 

SVM 45.7 0.47 85.1 0.10 93.6 0.32 95.7 0.16 

FF1_logsig 45.7 0.26 84.0 0.08 93.6 0.32 98.9 0.32 

FF2_logsig 45.7 0.26 84.0 0.08 93.6 0.32 97.9 n1(i)=n2(i) 

CS1_logsig 45.7 0.26 83.0 0.16 93.6 0.32 96.8 0.32 

BRTE 44.7 0.50 76.6 0.35 91.5 0.26 97.9 1.00 

FF2_radbas 44.7 0.29 84.0 0.26 93.6 0.32 97.9 n1(i)=n2(i) 

FF2_tansig 44.7 0.21 84.0 0.08 93.6 0.32 97.9 n1(i)=n2(i) 

FF3_radbas 43.6 0.30 75.5 0.13 91.5 0.08 98.9 0.32 

FF1_tansig 43.6 0.10 84.0 0.18 93.6 0.32 97.9 1.00 

CS2_tansig 43.6 0.10 84.0 0.18 93.6 0.32 96.8 0.32 

CS2_logsig 43.6 0.06 81.9 0.56 93.6 0.32 96.8 0.32 

GPR 42.6 0.11 85.1 0.05 94.7 1.00 97.9 1.00 

SR 40.4 <.05 84.0 0.08 95.7 0.56 96.8 0.32 

BRDT 33.0 <.05 67.0 <.05 79.8 <.001 89.4 <.05 

Mutual P < .0001 < .0001 < .0001 < .0001 

Table 135. Mutual evaluation of the PE results in the LONG axial length group. Equation n1(i)=n2(i) means 
that the compared vectors of prediction results were equal for all data entries. 
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5. PROSPECTIVE EVALUATION 

The prospective evaluation was designed with regard to safety as a single-surgeon and 

single-clinic and was performed on a set of 45 eyes (21 right eyes, 24 left eyes) of 27 

patients (13 male, 14 female) between 01/2019 and 03/2019. Patients were included in 

the prospective evaluation group and met the same criteria as described in section 3.1 for 

retrospective evaluation, but a different calculation method was used, namely the 

CS2_radbas model.  

The subjective spherical equivalent was evaluated 68.29 ± 12.69 (46 - 94) days 

(mean ± standard deviation (minimum - maximum)) after the surgery. The prospective 

dataset population characteristics are summarized in Table 136, and the results of the 

prospective evaluation are presented in Table 137. 
 

Mean Median Std Min Max PSW PDP 

Age [years] 58.80 60 7.14 40.00 69.00 0.0232 0.0460 

K [D] 43.95 44.24 1.43 40.86 46.69 0.2568 0.4172 

ACD [mm] 3.14 3.18 0.34 2.33 3.86 0.9447 0.9779 

AL [mm] 22.84 22.9 0.97 20.27 24.59 0.4620 0.3612 

Rxpre [D] 1.73 1.75 1.37 -1.63 5.88 0.0046 0.0379 

IOLImplanted [D] 22.70 22.00 2.98 18.00 30.00 0.0011 0.0264 
Table 136. Prospective set population characteristics 

 

PE [D] 
Prospective results 

Rxpost-Sbj 

ME 0.01 

MAE 0.18 

MedAE 0.13 

Std 0.29 

Min -1.00 

Max 0.63 

Eyes within PE [%]  

±0.25 77.8 

±0.50 93.3 

±0.75 97.8 

±1.00 100.0 
Table 137. Results of the prospective testing 

Prospective results are discussed in the Discussion and Conclusions chapter. 
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6. DISCUSSION AND CONCLUSIONS 

This paper deals with intraocular lens (IOL) calculations in cataract surgery or refractive 

lens exchange surgery. The optical power of the lens is undoubtedly very important for a 

patient's postoperative vision. Based on the background provided in this paper’s 

introduction, and the results documented from state-of-the-art research, one could say 

that the accuracy of the formulas in the present literature achieved ±0.5 D from the 

intended target refraction in only 60-80% of eyes [34]. Their accuracy decreases even 

further for eyes with non-standard biometric features such as eyes with short or long axial 

lengths [59, 64]. In the second chapter of the work, the goals of the thesis are defined.  

The third chapter deals with the methodology of selecting and optimizing a 

dataset for machine learning. Selecting the appropriate data is a key process whose 

correct integration ensures that reliable models from data can be obtained. Incorrect or 

noisy data used in machine learning can lead to an undesirable training process and 

reduced prediction accuracy [126]. Therefore, the focus was on the exclusion of all 

preoperative, surgery and postoperative data that could cause the aforementioned. One 

of the important points of this chapter is also feature selection. The reason for the 

significantly worse results of the CR group could be the incorrect adaptation of the 

calculation method to the clinical workflow and is its simplicity, where only AL and K are 

used for the IOL power calculation (the SRK/T formula is used). In order to increase 

calculation accuracy, modern calculation methods take into account more circumstances, 

which could affect the refractive predictability of the surgery [3, 26, 127]. Input 

parameters used in our models are standard parameters acquired using regular patient 

examination prior to the cataract surgery. Thus, it does not introduce any additional 

requirement for data acquisition. Table 138 describes the input parameters used by the 

contemporary formulas Hill-RBF, HofferQ, Holladay 1, Holladay 2, SRK/T, Haigis and Olsen 

[127]. Our model input parameters are K (Mean Keratometry), ACD (Anterior Chamber 

Depth), AL (Axial Length), Age and Rxpre (Preoperative distance objective refraction), which 

are all the possible calculation variables which can be extracted from the electronic health 

record (EHR) during the data mining process.  

 Hill-RBF HofferQ Holladay 1 Holladay 2 SRK/T Haigis Olsen 

K x x x x x x x 

AL x x x x x x x 

ACD x   x  x x 

LT    x   x 

WTW x   x   x 

Age    x    

Rxpre    x    
Table 138. Overview of the input parameters used by the contemporary formulas.  

The IOL Master 500 used in the biometry examination to gather the anatomical 

data is not able to measure lens-thickness (LT). However, the influence on the precision 

could probably be neglected as it is said to be the second least important calculation 
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factor [128]. On the other hand, it can have a greater influence on the IOL calculation than 

K [129]. One of the other ways to improve the accuracy of calculations would be to find a 

way to extract information from incomplete white-to-white (WTW) measurements as this 

value is considered the third most important in predicting postoperative effective lens 

position (ELP) [130]. It is possible to find a way to handle missing values in datasets in 

order to maximize information gain [131].  

 Poor CR group results could also be because of the non-optimized constant of the 

implanted IOL. This is seen in the mean error of the CR group, which has a range between 

-0.37 to -0.53 D among all axial length subsets. Our method of IOLIdeal calculation optimizes 

the mean error of prediction to zero. This mechanism of IOLIdeal calculation can thus 

influence the mean error based on the desired refraction.   

The proposed method’s underlying concept is to train the models on the ideal 

results of surgeries. That is, training on measurement data in relation to IOL would not 

induce any residual post-operative refraction error in the patient. To achieve this goal, a 

method for calculating the optimal IOL for a given eye based on the measured results has 

been proposed. At the end of the third chapter, machine learning models, algorithms and 

methods used in their training, and methodology of evaluation and comparison of the 

results are described. Furthermore, the method of selecting the best model that is 

subjected to prospective testing is presented. 

In order to avoid distortion of statistical analysis by correlated data, it is 

recommended that only one eye per patient be included in the analyses [132]. Our 

Verification set contained less than 10% of the data that came from both eyes of the 

patients. This means that the intra-class correlation factor will be less than 0.1 in the worst 

possible scenario (between eyes correlation equals to 1 – for every applicable patient in 

the Verification set) indicating extremely poor correlation [133, 134]. We have thus 

concluded that it is safe to use conventional methods of statistical analysis while including 

maximum number of eyes in our datasets. 

In the fourth chapter of the thesis, the parameters of settings and the results of 

testing of all examined artificial neural networks (ANNs) and machine learning models, 

which are mutually compared at the end of this chapter, are reported. The accuracy of 

the models is evaluated based on the percentage of eyes with prediction errors between 

±0.25 D, as it represents the most accurate PE group for evaluating refractive 

predictability. In the ideal case, we want to have 100% of all cases in this group, which 

would yield an extremely accurate prediction model and result in a small percentage of 

subsequent refractive corrections. This PE group also has the greatest variability of results 

across all axial length groups. In other PE groups, the degree of variability of the results 

decreases with increasing diopters, and it is no exception that, eg., in ±1.00 D PE group 

more than half of the models have exactly the same results (SHORT and LONG axial length 

subgroups). Furthermore, for the sake of simplicity through highlights, the results of the 

comparisons are presented. 
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For the ALL axial length subset: 

- CS2_radbas (best model) was the model with the highest accuracy in the 

±0.25 D PE group and was significantly better than CR 

- SVM had the highest accuracy among non-ANN models and was insignificantly 

worse than CS2_radbas and significantly better than CR 

- All ANN models with the linear transfer function had significantly worse 

accuracy compared to the best model in this category 

For the SHORT axial length subset: 

- FF1_radbas (best model) was the model with the highest accuracy in the 

±0.25 D PE group, but this was not significant compared to CR 

- SVM had the highest accuracy among non-ANN models and was insignificantly 

worse than FF1_radbas and insignificantly better than CR 

- All ANN models with the linear transfer function had significantly worse 

accuracy compared to the best model in this category 

- The BRTE model was significantly worse compared to CR 

- The BRDT model was significantly worse than CR with more than half of the 

accuracy 

For the MEDIUM axial length subset: 

- CS2_radbas (best model) was the model with the highest accuracy in the 

±0.25 D PE group and was significantly better compared to CR 

- SVM had the highest accuracy among non-ANN models and was insignificantly 

worse than CS2_radbas and significantly better than CR 

- All evaluated models were significantly better than CR 

- All ANN models with the linear transfer function had significantly worse 

accuracy compared to the best model in this category 

For the LONG axial length subset: 

- CS2_radbas and CS1_radbas (best models) were the models with the highest 

accuracy in the ±0.25 D PE group 

- SVM is the only non-ANN model with significantly better performance 

compared to CR; all other non-ANN machine learning algorithms were 

insignificantly better 

- Cascade-Forward ANN seems to be more suitable than Feed-Forward 

It follows from the above that Cascade-Forward MLNN in combination with the radial 

basis function in the hidden layer was best placed among the ANN based algorithms. To 

the contrary, the worst algorithm, among ANN based algorithms, was the ANN with a 

linear function, which is the effect we expected because the nonlinear space, which is 
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defined by the specifics of the patient's eye and the results of the operation, is inherently 

nonlinear and thus approximation by linear functions cannot provide sufficient precision. 

Among the non-ANN algorithms, SVMs were the best, and the BRDTs, which are known 

for their oversensitivity to irrelevant attributes and noise [135], were the worst. 

An insignificant improvement occurred mostly for the SHORT and LONG axial 

length subsets. As such, and as previously mentioned, calculations for eyes with a short 

axial length are problematic due to the more complex ELP prediction and because of the 

higher probability of a steep cornea and a shallow ACD [136] and also in eyes with LONG 

axial length due to flatter corneas, thinner crystalline lenses and deeper ACD [137]. 

Compared to CR, most models in all AL subgroups had smaller standard deviations, which 

leads to higher certainty of the calculation method [65]. Compared to CR, all models 

predicted almost identically slightly larger maximum (Max) error. This appeared mostly 

for the MEDIUM and LONG axial length group. The most likely explanation for this result 

points to the residual errors in the input data since it occurred always in the same samples. 

As the final goal of this work, a prospective evaluation was performed. Compared 

to the clinical results reached by the calculation method used in the clinical workflow, the 

CS2_radbas model rapidly improved clinical refractive results of cataract surgeries for the 

±0.25 D, ±0.50 D, ±0.75 D and ±1.00 D PE groups by 28.5%, 18.2%, 10.0% and 4.6%, 

respectively. 100% of the eyes were within ±1.00 D of PE. Results of prospective testing 

are even better compared to CS2_radbas retrospective testing. This is most likely due to 

the fact that prospective testing was designed, for safety reasons, as single-clinic and 

single-surgeon. It is likely that less homogeneous measurement conditions, clinical 

workflow, patient selection and surgical techniques will cause a slight reduction in 

accuracy, but we do not expect them to exceed the accuracy achieved by retrospective 

testing. 

Compared to the results of the contemporary formulas in eyes with all axial 

lengths which were gained from the literature (Table 139.), where the Barrett Universal II 

formula is often presented as the most accurate calculation formula [31, 32, 35, 65, 138], 

the accuracy achieved by the CS2_radbas model in our prospective testing is considerably 

better for the ±0.25 D, ±0.50 D and ±0.75 D PE groups by 16.7%, 13.3% and 3.3%, 

respectively. All eyes were within ±1.00 D of PE. In this case, subjective refraction is 

compared, which is more often presented in the literature. However, although this is a 

very promising result, in order to objectively compare the results, it would be necessary 

to evaluate all methods on the same datasets and not use the source of the outcomes in 

the literature. 
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Table 139. Prediction error comparison (MaxAErr – Maximal absolute error) 

There is a discussion on the subject of correlation of the objective and subjective 

refraction in contemporary literature. There are opinions presenting which state that the 

rate of agreement between objective and subjective refraction depends on the type of 

multifocal IOL used, and in specific cases does not correlate [139] and that it does not 

statistically differ for other IOLs [140, 141]. 

For our purposes, it was considered more appropriate to use objective refraction 

measurements since they were always obtained using the same measurement method by 

the same measuring device. In the measurement of subjective refraction, we expected a 

larger factor of subjective error since the data was acquired by many different clinicians 

at numerous facilities. The correctness of this reasoning is confirmed by the fact that the 

prospective results of subjective refraction are even better than the objective results, and 

it can thus be said that, in our case, objective measurements of refraction are more 

appropriate for machine learning applications. 

Our method does not use A constants like typical formulas; all models are 

designed as lens-specific, so the ELP prediction is coded directly into the model’s internal 

structures. The machine learning model design for another IOL would require an entirely 

new Data Preparation, Model Design and Training and Evaluation process. However, due 

to the fact that there are many small dataset machine learning strategies, it would not be 

necessary to search for the same amount of training data [142, 143]. Another limitation 

could be the unknown training accuracy outside the input variables training range. The 

solution to this problem is to train the network on a larger data sample so that the 

estimation error for extreme eye cases is minimized as much as possible. 

Our research indicated that ANN and other machine learning algorithms 

evaluated in this work have a strong potential for improving clinical IOL calculations. 

Greater accuracy of IOL calculations reduces the risk of subsequent reoperation or 

potential refractive laser corrections and the associated risk of complications and 

increases a patient’s comfort. 

PE [D] Literature CRSbj 
Prospective results 

Rxpost-Sbj 

ME -0.19 – 0.05 -0.33 0.01 

MAE 0.29 – 0.43 0.38 0.18 

MedAE 0.20 – 0.35 0.38 0.13 

Std 0.31 – 0.51 0.40 0.29 

MaxAErr 1.30 – 2.96 1.50 1.00 

Eyes within PE [%]    

±0.25 37.9 – 61.3 49.3 77.8 

±0.50 66.6 – 80.0 75.1 93.3 

±0.75 92.7 – 94.5  87.8 97.8 

±1.00 92.0 – 99.9 95.4 100.0 
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The advantage in using ANN for IOL power determination is that they are able to 

learn and extract input-to-output data relations just from examples, which in our 

application, is from the patient examinations and surgery results. The training set can be 

created directly from the data selected in a clinical practice database, and the calculation 

system can be made to meet specific surgical techniques and conditions.  

Most of the evaluated models showed they are able to effectively find input-to-

output relations, accurately estimate the optical power of the IOL and thus provide a 

potentially new way of calculating optical power for the cataract and lens replacement 

ophthalmic surgeries. 

The clinical implication of this work may mean greater refractive predictability for 

lens replacement surgery [34] and therefore, a smaller number of subsequent re-

operations, which ultimately reduces the risk of potential complications.  
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