
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Radio Engineering

Positioning and Data Fusion Algorithms
for Radionavigation Systems

Doctoral Thesis

Václav Navrátil

Prague, June 2019

Ph.D. Programme: P2612 – Electrical Engineering and Information Technology
Branch of Study: 2601V010 – Radioelectronics

Supervisor: prof. Ing. František Vejražka, CSc.
Supervisor-Specialist: doc. Ing. Josef Dobeš, CSc.



Copyright notices:
This work is protected by the Copyright Act. Extracts, copies and transcripts of the thesis
are allowed for personal use only and at one’s own expense. The use of thesis should be in
compliance with the Copyright Act† and the citation ethics.

† http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf



Abstract
The doctoral thesis reviews various possibilities of radio signal exploitation for posi-
tioning purpose and presents the respective theoretical accuracy bounds as well as their
inherent limitations and drawbacks. Applications of the basic principles are shown on
the real systems, such as GNSS or UWB localization systems.

The positioning is always performed on the basis of several observables; such prob-
lems are typically nonlinear. Within the thesis, several iterative algorithms that are
able to solve the “navigation equations” are provided and applied on real problems.
Methods of integration of several radionavigation systems and possibly other systems
(such as inertial navigation) are described as well. The thesis is focused on the Kalman
filtering approaches, in particular.

The author’s innovative contribution can be seen mainly in development of a pre-
cise wireless synchronization algorithm for UWB localization networks, investigation
of stochastic properties for the asymmetric double-sided two-way ranging estimator,
development of a soft-constrained error-state Kalman filter for GNSS/UWB/IMU in-
tegrated system, and evaluation of the performance bound of antenna-pattern-based
angle-of-arrival estimator under Rician channel conditions.

Keywords
radionavigation, integrated navigation, Kalman filtering, GNSS, UWB

i





Abstrakt
Tato disertační práce shrnuje několik způsobů využití radiových signálů pro účely určo-
vání polohy, popisuje jejich teoretické meze přesnosti, přirozená omezení a nedostatky.
Aplikace těchto základních principů jsou demonstrovány na reálných systémech jako
např. GNSS nebo UWB lokalizačních systémech.

K určování polohy je vždy využito měřených parametrů radiových signálů, jejichž
vztah k samotné informaci o poloze je obvykle nelineární. V rámci práce je popsáno
několik iterativních algoritmů, které jsou vhodné k řešení nelineárních soustav „navi-
gačních rovnic.“ Některé z algoritmů jsou aplikovány na reálné problémy. Jsou také
popsány metody integrace několika radionavigačních systémů, případně dalších sys-
témů (např. inerciální navigace). Práce se zaměřuje zejména na metody Kálmánovy
filtrace.

Inovativní přínos autora lze spatřovat zejména ve vývoji algoritmu pro přesnou
synchronizaci UWB lokalizačních sítí, odvození stochastických parametrů asymetric-
kého dvojstranného obousměrného odhadu vzdálenosti (ADS-TWR), vývoje chybového
Kálmánova filtru s měkkými omezujícími podmínkami pro integrovaný GNSS/UWB/
IMU systém a odvození dolní meze přesnosti odhadu směru příchodu signálu založe-
ného na tvaru směrové charakteristiky antény.

Klíčová slova
radionavigace, integrovaná navigace, Kálmánova filtrace, GNSS, UWB
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1. Introduction
Before the aims of the thesis are presented, let us take a closer look at how the word
navigation is understood today. This will provide a justification of the work that will
be described within this thesis.

Firstly, the etymology of navigation is investigated. In the original sense the verb to
navigate means to sail, since it comes from a Latin verb navigare that is a composite
of noun navis – ship and verb agere – to drive. Clearly, the meaning of this world
has changed throughout the centuries. Navigation is no longer limited to maritime
voyage, but it rather describes an effort to guide someone or something from point A
to point B.

The navigation (in the modern sense) is quite a complex set of problems. Therefore
it is practical to divide it into three inter-connected tasks:
Positioning (Sensing) – The first task is to determine the current position of the user

or the platform. In various applications velocity and attitude and precise time are
also determined. Moreover, other parameters are useful to be sensed, for instance
wind components for aircraft.

Route Planning – During this phase a route to the destination is prepared, for certain
applications the destination is chosen at this point. The route can be planned with
respect to various aspects, e.g. timeliness, economy, distance, risk, etc. A map and
other datasets are required to plan the route effectively.

Steering (Actuation) – Naturally, the last point is affecting the movement of the
navigated platform in order to follow the planned trajectory with certain parameters.
This task is still left to the user (driver, pilot, etc.) commonly.
These tasks are to be iterated in a loop-like manner to successfully navigate the

platform. As an example, we may take an aircraft flying towards a beacon using
automatic direction finder (ADF) under crosswind conditions. From the ADF, the
pilot knows the azimuth towards a non-directional beacon (NDB) and the aircraft’s
attitude – this is the sensing phase. Then, the direct path to the NDB is chosen,
which is a trivial example of route planning. Consequently, the pilot uses the yoke
and pedals to actuate the control surfaces to steer the aircraft heading to match the
direction towards the NDB. Nonetheless, the aircraft is pushed sideways by the wind
and therefore, the azimuth towards changes as can be seen in the Fig. 1.1a. The
pilot has to react to this change, otherwise the aircraft would miss the beacon; the
navigational sensing-planning-actuation loop has to be closed.

Intuitively, the success of the navigation is dependent on the available data. For
instance, when airspeed and crosswind component are known, it is possible to mitigate
the wind effect. The heading is corrected by a proper crab angle to fly against the
wind in order to stay on the linear trajectory, see Fig. 1.1b.

1



1. Introduction

(a) (b)

Figure 1.1.: Aircraft navigated towards a beacon.

This thesis does not target the navigation in its entirety, but instead it focuses on
one of the three inherent tasks – the positioning. In particular, the thesis aims on
the radio-based positioning. Various radionavigation systems have been developed
since the discovery of radio waves in the late 19th century. Of course, many of the
systems are obsolete and replaced by modern systems, but the physical principles used
for position determination remain the same. Even though the modern systems use
advanced signals and smart methods of their processing, neither of them can provide a
reliable and ubiquitous service in a global scale. Therefore, part of the thesis is devoted
to methods, which can be used for fusion of multiple radionavigation or alternative
systems.

Thesis organization
The text of the thesis targets the positioning from a rather theoretical standpoint; the
practical application of the described principles is provided in the appendices.

Chapter 2 begins with the review of the basic principles of the radionavigation,
their theoretical performance bounds (Cramer-Rao lower bound, CRLB) are presented.
For some of the methods the bounds were already available in literature (e.g. [1, 2]),
however, in certain cases the CRLB was derived by the author.

It is worth pointing out that CRLB for the antenna-pattern based angle of arrival
measurement (AoA, Sec. 2.1.4–I) was evaluated not only for a simple log-normal fading
channel (which is commonly used) model, but for the Rician channel model as well. A
prior application of the latter of the models to the signal-power based AoA accuracy
bound evaluation is not known to the author. Such model is able to provide the results
for the signals that are weak and thus near the noise floor, power-wise.

2



A very detailed discussion is devoted to the signal-delay based localization (Sec-
tion 2.1.2), as this is currently the most widely used principle of obtaining the position
estimates. It is used extensively in the author’s work as well.

One of the intentions was to show and exploit the link between the particular types
of measurements – ToA (time of arrival), TDoA (time difference of arrival) and TWR
(two-way ranging). The three methods can be interpreted as different approaches of
dealing with the nuisance parameters – the clock offsets. In the ToA and TDoA cases
the localizing infrastructure is synchronized, therefore only the infrastructure-to-user
clock offset has to be dealt with. It can be eliminated by means of measurement dif-
ferentiation (TDoA), when the time information is not relevant, or estimated from
multiple measurements (ToA); in both cases, unidirectional communication is suffi-
cient.

The TWR is dealing with a non-synchronized pairs of nodes, thus it has to elimi-
nate (or estimate) the clock offset in each measurement pair by means of bi-directional
timestamped communication. The performance of several methods is investigated,
both in terms of possible accuracy (CRLB) and immunity to clock drift in the mea-
surement nodes. Particularly, a novel Asymmetric Double-Sided TWR (ADS-TWR)
proposed in [3] is thoroughly examined. The method promises excellent immunity to
clock drift, nonetheless, range estimate may be biased due to its nonlinear nature, yet
the estimator variance has not been assessed theoretically. In order to avoid break-
ing the flow of the thesis text, Appendix A is designated for the detailed ADS-TWR
analysis.1

The connection of the delay-based positioning to the Doppler-based position and
velocity estimation is shown and certain limitations are presented. In Section 2.1.4–II
the results of the delay-based methods are further extended to evaluate the accuracy
of AoA estimation by means of antenna arrays. It is worth remarking that the dif-
ference between narrowband (signal phase) and wideband (signal delay) approaches is
highlighted.

The rest of Chapter 2 briefly introduces a couple of different navigation systems, the
respective underlying radio-positioning principles (which were already described in the
beginning of the chapter) are pointed out. The substantial parts are devoted to the
global navigation satellite systems GNSS (using ToA method), which are inarguably
the most extensively used radio-positioning systems of today. The section reviews
various methods of GNSS positioning, their generally anticipated performances are
compared. More importantly, the fundamental limits, such as low-power of the received
signals and the requirement of direct lines of sight between receiver and satellites, is
pointed out.

The section concerning the ultra-wide band UWB positioning systems compares the
application of TWR and TDoA positioning methods. It is shown in the thesis that
UWB systems are able to provide outstanding accuracy due to their signal character-
istics regardless the method used. Analysis of both, random and systematic, errors in
the UWB localization is provided within Section 2.3. The methods of their suppression
or mitigation are included as well.

1The results of the ADS-TWR bias and variance analysis are to be published as [4].
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1. Introduction

The later approach is able to provide substantially more frequent position fixes,
however, it requires precise synchronization of the UWB infrastructure in order to
be able to perform TDoA measurements. A novel algorithm for synchronization of
the UWB infrastructure nodes, which was developed by the author, is described in
detail within Appendix C.1.2 Additionally, the solution of a set of TDoA equations is
presented in Appendix B.2.

At the end of the second chapter, the exploitation of Signals of Opportunity (SoO)
for navigation is mentioned.3 The TDoA approach is applicable when utilizing signals
of a single frequency network of DVB-T transmitters. The application of iterative
methods for solving this particular TDoA problem is provided in Appendix B.1.

The purpose of Chapter 3 is to provide a basic knowledge about processing of inertial
measurements in order to obtain position, velocity and attitude estimates. The back-
ground from this chapter is vastly exploited within Appendix D, where an experimental
integrated localization system for an UXO mapping platform is described. Briefly, the
effects of common inertial sensor errors are shown on the results of a simulation.

Chapter 4 introduces in its first part several iterative methods suitable for solving
navigation problems in a least-squares manner. A pseudomeasurement approach of soft
equality constraint inclusion into the least-squares solver was described in Section 4.1.7.
The practical application is demonstrated in the appendices. The Newton-Raphson
method was used for solving the TDoA problem in DVB-T based positioning (Ap-
pendix B.1); application of constrained Levenberg-Marquardt algorithm is available
in Appendix B.2, where the set of TDoA equations for an UWB localizing system is
solved.

The second part of Chapter 4 focuses on Kalman filters and their use in state es-
timation and fusion of multiple navigation systems into an integrated system. The
basic equations for linear, extended and unscented Kalman filters are presented and
commented in order to provide the reader with useful clues for application of KFs in
the navigation-related applications. An effort is made to clearly state the limitations
of the various approaches. The differences in handling of the nonlinear models by the
EKF and UKF are shown. Two examples of a linear Kalman filters are provided in Ap-
pendix C; the first use is the estimation of the clock state of UWB infrastructure node,
which is the critical part of the chained wireless synchronization algorithm developed
by the author.

Section 4.2.4 introduces a pseudomeasurement approach of incorporation soft equal-
ity constraints into the Kalman filters. The advantage of this approach can be seen
in the ease of implementation and modifications; the state constraints may be defined
in a rather straightforward way. The application of such soft constraints applied on a
EKF is available in Appendix D.

The “linear” introduction of the thesis structure does not seem sufficient, because
it does not express the interconnections between the sections from different chapters.
Therefore, a mindmap visualization of the important sections of the thesis is provided
as Figure 1.2.

2The algorithm and its results were already published in author’s work [5, 6].
3It is worth remarking that the methods of SoO processing are similar to passive radar signal pro-

cessing in many aspects.
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2. Radionavigation Systems

This chapter provides an overview of the systems for terrestrial radionavigation. Cer-
tainly, it is not an exhaustive list and description of all the principles and systems,
since this would be out of the scope of the thesis; hence, this chapter is intended to
serve as a guide that briefly summarizes the most important aspects of the different
approaches to radionavigation and also the particular systems.

In the first section we will focus on the principles, the latter sections provide insight
into the particular systems, or their groups that exploit some of the principles men-
tioned in the former one. An emphasis will be put on the ways of exploitation of various
signal characteristics and the respective consequences on the signal performance.

2.1. Elementary Principles of Radio Positioning
Only a few basic principles of radio positioning exist – they are based on exploiting of
signal characteristics that differ spatially in a determined way. Most generally, three
very essential phenomena are of interest for positioning: the decay of the electromag-
netic wave power in free space, the finite velocity of propagation of electromagnetic
waves, and the Doppler effect.

2.1.1. Signal strength
I. Physical principle and possible accuracy

The first effect on the waves to exploit (or not to exploit) for the purpose of posi-
tioning is the signal power. Consider an isotropic point radiator of electromagnetic
waves placed in the isotropic free-space lossless environment. The waveplanes emitted
would be spherical in such case. Also, the infinitesimal energy that is carried in a
single waveplane is constant due to the lossless environment, however, the area of the
waveplane grows quadratically as the wave propagates further from its origin. Thus,
the power density decreases quadratically.

It is possible to derive the Friis transmission equation for wireless link power budget
under ideal conditions

𝑃Rx = 𝑃Tx𝐺Tx𝐺Rx

(︂
𝜆

4𝜋𝑟

)︂2
, (2.1)

where 𝑃Rx and 𝑃Tx denote received and transmitted power, 𝐺Tx and 𝐺Rx are the
respective antenna gains. Symbol 𝜆 denotes the wavelength of the signal and 𝑟 is
the distance between transmitter and receiver. The squared term in the bracket is
commonly referred as free-space loss (FSL). One may come to an invalid conclusion
that there is a simple determined relation between the range and the signal power. The
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2. Radionavigation Systems

Friis equation is a good approximation for free space, as would be for example in space.
Under terrestrial conditions, the environment exhibits lossy atmosphere and numerous
obstacles such as buildings, vehicles, land, water surface, et cetera. As anticipated, the
obstacles affect the propagation of the electromagnetic waves – they cause attenuation,
reflection and diffraction of the waves. Those scattered waves are then combined at
certain points in a constructive or destructive way.

Nonetheless, it is impossible to describe the environment completely, moreover it
is subject to rapid changes. The propagation can therefore be characterized in a
probabilistic manner, based on empirical data. One of the simplest empirical models
used for propagation in real environment, the one-slope model, follows

𝑃 (𝑟) = 𝑃 (𝑟0)
(︂
𝑟

𝑟0

)︂−𝑛
𝑃dB(𝑟) = 𝑃dB(𝑟0)− 10𝑛 log10

(︂
𝑟

𝑟0

)︂
, (2.2)

where 𝑃 (𝑟) is signal power received at a distance 𝑟, 𝑟0 is a short distance where the
received power is assumed to be 𝑃 (𝑟0), and finally 𝑛 denotes the path loss exponent.
The second line of the equation above describes the same model in the decibel scale.
By comparison with the free-space loss bracket in (2.1) it can be seen that for the ideal
free space propagation the 𝑛 exponent is equal to 2; however in the real environment
it can be both higher and lower.4

For the sake of evaluation of the lower bound of distance measurement – the Cramér–
Rao lower bound (CRLB) – a model has to be constructed. For simplicity, let us model
large-scale signal fading only; a log-normal random distribution is considered. We ne-
glect the contribution of thermal noise, it is assumed that its influence is suppressed
by averaging of the measured value. It is convenient to use the second line expression
of the one-slope model (2.2), since the log-normal distribution becomes a normal dis-
tribution in the decibel scale. Let us denote the randomly faded signal power at the
distance 𝑟 as 𝑃 (𝑟) in the linear scale and as 𝑃dB(𝑟) in the decibel scale. Then the
model yields

𝑃dB(𝑟) = 10 log10𝑃 (𝑟) = 𝒩
(︁
𝑃dB(𝑟), 𝜎2

lf

)︁
= 𝑃dB(𝑟) +𝒩

(︁
0, 𝜎2

lf

)︁
, (2.3)

where 𝒩
(︀
𝑃dB(𝑟), 𝜎2

fade
)︀

denotes the normal (Gaussian) distribution with mean corre-
sponding to the one-slope model and variance 𝜎2

lf equal to an empirical value for given
environment.5 For instance, the values used for UWB channel models (2–10 GHz fre-
quency band) are presented within Table 2.1.

In order to obtain maximal possible accuracy of an unbiased range estimator that is
based on signal power measurements, we have to investigate the corresponding Cramér–
Rao lower bound (CRLB). Generally, this bound gives us the minimum possible vari-

4The path loss exponent value lower than 2 means that the signal decays slower than predicted
by the Friis transmission equation, which may appear as a non-physical behavior – the energy
in the spherical waveplane would grow with the distance from the wave origin. It has to be
considered that the model is empirical and based on measured data. The spherical wave can not
be assumed anymore in the environment with obstacles. Because the propagation of the wave is
limited (between floor and ceiling in the office environment, for instance), the wave energy decays
in a less-than-quadratic manner.

5While the exponent is dimensionless, the unit of the fading variance should be dB2.
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2.1. Elementary Principles of Radio Positioning

ance of an unbiased estimate of a certain parameter [1]. For a single-variate estimator
it follows

var(𝜃) ≥ 1
ℐ(𝜃) , (2.4)

where 𝜃 is the parameter and 𝜃 its estimate. Symbol ℐ(𝜃) denotes the Fisher informa-
tion that is for the single-variate case equal to

ℐ(𝜃) = E
[︃(︂

𝜕Λ(𝜃|𝑋)
𝜕𝜃

)︂2]︃
, (2.5)

where Λ(𝜃|𝑋) is the likelihood function of the parameter 𝜃 with respect to the random
observation 𝑋.

Here, the CRLB that assumes the one-slope propagation model will be derived;
however, it is possible to construct the CRLB for different model, e.g. Rician fading [8].
Firstly, we have to derive the likelihood function ℒ of the distance parameter 𝑟. Let
us consider the reference distance unitary 𝑟0 = 1 m and denote the reference power by
𝑃dBref . Denoting probability density function (PDF) by p(·) and natural exponential
exp(·) it can be written

ℒ(𝑟|𝑃dB) = p(𝑃dB|𝑟)

= 1√︁
2𝜋𝜎2

lf

exp

⎛⎜⎝−
(︁
𝑃dB − 𝑃dBref + 10𝑛 log10𝑟

)︁2

2𝜎2
lf

⎞⎟⎠. (2.6)

It is necessary to derive the log-likelihood, which is the natural logarithm ln(·) of the
likelihood function:

Λ(𝑟|𝑃dB) = lnℒ(𝑟|𝑃dB)

= ln

⎛⎝ 1√︁
2𝜋𝜎2

lf

⎞⎠−
(︁
𝑃dB − 𝑃dBref + 10𝑛 log10𝑟

)︁2

2𝜎2
lf

. (2.7)

Table 2.1.: Common values of channel model coefficients [2, 7]
Environment Path loss exponent 𝑛 Fading variance 𝜎2

lf

Ideal 2.00 0.00
Residental LOS 1.79 2.22
Residental NLOS 4.58 3.51
Office LOS 1.63 1.90
Office NLOS 3.07 3.90
Outdoor LOS 1.76 0.83
Outdoor NLOS 2.50 2.00
Industrial LOS 1.20 6.00
Industrial NLOS 2.15 6.00

9



2. Radionavigation Systems

Further, the log-likelihood is to be differentiated with respect to the parameter 𝑟;
by means of the chain rule we get the result

𝜕Λ(𝑟|𝑃dB)
𝜕𝑟

= −2
2𝜎2

lf

(︁
𝑃dB − 𝑃dBref + 10𝑛 log10𝑟

)︁ 𝜕

𝜕𝑟

(︁
𝑃dB − 𝑃dBref + 10𝑛 log10𝑟

)︁
= −10𝑛
𝑟𝜎2

lf ln(10)
(︁
𝑃dB − 𝑃dBref + 10𝑛 log10𝑟

)︁
. (2.8)

By comparing with the last expression of the one-slope model (2.2) it is clear that the
term within the brackets is a normally distributed variable with variance 𝜎2

lf and zero
mean. Therefore, the Fisher information for this particular case is

ℐ(𝑟) = E

⎡⎣(︃ −10𝑛
𝑟𝜎2

lf ln(10)𝒩 (0, 𝜎2
lf)
)︃2
⎤⎦

=
(︃
−10𝑛

𝑟𝜎2
lf ln(10)

)︃2

E
[︂(︁
𝒩 (0, 𝜎2

lf)
)︁2
]︂

=
(︂ 10𝑛
𝑟𝜎lf ln(10)

)︂2
. (2.9)

We justify the modifications above by the facts that the second moment of the zero-
mean Gaussian distribution E

[︁(︀
𝒩 (0, 𝜎2)

)︀2]︁ = 𝜎2 and that the minus sign cancels
out due to the squaring. Consequently, it is straightforward that the CRLB of range
measurement based on signal power measurement is

√︁
var(𝑟) ≥ ln(10)

10
𝑟 𝜎lf
𝑛

(2.10)

when expressed in the convenient scale of standard deviation.
By substituting UWB channel parameter values from Tab. 2.1 into (2.10) we may

obtain the dependence of CRLB on the true range, see Fig. 2.1. Obviously, the bound
grows linearly with the true distance. In an intuitive way the slope grows with the
empirical large scale signal fading variance; in contrast, the path-loss exponent reduces
the slope. Although this may appear strange at first, the quicker power decay implies
that the measured value changes are larger with the same perturbation of range, an
therefore the influence of the fading is suppressed. Nonetheless, this model neglects
the existence of the noise floor, which implies that beyond a certain range only the
power of the noise of the receiver and environment is measured. It is worth noting that
the CRLB for the ideal conditions corresponding to the Friis transmission equation is
equal to zero due to its purely deterministic nature, which is expressed by the fading
variance set to zero.

Clearly, a method of ranging based on power measurement cannot benefit from
the signal structure. Moreover, the fundamental limit of accuracy depends on the
environment factors only, the signal parameters such as transmitted power do not
influence the CRLB.6 Also, it will be shown in the following sections that other methods
of range or position estimation overperform the signal-power approach.

6Should the real noise floor be assumed, the transmitted power would matter, since it extends the
range and increases the power margin above the noise floor.
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2.1. Elementary Principles of Radio Positioning

Figure 2.1.: Cramér–Rao lower bound of range estimate based on signal power mea-
surement in different environments.

However, the received signal power from multiple radio sources can be exploited in
a different way. A map of signal power “fingerprints” can be constructed for a certain
area, and later the user can be located by comparing actual received power data with
the available radio map. The map can be pre-surveyed, or simultaneous localization
and mapping (SLAM) algorithms can be employed in order to construct the map along
with the localization. Nonetheless, neither of these approaches is in the scope of the
thesis.

From the geometrical point of view, we may obtain a set of ranges between the user
equipment and a couple of other radio nodes. The equation for the range between the
user equipment and the radio node with index 𝑖 is

𝑟u𝑖 = ‖𝑟u − 𝑟𝑖‖ (2.11)

=

⎧⎨⎩
√︁

(𝑟u;𝑥 − 𝑟𝑖;𝑥)2 + (𝑟u;𝑦 − 𝑟𝑖;𝑦)2 in two dimensions,√︁
(𝑟u;𝑥 − 𝑟𝑖;𝑥)2 + (𝑟u;𝑦 − 𝑟𝑖;𝑦)2 + (𝑟u;𝑧 − 𝑟𝑖;𝑧)2 in three dimensions,

(2.12)

where the position vectors 𝑟u, 𝑟𝑖, which respect a Cartesian system, have two or three
elements, i.e. 𝑟u;𝑥, 𝑟u;𝑦 and 𝑟u;𝑧. Provided that the position vectors of the non-user
nodes 𝑟𝑖 are known, it is required to have at least the same number of measurements
as is the dimensionality of the position vector in order to be able to solve for user
position vector 𝑟u. The methods for solving such systems of nonlinear equations, and
remarks on solution availability and quality are provided in Chapter 4.
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2. Radionavigation Systems

2.1.2. Signal delay
I. Physical principle and possible accuracy

The other phenomena that is widely exploited by positioning systems is the delay
caused by the finite velocity of propagation of the electromagnetic waves. This velocity
is known as the speed of light and in vacuum it is equal to 𝑐0 = 299 792 458 ms−1. The
propagation delay for an arbitrary environment can be described by integrating the
generally non-constant refractive index 𝑛 along the path 𝑙 from a transmitter to a
receiver (denoted by 𝑇𝑥 and 𝑅𝑥) [9]:

𝜏 =
Rxˆ

Tx

𝑛(𝑙)
𝑐0

d𝑙. (2.13)

The value of the refractive index is determined by relative permitivity (dielectric con-
stant) 𝜖𝑟 and relative permeability 𝜇𝑟; however, for non-magnetic materials it is almost
equal to 1 and therefore the approximation

𝑛 = √𝜖𝑟𝜇𝑟 ≈
√
𝜖𝑟 (2.14)

is valid. The refractive index of air is higher than and almost equal to 1. Such approx-
imation is applicable for short range applications, anyway, for long range or satellite
systems the delay caused by non-unitary 𝑛 has to be accounted for and corrected,
mostly by means of empirical models (see e.g. section 2.2.2–I).

Regardless the impact of the varying refractive index, the fundamental limit of the
ranging or delay measurement accuracy is the CRLB of the actual measurement. The
derivation of the CRLB is available e.g. in [1] Assuming the model of a channel with
AWGN and delay only, the received signal 𝑠Rx(𝑡) becomes the replica of the transmitted
signal 𝑠Tx(𝑡) with the noise 𝑤(𝑡):

𝑠Rx(𝑡) = 𝑠Tx(𝑡− 𝜏) + 𝑤(𝑡). (2.15)

Note that no attenuation of the signal is modeled, since its effect can be emulated by
increasing the noise variance, i.e. decreasing SNR:√︁

var(𝜏) ≥ 1
2𝜋
√︁

2ℰ
𝑁0
𝐵RMS

= 1
2𝜋
√

SNR𝐵RMS
(2.16)

√︁
var(𝑟) ≥ 𝑐

2𝜋
√︁

2ℰ
𝑁0
𝐵RMS

= 𝑐

2𝜋
√

SNR𝐵RMS
. (2.17)

where ℰ denotes signal energy, 𝑁0/2 is the constant double-sided power spectral density
(PSD) of the Gaussian noise and 𝐵RMS is the RMS bandwidth. The second line is the
same CRLB scaled by propagation velocity 𝑐, in order to show the minimum possible
variance of obtaining range estimate 𝑟. First, let us show the definitions of the measures
mentioned above. The signal energy is equal to

ℰ =
ˆ +∞

−∞
|𝑠(𝑡)|2d𝑡. (2.18)
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2.1. Elementary Principles of Radio Positioning

Note that 2ℰ
𝑁0

can be substituted by SNR under assumption sufficiently long observation
time 2𝑇 , since the white noise is strictly ergodic:

SNR =
1

2𝑇 ℰ
1

2𝑇
´ 𝑇
−𝑇 |𝑤(𝑡)|2d𝑡

=
1

2𝑇 ℰ
1

2𝑇 E [|𝑤(𝑡)|2]
= 2ℰ
𝑁0

, (2.19)

where 𝐸[·] is the expected value operator. According to [10] the RMS bandwidth is
defined as following:

𝐵RMS =

⎯⎸⎸⎷´ +∞
−∞ 𝑓2 |𝑆(𝑓)|2 d𝑓´ +∞
−∞ |𝑆(𝑓)|2 d𝑓

=

⎯⎸⎸⎷´ +∞
−∞ 𝑓2𝒮(𝑓) d𝑓´ +∞
−∞ 𝒮(𝑓) d𝑓

. (2.20)

Here, the symbol 𝑓 denotes frequency (in Hertz units) and𝑋(𝑓) is the signal spectrum.7
Note that |𝑆(𝑓)|2 is the PSD of the signal, which is denoted by 𝒮(𝑓). Often, the RMS
bandwidth is approximated by the 3 dB bandwidth of the signal. By exploiting the
properties of the Fourier transform [1], the RMS bandwidth can be computed also
from the time domain representation of the signal 𝑥(𝑡):8

𝐵RMS = 1
2𝜋

⎯⎸⎸⎸⎷´ +∞
−∞

(︁
d𝑠(𝑡)

d𝑡

)︁2
d𝑡´ +∞

−∞ 𝑠(𝑡)2d𝑡
. (2.21)

Getting back to the delay CRLB (2.16); it is clearly observable that the key to the
accuracy is the RMS bandwidth, since it influences the denominator of the formula
in a linear manner. This means that minimal possible standard deviation is inversely
proportional to the bandwidth; similarly, variance is inversely proportional to the
squared bandwidth. Therefore, it is desirable to use signals with bandwidth as wide
as possible.

It is possible to approach this recommendation from another point of view. In
order to precisely measure the delay, a very sharp and narrow peak of the signal
auto-correlation function (ACF) is needed. The ACF represents the mutual power
between a signal and its time-shifted replica, therefore a narrow peak implies good
delay resolution. This is indeed consistent with the requirement on wide bandwidth,
because PSD of a signal is the Fourier transform of the ACF of the same signal, and
consequently, wide PSD corresponds to narrow ACF, and vice versa.

Consider an example of rectangular-pulsed signal, whose is inversely proportional to
the duration of the pulse. This straightforward shape is not convenient, since the side-
lobes of the rectangular-pulse spectrum decay very slowly.9 Also, in order to conserve
the constant energy within the pulse, the peak power would have to be extremely high.
Luckily, techniques of modulation and coding that combine long duration of the signal
with wide bandwidth are available. These are often referred as pulse compression tech-
niques in radar technology; in communication and navigation they are denoted as the

7Sometimes, the RMS bandwidth is defined in radians. In such case there is a factor (2𝜋)2 before
the 𝑓2 in the numerator of the equation (2.20).

8Should the RMS bandwidth be defined in radians, the 1/2𝜋 factor would be omitted.
9The PSD of a rectangular pulse of length 𝑇𝑝 and energy ℰ𝑝 is a squared sinc function 𝑠𝑖𝑛𝑐(2𝑓)2.
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2. Radionavigation Systems

spread spectrum techniques. One may take linear-frequency modulated (LFM) radar
pulses, Barker codes, Gold codes or BOC modulation as examples.10

The other way of enhancing the ranging accuracy is increasing of the SNR (or 2ℰ/𝑁0).
The very straightforward way of boosting up the signal energy is increasing the trans-
mitted power. This, however, cannot be always realized practically due to limited
capabilities of the available hardware and emission limits. The energy can also be
increased by extending the signal in the time domain; under assumption of constant
signal power the energy grows linearly with the duration of the signal. Consequently,
the minimum ranging standard deviation decreases with the square root of signal du-
ration. It is also possible to slightly reduce the noise PSD by improving the receiver
sensitivity and noise figure.

II. Two-way ranging

In a default scenario, there is no time synchronization between the transmitters and re-
ceivers of the ranging signals. Both, receiver and transmitter are able to provide times-
tamping of the signal transmission/reception, however, in their own, local timescale.
For simplicity of the following explanation, let us neglect the Doppler effect and oscil-
lator imperfections – all local oscillators are considered to have zero frequency offset.
Under such conditions only a constant offset between the receiver and transmitter does
exist.

Imagine that we would like to know the geometric distance between nodes A and B.
Thus, a signal is sent from node A to node B, and the transmission and reception are
timestamped. A superscript in square brackets will be used to denote the timescale in
which a timestamp was taken. The reception timestamp in the receiving (B) node is

𝑡
[B]
RxB = 𝑡

[A]
TxA + 1

𝑐0
𝑟AB + 𝛿𝑡[AB], (2.22)

where 𝑡[A]
Tx is the transmission timestamp in the A’s timescale, 𝑟AB denotes the geomet-

ric range between the nodes, and 𝛿𝑡[AB] is the offset of the A and B timescale (positive
when A is delayed w.r.t. B). It is obvious that without prior knowledge of the offset
term it is not possible to determine the range. Luckily, it is possible to send another
signal from B to A, and get following equation:

𝑡
[A]
RxA = 𝑡

[B]
TxB + 1

𝑐0
𝑟BA + 𝛿𝑡[BA]. (2.23)

Since 𝑟AB = 𝑟BA and 𝛿𝑡[AB] = −𝛿𝑡[BA], it is possible to solve the very simple set
of linear equations of the two measurements and obtain the range and the timescale
offset, which is a nuisance parameter in this case. It is straightforward that

𝑟AB = 𝑐0
2
(︁(︁
𝑡
[A]
RxA − 𝑡

[A]
TxA

)︁
−
(︁
𝑡
[B]
RxB − 𝑡

[B]
TxB

)︁)︁
(2.24)

= 𝑐0
2
(︁
𝜏

[A]
𝐴 − 𝜏 [B]

𝐵

)︁
(2.25)

10While LFM and barker codes are used in radar field, Gold codes and BOC are exploited by GNSS.
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2.1. Elementary Principles of Radio Positioning

Figure 2.2.: Single-sided two-way ranging timing diagram.

This approach is called “single-sided two-way ranging” (SS-TWR), because it can
be seen as a single request – response negotiation, where delays on the requester
and responder side (𝜏 [A]

𝐴 and 𝜏
[B]
𝐵 ) are measured. A typical timing diagram of the

negotiation is in Figure 2.2;11 note that the response delays and the propagation delay
are not necessarily to scale.

The CRLB result (2.17) can be used to estimate the CRLB for the SS-TWR ranging
approach. The transmission times are precisely known, and the two measurements
of the time of reception are independent. Also, we can assume the channel to be
reciprocal, and therefore we may only double the variance of the delay measurement.
In order to convert the delay measurements to range in the SS-TWR ranging manner,
the 𝑐0/2 factor is to be used. Thus, the CRLB is

√︁
var(𝑟AB) ≥ 𝑐0

√
2

2
√︁

2ℰ
𝑁0
𝐵RMS

= 𝑐0

√
2

2
√

SNR𝐵RMS
. (2.26)

Now, it is time to assume oscillator frequency offset, which is often referenced as
clock drift. We may assume that temporal reading of the drifting 𝑡[A] clock at true
time 𝑡 to be

𝑡[A](𝑡) = 𝑡[A](𝑡0) + 𝑡
(︁
1 + 𝛿𝜈[A]

)︁
, (2.27)

where 𝛿𝜈[A] is the relative clock drift. Implicitly, the time differences in the one-way
ranging equations are corrupted in the following way:

𝜏
[A]
𝐴 = 𝜏𝐴 + 𝛿𝜈[A] 𝜏𝐴. (2.28)

Note that the breve above the symbol denotes the corrupted value and that the same
applies for node B. Since the clock offset is irrelevant for the delay measurement within
11It is worth mentioning that absolute time information (e.g. timestamp) is denoted by 𝑡, and time

intervals (e.g. delays) are denoted by 𝜏 .
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Figure 2.3.: Double-sided two-way ranging timing diagram.

a single node, the corresponding superfix is omitted. The error induced by the oscillator
frequency offset is then

𝑟AB − 𝑟AB = 𝑐0
2 (𝜏 [A]

𝐴 − 𝜏𝐴 − 𝜏 [B]
𝐵 + 𝜏𝐵) (2.29)

= 𝑐0
2 (𝛿𝜈[A] 𝜏𝐴 − 𝛿𝜈[B] 𝜏𝐵) (2.30)

= 𝑐0
2

(︂
𝛿𝜈[A] 2𝑟AB

𝑐0
+
(︁
𝛿𝜈[A] − 𝛿𝜈[B]

)︁
𝜏𝐵

)︂
. (2.31)

It is worth to investigate when the error becomes zero; the assumption that both true
range and responder delay (𝜏𝐵) are positive is understandable. Apart from the case
when both frequency offsets are zero, the term (2.29) is null in the unlikely coincidence
when equation

2𝑟AB
𝑐0

= 𝜏𝐵
𝛿𝜈[A] − 𝛿𝜈[B]

𝛿𝜈[A] (2.32)

is satisfied. From this exercise it is clear that single-sided two-way ranging is prone to
clock-drift-related errors.

Such errors may be compensated by adding the third signal that is transmitted from
node A and received by node B, as is described on a timing diagram in Figure 2.3. This
approach is called double-sided two-way ranging (DS-TWR) the very basic equation
for the range estimation can be written in a couple of different ways:

𝑟AB = 𝑐0
4
(︁

𝜏
[A]
A1 − 𝜏

[B]
B1 + 𝜏

[B]
B2 − 𝜏

[A]
A2

)︁
(2.33)

= 𝑐0
4
(︁(︁
𝑡
[A]
RxA − 𝑡

[A]
TxA1

)︁
−
(︁
𝑡
[B]
TxB − 𝑡

[B]
RxB1

)︁
+
(︁
𝑡
[B]
RxB2 − 𝑡

[B]
TxB

)︁
−
(︁
𝑡
[A]
TxA2 − 𝑡

[A]
RxA

)︁)︁
(2.34)

= 𝑐0
4
(︁
𝑡
[B]
RxB2 + 𝑡

[B]
RxB1 − 𝑡

[A]
TxA2 − 𝑡

[A]
TxA1 + 2

(︁
𝑡
[A]
RxA − 𝑡

[B]
TxB

)︁)︁
. (2.35)
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We may modify the CRLB result (2.17) in a similar manner, as we did for the
single-sided ranging. In the DS-TWR, there are three independent measurements of
the time of reception, which we can assume to have equal variance. Since one of the
measurements is doubled in the equation, we have to multiply its variance by four;
when the other two measurements are taken into account, we get a factor of six. The
multiplying factor from delay to range representation is 𝑐0

4 in this case, so the expression
of CRLB of the DS-TWR in the standard deviation scale becomes√︁

var(𝑟AB) ≥ 𝑐0

√
6

4
√︁

2ℰ
𝑁0
𝐵RMS

= 𝑐0

√
6

4
√

SNR𝐵RMS
. (2.36)

Under the assumption of corruption of the measurements by the oscillator frequency
offset (2.28) the corrupted version of range estimate becomes

𝑟AB = 𝑐0
4
(︁
𝜏

[A]
A1 − 𝜏

[B]
B1 + 𝜏

[B]
B2 − 𝜏

[A]
A2

)︁
(2.37)

= 𝑐0
4
(︁(︁

1 + 𝛿𝜈[A]
)︁ (︁
𝜏

[A]
A1 − 𝜏

[A]
A2

)︁
+
(︁
1 + 𝛿𝜈[B]

)︁ (︁
𝜏

[B]
B2 − 𝜏

[B]
B1

)︁)︁
. (2.38)

Taking into account that 𝑐0(𝜏A1− 𝜏B1) = 2𝑟AB and 𝑐0(𝜏B2− 𝜏A2) = 2𝑟AB it is straight-
forward to find and modify the equation for the error to the following form:

𝑟AB − 𝑟AB =
(︁
𝛿𝜈[A] + 𝛿𝜈[B]

)︁ 𝑟AB
2 + 𝑐0

4
(︁
𝛿𝜈[A] − 𝛿𝜈[B]

)︁
(𝜏B1 − 𝜏A2) . (2.39)

The former part of the expression in the large bracket says that part of the error is
proportional to the true value of the measured range. Since the frequency offsets are
likely to be very small (in order of 10−5 or smaller even for low-cost oscillators), this
contribution is not significant for distances up to a few kilometers. The latter part says
that a part of the error is proportional to the difference of the reply times of the nodes.
Since the factor is quarter of the speed of light, the error may become significant even
for a difference of several tens of microseconds. In order to minimize the latter source
of error, the symmetric double-sided two-way ranging (SDS-TWR) is often applied.

Moreover, there is a patented [3, 11] formula that relaxes the requirement on the
equality of the reply delays on both nodes. For the sake of completeness we will derive
the corresponding formula here, too.

It is convenient to consider ideal devices with no oscillator frequency offset for the
purpose of the formula derivation, and to find the impact of the offsets later. Clearly,
the double-sided two-way ranging can be broken into two single-sided ones as follows:

𝑟AB = 𝑐0
2
(︁
𝜏

[A]
A1 − 𝜏

[B]
B1

)︁
(2.40)

𝑟AB = 𝑐0
2
(︁
𝜏

[B]
B2 − 𝜏

[A]
A2

)︁
. (2.41)

Then the two equations are reorganized so that the delays measured on the requester
are on the left-hand side of the equations and the other terms on the right-hand side:

𝜏
[A]
A1 = 2 𝑟AB

𝑐0
+ 𝜏

[B]
B1 (2.42)

𝜏
[B]
B2 = 2 𝑟AB

𝑐0
+ 𝜏

[A]
A2 . (2.43)
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Followingly, the product of the requester delays is computed and the result is rewritten
as:

𝜏
[A]
A1 𝜏

[B]
B2 = 4 𝑟AB 𝑟AB

𝑐2
0

+ 2 𝑟AB
𝑐0

𝜏
[A]
A2 + 2 𝑟AB

𝑐0
𝜏

[B]
B1 + 𝜏

[A]
A2 𝜏

[B]
B1 (2.44)

𝜏
[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1 = 2 𝑟AB

𝑐0

(︂2 𝑟AB
𝑐0

+ 𝜏
[A]
A2 + 𝜏

[B]
B1

)︂
. (2.45)

Then, one of the terms (2.42), (2.43) is substituted into (2.45), resulting in

𝜏
[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1 = 2 𝑟AB

𝑐0

(︁
𝜏

[A]
A1 + 𝜏

[A]
A2

)︁
(2.46)

𝜏
[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1 = 2 𝑟AB

𝑐0

(︁
𝜏

[B]
B2 + 𝜏

[B]
B1

)︁
(2.47)

By means of a simple modification and combination of the equations above we may
obtain three variants of the range estimate from the same measurements.

𝑟AB,2 = 𝑐0
2
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

𝜏
[A]
A1 + 𝜏

[A]
A2

(2.48)

𝑟AB,1 = 𝑐0
2
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

𝜏
[B]
B2 + 𝜏

[B]
B1

(2.49)

𝑟AB,3 = 𝑐0
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

𝜏
[A]
A1 + 𝜏

[A]
A2 + 𝜏

[B]
B2 + 𝜏

[B]
B1

(2.50)

Now, we can find the impact of oscillator frequency offset on the range estimates ob-
tained using these equations. It is straightforward to substitute the corrupted versions
of the respective delay measurements, according to model from (2.28), and modify the
expressions to the following form:

𝑟AB,2 =

(︁
1 + 𝛿𝜈[A]

)︁(︁
1 + 𝛿𝜈[B]

)︁
(︁
1 + 𝛿𝜈[B]

)︁ 𝑐0
2
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

𝜏
[A]
A1 + 𝜏

[A]
A2

=
(︁
1 + 𝛿𝜈[A]

)︁
𝑟AB (2.51)

𝑟AB,1 =

(︁
1 + 𝛿𝜈[A]

)︁(︁
1 + 𝛿𝜈[B]

)︁
(︁
1 + 𝛿𝜈[B]

)︁ 𝑐0
2
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

𝜏
[B]
B2 + 𝜏

[B]
B1

=
(︁
1 + 𝛿𝜈[B]

)︁
𝑟AB (2.52)

𝑟AB,3 = 𝑐0

(︁
1 + 𝛿𝜈[A]

)︁(︁
1 + 𝛿𝜈[B]

)︁ (︁
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

)︁
(︁
1 + 𝛿𝜈[A]

)︁ (︁
𝜏

[A]
A1 + 𝜏

[A]
A2

)︁
+
(︁
1 + 𝛿𝜈[B]

)︁ (︁
𝜏

[B]
B1 + 𝜏

[B]
B2

)︁
=

(︁
1 + 𝛿𝜈[A]

)︁(︁
1 + 𝛿𝜈[B]

)︁
(︁
1 + 𝛿𝜈[A]

)︁
+
(︁
1 + 𝛿𝜈[B]

)︁ 2 𝑐0
2
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

2
(︁
𝜏

[B]
B2 + 𝜏

[B]
B1

)︁

=

(︁
1 + 𝛿𝜈[A]

)︁(︁
1 + 𝛿𝜈[B]

)︁
2 + 𝛿𝜈[A] + 𝛿𝜈[B] 2 𝑟AB. (2.53)
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In order to obtain the error value, the true value has to be subtracted from the cor-
rupted value. The trio of the error equations yields

𝑟AB,2 − 𝑟AB = 𝛿𝜈[A]𝑟AB (2.54)
𝑟AB,1 − 𝑟AB = 𝛿𝜈[B]𝑟AB (2.55)

𝑟AB,3 − 𝑟AB = 2 𝛿𝜈[A]𝛿𝜈[B] + 𝛿𝜈[A] + 𝛿𝜈[B]

2 + 𝛿𝜈[A] + 𝛿𝜈[B] 𝑟AB ≈
𝛿𝜈[A] + 𝛿𝜈[B]

2 𝑟AB (2.56)

The approximation in (2.56) is valid for typical conditions, since both relative frequency
offsets |𝛿𝜈[A]|, |𝛿𝜈[B]| ≪ 1, i.e. even for low-cost crystal oscillators it is in the order of
10−5 (tens of ppm) or lower.

Obviously, in all three cases the error is proportional to the true range between the
two nodes of interest 𝑟AB, and more importantly, it does not depend on the true delay
values (denoted by 𝜏) at all. The former two range estimate equations, i.e (2.48) and
(2.49), have the advantage that the errors are prevailed by one of the oscillators only;
the frequency offset of the other one does not manifest in the ranging error, see results
(2.54) and (2.55). This behavior might be useful when the oscillator performance in one
of the nodes is superior to the other. The error in the latter case, i.e according to (2.48),
is determined by the average of the two frequency offsets, which is coincidentally the
same value that is achieved by SDS-TWR provided the equality condition on response
delays is satisfied, see comparison of (2.56) and (2.39).

The ADS-TWR algorithm is clearly nonlinear; consequently, it is not inherently
unbiased and its variance cannot be evaluated in a straightforward manner. The
detailed analysis of the bias and variance of the ADS-TWR estimators (2.48) to (2.50),
which is supported by Monte-Carlo simulations, is provided in Appendix A. It is shown
that the estimators are unbiased or negligibly biased under realistic conditions.12 The
variance of the ADS-TWR is very similar to the variance of the SDS-TWR. Hence, the
algorithm can be considered safe to be used instead of the SDS-TWR. No accuracy
penalty is brought by the insensitivity to clock drift.

From the geometrical standpoint, we do not have to care about the method for
obtaining the range measurements. The equation for the range between the user
equipment and a radio node with index 𝑖 is the same as in the case of range estimates
that are based on signal power from page 11:

𝑟u𝑖 = ‖𝑟u − 𝑟𝑖‖ . (2.11)

Again, we refer to Chapter 4 for the solution of the set of range equations and related
discussion.

III. Time of Arrival

Consider a case when the infrastructure of the localization system shares the same
timescale. To achieve this, the infrastructure has to be synchronized accurately.

Without the loss of generality we may adopt a scenario where the infrastructure
nodes of the radio positioning network transmit signals at a certain time and that
12The bias of ADS-TWR is a few orders of magnitude lower than its variance.

19
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the located node receives those signals. The same mathematical derivation would
take place if the situation was reciprocal, i.e. the localized node was transmitting
and infrastructure nodes were receiving. The common system timescale is denoted by
[S] superfix. The timescale of the localized node is denoted by [U] superfix, since the
localized node is usually the user equipment. Therefore, we can write for the user-node
reception time of the signal 𝑖-th infrastructure node

𝑡
[U]
Rx,i = 𝑡

[S]
Tx,i + 1

𝑐0
𝑟u,i + 𝛿𝑡[SU], (2.57)

where 𝑡[S]
Tx is the transmission time in the system timescale, and 𝑟u,i is the geometric

range between the 𝑖-th infrastructure node and the user node. The timescale offset
term 𝛿𝑡[SU] is also present in the equation.

Usually, but not always, the difference of the reception and transmission time is
taken as the time of arrival (ToA) measurement. The value is scaled by the speed of
light and called pseudorange (especially in the GNSS field).

𝜌i = 𝑐0
(︁
𝑡
[U]
Rx,i − 𝑡

[S]
Tx,i

)︁
= 𝑐0

(︂ 1
𝑐0
𝑟u,i + 𝛿𝑡[SU]

)︂
, (2.58)

The pseudorange is equal to the true range corrupted by the scaled unknown timescale
offset. However, the infrastructure nodes are synchronized and therefore all the pseudo-
range measurements are corrupted by the same value of the timescale offset. In the
GNSS field, for instance, the offset is usually scaled by the speed of light and therefore
expressed in the terms of length instead of duration. Such scaled value is commonly
called bias and denoted by the letter 𝑏. Then, the pseudorange can be expressed as

𝜌i = ‖𝑟u − 𝑟i‖+ 𝑏, (2.59)

where 𝑟u and 𝑟i are the position vectors of the localized node and the 𝑖-th infrastructure
node, respectively. Apparently, the variance of the pseudorange measurement is equal
to the variance of the time of reception, considering that time of transmission is known
precisely.

Provided that the infrastructure position vectors are known, there are only a few
unknown parameters: two or three coordinates of the localized node position vector
and the bias. The same variables are present independently on the index of the in-
frastructure node. Consequently, a set of at least three or four pseudorange equations,
depending on the position vector dimensionality, is required for position and bias de-
termination. The proper investigation of the characteristics and methods of solving
such sets of equations are provided in Chapter 4.

Since we already know the CRLB for a plain delay measurement, derivation of CRLB
for ToA is apparent. We have assumed that time of transmission is perfectly known
and equal for all the signals, therefore, only the time of reception is measured. The
communication is only from the infrastructure to the user, so it becomes evident that
the CRLB of ToA follows exactly the equation (2.17).
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It is also convenient to derive the equation for the rate of change of the pseudorange:

d𝜌i
d𝑡 = ‖𝑟u − 𝑟i‖

d𝑡 + d𝑏
d𝑡 (2.60)

d𝜌i
d𝑡 =

(𝑟u − 𝑟i) ·
(︀𝑟u

d𝑡 −
𝑟i
d𝑡
)︀

‖𝑟u − 𝑟i‖
+ d𝑏

d𝑡 , (2.61)

When the simplified notation with the time derivative is expressed by the dot accent,
the equation yields

𝜌̇i = 1u,i · (𝑟̇u − 𝑟̇i) + 𝑏̇ (2.62)
𝜌̇i = 1u,i · (𝑣u − 𝑣i) + 𝑏̇, (2.63)

where 𝑣 denotes the velocity vector and 1u,i is the unitary direction vector pointing
from 𝑖-th infrastructure node towards the localized (user) node. Vectors 𝑣 denote the
velocity vectors. From the latter expression it is obvious that pseudorange rate is equal
to the radial component of the relative velocity of the nodes, of course corrupted by
the rate of bias, i.e. clock frequency mismatch. It is worth noting that radial velocity
component is proportional to the Doppler frequency shift of the signal.

IV. Time Difference of Arrival

As well as the ToA approach, the Time Difference of Arrival (TDoA) method of
positioning requires synchronized infrastructure. The localized equipment does not
share the timescale with the infrastructure; its clock suffers from bias w.r.t. the system
timescale.

Nonetheless, the clock bias term that corrupts the range measurements (the pseudo-
range measurement is taken) is constant for all measurements. Therefore, consider the
difference of two pseudorange measurements, denoted by 𝑑i,j:

𝑑i,j = 𝜌i − 𝜌j

= ‖𝑟u − 𝑟i‖+ 𝑏− (‖𝑟u − 𝑟j‖+ 𝑏)
= ‖𝑟u − 𝑟i‖ − ‖𝑟u − 𝑟j‖ . (2.64)

The bias term cancels out and the raw difference of geometric ranges between the
localized equipment and the infrastructure nodes remains, as anticipated. The differ-
ence of the pseudorange has to be investigated also from the time of reception and
transmission measurements in the respective timescales:

𝑑i,j = 𝑐0
[︁(︁
𝑡
[U]
Rx,i − 𝑡

[S]
Tx,i

)︁
−
(︁
𝑡
[U]
Rx,j − 𝑡

[S]
Tx,j

)︁]︁
= 𝑐0

[︁(︁
𝑡
[U]
Rx,i − 𝑡

[U]
Rx,j

)︁
−
(︁
𝑡
[S]
Tx,i − 𝑡

[S]
Tx,j

)︁]︁
. (2.65)

From the expression on the second line it is apparent that only the time difference of
signal reception

(︁
𝑡
[U]
Rx,i − 𝑡

[U]
Rx,j

)︁
has to be measured, therefore the offset of the timescale

does not matter at all. The term
(︁
𝑡
[S]
Tx,i − 𝑡

[S]
Tx,j

)︁
is the difference in time of transmis-

sion in the system timescale. This has to be zero (when the time of transmission is
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synchronized) or set to a predefined value, which is known to the localized equipment
(for instance in time-multiplexed systems).

In order to estimate the TDoA CRLB, we will use the previous results. It does not
matter whether we consider the TDoA measurement as a difference of pseudoranges or
times of reception. In both cases, the difference of the two stochastically independent
values is taken as a result. Therefore,

var 𝑑i,j = var 𝜌i + var 𝜌j = var 𝑡[U]
Rx,i + var 𝑡[U]

Rx,j. (2.66)

If all the pseudoranges (or times of arrival) are assumed to have equal CRLB, the
expression can be simplified to

var 𝑑 = 2 var 𝜌 = 2 var 𝑡[U]
Rx (2.67)

√
var 𝑑 =

√
2√var 𝜌 =

√
2
√︁

var 𝑡[U]
Rx. (2.68)

Note that in the simplified case the minimal variance (the CRLB) is doubled, and the
corresponding standard deviation is

√
2 times the value from eq. (2.17).

Practical examples of TDoA positioning can be found in Appendix B. In particular,
Section B.1 describes an opportunistic localization system that exploits synchronized,
stationary DVB-T transmitters and measures TDoA of signals from those transmitters.

It is worth noting that it is possible to operate a TDoA system in a reverse manner,
i.e. the localized equipment transmits a message that is captured by multiple synchro-
nized receivers. In such case the time of transmission is inherently constant, since a
single message is received by multiple receivers. Consequently, the TDoA measurement
scaled by speed of light can be for this particular case written as

𝑑i,j = 𝑐0
(︁
𝑡
[S]
Rx,i − 𝑡

[S]
Rx,j

)︁
−
(︁
𝑡
[U]
Tx − 𝑡

[U]
Tx

)︁
= 𝑐0

(︁
𝑡
[S]
Rx,i − 𝑡

[S]
Rx,j

)︁
. (2.69)

An example that exploits such reversed principle is described in Section B.2 of Ap-
pendix B.

Now we will find the time derivative of the TDoA measurement, as we did for the
ToA in the previous section.

d𝑑i,j
d𝑡 = 1u,i · (𝑣u − 𝑣i)− 1u,j · (𝑣u − 𝑣j) (2.70)

It is worth comparing this result with the result for the ToA case. Due to the differen-
tiation the clock frequency mismatch term is not present in the equation. This result
was expectable, since the differentiation of the measurements is a linear operation.
Provided that the infrastructure is stationary, i.e. 𝑣i = 0 and 𝑣j = 0, we may write a
simplified equation

d𝑑i,j
d𝑡 = (1u,i − 1u,j) · 𝑣u (2.71)

Using the mathematical description of the Doppler effect13 it is easy to show that
the time-derivative of the TDoA measurement is proportional to the difference of the
13The Doppler effect is described in detail within Section 2.1.3.
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Doppler shifts of the received signals:

d𝑑i,j
d𝑡 = 𝑐0

𝑓nom
(𝑓D,i − 𝑓D,j) , (2.72)

where 𝑓nom is the nominal transmission frequency. Understandably, this kind of mea-
surements is often called Frequency Difference of Arrival (FDoA).

2.1.3. Doppler-effect based positioning
The Doppler effect (non-relativistic) is a wave frequency shift due to the relative motion
of the wave transmitter and receiver. The frequency on the receiver can be described
in a single dimension by equation

𝑓Rx = 𝑐0 + 𝑣Rx
𝑐0 + 𝑣Tx

𝑓Tx (2.73)

Assuming that the velocities of receiver and transmitter are substantially smaller than
the wave propagation velocity 𝑐0, the equation may be approximated by a simpler form
to

𝑓Rx =
(︂

1 + 𝑣Rx − 𝑣Tx
𝑐0 + 𝑣Tx

)︂
𝑓Tx ≈

(︂
1 + 𝑣Rx − 𝑣Tx

𝑐0

)︂
𝑓Tx (2.74)

This form of the description is quite convenient, because it renders the Doppler shift
additive to the transmitted frequency.

The situation in multiple dimensions is rather similar, however, it is necessary to
extract the radial component from the relative velocity vector. This can be done rather
easily by performing a dot product with the unitary direction vector from transmitter
to receiver 1Rx,Tx.

𝑓Rx ≈ (1 + (𝑣Rx − 𝑣Tx) · 1Rx,Tx) 𝑓Tx
𝑐0

(2.75)

For the sake of simplicity we will denote the Doppler frequency shift 𝑓Rx − 𝑓Rx as 𝑓D.
Consider that a receiver is capable of integrating the Doppler shift 𝑓D, i.e. accumulating
the Doppler phase 𝜙D:

𝜙D(𝑡i, 𝑡i+1) = 2𝜋
ˆ i+1

𝑡i

𝑓D(𝑡)d𝑡

= 2𝜋𝑓Tx
𝑐0

ˆ i+1

𝑡i

(𝑣Rx − 𝑣Tx) · 1Rx,Tx d𝑡 (2.76)

Clearly, the antiderivative (primitive function) of the integrated function is the differ-
ence of the range between the transmitter and receiver. One of justifications of this
statement can be seen in equations (2.60) to (2.63), where the derivative of the range
is found. Therefore the integral, according to the fundamental theorem of calculus, is
equal to the difference of the ranges at the temporal boundaries of the observation, i.e.
ranges at the times 𝑡i and 𝑡i+1:

𝜙D(𝑡i, 𝑡i+1) = 2𝜋𝑓Tx
𝑐0

(︁⃦⃦
𝑟Rx(𝑡i+1)− 𝑟Tx(𝑡i+1)

⃦⃦
−
⃦⃦
𝑟Rx(𝑡i)− 𝑟Tx(𝑡i)

⃦⃦)︁
. (2.77)
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Figure 2.4.: Geometry of Doppler effect in two dimensions.

If the position of the transmitter is known at any time, and if the receiver is sta-
tionary,14only two or three integrated Doppler phase measurements 𝜙D are required,
depending on whether 2D or 3D localization is performed. The advantage of such
approach is that the offset of the receiver and transmitter timescales does not affect
the measurements at all. Should the measurement be corrupted by an unknown os-
cillator frequency offset, there will be additional nuisance parameter to be estimated
𝛿𝑓Rx in the equation for the accumulated Doppler phase. Assuming the frequency
offset constant through all measurement epochs the equation yields:

𝜙D(𝑡i, 𝑡i+1) = 2𝜋𝑓Tx
𝑐0

(︁⃦⃦
𝑟Rx(𝑡i+1)− 𝑟Tx(𝑡i+1)

⃦⃦
−
⃦⃦
𝑟Rx(𝑡i)− 𝑟Tx(𝑡i)

⃦⃦
+ 𝛿𝑓Rx(𝑡i+1 − 𝑡i)

)︁
.

(2.78)
Let us analyze the two-dimensional case which is captured in Figure 2.4. We will

assume a transmitter moving on a straight track with a constant track velocity 𝑣𝑡,
and a stationary receiver that is displaced laterally from the axis of movement; in
the following equations the lateral displacement is denoted by symbol 𝑑l. The radial
velocity, which is the determining factor for the resulting Doppler shift, is obtained
by a simple projection of the track velocity onto the axis connecting transmitter and
receiver. Obviously, the situation is axially symmetric (w.r.t. axis of movement), and
therefore inherently ambiguous.

In Figure 2.5a a parametric plot of the normalized Doppler shift is plotted for this
scenario. The Doppler shift value is divided by the (𝑣t 𝑓Tx/𝑐0) factor, therefore the
normalized value equal to one corresponds to the maximum achievable Doppler shift
with the chosen track velocity. That would correspond to a case where receiver is on
the track and the radial velocity is the same as track velocity. The horizontal axis
displays a time relative to the moment of the transmitter passing by the receiver (i.e.
the moment with the zero Doppler shift). The parameter of the curves was chosen
14Actually, the requirement on stationary receiver is not strict, only the relation between the user

position vectors at the times 𝑡i, 𝑡i+1, 𝑡i+2, . . . has to be known.
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2.1. Elementary Principles of Radio Positioning

(a) Frequency shift. (b) Accumulated phase w.r.t. passing point.

Figure 2.5.: Parametric plots of Doppler values for linear transmitter trajectory and
stationary receiver.

to be the ratio of the track velocity and lateral displacement. The expression for the
Doppler shift in the analyzed scenario was manipulated in the following way for the
purpose of the plot:

𝑓D(𝑡) = 𝑓Tx
𝑐0

𝑣t
𝑡 𝑣t√︁

(𝑡 𝑣t)2 + 𝑑l
2

(2.79)

𝑓D(𝑡) 𝑐0
𝑣t 𝑓Tx

= 𝑡√︂
𝑡2 +

(︁
𝑑l
𝑣t

)︁2
(2.80)

Similarly an equation for the expression accumulated phase can be evaluated with
respect to the passing point, i.e. 𝑡 = 0, and normalized in the same way

𝜙D(0, 𝑡) = 2𝜋
(︂
𝑑l −

√︁
(𝑡 𝑣t)2 + 𝑑l

2
)︂

(2.81)

𝜙D(0, 𝑡) 𝑐0
𝑣t 𝑓Tx

= 2𝜋

⎛⎝𝑑l
𝑣t
−

√︃
𝑡2 +

(︂
𝑑l
𝑣t

)︂2
⎞⎠ (2.82)

It should be noted that the constant oscillator frequency offset would add a constant
bias to the frequency measurement and a linear function to the phase result.

Due to the symmetry of the scenario the receiver position cannot be determined
unambiguously. In the plane, the constant-Doppler shape is formed by two axially-
symmetric semi-axes with a common origin. One of the possible ambiguity resolu-
tion approaches may be making the transmitter trajectory curved; consequently, the
Doppler shift profiles on the left and right sides of the trajectory differ. The axial
symmetry of each constant-Doppler semi-axis pair still holds, yet the axis of symmetry
changes due to the curvature of the trajectory. In such scenario of 2-D positioning a
single transmitter observed for a suitable time interval should provide enough infor-
mation that is needed for unambiguous positioning.
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True position

Constant-Doppler cones

Ambiguity circle

(a) Linear trajectory (b) Curved trajectory

Figure 2.6.: Visualization of the constant-Doppler cones.

When generalized into three dimensions, the situation is still axially symmetric,
therefore the surface with a constant Doppler shift is an infinite cone – the surface
originates from rotation of the transmitter-to-receiver semi-axis around the track axis.
Should the trajectory be linear, the intersection of the consecutive constant Doppler
cones would be a circle, see Figure 2.6a. As well as in the two-dimensional case, the
ambiguity can be resolved by means of curving the transmitter trajectory. However, in
order to fully resolve the ambiguity, the trajectory must not lie in a plane; otherwise the
symmetry of the scenario would be degraded from axial to planar, and the ambiguity
space would only be reduced from a circle to two points. The case where the cones
intersect unambiguously is depicted in Figure 2.6b.

The Doppler effect may be also exploited in a ToA or a TDoA system to estimate the
velocity vector of a localized equipment. Typically, the delay measurement (TDoAs
or pseudoranges are used as a primary source for position information, the Doppler
shift information is required for joint position and velocity information. See equations
(2.63) and (2.71) for Doppler frequency shift in the ToA and TDoA scenarios.

2.1.4. Angle of arrival
This section elaborates on direction of the signal arrival measurement, typically de-

noted as angle of arrival (AoA). Firstly, the methods that exploit the directional char-
acteristics of the antennae will be examined; those are herein called signal power ap-
proaches, since it is the signal characteristic under investigation. Secondly, the methods
that exploit antenna arrays and phase (or delay) information from the array elements
will be described.

I. Signal power approaches

The intuitive way of determining AoA is steering a directional antenna towards the
signal origin, i.e. finding the direction with the highest received signal power. This is
quite inconvenient, since the main lobe maximum is typically rather flat and therefore
the angular accuracy is compromised. This can be illustrated by approximate relation
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2.1. Elementary Principles of Radio Positioning

(a) Directivity vs. half-power beamw. (b) Main lobe central part

Figure 2.7.: Approximation of antenna patterns

of the maximal antenna directivity 15 𝐷max and the half-power beamwidth16 Θ3dB that
is available in [12].

𝐷max ≈ 2
(︂

1− cos Θ3dB
2

)︂−1
≈ 16

(Θ3dB)2 (2.83)

Note that the latter expression requires the beamwidth expressed in radians. The
relation is visualized in Fig. 2.7a for beamwidths up to 60°. Obviously, more than 25 dB
directionality is needed in order to achieve beamwidths of a few degrees. However,
such requirement implies electrically spacious (i.e. w.r.t signal wavelength) antenna
structures, consequently, the antennae may be inconveniently large for frequencies up
to several GHz.

It is convenient to approximate the shape of the main lobe central area by

𝐷(𝛽)
𝐷max

=
{︃

cos𝑛 𝛽 for |𝛽| ≤ 𝜋
2

0 for |𝛽| > 𝜋
2
, (2.84)

where 𝛽 is the bearing angle and 𝑛 is a beam shape coefficient. According to [13], this
approximation is valid for numerous antenna patterns. The approximate gains and
half-power beamwidths for the particular values of the 𝑛 coefficient are provided in
Table 2.2; Figure 2.7b presents the approximate shapes of the main lobe central area.

15The directivity is a ratio of radiation intensity (in a certain direction) of the antenna and the
intensity radiated by the isotropic radiator. The maximal directivity is often denoted as the
“antenna directivity” parameter. Gain antenna is the directivity of the antenna minus losses; for
a lossless antenna directivity is equal to gain.

16The half-power beamwidth of antenna is the angle between the points of directivity (gain) pattern,
where the value is half of the maximal directivity (gain). Half of the power corresponds to −3 dB.
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For the purpose of AoA we are not interested in the absolute value of the gain, rather
the angular variation of the gain is exploited. The received power yields

𝑃 (𝛽) = 𝑃 (0)𝐷(𝛽)
𝐷max

(2.85)

𝑃dB(𝛽) = 𝑃dB(0) + 10𝑛 log10(cos𝛽). (2.86)

For simplicity we will assume log-normal distribution of the received power; i.e. channel
with large scale fading and no noise floor. The same assumption has been taken in
case of signal-power-based ranging in Section 2.1.1. Consequently, the power in the
decibel scale is Gaussian distributed as follows:

𝑃dB(𝛽) = 𝒩
(︁
𝑃dB(𝛽), 𝜎2

lf

)︁
= 𝑃dB(𝛽) +𝒩

(︁
0, 𝜎2

lf

)︁
. (2.87)

In order to obtain the CRLB, the likelihood function of the bearing angle 𝛽 has to
be formulated:

ℒ(𝛽|𝑃dB) = p(𝑃dB|𝛽)

= 1√︁
2𝜋𝜎2

lf

exp

⎛⎜⎝−
(︁
𝑃dB − 𝑃dB(0)− 10𝑛 log10(cos𝛽)

)︁2

2𝜎2
lf

⎞⎟⎠. (2.88)

The log-likelihood follows

Λ(𝛽|𝑃dB) = lnℒ(𝛽|𝑃dB)

= ln

⎛⎝ 1√︁
2𝜋𝜎2

lf

⎞⎠−
(︁
𝑃dB − 𝑃dB(0)− 10𝑛 log10(cos𝛽)

)︁2

2𝜎2
lf

, (2.89)

and its derivative with respect to the parameter 𝜃 is simplified to the form

𝜕Λ(𝛽|𝑃dB)
𝜕𝛽

= 10𝑛 sin 𝛽
𝑃dB − 𝑃dB(0) + 10𝑛 ln(cos𝛽)

ln 10
𝜎2

lf ln 10 cos(𝛽)

= 10𝑛 tan 𝛽
𝜎2

lf ln 10
(︁
𝑃dB − 𝑃dB(0) + 10𝑛 log10(cos𝛽)

)︁
. (2.90)

Table 2.2.: Approx. beamwidth and directivity for cos𝑛 main lobe shape
Shape coeff. Half-power beamw. Max. directivity

𝑛 [-] 𝛽3dB [deg.] 𝐷max [dB]

4 65.4 11.0
6 53.9 12.6

10 42.1 14.8
15 34.5 16.5
25 26.8 18.7
50 19.0 21.6
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Clearly, the bracket corresponds to the log-normally (in linear scale) or normally (in
decibel scale) distributed variable with zero mean and variance equal to the variance
used in the large scale signal fading model 𝜎2

lf . The typical values of the variance for
certain scenarios areas are available in Table 2.1 on page 9. The Fisher information is
obtained as

ℐ(𝛽) = E

⎡⎣(︃10𝑛 tan 𝛽
𝜎2

lf ln 10 𝒩 (0, 𝜎2
lf)
)︃2
⎤⎦

= 100𝑛2 tan2 𝛽

𝜎2
lf ln2 10

. (2.91)

By means of fraction inversion and optional square-root the CRLB for cos𝑛(𝛽) main
lobe shape under log-normal fading is obtained.√︁

var(𝛽) ≥ 𝜎lf ln 10
10𝑛| tan 𝛽|√︁

var(𝛽) ≥ ln 10
10𝑛 𝜎lf | cot𝛽|. (2.92)

Due to the nature of the cotangent function, the standard deviation of the bearing
angle estimate 𝛽 grows to infinity for true value of 𝛽 → 0. The reason for such gradual
reduction of accuracy is the flatness of the main lobe directivity (gain) pattern in the
vicinity of the maximum. Consequently, steering the antenna towards the maximum
power is inaccurate and impractical.

On the other hand, the nulls of the antenna characteristics are usually very steep,
and (theoretically) infinitely deep. In such case the antenna would be steered towards
the minimum of the received power. For simplicity, let us assume infinitesimally small
radiating loop, which is sometimes called Hertzian loop. We consider that the axis of
the loop is horizontally oriented and aligned with bearing 𝜃 = 0°. According to [12],
the normalized power pattern o is of sin2 shape, therefore the received power yields

𝑃 (𝛽) = 𝑃 (0)𝐷(𝛽)
𝐷max

= 𝑃 (0) sin2 𝛽 (2.93)

𝑃dB(𝛽) = 𝑃dB(0) + 20 log10(sin 𝛽). (2.94)

Under assumption of the log-normal fading we may obtain the partial derivative of
the log-likelihood of the bearing angle in the following form:

𝜕Λ(𝑟|𝑃dB)
𝜕𝑟

= −20 cos𝛽
𝑃dB − 𝑃dB(0) + 10 ln(sin2 𝛽)

ln 10
𝜎2

lf ln 10 sin(𝛽)

= −20 cot𝛽
𝜎2

lf ln 10
(︁
𝑃dB − 𝑃dB(0) + 10 log10(sin2 𝛽)

)︁
. (2.95)

Then, it is straightforward to obtain the CRLB value by the same approach as was
used in the power-maximum search. The CRLB follows√︁

var(𝛽) ≥ ln 10
20 𝜎lf | tan 𝛽|. (2.96)
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This result suggests infinite accuracy in the vicinity of zero bearing parameter, which
is practically impossible. The physical discrepancy comes from the assumption of log-
normal power distribution. Consequently, the model behaves the same regardless the
absolute received power; it does not matter whether it is +150 dBm or −150 dBm,
because the noise floor is neglected. Therefore, the log-normal power model is suitable
for high values of SNR only.

In Figure 2.8a (page 33) the CRLBs are plotted for several values of the large-
scale fading coefficients (see Table 2.1 on page 9). The red curves depict the bearing
standard deviation bound near the maximum of a cos4-shaped main lobe of the antenna
pattern, the blue curves present the bound near the null of a sin2-shaped pattern. The
result suggests that under large scale signal fading the exploitation of the pattern null
outperforms the exploitation of pattern maximum. It is worth noting that for more
directive antennae the maximum of the pattern is more pointy, the 𝑛 coefficient grows,
and the CRLB is consequently lower. Still, it diverges to infinity near the maximum
due to the cotangent shape of the CRLB. On the contrary, a relatively simple dipole
or loop antenna is sufficient for achieving approximately the sin2-shaped pattern.

For the low values of SNR a different model has to be assumed. Especially when
exploiting the null of the antenna pattern, the proximity of the noise floor may play
more important role than the fading. It is known that the amplitude distribution of a
radio signal envelope under white noise conditions is Rician, and converges to Rayleigh
distribution when the signal component disappears. The power of the noisy RF signal
therefore follows a non-central 𝜒2 distribution with two degrees of freedom; in the
absence of the useful signal it converges to central 𝜒2 distribution. In general, the
PDF of the non-central 𝜒2 distribution of variable X follows

n.c.𝜒
2
𝑘(𝜐) = 1

2𝑒
𝑋+𝜐

−2

(︂
𝑋

𝜐

)︂ 𝑘−2
4
𝐼 𝑘−2

2

(︁√
𝜐𝑋

)︁
, (2.97)

where 𝜐 is the non-centrality parameter, 𝑘 is the count of degrees of freedom, and 𝐼𝑚
denotes a modified Bessel function of the first kind and order 𝑚. For our case with
two degrees of freedom we may use formula

n.c.𝜒
2
2(𝜐) = 1

2𝑒
𝑋+𝜐

−2 𝐼0
(︁√

𝜐𝑋
)︁
. (2.98)

Provided that the power of the noise is constant, the received signal power is propor-
tional to the received signal SNR. We may describe relation of the SNR on reception
with the bearing 𝛽 by a simple function, let us denote it f(𝛽). For the maximum search
we are looking for the shape of the main lobe shape and therefore the received SNR is

SNR = f(𝛽) = SNRmax cos𝑛 𝛽, (2.99)

where SNRmax is the maximal possible received SNR. In contrast, the pattern shape
for the minimum power search is

SNR = f(𝛽) = SNRmax sin2 𝛽. (2.100)

Note that the same main antenna pattern shape approximations are used as were used
in the log-normal distribution case.
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Table 2.3.: Directivity pattern shape functions and their derivatives
Type f(𝛽)/SNRmax f ′(𝛽)/SNRmax (f ′(𝛽)/SNRmax)2

Peak cos𝑛(𝛽) −𝑛 sin(𝛽) cos𝑛−1(𝛽) 𝑛2 sin2(𝛽) cos2𝑛−2(𝛽)
Null sin2(𝛽) 2 sin(𝛽) cos(𝛽) sin2(2𝛽)
Note: The pattern shape functions were normalized by SNRmax for the sake of table clarity.

Non-normalized versions have to be used in the CRLB derivation.

It may be easily derived that the measured ˜SNR (note the tilde that distinguishes the
noisy version) will have non-central 𝜒2

2 distribution with the non-centrality parameter
equal to the true SNR, which depends on the bearing. By substituting pattern the
shape function into the 𝜒2

2 we can get the formula for the log-likelihood of bearing 𝛽
w.r.t. measured ˜SNR:

Λ(𝛽)| ˜SNR) = lnℒ(𝛽)| ˜SNR) = ln 𝑝( ˜SNR|𝛽)

= ln
(︁

n.c.𝜒
2
2
(︀
f(𝛽)

)︀)︁
= ln 1

2 −
f(𝛽) + ˜SNR

2 + ln 𝐼0

(︂√︁
f(𝛽) ˜SNR

)︂
. (2.101)

The partial derivative w.r.t. to the parameter is found in the general form by using
the chain rule.

𝜕Λ(𝛽| ˜SNR)
𝜕𝛽

= f ′(𝛽)
2

⎛⎜⎜⎝
√︃

˜SNR
f(𝛽)

𝐼1

(︂√︁
f(𝛽) ˜SNR

)︂
𝐼0

(︂√︁
f(𝛽) ˜SNR

)︂ − 1

⎞⎟⎟⎠ (2.102)

Here, the f ′(𝛽) denotes the first derivative of f(𝛽), of course with respect to 𝛽.
The Fisher information is then found by a simple substitution of the results above.

The expectation operation is performed from the definition, i.e. by integration of the
function multiplied by the PDF.

ℐ(𝛽) = E

⎡⎣(︃𝜕Λ(𝛽| ˜SNR)
𝜕𝛽

)︃2
⎤⎦ =

∞̂

0

(︃
𝜕Λ(𝛽| ˜SNR)

𝜕𝛽

)︃2

𝑝( ˜SNR|𝛽) d ˜SNR

=
∞̂

0

f ′(𝛽)2

8

⎛⎜⎜⎝
√︃

˜SNR
f(𝛽)

𝐼1

(︂√︁
f(𝛽) ˜SNR

)︂
𝐼0

(︂√︁
f(𝛽) ˜SNR

)︂ − 1

⎞⎟⎟⎠
2

𝑒−
f(𝛽)+ ˜SNR

2 𝐼0

(︂√︁
f(𝛽) ˜SNR

)︂
d ˜SNR

(2.103)

For the sake of completeness, the simplified expressions for the derivative and the
squared derivative of f(𝛽) are provided in Table 2.3.

The Fisher information formula cannot be evaluated in a closed form, nonetheless,
the integral can be evaluated in a numerical way. We have used MATLAB vpaintegral
function, which uses variable-precision arithmetic to approximate the result; the rel-
ative accuracy was set to 10−20. Ramos–Llorden suggests that the upper integration
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bound should be 50f(𝛽) and the lower integration bound is always zero [14], however,
this was found not being applicable across the couple of orders of magnitude of the
non-centrality parameter of the 𝜒2 distribution. The upper (infinite) bound was set
to f(𝛽) + 20

√︀
f(𝛽) or 100 – whichever is greater – in order to maintain numerical sta-

bility of the computations; the lower bound was set to f(𝛽)− 20
√︀

f(𝛽) or zero, should
the value be negative.17 Such approach secures integration interval wide enough to
provide reasonable accuracy while avoiding unnecessary integration of “almost-zero”
portions of the integrand.

The CRLB of the bearing angle estimate 𝛽 is obtained by scalar inversion of the
Fisher information ℐ(𝛽). The numerical evaluation was performed for cos4 and sin2

shape functions and SNRmax values from 5 to 50 dB (from 100.5 to 105 in the linear
scale). The results are presented in Figure 2.8b. Clearly, in both cases the lower
bound grows to infinity for 𝛽 → 0. The red and blue meshes depict the CRLBs for the
cos4-shaped and sin2-shaped patterns, respectively.

In the vicinity of the cos4 antenna pattern maximum, the steepness (derivative) of
the shape function converges to zero in a rather smooth way. Consequently, the CRLB
grows steadily to the infinity, even for the high values of SNRmax. When the SNRmax
is low, the bearing estimate accuracy is deteriorated as the measurement is noisy.

For the sin2 pattern null shape, in contrast, the bearing estimate 𝛽 accuracy under
high SNRmax conditions improves towards the lower values of the true bearing value
𝛽. Near the zero bearing value the power of the incoming signal is suppressed to the
noise floor level, and consequently the CRLB grows towards infinity. As the SNRmax
decreases, the accuracy degrades further from the zero bearing, because larger section
of the pattern null is “hidden” under the noise floor. Additionally, the steepness of the
null shape decreases with the growing bearing angle and makes the transition between
the noise-induced inaccuracy and null-steepness-induced inaccuracy smoother.

To conclude this section, we can state that exploitation of the null is favorable to
using maximum of the antenna pattern, since it provides better accuracy in general.
The statement is supported by the evaluation of CRLBs for two received signal models:
with log-normal distribution of the power and with non-central 𝜒2 distribution of the
signal-to-noise ratio.

17For low values of the non-centrality parameter of the non-central 𝜒2 distribution converges to central
𝜒2 distribution. For 𝜒2

2 (two degrees of freedom) the PDF values beyond 100 are almost zero (less
than 10−22), since it follows the function 𝑒−𝑥/2/2.

For higher values of the non-centrality parameter, the non-central 𝜒2 may be approximated by
a normal distribution. According to [15], if a random variable 𝑋 follows n.c.𝜒

2
𝑘(𝜐) then

𝑋 − 𝑘 − 𝜐√
2𝑘 + 4𝜐

→ 𝒩 (0, 1) for 𝑘 → +∞ or 𝜐 → +∞.

Considering 𝑘 = 2 and 𝜐 ≫ 𝑘, the distribution of 𝑋 may be approximated by 𝒩 (𝜐, 4𝜐). Since
the Gaussian PDF is sufficiently decayed at 10𝜎 point above the mean (approx. 10−22 w.r.t. to
the maximum of the PDF), we may set the integration bound to this point, i.e. 𝜐 + 10

√
4𝜐. The

same applies for the lower bound, i.e. lower bound may be set to 10𝜎 point below the mean, i.e.
𝜐 − 10

√
4𝜐. Note that the negative values of the lower bound (when 𝜐 < 400) have to be clipped

to zero. By substituting f(𝛽) for 𝜐 we obtain the bound values mentioned above.
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(a) Log-normal power distribution

(b) Non-central 𝜒2 SNR distribution

Figure 2.8.: CRLB of signal-power based AoA.
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II. Delay and phase approach

When an antenna array18 is used, the signal path length may slightly differ for the
individual elements. As a consequence, the signal phase or delay may be different at
the elements of the array. For simplicity, let us assume a simple, linear array consisting
of 𝑀 isotropic elements with a regular element spacing 𝑑. We will use letter 𝑖 to index
the elements, the reference element has 𝑖 = 0. The bearing angle 𝛽 will be defined as
the angle from the axis of the array.

In general, the bearings 𝛽i and the ranges to the signal source 𝑟i differ for the different
elements, as can be seen in Figure 2.9a. However, the source is assumed to be far from
the array (condition 𝑟0 ≫ 𝑑 holds) and therefore the bearings can be assumed equal
for all elements, i.e.

𝛽 = 𝛽0 u 𝛽1 u . . . u 𝛽i u . . . u 𝛽M. (2.104)

Since the paths of the signal to the individual elements are considered perpendicular
near the array, the difference of the ranges to the signal source depends on the bearing
in the following way:

∆𝑟i = 𝑖 𝑑 cos𝛽, (2.105)

see Figure 2.9b for the graphical representation. Due to the path-length difference, the
signal arrives to the other antennae later or earlier, depending on the bearing.

Most commonly, a narrowband signal is assumed and most of the array dimensions
are expressed as the multiples of the carrier wavelength 𝜆. In the classical antenna array
theory this is rather useful, because the same methods may be applied regardless the
frequency, wavelength and absolute dimensions. Under the narrowband assumption,
the delay of the signal is perceived as a phase-shift, since a wavelength-long signal path
corresponds to a 360° shift.

Kay [1] derives the CRLB for narrowband signals, where the dependence on the
wavelength is inherently included:√︁

var𝛽nb ≥
√

3
𝑙
𝜆𝜋
√︁

SNR 𝑀(𝑀+1)
𝑀−1 |sin 𝛽|√︁

var𝛽nb ≥
𝑐0
√

3
𝑓 𝑑 𝜋

√︀
SNR𝑀(𝑀2 − 1) |sin 𝛽|

. (2.106)

It is worth noting that both expressions are equivalent due to the link between wave-
length and frequency.

Nonetheless, the narrowband assumption is inapplicable in certain cases; the cor-
responding Cramér–Rao lower bound would be inaccurate. For instance, the UWB
signals often exhibit relative bandwidth more than 20 % and absolute bandwidth of
a few gigahertz. Owing to the persisting validity of the signal reception principles
18Usually, the antenna arrays consist of a several elements – typically a simple antennae. The relative

element position and the feeding amplitude and phase of the elements is tuned to provide desired
gain pattern. This point of view is widely used in the antenna theory, see e.g. [12, chap. 22–23].

Herein the same principles are exploited in the opposite way; the phase of the received signal at
the individual elements with known relative position is used to estimate the angle of signal arrival,
i.e. the bearing of the source.
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(a) Non-simplified description (b) Simplification from distant signal source

Figure 2.9.: Schematic description of the principal assumption on a linear array.

described in the beginning of this section and within Figures 2.9, the signal delay on
the individual elements can be still described by simple trigonometric relations. The
physical dimensions cannot be interpreted as 𝜆-multiples, since it is preposterous to
characterize the wideband signals by a single wavelength.

According to [2, 16, 17], the CRLB for the array-based AoA may be expressed in
two equivalent forms (2.107) and (2.108):

var𝛽wb ≥
6𝑐0

2𝒩0
𝑑2
´
|𝑠′(𝑡)|2 d𝑡𝑀(𝑀2 − 1) sin2 𝛽

(2.107)

var𝛽wb ≥
6𝑐0

2

𝑑2 (𝐵RMS 2𝜋)2 SNR𝑀(𝑀2 − 1) sin2 𝛽√︁
var𝛽wb ≥

√
3 𝑐0

𝐵RMS 𝑑 𝜋
√︀

SNR𝑀(𝑀2 − 1) | sin 𝛽|
. (2.108)

The symbol 𝐵RMS denotes the RMS bandwidth, as was defined by (2.20); The SNR
is equal to 2ℰ/𝑁0. It is worth noting that the two expressions (2.107) and (2.108)
are related through the Parseval’s identity. The comparison of the narrowband and
wideband CRLB of the AoA is provided in [17]. Both CRLBs are almost equivalent
for narrow bandwidths, however, the wideband CRLB is lower than its narrowband
approximation for wider bandwidths.

As an example of the CRLB we will provide a result for a baseband root-raised
cosine pulse, whose power spectrum is defined as [18]19

𝒮RRC(𝑓) =

⎧⎪⎪⎨⎪⎪⎩
𝑇p for |𝑓 | < 1−𝜁

2𝑇p
𝑇p
2

(︁
1 + cos

(︁
𝜋𝑇p
𝜁

(︁
|𝑓 | − 1−𝜁

𝑇p

)︁)︁)︁
for 1−𝜁

2𝑇p
< |𝑓 | < 1+𝜁

2𝑇p

0 for |𝑓 | > 1+𝜁
2𝑇p

,

(2.109)

where 𝑇p is the pulse duration and 𝜁 is the roll-off factor of the raised cosine shape.20

The roll-off factor has to be chosen from interval from 0 to 1, where 0 corresponds to
19The amplitude spectrum of the root-raised cosine pulse is a square root of (2.109).
20Commonly, the roll-off factor is denoted by symbol 𝛽, however, 𝜁 was used here in order to avoid

confusion with the bearing angle.
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Figure 2.10.: The wideband CRLB of delay-based AoA for raised-cosine pulse with
duration 𝑇p = 2 ns. The linear array consists of 𝑀 = 5 elements
equally spaced by 𝑑 = 10 cm.

fully-rectangular shape and 1 to fully-cosine shape. For our purpose it is set to 𝜁 = 0.5;
under such assumption the 𝐵RMS ≈ 0.31/𝑇p.21 This example was chosen, since it is
the reference pulse shape for the HRP (high rate pulse repetition frequency) UWB
physical layer definition in the IEEE 802.15.4 standard [19, p. 464-466]. In Figure 2.10
we provide the evaluation of the CRLB for a root-raised-cosine-shaped pulse with 2 ns
duration and a five-element array. Clearly, the bearing estimate accuracy deteriorates
for the true bearing values around 0° and 180°. It is worth mentioning that because
the RMS bandwidth is inversely proportional to the pulse duration 𝑇p, the CRLB√︁

var𝛽wb ∝ 𝑇p. (2.110)

Consequently, the CRLB for different pulse durations may be obtained by means of a
simple linear scaling.

21The two-sided null-to-null bandwidth of the root-raised cosine pulse is obviously (1 + 𝜁)/𝑇p. The
RMS bandwidth for the baseband representation of the pulse follows

𝐵RMS =
√︀

3𝜋2𝜁2 − 24𝜁2 + 𝜋2

2
√

3𝜋𝑇p

which is a monotonically rising function from approximately 0.29/𝑇p at 𝜁 = 0 through 0.31/𝑇p at
𝜁 = 0.5 to 0.36/𝑇p at 𝜁 = 1.

36



2.2. Global Navigation Satellite Systems

2.2. Global Navigation Satellite Systems
The GNSS are the a first example of the radionavigation systems by numerous reasons.
Indisputably, they are the most widely used system that provides position, velocity
and time information PVT to the user. In simplicity, each GNSS satellite transmits
a unique ranging signal, the transmission of the signal is synchronized to the main
system time. The signals are received by the user equipment ant the time of arrival
(ToA) is measured for each signal. The positions of the satellites are well known at all
time epochs, and this information is available to the user through a navigation data
message that is transmitted within the satellite signal.

In general, all the systems consist of three segments: Control, Space and User. Our
description flows from the system side to the user. The control system is in duty of
tracking and maintaining the constellation of the satellites, i.e. monitoring, estimation
and prediction satellite orbital parameters, state of their atomic clocks w.r.t. the system
clock, modeling of ionospheric and tropospheric effects, et cetera, and uploading the
relevant data to the respective satellites via a microwave up-link channel. For that
purpose, a few interconnected ground-based stations are deployed around the globe.

The space segment consists of satellites, typically in Medium Earth Orbit (MEO)
with highly stable clocks. Each satellite transmits one or more ranging signals. The
signals vary by their structure, carrier frequency or encryption, i.e. availability to wide
public. Commonly, the satellites transmit almost exclusively in the L-band, which is
a specific subset of the UHF-band,22 exceptions exist, however.

The user segment is a receiver of one or more of the GNSS signals. From the
measurements taken on the signals, so called observables, the PVT solution is obtained.

One of the clear advantages of the GNSS is that the user equipment is passive, i.e.
does not have to transmit anything in order to obtain the position estimate. For users
it has several important consequences; firstly, the number of users is unlimited. The
signal is available in space and any number of receivers can “listen” to it. Secondly,
position information is available only to the user, unless shared by other means – the
user cannot be tracked by the GNSS system itself, since it does not provide the user
uplink channel. Thirdly, the equipment may be completely silent, and therefore cannot
be located by another system; this is particularly important for the military users, since
it does not allow enemy to localize the user, who tries to obtain the position.

In the following section we will briefly summarize the measurements taken by a
GNSS receiver. The limitations and errors of such measurements will be reviewed.
A section describing possible exploitation of such measurements follows. An overview
of the currently available GNSS is provided as well.

2.2.1. Observables, errors and limitations
As users, we only can affect the processing done in the user segment, i.e. the receiver.
Therefore we find useful to describe how the GNSS observables are obtained, and
what effects they suffer from. This knowledge is fundamental for understanding the
strengths and weaknesses of the GNSS.
22The L-Band covers frequencies from 1 to 2 GHz [20], the GNSS use carrier frequencies in the bands

from approximately 1150 to 1300 MHz and from 1550 to 1600 MHz.
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Within this work, the description of the GNSS is somehow truncated and simplified
in some aspects. An excellent guide to GPS and GNSS systems may be found in
books [9, 21, 22].

I. Signal Structure and Receiver Observables

A typical GNSS signal, such as GPS’s C/A code, consists of three components – the
carrier wave is spreaded by the pseudo-random ranging code and then modulated by the
data message. The signal is continuously transmitted by the satellites. In the following
mathematical description 𝑐(𝑡) and 𝑑(𝑡) are the continuous-time representation of the
ranging code and data message.

𝑠𝐶𝐴 = sin(2𝜋𝑓𝐿1)𝑐(𝑡)𝑑(𝑡) (2.111)

𝑐(𝑡) =
∑︁
𝑘

rect( 𝑡

𝑇chip
− 𝑘 − 1

2)𝑐[𝑘] (2.112)

𝑑(𝑡) =
∑︁
𝑙

rect( 𝑡

𝑇sym
− 𝑙 − 1

2)𝑑[𝑘] (2.113)

Let us consider the legacy C/A code as a representative example. The GPS L1 car-
rier frequency is 1575 MHz, and it is a pure sine wave. The ranging code is a sequence
of chips with very sharp and unambiguous correlation function that allows tracking of
the signal delay. The sequence is pseudorandom and therefore it is inherently periodic.
In case of the C/A code it is a BPSK-modulated 1023-chip long Gold sequence with
a period 1 ms, i.e. chip rate is 1.023 Mchips/s and 𝑡chip = 1/1.023 · 106 s. The repre-
sentation of the sequence (in the discrete time) 𝑐[𝑘] is a periodic sequence of ±1s. In
the continuous time version of the ranging code 𝑐(𝑡), the rectangular pulse shape is
chosen. Note that the definition of the rectangular function follows23

rect(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1 for |𝑡| < 1

2
1
2 for |𝑡| = 1

2
0 for |𝑡| > 1

2 .

(2.114)

In the equation (2.112) it is shifted so that it begins at 𝑘𝑇chip and has duration
of 𝑇chip. Theoretically, an arbitrary pulse shape can be used for a linear modulation
such as BPSK or any M-PSK. The rectangular shape is quite straightforward and
has a few other advantages, however. First, in its ideal form, it does not suffer from
inter-symbol interference; second, any M-PSK symbols with rectangular shape satisfy
constant-envelope criterion; third, it has a sharp auto-correlation function.

Each of the satellites has a unique “variant” of the pseudo-random code,24 in case
of GPS the variant is determined by the PRN number. The cross-correlation between
the ranging codes used by different satellites is minimized by design for all mutual
delays. Therefore, all the satellites may transmit at the same carrier frequency without
23The assignment of the value 1/2 in the rect(·) function discontinuities is favorable, since the Fourier

series converges to this point for the periodic rectangular function, for instance sign(sin(𝑡)).
24Russian system GLONASS is an exception from this point of view.
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interfering – such technique of sharing the radio space is called CDMA (code-division
multiple-access).25

The data message is BPSK-modulated as well, with a 50 Hz rate, though. Conse-
quently, the polarity of the ranging code may be inverted according to the data message
content every 𝑇sym = 20 ms, i.e. every 20 periods of the ranging Gold sequence. The
bits of the data message are organized in frames, subframes, et cetera, include pre-
defined preambles and reserved bits; however, this organization differs from system to
system and is not important for the principal description of the GNSS operation. The
navigation message contains
Timestamp – a time of transmission of a certain point in the navigation message. Since

the navigation message is aligned with the ranging code (e.g. 20 periods of Gold code
in one data symbol for GPS C/A) so it serves also as a timestamp of a certain period
of the ranging code.

Ephemeris – the data that is needed to compute satellites position and velocity at
any time. Keplerian parameters of the orbit with perturbations or coefficients of
differential equations describing the satellite motion may be included.

Model coefficients – corrections for the pre-defined models of the satellite hardware
and especially clock imperfections, or propagation effects.

Status – satellite configuration (i.e. which other signal or its component is active),
satellite health, expected pseudorange accuracy, et cetera.

Almanac – information about the other satellites in the constellation, such as less
accurate ephemeris data and health.

Age and validity of the data – typically the time of ephemeris issue and almanac issue,
alongside with the interval of validity (usually several hours).

It has to be noted that the purpose of the list above is to give a brief idea of the
navigation message contents. The exact information for the various GNSS can be
found in the respective Interface Control Documents (ICDs).

As the signal propagates from a satellite to the user it is delayed and attenuated. In
addition, due to the relative movement of the user and the satellite (the satellite orbits
rotating Earth) the signal is frequency-shifted by a significant amount. Naturally, the
values of delay, Doppler shift and signal power depend on the geometrical constellation
of the receiver and a single satellite.

Frequency Locked Loops (FLL) and Phase Locked Loops (PLL) are used to track the
carrier wave – its Doppler-shifted frequency and carrier phase. The receiver exploits
a Delay Locked Loop (DLL) in order to track the delay (or phase) of the periodic
ranging code. Since the satellites, i.e. transmitters of the signals, are synchronized, we
may denote the delays of the received ranging sequences w.r.t. the receiver clock as the
25In order to satisfy the non-interference criterion of the signals, they have to be orthogonal. In the

CDMA case the ranging/spreading code sequences are chosen so that the mutual energy of any two
arbitrarily shifted sequences is negligible to the signal energy itself, i.e. that the arbitrarily shifted
signals are are almost orthogonal. The other means to achieve the orthogonality is the FDMA
(frequency-division MA), since the harmonic signals with different frequencies are orthogonal, or
TDMA (time-division MA), the orthogonality is forced by having only one signal non-zero at a
time. For more detailed information see e.g. [18, chap. 15].
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pseudoranges. Additionally, the receiver also estimates the signal quality, typically in
sense of carrier-to-noise-ratio 𝐶/𝑁0. Let us now review those observables in detail:

Pseudorange – an unambiguous measure of range between satellite and user, however,
corrupted by the unknown bias of the user clock and the system clock.
Due to the periodicity of the ranging code the code phase is ambiguous – in case
of GPS C/A it is 1 ms, i.e. 300 km. However, the navigation message structure
provides resolution of this ambiguity, because it contains timestamps aligned with
the ranging code and the number of periods passed from the time reference is known
to the receiver.
The accuracy of the measurement depends on the structure of the ranging code
(especially the RMS bandwidth) and noise/interference conditions. Also, the quality
depends on the factors affecting the signal generation on satellite and propagation
effects. See the following sections for more details.
The precision, however, may be on a few-decimeter level, of course under favorable
noise conditions [21]. Not only the signal quality, but the structure and parameters of
the DLL such as loop bandwidth, loop-filter order, correlator spacing, et cetera affect
the precision of the pseudorange estimate. The mathematical description of the DLL
performance prediction is provided e.g. in [21, 22]. The pseudorange measurements
are considered noisier than the other observables [9], nonetheless, their unambiguous
nature is advantageous.
It is important to emphasize that the precision of the pseudorange measurement is
often better than the accuracy, which is affected by various errors.26

Doppler shift – is an unambiguous measurement, as well. It is proportional to the
radial velocity of the orbiting satellite and the possibly non-stationary user in the
vicinity of the rotating Earth’s surface. The motion of the satellite is known and
therefore the Doppler shifts may be used alongside the pseudoranges in joint position
and velocity estimation. Because the measurement originates from the DLL/PLL
tracking subsystem, the measurement is rather precise. Typically, the error is bellow
10 Hz and may drop even below Hertz level under favorable for high 𝐶/𝑁0 ratios.

Carrier Phase – sometimes also denoted as the integrated Doppler is an extraordinarily
precise measurement, however, it suffers from a fundamental ambiguity originating
from the sinusoidal carrier wave periodicity. It is an accumulated phase of the
incoming carrier wave w.r.t the reference frequency, i.e. when the Doppler shift is
positive, the carrier phase grows and vice versa.
The precision is typically a small fraction of the wavelength of the signal, which
means millimeter-to-centimeter RMS error. The instantaneous value of the carrier
phase is not useful information, however, it may be utilized when observed continu-
ously for a sufficiently long time.27

26Precision and accuracy should not be interchanged; it is possible to have a very precise, but inaccu-
rate measurements. Despite low random error, the measurement may be biased.

27This phenomena can be imagined on an example of two tape measures stretched between the satellite
and receiver: The pseudorange is read from a measure with thick, blurry, sparsely spaced, but
labeled ticks, whilst the carrier phase is obtained from a precise measure with sharp, densely
spaced, but unlabeled ticks.
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Without the ambiguity resolution the carrier phase can be used to smooth the noisy
pseudorange measurements [9]. The principle of carrier smoothing exploits the shape
similarity of the time series of pseudorange and carrier phase measurements. See
Section 2.2.2–I for more information.
The continuity of the phase measurement is vitally important, especially for the
techniques that do resolve the ambiguity. When the phase-lock is lost, the ambiguity
resolution for that particular satellite becomes invalid; the ambiguity has to be
resolved again when new phase-lock occurs. The same holds for cycle-slip events –
they invalidate the ambiguity resolution. Receivers usually provide a status of the
PLL, it is usually denoted as LLI (Loss-of-Lock Indicator). For the methods like the
carrier smoothing it only means missing data.

Power – receivers also measure the carrier-to-noise ratio 𝐶/𝑁0 or signal-to noise ratio
(SNR). To the author’s best knowledge, this value is not used to estimate PVT
directly, however, it is used as a measure the signal quality, and more importantly,
the quality of the measurements taken on the signal. Sometimes, the satellite data
is excluded (or less trusted) based on a combination of 𝐶/𝑁0 and elevation criteria.
The generally preferred representation is 𝐶/𝑁0 ratio, rather than SNR. The reason is
that the 𝐶/𝑁0 (usually expressed in dB/Hz), i.e. the unmodulated carrier power28

versus noise spectral density, does not change with receiver bandwidth. On the
contrary, the SNR (usually expressed in dB) is the ratio of the useful signal power
integrated in the receiver bandwidth versus the noise power integrated in the receiver
bandwidth. Fig. 2.11 illustrates the difference between the two approaches for real,
bandpass signals (i.e. as the signals that propagate through the media), and for
a generally complex baseband representation signal (i.e as the signal is processed
in the receiver). In the SNR case, both, the signal and the noise power may not
be integrated in its entirety due to the limited bandwidth; the power of noise is
proportional to the bandwidth.
Many receivers allow logging of the observables for the purpose of post processing,

or to allow user to apply custom PVT estimation algorithms. Although the protocol
of communication with the receiver is proprietary, some receivers may provide log-file
output in a standardized format for the sets of GNSS observables; it is called RINEX
– The Receiver Independent Exchange Format [23]. The format definition is available
from the International GNSS Service (IGS) website; the standard is evolving as do the
GNSS and the receiver technology. The last available version at the time of writing
of this thesis was 3.03, which supports observables from all systems mentioned in the
oncoming sections.29 For the purpose of the real-time distribution of the observables
(for instance for DGPS or RTK, see Sec. 2.2.2) the standard of the RTCM SC-104
(Special committee fort Differential GNSS Standards) [29]. These standards are usu-
28Since the modulation is considered normalized, the modulated signal power is the same.
29There are several other formats for sharing GNSS-related data, some of them have common name

“roots” with RINEX. From the “human-readable” (based ASCII coded text files) it is for instance
IONEX – for ionospheric data grids [24], SINEX – for station solution data (position, velocity,
tropospheric parameters, et cetera) [25], sp3 – Standard Product 3 (version c, provides GPS and
GLONASS orbit solutions) [26], ANTEX – antenna calibration files [27]. A “machine-readable”
(binary) format, which should provide the functionality of the formats mentioned above, exists and
has a foreseeable name BINEX (Binary Exchange) [28].
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(a) 𝐶/𝑁0 of baseband signal (b) 𝐶/𝑁0 of real, bandpass signal

(c) SNR of baseband signal (d) SNR of real, bandpass signal

Figure 2.11.: Schematic description of the principal assumption on a linear array.

ally denoted only as the RTCM standards, the latest version is RTCM 3.3, yet the
RTCM 2.3 is still widely used.30

II. Errors and Compensation

The accuracy of the GNSS observables is deteriorated through a number of effects. Not
only the propagation delay takes part in the error budget, but also the accuracy of
satellite position and time reference is a determining factor for GNSS measurement ac-
curacy, and consequently the positioning accuracy as well. In the following paragraphs
the non-negligible errors will be summarized, and for some of them the methods for
their suppression or elimination are mentioned. The description of the errors will fol-
low the information flow typical for the GNSS, from the Control and Satellite segment
through the non-ideal propagation media to the User segment.

Clocks
The satellite clocks are the keystone of any GNSS. Even if the satellite clocks were
ideal, they would be affected by relativistic effects. Two major relativistic effects are
30Both versions are maintained by the Committee as the “current” standards; the two versions are

not compatible [30].
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usually mentioned with regard to the space-vehicle (SV) clock. The first one assumes
a perfectly circular orbit; due to this “static” relativistic effect a constant positive
frequency shift occurs on the MEO satellites [21].31 The shift is compensated by
intentional detuning of the SV atomic clocks. For example, the 10.23 MHz clocks of
the GPS satellites are detuned by −4.567 mHz, i.e. by a relative factor of ≈ 4.5 ·10−10.

The second one is deduced from the ellipticity of the orbit, and may be compensated
when ephemeris (i.e. orbital parameters), or satellite position and velocity vectors are
known. This effect has to be compensated in the receiver; the value of the correction
can be expressed by two ways – from the Keplerian parameters or directly from the
instantaneous position and velocity vectors of the satellite (denoted by 𝑟 and 𝑣):

𝛿𝑡𝑟 =
−2√𝜇
𝑐2

0

√
𝐴𝑒 sin𝐸𝑘 = −2𝑟 · 𝑣

𝑐2
0

(2.115)

Symbols 𝜇, 𝐴 and 𝐸𝑘 denote the value of Earth’s universal gravitational parameter,32

length of the orbits main semi-axis, eccentricity and eccentric anomaly,33 respectively.
The advantage of the latter expression is that it can be used even when the Keplerian
parameters are not available, e.g. for GLONASS or precise ephemeris products, which
may be distributed by other means.

Each navigation satellite usually carries multiple redundant high-performance clocks
(with stability better than 10−13, typically); only a few technologies were used as a
GNSS satellite reference clocks: Cesium clock, RAFS (Rubidium Atomic Frequency
Standard), PHM (Passive Hydrogen Maser). An extensive research effort has been put
into developing, characterizing and the space clocks, for instance, a comparison of per-
formance of various types of clocks is available in [31–33]. Although extremely precise,
the clocks are not perfect, and moreover, the accuracy required for the positioning still
exceeds the performance available from the raw clocks.

The SV clocks are not completely synchronous with the system master time (e.g.
the GPST (GPS time) in case of GPS, GST in case of Galileo, et cetera), still they
are required to be almost synchronous. For instance, for GPS the SV clock should
be always within approximately ±1 ms w.r.t. the system time.34 The SV clocks are
monitored by the Control segment and correction terms are uploaded to the satellites
periodically. Polynomial approximation is used for describing the clock error. For
example GPS uses a second-order polynomial; the 0th-order coefficient corresponds
to SV clock bias, 1st- and 2nd-order terms correspond to SV clock drift (frequency
offset) and clock drift rate (frequency drift), respectively. Source [9] claims that the
accuracy of the corrected clock is 5 to 10 ns, when relativistic effects are compensated
and polynomial clock correction applied.

It is necessary to mention that the clock corrections broadcasted by the SV are in
fact predictions. However, the IGS uses a network of monitoring stations to estimate
31For satellites bellow approx. 9500 km orbit radius, the frequency shift would be negative.
32The value to be used for the particular system is available in the corresponding ICD; for instance,

GPS uses 𝜇 = 3.986005 · 1014 m3s−2.
33Those parameters are either included in satellite ephemeris, or solved from ephemeris and accurate

time information.
34The ±1−ms range is based on information from [9], as well as on the maximal (minimal) value of

the corresponding 0th-order clock correction coefficient in the GPS navigation message [34].

43



2. Radionavigation Systems

the precise a posteriori satellite clock state. Actually, the comparison of the broadcast
clock corrections with the precise ones provided by IGS shows that the RMS clock error
is 3 to 4 ns, whereas the standard deviation (clock bias is excluded in such metric) is
around 1 ns, typically [35].

Satellite hardware
Neither satellite hardware is perfect. Probably the most relevant issue is a differ-
ent group delay of the individual frequencies. This delay difference is surveyed by a
GNSS control segment and included in the ephemeris (e.g. GPS provides group delay
differential of L1 & L2 bands in the legacy C/A code message [34]).

In general, a bias may be present between any two codes transmitted by the satellite,
regardless whether they share the carrier wave frequency or not. These systematic
errors are called differential code biases (DCB) and they are monitored and published
by certain analysis groups [24, 36, 37]. It should be noted that the DCBs are negligible
for the common GNSS applications; principally, they are irrelevant for single-frequency
single-code receivers. Nonetheless, accurate DCB values are required for some high-
precision navigation applications and special applications.

Satellite position and attitude
As well as the satellite clock corrections, the ephemeris broadcasted by the satellite is a
prediction, which is valid over a time interval that is a few hours long (depending on the
particular GNSS). Undoubtedly, there will be a disagreement between the predicted
and the real satellite position, regardless the method of orbit description used. Such
orbit errors may exhibit the RMS magnitude of a few meters [21]; for a common GNSS
user, there is no way of correcting this error. The a posteriori estimated orbits, as are
provided for instance by the IGS or NGA, provide an accuracy of a few centimeters [38].

Moreover, for certain high-accuracy methods it is not sufficient to take into account
that the signals appear to be transmitted from a virtual point – the antenna phase
center, which is generally displaced from the satellites center-of-mass (or the ephemeris
reference point); the absolute displacement is inherently dependent on the satellite
attitude. The data is publicly available from multiple sources, e.g. [39–41].

The phase-windup effect might be worth of interest for non-differential precise ap-
plications [42]. Due to the circular polarization of the signal, any mutual rotation of
satellite and receiver antennae around the line-of-sight axis induces a change of the
phase proportional to the angle of physical rotation.

Signal propagation
One would expect that the propagation of the electro-magnetic signal from a satellite
to a receiver would follow straight line. This would happen only if the propagation
media was homogeneous, e.g. the path from satellite to transmitter would be entirely
in vacuum. In such case the signal would be delayed, Doppler-shifted and attenuated35

at the receiver.
35There would be no attenuation, or losses, in the propagation media, but the intensity of the wave

(power per unit surface) decreases with the square of the distance from the transmitter, since the
same amount of power has to be distributed over the “inflating” spherical wavefront. See Friis
transmission equation (2.1), page 7.
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Indeed, the signal on its way towards the receiver encounters the atmosphere. There-
fore, the trajectory is bent according to the refractive index profile of the atmosphere,
since it has to obey Fermat’s principle [12], i.e. the signal follows the path that min-
imizes the propagation delay. The mechanics of the propagation delay were already
mentioned in Section 2.1.2; in this context, see particularly eq. (2.13).

As the signal of the GNSS has to propagate through the layers of atmosphere,
it gets attenuated, delayed and distorted which induces errors in the pseudorange
measurements. The ionosphere and troposphere are the strongest contributors to the
overall errors, luckily, the effect of those atmospheric layers can be compensated by
means of empiric models.

Troposphere Obviously, the troposphere is an inhomogeneous, lossy medium. Com-
monly (not always, however), its refractive index decreases with altitude. Most
importantly, for our purpose, the troposphere is non-dispersive, i.e. the refractive
index, and therefore the related delay, is frequency-independent.

The length of the signal trajectory through troposphere is dependent on the
elevation angle, indeed. Should the atmosphere be modeled as an uniform shell
of the Earth with a 6 km thickness (height above surface), the troposphere path
length for near-nadir elevation could be more than 250 km. Thus, the complexity
of the troposphere is more significant on the measurements from the satellites
visible under low elevation angles, where the conditions may vary substantially
along the signal path.

Dry and wet atmosphere is often distinguished [21]; the former includes gases,
whilst the latter is formed by water vapor. The wet component is less uniform
and more difficult to predict, nevertheless, it is responsible for approximately
10 % of the tropospheric effect on GNSS measurements.

To the advantage of GNSS, the attenuation by both, atmospheric gasses [43] and
precipitation [44], is almost negligible in the 1 to 2 GHz band for high-elevation
satellites. For the low-elevation satellites the attenuation itself is not likely to
cause noteworthy problems. On the other hand, user should avoid using the nadir
satellites, since most the other effects, such as refraction, ionosphere, multipath,
et cetera are enhanced.

Naturally, the signal is delayed in the troposphere and thus, the pseudorange
measurements are prolonged. The excess range varies from approximately 2.5 m
at zenith to 25 m at 5° elevation [21]. There are several models i.e. Saastamoinen,
Hopfield, et cetera [45] for estimating the total tropospheric delay w.r.t. satellite
elevation and local meteorological parameters.36 Typically, a mapping function
is used to transform the zenith delays to the total slant delay (often wet and
dry delays are mapped separately). Source [21] provides summary of a number
of models, the widely used ones (e.g. Saastamoinen) provide centimeter-level
accuracy for elevations above approximately 10°, which is sufficient for most
users.

36The actual meteorological conditions do not have to be sensed by the receiver. It is convenient to
use either standard atmosphere assumption, or averages for given latitude, local time and season.
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Ionosphere In contrast to troposphere, ionosphere is dispersive, and consequently, the
signals on different carrier frequencies encounter generally different ionospheric
delays. Actually, the ionosphere affects the signal propagation in a fairly complex
manner [46]; in addition to delay the attenuation, refraction, dispersion and
Faraday rotation are involved. Fortunately, the magnitude of these effects is
proportional to the total electron content (TEC)37 integrated along the signal
trajectory, and inversely proportional to the square of frequency. The TEC is
strongly dependent on solar activity, i.e. it exhibits diurnal periodicity),38 and
also is dependent on the season and phase of solar cycle.

The attenuation of the ionosphere is insignificant for frequencies above 70 MHz,
the dispersion-induced distortion of the ranging code (i.e. distortion induced by
the group delay difference within the signal bandwidth) is not likely to become
significant as well [46]. The Faraday rotation does not affect the circularly po-
larized GNSS signals at all [21, pp. 485–516].

The ionospheric delay is the only effect that needs to be targeted. According
to [47], 99.9 % of pseudorange and carrier phase delays depend on the inverse
square of the frequency. Thus, such model is adequate for most of the appli-
cations. Methods of modeling the higher-order ionospheric terms are provided
e.g. in [48]. It is important to remark that while the envelope (i.e. the mod-
ulation function, the ranging code) propagates with a group velocity, which is
slower than the nominal transmission speed, the carrier phase travels with phase
velocity, which is faster than the nominal transmission speed.

Consequently, there is ionospheric delay affecting the pseudorange measurements
and ionospheric advance affecting the carrier phase measurements.According
to [47, 48], the magnitude of these two terms is the same when higher-order
ionospheric terms are neglected; the delays are then equal to [9, 21, 22]

𝜏 𝐼𝜌 = −𝜏 𝐼𝑐 = −40.309 STEC
𝑓2 , (2.116)

where 𝜏 𝐼𝜌 and 𝜏 𝐼𝑐 denote the pseudorange and carrier additional delays that are
caused by ionosphere.

Due to the strong dependency on the inverse frequency square, it is possible to
almost mitigate the ionospheric delay by means of a special combination of two
measurements performed on different carrier frequencies. The ionosphere–free (or
iono–free) combination is a simple linear combination of the measurement on two
frequencies, which has the coefficients carefully chosen. For both pseudorange

37TEC is an integral of number of electron within 1 m2 cross-section column along the path. Com-
monly, VTEC (vertical TEC) or only TEC is used for the electron content along the zenith path,
STEC (slanted TEC) is used to denote the electron content along the path with arbitrary eleva-
tion angle. It may be expressed in the units of electron count per unit surface [e-/m2] or TECU
(TEC unit); 1 TECU = 1016 e-/m2.

38When extremely simplified, TEC is higher during day and lower at night.

46



2.2. Global Navigation Satellite Systems

and carrier phase measured on frequencies 𝑓1 and 𝑓2 it yields:

𝜌iono−free =
𝑓2

1𝜌𝑓1 − 𝑓2
2𝜌𝑓2

𝑓2
1 − 𝑓2

2
(2.117)

𝜑iono−free =
𝑓2

1𝜑𝑓1 − 𝑓2
2𝜑𝑓2

𝑓2
1 − 𝑓2

2
. (2.118)

Naturally, the combination “virtual” carrier frequency is higher, so the com-
bination “virtual” wavelength shortens. Moreover, the random errors that are
independent on the two frequencies are scaled and accumulated

𝜎𝜌, iono−free =

⎯⎸⎸⎷(︃𝑓2
1𝜎𝜌, 𝑓1
𝑓2

1 − 𝑓2
2

)︃2

+
(︃
𝑓2

2𝜎𝜌, 𝑓2
𝑓2

1 − 𝑓2
2

)︃2

(2.119)

For instance, if 𝑓1 and 𝑓2 are chosen to be the L1 and L2 frequencies of the GPS,
under assumption of the same pseudorange noise standard deviation on L1 and
L2, the iono–free combination deviation is 3-times higher than the one of the
individual pseudoranges.39

The single-frequency GNSS receivers (almost all non-professional ones) have to
use a model to correct the pseudorange for the ionospheric delay. The mod-
els evolved throughout the years of operation and further development of the
GNSS. Naturally, there is a trade-off between the accuracy of the model and
amount of data to be transmitted from space vehicles to the user. For instance,
GPS exploits Klobuchar model [21], which uses a parametrized cosine model
of the diurnal TEC development.40 More sophisticated and data-throughput-
demanding models are used in the newer systems, such as NeQuick2 model for
Galileo. The space-based augmentation systems (SBAS) deliver more accurate
ionosphere modeling, e.g. TEC grids. Generally, all the models have to be pro-
vided with approximate user and satellite positions, in order to estimate the
trajectory through the ionosphere, or the IPP (ionospheric pierce point) and
elevation if the model simplifies the ionosphere to a thin layer.
Still, it is barely possible to model and predict the ionosphere behavior dur-
ing the periods of rapid ionospheric activity – e.g. magnetic storms. There are
certain areas, where irregularities in the ionosphere appear more likely. These
are especially two sub-equatorial bands (commonly during the evening in local
time), where the irregularities cause amplitude scintillations (more than 20 dB
was observed) and phase scintillations (rapid change of phase that may cause
loss-of-lock of the PLL on receivers with narrow bandwidth)[21].

39Naturally, the iono-free combination is not the only possible linear combination of the measurements,
in addition, three (or more) signals may be combined. For instance, [49–51] thoroughly investigate
on this subject.

40According to the ICD [34], the Klobuchar model requires only eight 8-bit parameters to be delivered
to the user via satellite links and still is claimed to reduce the ionospheric delay by more than
50 % (RMS) around the globe. The model also simplifies the ionosphere to a single layer at 350 km
height.
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Multipath When the electromagnetic wave encounters an ideally conductive planar
surface in a perpendicular direction, it reflects and changes its polarization to
the opposite one (i.e. inverts polarity when linearly polarized, switches the sense
of rotation when circularly polarized). If the conductor is lossy, the reflection is
attenuated accordingly.
On a planar interface of two dielectrics the wave is partially reflected and partially
transmitted further into the second dielectric. For oblique incidences of the wave
the transmission and reflection follows Snel’s laws [12]. These effects can be
generally described by the transmission and reflection coefficients, which may be
further interpreted as transmission loss or reflection loss.41 It is important to
note that there is no actual power loss at the media interface, the power of the
incident wave is divided between the transmitted and reflected waves. However,
the wave may be attenuated in the lossy media.
As a consequence, all objects surrounding the GNSS receiver (ground, moun-
tains, buildings, vehicles, et cetera) reflect the signals to the receiver antenna;
some of the reflections are stronger (e.g. from metallic objects), some weaker
(e.g. from non-conductive objects). The reflected signals are denoted as the mul-
tipath signals and are generally considered nuisance in radionavigation. From
the signal-power perspective, the multipath is often observed as a fast fading
process, especially for moving receivers.
The direct signal always arrives first, since the paths of the reflected signals
are always longer and thus the signal is more delayed. Nonetheless, all the sig-
nals are summed physically at the antenna and the signal and its correlation
with the ideal replica becomes distorted. Should the relative delay of the multi-
path signal be short enough to affect the main peak of the correlation function,
the pseudorange measurement becomes biased. The polarity of the multipath-
induced bias depends on the polarity of the disturbing multipath signal at the
antenna, i.e. constructive combination (same polarity) of the signals lengthens
the pseudorange reading, destructive combination (opposite polarity) shortens
the pseudorange reading.
The reflections that do not affect the main lobe do not cause problems in the
signal tracking, however may be harmful for the acquisition process. Nonetheless,
severity of the multipath may become higher, when the direct path is heavily
attenuated or completely unavailable – in such case the first reflected signal may
be interpreted by the receiver as the direct one. Such misinterpretation will
certainly cause a significant systematic error in the pseudorange value.
The multipath effects may be limited by several precautions or processing op-
tions. First, the shape of signal autocorrelation function, especially the “sharp-
ness” of the main lobe is the determining factor of envelope of the possible
multipath-error values – the narrow main lobe reduces the maximal reflected

41The coefficients are the ratio of the electric field amplitude of the outcoming waves w.r.t. the in-
coming wave. It is negative when the polarity of wave is inversed and its absolute value cannot be
higher than unity. The loss is ratio of powers, usually expressed in decibels, therefore the polarity
information is lost in such interpretation.
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signal delay that may affect the tracking. For instance, the envelopes for GPS
C/A signal are available in [21, chap. 14] Some components may be successfully
reduced by the antenna characteristics. For instance, antenna with high cross-
polarization discrimination may be used. Such device will naturally suppress
the signals reflected with the opposite polarization from the conductive struc-
tures.42 Moreover, reflections may be reduced by the gain pattern of the antenna,
since most of the multipath signals exhibit low elevation angle of incidence (e.g.
ground or vehicle reflections). Narrow-spacing ranging-code correlator [9] or an
advanced architecture of the ranging code tracking loops, i.e. high resolution cor-
relator [52] or MEDLL (multipath-estimating DLL) [53–55] help to reduce the
multipath-related ranging error.
It is known that signals from low-elevation satellites tend to be affected by mul-
tipath, since for instance the path-length difference of ground-reflected signal is
usually small, reflections even from relatively low surrounding objects are likely.
Therefore, elevation masks may be applied, i.e. satellites with elevation lower
than certain limit are still tracked, but excluded from the position solution.43

If a single multipath-affected measurement is used in an over-determined (more
than four pseudoranges are available) position estimation solution, it may exhibit
excessively high residual that may indicate a multipath-related problem.
The signal propagation is also affected by vegetation canopy. The representative
data such as probabilistic description of amplitude fading w.r.t. elevation angle is
provided in [21, chap. 15]. Nonetheless, the severity of the foliage-related fading
depends heavily on the kind of vegetation canopy (tree species, height, density
of trees) and season. In some cases, the GNSS positioning service may become
disrupted or completely unavailable due to the attenuation.

Receiver
The receiver contributes to the overall error of the PVT estimate through multiple
effects.

First, the signal is received by a non-ideal antenna. The signals coming from different
directions are summed in the phase center. As well as in the satellite case, its position
is frequency and incident angle dependent; nonetheless, for standard application it can
be neglected, since the variations are not critical at the higher elevation angles.

Then, the signal propagates through a cable to the receiver itself and consequently,
the signal is delayed and attenuated. It is necessary to note that the cable delay has
to be compensated in timing applications, because the GNSS positioning algorithms
solve for the PVT at the point of signal summation.44

The receiver itself is not perfect, it may suffer from inter-frequency biases or DCBs.
Both can be either measured and at least partially compensated by the manufacturer
within the receiver software, or they can be estimated externally [56].
42Naturally, the signal may be reflected more than once. Since the sense of the circular polarization

changes with each reflection, the multipath signals with even reflection count are not discriminated.
43Elevation masking is common especially for precise GNSS measurements, e.g. GNSS reference sta-

tions or geodetic surveys.
44Since the cable-delay is common to all signals, it appears to be a part of the bias between the system

and receiver clock. Thus, position and velocity estimates remain unaffected.
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The ranging accuracy depends mostly on the performance of the code and phase
tracking loops, the DLL and PLL. There are several demands on the loops that are
conflicting. For instance, the immunity to noise can be improved by narrowing the
receiver bandwidth. On the other hand, narrow loop bandwidth is impractical for
high dynamic applications and requires more precise acquisition of signals. A number
of architectures of the loops does exist, moreover, there is a plenty of parameters
that can be tuned. Detailed description of the actual receiver tracking hardware and
software solutions and their behavior is beyond the scope of the thesis; a deep insight
can be found in several books, e.g. [9, 10, 21, 22, 57, 58].

Generally, in common applications the receiver should not contribute to the overall
error by more than 20 cm [21]. Professional, high-end, receivers promise precision of
pseudorange measurements below 10 cm (RMS) and carrier phase below 1 mm (RMS),
see e.g. [59, 60].

III. Fundamental Limitations

It is obvious that several conditions have to be met in order to allow GNSS to provide
a correct PVT estimate. The most critical is the requirement on direct line-of-sight
availability from satellites to receiver. Even if the line-of-sight is unavailable, the signal
may be received via a reflected path – however, such pseudorange (or carrier phase)
measurement is biased and may corrupt the position estimate. This implies that user
should expect compromised availability and accuracy in environment with frequent
line-of-sight obstructions, such as urban canyons, narrow valleys, forests, indoors, et
cetera.

The power of the GNSS signal at the vicinity of Earth’s surface is comparable to
the noise power level. Not only the GNSS signals may become unavailable even when
attenuated slightly (e.g. cellular communication or television and radio broadcasting
would deliver their service in sufficient quality in the same conditions), but their low
power-levels it render them vulnerable to jamming. For the user experience it does
not matter, whether the jamming is intentional or accidental, in both cases relatively
low-power jammer is able to disrupt the GNSS service. Even a strong geomagnetic
storm may hinder successful positioning. It is also possible to spoof the receiver, i.e.
provide fake signals to the receiver and mislead the PVT estimate [61].

Although numerous countermeasures to jamming and spoofing do exist, they are
not always implemented in the commercial receivers. And even though the receiver
technology has been certainly improved since the early years of GPS, the physical
principles and the implied limits remain the same. The GNSS indisputably became
the ultimate tool for navigation and timing in a global frame. Nonetheless, it is not
flawless and therefore it cannot be relied on carelessly.

2.2.2. GNSS positioning methods

As multiple GNSS observables with different qualities and hindrances may be available,
several methods with different characteristics of the PVT outputs can be used. Below,
four kinds methods are summarized.
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I. Standard code-based positioning

First, we will focus on the basic, stand-alone, code-based (or pseudorange-based) po-
sitioning. This method is the simplest one and does not require any information from
external sources, i.e. the GNSS navigation message broadcast provides all necessary
parameters.

For the sake of simplicity, we will consider that for 𝑀 satellites in view we have
𝑀 pseudorange measurements available.45 On the first look, the positioning is very
straightforward. The position of all the satellites (denoted by 𝑟i) is known from the
navigation message, pseudorange correction models are known as well. Thus, it is
possible to obtain user position 𝑟u and receiver clock bias 𝑏 estimates by solving a set
of pseudorange equations (2.59), which were derived in Section 2.1.2–III.

𝜌i = ‖𝑟u − 𝑟i‖+ 𝑏, (2.59)

Such set of nonlinear equations may be easily solved by one of the iterative methods
presented in Chapter 4.

The reality, however, is not that simple. The pseudorange measurements are taken
at exactly the same moment, and referenced to the receiver time – which should be
coarsely aligned with the system/satellite time by means of the navigation message. It
is obvious that the receiver position estimate will be valid for the moment of pseudo-
range measurement.

By the same principle, the satellite position at the time of transmission is the de-
termining one for the positioning. Nonetheless, the propagation delay of the signal
may be substantially different for each of the satellites, and consequently, the time of
transmission of the signals is different.46 The propagation delay is proportional to the
true range between the user and the satellite – so the position of the user is required in
order to compute it. The same problem occurs with the application of the tropospheric
and ionospheric models, since they are both user-position-dependent.

In order to overcome this issue, the delay is guessed, as well as the corrections to the
pseudorange from the models. The set of pseudorange equations is solved, and rather
inaccurate estimate of user position is obtained. Based on this inaccurate estimate it
is possible to determine the propagation delays, as well as the pseudorange corrections,
and then solve the set of equations again in order to obtain the position estimate with
better accuracy. Typically, only a few iterations are enough to reach the final accuracy,
which is determined by the errors described in the previous section.

By such approach a single-point solution may be obtained; naturally, the result can
be used as the initial guess for the next measurement epoch. It may be convenient
to exploit the dynamic properties of the positioned platform, i.e. to provide some
connection between the measurement epochs. This can be effectively done by using a
45Such condition is typical not only to the single-frequency GNSS receivers that are usually found

in consumer-grade electronics (e.g. smartphones, car navigation, sport trackers, et cetera). For
example, professional dual-frequency receiver may use ionosphere-free combination, which results
in a single pseudorange per satellite as well.

46The propagation delay from MEO GNSS satellites varies approximately from 64 to 100 ms, depending
on the orbit radius and elevation of the satellite w.r.t. user. The shortest propagation delay for a
particular satellite is in user’s zenith.
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Kalman filter for position estimate. Due to the nonlinear nature of the pseudorange
equations, an extended or unscented Kalman filter (EKF or UKF) must be used. It is
obvious that in the three-dimensional space the Kalman filter state vector will consist
of four elements (or more).

Use of Doppler-shift measurement
It has been already mentioned that the Doppler shift measurement is proportional to
the pseudorange rate, i.e. the radial component of the relative velocity of the satellite
and user. Thus, it is possible to extend the set of equations by the equations (2.63) for
the pseudorange rate and estimate receiver velocity 𝑣u and clock bias 𝑏̇ rate as well:

𝜌̇i = 1u,i · (𝑣u − 𝑣i) + 𝑏̇. (2.63)

Note that the satellite velocity 𝑣i can be evaluated for the time of transmission
using the information included in the ephemeris. It is necessary to estimate the velocity
jointly with the position, since the unitary direction vector cannot be evaluated without
such information, see (2.61 on page 21).

The number of variables in the resulting equation set is doubled, however, the num-
ber of equations (i.e. measurements) is doubled as well. Therefore, at least four satel-
lites are required for a successful PVT estimation. Should the Kalman filter be used
for the solution, it has to operate with the state vector of length 8 or more – i.e. at
least 3 position coordinates, 3 velocity coordinates, clock bias and drift.

Carrier smoothing
Since the phase measurements are one or two orders of magnitude less noisy than the
pseudorange measurement, it is favorable to exploit them in the basic, stand-alone
positioning as well. The carrier phase is inherently ambiguous, so it cannot be used
for positioning in a direct way.

The carrier phase (𝜙, expressed in radians) can be easily recomputed to the range
scale, i.e. it can be expressed in meters by multiplying by factor 𝜆c/(2𝜋), where 𝜆c is
the carrier wavelength. Let us denote this scaled value as accumulated delta-range.
As long as the phase measurement is continuous, the ambiguity of the carrier phase
measurement is constant. Thus, for the periods of continuous measurements it can be
stated that the first derivative of the pseudorange is almost equal to the first derivative
of the accumulated delta-range. For the pseudorange and carrier phase measurements
taken in epochs 𝑖 and 𝑖− 1 it holds

𝜌i − 𝜌i−1 ≈
𝜆c
2𝜋 (𝜙i − 𝜙i−1) , (2.120)

provided the continuity criterion is satisfied.
It is possible to combine the unambiguous nature of pseudorange and smoothness

of the pseudorange by a method called carrier smoothing [9]. The pseudorange in the
epoch 𝑖 can be computed on the basis of previous pseudorange measurement and the
carrier phase difference:

𝜌
(𝜙)
i = 𝜌i−1 + 𝜆c

2𝜋 (𝜙i − 𝜙i−1) . (2.121)
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Similarly, epochs 𝑖 − 2, 𝑖 − 3, et cetera may be used as well. By means of combining
multiple computed pseudorange measurements and the actual pseudorange measure-
ment the smoothed value may be obtained. In [9] a recursive filter implementation is
presented:

𝜌
(𝜙)
i = 1

𝐾
𝜌i−1 + 𝐾 − 1

𝐾

(︂
𝜌

(𝜙)
i−1 + 𝜆c

2𝜋 (𝜙i − 𝜙i−1)
)︂
. (2.122)

The 𝐾 coefficient sets the weight of the phase information, i.e. the length of the carrier-
smoothing window; the algorithm is initialized with the raw pseudorange measurement.

It is necessary to remark that carrier smoothing does not suppress any systematic
errors, it only reduces the noise and may partially suppress multipath errors. Moreover,
for longer smoothing windows the pseudorange and carrier measurements may diverge,
due to changing ionospheric conditions.47 Such phenomena is often called code-carrier
divergence.

Dilution of precision
Naturally, the accuracy of the final solutions depends on the shape of the visible
satellite constellation with respect to the receiver. The receiver-satellite geometry
is captured in the geometry matrix 𝐺, which is the Jacobian matrix of the set of
pseudorange equations (2.63). In the 3D-space, geometry matrix has 4 columns and
number of rows equal to the number of pseudorange observations in the particular
epoch. The first three columns are formed by the transposed unit vectors pointing
from a satellite towards the receiver, the fourth column is all ones:

𝐺 =

⎡⎢⎢⎢⎢⎣
1T

u,1 1
1T

u,2 1
...

...
1T

u,M 1

⎤⎥⎥⎥⎥⎦ (2.123)

Then, the matrix 𝐻 is defined as

𝐻 =
(︁
𝐺T𝐺

)︁−1
, (2.124)

which is a four-by-four, symmetric matrix – the DOP (dilution of precision) matrix. It
can be shown that its diagonal elements describe how the pseudorange measurement
variance affects the positioning accuracy in a particular direction, i.e. in the direction
of three principal axes and in the time domain. Should the principal axes coincide
with a local Cartesian frame, e.g. east-north-up, then the square roots of the diagonal
elements are dilution of precision in the east, north, and up directions.

The principle can be described using a graphical representation of DOP in two
dimensions, see Fig. 2.12. The circular bands depict the ranging measurements with
non-ideal accuracy; the localized point lies certainly in the intersection of the two
bands. In the (a) subfigure, the intersection is sharp, the DOP is low in all directions.
47The sign of the ionospheric delay is opposite for the pseudorange and carrier phase measurements.

As long as it remains constant, it is canceled out. However, its changes accumulate in the opposite
way in the two measurements.
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(a) Low DOP (b) High DOP

Figure 2.12.: Graphical representation of DOP in two dimensions.

On the contrary, the intersection area is larger in the (b) subfigure – the DOP in the
elongated direction as well as the PDOP is higher.48

Moreover, since the directions and time domain are orthogonal, we may obtain DOP
in horizontal (or other) plane, in space by applying the Pythagorean theorem on the
diagonal elements. The particular combinations to obtain the DOP coefficient in the
local coordinate frame are summarized in Tab. 2.4.

The DOP coefficients should be interpreted as scaling factors of the ranging standard
deviation. Thus, assuming the pseudorange standard deviation 𝜎𝜌 the total 3D position
error would be

𝜎3D = PDOP · 𝜎𝜌. (2.125)

Lower values of DOP are desired; therefore, the satellites should be distributed
evenly in the sky. By a rule of thumb the VDOP is 50 to 100 % higher than HDOP
due to the nature of the constellations (there are no satellites below horizon). It is
important to remark that introducing additional satellite never leads to higher DOP
value.

II. Differential GNSS

A considerable amount of GNSS positioning error is related to the non-ideal propa-
gation of the signals and ephemeris errors. However, receivers that are close to each
other encounter rather similar errors, since the signal trajectories from satellite to
both receivers are almost the same. The satellite-related errors are highly correlated,
almost identical; the propagation delay errors decorrelate with the relative distance of
the receivers – further, we will denote the vector between the receivers as baseline, and
the distance as baseline length. Anyway, the ionospheric and tropospheric conditions
48An inverse, but principally similar, phenomena can be found in the following example: consider a

ball attached firmly in the middle of a long string. The ball can be easily moved perpendicular
to the string – the two halves of the string both stretch by a small fraction of the actual ball
displacement magnitude. In contrast, moving the ball in the direction of the string is harder, since
one of the halves of string has to stretch and the other has to shrink by the same amount – by the
whole magnitude of displacement.
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Table 2.4.: DOP coefficients in East-North-Up coordinate frame.
Label Meaning Formula

EDOP East
√
𝐻11

NDOP North
√
𝐻22

VDOP Vertical
√
𝐻33

TDOP Time
√
𝐻44

HDOP Horizontal
√
𝐻11 +𝐻22

PDOP Position (3D)
√
𝐻11 +𝐻22 +𝐻33

GDOP General
√
𝐻11 +𝐻22 +𝐻33 +𝐻44

are usually changing in a smooth manner, so the applicability of assumption of iden-
tical errors may be valid over tens or a few hundreds of kilometers of baseline length,
depending on the tropospheric and ionospheric conditions. Note that the multipath
effects are related to the immediate surroundings of the receivers and consequently are
uncorrelated.

Local area augmentation services (LAAS)
Consider a scenario with two receivers. The position of the first one is known, we will
denote it as the reference station; the second one, the rover, needs to be localized.
The two receivers are placed close enough to have the pseudorange errors similar.
Clearly, the reference receiver should be able to determine the errors of the measured
pseudoranges, since the true range to the visible satellites is available to it. In [9] two
approaches of DGPS are described, nonetheless, the basic principles are valid for all
GNSS.

In the first one, the DGNSS corrections are computed in the reference station by
means of differencing the pseudorange measurements and the respective true ranges.
The difference 𝑒r at the reference station (denoted by the r-subscript) follows

𝑒r = ‖𝑟r − 𝑟s‖ − 𝜌r

= −𝑏r − 𝜖𝑆𝑎𝑡r − 𝛿𝜌𝐼𝑜𝑛𝑜r − 𝛿𝜌𝑇𝑟𝑜𝑝𝑜r − 𝜖𝑅𝑥r , (2.126)

where 𝑏r is the station clock bias, 𝛿𝜌 denotes the ionospheric and tropospheric delays,
𝜖 denotes the errors caused by the satellite (as observed by the station) and receiver
(see 2.2.2–II for more information about the errors). A similar equation can be written
for the rover, only the subscript would be different – further we will use u-subscript.

The correction is delivered to the rover (user) and the receiver corrects its pseudo-
range measurement by adding the reference stations correction. If the receivers are
not too far49 and the correction is not too old, we may assume

𝜖𝑆𝑎𝑡r = 𝜖𝑆𝑎𝑡u 𝛿𝜌𝐼𝑜𝑛𝑜r = 𝛿𝜌𝐼𝑜𝑛𝑜u 𝛿𝜌𝑇𝑟𝑜𝑝𝑜r = 𝛿𝜌𝑇𝑟𝑜𝑝𝑜r , (2.127)

49This statement is certainly quite vague, no precise limit of correction applicability exists. As a rule
of thumb 100 km baseline length can be considered as a limit.
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and consequently the corrected pseudorange is

𝜌u = 𝜌u + 𝑒r

= ‖𝑟u − 𝑟s‖+ 𝑏u − 𝑏r + 𝜖𝑅𝑥u − 𝜖𝑅𝑥r . (2.128)

Naturally, the assumptions above become less valid with growing baseline length and
age of corrections.

It is worth noting that in this approach, differential clock bias (𝑏u− 𝑏r) is estimated
alongside the rover position. However, the reference station may solve for its bias and
compensate for it in the correction data. Also, the receiver-related errors differentiate;
such behavior may be useful when identical receivers are used as reference station and
rover, but may cause errors when different receivers are used. Regardless the choice of
receivers, the random errors are inherently independent and therefore their variances
sum up. It is also convenient to choose the reference station location so that the
multipath effects are minimal.

The second approach is called relative positioning, and is based on differencing time-
matched pseudorange measurements:

𝜌ru = 𝜌r − 𝜌u. (2.129)

Again, under the assumptions (2.127) it can be written that

𝜌ru = ‖𝑟u − 𝑟s‖ − ‖𝑟r − 𝑟s‖+ (𝑏r − 𝑏u) 𝜖𝑅𝑥r − 𝜖𝑅𝑥u . (2.130)

The reference station position is known, and obviously, the rover position vector 𝑟u
and joint bias (𝑏r − 𝑏u) have to be estimated.

The advantage of the relative positioning is that a modified version of carrier smooth-
ing may be applied to the differenced pseudorange 𝜌ru. In such case, the difference of
phase measurement 𝜙ru = 𝜙r − 𝜙u is exploited, however, the smoothing filter remains
the same as in stand-alone positioning, see (2.122). Favorably, due to the phase dif-
ferencing, the possibility of code-carrier divergence is mitigated, since it would affect
rover and reference station similarly. Naturally, both receivers have to observe the
carrier phase continuously. Source [9] claims approximately meter-level accuracy for
standard DGPS positioning and accuracy of a few decimeters for the carrier smoothing
with the averaging length of 15 minutes or more.

Wide area augmentation services (WAAS)
For the broad areas, the approach described above is not feasible, since it requires
quite dense network of reference stations.50 Moreover, switching from one reference
station to another is not possible without a loss of measurement continuity. In such
case a whole area of coverage is monitored and models of the ephemeris and signal
propagation errors for the whole area of coverage are provided to the users [9, 64].

Typically, the corrective information is provided via one or more geostationary satel-
lites – therefore, the systems are often called SBAS (Satellite-based augmentation sys-
tems). There are several operational systems, for example:
50Such system was working in the U.S as Nationwide DGPS. However, it has been downsized in

2016 [62], and will be phased out between 2018 and 2020 [63].
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WAAS(Wide-Area Augmentation System) operated by the U.S. Federal Aviation Ad-
ministration (FAA), covering North-American continent, exploiting 3 geostationary
satellites [65];

EGNOS(European Geostationary Navigation Overlay Service) operated by the Euro-
pean GNSS Agency (GSA), covering European continent, exploiting 3 geostationary
satellites (only 2 operational) [66];

MSAS(Multi-functional Satellite Augmentation System) operated by the Japanese au-
thorities, covering Japan islands and the surrounding ocean, exploiting 2 geostation-
ary satellites [67];

GAGAN (GPS-Aided GEO Augmented Navigation) operated by the Airports Author-
ity of India (AAI), covering Indian subcontinent, exploiting 3 geostationary satellites
(only 2 operational) [68].

Nonetheless, other countries (e.g. Russia [69], China [64], South Korea [70]) are in
development of their own systems.

According to experience obtained in the Integrated Satellite and Terrestrial Navi-
gation Technologies Centre of the Faculty of Electrical engineering, the SBAS posi-
tioning performance is somehow comparable with DGNSS. In the higher latitude, the
geostationary SBAS satellites appear on the south with rather low elevation angles.
Therefore the augmentation service is often unavailable even for long periods of time,
or the continuity of reception is compromised (especially for moving users).

III. Real-time kinematics

RTK is a differential GNSS positioning technique that fully exploits the carrier-phase
measurement accuracy. Hence, it achieves position accuracy of a few centimeters for
kinematic applications or even less for static measurements. It requires a data link
between the reference station and rover, preferably with low latency. Since the full
set of observables is transfered from the reference station to the rover, the required
data throughput scales with the measurement rate, number of satellites and number
of carrier frequencies received.

The implementation of RTK may be performed in several ways, but the most rec-
ognized one uses so-called double differences of the carrier-phase measurements, which
are descibed by means of (2.131) and Figure 2.13.

𝜙ij,ur = 𝜙i,ur − 𝜙j,ur = (𝜙i,u − 𝜙i,r)− (𝜙j,u − 𝜙j,r) (2.131)

The first difference is the same as in the relative positioning variant of DGNSS, i.e.
between the rover and reference station. The second difference is performed between
two satellites; such approach mitigates the internal biases of the receivers, since they
are common to all the received satellite signals in the same frequency band.

The description of RTK is available in many GNSS-related books, e.g. [9, 45, 71].
Another source of information can be the manual of an open-source implementation
of RTK positioning, RTKlib [72].

When the rover is not far from the reference station, only multipath and almost neg-
ligible residuals of the other errors affect the double-differenced phase measurement,
moreover, the multipath impacts the carrier phase in far less severe manner than in the
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Figure 2.13.: Measurement schematic for RTK double differences.

case of pseudorange. Notwithstanding, the carrier phase ambiguity has to be resolved
in order to perform the precise positioning. The integer nature of the carrier-phase
ambiguity is preserved in the double differentiation process.51 It is necessary to men-
tion that the ambiguities cannot be resolved using the phase data measurements from
a single measurement epoch. For each double-difference there is a unique ambiguity
variable, and the baseline vector has to be estimated as well. Thus, the pseudorange
measurements or data from multiple epochs have to be used.

In general, there is a grid of points in the space where each point corresponds to
a certain combination of the ambiguities (and the fractional phase measurements, of
course). It is important that it is a discrete space, since the ambiguities are discrete
values, indeed. The positioning algorithm has to find the right point and get its
position. Such search is certainly not trivial even for single-frequency case, since there
are typically 4 or more satellites in view, and the wavelength is at the decimeter level.52

Therefore, the ambiguity resolution (AR) is performed in two steps.
First, the ambiguities are assumed to be real numbers, i.e. continuous values. The

set of double-differenced equations is solved for position and ambiguities in a least-
squares manner, the initial guess may be obtained either from standalone or DGNSS
solution. The solution with the real ambiguities is often denoted as the float solution,
its accuracy is often similar to the DGPS one.

Second, the solution with integer ambiguities, the fix solution, has to be found. A
rather straightforward way is to simply round the float ambiguities, however, it ap-
pears to be a non-optimal approach [74]. Another techniques of AR are for instance
51Sometimes, triple-differences technique is also used. The third difference is performed in time, i.e.

between two consecutive epochs. This effectively cancels out the ambiguity terms (actually in the
same manner as the carrier smoothing does). On the other hand, due to the time-differencing the
integer constraint on the ambiguity values is relaxed, which results in the substantial loss of final
solution accuracy.

52The number of grid points and volume of the search space is investigated in [73].
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the ambiguity bootstrapping [75],53 integer least-squares, et cetera; see [45]. Proba-
bly the most recognized method is LAMBDA (Least-squares ambiguity decorrelation
adjustment) [76] which extends the integer least-squares, and searches the vicinity of
the float solution for the best candidate point. In addition, the generally correlated
ambiguities are transformed to another space, in order to decorrelate them. The solu-
tion is found in a more effective way when the values are less correlated, the two best
candidate points are then transformed back to the “correlated space.” The position es-
timate is obtained for all of these points and the final solution is verified by comparing
the residuals of the two best candidate solutions.

The RTK solution is extremely precise. Typically, an error not larger than a few
centimeters can be expected in kinematic modes, even less is achievable in the static
modes. Nonetheless, the technique is inherently sensitive to the continuity of the phase
measurements at both, rover and reference station receivers – the ambiguity remains
constant between the discontinuities of the measurements.54

Since RTK is a differential technique, its accuracy and more importantly the ability
to fix the ambiguities deteriorates with growing baseline length. The long-baseline
RTK versions do exist (baselines longer than ≈ 100 km), certain error modeling has to
be applied in order to respect the different conditions at the ends of the baseline vector.
Typically, the baseline accuracy is 1 to 10 ppm, i.e. 1 to 10 mm per each kilometer of
baseline. The single baseline RTK is able to fix the ambiguities within a few tens of
kilometers from the reference station. There are a few important measures of the final
positioning quality. For instance, the ability to fix the ambiguity often expressed as
the time to first ambiguity resolution, or the ambiguity-fix ratio. Also, the positioning
accuracy is evaluated separately for the fix and float solutions, since they are typically
different by at least one order of magnitude.

Of course, the same problem as in local version of DGNSS is faced here – a dense
network of reference stations is required. For this purpose, network RTK concept has
been introduced. There are several NRTK implementations; for instance, it has been
proposed to provide corrections to a single reference station data, which are based on
interpolated network measurements and approximate rover position [77]. Furthermore,
VRS (virtual reference station) concept has been developed; based on the approximate
rover location and reference station network observation the network software computes
the observations as if they were measured at the approximate rover location [78]. The
baseline (to the VRS) can be very short. Such approach does not require rover to
perform the network computation itself. Not only the NRTK improves the available
accuracy in a wider area, it also reduces the time required to fix the ambiguities [79].
The VRS-concept is not the only variant of the NRTK; the others are briefly described
and compared in [80].

Still, the use of NRTK does not diminish the need for continuous carrier-phase ob-
servations. Regardless RTK or NRTK is used for survey, it is challenged by ionospheric

53The integer bootstrapping is a rounding that respects the covariances of the rounded variables.
54By such discontinuities we mean signal loss or receivers PLL cycle slip (i.e. the phase reading

jumps across one or multiple phase cycles, however, the fractional part remains the same). Such
discontinuities may not be limited to a single measurement epoch.
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conditions – reduced ability to resolve the ambiguities and lower quality of measure-
ments may be expected during periods of high ionospheric activity.

To sum up, RTK is able to provide excellent accuracy under favorable conditions.
On the other hand, it is rather vulnerable to measurement discontinuities and its
performance (time to ambiguity resolution, ambiguity-fix ratio, accuracy) deteriorates
with the distance from the base station (unless NRTK is used) and instability of
ionospheric conditions.

IV. Precise point positioning

Unlike the RTK, the precise point positioning (PPP) is not a differential technique,
however, it aims on centimeter-to-decimeter level accuracy. Thereupon, all the errors,
which were suppressed by differencing across receivers and satellites in RTK, have to
be modeled and corrected by other means, or estimated during the observation. The
errors have been summarized already in Section 2.2.2–II, Table 2.5 summarizes the
methods of mitigation and residuals of the errors in PPP. The exact description of the
various PPP techniques is beyond the scope of the thesis, however, we will provide a
brief summary of its typical characteristics.

Table 2.5.: Error magnitudes in typical PPP processing (according to [81]).
Typical Mitigation Residual error

Effect magnitude method magnitude

Ionosphere < 100 m linear combination mm
Troposphere < 10 m modeling / estimation mm – dm
Relativistic ≈ 10 m modeling mm
Satellite antenna < 1 m modeling mm
Code multipath, noise ≈ 1 m filtering dm – mm
Solid Earth tides ≈ 20 cm modeling mm
Phase wind-up ≈ 10 cm modeling mm
Ocean loading ≈ 5 cm modeling mm
Orbits and clocks ≈ 20 cm modeling/filtering cm – mm
Phase multipath ≈ 1 cm filtering cm – mm
Receiver antenna < 1 cm modeling mm

The PPP is often performed in post-processing, since the precise ephemeris data,
satellite clock states, ionospheric and tropospheric data is available a posteriori, see
the update rates of the IGS products, for instance . On the other hand, real-time
and near-real-time variants of PPP do exist, since rapid or predicted data is often
available as well. Typically, the accuracy and integrity of such real-time data is lower
in comparison with the final products. Moreover, some of the corrections, like satellite
antenna offsets, code and phase biases, et cetera are temporally constant. There are
several methods (e.g. PPP-AR and PPP-RTK) that do resolve and fix the carrier
phase ambiguities of the undifferentiated measurements, which is a challenging task,
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Figure 2.14.: Comparison of PPP and RTK and DGNSS (according to [82]).

indeed [82]. The majority of PPP methods requires dual-frequency receivers, since they
are capable of elimination of the ionospheric delay. Nowadays, sub-decimeter accuracy
is available even in real-time positioning with moving receiver applications [81].

The PPP estimate requires a certain duration of continuous observation (minutes
or longer) to converge to the right solution. Since the phase observations are used
and the ambiguities are often resolved, the loss of phase lock results in the need of
re-initialization.

The amount of the information and the rate of its transfer is much lower than in
the case of full observations (as is done in RTK). A comparison of the required data
rates used in PPP-RTK and NRTK is provided within [80] a direct manner. It shows
that the space-state representation of the GNSS errors (the one used in PPP-RTK)
requires much less data bandwidth than the observation-space representation (used in
NRTK).

Both RTK and PPP have their applications. The RTK is superior in areas, where
high accuracy needs to be achieved very quickly or almost instantaneously. Nonethe-
less, it requires the reference station or a network, therefore its coverage is somehow
limited. The PPP provides slightly worse performance, however is available worldwide.
The accurate position estimate cannot be estimated immediately after measurement
initiation. An impression of trade-offs between solution availability and accuracy is
provided within Fig. 2.14.
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2.2.3. Overview of the available systems
This section is dedicated to a short description of the GNSS that are currently in
operation. The underlying principle is common to all of them, hence the text focuses
on the unique features or specialties of the particular systems.

The summary of the available GNSS signals is provided at the end of this section
by means of Fig. 2.15. A table summarizing the detailed technical specifications of the
numerous signals can be found for instance at the end of manual [72].

I. GPS – Global Positioning System

The American GPS is the right system to start with, since it was the first ToA-based
GNSS. Since the first satellite launch in 1978 several modernized generations of the
satellites were deployed. Nonetheless, the original ranging signal, the C/A code on the
L1 frequency is still transmitted by all the satellites. The full operational capability was
declared in 1995. Naturally, the GPS performance is often considered as a benchmark
for the other systems.

The space segment consists of 24 – 32 space vehicles in 6 orbital planes with 55°
inclination and height of 20 180 km. It exploits CDMA technique, i.e. all the satellites
broadcast at the same carrier frequency (set of frequencies), and their transmissions
are distinguishable by means of correlation with pseudorandom ranging codes which
are unique to each operational satellite.

The GPS time (GPST) is a continuous timescale that was set to zero at UTC
midnight on 6th January 1980; it is bound to the American approximation of UTC -
UTC(USNO). Unlike UTC, GPST is not affected by leap seconds, and therefore it is
now 18 s ahead of UTC (as of December 2018). The exact relation between GPST and
UTC is given in the navigation message.

The modern satellites transmit on three frequencies – L1, L2 and L5.55 Almost all the
receivers are able to receive the C/A code, which is transmitted on L1 (in quadrature)
only; the low-cost single-frequency receivers often support this signal solely. The C/A
code is a BPSK-modulated Gold-code, with rate 1.023 Mchip/s; also it carries 50 bps
of navigation data. In the oncoming generation of GPS satellites, i.e. “Block III”,
L1C (with time-multiplexed BOC modulation, described in detail in [83]) signal will
be transmitted as well.

In the inphase component of L1, as well as in the L2 inphase component, an en-
crypted precision BPSK-modulated P(Y) code is transmitted. Although the encryption
hinders full exploitation of this signal by non-authorized users, it is possible to pro-
cess it in a semi-codeless manner [84].56 In the modern satellites, the BOC-modulated
military M-code is transmitted on the same carrier, however, the transmitted power
is located at the edges of the L2 spectrum rather than around the center frequency,
which is the case of P(Y).
55L1 1575.42 MHz, L2 1227.6 MHz and L5 1176.45 MHz.
56According to [85, p. 59], the semi-codeless access to the P(Y)-code will not be discontinued at least

two years after 24 satellites broadcasting L5-signals are oribiting the earth. This is expected to
happen in 2024, when the satellites will be transmitting a civil signal on L2 (L2C) as well. Note
that before the introduction of L2C, the codeless or semi-codeless processing was the only option
to obtain L2 measurements for the civil user.
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The modernized GPS satellites transmit an open signal also on L2 (on older satellites
only P(Y) code was available on L2). This code is called L2C and is formed by
chip-by-chip multiplexing of two BPSK-modulated pseudorandom codes running at
511.5 kchip/s, so the resulting chip-rate is 1.023 Mchip/s, i.e. same as for C/A code.
Nonetheless, both code-components of L2C are longer binary sequences, and one is even
a pilot signal (no data message is modulated), therefore it promises better performance
than the C/A code. Further information on signals on the L1 and L2 frequencies are
available from [34], the documentation of L1C is separate [83].

The last generation of GPS satellites (IIF) transmits a civil signal on the L5 car-
rier. This carrier frequency is not shared with any military/restricted signals, the
civil signal has both inphase and quadrature components (usually denoted L5-I and
L5-Q). A 1 ms long pseudorandom code with rate 10.23 Mchip/s is BPSK-modulated
in each component. Consequently, the resulting composite L5 signal appears to be
QPSK-modulated. The 10-times higher chip rate (w.r.t. C/A code) results in 10-times
wider bandwidth and should provide similar accuracy improvement. Further detailed
information about the L5 interface is available in [86].

II. GLONASS – Globalnaya navigatsionnaya sputnikovaya sistema

The Russian GNSS has its roots in the former Soviet Union, its first satellite was
launched in 1982 and the constellation of 24 satellites was completed in 1995.57 None-
theless, the number of active satellites dropped later; in 2002 only 7 satellites were
available. By 2012, GLONASS was reconstructed and reached the nominal satellite
count again, of course with modernized satellites.

The GLONASS timescale is deduced from the Russian UTC(SU) approximation,
which is shifted by +3 hours (Moscow time) with respect to the “Greenwich time”. It
does respect the leap seconds. Consequently, there is a non-constant inter-system bias
between the GPS and GLONASS.

The satellites orbit the Earth at 19 130 km altitude in three orbital planes. The
inclination of the planes is 64.8°; consequently, the ground track of the satellites reaches
to higher latitudes, which improves the coverage and system performance in the near-
polar regions.

GLONASS is the only GNSS that uses the FDMA rather than CDMA to distinguish
the transmissions of the particular satellites. Therefore, carrier frequencies in the L1
and L2 bands are slightly offset – one of the 14 channels is chosen.58 The channels are
numbered by indexes 𝑘 = {−7, . . . ,+6} nowadays, the L1 and L2 frequencies are

𝑓L1 = 1602.0000 + 𝑘 · 0.5625 [MHz] (2.132)
𝑓L2 = 1246.0000 + 𝑘 · 0.4375 [MHz], (2.133)

their ratio is 9:7, regardless which channel is assigned. The open service ranging code
is a maximal length sequence of a 9-bit shift register (511 bits long) and is BPSK-
modulated with a rate 0.511 Mchip/s on both L1 and L2 carriers (in the quadrature

57Although the system was formally declared operational in 1993.
58The same channels are assigned to the satellites so that they are never visible at the same time.
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component).59 The inphase component of the very same carriers is used by encrypted
precision signal which has 10-times higher chip-rate.

The FDMA is quite challenging for RTK, since the hardware biases in the receivers
are typically frequency-dependent and equipment-dependent. Therefore the receiver
group delays for the individual satellites may be biased and would not cancel out
completely by means of the second difference in the double-difference method.

In 2006 a new ICD [87] that introduces CDMA signals transmitted in L1, L2 and L3
bands for GLONASS has been released.60 The properties of the signals are described
in particular documents for each of the bands [88–90]. On the L1 and L2 carrier, both
open and restricted signals are declared to be available in the future generation of the
satellites along with the open signal in the L3 band (a few of the current satellites
already provide this signal).

III. Galileo

The promising European GNSS; its first satellite was launched in 2011.61 Although
the initial services were declared at the end of 2016, the full operational capability is
expected to be reached in 2020, when the full constellation of 30 satellites is to be
completed.

The constellation is designed so that the satellites orbit in three planes which are
separated by 120° in longitude. The inclination of the planes is rather similar to GPS
– 56°, the orbital altitude is 23 222 km.

Galileo transmits in three bands denoted as E1, E5 and E6. The E1 carrier frequency
is 1575.42 MHz, i.e. the same as the GPS–L1. The modulation, which is used for the
open service in this band, is the composite BOC (CBOC) which resides the inphase
component of the carrier. The pseudorandom code rate is 1.023 Mchip/s, the two BOC
subcariers exhibit 1.023 MHz and 6.138 MHz, the latter carries 1/11 of the total signal
power. Such non-trivial signal structure narrows the tip of the autocorrelation peak
and therefore improves the ranging performance, as well as multipath imunity. The E1
CBOC signal consists of two components, E1-B and E1-C, from which the latter one
lacks the navigation data message. Detailed information on CBOC signal properties
and the Galielo E1 implementation can be found in [91] or [92], respectively.

In the E5 (1191.795 MHz) band, Galileo transmits AltBOC-modulated signal (Al-
ternative BOC). The subcarrier frequency is 15.345 MHz and the chipping rate is
1.023 Mchip/s – the same of the GPS’s P(Y) code. All the signal components are
unencrypted, the inphase component carries a data message and the quadrature com-
ponent serves as a pilot signal. The AltBOC signal exhibits two sidebands; the lower
one is denoted E5a, the higher one E5b.62 Both sidebands can be processed separately,
or together by the receiver. In the former case, each sideband offers approximately

59It is not transmitted on L2 by the older GLONASS satellites.
60The carrier frequencies are 1600.995 MHz for L1, 1248.060 MHz for L2 and 1202.025 MHz for L3.
61Two experimental satellites Giove-A and Giove-B were launched in 2005 and 2008, respectively.
62E5a frequency is 1176.450 MHz; E5b frequency is 1207.140 MHz.
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20 MHz bandwidth. When processed together, the bandwidth is more than 50 MHz.
Receiving and processing such a wide bandwidth is a challenging task, certainly.63

The third Galileo carrier, E6 at 1278.75 MHz carries two BPSK-modulated signals
in the inphase component. These signals have chip rate 5.115 Mchip/s and they share
the transmission power evenly. The first component is capable of carrying 1 kbps data
message, the second one is a pilot. The E6 signals are intended to be used for the
Galileo Commercial Service (CA), or High Accuracy service (HA). Some sources claim
that BOC-modulated signal of the public-regulated service is present in the quadrature
component of E6 carrier.

IV. BeiDou

The Chinese GNSS was often referred as COMPASS. The system specifications did
change in the previous years. For instance, the official English versions of the interface
control documents for the BeiDou-2 (released in Nov. 2016) specifies the B1I and
B2I signals64 with QPSK modulation of the Gold-code-based ranging code. The full
constellation consists of 5 geostationary, 3 IGSO satellites and 27 MEO satellites at
21 528 km altitude and 55° inclination w.r.t. the equatorial plane. The navigation
data message differs for the geostationary ones, the IGSO and MEO share the data
structure.

The Beidou-2 is however being superseded with BeiDou-3 which has a rather dif-
ferent signal structure. B1C signal is defined as a BOC modulated signal with 100
symbols-per-second data message, which is accompanied by a dataless quadrature-
modulated BOC pilot. The carrier frequency is shifted and coincides with the GPS
L1 and Galileo E1, i.e. is 1575.42 MHz. The B2a signal is transmitted in the GPS L5
band (1176.45 MHz). Again, the carrier is shared by the pilot and data component.
The modulation is BPSK with 10.23 MHz rate for both components, the data rate is
double w.r.t. the B1C signal. The B2a signal is not transmitted by the geostationary
satellites.

V. Regional navigation satellite systems

The two systems below provide coverage of the specific areas in the Asian region
only, however, they share the basic principles with GNSS. The satellites have to be
persistently above the area of coverage, so their orbits have to be geosynchronous – the
orbital period is exactly one day, which yields approximately 35 800 km orbit altitude.

IRNSS – Indian Regional Navigation Satellite System]
Sometimes, this system is denoted as NAVIC, and it covers the Indian subcontinent,
obviously. The constellation consists of 7 satellites – 3 geostationary (34°, 83°, 131.5°
east longitude) and 4 IGSO (equator crossings at 55° and 111.5° east longitude, 29°
inclination, two alternating in each plane) [93]. IRNSS is a standalone system, and it
should be able to provide 20 m (2-𝜎) accuracy over India and approx. 1500 km surround
area.
63At least 100 Msamples/s (real) or 50 Msamples/s (complex) have to be taken in order to capture the

entire AltBOC spectrum.
64The carrier frequencies are 1561.098 MHz and 1207.140 MHz, respectively.
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Unlike all other systems, the IRNSS does not transmit any signals in the L1-band.
It uses the L5-band (1191.795 MHz), and uniquely, it transmits navigation signals
in S-band at 2491.75 MHz, which is at the edge of the ISM-band that is used by
Wi-Fi, for example. On both carriers one publicly available BPSK-modulated sig-
nal (1.023 Mchip/s) is transmitted. It is accompanied with two regulated-service
BOC(5,2)-modulated signals (data and pilot channel) that are placed in the spectral
nulls of the open-service code [94].

QZSS – Quasi-Zenith Satellite System
This Japanese system is not stand-alone, it “enhances” the capabilities of GPS for
the area of Japan islands and introduces new services. Both, overview information
and detailed technical description (including ICD) are available through the official
website [95]. The constellation consists of four satellites. One is placed in the geosta-
tionary orbit at 127° east longitude, and the other three are placed in the so-called
evenly offset quasi-zenith orbits, which is unique among GNSS and gives the name
to this system. The quasi-zenith (or tundra) orbit is an eccentric inclined geosyn-
chronous orbit,65 whose ground-track is an asymmetric eight-figure perpendicular to
equator (crossing at 139° east). The advantage of this orbit is that the satellite stays
for the significant amount of time in the smaller loop of the eight-figure. Since this loop
is placed above Japan and because the orbits are offset, at least one of the satellites
is observable near the zenith angle, which is desired especially in the obstructed sites,
such as urban canyons.

The tight bond with GPS is obvious, the L1, L2 and L5 carrier frequencies of QZSS
are shared with it, the satellites transmit the same signals (L1-C/A, L2C and L5).
Moreover, the clocks are synchronized to the GPST. Additionally, QZSS satellites
transmit signals in the E6/L6 band (1278.75 MHz), which carry information required
by the CLAS – Centimeter Level Augmentation Service.66 Also, Sub-meter Level
Augmentation Service (SLAS) is provided by QZSS by means of a dedicated L1S
signal.

65The nominal eccentricity is 0.075 and inclination is 41°.
66According to the available descriptions, the CLAS uses the state-space representation of the current

GNSS errors (PPP-RTK data), provided to the user via satellites with a certain latency (10 to
20 s).
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Figure 2.15.: Summary of available GNSS signals.
(Used with permission of Stefan Wallner; [96])
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2.3. Ultra-Wide Band Positioning
Since the minimal possible standard deviation of signal time of arrival is inversely

proportional to the signal effective bandwidth (see CRLB in Section 2.1.2), it is de-
sirable to maximize the bandwidth. This is done for instance in the IEEE 812.15.4
standard, where the HRP UWB PHY (high rate pulse repetition frequency ultra-wide
band physical layer) includes optional support for ranging [19]. This technology is
also commonly denoted as IR-UWB (Impulse radio-UWB), since it uses a sequence of
extremely short pulses to transfer the information. Although other UWB technologies
do exist, we will focus solely on the impulse radio. The standard defines 15 UWB
channels, most of them provide 499.2 MHz bandwidth.67 For the sake of simplicity, we
will neglect the channels with higher bandwidths. Channel 0 is in the sub-gigahertz
band and it is not used for the localization purpose widely.68 The other channels are
located in 3.2 to 4.7 GHz (low-band) and 5.9 to 10.2 GHz (high-band) frequency bands.

The BPSK and BPM (burst position modulation) are used for data modulation in
order to allow both coherent and non-coherent reception (only parity is carried by the
BPSK modulation). Consequently, there is a single pulse-shape used for a particular
channel bandwidth, only its polarity and position in time is varied. The shape of
the pulse is defined in [19] by its cross correlation with a root-raised cosine reference
pulse with defined duration and roll-off factor 𝜁 = 0.5 (the same as in Section 2.1.4–
II). It can be shown that the CRLB of the signal delay or range estimator69 is below
the decimeter level for SNR better than 10 dB. Fig. 2.16 shows the CRLB for three
different pulse durations; the 𝑇𝑝 = 2 ns is the reference pulse for the 499.2 MHz channel
bandwidth. It is worth noting that for the wider bands (and therefore shorter pulses)
the CRLB drops even more.

Naturally, there are few disadvantages of the UWB positioning technology. The
transmitted power, as well as transmitter duty cycle, are strictly regulated due to the
very wide bandwidth. For instance, in the 3.4 to 4.8 GHz band the mean PSD is lim-
ited to −41.3 dBm/MHz with 1.5 % duty cycle (fixed indoor and mobile devices) and
maximal continuous transmission time of 25 ms. Such limitations imply a rather low
range of operation, and thus, the UWB localization is considered suitable for indoor
applications, mostly. From the received signal power perspective, the UWB systems
operate in the vicinity of the noise floor. The penetration of the signal through obsta-
cles, such as walls or vegetation is rather poor for the 3 to 10 GHz signals; reflection
or scattering are more likely to appear.

From the UWB characteristics mentioned above it arises that it is a relevant comple-
ment of the GNSS for indoor and similar areas, where the satellite signal is unavailable,
or insufficient for positioning.

Obviously, the design of the RF equipment for such wide bandwidths is nontriv-
ial. Wideband impedance matching of both power and low-noise amplifiers is rather
challenging task, especially when power consumption is constrained. Moreover, the
67Channels 4, 7, 11, and 15 provide bandwidths over 1 GHz.
68The sub-GHz band has substantially higher relative bandwidth, which is hardware-challenging.

Nonetheless, the lower frequency signals are able to reasonably penetrate under the surface of some
materials. Applications such as avalanche victim search could benefit from this ability [97].

69The CRLBs of the estimators follow equations (2.16) and (2.17) from page 12.
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distortion of the signal has to be kept within reasonable limits, thus, the gain and
the group delay should not vary significantly throughout the band of interest. Such
amplifiers are typically manufactured directly on a chip, where variations in the order
of tens of picoseconds are achievable [98, 99]. The same applies for the antennae; not
only the group delay should be constant w.r.t. frequency, it also should not vary with
angle of signal arrival. Of course, the other design constraints on antennae (such as
pattern, polarization, impedance matching, size, radiation efficiency, et cetera), are
still to be respected.

The positioning is enabled by the introduction of precise counter that is able to
timestamp the time of transmission and time of reception of the packets. The counter
frequency is defined by IEEE 812.15.4 standard to be 63.8976 GHz and the counter
should provide 32-bit unsigned integer value [19].70 The timestamps can be used to
estimate range or position using various methods. Further, we will focus on a descrip-
tion of UWB positioning aspects that were relevant for the author’s work, however,
detailed in-depth description is available e.g. in [2].

2.3.1. Available positioning methods
Generally the UWB localization system71 needs to consist of two types of nodes: the
tags and the anchors. The tags are the devices to be localized, while the anchors are
the infrastructure of the network with known position. There are two methods that
can be used in order to obtain position using an UWB network: the two-way ranging
(TWR) and the time difference of arrival (TDoA). The basic principles of the methods
and some of their variants have been already described within Sections 2.1.2–II and IV,
respectively. The comparison of both positioning approaches is briefly summarized in
Table 2.6, however, the rest of this section provides more detailed information.

The TWR always requires bi-directional communication. From the timestamps ob-
tained during the TWR-negotiation, it is possible to compute the true radio range
between two communicating network nodes (typically tag and anchor). However, it is
also possible to determine the offset of the rangning counters (clocks) in the two nodes.
It is usually considered a nuisance parameter, or it can be eliminated by a simple linear
combination. The ultimate advantage of this method is that the true range is available
as a raw measurement, it is not computed from the position difference as would be in
the case of the other methods. This is advantageous especially when the proximity to
an object or an area is to be evaluated, and the position of the tag is irrelevant. For
example, a warning should be issued for a heavy machinery controller if anybody gets
in the vicinity of the machine.

In order to obtain the position using the two way ranging a set of multilateration
equations has to be solved. The equations are nonlinear, however, the least-squares
method converge typically within a few (up to ten) iterations when the geometry is
favorable. The problems typically arise when the measurement or anchor location
uncertainty is comparable with the size of the constellation, or when the DOP is high
70The counter frequency is a 128-multiple of the HRP UWB PHY chipping rate (499.2 MHz). The

32-bit counter overflows every 67 ms, thus, some UWB modules provide extended counters [100].
71Sometimes, RTLS is used as an acronym for real-time localization systems.

69



2. Radionavigation Systems

Figure 2.16.: Range (left axis) and delay (right axis) CRLB of a root-raised cosine
pulses with different pulse duration (𝑇𝑝) and roll-off factor 0.5.

Table 2.6.: Comparison of TWR and TDoA approach in UWB localization systems.
TWR TDoA

Communication Bidirectional Unidirectional
Infrastructure
synchronization

Not required Critical,
sub-nanosecond accuracy

Tag/anchor power
consumption

High/High Low/High

Raw measurement
useful

Yes
(proximity detection)

No

Position fix rate Tens per second Thousands per second
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(i.e. geometry is poor). Naturally, the number of the range measurements has to be
higher or equal to the dimensionality of the localization space. Since each ranging
negotiation takes at least a few milliseconds, the number of position fixes obtained in
each second is rather limited (up to a couple of tens per second). The radio “traffic”
becomes quite dense, and thus, some kind of media access policy (other than basic
ALOHA)72 has to be used. Anyway, either of the two negotiating nodes have to be
ready to receive a message for an ineligible amount of time, which may drain the
battery capacity of the mobile devices – the tags. Moreover, the number of position
fixes may be further reduced due to the constraint on transmission duty-cycle imposed
by the emission regulations.

It can be said that at least 3 messages have to be sent in total in order to obtain a
range estimate, see scheme on Fig. 2.3. It is worth noting that some of the messages
may be used as a part of a multiple ranging negotiations and thus, the overall number
of messages per position fix may be reduced [101].

In contrast, when using the TDoA positioning principle, the tag may be located by
exploiting a single message that is typically called blink. It is also possible to have a
passive (receiving-only) tag, which receives messages from the anchors and computes
its position.

The former variant is very power efficient at the tag side, especially if ALOHA media
access policy is employed. Occasional transmission of the blink without the need to
receive anything allows the transceiver to be turned off for a majority of the time. The
anchors almost continuously receive the blinks from various tags, timestamp them and
send them to a computer that matches the corresponding blink receptions, computes
TDoA and estimates positions of the tags. The position is not known to th tag,
unless delivered by other means. The capacity of such system is limited by the ability
of anchors to process the blinks and by the maximal ALOHA air-time utilization.
Typically, a few thousand blinks can be processed per second.

In the latter case, the position is not known at the anchor side of the system, the
system works in a similar manner as GNSS with stationary satellites. The tag only
has to receive at least three or four anchor positioning messages in order to be able
to compute its position in horizontal plane or in 3D, respectively. Since the receiver
does not know when the message will be sent, it has to be “armed” for reception for
a while, typically. Therefore, this method may be more power-consuming at the tag
side than the former one. On the contrary, there is no practical constraint on number
of tags to be simultaneously localized. Without the loss of generality, we will focus on
the case with the transmitting tag.

As mentioned earlier in Section 2.1.2–IV, the anchors have to share a common
timescale. Since each nanosecond of timescale difference results in approximately 30 cm
bias of the TDoA measurement, the performance of the time transfer should provide
sub-nanosecond accuracy in order to keep the localization accuracy at a reasonable
level for indoor applications. Let us consider the worst case scenario, when the refer-
ence clocks of two anchors are at the opposite limits of the ±20 ppm oscillator accuracy;

72The maximal air-time utilization when using ALOHA protocol is 18 %. Its advantage is that there
is no need for media state assessment, nor need to transmit in a timeslot scheme.
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it is straightforward to notice that the nanosecond offset value would be reached after
25 µs of operation.

The challenging task of clock synchronization may be solved in a wired or wire-
less manner. The dedicated high frequency cabling for synchronization is impracti-
cal and costly. The wireless synchronization exploits the timestamping ability of the
transceiver and often the known propagation delay between two anchors. The wireless
methods require unobstructed line of sight between the synchronized nodes. Provided
that the propagation delay is known and compensated for, periodic transmission of one-
way synchronization messages is sufficient to keep the track of the master timescale
in the slave node. Should the propagation delay be unknown, TWR ranging can be
used to estimate it [102]. Typically, there are free running clocks in both, master
and slave nodes, and the slave node computes a correction that converts the slave
timescale to the master timescale. An extensive comparison of the wireless synchro-
nization methods is available in [103]; according to the paper, the best performance
is achieved by Kalman filter that tracks the clock offset and the drift (1st derivative
of the offset). These methods require the master anchor to be clearly visible by each
slave anchor.

Based on experience with synchronizing anchors, the author has incorporated drift-
rate (the 2nd derivative of the offset, oscillator frequency drift) tracking into the
Kalman filter [5]. By means of such a small increase of computational complex-
ity, the performance of the synchronization was boosted, especially during anchors
startup (when the temperature changes rapidly). For detailed information see Ap-
pendix C.1. Moreover, the improved synchronization algorithm may be used to trans-
fer the precise time information via a chain of relay anchors as well, not only from
master to slave anchors directly. The description and error analysis of the chained
synchronization algorithm is available in [5, 6] and is also briefly reviewed within Ap-
pendix C.1.

In order to compute position in plane (or in 3D space), at least two (three) TDoA
measurements have to be available. Hence, the blink has to be received by three
(four) anchors in the case when tag is transmitting. Only then the set of hyperbola or
hyperboloid equations can be solved. Note that the dilution of precision due to anchor
geometry (DOP, see Sec. 4.1.6) affects the quality of the position estimate, inherently.
Each of the anchor’s measurement may be interpreted as a pseudorange measurement,
similarly as in GNSS. Consequently, it is possible to approach the positioning problem
as a solution of a set of ToA equations.

However, according to the author’s experience, the convergence of an iterative least-
squares solver is more likely to fail on the ToA problem than TDoA problem. Since the
offset of the tag’s clock is a nuisance parameter in the ToA problem, the TDoA method
is to be favored. An example is provided in Fig. 2.17 where the raw measurements
from four anchors were approached in both ways. The geometry of the constellation
and spatial similarity of the ToA and TDoA results is depicted in Fig. 2.17a. The
iterative Levenberg-Maquardt algorithm (see Sec. 4.1.3) was used to solve the set of
equation in a least-squares manner. The comparison of required iterations count in
Fig. 2.17b clearly shows that the TDoA solution converges faster and more reliably
than the ToA. The probable reason is that the time offset (bias) variable, which has
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to be estimated in ToA, has often a few orders of magnitude broader range of possible
values than the other variables. The success of the solver is rather dependent on the
initial guess of the solution vector, which is easily set for the position components.73

2.3.2. Error sources
The accuracy of the final position estimate is affected by multiple factors. Most of
them contribute to the overall error budget regardless of whether TDoA or TWR
approach is used. The following characterization of major error sources is based on
theoretical knowledge from the related literature, such as [2], and on author’s hands-
on experience with an experimental positioning system which is based on DecaWave
DWM1000 ranging module [100].

Timestamping inaccuracy
Theoretically, the 64 GHz ranging counter provides resolution of approximately 15 ps
(4.5 mm). However, the precision (standard deviation) of the time of arrival measure-
ment is ten times worse even in high-SNR scenario; naturally, the precision degrades for
low SNR values. Similar precision may be assigned to the transmission trigger, i.e. the
transmission timestamp [103]. Note that this error component is random with zero or
negligible mean value. Based on experimental work described in [5] and Appendix C.1,
we state that the distribution of this error can be assumed Gaussian (see histograms
of the synchronization Kalman filter measurement residuals C.1b on page 179).

Timekeeping errors
The importance of timing accuracy is critical for both TDoA and TWR positioning
approach. The clocks (oscillators) in the UWB transceivers are non-ideal, so in addition
to the unknown offset they also suffer from drift, which is not necessarily constant.
According to [19] the the clock frequency error should be within±20 ppm. The problem
is not that the actual time of flight is measured inaccurately – even the maximal
±20 ppm error w.r.t. the true value is negligible; the time of flight is highly unlikely to
be more than a microsecond in the UWB system.

In the TDoA with transmitting tag case the timekeeping of the tag is relevant only to
the transceiver internal circuitry, since it has to generate the blink signal of sufficient
quality. Consider now that the anchors are synchronized using the KF-based algorithm
from Appendix C.1. The clock offset, drift and drift rate are estimated on the basis
of periodic synchronization messages from master to slave. The actual offset for any
timestamp after the synchronization is predicted using the KF state obtained after
the reception of synchronization message. Since the true values of the state vector
(the clock error parameters) evolve temporally, the period of synchronization message
transmission has to be kept short enough to encompass the development of the state
vector (typically a few tenths of a second).74 The TDoA values corrected for the
73The initial time-offset guess was set to the minimum of the ToA values for the purpose of generating

Fig. 2.17, which resulted in 95.6 % positioning success rate. In contrast, when the time offset was
initialized as the mean of the ToA values, the success rate was only 85.4 %, i.e. the count of failed
attempts grew more than three times.

74In the case of DWM1000 modules, 400 ms period was sufficient to achieve sub-nanosecond accuracy,
it also provided performance margin for occasional missing messages.
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(a) Horizontal plot of the anchor constellation and the position solutions.

(b) Number of Levenberg-Marquardt algorithm iterations required to converge; histogram
(bars) and CDF (line). The shaded area on the right shows failed positioning attempts.

Figure 2.17.: Comparison of ToA and TDoA problem convergence in a simple UWB
localization test [104]. The positioning was successful when the RMS
value of residuals fell below a threshold value in less than 10 iterations.
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predicted clock offsets of the respective anchors are affected by the prediction errors.
Those are kept below the nanosecond-level, however.

When the inverse variant of the TDoA is used, i.e. tag is receiving, the clock drift of
the tag may become important as well. Only one message at the time can be received
simultaneously; therefore the anchors should not transmit their messages concurrently,
a small delay that would enable receiver to capture the consecutive messages from dif-
ferent anchors is necessary. Provided that the transmission timestamp (in the system
master time) is included in each message, the tag can correct for the intentional trans-
mission delay. When the delays to be corrected reach approximately a millisecond
length, the difference between time interval measured at the tag and at the anchor
becomes comparable with the ranging precision. Under such circumstances, the clock
drift has to be taken into account and the simple TDoA measurement equation (2.65)
from page 21 has to be modified. The TDoA, or the drift-affected range-difference
between 𝑖 and 𝑗 anchors 𝑑i,j is to be expressed as

𝑑i,j = ‖𝑟u − 𝑟i‖ − ‖𝑟u − 𝑟j‖ − 𝑐0 𝛿𝜈
[T]
(︁
𝑡
[T]
Rx,i − 𝑡

[T]
Rx,j

)︁
𝑐0
(︁
𝑡
[T]
Rx,i − 𝑡

[M]
Tx,i − 𝑡

[T]
Rx,j + 𝑡

[M]
Tx,j

)︁
= ‖𝑟u − 𝑟i‖ − ‖𝑟u − 𝑟j‖ − 𝑐0 𝛿𝜈

[T]
(︁
𝑡
[T]
Rx,i − 𝑡

[T]
Rx,j

)︁
,

(2.134)

where 𝑡[T]
Rx,i and 𝑡

[M]
Tx,i are the reception time of message from the 𝑖-anchor in the tags

timescale, and the transmission time of this message in the master anchor timescale,
respectively. The relative tag clock drift 𝛿𝜈[T] should be estimated as an additional
nuisance parameter.75

In contrast, when using TWR, the time of flight (and therefore range as well) is
computed from the measurements of the time intervals, which are a couple of orders
of magnitude longer than the time of flight. Considering a few ppm clock offset, the
nanosecond-level error is obtained when working with millisecond-long intervals. The
actual TWR methods and their performance under assumption of drifting oscillators
have been discussed in Section 2.1.2–II (p. 14). Generally, due to the limited accuracy
of the oscillators, the single-sided TWR is inapplicable. Therefore the linear SDS-
TWR or nonlinear ADS-TWR estimators are used. Some variants do exist, such as
those presented in [105, 106], nonetheless, it can be shown that they are principally
and performance-wise equivalent to the double-sided TWR approaches covered within
this thesis [4].76

Hardware delays
The timestamping takes place in the digital part of the transmitter and receiver. None-
theless, the time of flight should be measured between the antennae phase centers.
There are substantial delays between antenna and the timestamping point, moreover,
they are different for the transmission and reception path. The delays will be further
denoted as 𝜏Tx and 𝜏Rx. The paths of the signal are depicted in Figure 2.18.
75Note that the clock drift is not likely to change swiftly, unlike the position coordinates. Such

behavior may be exploited when estimating the position and drift by means of EKF or other
nonlinear random process estimator.

76The performance-improving modifications of the DS-TWR are based on the reordering of the mes-
sages or minimizing the turnaround time.
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Figure 2.18.: Sources of HW delays in UWB transceiver.

Hardware delays for receiver and transmitter are often dependent on the choice of
modulation settings and channel. Temperature variation affect the hardware delays as
well.

The group delay of the antenna and its cable (or other transmission) is common to
both, transmitting and receiving direction. The antenna group delay however varies
also with the incident angle.77 Unlike the other hardware delays, the angular group
delay variation cannot be calibrated and accounted for effectively, since the angle of
arrival and antenna orientation have to be known simultaneously. However, it is not
impossible [107]. The magnitude of such variation is typically kept within ±100 ps, i.e.
approximately to ±3 cm of signal path in open space, see e.g. [108, 109].

The transmission and reception hardware delays cannot be measured separately,
since there is typically no simultaneous access to the timestamping output and the
antenna output. Only the aggregate delay

𝜏Σ = 𝜏Tx + 𝜏Rx (2.135)

can be estimated using several methods [110, 111]; the ratio of 𝜏Tx and 𝜏Rx may be
provided by the device manufacturer.

One of the calibration procedures uses [110] TWR measurements. Each of the range
measurement 𝑟AB is affected by the aggregate delays of both transceivers involved and
noise, which may be assumed white:

𝑟AB = 𝑟AB + 𝜏
[A]
Σ + 𝜏

[B]
Σ +𝒩 (0, 𝜎2

𝑟 ). (2.136)

For the purpose of calibration, the true range 𝑟AB is known. If a reference device
with known 𝜏Σ is available, the 𝜏Σ of any other device can be computed using (2.136),
assuming that the range measurements are averaged sufficiently in order to reduce the
random noise impact below significant level. When no reference design is available,
at least three devices are required for calibration. The matrix equation describing
77The antenna (and to some limited extent the transmission) are dispersive, i.e. their group delay

varies with frequency as well. This may reduce UWB pulse fidelity, which may indirectly induce
some additional ranging error.
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(a) TWR-based method (b) Relay-based method

Figure 2.19.: Methods of UWB transceiver hardware delay calibration.

the situation for three transceivers and the general expression for arbitrary number of
transceivers holds
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⎞⎟⎟⎠ , (2.137)

𝑟 − 𝑟
𝑐0

= 𝐴𝜏Σ. (2.138)

Observe that 𝑟 is a vector of averaged 𝑟 measurements, and 𝐴 is a matrix of the
measurement pairs, i.e. there are two ones in each row and all rows are unique. The
number of rows is given by a binomial coefficient

(︀2
𝑛

)︀
, where 𝑛 is number of transceivers

used. Although the problem is solved by means of genetic algorithm in [110], it is
possible to solve such linear problem using the ordinary least squares estimator

𝜏Σ =
(︁
𝐴T𝐴

)︁−1
𝐴T𝑟 − 𝑟

𝑐0
. (2.139)

The second method of calibration uses two helper devices to calibrate the third
transceiver. It may be implemented by exploiting the chained synchronization [6] or
as described in [111]. We will denote the helpers as master (M) and slave (S) and
the calibrated device as relay (R). The master sends a timestamped message that is
captured by both, relay and slave; naturally, the reception time is known as well. Then,
relay sends a timestamped message to slave. Under the assumption of driftless clocks,
the clock offsets of the relay and slaves clock w.r.t. the master clock (𝛿𝑡[MR], 𝛿𝑡[MS],
respectively) remain constant. Reusing (2.22) we may write equations for transmission
and reception times:

𝑡
[S]
RxM = 𝑡

[M]
Tx + 𝛿𝑡[MS] + 𝑟MS

𝑐0
+ 𝜏
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Rx (2.140)

𝑡
[R]
RxM = 𝑡

[M]
Tx + 𝛿𝑡[MR] + 𝑟MR

𝑐0
+ 𝜏
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Rx. (2.142)
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By simple combination of the above equations we may obtain

𝜏
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−
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𝑐0
. (2.143)

It is worth noting that the clock offset terms and delays at master and slave transceivers
are eliminated, since they are common to both propagation paths – direct, and via relay.
The true distances between the nodes 𝑟MR, 𝑟RS and 𝑟MS are known, or the transceivers
are placed in-line and thus condition

𝑟MR + 𝑟RS = 𝑟MS (2.144)

holds. In such case the propagation delays are inherently compensated. Naturally, a
vast amount of measurements has to be performed in order to suppress the random
noise. The time interval (𝑡[R]

Tx − 𝑡
[R]
RxM), and consequently (𝑡[S]

RxR − 𝑡
[S]
RxM) as well, should

be kept as short as possible in order to mitigate the error induced by the clock drift.78

The same principle of mitigation master and slave delays may be exploited when
using chained synchronization [5, 6]. Provided that the propagation ranges are com-
pensated, the relays aggregate delay may be recognized as the difference of slaves clock
offset observed from the messages sent by relay and the offset observed from the di-
rect master messages. By the nature of the Kalman filter and its tuning, the noise is
suppressed already.

Propagation errors

Arguably, the most noticeable errors originate from the multipath propagation. Gen-
erally, we are interested in the measurement of propagation delay on clear, direct line
of sight; this is always the shortest and fastest path for the signal. Nonetheless, the
signal propagates by reflections from walls, structures, et cetera, so there are other
delayed “copies” of the signal received.

Based on whether the direct line of sight is available or not, the propagation channel
is usually denoted as LOS or NLOS, respectively. In the LOS channel, the first received
signal is typically the most dominant in terms of received energy. In contrast in case
of the NLOS propagation, some of the reflected signal is the most powerful, i.e. the
highest peak does not correspond to the correct delay to be measured. The direct
component is often very weak or missing completely. Some algorithms of detecting the
first path under the NLOS conditions are available in [2].

If the direct line of sight is obstructed by a dielectric material, the signal is not
only partially reflected and attenuated, but is delayed as well. According to (2.13) and
(2.14), we may say that the relative erroneous prolongation of the range is proportional
to the averaged square-root of the dielectric constant (relative permitivity) 𝜖𝑟 along
the signal path. Nevertheless, it is highly unlikely that a significant portion of the path
will be filled by a medium with relative permitivity substantially higher than one, and
the signal will not be attenuated below the sensitivity of the receiver at the same time.

78In [111] the clock-drift-related error is suppressed by extension of the negotiation.
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2.3.3. Brief summary of UWB localization
The frequency bands for ranging and positioning are placed between 3 and 10 GHz and
exhibit bandwiths in excess of 500 MHz. Although the bandwidth promises decimeter-
to-centimeter level accuracy, the high-frequency signals are propagating through the
open space almost exclusively. The signals tend to reflect from obstacles, rather than
propagate through them.

Since the UWB system coexists with other radio systems operating in the 3 to
10 GHz band, its transmissions are strictly regulated in terms of maximal transmitted
power and maximal air-time utilization. Usually, the systems have maximal range of
not more than hundred meters. A typical application is in indoor localization systems,
or as a complement of GNSS where it is not available.

2.4. LF and VLF systems
Low-frequency and very-low-frequency navigation (or positioning) systems are an op-
posite to the UWB systems. They typically cover vast areas, the transmitters are
able to service ranges beyond hundreds or thousands of kilometers, depending on the
frequency and power used. The long waves (the wavelength 𝜆 span for LF and VLF
is 1 to 100 km) propagate through the various obstacles, since they are barely an ideal
conductor and electrically reasonable fraction of wavelength in size.

At those frequencies the waves propagate between the ground and ionosphere [112];
unlike in the previous systems described within the thesis, the range is measured along
the Earths surface.79 Naturally, such systems are able to provide only a 2-D position
fix, i.e. latitude and longitude coordinates.

Due to the size of the transmitting antennae and high radiated powers, it is almost
impossible to jam these systems. It is a considerable advantage over the low-power,
high-frequency solutions, such as GNSS.

2.4.1. Omega
Omega VLF navigation system can be considered to be the ground-based predecessor of
the GNSS, since it provided global coverage. It was operating from 1982 to 1997. The
global coverage was secured by 8 synchronized stations scattered around the globe –
the locations were Norway, Liberia (earlier Trinidad), Hawaii, North Dakota, Reunion,
Argentina, Australia and Japan. They transmitted concurrently in the 10 to 14 kHz
frequency band; the radiated power was 10 kW per station. Due to the extreme wave-
length, the transmitters typically used approximately 400 m tall grounded or isolated
towers as the antennae.80

Detailed descriptions and principles of operation are available e.g. in [113, 114].
According to the sources, it was able to achieve 2 to 4 km accuracy via hyperbolic
navigation (TDoA) approach. Indeed, the phase difference of the received signals
79Approximately the great circle distance, not the euclidean distance.
80The antennae in Norway and on Hawaii sites were valley-span cables that were several kilometers

long.
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was measured, rather than time of arrival difference, due to the wavelength used.
Multiple frequencies were used in order to reduce the ambiguity of the phase difference
measurements.

The VLF waves are considered to propagate in a spherical “waveguide” between the
ground and ionosphere, the propagation is noticeably affected by the surface conduc-
tivity and ionosphere state [112]. Therefore, the night and day propagation differs and
the waves are attenuated excessively in the snow-covered areas [113].

A Russian counterpart of the Omega system is called Alpha, or RSDN-20, both the
frequency range used and principle of operation are very similar.

2.4.2. Loran family
The history of the hyperbolic navigation systems Loran (long range navigation) starts
in the 2nd World War. Multiple generations of the system were developed, arguably
the most widely used is Loran-C, which was developed in the late 50’s. Although
the first versions exploited HF signals, Loran-C uses approximately 300 µs long pulses
modulated on a 100 kHz carrier wave.

There are two dominant modes of propagation of the 100 kHz waves – ground wave
and sky wave [115]. The former propagates along the finitely conductive surface of
the Earth and the latter is reflected from the ionosphere. The skywave arrives later,
since its propagation path is longer; the delay is dependent on the effective height
of ionosphere, which changes with daytime. However, the ground wave decays more
quickly, therefore the less-stable skywave is more dominant at greater distances from
the transmitter.

The Loran transmitters are organized in precisely timed chains, each consists of
master and several secondaries. The TDoA of the ground waves81 from at least two
master-secondary pairs are required in order to obtain 2-D position fix. The system
should provide 0.25 NM (460 m) absolute accuracy (95 %) and up to 90 m repeatable
accuracy. The transmitters radiate 10 kW to 1.6 MW peak power, typically by means
of approximately 200 m tall mast antennae.

Primarily, Loran operates over sea surface, which is more conductive than ground.
For instance there is a chain of Tchayka, Russian analogy to Loran, with increased
transmitter power that enables operation over the “dry” ground [115].

The position fix inaccuracy may be deteriorated by the DOP factor when the receiver
to transmitter chain geometry is unfavorable, i.e. the measured hyperbolas of constant
TDoA intersect in an obliquely. It is worth noting that the Omega system usually
did not suffer from such phenomena, since the baselines between the transmitters were
substantially longer.

2.5. Local terrestrial navigation systems
Within this section we are considering the local navigation systems that operate on the
UHF frequencies and beyond, i.e. the electromagnetic waves propagate approximately
via the line of sight. Such systems may often be understood as ground-based GNSS.
81Both delay and phase of arrival are measured in order to increase the accuracy.
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Further we are discussing two commercially available systems – Locata and NextNav.
The information provided is based on the published research articles and materials
available via the respective websites.

2.5.1. Locata
The Locata system operates in the ISM band around the 2.45 GHz frequency. It
heavily builds on the GNSS (or more precisely GPS) principles [116]. The system uses
a passive (receiving-only) user equipment and a set of “LocataLites” that transmit
the ranging signals. The LocataLites are precisely synchronized via line-of-sight links
and they transmit 1023-chips long Gold code ranging sequences with a 10.23 MHz
chipping rate. Since the transmitters are close to the ground, the difference of the
received signal power for two LocataLites may be several tens of dB, which is beyond
the code-division capabilities of the Gold codes.82 Therefore, the TDMA is employed
in addition to CDMA, i.e. timeslots are assigned to the LocataLites as well. No guard
intervals are required between the slots, owing to the precise synchronization.

The Locata network operating range may be as wide as 50 km. The positioning
methods are the same as in the case of GNSS, moreover, the position of the stationary
LocataLites does not have to be computed from ephemeris and the ionosphere does
not affect the propagation of the waves at all – only the local tropospheric conditions
are relevant.

Locata receiver is able to provide both pseudorange and carrier phase measure-
ments. Similarly to GNSS, meter-level accuracy is achievable when using the former,
centimeter-level accuracy with the latter. The DOP is typically the key aspect of ac-
curacy in case of ground-based constellation. For instance a very “flat” constellation
cannot provide vertical accuracy as good as the vertical one.

2.5.2. NextNav
The NextNav system is a metropolitan beacon system (MBS) that is intended to
complement GNSS in urban areas, mostly [117]. The beacons transmit ranging signals,
whilst the users only receive. For the ranging purpose it exploits long Gold code pulses
with the same chipping rate as GPS L1 C/A, the transmitters are ground based and
precisely synchronized to the GPS time (the accuracy of synchronization is within a
few nanoseconds). Only the main spectral lobe of the pseudorandom ranging code is
transmitted in the licensed 919.75 to 927.25 MHz band with up to 30 W ERP.

Unlike Locata, the synchronization of the beacons rely on the GPS system. More-
over, the precise phase measurements are not of interest in case of NextNav. It targets
on mass-market devices and related services, such as E911 localization (emergency
localization).

The system is able to provide horizontal accuracy of a few tens of meters via the
radio positioning [117]. Due to the unfavorable vertical dilution of precision (VDOP),
which is caused by all transmitters located approximately in a single plane, the vertical
accuracy of the radio localization is poor. Therefore the user should use barometric
82The cross-correlation levels of two different Gold codes are approximately 13 dB below the main

peak of their the autocorrelation function.
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measurements to determine the altitude. In order to enable floor-level accuracy the
beacons make precise barometric and other meteorological measurements and provide
this information to the users via the ranging signals. The receiver uses the data to
eliminate the “meteorological biases” of its atmospheric pressure measurements, so
that the resulting value corresponds solely to the altitude.

The precise timing and straightforward signal structure are favorable for exploitation
of the NextNav for the purpose of passive radar. Especially, the ambiguity function
of the pulses, i.e. correlation function with Doppler-shifted replicas, is unambiguous
within the typical maximal range and provides reasonable resolution in both range
and Doppler-shift domains [118, 119]. Due to the high level of prior knowledge about
the signal structure83, the signal can be demodulated with less effort then communi-
cation or broadcasting signals, for instance. When demodulation is performed, a clear
noiseless replica of the transmitted signal can be reconstructed in the passive radar
receiver, which brings performance improvement or enables the simplification of the
radar receiver from coherent dual-channel architecture to single channel one [120]. In
the cited sources the exploitation of NextNav signals by a passive radar for detecting
low-altitude airborne targets is investigated.

2.6. Signals of Opportunity
This term, often abbreviated to SoO, is used to denote signals that are not primarily
used for localization purposes, however their properties are suitable for their exploita-
tion for navigation. The very basic requirements on the signal properties are outlined
by the ranging CRLB – wide RMS bandwidth and signal power are favorable. If the
ToA or TDoA estimation is targeted, some “features” of the signals have to be known
a priori to the receiver.

The typical examples of SoO of the are signals of cell communication systems (e.g.
LTE or CDMA2000), or broadcasting systems (e.g. DVB-T). It should be remarked
that the transmitters of the SoO are uncooperative and the signals themselves are op-
timized for their original purpose, not for navigation. For instance, if the transmitters
or base stations are synchronized, they are synchronized only to the extent required
for delivering the data, performing handovers et cetera. Such requirements are rather
weak in comparison with performance that would be ideal for localization purpose.

2.6.1. Basic principle of SoO processing

In this section we will focus on the ways of exploitation of SoO that are common
regardless of which signals are used. The technique that leads to the ToA or TDoA
estimation is of our interest. We will disregard methods of estimating the angle of
arrival by means of antenna systems.

Most of the signals have some kind of pilot components or preambles that are known
to the receiver a priori. We will denote such signal component 𝑠p(𝑡). The rest of the
83The ranging code is known a priori, similarly to GNSS. The variable component of the signal is

the BPSK-modulated low-rate data message. The same holds for the GNSS signals themselves,
however their low power levels are prohibitive with regard to the moving-target localization.
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signal carries random data and will be denoted 𝑠d(𝑡). The transmitted signal is then
formed as a superposition of such signals

𝑠(𝑡) = 𝑠p(𝑡) + 𝑠d(𝑡). (2.145)

Assuming a simple linear time-invariant AWGN channel, the received signal 𝑥(𝑡) holds

𝑠(𝑡) = 𝐴𝑠(𝑡− 𝜏) + 𝑤(𝑡), (2.146)

where 𝐴 is a scaling factor expressing attenuation in the channel, 𝜏 is the propagation
delay and 𝑤(𝑡) is the AWGN. The delay of the signal can then be estimated by means
of finding the peak of correlation function of the received signal

𝑅𝑥,𝑠𝑝(𝜏) =
ˆ
𝑥(𝑡)𝑠*p(𝑡− 𝜏)d𝑡. (2.147)

It is worth noting that it is equivalent to peak search in the matched filter output since
it holds

𝑥MF(𝑡) = 𝑥(𝑡)~ 𝑠*p(−𝑡) (2.148)

=
ˆ
𝑥(𝜏)𝑠*p(𝑡− 𝜏)d𝜏 = 𝑅𝑥,𝑠𝑝(𝑡). (2.149)

If a Doppler shift (or carrier frequency mismatch between receiver and transmitter) is
present, the cross-ambiguity function (CAF)

Ψ𝑥,𝑠𝑝(𝜏, 𝑓D) =
ˆ
𝑥(𝑡)𝑒j2𝜋𝑓D𝑠*p(𝑡− 𝜏)d𝑡. (2.150)

has to be investigated. The correlation function or CAF may be computed sequentially
over the batches of samples and searched for a peak that corresponds to the signal time
of arrival.

Such methods of processing are used in the passive radar as well. Nonetheless, in
the passive radar field it is usual to correlate the direct signal from the transmitter (or
illuminator) of opportunity with the receivers’ surveillance channel in order to search
for much weaker reflections (delayer and frequency-shifted replicas) of the direct signal.
In SoO processing a known signal component is compared with the whole received
signal.

In some cases, when the SoO is continuously transmitted, the acquired signal can
be tracked; the PLL or FLL loops may be used for tracking the carrier offsets, whilst
DLL architecture may serve for tracking the temporal variations.84 From the DLL
the pseudorange corresponding to a particular SoO transmitter is obtained; of course,
pseudoranges measured from various synchronized sources may be differentiated in
order to acquire TDoA measurements. In case of the snapshot receiver, the TDoA can
84The DLL requires at least the early and late correlator outputs for its operation, prompt correlator

is often available as well. Those outputs are indeed samples of the correlation function 𝑅𝑥,𝑠𝑝 before
and after the maximum (early and late) or at the maximum (prompt). The rest of the loop exploits
the correlator outputs in order to adjust the delay 𝜏 estimate and therefore keeps the evaluated
correlation function samples in the vicinity of its maximum.
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be sometimes obtained as a relative delay between two peaks in the evaluated cross-
correlation function or CAF, provided that the signals transmitted by two transmitters
are almost identical (as in case of broadcasting single-frequency network, for example).

It has already been mentioned several times that only a particular component of a
SoO is known. In the case of snapshot approach to the processing, the algorithms need
not to work in real time, the received signal portion can be saved and reprocessed. Such
approach provides an advantage, since even the data component of the received signal
can be demodulated and reconstructed. Decoding the actual data from the symbols
is not necessary, only the modulated symbols are of interest. The whole signal can be
then “re-correlated” with the received signal; clearly, the ranging performance should
improve, since both SNR and RMS bandwidth become higher. Under assumption
that the a priori known signal component and the unknown data component are
orthogonal,85 the improvement of the signal characteristics can be quantified based on
the PSD of the respective components solely. The joint RMS bandwidth is not a sum
of the individual bandwidths of the respective components, it follows

𝐵RMS[𝑠p + 𝑠p] =

⎯⎸⎸⎷´ +∞
−∞ 𝑓2 |𝑆p(𝑓) + 𝑆d(𝑓)|2 d𝑓´ +∞
−∞ |𝑆p(𝑓) + 𝑆d(𝑓)|2 d𝑓

=

⎯⎸⎸⎷ 𝑓2𝒮p(𝑓) + 𝑓2𝒮d(𝑓)d𝑓´ +∞
−∞ 𝒮p(𝑓) + 𝒮d(𝑓)d𝑓

. (2.151)

Obviously, the second equality is valid only because the orthogonality assumption. The
joint SNR, however, is a sum of the individual SNRs, since the noise power remains
unchanged 𝑃N, i.e.

SNR[𝑠p + 𝑠d] = 𝑃p + 𝑃d
𝑃N

, (2.152)

where 𝑃p and 𝑃d are power of the respective signal components.
The position of dedicated positioning transmitters is precisely surveyed and provided

to the navigation equipment.86 This is not always true for the navigation “transmit-
ters of opportunity.” Sometimes, the position of transmitter is publicly available (e.g.
DVB-T transmitter positions are obtainable from regulators, typically), however the
information may be inaccurate or incomplete. For reasonably low transmitter counts
the transmitting sites may be at least approximately surveyed (e.g. [121]). Otherwise
sensor fusion algorithms [122], or collaborative estimation techniques [123] may be used
to estimate the position of the exploited transmitters.

The family of the potential SoO is rather broad and their structure is almost never as
simple as was assumed in the preceding paragraphs. There are various aspects that hin-
der achieving the optimal performance or which impose some ambiguity. For instance,
the CAF should ideally contain one single peak at zero delay and zero frequency shift;
nonetheless, it often contains various other peaks that induce ambiguity in the signal
(the pilot signals often possess periodic properties). From a different perspective, such
85A typical example can be seen in OFDM-modulated signals, where dedicated subcarriers are used

as the pilot signals. All the subcarriers are orthogonal by definition.
86This assertion is rather simplified; it applies only to the navigation systems with passive user equip-

ment, such as GNSS, LF and VLF systems or terrestrial beacon systems, obviously. The transmit-
ter position information is either known a priori (e.g. Omega, Loran), included in the navigation
message (e.g. Locata, NextNav), or computed using predicted orbit parameters included in the
navigation message (GNSS satellites).
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properties may be advantageous for signal acquisition. However, those aspects are
typically bound to a specific type of the SoO (e.g. utilization of signal cyclostationary
properties are described in [124]), and their detailed description is beyond the scope of
the thesis; only a brief review of certain examples is provided in the following section.

2.6.2. Examples of SoO use
Digital video broadcasting uses powerful transmitters (e.g up to 0.1 MW in the Czech
Republic), up to 7.6 MHz bandwidth is utilized in each channel. Transmissions of
the DVB-T format are used often as a SoO. DVB-T uses OFDM modulation, which
secures almost flat spectrum in the occupied bandwidth 𝐵OBW. The RMS bandwidth
is therefore

𝐵RMS[OFDM] = 𝐵OBW

2
√

3
. (2.153)

Note that full bandwidth of the signal may be exploited only when all data is known,
i.e. only with a snapshot receiver; otherwise, only the pilot signals (both scattered
and continuous) can be used for positioning. Examples of DVB-T signal snapshot
processing are available in [121, 125], in [126, 127] the tracking of signal is described
and evaluated.

Meter-level tracking accuracy has been reported in [127], however, the actual po-
sitioning performance is not mentioned. However, the positioning errors are notd
determined by the accuracy only; for instance, DOP and propagation effects affect the
position estimate accuracy. In [121] the observed TDoA positioning errors were be-
tween 3 and 115 m. The positioning algorithm used in [121, 125] was designed by the
author and is described in Appendix B.1. It is worth noting that only the transmitters
in a single-frequency network (SFN) have to be synchronized. Generally, the reference
oscillators of the DVB-T transmitters are very accurate and stable, nonetheless, they
need not to be synchronized to common timescale. However, most of them exploit
GNSS-disciplined oscillators and therefore are synchronized to a common timescale.

In North America, DVB-T is not adopted; instead, the ATSC-standard signal is used.
The possible ways of exploitation of ATSC synchronization signals for localization
purpose are shown e.g. in [128, 129].

Another group of systems that provide useful SoO are cell communication systems.
The comparison with the broadcasting systems is ambivalent. On one hand, the equiv-
alent radiated powers of the base station transmitters are usually bellow 100 W; on the
other hand, they are much more densely placed. Any a priori information about the
transmitters is barely available, it is necessary to rely on the on-the-fly estimation of
the transmitter parameters. The exploitation of the OFDM-modulated LTE signals is
described in [122], where the tests on a road vehicle and an unmanned aerial vehicle
resulted in less than 10 m RMS error w.r.t. the GPS ground truth. The results have
been acquired with the widest possible LTE bandwidth – 20 MHz.

The cellular CDMA signals were already exploited as well [130]. Such choice of SoO is
reasonable, since it uses spectrum spreading by means of pseudorandom sequences, i.e.
similar technique to the GNSS ranging codes. The chipping rate is approx. 1.2 Mchip/s,
however the peak of the ACF is not sharp. In [130] a mean error w.r.t. GPS ground
truth was approx. 5.5 m.
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The radionavigation almost exclusively exploits communication between infrastructure
and the user equipment. It deteriorates or fails completely when such link is unreliable
or broken, for instance line of sight is lost or propagation effects reach beyond the
envelope of correction models.

In contrast, inertial navigation relies solely on monitoring of the motion and ori-
entation of the navigated object. The motion is sensed by means of a set of inertial
sensors commonly denoted as the inertial measurement unit (IMU). Such sensors do
not rely on any external information, principally. Within this thesis, we will consider
strapdown IMU87 with tri-axial accelerometer and tri-axial gyroscope as a de-facto
standard equipment. However, for certain applications the IMUs with less sensors are
used. Often a tri-axial magnetometer is included as well. Such sensors are nowadays
available in almost every smartphone, similarly as GNSS chipsets.

An accelerometer measures the specific force (𝑎) projected onto its sensitive axis.
From the tri-axial accelerometer, i.e. three orthogonally-mounted accelerometers, a
specific force vector is available. A gyroscope (commonly abbreviated as gyro) measures
angular rate (𝜔) along a single axis. It is convenient (and usually respected) to align
the axes of gyroscopes with the axes of the accelerometers, as is shown in Fig. 3.1.
The measurement vectors are defined w.r.t. the body reference frame (denoted by the
b superscript);

𝑎b =

⎡⎢⎣𝑎b
𝑥

𝑎b
𝑦

𝑎b
𝑧

⎤⎥⎦ , 𝜔b =

⎡⎢⎣𝜔b
𝑥

𝜔b
𝑦

𝜔b
𝑧

⎤⎥⎦ . (3.1)

The quality of the measurements depends on the sensor quality grade, naturally.
The sensors are affected by both systematic and random errors. The IMU grades
reflect the parameters of the individual sensors, in [132] the typical biases of gyros and
accelerometers for each grade are presented, see Tab. 3.1.

Within the thesis we focus on the low-cost IMUs, in particular. They typically use
MEMS (micro electro-mechanical systems) devices as the sensors, often manufactured
on a single chip. The technologies for higher grade gyros are reviewed e.g in [133].
In the following text, we will cover the basic approach of exploiting strapdown IMU
measurements for navigation near the vicinity of Earth’s surface.

87The sensors of a strapdown IMU are fixed on the navigated body, unlike gimballed IMUs. According
to [131], almost all new IMU designs are strapdown type.

87



3. Inertial Navigation

Table 3.1.: IMU performance grades according to [132]
IMU Grade Accelerometer bias Gyroscope bias

Consumer/Commercial >1 deg /s >50 mg
Tactical ∼1 deg /h ∼ 1 mg
Navigation 0.01 deg /h 25 µg
Strategic ∼0.001 deg /h ∼ 1 µg

3.1. Coordinate Frames and Attitude Parametrization

Several coordiante frames and their relations need to be defined in order to be able
to process and use the measurements of inertial sensors. For instance, the strapdown
IMU is mounted on the navigated body, whilst the navigation information has to be
bound to a reference frame of the environment or with a frame of the continuously
rotating Earth. The basic set of frames will be described within the second part of
this section.

The attitude of a body within a coordinate system or relative rotation of two coordi-
nate frames can be expressed by means of various parametrizations, each advantageous
in a certain way. In order to be able to describe the relations between the coordinate
frames, we need to describe the common parametrizations and transformations in the
first part of the section.

3.1.1. Attitude parametrization and rotation formalisms

I. Euler angles

Probably the most intuitive way of describing an object attitude are the Euler angles.
These define the amount of rotation around the axes, of a body (see Fig. 3.1 for
the graphical reference): yaw 𝜓 around the down-pointing 𝑧-axis; pitch 𝜃 around the
right-pointing 𝑦-axis; roll 𝜑 around the forward-pointing 𝑥-axis.88 It is obvious that
the order of rotations does matter. The pitch is constrained to values between ±90°,
in order to suppress ambiguous representation of a single attitude.

The representation can be used for any two frames, however it is convenient to
introduce it as a transformation from navigation (n-frame, in the subscript) to the
body frame (b-frame, in the superscript):89 According ti [131], the vector of Euler
angles follows

𝜓b
n =

⎡⎢⎣𝜑𝜃
𝜓

⎤⎥⎦ , (3.2)

88This definition is coherent with Tait-Brian angles, however an imprecise denotation as Euler angles
has became standard. The “original” Euler angles are defined with different axes of rotation,
however, the information contained is equivalent.

89The frames will be defined below in Sec. 3.1.2.
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Figure 3.1.: IMU measurement axes.

where the order of rotations goes from bottom to top of the vector. The yaw is applied
first, then the pitch is applied (around the body-frame axis) and the roll is applied as
the last one. For the inverse rotation, the order of the rotations has to be reversed. It
is necessary to remark that the euler angles always represent the transformation from
the global frame to the local frame and not vice versa.

The problem of such attitude parametrization is the gimbal lock – situation when
one degree of freedom is lost. This happens when the pitch angle is ±90°; then the
yaw and roll axes become identical (vertical). Moreover, the stacking of rotations,
i.e. combining multiple rotations cannot be done in a straightforward way, since for
arbitrary frames a,b,c

𝜓c
a ̸= 𝜓c

b +𝜓b
a . (3.3)

II. Rotation matrix

In the 3-dimensional space the rotation matrix performs rotation from one coordinate
frame to another frame by means of multiplication. The from-frame is again denoted
in the subscript and the to-frame is indicated in the superscript, i.e. for transformation
of vector 𝑥 from the a-frame to the b-frame it holds

𝑥b = 𝑅b
a𝑥

a. (3.4)

Any rotation matrix should not change the length of the transformed vector, i.e. the
determinant is always det𝑅 = 1. The inverse rotation can be performed by matrix
division – multiplication by the inverse matrix. For arbitrary rotation matrix it holds

𝑅−1 = 𝑅T, (3.5)

therefore, it can be stated that the inverse rotation follows

𝑅a
b = (𝑅b

a)T. (3.6)

The transformation between multiple frames can be stacked due to the associativity
of the matrix multiplication:

𝑅c
a = 𝑅c

b𝑅
b
a . (3.7)

However, the order of the matrices does matter, since the multiplication is non-
commutative.

89



3. Inertial Navigation

Relation to Euler angles

It is straightforward to derive the frame transformation matrix that corresponds to a
specific set of Euler angles. Again, we will demonstrate the conversion on the trans-
formation from the n-frame to the b-frame, provided that it can be generalized to two
arbitrary frames. The three required rotations are stacked using (3.7), so that

𝑅b
n = 𝑅{𝜓b

n} = 𝑅𝜑𝑅𝜃𝑅𝜓

=

⎡⎢⎣1 0 0
0 cos𝜑 sin𝜑
0 𝑠𝑖𝑛𝜑 cos𝜑

⎤⎥⎦
⎡⎢⎣cos𝜑 0 − sin𝜑

0 1 0
sin𝜑 0 cos𝜑

⎤⎥⎦
⎡⎢⎣ cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1

⎤⎥⎦
=

⎡⎢⎣ cos 𝜃 cos𝜓 cos 𝜃 sin𝜓 − sin 𝜃
sin𝜑 sin 𝜃 cos𝜓 − cos𝜑 sin𝜓 sin𝜑 sin 𝜃 sin𝜓 + cos𝜑 cos𝜓 sin𝜑 cos 𝜃
cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓 cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓 cos𝜑 cos 𝜃

⎤⎥⎦ .
(3.8)

It is worth noting that 𝑅{𝜓b
n} denotes an operator that converts a set of Euler angles

to the rotation matrix. According to [131, 134], the inverse operator can be defined so
that

⎡⎢⎢⎢⎢⎣
𝜑

𝜃

𝜓

⎤⎥⎥⎥⎥⎦ = 𝜓{𝑅b
n} =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

tan−1 𝑅
b
n[2,3]

𝑅b
n[3,3]

tan−1 −𝑅b
n[1,3]√︁

(𝑅b
n[2,3])

2+(𝑅b
n[3,3])

2

tan−1 𝑅
b
n[1,2]

𝑅b
n[1,1]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
tan−1 𝑅

b
n[2,3]

𝑅b
n[3,3]

− sin−1𝑅b
n[1,3]

tan−1 𝑅
b
n[1,2]

𝑅b
n[1,1]

⎤⎥⎥⎥⎥⎦ . (3.9)

Near the singularity of gimbal lock the resolution of 𝜑 and 𝜓 becomes practically
impossible.90

III. Quaternions

The following text describes the basic properties of quaternions that are relevant for
their usage for attitude parametrization, performing rotations and frame transforma-
tions. The description of quaternion algebra and the relation of quaternions to the
other parametrization is based mostly on [134, 135]; the notation builds on [135],
mainly. The advantage of the quaternion parametrization is that it does not suffer
from the gimbal lock, unlike the Euler-angles parametrization. However, quaternion
interpretation is not as straightforward.

90In [134] it is stated that in such case only the linear combinations of 𝜑 and 𝜓 can be computed, the
relevant equations are provided as well.
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3.1. Coordinate Frames and Attitude Parametrization

Quaternion algebra
A quaternion is commonly defined as a special column 4-vector:

𝑞
𝑑𝑒𝑓.⇔

[︃
𝑞𝑤
𝑞𝑥𝑦𝑧

]︃
=

⎡⎢⎢⎢⎣
𝑞𝑤
𝑞𝑥i
𝑞𝑦j
𝑞𝑧k

⎤⎥⎥⎥⎦ (3.10)

i2 = j2 = k2 = ijk = −1. (3.11)

The sum of two quaternions is performed as a simple sum of two vectors, therefore it
is commutative and associative. The quaternion product, however, holds

𝑝⊗ 𝑞 =
[︃

𝑝𝑤𝑞𝑤 − 𝑝T
𝑥𝑦𝑧𝑞𝑥𝑦𝑧

𝑝𝑤𝑞𝑥𝑦𝑧 + 𝑞𝑤𝑝𝑥𝑦𝑧 + 𝑝𝑥𝑦𝑧 × 𝑞𝑥𝑦𝑧

]︃
=

⎡⎢⎢⎢⎣
𝑝𝑤𝑞𝑤 − 𝑝𝑥𝑞𝑥 − 𝑝𝑦𝑞𝑦 − 𝑝𝑧𝑞𝑧
𝑝𝑤𝑞𝑥 + 𝑝𝑥𝑞𝑤 + 𝑝𝑦𝑞𝑧 − 𝑝𝑧𝑞𝑦
𝑝𝑤𝑞𝑦 − 𝑝𝑥𝑞𝑧 + 𝑝𝑦𝑞𝑤 − 𝑝𝑧𝑞𝑥
𝑝𝑤𝑞𝑧 + 𝑝𝑥𝑞𝑦 − 𝑝𝑦𝑞𝑥 − 𝑝𝑧𝑞𝑤

⎤⎥⎥⎥⎦ , (3.12)

where × denotes vector cross-product. Obviously, the quaternion product is non-
commutative, though, it is associative and distributive over summation. The conjugate
of the quaternion is defined as

𝑞* =
[︃
𝑞𝑤
−𝑞𝑥𝑦𝑧

]︃
, (3.13)

and it holds

𝑞 ⊗ 𝑞* = 𝑞* ⊗ 𝑞 = 𝑞2
𝑤 + 𝑞𝑥𝑦𝑧 · 𝑞𝑥𝑦𝑧 (3.14)

(𝑝⊗ 𝑞)* = 𝑞* ⊗ 𝑝*. (3.15)

The quaternion norm can be evaluated as follows

‖𝑞‖ =
√︀
𝑞* ⊗ 𝑞 =

√︁
𝑞2
𝑤 + 𝑞2

𝑥 + 𝑞2
𝑦 + 𝑞2

𝑧 . (3.16)

It can be shown that ‖𝑝⊗ 𝑞‖ = ‖𝑝‖ ‖𝑞‖. The norm is important for evaluation of the
inverse quaternion, which satisfies the condition

𝑞 ⊗ 𝑞−1 = 𝑞−1 ⊗ 𝑞 = 1̊ (3.17)

𝑞−1 = 𝑞*

‖𝑞‖2
(3.18)

where 1̊ = [1, 0, 0, 0]T is the identity quaternion, for which 𝑞= 1̊⊗𝑞= 𝑞⊗1̊. For the
normalized quaternions the inverse and conjugate operations are equivalent, obviously,
i.e.

‖𝑞‖ = 1 =⇒ 𝑞−1 = 𝑞*. (3.19)

This is rather important, because all the rotation quaternions are normalized.
The rotation of a vector is performed using

𝑟′ = 𝑞 ⊗ 𝑟 ⊗ 𝑞* (3.20)
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3. Inertial Navigation

where 𝑥 is the column vector to be rotated.91 Similarly, the transformation of the
reference frame from a-frame to b-frame for a vector 𝑟 is performed by means of

𝑟b = 𝑞b
a ⊗ 𝑟a ⊗ (𝑞b

a )*. (3.21)

Using the (3.19) property, the inverse transformation follows

𝑟a = 𝑞a
b ⊗ 𝑟b ⊗ (𝑞a

b)* = (𝑞b
a )* ⊗ 𝑟b ⊗ 𝑞b

a . (3.22)

The associativity of the quaternion product implies that the rotations, or frame trans-
formations, are stackable, i.e.

𝑟c = 𝑞c
b ⊗ 𝑞b

a ⊗ 𝑟a ⊗ (𝑞b
a )* ⊗ (𝑞c

b)*; 𝑞c
a = 𝑞c

b ⊗ 𝑞b
a . (3.23)

A more detailed description of quaternion algebra, its connection to rotation and a
review of a few alternative notations is available in [135].

Relation to rotation matrix
The representation of a quaternion in terms of rotation matrix follows [134]

𝑅{𝑞} =

⎡⎢⎣𝑞2
𝑤 + 𝑞2

𝑥 − 𝑞2
𝑦 − 𝑞2

𝑧 2(𝑞𝑥𝑞𝑦 − 𝑞𝑤𝑞𝑧) 2(𝑞𝑥𝑞𝑧 + 𝑞𝑤𝑞𝑦)
2(𝑞𝑥𝑞𝑦 + 𝑞𝑤𝑞𝑧) 𝑞2

𝑤 − 𝑞2
𝑥 + 𝑞2

𝑦 − 𝑞2
𝑧 2(𝑞𝑦𝑞𝑧 − 𝑞𝑤𝑞𝑥)

2(𝑞𝑥𝑞𝑧 − 𝑞𝑤𝑞𝑦) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑤𝑞𝑥) 𝑞2
𝑤 − 𝑞2

𝑥 − 𝑞2
𝑦 + 𝑞2

𝑧

⎤⎥⎦ (3.24)

The conversion of a rotation matrix to a quaternion form is more complicated. First,
the values

𝑃1 = 1 + tr(𝑅) 𝑃2 = 1 + 2𝑅1,1 + tr(𝑅)
𝑃3 = 1 + 2𝑅2,2 + tr(𝑅) 𝑃4 = 1 + 2𝑅3,3 + tr(𝑅) (3.25)

are computed. The 𝑅𝑖,𝑗 are the elements of the rotation matrix and tr() denotes the
trace of a matrix. The quaternion components are then computed depending on the
maximum of the 𝑃1 to 𝑃4 values, as shown in Tab. 3.2 below.

Relation to Euler angles
According to [134], the conversion from Euler angles to quaternion follows

𝑞{𝜓} =

⎡⎢⎢⎢⎣
cos 𝜑2 cos 𝜃2 cos 𝜓2 + sin 𝜑

2 sin 𝜃
2 sin 𝜓

2
sin 𝜑

2 cos 𝜃2 cos 𝜓2 − cos 𝜑2 sin 𝜃
2 sin 𝜓

2
cos 𝜑2 sin 𝜃

2 cos 𝜓2 + sin 𝜑
2 cos 𝜃2 sin 𝜓

2
cos 𝜑2 cos 𝜃2 sin 𝜓

2 − sin 𝜑
2 sin 𝜃

2 cos 𝜓2

⎤⎥⎥⎥⎦ . (3.26)

91In a strict sense such notation used is incorrect, since we have not defined the product of vector
and quaternion. In (3.20) the vector is inherently converted to quaternion and vice versa by
attaching/detaching a zero-valued scalar component:

𝑥̊ =
[︂

0
𝑥

]︂
.

Although formally incorrect, such notation is very convenient, as the “vector-quaternions” are
easily distinguished from the “rotation-quaternions.”
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3.1. Coordinate Frames and Attitude Parametrization

Table 3.2.: Conversion of rotation matrix to quaternion
If: Then: 𝑞𝑤 = 𝑞𝑥 = 𝑞𝑦 = 𝑞𝑧 =

max(𝑃𝑖) = 𝑃1:
√
𝑃1
2

𝑅3,2−𝑅2,3
2
√
𝑃1

𝑅1,3−𝑅3,1
2
√
𝑃1

𝑅2,1−𝑅1,2
2
√
𝑃1

max(𝑃𝑖) = 𝑃2: 𝑅3,2−𝑅2,3
2
√
𝑃2

√
𝑃2
2

𝑅2,1+𝑅1,2
2
√
𝑃2

𝑅1,3+𝑅3,1
2
√
𝑃2

max(𝑃𝑖) = 𝑃3: 𝑅1,3−𝑅3,1
2
√
𝑃3

𝑅2,1+𝑅1,2
2
√
𝑃3

√
𝑃3
2

𝑅3,2+𝑅2,3
2
√
𝑃3

max(𝑃𝑖) = 𝑃4: 𝑅2,1−𝑅1,2
2
√
𝑃4

𝑅1,3+𝑅3,1
2
√
𝑃4

𝑅3,2+𝑅2,3
2
√
𝑃4

√
𝑃4
2

The inverse conversion, from quaternion to Euler angle, belongs to the most important
ones, since it allows us to visualize the quaternion-based attitude in a human readable
form. The operation is described in [136] and holds

𝜓{𝑞} =

⎡⎢⎣𝜑{𝑞}𝜃{𝑞}
𝜓{𝑞}

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
tan−1 2(𝑞𝑤𝑞𝑥+𝑞𝑦𝑞𝑧)

1−2(𝑞2
𝑥+𝑞2

𝑦)
sin−1 (2𝑞𝑤𝑞𝑦 − 2𝑞𝑥𝑞𝑧)

tan−1 2(𝑞𝑤𝑞𝑧+𝑞𝑥𝑞𝑦)
1−2(𝑞2

𝑦+𝑞2
𝑧)

⎤⎥⎥⎥⎥⎥⎦ . (3.27)

Sometimes it is required to convert a covariance matrix of the Euler angles to quater-
nion covariance matrix (e.g. for initialization using a priori known attitude) or vice
versa (e.g. for visualization). For reasonably small variances this can be performed by
means of linearized operators (3.26) and (3.27), i.e. the Jacobian matrices of the trans-
forming functions. The exact relations are provided as (3.28) and (3.29) on page 94,
respectively.

IV. Rotation vector

The rotation vector 𝜈 defines the axis of rotation by its direction (unitary vector 𝑢)
and the angle of rotation 𝜑 by its magnitude:

𝜈 = 𝜑𝑢. (3.30)

In order to perform transformation of vector 𝑟 to 𝑟′ using a rotation vector 𝜈, it
has to be decomposed first into parts parallel 𝑟‖, and perpendicular 𝑟⊥ to 𝜈 (and 𝑢,
implicitly). The parallel component is obtained by means of a simple projection; the
perpendicular one is then computed as well:

𝑟‖ = 𝑢𝑢T𝑟, 𝑟⊥ = 𝑟 − 𝑟‖. (3.31)

According to [135], the vector rotation formula follows

𝑟′ = 𝑟‖ + 𝑟⊥ cos𝜑+ 𝑢× 𝑥 sin𝜑. (3.32)

The rotation operation can be performed by means of converting to rotation matrix
or quaternion as well.
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ria

nc
e
𝜓
→
𝑞

:
co

v𝑞
{𝜓
,c

ov
𝜓
}

=
𝐽
𝑞̊
{𝜓
}(

co
v𝜓

)𝐽
T 𝑞̊{
𝜓
},

(3
.2

8)

w
he

re
th

e
Ja

co
bi

an
m

at
rix

fo
llo

w
s

𝐽
𝑞̊
{𝜓
}

=
1 2

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣−
sin

𝜑 2
co

s𝜃 2
co

s𝜓
2

+
co

s𝜑 2
sin

𝜃 2
sin

𝜓 2
−

co
s𝜑 2

sin
𝜃 2
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s𝜓

2
+
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𝜑 2
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s𝜃 2

sin
𝜓 2
−
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s𝜑 2
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s𝜃 2
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𝜓 2
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𝜑 2
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𝜃 2
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+
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𝜃 2
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𝜓 2
−
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𝜑 2
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𝜃 2
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2
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s𝜑 2

co
s𝜃 2

sin
𝜓 2
−

sin
𝜑 2
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s𝜃 2

sin
𝜓 2
−
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s𝜑 2

sin
𝜃 2
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s𝜓

2

−
sin

𝜑 2
sin

𝜃 2
co

s𝜓
2

+
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s𝜑 2
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s𝜃 2
sin

𝜓 2
+

co
s𝜑 2

co
s𝜃 2

co
s𝜓

2
−

sin
𝜑 2

sin
𝜃 2

sin
𝜓 2
−

co
s𝜑 2

sin
𝜃 2

sin
𝜓 2

+
sin

𝜑 2
co

s𝜃 2
co

s𝜓
2

−
sin

𝜑 2
co

s𝜃 2
sin

𝜓 2
−

co
s𝜑 2

sin
𝜃 2

co
s𝜓

2
−

co
s𝜑 2

sin
𝜃 2

sin
𝜓 2
−

sin
𝜑 2

co
s𝜃 2

co
s𝜓

2
+

co
s𝜑 2

co
s𝜃 2

co
s𝜓

2
+

sin
𝜑 2

sin
𝜃 2

sin
𝜓 2

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦.
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llo

w
s

𝐽
𝜓
{𝑞̊
}

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
2𝑞

𝑥
(1
−

2(
𝑞

2 𝑥
+
𝑞

2 𝑦
))

(2
𝑞

2 𝑥
+

2𝑞
2 𝑦
−

1)
2
+

(2
𝑞 𝑤
𝑞 𝑥

+
2𝑞

𝑦
𝑞 𝑧

)2
2𝑞

𝑤
(1
−

2(
𝑞

2 𝑥
+
𝑞

2 𝑦
))

+
8𝑞

𝑥
(𝑞

𝑤
𝑞 𝑥

+
𝑞 𝑦
𝑞 𝑧

)
(2
𝑞

2 𝑥
+

2𝑞
2 𝑦
−

1)
2
+

(2
𝑞 𝑤
𝑞 𝑥

+
2𝑞

𝑦
𝑞 𝑧

)2
2𝑞

𝑧
(1
−

2(
𝑞

2 𝑥
+
𝑞

2 𝑦
))

+
8𝑞

𝑦
(𝑞

𝑤
𝑞 𝑥

+
𝑞 𝑦
𝑞 𝑧

)
(2
𝑞

2 𝑥
+

2𝑞
2 𝑦
−

1)
2
+

(2
𝑞 𝑤
𝑞 𝑥

+
2𝑞

𝑦
𝑞 𝑧

)2
2𝑞

𝑦
(1
−

2(
𝑞

2 𝑥
+
𝑞

2 𝑦
))

𝐷
𝜑

2𝑦
√

(1
−

4(
𝑞 𝑤
𝑞 𝑦
−
𝑞 𝑥
𝑞 𝑧

)2
)

−
2𝑧

√
(1
−

4(
𝑞 𝑤
𝑞 𝑦
−
𝑞 𝑥
𝑞 𝑧

)2
)

2𝑞
√

(1
−

4(
𝑞 𝑤
𝑞 𝑦
−
𝑞 𝑥
𝑞 𝑧

)2
)

−
2𝑥

√
(1
−

4(
𝑞 𝑤
𝑞 𝑦
−
𝑞 𝑥
𝑞 𝑧

)2
)

2𝑞
𝑧
(1
−

2(
𝑞

2 𝑦
+
𝑞

2 𝑧
))

(2
𝑞

2 𝑦
+

2𝑞
2 𝑧
−

1)
2
+

(2
𝑞 𝑤
𝑞 𝑧

+
2𝑞

𝑥
𝑞 𝑦

)2
2𝑞

𝑦
(1
−

2(
𝑞

2 𝑦
+
𝑞

2 𝑧
))

(2
𝑞

2 𝑦
+

2𝑞
2 𝑧
−

1)
2
+

(2
𝑞 𝑤
𝑞 𝑧

+
2𝑞

𝑥
𝑞 𝑦

)2
2𝑞

𝑥
(1
−

2(
𝑞

2 𝑦
+
𝑞

2 𝑧
))

+
8𝑞

𝑦
(𝑞

𝑤
𝑞 𝑧

+
𝑞 𝑥
𝑞 𝑦

)
(2
𝑞

2 𝑦
+

2𝑞
2 𝑧
−

1)
2
+

(2
𝑞 𝑤
𝑞 𝑧

+
2𝑞

𝑥
𝑞 𝑦

)2
2𝑞

𝑤
(1
−

2(
𝑞

2 𝑦
+
𝑞

2 𝑧
))

+
8𝑞

𝑧
(𝑞

𝑤
𝑞 𝑧

+
𝑞 𝑥
𝑞 𝑦

)
(2
𝑞

2 𝑦
+

2𝑞
2 𝑧
−

1)
2
+

(2
𝑞 𝑤
𝑞 𝑧

+
2𝑞

𝑥
𝑞 𝑦

)2

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦.
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3.1. Coordinate Frames and Attitude Parametrization

Relation to rotation matrix
According to [134, 135], the rotation matrix can be obtained as
𝑅{𝜈} = I+ sin𝜑 [𝑢]× + (1− cos𝜑) [𝑢]2× = I+ sin𝜑 [𝑢]× + (1− cos𝜑)𝑢𝑢T − I, (3.33)

where the skew operator []× is defined by

[𝑎]× =

⎡⎢⎣ 0 −𝑎𝑧 +𝑎𝑦
+𝑎𝑧 0 −𝑎𝑥
−𝑎𝑦 +𝑎𝑥 0

⎤⎥⎦ ; 𝑎× 𝑏 = [𝑎]× 𝑏. (3.34)

The skew operator is often denoted as a cross operator, since it emulates vector cross
product by means of matrix multiplication.

For small angles of rotation it can be assumed that sin𝜑 ≈ 𝜑 and cos𝜑 ≈ 1, thus
the conversion can be further simplified to

𝑅{𝜈} ≈ I+ 𝜑 [𝑢]× = I+ [𝜈]× . (3.35)
The rotation vector that corresponds to a given matrix can be found by means of
eigendecomposition. The 3-dimensional rotation matrix has always 3 eigenvalues 𝜆𝑅 =
{1; 𝑒+j𝜑; 𝑒−j𝜑}. The axis of rotation 𝑢 is the normalized eigenvector corresponding to
the 1-eigenvalue; obtaining 𝜑 is straightforward.

Relation to quaternion
Rotation vector 𝜈 from (3.30) can be converted to quaternion using [134, 135]

𝑞{𝜈} =
[︃

cos ‖𝜈‖2
𝜈
‖𝜈‖ sin ‖𝜈‖2

]︃
=
[︃

cos ‖𝜑‖2
𝑢 sin ‖𝜑‖2

]︃
. (3.36)

The inverse operation holds

𝜑 = 2 tan−1 ‖𝑞𝑥𝑦𝑧‖
𝑞𝑤

, 𝑢 = 𝑞𝑥𝑦𝑧
‖𝑞𝑥𝑦𝑧‖

=⇒ 𝜈{𝑞} = 2 𝑞𝑥𝑦𝑧
‖𝑞𝑥𝑦𝑧‖

tan−1 ‖𝑞𝑥𝑦𝑧‖
𝑞𝑤

. (3.37)

3.1.2. Coordinate frames
All the described frames are orthonormal, Cartesian coordinate frames. The order of
the axes 𝑥, 𝑦 and 𝑧 follows the right-hand rule. In the description of the frames we will
progress gradually towards the navigated body. The frame which the axis or vector
relates to is denoted by means of superscript in the following text.

I. Earth-centered inertial (ECI) frame

The inertial measurements are always taken with respect to the ideal inertial frame.
It is rather inconvenient to use a strictly inertial frame, therefore quasi-inertial ECI
frame is defined to be the i-frame. The origin of the i-frame is aligned with the center
of Earth, the 𝑧i-axis coincides with the north semi-axis of the planet, as is shown in
Fig. 3.2a. The ECI frame does not rotate with Earth, it is non-rotating w.r.t. distant
galaxies. The 𝑥i-axis is defined so that it passes through the vernal equinox92 (labeled
by Υ in the figure). The 𝑦i-axis completes the right-handed system.
92Vernal equinox is the ascending node of the ecliptic and the equator, i.e. the point where the sun

passes the equator from the Southern to the Northern hemisphere.
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3. Inertial Navigation

(a) ECI and ECEF frames. (b) ECEF and NED frames.

Figure 3.2.: Relations of coordinate frames.

II. Earth-centered Earth-fixed (ECEF) frame

The origin and the 𝑧e-axis of the ECEF, or e-frame coincide with the origin and 𝑧i-
axis of the i-frame. The Earth-fixed feature of the e-frame implies that it rotates with
the planet’s body – the 𝑥e-axis passes through the intersection of the equator and
Greenwich meridian, i.e. point with zero latitude and longitude; the 𝑦i-axis completes
the right-handed system.

The e-frame rotates with respect to the i-frame along the common 𝑧-axis with a
rate (ΩE = 15 ° h−1). Obviously, the low-cost, consumer grade gyroscopes are often
not able to reliably sense the Earth’s rotation. In such cases it can be assumed that
the inertial measurements are taken w.r.t. the ECEF frame, and the complexity of the
computations may be reduced.

Geodetic representation

Near the vicinity of the Earth’s surface the Cartesian coordinates cannot be considered
human-understandable. It is far more useful to provide latitude, longitude and height
which will be further denoted as 𝜙, 𝜆, and ℎ, respectively. The geodetic system used
by most GNSS is the WGS-84. The surface is approximated by the reference ellipsoid,
which is symmetric w.r.t. the axis of Earth’s rotation and w.r.t. the equatorial plane.
The height is measured on the normal of the ellipsoid surface, as shown on the meridian-
plane cut in Fig. 3.3.

It is curious that vernal equinox (or the 𝑥i-axis) points towards the Pisces constellation, while the
symbol ϒ is used for Aries. The reason is that the equinox has passed from Aries to Pisces in the
the 1st century AD [137].
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3.1. Coordinate Frames and Attitude Parametrization

The conversion from the geodetic to the Cartesian ECEF frame is straightforward
and unambiguous [22]:

𝑟n =

⎡⎢⎣𝑟e
𝑥

𝑟e
𝑦

𝑟e
𝑧

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎E cos𝜆√︀

1+(1−𝑒2
E) tan2 𝜙

+ ℎ cos𝜆 cos𝜙

𝑎E sin𝜆√︀
1+(1−𝑒2

E) tan2 𝜙
+ ℎ sin𝜆 cos𝜙

𝑎E(1−𝑒2
E) sin𝜙√

1−𝑒2
E sin2 𝜙

+ ℎ sin𝜙

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.38)

The WGS-84 reference ellipsoid is defined by major semi-axis 𝑎E = 6378.137 km and
the squared eccentricity93 𝑒2

E = 0.006 694 379 990 14. Note that the geodetic height
(above the ellipsoid) is different from the height above geoid, or mean sea level; the
difference between the two values is commonly referred as geoid undulation.

The conversion from cartesian system to the geodetic one is more complicated. The
longitude may be determined simply by means of a four-quadrant arctangent function

𝜆 = tan−1 𝑟
e
𝑥

𝑟e
𝑦

, (3.39)

however, the search for the ellipsoid normal that intersects the coordinate to be trans-
formed is nontrivial. The iterative Bowring method [22] may be used for this purpose:

1. Initialize:

𝑝 =
√︁
𝑥2 + 𝑦2 tan 𝑢 = 𝑧

𝑝
· 𝑎
𝑏

2. Iterate until tan 𝑢 converges:

cos2 𝑢 = 1
1 + tan2 𝑢

sin2 𝑢 = 1− cos2 𝑢

tan𝜙 = 𝑧 + 𝑒′2𝑏 sin3 𝑢

𝑝− 𝑒2𝑎 cos3 𝑢
tan 𝑢 = 𝑏

𝑎E
tan𝜙

3. Evaluate latitude and height above ellipsoid:

𝑁 = 𝑎E√︁
1− 𝑒2

E sin2 𝜙
ℎ =

⎧⎨⎩
𝑝

cos𝜙 −𝑁 for 𝜙 ̸= ±𝜋
2

𝑧
sin𝜙 −𝑁 − 𝑒

2
E𝑁 for 𝜙 ̸= 0

93According to [22], eccentricity 𝑒 and the second eccentricity 𝑒′ are determined by

𝑒2 = 1 − 𝑏2

𝑎2 𝑒′2 = 𝑎2

𝑏2 − 1 =
(︁
𝑎

𝑏
𝑒
)︁
.
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3. Inertial Navigation

Figure 3.3.: Latitude in the meridian plane of the reference ellipsoid.

III. Local, navigational (NED) frame

The navigation frame (n-frame) is a local frame in the vicinity of navigated body. The
𝑥n-axis points towards North, the 𝑦n-axis points towards East, and the 𝑧n-axis points
down. An alternative system ENU (East-North-Up) is sometimes used, especially in
the GNSS context; transformation between NED and ENU is straightforward.

The transformation of a point from the ECEF coordinates to the NED coordinates
(and vice versa) requires translation and rotation:

𝑟n = 𝑅n
e (𝑟e − 𝑜e

n) (3.40)
𝑟e = 𝑅e

n𝑟
e + 𝑜e

n (3.41)

𝑅n
e = (𝑅e

n)T =

⎡⎢⎣− cos𝜆 sin𝜙 − sin𝜆 sin𝜙 cos𝜙
− sin𝜆 cos𝜆 0

− cos𝜆 cos𝜙 − sin𝜆 cos𝜙 − sin𝜙

⎤⎥⎦ , (3.42)

where 𝑜e
n denotes the origin of the n-frame expressed in the e-frame; 𝑅e

n is the rotation
matrix94 from the e-frame to the n-frame.

It is obvious that both geodetic and cartesian representations of the n-frame origin
have to be known, since latitude and longitude values define the rotation. Remarkably,
due to the “flatness” of the Earth (the reference ellipsoid) the vertical axis does not
intersect the center of the Earth, which is the origin of the e-frame, unless latitude is
0° or ±90°.

Similarly as in case of the e-frame, the n-frame may be considered to be the inertial
frame when the IMU is unable to sense the Earth’s rotation.

Often, the origin of the n-frame is defined so that it coincides with the origin of the
body frame (b-frame, see following section). In this thesis, however, the origins do not
have to coincide perfectly, the body is moving in the n-frame that is stationary w.r.t.
94It is not necessary to use the rotation matrix notation; for example quaternion describing the same

rotation as 𝑅e
n holds

𝑞n
e =

⎡⎢⎢⎣
cos
(︀
− 𝜋

4 − 𝜙
2

)︀
cos 𝜆

2
sin
(︀
− 𝜋

4 − 𝜙
2

)︀
sin 𝜆

2
− sin

(︀
− 𝜋

4 − 𝜙
2

)︀
cos 𝜆

2
− cos

(︀
− 𝜋

4 − 𝜙
2

)︀
sin 𝜆

2

⎤⎥⎥⎦ .
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3.2. Strapdown IMU mMechanization

the e-frame.95 Such simplification may be understood as a flat-Earth approximation
in the vicinity of the navigated body.96

IV. Body frame

For simplicity, we will consider the b-frame to be the common frame for the navigated
body and the strapdown IMU – i.e. the axes and the reference point of the IMU
coincide with the centre of mass and principal axes of the body, as shown in Fig. 3.1.

The transformation of vectors between b-frame and the n-frame follow:

𝑟b = 𝑅b
n (𝑟n − 𝑜n

b) , (3.43)
𝑟n = 𝑅n

b𝑟
b + 𝑜n

b, (3.44)

in the rotation matrix rotation, and

𝑟b = 𝑞b
n ⊗ (𝑟n − 𝑜n

b)⊗ (𝑞b
n)*, (3.45)

𝑟n = 𝑞n
b ⊗ 𝑟b ⊗ (𝑞n

b)* + 𝑜n
b = (𝑞b

n)* ⊗ 𝑟b ⊗ 𝑞b
n + 𝑜n

b, (3.46)

in the quaternion notation.
When the origins of the n-frame and b-frame coincide, i.e. 𝑜n

b = 0, further simplifi-
cation of the equations above is possible.

The rotation matrices or quaternions can be obtained from the attitudes represented
by the Euler angles using equations (3.8) and (3.26), respectively; the inverse conver-
sion is performed by means of (3.9) and (3.27).

When other sensor is available at the navigated body, it is not placed in the reference
point of the IMU, generally. As an example, we may assume a GNSS receiver, whose
antenna (which is the localized element) is mounted on the top of the body, e.g. on a
car roof. It is offset from the b-frame origin, however its position is stationary w.r.t. the
b-frame – the vector describing the offset is commonly denoted as the lever arm. The
measurements taken at such offset point have to be corrected for the lever arm prior to
the fusion of the measurements. The GNSS measurement is referenced to the e-frame.
Therefore the transformation between the b-frame and the e-frame (via the n-frame)
has to be known in order to enable the correct transposition of the measurements to
the b-frame origin. Such transposition is thoroughly described e.g. in [131].

3.2. Strapdown IMU mMechanization
The set of methods of estimating the position, velocity and attitude (the state of the
body) on the basis of the inertial measurements is commonly reffered as the mecha-
nization. The IMU senses rotation rates and accelerations in the body frame; the state
of the body is to be obtained with respect to ECI, ECEF or NED frame, however. By
nature of the inertial measurements it is not possible to determine the absolute posi-
tion, velocity and attitude, only the change of those values can be observed. Let us
95In certain literature such frame is denoted as the tangential frame, see e.g. [131].
96Since the author’s work only focuses on the inertial navigation with low-cost sensors in a limited

area, the error induced by such approximation should not become significant.
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3. Inertial Navigation

now assume an ideally initialized system, where the initial state of the body is known.
Moreover, we will neglect all the imperfections of the IMU measurements, for the sake
of simplicity.

Regardless of the reference frame used, the most common way of mechanization
comprises three steps that are performed in the following order: attitude update,
velocity update and position update. We will consider that the IMU measurements
are sampled at epochs referenced by index 𝑘; the sampling interval is denoted by 𝜏sa.

The mechanization described below is the forward mechanization, i.e. 𝜏sa > 0, which
is applicable in real time. The described mechanization can be simply converted to
backward mechanization by introducing negative 𝜏sa and using index 𝑘 − 1 instead of
𝑘 + 1.

3.2.1. Attitude update

The simplest version of the attitude update is performed w.r.t. the i-frame. In the
quaternion and rotation matrix notation we may write for the attitude in the 𝑘 + 1
epoch that

𝑞i
b[𝑘+1] = 𝑞i

b[𝑘] ⊗ 𝑞
b[𝑘]
b[𝑘+1]; 𝑅i

b[𝑘+1] = 𝑅i
b[𝑘]𝑅

b[𝑘]
b[𝑘+1]. (3.47)

The terms 𝑞b[𝑘]
b[𝑘+1] and 𝑞b[𝑘]

b[𝑘+1] represent the rotation of the body from epoch 𝑘 to 𝑘+1.
Assuming that the change of the measured rotation vector between the epochs is small,
we may obtain the incremental rotation vector by means of zeroth-order integration.
Three kinds of the integrations may be used:

Forward : 𝑞
b[𝑘]
b[𝑘+1] = 𝑞{𝜔[𝑘]𝜏sa} 𝑅

b[𝑘]
b[𝑘+1] = 𝑅{𝜔[𝑘]𝜏sa} (3.48)

Backward : 𝑞
b[𝑘]
b[𝑘+1] = 𝑞{𝜔[𝑘 + 1]𝜏sa} 𝑅

b[𝑘]
b[𝑘+1] = 𝑅{𝜔[𝑘 + 1]𝜏sa} (3.49)

Midward : 𝑞
b[𝑘]
b[𝑘+1] = 𝑞

{︁
𝜔[𝑘]+𝜔[𝑘+1]

2 𝜏sa
}︁

𝑅
b[𝑘]
b[𝑘+1] = 𝑅

{︁
𝜔[𝑘]+𝜔[𝑘+1]

2 𝜏sa
}︁

(3.50)

The symbol 𝜔 is the vector of the rotation rate measurements, which can be interpreted
as the rotation vector ; its subscript indicates the epoch of measurement. It is worth
noting that the rotation rate in the middle of the sample interval is not necessarily
the mean of the sampled values. Either way, 𝜔 is assumed constant over the integra-
tion/sampling interval.97 Due to the high sampling rates, the rotations between the
sampling epochs are typically very small, i.e. the small angle approximation of 𝑅b[𝑘]

b[𝑘+1]
is possible, see (3.35).

Should the e-frame be used, the Earth’s rotation needs to be taken into account,
since the e-frame rotates within the i-frame by a small angle between the epochs:

𝑞
e[𝑘+1]
b[𝑘+1] = 𝑞

e[𝑘+1]
e[𝑘] ⊗ 𝑞e[𝑘]

b[𝑘] ⊗ 𝑞
b[𝑘]
b[𝑘+1]; 𝑅

e[𝑘+1]
b[𝑘+1] = 𝑅

e[𝑘+1]
e[𝑘] 𝑅

e[𝑘]
b[𝑘]𝑅

b[𝑘]
b[𝑘+1]. (3.51)

97It is possible to use first-order integration, as proposed in [135], which considers linear evolution of
the 𝜔 between the sampling epochs. Nonetheless, considering short sampling intervals and only
a small change of the rotation-axis during the sampling interval, the advantage over the midward
zeroth-order integration is usually negligible.

100



3.2. Strapdown IMU mMechanization

The small angle approximation is always applicable, therefore:

𝑞
e[𝑘+1]
e[𝑘] = 𝑞

⎧⎪⎨⎪⎩𝜏sa

⎡⎢⎣ 0
0

ΩE

⎤⎥⎦
⎫⎪⎬⎪⎭ ; 𝑅

e[𝑘+1]
e[𝑘] = 𝑅

⎧⎪⎨⎪⎩𝜏sa

⎡⎢⎣ 0
0

ΩE

⎤⎥⎦
⎫⎪⎬⎪⎭ ≈ I+ 𝜏sa

⎡⎢⎣ 0
0

ΩE

⎤⎥⎦
×

. (3.52)

In [131] the following approximation is suggested:

𝑅
e[𝑘+1]
b[𝑘+1] = 𝑅

e[𝑘]
b[𝑘](I+ [𝜔]× 𝜏sa)− 𝜏sa

⎡⎢⎣ 0
0

ΩE

⎤⎥⎦
×

𝑅
e[𝑘]
b[𝑘]. (3.53)

When the n-frame is used as the reference frame, additional, but static rotation
between the e-frame and n-frame 𝑞n[𝑘+1]

n[𝑘] or 𝑅n[𝑘+1]
n[𝑘] has to be taken into account

𝑞
n[𝑘+1]
b[𝑘+1] = 𝑞

n[𝑘+1]
n[𝑘] ⊗ 𝑞n[𝑘]

b[𝑘] ⊗ 𝑞
b[𝑘]
b[𝑘+1]; 𝑅

n[𝑘+1]
b[𝑘+1] = 𝑅

n[𝑘+1]
n[𝑘] 𝑅

n[𝑘]
b[𝑘]𝑅

b[𝑘]
b[𝑘+1]. (3.54)

The transformation from frame n[𝑘] to n[𝑘 + 1] is latitude-dependent and can be
obtained as

𝑞
n[𝑘+1]
n[𝑘] = 𝑞n

e ⊗ 𝑞
e[𝑘+1]
e[𝑘] ⊗ (𝑞n

e )* = 𝜏sa

⎡⎢⎢⎢⎣
cos ΩE

2
− cos𝜙 sin ΩE

2
0

sin𝜙 sin ΩE
2

⎤⎥⎥⎥⎦ ;

𝑅
n[𝑘+1]
n[𝑘] = 𝑅n

e𝑅
e[𝑘+1]
e[𝑘] (𝑅n

e )T ≈ 𝜏sa

⎡⎢⎣ 1 ΩE sin𝜙 0
−ΩE sin𝜙 1 −ΩE cos𝜙

0 ΩE cos𝜙 1

⎤⎥⎦ ,
(3.55)

where 𝜙 denotes the geodetic latitude. The small-angle approximation of the Earth’s
rotation has been used in the rotation-matrix notation.

The definition of the n-frame from Section 3.1.2 does not require coincidence of the
n-frame and b-frame origins strictly, however, the distance between them should allow
flat-Earth approximation. Therefore, the transport rate, i.e. the rotation of the n-frame
with the curvature of the Earth as the coincident b-frame origin moves, is neglected.
The formulas including the transport rate are available e.g. in [131, 133].

It is worth noting that for IMUs without the performance required for Earth’s rota-
tion sensing, both the n-frame and i-frame can be considered to be the inertial reference
frame. In such case the attitude update equations may be simplified to

𝑞e
b[𝑘+1] ≈ 𝑞

e
b[𝑘] ⊗ 𝑞

b[𝑘]
b[𝑘+1]; 𝑅e

b[𝑘+1] ≈ 𝑅
e
b[𝑘]𝑅

b[𝑘]
b[𝑘+1], (3.56)

𝑞n
b[𝑘+1] ≈ 𝑞

n
b[𝑘] ⊗ 𝑞

b[𝑘]
b[𝑘+1]; 𝑅n

b[𝑘+1] ≈ 𝑅
n
b[𝑘]𝑅

b[𝑘]
b[𝑘+1]. (3.57)

3.2.2. Velocity update
Prior to the velocity update, the specific force vector 𝑎b measured in the b-frame has
to be transformed to the frame of interest. In the continuous time, the body attitude
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and therefore the specific-force sensor rotates continuously. Usually, the situation is
simplified so that the specific force and the attitude is considered constant during the
sampling period. The attitude in halfway between the sampling epochs is chosen as
the constant one, i.e. the measurement is interpreted as if 𝑎b[𝑘+ 1

2 ] was measured.
Using the quaternion notation we may write

𝑎i = 𝑞i
b[𝑘] ⊗ 𝑞

b[𝑘]
b[𝑘+ 1

2 ] ⊗ 𝑎
b[𝑘+ 1

2 ] ⊗
(︁
𝑞i

b[𝑘] ⊗ 𝑞
b[𝑘]
b[𝑘+ 1

2 ]

)︁*
(3.58)

𝑎e[𝑘+ 1
2 ] = 𝑞

e[𝑘+ 1
2 ]

e[𝑘] ⊗ 𝑞e[𝑘]
b[𝑘] ⊗ 𝑞

b[𝑘]
b[𝑘+ 1

2 ] ⊗ 𝑎
b[𝑘+ 1

2 ] ⊗
(︂
𝑞

e[𝑘+ 1
2 ]

e[𝑘] ⊗ 𝑞e[𝑘]
b[𝑘] ⊗ 𝑞

b[𝑘]
b[𝑘+ 1

2 ]

)︂*
(3.59)

𝑎n[𝑘+ 1
2 ] = 𝑞

n[𝑘+ 1
2 ]

n[𝑘] ⊗ 𝑞n[𝑘]
b[𝑘] ⊗ 𝑞

b[𝑘]
b[𝑘+ 1

2 ] ⊗ 𝑎
b[𝑘+ 1

2 ] ⊗
(︂
𝑞

n[𝑘+ 1
2 ]

n[𝑘] ⊗ 𝑞n[𝑘]
b[𝑘] ⊗ 𝑞

b[𝑘]
b[𝑘+ 1

2 ]

)︂*
, (3.60)

where the forward integration of attitude half-update 𝑞b[𝑘]
b[𝑘+ 1

2 ] follows

Forward : 𝑞
b[𝑘]
b[𝑘+ 1

2 ] = 𝑞

{︂
𝜔[𝑘]𝜏sa

2

}︂
(3.61)

Backward : 𝑞
b[𝑘]
b[𝑘+ 1

2 ] = 𝑞

{︂
𝜔[𝑘 + 1]𝜏sa

2

}︂
(3.62)

Midward : 𝑞
b[𝑘]
b[𝑘+ 1

2 ] = 𝑞

{︂
𝜔[𝑘] + 𝜔[𝑘 + 1]

4 𝜏sa

}︂
(3.63)

The rotation of the Earth within the half of the sample period is given by 𝑞e[𝑘+ 1
2 ]

e[𝑘]

and 𝑞n[𝑘+ 1
2 ]

n[𝑘] , respectively. The actual value may be obtained using (3.52) where 𝜏sa is

substitued for 𝜏sa/2. For the low-cost IMUs both 𝑞e[𝑘+ 1
2 ]

e[𝑘] and 𝑞n[𝑘+ 1
2 ]

n[𝑘] are negligible, i.e.
they are assumed to be identity quaternions and may disappear from the equations.

In the rotation matrix notation the 𝑅e[𝑘+ 1
2 ]

b[𝑘+ 1
2 ] can be approximated by the average of

𝑅
e[𝑘+1]
b[𝑘+1] and 𝑅e[𝑘]

b[𝑘], which are both known from the attitude update step [131]; similar
approach can be applied on 𝑅n[𝑘]

b[𝑘+ 1
2 ]. Consequently,

𝑎i =
𝑅i

b[𝑘] +𝑅i
b[𝑘+1]

2 𝑎b[𝑘+ 1
2 ] (3.64)

𝑎e[𝑘+ 1
2 ] =

𝑅
e[𝑘]
b[𝑘] +𝑅e[𝑘+1]

b[𝑘+1]
2 𝑎b[𝑘+ 1

2 ] (3.65)

𝑎n[𝑘+ 1
2 ] =

𝑅
n[𝑘]
b[𝑘] +𝑅n[𝑘+1]

b[𝑘+1]
2 𝑎b[𝑘+ 1

2 ]. (3.66)

A hybrid mechanism for the low-cost IMU is used for the specific-force vector trans-
formation to the n-frame in Appendix D; the forward attitude integration is applied
and Earth’s rotation is neglected.

𝑎n = 𝑅

{︂
𝑞n

b[𝑘] ⊗ 𝑞
{︂
𝜔[𝑘] 𝜏sa

2

}︂}︂
𝑎b[𝑘+ 1

2 ]. (3.67)
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The next step in the velocity update in all the frames is the correction for the gravity
which is considered constant over the integration interval 𝑔(𝑟). In the i-frame we can
write

𝑣i[𝑘 + 1] = 𝑣i[𝑘] + 𝜏sa
(︁
𝑎i[𝑘 + 1

2 ] + 𝑔(𝑟i[𝑘])
)︁
. (3.68)

In the e-frame and n-frame the fictious forces have to be accounted for (if possibly
sensed by the IMU). Neglecting the transport rate, we may simplify from [131] as
following

𝑣e[𝑘 + 1] = 𝑣𝑒[k] + 𝜏sa

⎛⎜⎝𝑎e[𝑘 + 1
2 ]− 2

⎡⎢⎣ 0
0

ΩE

⎤⎥⎦
×

𝑣e[𝑘] + 𝑔(𝑟i[𝑘])

⎞⎟⎠ (3.69)

𝑣n[𝑘 + 1] = 𝑣n[𝑘] + 𝜏sa

⎛⎜⎝𝑎n[𝑘 + 1
2 ]− 2

⎡⎢⎣ cos𝜙ΩE
0

− sin𝜙ΩE

⎤⎥⎦
×

𝑣n[𝑘] + 𝑔(𝑟i[𝑘])

⎞⎟⎠ . (3.70)

Under the assumption of navigation with a low-cost IMU the Coriolis term can be
neglected and

𝑣e
[k+1] ≈ 𝑣

e
[k] + 𝜏sa

(︁
𝑎e[𝑘+ 1

2 ] + 𝑔(𝑟e
[k])
)︁

; (3.71)

𝑣n
[k+1] ≈ 𝑣

n
[k] + 𝜏sa

(︁
𝑎n[𝑘+ 1

2 ] + 𝑔(𝑟n
[k])
)︁
. (3.72)

The gravity compensation differs for the respective frames, moreover, the centrifugal
component is often accounted for within the 𝑔 vector. In [131, 133] a Somigliana model
is mentioned, which provides the 𝑔0 acceleration due to gravity in zero height as a
function of latitude 𝜙:

𝑔0(𝜙) = 9.780 325 335 91 + 0.001 931 853 sin2 𝜙√︁
1− 𝑒2

E sin2 𝜙
[m s−2]. (3.73)

This value incorporates the centrifugal force, which is a few orders smaller than the
gravitational component of the acceleration due to gravity. Therefore, for most ap-
plications it can be assumed that in the n-frame the acceleration due to gravity 𝑔n is
aligned with the 𝑧-axis.

The gravitational acceleration decreases with height above the ellipsoid ℎ, in contrast
with the growing centrifugal force. Consequently, in order to extrapolate above the
surface, the centrifugal force at ℎ = 0 should be subtracted, then, the gravitational
acceleration scaled, and as the last step the centrifugal force at the body height added.
This is described exactly in [131]. Nonetheless, in the vicinity of Earth’s surface and
especially when using low-cost IMUs, the scaling can be applied to the acceleration
due to gravity directly:

𝑔n(𝜙, ℎ) u
(︃

1− 𝑅2
S

(|𝑅S + ℎ)2

)︃
𝑔n

0 (𝜙) ≈
(︂

1− 2ℎ
𝑅S

)︂
𝑔n

0 (𝜙), (3.74)

where the symbol 𝑅S is the Earth geocentric radius, i.e. distance from the ECEF/ECI
origin to the particular surface point of the reference ellipsoid. It can be obtained as
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a function of geodetic latitude

𝑅S = 𝑎E

√︃
cos2 𝜙+ (1− 𝑒2

E)2 sin2 𝜙

1− 𝑒2
E sin2 𝜙

. (3.75)

The vector of acceleration due to gravity in the e-frame 𝑔e
(𝜙, ℎ) can be obtained via

transformation (3.41).
In the non-rotating i-frame there is no centrifugal force; according to [131], the

gravitation correction can be obtained directly from the position vector

𝑔i(𝑟i
b) = 𝛾i(𝑟i

b) = − 𝜇E⃦⃦
𝑟i

b
⃦⃦3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑟i

b + 3𝐽E2𝑎
2
E

2
⃦⃦
𝑟i

b
⃦⃦2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︃
1− 5

(︂
𝑟i

b,𝑧

‖𝑟i
b‖

)︂2
)︃
𝑟i

b,𝑥(︃
1− 5

(︂
𝑟i

b,𝑧

‖𝑟i
b‖

)︂2
)︃
𝑟i

b,𝑦(︃
1− 5

(︂
𝑟i

b,𝑧

‖𝑟i
b‖

)︂2
)︃
𝑟i

b,𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.76)

where 𝜇E = 3.986 004 418× 1014 m3/s2 is the Earth’s gravitational constant and 𝐽E2 =
1.082 627× 10−3 is the dynamic form factor, both according to WGS-84.

3.2.3. Position update
The position update is thesis almost identical in all the frames described within this.
Assuming linear evolution of the velocity vector throughout the sampling interval, the
integration of velocity follows

𝑟i[𝑘 + 1] = 𝑟i[𝑘] + 𝜏sa
2
(︁
𝑣i[𝑘 + 1] + 𝑣i[𝑘]

)︁
(3.77)

𝑟e[𝑘 + 1] = 𝑟e[𝑘] + 𝜏sa
2 (𝑣e[𝑘 + 1] + 𝑣e[𝑘]) (3.78)

𝑟n[𝑘 + 1] = 𝑟n[𝑘] + 𝜏sa
2 (𝑣n[𝑘 + 1] + 𝑣n[𝑘]) . (3.79)

Note that these expressions are principally the midward integration as was used in the
attitude update (3.50). Similarly, a forward and backward integration of velocity can
be employed:

Forward : 𝑟i[𝑘 + 1] = 𝑟i[𝑘] + 𝜏sa𝑣
i[𝑘] (3.80)

Backward : 𝑟i[𝑘 + 1] = 𝑟i[𝑘] + 𝜏sa𝑣
i[𝑘 + 1]., (3.81)

and likewise for the other frames. The difference of the three integration approaches
should not become significant provided that the sampling rate is high w.r.t. the system
dynamics.

It is worth remarking that when using n-frame mechanization, the body coordinates
are converted to the ECEF frame by means of (3.40) and then converted to the geodetic
(latitude, longitude, height) format. In contrast, [131, 134] provide equations that
operate within the geodetic coordinate system directly.
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3.2. Strapdown IMU mMechanization

3.2.4. Initialization
Since the position, velocity and attitude are estimated by integration of their measured
derivatives, it is necessary to provide boundary conditions, i.e. initial state, in order
to make the integrated information meaningful. A solid analogy can be seen in simple
indefinite integral of a one-dimensional function – the result is the antiderivative and
arbitrary constant. The mechanization of the IMU was described by formulas providing
transition from epoch k to k+1, thus initialization, i.e. definition of values for 𝑘 = 0 is
necessary.

The velocity and position have to be initialized by external means. The information
may be passed from GNSS receiver or similar positioning system, for instance. Alter-
natively, the IMU is initialized as stationary (velocity in e-frame is zero vector) at a
priori known location (position in e-frame is fixed).

The attitude can be partially resolved by means of the accelerometer measurements.
The reaction to the gravity is sensed as a specific force vector pointing upwards. Con-
sequently, the pitch 𝜃 and roll 𝜑 angles can be estimated from the accelerometer mea-
surements by means of the leveling process [131] as

𝜃 = tan−1 −𝑎b
𝑥√︁

(𝑎b
𝑦)2 + (𝑎b

𝑧)2
𝜑 = tan−1 −𝑎

b
𝑦

−𝑎b
𝑧

, (3.82)

where four-quadrant arctangent should be used for the roll computation; note that
pitch is constrained to ±90° range. It is worth remarking that the body has to be sta-
tionary during leveling, otherwise the motion disrupts the specific force measurements
and introduces an attitude error.

The yaw 𝜓 cannot be obtained by similar approach. For high-performance grade
IMUs the gyrocompassing can be used [131]. The gyrocopassing exploits sensing the
Earth’s rotation in the body frame by means of a gyroscope, which is beyond the
capabilities of the lower-grade IMUs.

Consequently, the yaw information has to be obtained externally, e.g. from multi-
antenna radio localization system or magnetometers (magnetic compass). In some
applications the yaw can be estimated during motion, since the motion can be per-
formed only in a certain direction in the b-frame. For example, the velocity vector of
the car in Fig. 3.1 is always aligned with the 𝑥b-axis.

If the lever-arm offset is present, the attitude has to be initialized prior to position
and velocity in order to resolve the direction of the lever arm vector.
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3.3. Effects of the IMU Errors
Both gyroscopes and accelerometers are imperfect devices, which suffer from both
random and systematic errors. First, we will cover briefly the most common errors of
the IMU measurements; then, the effect of biases and random walk on the navigation
performance is presented.

3.3.1. IMU measurement errors

The errors of the IMU sensors have been analyzed and classified thoroughly in litera-
ture. A detailed error analysis of various sensor types can be found in books dedicated
to inertial navigation, such as [133]. Below, only the very basic kinds of errors are
covered.

The measurements suffer from random noise. Often the noise is expressed as the
angular random walk (ARW) for the gyroscopes and velocity random walk (VRW) for
the accelerometers; white noise is assumed. The ARW is commonly expressed in angle
per square-root of time unit, e.g. °/

√
s; the VRW in velocity square-root of time unit,

e.g. ms−1/
√

s.

The IMU measurements are typically biased, i.e. the measurements are offset by a
constant value. Due to the constant property of the value it is possible to estimate
the biases, e.g. by means of Kalman filtering, as is shown in Appendix D. The bias
has the same dimension as the measured value, naturally. In reality, the bias is not
absolutely constant; it may change slightly in time. Therefore, it is characterized by
two values: the bias repeatability (or turn-on bias) and bias instability (or in-run bias).
The repeatability is the spread of the constant component of the bias that is present
since the IMU is turned on. The bias instability expresses the change of bias in time
during normal operation.

The biases may be estimated and compensated, at least to a certain extent. It
is somehow problematic to distinguish the bias from the true measurement for the
standalone IMU. One of the option is that a stationary condition is detected, i.e.
the accelerometer and gyroscope measurements should be zero (of course up to the
graviational acceleration and possibly Earth’s rotation). Only noise and bias are then
forming the actual measurement. Such approach of estimating biases is referred as
zero-velocity update (ZUPT).

When some other positioning system si available (most commonly GNSS), the data
from the system can be used to estimate the biases on a continuous basis. Reciprocally,
the IMU measurements allow the system to overcome outages of the other position-
ing system. By means of such sensor fusion the weak points of the sensors may be
suppressed and the performance of the system should outperform the individual sen-
sors. Some of the methods of sensor fusion are theoretically described in Chapter 4,
an example concerning author’s work on fusion of IMU, GNSS and UWB is provided
as Appendix D.

From the other possible errors, the scale factor error is common to the IMU sensors
as well. The value is dimensionless, however very small, so it is usually expressed in
terms of ppm.
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The sensitive axes of the sensors are sometimes not perfectly orthogonal and some
misalignment w.r.t. the true b-frame axes may be present. Consequently, a cross-
coupling of the sensors may occur. For certain technologies the gyroscope scale factor
is acceleration dependent, i.e. there is a coupling between the gyroscope and accelerom-
eter readings. The model and correction for the most common errors is available e.g.
in [131, 133]. In the author’s work concerning IMUs, only random walks and biases
were taken into account, see Appendix D or the corresponding article [138].

3.3.2. Bias and random walk propagation

Within this section we will show the effects of the IMU errors, namely biases and
random walks, on the position velocity and attitude estimates. The focus will be put
on the short time interval after initialization, since longer standalone operation of the
consumer-grade IMUs is not viable.

For the short-term analysis of low-performance IMUs it is possible to neglect Earth’s
rotation, transport rate, et cetera. Moreover, the biases may be assumed constant.
Therefore, we may model the biased and noisy measurements of gyroscopes and ac-
celerometers in each epoch as

𝜔̆[𝑘] = 𝜔[𝑘] + 𝛿𝜔 +𝒩
(︁
0, 𝜍2

𝜔𝜏𝑠𝑎
)︁

(3.83)

𝑎̆[𝑘] = 𝑎[𝑘] + 𝛿𝑎 +𝒩
(︁
0, 𝜍2

𝑎𝜏𝑠𝑎
)︁
, (3.84)

where 𝛿𝜔 and 𝛿𝑎 denote the biases and 𝜍2
𝜔 and 𝜍2

𝑎 denote the AWGN random walk
variance when integrated over a unit of time.

In the following paragraphs, the propagation of errors will be illustrated on an
example considering parameters of a MEMS-based IMU. The simplified n-frame mech-
anization was used to investigate the error propagation in a stationary IMU. Constant
biases and Gaussian random-walk sensor errors were considered, initial state (attitude,
velocity and position) was known perfectly. For each run, the biases were chosen ran-
domly from a pre-defined symmetric uniform distribution, the biases were considered
uncorrelated. The parameters of the simulated IMU sensors are available in Tab. 3.3.
The results of 10 simulation runs are provided in each of the figures presented further
in this section.

Table 3.3.: Parameters of MEMS IMU error simulation.
Parameter Distribution Value Unit

Gyroscope Bias uniform −0.3 < 𝛿𝜔 < +0.3 °/s
ARW Gaussian 𝜍𝜔 = 0.001 °/

√
s

Accelerometer Bias uniform −6 < 𝛿𝜔 < +6 mg
VRW Gaussian 𝜍𝜔 = 0.004 mg

Sample interval constant 𝜏𝑠𝑎 = 10 ms
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During each attitude update step, both bias and AWGN affect the estimate. Un-
fortunately, the gyro measurements correspond to the Euler-angle rates only for very
small angles – under such conditions, the attitude errors due to biases grow linearly
in time. For larger errors the attitude errors grow non-linearly. In order to investigate
the error propagation the attitude update mechanization has to be performed, and
the estimate compared w.r.t. the ground truth. In a simple simulation, the rotation-
matrix version of the simplified n-frame attitude update (3.57) has been used. The
bias-induced errors are typically overpowering the ARW-related error. In Fig. 3.4a it
is observable that initially the attitude errors grow linearly according to the biases,
and later become nonlinear. Fig. 3.4b shows the attitude errors when the biases are
neglected, i.e. only the ARW is considered. It is obvious that most of the errors of
MEMS IMUs originate from biases, however, when coupled with some other system,
the biases may be estimated and at least partially suppressed.

Considering a non-rotating body and perfectly known attitude, the velocity error
would be simply integrated bias, i.e. linear drift in time with superposed VRW. None-
theless, the attitude knowledge cannot be considered perfect and the error of attitude
will always affect the velocity estimate. Not only the accelerometer readings will inte-
grate in the wrong direction, but more importantly, the compensation of the specific
force for the gravitational acceleration is affected, since the measurements are not cor-
rectly rotated from the b-frame to the mechanization frame. Therefore the velocity
error may grow faster than linearly. As can be seen from Tab. 3.3, the accelerometer
drift contribution to the velocity error may be a few orders of magnitude higher than
the VRW contribution.

In Fig. 3.5 the result of the simulation is presented; the graphs were obtained using
the rotation-matrix variant of the specific force vector transformation (3.66) and the
simplified n-frame mechanization (3.72). In the top part of each figure the error along
the principal axes is shown w.r.t. time. It is clearly observable that the error along
the horizontal axes grows faster than along the vertical plane. The reason is that the
“leakage” of the gravitational correction will be proportional to the sines of the tilt
angles (pitch and roll), while the value on the vertical axis will be proportional to the
cosines of the tilts (which are close to one for small errors). The bottom part of the
figures depicts the magnitude of the velocity-error vector.

As well as in the attitude error demonstration, Fig. 3.5a takes the drifts and VRW
into account, whilst in Fig. 3.5b only the VRW is considered. It is worth noticing that
the gravitational acceleration leakage induces a significant lateral error component,
when biases are neglected. In the vertical direction error is almost zero thanks to the
small attitude error.

The position is obtained by means of velocity integration in the mechanization frame;
in the simulation we have used the forward integration (3.80) in the n-frame. Naturally,
all the errors affecting the velocity estimate accumulate. Under the assumption of
non-rotating body and perfect attitude sensors the bias-induced error would grow
quadratically. Taking into an account the attitude error and gravitational acceleration
leakage, the error grows faster than quadratically, as can be seen in Fig. 3.6.

When the biases are present and not accounted for ideally (Fig. 3.6a), the errors may
quickly grow to the unacceptably high values. In the upper plots within the figures
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it can be observed that due to the gravitational acceleration leakage contribution, the
position estimate is diverging from the correct value faster in the horizontal plane
than it does in the vertical direction. In the bottom plot the position-error vector
magnitude is depicted on a logarithmic vertical axis. The performance without biases
is a few orders better, however, the error induced by the random walks becomes clearly
noticeable (above decimeter level) after a few tens of seconds.

Even though this simulation was rather simple, it can be observed that the bias-
related errors are the major component of the overall attitude, velocity and position
errors for the MEMS-based IMUs. Therefore, suppression of biases is critical for the
IMU performance. An example of the Kalman-filter-based sensor fusion algorithm that
estimates the biases is provided in Appendix D.
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(a) Affected by biases and noise. (b) Affected only by noise.

Figure 3.4.: Propagation of IMU measurement errors to the attitude errors.

(a) Affected by biases and noise. (b) Affected only by noise.

Figure 3.5.: Propagation of IMU measurement errors to the velocity errors.

(a) Affected by biases and noise. (b) Affected only by noise.

Figure 3.6.: Propagation of IMU measurement errors to the position errors.
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Various approaches to radio positioning were presented within Chapter 2. Neither
of them provides the position information directly; instead, certain observables are
measured and position (and sometimes velocity) is obtained by means of solving set
of equations that describe the relation of position and observables. Such equations are
nonlinear, the closed-form solutions are nontrivial, and often impractical or unavailable
at all. The first part of this chapter describes a few iterative methods that are suitable
for solving the positioning equations in the least-squares sense. In addition to the
general description of the methods, the actual application on the common problems
will be presented.

It has been mentioned several times that data from multiple positioning systems
can be combined in order to suppress the weaknesses of the individual sensors and
improve the overall performance of the integrated system. Especially, in Chapter 3
the possibility to estimate the inertial sensor biases continuously based on other data
was remarked. The second part of this chapter presents Kalman filtering techniques,
which can be used to fuse the data and estimate states of the navigated body.

4.1. Iterative Solutions of Positioning Equations

The problems presented within the thesis, such as obtaining the position from either
TWR, ToA, TDoA or AoA measurements are nonlinear. The closed-form solutions
to the problems are rare and considerably less flexible than their iterative counter-
parts.98 Moreover, the problems are often overdetermined, i.e. more measurements
than required to solve the set of equations are available.

Here, we will focus on iterative solvers that converge to the solution with the least-
square error. The aim is not to provide a rigorous derivation or describe the estimator
theory, but to provide a guide how to use those algorithms and what are the strong or
weak points of these algorithms. The theoretical background to these algorithms can
be found in nonlinear optimization handbooks, such as [140].

Initially, the methods will be introduced in a general form. Section 4.1.5 then pro-
vides the exact formulas for the particular radionavigation problems.

98For example, the ToA problem, i.e. the satellite navigation positioning set of equations, can be
solved by means of the Bancroft algorithm [139]. Such algorithm is designed for a single purpose,
additional measurements and constraints cannot be applied.
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It is common to all the described gradient algorithms that the parameter vector 𝑥 is
divided into the predicted part 𝑥̂ and its correction 𝑥̌; the same is done for the vector
of measurements:

𝑥 = 𝑥̃+ 𝑥̌ (4.1)
𝑦 = 𝑦 + 𝑦. (4.2)

The relation of the measurement and parameters is given by a vector function 𝑦 = f(𝑥).
In the further text we will denote the covariance matrices of 𝑥 and 𝑦 by symbols Φ𝑥

and Φ𝑦. In the following sections we will provide three algorithms that are able to
estimate the parameters 𝑥 based on the set of measurements 𝑦.

4.1.1. Newton-Raphson algorithm
First, we will show the Newton-Raphson (or Gauss-Newton) algorithm, which is the
fastest iterative algorithm that uses only the first derivatives of the measurement func-
tion. It is presumed to exhibit quadratic convergence rate in the vicinity of the optimal
solution. The estimate 𝑥̂ obtained by such method minimizes the least-squares condi-
tion [140]

𝑥̂ = arg min
𝑥

‖𝑦𝑖 − f(𝑥)‖2 . (4.3)

First, linearization of the correction in the vicinity of the predicted value is necessary

𝑦 ≈ f(𝑥̃) + 𝐽𝑓 |𝑥̃ 𝑥̌. (4.4)

Note that 𝐽𝑓 is the Jacobian matrix of the f( ) function, computed at point of pre-
diction 𝑥̃. The residual 𝑦, i.e. the correcting part of the measurements, can be then
approximated by means of

𝑦 = 𝑦 − 𝑦 = 𝑦 − f(𝑥̃) ≈ 𝐽𝑓 𝑥̌, (4.5)

where the point of 𝐽𝑓 evaluation subscript has been omitted. Generally, the Jacobian
matrix is not square and hence it cannot be simply inverted. Therefore, pseudoinverse
(4.8) operation has to be performed. Obviously, 𝐽𝑓 has to be full-rank in order to
satisfy that 𝐽T

𝑓 𝐽𝑓 is regular, i.e. invertible.

𝐽𝑓 𝑥̌ = 𝑦 (4.6)
𝐽T
𝑓 𝐽𝑓 𝑥̌ = 𝐽T

𝑓 𝑦 (4.7)

𝑥̌ =
(︁
𝐽T
𝑓 𝐽𝑓

)︁−1
𝐽T
𝑓 𝑦 (4.8)

The new estimate of 𝑥 is then formed by means of (4.1).99 In the next iteration, 𝑥
is assumed to be the predicted part, 𝑥̃, and the iteration loop consisting of evaluating
(4.5), (4.8), (4.1) is repeated.
99Under certain conditions, the correction value may be excessively high, which may cause the algo-

rithm to diverge, or reconverge rather slowly. If such condition is anticipated, logarithmic damping
of the correction may be applied on each element of 𝑥̌:

𝑥̌′ = sign (𝑥̌) ln (1 + |𝑥̌|) .
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Weighted Newton-Raphson algorithm

In case of weighted, or generalized, least squares (WLS, or GLS) the solution should
satisfy condition [140, 141]

𝑥̂ = arg min
𝑥

(𝑦𝑖 − f(𝑥))T𝑊 (𝑦𝑖 − f(𝑥)) , (4.9)

where 𝑊 is a positive-definite weight matrix. In the optimal case, 𝑊 is the inverse
of the measurement covariance matrix Φ𝑦. Nonetheless, it is not always available, so
the covariances are neglected and

𝑊 = Φ−1
𝑦 ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/𝜎2

𝑦1 0
. . .

0
0 1/𝜎2

𝑦2 0
... . . .

0 0 1/𝜎2
𝑦𝑛

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (4.10)

The diagonal elements represent the weight (or importance) of the corresponding mea-
surement. In general, the values may be set arbitrarily in order to emphasize certain
measurements among the others.

Only a slight modification of the non-weighted algorithm is required. In the weighted
variant, the correction computation step becomes

𝑥̌ =
(︁
𝐽T
𝑓𝑊𝐽𝑓

)︁−1
𝐽T
𝑓𝑊𝑦 (4.11)

instead of (4.8).100 The iteration loop consists of residual computation (4.5), correction
evaluation (4.11), and correction application (4.1).

4.1.2. Gradient descent algorithm

The gradient, or steepest descent method is substantially slower than the Newton-
Raphson method, however, it is less likely to diverge. In each iteration a small pa-
rameter change is performed in the direction of the steepest descent of the objective
function, i.e. ‖𝑦𝑖 − f(𝑥)‖2. The direction of the steepest descent is opposite to the
direction of the objective function gradient. It can be shown that the correction [141]
can be computed from the residuals by means of

𝑥̌ = 𝛼𝐽T
𝑓 𝑦. (4.12)

The residuals are computed in the same manner as in the Newton-Raphson method, i.e.
using (4.5), the correction application follows (4.1). The 𝛼 is a positive coefficient that
determines the step size; smaller step sizes (low 𝛼 value) slow down the convergence
and further reduce risk of diverence.

100The non-weighted variant is equivalent to the weighted one, when 𝑊 is identity matrix.
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Weighted gradient descent algorithm

Naturally, a weighted variant of the gradient descent algorithm exists. The only dif-
ference from the non-weighted version is in computation of the parameter correction:

𝑥̌ = 𝛼𝐽T
𝑓𝑊𝑦. (4.13)

The weight matrix should be chosen in the same way as in the case of weighted Newton-
Raphson solver.

4.1.3. Levenberg-Marquardt algorithm

The Levenberg-Marquardt method combines the Newton-like and the gradient-like
convergence. The purpose of such combination is to reduce the risk of divergence
while maintaining fast convergence rate.

Only the correction update step is modified; additionally, two variants of the update
step may be used. The variant originally proposed by Levenberg [142] can be written
in the matrix form as

𝑥̌ =
(︁
𝐽T
𝑓 𝐽𝑓 + 𝜆 I

)︁−1
𝐽T
𝑓 𝑦. (4.14)

The term 𝐽T
𝑓 𝐽𝑓 represents the Newton-like update step and the identity matrix desig-

nates the gradient-like step. The positive 𝜆 coefficient sets which convergence approach
is the dominant one; higher values of 𝜆 enforce more gradient-like convergence and vice
versa. In the extreme case of 𝜆 = 0, the equations is identical to (4.11), i.e. purely
Newton-like update step is performed.

The behavior of the gradient-like term will change with the scale of the measure-
ments, in contrast to the Newton-like, which are scale-invariant. Marquardt in [143]
proposes pre-scaling of the measurements and accordingly whole problem (i.e. Jacobian
matrix) to the units of their standard deviations to compensate for the scale inconsis-
tency. However, more intuitive solution, where the identity matrix is substituted for
the diagonal of the 𝐽T

𝑓 𝐽𝑓 matrix term, is widely used:

𝑥̌ =
(︁
𝐽T
𝑓 𝐽𝑓 + 𝜆Diag(𝐽T

𝑓 𝐽𝑓 )
)︁−1

𝐽T
𝑓 𝑦. (4.15)

Such approach is not scale-dependent and the dimension of the measurements does
not need to be normalized w.r.t. the standard deviation.

Weighted Levenberg-Marquardt algorithm

The rules for construction of the weight matrix are the same as in the previous cases,
the correction update formulas follow

Original: 𝑥̌ =
(︁
𝐽T
𝑓𝑊𝐽𝑓 + 𝜆 I

)︁−1
𝐽T
𝑓𝑊𝑦 (4.16)

Modified: 𝑥̌ =
(︁
𝐽T
𝑓𝑊𝐽𝑓 + 𝜆Diag(𝐽T

𝑓𝑊𝐽𝑓 )
)︁−1

𝐽T
𝑓𝑊𝑦. (4.17)
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Choice of 𝜆 parameter

The parameter 𝜆 for controlling the convergence damping of the Levenberg-Marquardt
algorithm should be high enough to prevent divergence, and concurrently as low as
possible in order to converge quickly. It is usually set in a heuristic manner, since
the exact 𝜆 is usually computationally costly and may even require solving another
least-squares problem within each iteration [140].

The common approach is to lower the 𝜆 value when the algorithm converges (the
sum of square residuals is reduced), and increase 𝜆 when reduction of the residuals is
not achieved:

𝜆𝑘+1 =
{︃
𝜆𝑘/𝑐

−
𝜆 for ‖𝑦 − f(𝑥)‖2 < ‖𝑦 − f(𝑥̃)‖2 ,

𝜆𝑘𝑐
+
𝜆 for ‖𝑦 − f(𝑥)‖2 ≥ ‖𝑦 − f(𝑥̃)‖2 .

(4.18)

If the weighted variant of the Levenberg-Marquard algorithms is used, weighted sum
of residuals should be used, i.e. the metric follows (4.9) instead of (4.3):

𝜆𝑘+1 =
{︃
𝜆𝑘/𝑐

−
𝜆 for (𝑦 − f(𝑥))T𝑊 (𝑦 − f(𝑥)) < (𝑦𝑖 − f(𝑥̃))T𝑊 (𝑦 − f(𝑥̃)) ,

𝜆𝑘𝑐
+
𝜆 for (𝑦 − f(𝑥))T𝑊 (𝑦 − f(𝑥)) ≥ (𝑦 − f(𝑥̃))T𝑊 (𝑦 − f(𝑥̃)) .

(4.19)
Numerous variants of this heuristic approach do exist, for instance [143, 144] sug-
gest that good results may be obtained when the 𝜆-modification coefficients 𝑐−𝜆 = 𝑐+

𝜆 ,
whilst [141] uses different values for increasing and decreasing 𝜆.101 It is rather con-
venient to provide bounds to the lambda value, which are spanning several orders of
magnitude, e.g. 𝜆 ∈

⟨︀
10−10, 105⟩︀.

Some implementations do not allow any update that would not lead to reduction in
the minimized metric; for instance in [145, 146] a line search is performed in order to
find the lowest possible 𝜆. In each iteration it is checked whether the update leads to
the reduction of the sum of squared residuals. If it does, the update is accepted and
𝜆 is reduced for the next step. Otherwise, the update is not applied and iteration is
repeated with increased 𝜆 value until the update decreases the sum of squares.102

Authors of [146] and [141] suggest using “gain factor” metric103 of estimate improve-
ment for decision whether to change 𝜆, [146] proposes a smooth mapping of the 𝑐𝜆 to
the metric.

4.1.4. Termination conditions
The iterations of the algorithms are stopped when one or more conditions are met.
First, the iterations should be stopped when the estimate fits to the measurements
taken, i.e. when the residuals are sufficiently low. An apparent metric for the residual-
based iterations is the (weighted) sum of residuals, which is the value to be minimized

101The actual values of the coefficients 𝑐𝜆 are only suggested in the publications. For instance in [143]
𝑐𝜆 = 10, in [144] 𝑐𝜆 = 5 and in [141] 𝑐−

𝜆 = 9, 𝑐+
𝜆 = 11.

102In certain cases (e.g. when the metric function is not unimodal, and contains smaller false minima)
it is not practical to disallow the temporary increase in the minimized metric.

103In simplicity, the actual change of the sums of squared residuals is normalized w.r.t. the anticipated
improvement expected from the step (based on the Jacobian matrix). See [141] for the exact
definition.
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by the iterative algorithm. It is convenient, however not necessary, to use the mean of
the residuals, since there is no need to change the threshold 𝜖𝑟𝑒𝑠 when the number of
measurements (length of 𝑦) is altered:

Non-weighted: ‖𝑦 − f(𝑥)‖2

dim𝑦 < 𝜖res (4.20)

Weighted: (𝑦 − f(𝑥))T𝑊 (𝑦 − f(𝑥))
tr𝑊 < 𝜖res, (4.21)

where tr𝑊 denotes the trace of the weight matrix and dim𝑦 denotes the dimension
of 𝑦, i.e. the number of measurements.

Another terminating occasion is when the magnitude of the correction falls below
a threshold, i.e. ‖𝑥̌‖ < 𝜖cor. In certain sources the maximum of the 𝑥̌-elements is
compared to the threshold. Moreover, in [141], the elements of the correction are
normalized w.r.t. the predicted value 𝑥̌i/𝑥̃i. Furthermore, the relative improvement of
the sum of squared residuals is a possible metric that can be used to terminate the
iterations [140].

It is also possible to stop the algorithm after a fixed number of iterations. This may
be considered as a stopping condition for problems that are known to converge within
a few iterations, or it can be used to break the infinite loop when the algorithm does
not converge, i.e. when no other stop condition is met.

Certainly, other options of terminating the iterations are possible, either exact or
ad-hoc.

4.1.5. Application on the navigation problems
I. Time of arrival (ToA)

For simplicity, we will consider that the pseudorange 𝜌 and the bias of the user clock
w.r.t. the system clock is expressed in the units of length (it is multiplied via the
propagation velocity). Recapitulating from Chapter 2, pseudorange can be expressed
as

𝜌i = ‖𝑟u − 𝑟i‖+ ., (2.59)

Borrowing the GNSS terminology, 𝑟u is the unknown user receiver position vector and
𝑟i is the known position of the satellite, to which the pseudorange 𝜌i is measured.
Hence, it is straightforward to map these variables to the generic vector of parameters
𝑥 and vector of measurements 𝑦

𝑥↔
[︃
𝑟u
𝑏

]︃
=

⎡⎢⎢⎢⎣
𝑟u;𝑥
𝑟u;𝑦
𝑟u;𝑧
𝑏

⎤⎥⎥⎥⎦ 𝑥↔ 𝜌 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜌1
...
𝜌i
...
𝜌𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.22)

In order to be able to perform the iterative solution, Jacobian matrix 𝐽 is needed
(the 𝑓 subscript is omitted). Each row of the matrix (further denoted as 𝐽i) contains
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partial derivatives w.r.t. the user position 𝑟u and clock bias 𝑏:

𝐽i =
[︁
𝜕𝜌i
𝑟u

𝜕𝜌i
𝑏

]︁
=
[︁
𝜕𝜌i
𝑟u;𝑥

𝜕𝜌i
𝑟u;𝑦

𝜕𝜌i
𝑟u;𝑧

𝜕𝜌i
𝑏

]︁
=
[︂

(𝑟u−𝑟i)T

‖𝑟u−𝑟i‖
1
]︂

=
[︁
1u,i 1

]︁
=
[︁
𝑟u𝑥−𝑟i;𝑥
‖𝑟u−𝑟i‖

𝑟u𝑦−𝑟i;𝑦
‖𝑟u−𝑟i‖

𝑟u𝑧−𝑟i;𝑧
‖𝑟u−𝑟i‖

1
]︁
. (4.23)

From the various notations of the same relation it can be seen that each row contains
the direction vector with unit length pointing from the satellite to the user, i.e. from
infrastructure node to the localized node.104 The general 𝑁 × 4 Jacobian matrix is
then computed in each iteration of the chosen least-squares algorithm. The residuals
are computed as

𝜌i = 𝜌i −
(︁
‖𝑟u − 𝑟i‖+ 𝑏̃

)︁
. (4.24)

The individual pseudorange measurements can be considered independent. Con-
sequently, the covariance matrix is diagonal and easy to invert. The weight matrix
can be formulated as (4.25) where the approximation is valid when the pseudorange
variances are approximately equal.

𝑊 = Diag
[︁
𝜎−2
𝜌1 · · · 𝜎−2

𝜌i · · · 𝜎−2
𝜌𝑁

]︁
≈ 𝜎−2

𝜌 I (4.25)

II. Two-way ranging (TWR)

In this case, the observables are the estimates of the “radio” ranges between the local-
ized equipment and the localizing infrastructure. Such problem can be described by a
set of the of the equations

𝑟ui = ‖𝑟u − 𝑟i‖ . (2.11)
The equation is not valid for the TWR exclusively; theoretically, it can be employed
in positioning by means of signal strength or another system, which uses bi-directional
message transfer in order to obtain range, such as DME in aviation. The mapping of
the parameter and measurement vectors is straightforward:

𝑥↔ 𝑟u =

⎡⎢⎣𝑟u;𝑥
𝑟u;𝑦
𝑟u;𝑧

⎤⎥⎦ 𝑥↔ 𝑟ui =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑟u1
...
𝑟u𝑖
...

𝑟u𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.26)

The rows of the Jacobian (or geometry) matrix are the same as in (4.23) up to the
last element, which is missing in the case of range measurements:

𝐽i = 𝜕𝑟ui
𝑟u

=
[︁
𝜕𝑟ui
𝑟u;𝑥

𝜕𝑟ui
𝑟u;𝑦

𝜕𝑟ui
𝑟u;𝑧

]︁
= (𝑟u − 𝑟i)T

‖𝑟u − 𝑟i‖
= 1u,i =

[︁
𝑟u𝑥−𝑟i;𝑥
‖𝑟u−𝑟i‖

𝑟u𝑦−𝑟i;𝑦
‖𝑟u−𝑟i‖

𝑟u𝑧−𝑟i;𝑧
‖𝑟u−𝑟i‖

]︁
. (4.27)

104In the GNSS-related literature this particular Jacobian matrix is called the geometry matrix and
denoted by 𝐺. Such notation has been used in the GNSS-related section, see (2.123).
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The residual computation follows

𝑟ui = 𝑟ui − (‖𝑟u − 𝑟i‖) . (4.28)

Under the assumption of stochastically independent range measurement is the weight
matrix 𝑊 constructed in the same manner as in (4.25).

III. Time difference of Arrival (TDoA)

According to Chapter 2, the TDoA problem is described by

𝑑i,j = ‖𝑟u − 𝑟i‖ − ‖𝑟u − 𝑟j‖ . (2.64)

It is possible to derive the corresponding row of the Jacobian matrix as

𝐽𝑑i,j = 𝜕𝑑i,j
𝑟u

= (𝑟u − 𝑟i)T

‖𝑟u − 𝑟i‖
− (𝑟u − 𝑟j)T

‖𝑟u − 𝑟j‖
= 1u,i − 1u,j

=
[︁
𝑟u𝑥−𝑟i;𝑥
‖𝑟u−𝑟i‖

− 𝑟u𝑥−𝑟j;𝑥
‖𝑟u−𝑟j‖

𝑟u𝑦−𝑟i;𝑦
‖𝑟u−𝑟i‖

− 𝑟u𝑦−𝑟j;𝑦
‖𝑟u−𝑟j‖

𝑟u𝑧−𝑟i;𝑧
‖𝑟u−𝑟i‖

− 𝑟u𝑧−𝑟j;𝑧
‖𝑟u−𝑟j‖

]︁
. (4.29)

It is necessary to avoid the situation when the 𝐽 -matrix is rank deficient. This is
equivalent to saying that the lines of 𝐽 are linearly-dependent; for instance, such
condition may occur when three differences are produced from three measurements,
e.g. 𝑑i,j, 𝑑j,k and 𝑑i,k.

In the Section 2.1.2 it was mentioned that TDoA can be constructed as a difference
of two pseudoranges and that the variance of the TDoA measurement is the sum of the
two pseudorange variances. Consider now three measurements 𝑑i,j, 𝑑i,k and 𝑑l,i. Unless
the geometry of the nodes is linear, the corresponding lines of the Jacobian matrix are
independent. Nonetheless, the measurements are not stochastically independent, since
they share the pseudorange measurement to the “i.” Therefore, the weight matrix 𝑊
should be constructed using a non-diagonal covariance matrix:

Φ𝐷 =

⎡⎢⎣𝜎
2
𝜌i + 𝜎2

𝜌j +𝜎2
𝜌i −𝜎2

𝜌i
+𝜎2

𝜌i 𝜎2
𝜌i + 𝜎2

𝜌k 0
−𝜎2

𝜌i 0 𝜎2
𝜌i + 𝜎2

𝜌k

⎤⎥⎦ . (4.30)

Under the assumption of equal pseudorange standard deviations 𝜎𝜌 we may define
the TDoA standard deviation as 𝜎d = 2𝜎𝜌. Further, the covariance matrix follows

Φ𝑑 = 𝜎𝜌

[︃
2 1 −1
1 2 0 − 1 0 2

]︃
= 𝜎d

⎡⎢⎣ 1 0.5 −0.5
0.5 1 0
−0.5 0 1

⎤⎥⎦ . (4.31)
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IV. Angle of arrival (AoA)

For the angle of arrival observable, we will investigate only the two-dimensional case;
however, three-dimensional description is available e.g. in [147]. In the following ex-
ample, the 𝑥-axis is pointing North, the 𝑦-axis is pointing East. The measured bearing
angle 𝛽i is the azimuth from the user to the node with position vector 𝑟i. Thus,

𝛽i = tan−1 𝑟i;𝑦 − 𝑟u;𝑦
𝑟i;𝑥 − 𝑟u;𝑥

(4.32)

𝐽i = 𝜕𝛽i
𝜕𝑟u

=
[︁
− 𝑟i;𝑦−𝑟u;𝑦
‖𝑟i−𝑟u‖2

𝑟i;𝑥−𝑟u;𝑥
‖𝑟i−𝑟u‖2

]︁
. (4.33)

If the bearing measurement is not taken w.r.t. the North (𝑥-axis), but with respect to
an unknown azimuth 𝜓, it holds

𝛽i = tan−1 𝑟i;𝑦 − 𝑟u;𝑦
𝑟i;𝑥 − 𝑟u;𝑥

− 𝜓, (4.34)

𝐽i =
[︁
𝜕𝛽i
𝜕𝑟u

𝜕𝛽i
𝜕𝜓

]︁
=
[︁
− 𝑟i;𝑦−𝑟u;𝑦
‖𝑟i−𝑟u‖2

𝑟i;𝑥−𝑟u;𝑥
‖𝑟i−𝑟u‖2 −1

]︁
. (4.35)

In such case, 𝜓 is part of the parameter vector, and has to be estimated. The need to
estimate the azimuth 𝜓 can be eliminated by differentiation of the bearing measure-
ments:

𝐵i,j = 𝛽i − 𝛽j = tan−1 𝑟i;𝑦 − 𝑟u;𝑦
𝑟j;𝑥 − 𝑟u;𝑥

− tan−1 𝑟j;𝑦 − 𝑟u;𝑦
𝑟j;𝑥 − 𝑟u;𝑥

, (4.36)

𝐽𝐵i,j = 𝜕𝐵i
𝜕𝑟u

=
[︁
− 𝑟i;𝑦−𝑟u;𝑦
‖𝑟i−𝑟u‖2 + 𝑟j;𝑦−𝑟u;𝑦

‖𝑟j−𝑟u‖2
𝑟i;𝑥−𝑟u;𝑥
‖𝑟i−𝑟u‖2 −

𝑟j;𝑥−𝑟u;𝑥
‖𝑟j−𝑟u‖2

]︁
. (4.37)

It is worth noting that the tree described variants can be seen as an angular analogy
to the TWR, ToA and TDoA problems, respectively. The weight matrices of the
angular measurements are constructed using the same principles as were described
in the previous sections. It should be remarked that the possible covariances should
be taken into account when using the differentiated measurements in order to avoid
estimation of 𝜓.

V. Combined estimation

It is worth remarking that it is possible to combine the ToA, TWR and TDoA equations
in a common set of equations, if the coordinate frames are identical. All the equations
feature the same user-position vector. The TWR and TDoA measurements are insen-
sitive to the clock bias value, therefore their partial derivative w.r.t. 𝑏 is zero. For
example, the Jacobian matrix for estimating position from y = [𝜌1, 𝜌2, 𝑟u3, 𝑟u4, 𝑑5,6]T
and solving for 𝑥 = [𝑟u, 𝑏]T would follow

𝐽 =

⎡⎢⎢⎢⎢⎢⎣
1u,1 1
1u,2 1
1u,3 0
1u,4 0

1u,5 − 1u,6 0

⎤⎥⎥⎥⎥⎥⎦ .
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4.1.6. Estimate covariance and dilution of precision
In this section we consider the weighted scenario, where the weighted matrix is the
inverse of the covariance matrix, or its approximation (when only the diagonal elements
are assumed). In such case the covariance matrix of the parameter vector Φ̂𝑥 is

Φ̂𝑥 =
(︁
𝐽T
𝑓𝑊𝐽𝑓

)︁−1
, (4.38)

regardless which one of the algorithms described above is used. The vector containing
the standard deviations of the estimated parameters 𝜎𝑥̂ can by obtained by means of

𝜎𝑥̂ =
√︁

diag Φ̂𝑥 =
√︂

diag
(︁
𝐽T
𝑓𝑊𝐽𝑓

)︁−1
, (4.39)

where the “diag” operator produces the vector of the diagonal elements of a matrix.

Error ellipse
When assuming multivariate Gaussian distribution, it is possible to construct an error
ellipse which is based on the covariance matrix. Such shape depicts is the area, where
the true value lies with a certain probability.

For simplicity, we will now consider only the 1𝜎-error ellipse in an 𝑥𝑦-plane. When
there is no covariance between the random variables 𝑥 and 𝑦, the axes of the error
ellipse are aligned with the 𝑥 and 𝑦-axes, the respective semi-axes have length of the
corresponding standard deviations 𝜎𝑥 and 𝜎𝑦.

When a covariance between 𝑥 and 𝑦 is present, the error ellipse is scaled and rotated.
It can be shown that the length of the semi-axes is given by the square root of eigen-
values of the covariance matrix, whilst the direction of the semi-axes is determined by
the respective eigenvectors. The situation is depicted in Figure 4.1; the rotation of
the ellipse 𝜃 is the arctangent of the elements of the eigenvector corresponding to the
maximal eigenvalue.

Regardless of whether a covariance is present, the center of the ellipse coincides with
the means of the random variables, or the actual estimates. The 1𝜎-ellipse may be
scaled by parameter 𝜂 in order to reflect a particular probability of the true value lying
within the error ellipse. Under assumption of multivariate Gaussian distribution, it
holds

Pr (|𝑥− 𝑥̂| < 𝜂𝜎) = erf
(︂
𝜂√
2

)︂
, (4.40)

where erf(·) denotes the error function.105 Table 4.1 lists some of the useful relations
between 𝜂 coefficient and the probability.

It is possible to use a similar approach to construct error ellipsoid for visualization
in three dimensions; the three eigenvalues and eigenvectors still define the ellipsoid.
The ellipses are more common than ellipsoids, however.

Relation to DOP
Estimate covariance is inherently related to the dilution of precision, DOP, which

was mentioned in the GNSS context within Section 2.2.2–I. Under the assumption
105The error function is bound to the distribution function of the normal (Gaussian) distribution.
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Figure 4.1.: 1𝜎-error ellipse and its parameters.

Table 4.1.: Probability of true value laying within the error ellipse.

𝜂 Pr(|𝑥− 𝑥̂| < 𝜂𝜎)

1 0.682 689
1.5 0.866 386
2 0.954 500
3 0.997 300
4 0.999 936
5 0.999 999

𝜂 Pr(|𝑥− 𝑥̂| < 𝜂𝜎)

0.674 490 50.000 %
1.644 853 90.000 %
1.959 963 95.000 %
2.575 829 99.000 %
3.290 526 99.900 %
3.890 591 99.990 %

that all the measurements have equal standard deviation 𝜎𝑦 and are independent, i.e.
covariances are zero, the standard deviation of the estimates 𝜎𝑥̂ follow:

𝜎𝑥̂ =
√︂

diag
(︁
𝐽T
𝑓 (𝜎𝑦I)−2𝐽𝑓

)︁−1
= 𝜎𝑦

√︂
diag

(︁
𝐽T
𝑓 𝐽𝑓

)︁−1
. (4.41)

The matrix is often abbreviated to 𝐻 =
(︁
𝐽T
𝑓 𝐽𝑓

)︁−1
(sometimes written as

(︁
𝐺T𝐺

)︁−1
);

consequently,

𝜎𝑥̂;1 = 𝜎𝑦
√︀
𝐻11 𝜎𝑥̂;1,2 =

√︁
𝜎2
𝑥̂;1 + 𝜎2

𝑥̂;2 = 𝜎𝑦
√︀
𝐻11 +𝐻22, (4.42)

et cetera. The square roots of the diagonal elements of 𝐻 and their combinations are
referred as the DOP factors. They can be understood as the measures of the user-
infrastructure geometry quality, since they reflect how the imprecision of the measure-
ment affects the position estimate with a particular geometry.

When the DOP factors are computed in the ENU frame, they can be interpreted
as was suggested in Table 2.4 on page 55. The DOP factors are not limited to the
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GNSS field, they can be computed for any of the ToA, TWR, TDoA, or AoA problems.
Nonetheless, extra care has to be taken when computing DOP in the TDoA case, since
the measurements may be significantly correlated.106

4.1.7. Pseudomeasurement as a soft equality constraint
Consider an example: An UWB tag is mounted on a helmet, which is worn by a person.
It is practical to aid the position estimate process by such information in a form of a
constraint. It is not possible to define a hard constraint on the vertical position, since
we cannot say that the tag is e.g. 177.5 cm above the reference plane. However, it is
likely that the helmet is located around 175 cm – the actual height of the person with
helmet is uncertain, and the vertical position of head is not constant when walking.

Such information may be input to the least-squares iterative solution as a pseu-
domeasurement. We will denote the vector of pseudomeasurements by 𝑦′ and their
covariance matrix (𝑊 ′)−1. For the sake simplicity we will assume Gaussian distribu-
tion of the pseudomeasurement; the model follows

𝑦′ = g(𝑥) +𝒩
(︁
0, (𝑊 ′)−1

)︁
, (4.43)

where g is the constraint function. In the example mentioned above, the function
returns a scalar value – the height above ground.

Here, the extension of the Newton-Raphson algorithm will be shown, however, the
modification of the gradient and Levenberg-Marquardt method is analogical. Provided
that there is no correlation between the measurements and the psudomeasurements,
the modified weighted least-squares criterion is

𝑥̂ = arg min
𝑥

[︃
𝑦 − f(𝑥)
𝑦′ − g(𝑥)

]︃T [︃
𝑊 O

O 𝑊 ′

]︃ [︃
𝑦 − f(𝑥)
𝑦′ − g(𝑥)

]︃
, (4.44)

where O is a properly sized matrix of zeros.
The first modification of the Newton-Raphson algorithm is in the extension of resid-

ual computation: [︃
𝑦
𝑦′

]︃
=
[︃
𝑦 − 𝑦
𝑦′ − 𝑦′

]︃
=
[︃
𝑦 − f(𝑥̃)
𝑦′ − g(𝑥̃)

]︃
=
[︃
𝑦
𝑦′

]︃
−
[︃

f(𝑥̃)
g(𝑥̃)

]︃
. (4.45)

The second modification is in the correction update computation. From comparison
of (4.45) with (4.5) we may deduce that first order approximation of the residuals
follows [︃

𝑦
𝑦′

]︃
≈
[︃
𝐽𝑓 |𝑥̃
𝐽𝑔|𝑥̃

]︃
𝑥̌. (4.46)

Consequently, for the constrained weighted Newton-Raphson algorithm the correc-
tion update equation becomes

𝑥̌ =

⎛⎝[︃𝐽𝑓
𝐽𝑔

]︃T [︃
𝑊 O

O 𝑊 ′

]︃ [︃
𝐽𝑓
𝐽𝑔

]︃⎞⎠−1 [︃
𝐽𝑓
𝐽𝑔

]︃T [︃
𝑊 O

O 𝑊 ′

]︃ [︃
𝑦
𝑦′

]︃
. (4.47)

106The correlation (covariance normalized by variance) of the TDoA measurements is ±1/2.
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The application of the parameter vector correction is identical to the unconstrained al-
gorithm, i.e. follows (4.1). The pseudomeasurement approach is applied in Appendix B,
where the TDoA-based estimation in an UWB system using Levenberg-Marquardt al-
gorithm with pseudomeasurement is presented.

Clearly, the pseudomeasurements are not the only possible approach to constraining
the least-squares solution. For instance in [148] the solution using Lagrange multipliers
is shown. For the hard-constrained cases, the modifications of Levenberg-Marquardt
algorithm is available in [149].
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4.2. Kalman Filtering and Data Fusion
The Kalman filtering is a method that is used to estimate a system state (in navigation
often position and velocity) on the basis of a related series of measurements of the
system, observed over time. According to [150], it is the minimum-variance state
estimator for linear dynamic systems, regardless whether the system noise is Gaussian
or not.

In the following text we will show the basic equations for the linear Kalman filter
(KF) and its nonlinear variants extended and unscented Kalman filters (EKF and
UKF). Examples of use by author are available in the last two appendices of the
thesis. Within Appendix C, the linear KF is used for estimating the clock state of a
UWB transceiver, and for smoothing the position estimates as well. In Appendix D,
EKF is used as a complementary filter in the integrated GNSS-UWB-IMU system.

4.2.1. Linear Kalman filter
Within the thesis we will provide only the basic description of the filters, the rigorous

derivation is beyond the scope of the thesis; it is available e.g. in [151].
For the linear system holds that the evolution of the state vector 𝑥 from epoch 𝑘

and 𝑘 + 1 can be described by

𝑥[𝑘 + 1] = 𝐹𝑥[𝑘] +𝒩{0,𝑄}, (4.48)

where 𝐹 is the transition matrix and 𝑄 is the covariance matrix of the system noise.
The transition matrix reflects the dynamic model of the system. The measurements,
or observations, 𝑦 of the system follow

𝑦[𝑘] = 𝐻𝑥[𝑘] +𝒩{0,𝑅}, (4.49)

where 𝐻 is the measurement model matrix and 𝑅 is the measurement covariance
matrix. The goal of the Kalman filter is to estimate the state vector 𝑥 and its covariance
matrix 𝑃 .

The algorithm consists of two steps – the prediction and the measurement update.
First, we will describe the prediction of state and its covariance from epoch 𝑘 − 1 to
epoch 𝑘. The filter state 𝑥+[𝑘 − 1] is considered known, the + superscript denotes
the a posteriori value. The covariance matrix is denoted by 𝑃+[𝑘 − 1]. For the linear
system it holds that the a priori (denoted by the − superscript) state for epoch 𝑘 and
its covariance can be predicted by means of

𝑥−[𝑘] = 𝐹𝑥+[𝑘 − 1] (4.50)
𝑃−[𝑘] = 𝐹𝑃+[𝑘 − 1]𝐹T +𝑄. (4.51)

In this step, the state estimate becomes more uncertain, since the variances (i.e. the
covariance matrix) always grow.

During the measurement update, the prediction is confronted with the measure-
ments, and the predictions are corrected accordingly. First, innovations 𝑧[𝑘] and their
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covariance matrix 𝑆[𝑘] are computed using

𝑧[𝑘] = 𝑦[𝑘]−𝐻𝑥−[𝑘] (4.52)
𝑆[𝑘] = 𝐻𝑃−[𝑘]𝐻T +𝑅. (4.53)

It is worth noting that the innovations may be understood as the measurement resid-
uals. Next, the Kalman gain is obtained as

𝐾[𝑘] = 𝑃−[𝑘]𝐻T(𝑆[𝑘])−1. (4.54)

The Kalman gain is a matrix that decides how much the innovations will be applied
to the state vector. The a posteriori estimate of the state vector and its covariance is
found by means of

𝑥+[𝑘] = 𝑥−[𝑘] +𝐾[𝑘]𝑧[𝑘] (4.55)
𝑃+[𝑘] = (I−𝐾[𝑘]𝐻[𝑘])𝑃−[𝑘] (I−𝐾[𝑘]𝐻[𝑘])T +𝐾[𝑘]𝑅𝐾T[𝑘]. (4.56)

Remarkably, this is not the only possible way of propagating the state covariance,
other variants are available e.g. in [151].

The measurement model and the transition matrices 𝐻 and 𝐹 have to be known,
naturally. In the ideal case, the system noise and measurement covariance matrices
𝑄 and 𝑅 are known as well. Nonetheless, the full covariance matrices are often not
available, so they have to be guessed and tuned by the KF designer ad hoc, in order
to provide the desired results. Of course, such guess should reflect the nature and
expected variance of the measurements. Practical considerations for tuning the filter
are provided at the end of this section.

It is worth noting that all of the matrices describing the system and measurements
may be different in each epoch.

Variable epoch interval

Sometimes, the time interval between epochs is not constant (e.g. in Appendix C).
Inherently, the temporally-dependent terms of the transition matrix 𝐹 need to be
adjusted. However, the process noise covariance 𝑄 has to be scaled as well. Assuming
the process noise to be multivariate zero-mean Gaussian random walk, the 𝑄 for 𝑘-th
epoch (i.e. transition from 𝑘 to 𝑘 + 1) is

𝑄[𝑘] = 𝜏 [𝑘]𝑄0, (4.57)

where 𝜏 [𝑘] is the time interval between the respective epochs and 𝑄0 is the covariance
matrix normalized w.r.t. the unit time. The measurement model and covariance are
usually independent of the epoch interval 𝜏 [𝑘], thus, 𝐻 and 𝑅 are not affected.

Practical considerations

The real systems are often not described perfectly by the 𝐹 ,𝑄,𝐻 and𝑅matrices; also,
the noise is not always Gaussian and zero-mean. Therefore, the theoretical values have
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to be adapted to the real scenario – typically by means of simulations, or experimentally
(either directly or by post-processing of captured measurements).

The system noise covariance matrix 𝑄 is commonly chosen as a diagonal matrix.
The variances (diagonal elements of 𝑄) then imply how quickly the state is allowed
to change in time. Rapidly changing state-variables exhibit higher variances than the
slowly changing ones. Too low values in 𝑄 may lead to divergence of the Kalman
filter; it is often practical to overestimate the variance.107 Overestimating 𝑄 may be
considered as trading the reliable operation for the accuracy of estimation. Similarly,
it may be beneficial to reduce the variances (or covariances) of measurements (𝑅-
matrix) in order to emphasize the measurements over the predictions. Alternatively,
fading-memory filter may be used [151].

It is necessary to consider arithmetic precision limitations as well. Most often, the
covariance matrices and operations with them cause problems due to their quadratic
nature. Solution to this may be convenient scaling of the state variables or increasing
arithmetic precision. In software such as MATLAB the problems with arithmetic are
uncommon, since double-precision floating-point representation is used. However, in
case of poor variable scaling, the algorithm may fail. It is rather dangerous when
the orders of magnitude of the state variables differ substantially. In such case the
rounding errors of the large values may be greater than the small values. Moreover,
the inversion of 𝑆 within (4.54) becomes problematic.

The proper scaling is vital when fixed-point arithmetic is used which is typical for
embedded processors.108 The “dynamic range” of the state is defined by the number
of bits used for the variable.

The initialization of the KF may become problematic as well. The initial state 𝑥[0]
should not be too far from the expected estimate. Similarly, the covariance matrix
𝑃 [0] should allow for quick convergence. Therefore, the variances of the states should
be set large in order to reflect the initial uncertainty of the state value.

4.2.2. Exended Kalman filter
The EKF is the modification of the Kalman filter that allows operation with nonlinear
measurement model and nonlinear state model. It is worth remarking that the notation
used below is not the only one possible. For the nonlinear system the process model
is described by means of a function f , whilst the measurement model is described by
function h:

𝑥[𝑘 + 1] = f (𝑥[𝑘]) +𝒩{0,𝑄} (4.58)
𝑦[𝑘] = h (𝑥[𝑘]) +𝒩{0,𝑅}. (4.59)

It is apparent that the prediction of the state from epoch 𝑘 − 1 to 𝑘 of the EKF is
performed via the function f as

𝑥−[𝑘] = f
(︁
𝑥+[𝑘 − 1]

)︁
. (4.60)

107Even for the states that should be constant it is recommended introduce an artificial variance [151].
108Embedded processors often contain only the fixed-point arithmetic unit, the floating-point operations

are therefore emulated and remarkably slower than the fixed-point operations.
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In order to propagate the covariance matrix 𝑃 , the function f is linearized, i.e. its
Jacobian matrix is used.

𝐹 [𝑘 − 1] = 𝜕f
𝜕𝑥

⃒⃒⃒⃒
𝑥+[𝑘−1]

=

⎡⎢⎢⎢⎢⎣
𝜕f1
𝜕𝑥1

⃒⃒⃒
𝑥+

1 [𝑘−1]
𝜕f1
𝜕𝑥2

⃒⃒⃒
𝑥+

2 [𝑘−1]
. . .

𝜕f2
𝜕𝑥1

⃒⃒⃒
𝑥+

1 [𝑘−1]
𝜕f2
𝜕𝑥2

⃒⃒⃒
𝑥+

2 [𝑘−1]
. . .

...
... . . .

⎤⎥⎥⎥⎥⎦ (4.61)

𝑃−[𝑘] = 𝐹 [𝑘 − 1]𝑃+[𝑘 − 1]𝐹T[𝑘 − 1] +𝑄 (4.62)

Similarly, the innovations are computed using the measurement model function, and
the innovation covariance by means of linearization of the function at the point of a
priori state (the state prediction):

𝑧[𝑘] = 𝑦[𝑘]− h
(︀
𝑥−[𝑘]

)︀
(4.63)

𝐻[𝑘] = 𝜕h
𝜕𝑥

⃒⃒⃒⃒
𝑥−[𝑘]

(4.64)

𝑆[𝑘] = 𝐻[𝑘]𝑃−[𝑘]𝐻T[𝑘] +𝑅. (4.65)

Next, the Kalman gain is computed in the same way as for the linear KF. However,
obtaining a posteriori estimate of the state vector and its covariance matrix is slightly
different:

𝐾[𝑘] = 𝑃−[𝑘]𝐻T(𝑆[𝑘])−1 (4.66)
𝑥+[𝑘] = 𝑥−[𝑘] +𝐾[𝑘]𝑧[𝑘] (4.67)
𝑃+[𝑘] = (I−𝐾[𝑘]𝐻[𝑘])𝑃−[𝑘]. (4.68)

It is possible to observe that (4.68) does not necessarily produce a symmetric matrix.
Nonetheless, symmetry is the basic property of any covariance matrix; thus, it is
recommended to perform a simple diagonalization of 𝑃+[𝑘] by means of

𝑃 = 𝑃 + 𝑃T

2 . (4.69)

The example of use of the EKF by the author is available in Appendix D.

Practical considerations

Since the propagation of the covariance matrix is only approximate, it is desirable to
overestimate the process noise (𝑄) in order to reduce the confidence in the prediction
and provide margin for the linearization error. Due to the linearization, there is a risk of
underestimating the predicted covariance matrix, which may lead to filter divergence.

The linearization error in the covariance matrix prediction may be reduced by means
of breaking the prediction step into two or more smaller ones.109 The linear approxi-
mation is then broken into a piecewise-linear approximation and the resulting error is

109This approach is an analogy to reducing the error of a simple Euler integration by means of reducing
the step size.
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Figure 4.2.: Reducing linearization error by partitioning of the update step.

likely to be smaller, see Figure 4.2. If the nonlinearity-related problems arise from the
measurement model, the iterated EKF may provide improvement [151].

Of course, the considerations mentioned in regard to the linear KF are mostly ap-
plicable to the EKF as well.

4.2.3. Unscented Kalman filter
In order to show that EKF is not the only possibility to deal with nonlinear systems,

the unscented Kalman filter (UKF) is described here, although not used directly in the
author’s work presented within the appendices. Unlike EKF, it does not use lineariza-
tion to propagate the state and its covariance matrix though the nonlinear models, but
rather uses the unscented transformation (UT). The description of the UKF in this
thesis follows [151], however, other variants of the unscented transformation do exist,
e.g. [152, 153].

When a random vector is transformed nonlinearly, it is not secured that the trans-
formation of the mean is the mean value of the transformed vector. The distribution of
the transformed variable is not necessarily Gaussian. The UT uses several samples of
the original random variable distribution – those are denoted sigma-points. The points
are then propagated via the nonlinear function, and transformed mean and variance
are computed based on them.

In order to show the principle of the UT, we will propagate the 𝑛-variate random
variable 𝑥 to 𝑚-variate random variable 𝑦 via vector function 𝑦 = f(𝑥). First, 2𝑛
sigma points are chosen so that

𝑥𝜎𝑖 = 𝑥+
√
𝑛
(︁√︀

Φ𝑥

)︁T

𝑖
for 1 ≤ 𝑖 ≤ 𝑛

𝑥𝜎𝑖 = 𝑥−
√
𝑛
(︁√︀

Φ𝑥

)︁T

𝑖
for 𝑛+ 1 ≤ 𝑖 ≤ 2𝑛,

(4.70)

where
(︀√

Φ𝑥
)︀
𝑖 is the 𝑖-th row of the square root of Φ𝑥 (the covariance matrix of 𝑥).

Then, the sigma points are propagated through the nonlinear function 𝑦𝜎𝑖 = f(𝑥𝜎𝑖 ) and
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the transformed mean 𝑦 and covariance matrix Φ𝑦 are computed using

𝑦 = 1
2𝑛

2𝑛∑︁
𝑖=1
𝑦𝜎𝑖 (4.71)

Φ𝑦 = 1
2𝑛

2𝑛∑︁
𝑖=1

(𝑦𝜎𝑖 − 𝑦)(𝑦𝜎𝑖 − 𝑦)T. (4.72)

As an example we will provide a transformation of a 2-dimensional Cartesian coor-
dinates to the distance and angle representation, i.e.[︃

𝑦1
𝑦2

]︃
=

⎡⎢⎣
√︁
𝑥2

1 + 𝑥2
2

tan−1 𝑥2
𝑥1

⎤⎥⎦ [︃
𝑥1
𝑥2

]︃
=
[︃
𝒩 (3, 1)
𝒩 (4, 1)

]︃
. (4.73)

In Figure 4.3 the transformation of the mean and variance is presented by means of
the error ellipses. The “true” values of the mean and covariance were obtained by
propagating 103 random samples, which are depicted as dots in the figures. The EKF-
like linearization approach was used in Figure 4.3a; clearly, the propagated mean, i.e.
f(𝑥̄), does not coincide with the true mean of 𝑦. The UT was performed in Figure 4.3b;
it is obvious that the original, symmetric constellation of the sigma points has been
distorted by the nonlinear function. The true and propagated means almost coincide,
the covariance propagation is not substantially wrong.

The difference of the linearized and the nonlinear transformation is visualized by
means of the transformation of the background grids of the upper (original) plots
in Fig. 4.3a to the lower (transformed) plot. It is apparent that the nonlinearity causes
deformation of the grid (Fig. 4.3b), which is ignored in the linearized case (Fig. 4.3a).
Naturally, the sigma-point constellation is deformed in the same way as the grid is.

The actual UKF algorithm uses the UT in several places. First, rather straightfor-
ward application is in the prediction step; the sigma points 𝑥𝜎+

𝑖 [𝑘 − 1] are generated
according to (4.70) using the a posteriori state 𝑥+[𝑘 − 1] and its covariance matrix
𝑃+[𝑘−1]. The sigma-points are then propagated through the nonlinear system process
model function 𝑥𝜎−𝑖 [𝑘] = f(𝑥𝜎+

𝑖 [𝑘− 1]), and the a priori state 𝑥−[𝑘] is obtained using
(4.71). In case of the a priori covariance matrix 𝑃−[𝑘], the computation is similar to
(4.72), nonetheless, the process noise 𝑄 has to be taken into account. Thus,

𝑃−[𝑘] = 1
2𝑛

2𝑛∑︁
𝑖=1

(𝑥𝜎−𝑖 [𝑘]− 𝑥−[𝑘])(𝑥𝜎−𝑖 [𝑘]− 𝑥−[𝑘])T +𝑄. (4.74)

Second, more complicated application is in the measurement update step; the sigma-
points 𝑥𝜎−𝑖 [𝑘] may be re-generated according to (4.70). Otherwise, the ones from the
prediction step are used, in order to avoid computation of the matrix square root.
The sigma-points are propagated through the nonlinear measurement model 𝑦𝜎𝑖 [𝑘] =
h(𝑥𝜎−𝑖 [𝑘]) and their mean 𝑦[𝑘] is obtained using (4.71). Then, the covariance of the
predicted measurements is computed using

Φ𝑦[𝑘] = 1
2𝑛

2𝑛∑︁
𝑖=1

(𝑦𝜎𝑖 [𝑘]− 𝑦[𝑘])(𝑦𝜎𝑖 [𝑘]− 𝑦[𝑘])T +𝑅, (4.75)

129



4. Positioning Solution and Data Fusion

(a) Linearized (EKF-like) (b) Unscented transformation

Figure 4.3.: Mean and covariance propagation via nonlinear function. The gray
dashed 95 % error ellipse with “×” center is based on mean and co-
variance computed from 105 random samples (only 103 are plotted); the
solid black error ellipse with “+” center depicts the transformed mean
and covariance. The stars depict the sigma-points of the UT.
The blue mesh is the grid from the upper plot, transformed in the lin-
earized (a) and the nonlinear (b) manner.
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where 𝑅 is the measurement covariance matrix. The cross-covariance between the
prediction and the corresponding measurement is obtained by means of

Φ𝑥𝑦[𝑘] = 1
2𝑛

2𝑛∑︁
𝑖=1

(𝑥𝜎−𝑖 [𝑘]− 𝑥−[𝑘])(𝑦𝜎𝑖 [𝑘]− 𝑦[𝑘])T. (4.76)

The Kalman gain evaluation and the actual measurement update of the state follows

𝐾[𝑘] = Φ𝑥𝑦[𝑘]Φ−1
𝑦 [𝑘] (4.77)

𝑥+[𝑘] = 𝑥−[𝑘] +𝐾[𝑘] (𝑦[𝑘]− 𝑦[𝑘]) (4.78)
𝑃+[𝑘] = 𝑃−[𝑘]−𝐾[𝑘]Φ𝑦[𝑘]𝐾T[𝑘]. (4.79)

By obtaining the a posteriori state in the epoch 𝑘, the filter evaluation loop is closed.
It is worth noting that when the system process model or the measurement model is
linear, there is no need to use the UT for the prediction or the measurement update,
respectively. In such cases a hybrid (partially linear, partially unscented) Kalman filter
can be used.

According to [153], the UKF provides 3rd order accuracy of the mean and covariance
transformation, whilst the linearization in EKF implies 1st order accuracy only. It
is necessary to consider whether the performance improvement brought by UKF in
comparison with EKF is worth the increased computational efforts – especially the
sigma-point generation, which contains the matrix square root operation.

The number of nonlinear function evaluations can be a performance factor as well.
Consider that 𝑚 and 𝑛 are the dimensions of the measurement (𝑦) and state (𝑥)
vectors, respectively. In each unscented transformation, as was described here, 2𝑛𝑚
evaluations of a vector-to-scalar nonlinear function are performed; a set of 𝑚 func-
tions is evaluated 𝑛-times. In contrast, each linearization within the EKF requires 𝑚
evaluations of a vector-to-scalar nonlinear function and 𝑛𝑚 Jacobian-matrix element
evaluations; this yields evaluation of up to 𝑛(𝑚 + 1) different nonlinear functions.110

For certain applications it may be advantageous that the unscented transformation,
unlike the linearization, does not require knowledge of the partial derivatives of the
transforming function at all.

4.2.4. Constraining the Kalman filter
The constraints carry an additional information about the system of interest that is
not available to the filter otherwise – it is not included in the measurement nor in the
system model.

There are various ways of constraining the numerous types of the Kalman filters; an
exhaustive review of the available methods is provided in [150]. In this work we are
particularly interested in soft equality constraints. The ease of implementation and
versatility of the constraints is considered to be an important attribute. Therefore, a
pseudomeasurement approach is presented.

110The number of evaluated functions in EKF is usually lower, since a number of partial derivatives is
typically zero. In case of both filters, not all of the vector-to-scalar functions have to be nonlinear.
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I. Pseudomeasurement approach

The pseudomeasurement approach is applicable to all the presented filters, i.e. linear
KF, EKF and UKF. We may model the constraints as a generally nonlinear vector
function

𝑦′ = g(𝑥) +𝒩
(︀
0, 𝑅′

)︀
(4.80)

where 𝑦′ is the pseudomeasurement. Note that the constraints are commonly defined
with the vector of zeros on the right hand side of the equation, however, for the
pseudomeasurement approach this definition is more convenient.

The prediction step is performed in the same way as it would be performed in the
unconstrained case. In the measurement update step, the a priori state is compared
with both the measurements and the pseudomeasurements. For the sake of clarity we
will drop the epoch identifier (𝑘-index). The concatenated measurement vector and
its covariance matrix are defined as

𝑦∘ =
[︃
𝑦
𝑦′

]︃
, 𝑅∘ =

[︃
𝑅 O

O 𝑅′

]︃
. (4.81)

Intuitively, the measurement model function is concatenated similarly as the measure-
ment vector. For the use in the EKF the concatenated Jacobian matrix of h∘(𝑥−) is
obtained as a vertical concatenation of the Jacobian matrix of the measurement model
𝐻 and the Jacobian matrix of the constraint model 𝐺:

h∘(𝑥−) =
[︃
h(𝑥−)
g(𝑥−)

]︃
, 𝐻∘ =

[︃
𝐻
𝐺

]︃
=

⎡⎢⎣𝜕h(𝑥−)
𝜕𝑥−

𝜕g(𝑥−)
𝜕𝑥−

⎤⎥⎦ . (4.82)

The measurement update is then performed with the concatenated vectors, functions
or matrices. For the linear KF the equations (4.52) to (4.56) are used, EKF update
follows (4.63) to (4.68) and the UKF update is directed by (4.75) to (4.79).

II. Projection on the constraint subspace

In certain cases it is convenient to define constraint values, i.e. the pseudomeasurement
vector 𝑦′ as a function of the state.

As an example we may take the car from Figure 3.1 (page 89). The 𝑥b-axis of the
cars body frame points forward. Unless the car is skidding, the velocity should only
be present in the direction of 𝑥b. The Kalman filter state, i.e. the position, velocity
and attitude, are expressed w.r.t. the n-frame; the dynamic model runs in the n-frame
as well and does not reflect the b-frame related constraint. It is straightforward to see
that the lateral and vertical velocity components 𝑣b

𝑦 and 𝑣b
𝑧 should be both zero. The

constrained n-frame velocity vector 𝑣′n is then the velocity vector projected onto the
𝑥b-axis. Provided that the quaternion 𝑞n

b describes the transformation from b-frame
to n-frame, such projection can be written as

𝑣′n = 1n
𝑥b(1n

𝑥b)T𝑣n =

⎛⎜⎝𝑞n
b ⊗

⎡⎢⎣1
0
0

⎤⎥⎦⊗ (𝑞n
b)*
⎞⎟⎠
⎛⎜⎝𝑞n

b ⊗

⎡⎢⎣1
0
0

⎤⎥⎦⊗ (𝑞n
b)*
⎞⎟⎠

T

𝑣n, (4.83)
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where 𝑣n denotes the unconstrained velocity vector, and 1n
𝑥b is the 𝑥b-axis direction

vector expressed in the n-frame. It is worth reminding that the vectors are preceded
by a zero-element for the purpose of quaternion multiplication.

The general expression for projection of vector 𝑥 into the direction of vector 𝑐 is

𝑥′ = 𝑐𝑐T

‖𝑐‖2
𝑥, 𝑥′ = 1𝑐1

T
𝑐 𝑥, (4.84)

where 1𝑐 is the unit-length vector in the direction of 𝑐. The projection of 𝑥 onto a
plane normal to vector 𝑐 (sometimes denoted as vector rejection) can be performed as

𝑥′ = 𝑥− 𝑐𝑐T

‖𝑐‖2
𝑥 =

(︃
I− 𝑐𝑐T

‖𝑐‖2

)︃
𝑥, 𝑥′ = 𝑥− 1𝑐1T

𝑐 𝑥 =
(︁
I− 1𝑐1T

𝑐

)︁
𝑥. (4.85)

Note that the normal vector of a plane can be obtained as the cross-product any two
linearly independent vectors lying within the plane to be projected onto.

It is acknowledged that projection onto a nonlinear surface was not considered within
the thesis. The pseudomeasurement approach with linearly-projected constraints has
been used by the author in the complementary EKF which is described within Ap-
pendix D.

4.2.5. Kalman smoother
In the post-processing applications it is possible to run the Kalman filters backwards in
time. Of course, the models have to be modified to reflect the direction of processing.
In each epoch, the forward and backward a posteriori states can be fused to a single
state estimate by means of a multidimensional weighted average [134]. Omitting the
epoch identifier we may write

𝑃↔ =
(︁
𝑃−1
→ + 𝑃−1

←

)︁−1
(4.86)

𝑥↔ = 𝑃↔
(︁
𝑃−1
→ 𝑥→ + 𝑃−1

← 𝑥←

)︁
, (4.87)

where the →, ← and ↔ subscripts denote the forward, backward and smoothed solu-
tion, respectively.

The computational burden of combining the forward and backward solution may
be reduced by setting certain parts of the covariance matrices to zero, which may
render the combination suboptimal. It is convenient to make the 𝑃 -matrices block-
diagonal in order to trade the inversions of large matrices for more inversions of smaller
matrices, or even scalars. Taken even further, if all the state covariances are neglected,
all 𝑃 -matrices become diagonal. In such case the weighted average may be performed
element-wise, all the inversions can be interpreted as scalar divisions.

A specific situation is in the error-state KF in Appendix D, where the blockwise
diagonalization of 𝑃 -matrices has been used for additional reason. The error-state KF
estimates the error of the position, velocity and attitude estimate. Whilst the position
and velocity estimated values and the respective error values may be combined directly
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using (4.86) and (4.87), the attitude estimate and attitude error estimate parimetriza-
tions have to be altered. Therefore, the attitude-related part of the KF state and the
covariance matrix is processed separately; consequently, covariance between attitude
and other state-vector elements is neglected.

4.3. Alternative methods of data fusion
The use of Kalman filters is not the only possible way of sensor fusion. For instance,
the particle filters or factor graphs may be considered as an alternative.

The particle filters (PF), sometimes called sequential Monte-Carlo (SMC) methods,
share the prediction – measurement update architecture with the Kalman filters. How-
ever, they propagate a number of randomly distributed state estimates through the
generally nonlinear models of the measurements and the system. The background idea
is that a sufficient number of samples provides an approximation of the true probabil-
ity density functions (PDFs) of the state, its prediction, innovation or the a posteriori
estimate. Consequently, unlike KF, the PF is not bound by the assumption of Gaus-
sian distribution nor linearity of the models. The disadvantage of the particle filter is
high computational load and memory requirements. The detailed description of the
particle filters is available e.g. in [154]. Examples of data-fusion-related PFs are avail-
able e.g. in [155]; in [136] the unscented particle filter (a hybrid between UKF and PF)
is introduced. The particle filter can be used in the standalone GNSS positioning as
well, see [156, 157].

The factor graphs can be considered as a more general approach, since they do not
build on the prediction – measurement update architecture, nor they are constraining
the underlying models, nor the state or noise PDFs. The factor graphs provide a
graphical method of factorization of a complicated global function into a product
of several local functions; an overview of the principles can be found e.g. in [158].
Although most commonly used in the information theory field, especially in digital
communication and coding, the factor graphs can be used in the navigation field as
well. For instance, [159] proposes a factor-graph-based approach for fusing data from
IMU, GNSS and visual sensors. It is worth remarking that the Kalman filter may be
visualized in a form of factor graph as well, see e.g. [160].
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5. Conclusion

The main text of the thesis provides a theoretical context of the author’s work in the
field of radionavigation and integrated navigation; the appendices of the thesis present
utilization of the particular principles in specific applications within author’s work.
The interconnection of the more general topics through the applications was already
shown in the mindmap (Figure 1.2), which appeared in the introductory chapter. The
following paragraphs will summarize the novel approaches found in this work.

Since the thesis is not deeply focused on any particular area but rather provides a
link of several topics via applications of more general methods, it is worth to highlight
a few important points this thesis has brought up:

Evaluation of bias and variance of the asymmetric double-sided TWR
The two-way ranging approach is very popular ranging method in the UWB systems;
the variants of the method are described in Section 2.1.2–II. In particular, the asym-
metric double-sided TWR was reported to reduce the sensitivity to clock-drift without
the need of symmetric reply times as is required by the symmetric DS-TWR. However,
the nonlinearity of the ADS-TWR estimator was overlooked and its properties have
not been investigated, even though it has been patented [11] and is the reference TWR
implementation by the UWB-chip manufacturers Application note [161].

The thorough analysis provided in Appendix A confirmed that the estimator is safe
to use and that the increased immunity to drifting clocks was not traded for accuracy,
nor significant bias of the estimator. The variance of the ADS-TWR estimator is
proven to be similar to the variance of SDS-TWR, indeed.

Chained synchronization for UWB-network
The synchronization of UWB anchors (the fixed infrastructure nodes of the UWB lo-
calization network) is necessary to enable the TDoA positioning. The wired synchro-
nization is rather impractical and expensive, thus, a wireless solution is favored. A
sub-nanosecond timing accuracy is required in order to be able to achieve decimeter-
level positioning. The Kalman-filter based algorithm described in Appendix C and
published in [5, 6] provides sufficiently accurate time-transfer not only between a pair
of master and slave nodes with line-of-sight link available. Relaying of the timing infor-
mation over several nodes is possible with only a minor modification of the algorithm.
Consequently, it is possible to synchronize two nodes without the direct line-of-sight
via multiple line-of-sight segments.

Under most circumstances, the synchronization algorithm achieves sub-nanosecond
accuracy (typically 0.3 to 0.4 ns RMS). Details of the algorithm principle and imple-
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mentation are available in Appendix C.1; a number of experimental results is provided
as well.

The exploitation of the results is shown in the Appendix B.2; the precise synchro-
nization of the UWB network made possible to collect the TDoA measurements.

It is worth remarking that the author’s chained synchronization algorithm is imple-
mented in an UWB-based localization system developed jointly by Czech Technical
University in Prague and RCD Radiokomunikace.

Soft-constrained error-state Kalman filter

The Kalman filters, which are suitable for performing sensor fusion, have been de-
scribed in Section 4.2. It provides grounds for the development of the error-state
Kalman filter (ESKF, see Appendix D) which is able to combine the data from a
loosely coupled system consisting of a GNSS receiver, UWB transceiver and MEMS
IMU. This sensor-fusion filter is an important part of the work [138], where accurate
navigation in the GNSS-challenged environment is targeted.

Since the motion of the localized platform is deterministic to a considerable extent,
dynamic constraints were considered in the ESKF. The constraints were applied in a
“soft” manner, because there is an uncertainty of the constraint validity – the platform
was man-powered on a rough surface. Additionally, the classification of the motion
model, which was performed by a neural network, did not provide perfect results.

A pseudomeasurement implementation (general description in Section 4.2.4) of the
soft constraints was used; such an approach allows simple adjustment of the constraints
to match the chosen motion model. Attitude, velocity and partial position constraints
were available for application, see Appendix D.3.

The filter architecture is modular, i.e. measurements and pseudomeasurements can
be incorporated in a straightforward manner. The presented solution is able to over-
come short radionavigation outages. The improvement in performance brought by the
soft constraints is indisputable; naturally, the improvement (quantified by means of
reduction of position RMS error) is greater when the motion is more constrained. For
instance, the improvement was 35 % on the straight portion trajectory and 16 % in a
turn.

Signal-power-based AoA in Rician channel

For the signal-power based measurement of range (Sec. 2.1.1) or angle of arrival (AoA,
Sec. 2.1.4–I) two different channel models were assumed. First, a fairly common log-
normal fading channel model was assumed. It is rather convenient for computations,
since in dB-scale, the power distribution is normal (Gaussian); however, it neglects
the presence of the thermal noise floor. Thus, the model with Rician channel, i.e.
non-central 𝜒2 signal power distribution was investigated for both cases. It is worth
remarking that the numerical integration of the distribution required in the CRLB
evaluation was nontrivial and required adaptive setting of integration bounds in order
to provide reliable results.
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Iterative solutions of navigation problems
A number of iterative least-squares algorithms were presented in Section 4.1. Their
application on two different TDoA problems is described in Appendix B – the DVB-T
signal of opportunity positioning and UWB positioning. It needs to be remarked that
we have not focused on the estimated position vector solely, the position covariance
matrix, its importance and interpretation was highlighted as well within the thesis.

137





Appendices

139





A. Bias and Variance of the Asymmetric
Double-sided TWR

In this appendix, the performance of three range estimators that were already men-
tioned in section 2.1.2 is investigated. The estimators (their equations are repeated
below for the sake of clarity)

𝑟AB,2 = 𝑐0
2
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

𝜏
[A]
A1 + 𝜏

[A]
A2

(2.48)

𝑟AB,1 = 𝑐0
2
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

𝜏
[B]
B2 + 𝜏

[B]
B1

(2.49)

𝑟AB,3 = 𝑐0
𝜏

[A]
A1 𝜏

[B]
B2 − 𝜏

[A]
A2 𝜏

[B]
B1

𝜏
[A]
A1 + 𝜏

[A]
A2 + 𝜏

[B]
B2 + 𝜏

[B]
B1

(2.50)

are claimed to reduce the negative impact of clock frequency bias in the range estimate,
while relaxing the requirement on equality of the reply delays in the two negotiating
nodes [3, 11]. The advantage of the estimators is indisputable, however the perfor-
mance of the estimators, especially their variance has not been assessed yet. It is
worth noting that the equation (2.50) is considered as a reference TWR implementa-
tion in an application note [161] authored by a UWB-ranging module manufacturer.

Since in all the equations of range estimate (2.48) to (2.50) are formed by a fraction,
it is not possible to find the exact value of variance of such estimator. Moreover,
due to the non-linearity of the equations, the range estimator may be biased. In the
following sections, an approach for obtaining approximation of bias and variance of
the estimators will be presented. It will be shown that under certain assumptions,
the respective formulas can be simplified to reasonably long expressions. Graphical
representation of the results will be provided, moreover, it will be compared to the
results obtained by Monte–Carlo method.

A.1. Approximation of the Estimator Performance Parameters

In order to obtain an approximation of bias and variance, the multivariate Taylor
expansion of the corresponding equations will be used. A similar approach has been
already used for estimating the bias and variance of a simple ratio estimator in [162],
nonetheless, the application in our case is a bit more complicated due to two reasons:
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Number of parameters – It is known that the number 𝑁m,k of 𝑚-th order terms of the
Taylor series of a function with 𝑘 parameters is given by

𝑁m,k =
(︃(︃

𝑘

𝑚

)︃)︃
=
(︃
𝑚+ 𝑘 − 1

𝑚

)︃
, (A.1)

where
(︀(︀𝑎
𝑏

)︀)︀
denotes a multiset number111 and

(︀𝑎
𝑏

)︀
the binomial coefficient.112 With

the higher order and more parameters the complexity of the multivariate Taylor
expansion formula grows and the chance of achieving reasonable analytic result is
reduced, naturally.

Dependency of numerator and denominator – In the case of a simple ratio estimator,
stochastic independence of the numerator and denominator is usually assumed. In
our case, however, the numerator and denominator are inherently dependent, by
virtue of at least two parameters appearing both above and below the fraction bar.
Prior to presentation of the simplified formulas for the bias and variance of the

particular estimators a generic approach to the approximation is presented. As the
first step, it is necessary to find the Taylor expansion of the particular range estimator
around the means of the involved delay measurements, see (A.2). For the sake of
simplicity, we will drop the superfixes from those equations and denote the vector of
means by 𝜇𝜏 = [𝜇𝜏A1, 𝜇𝜏B2, 𝜇𝜏A2, 𝜇𝜏B1]T. The second-order Taylor expansion of a
generic ADS-TWR estimator yields

𝑟 ≈ 𝑟|𝜇𝜏
+ (𝜏A1 − 𝜇𝜏A1) 𝜕𝑟

𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

+ (𝜏B2 − 𝜇𝜏B2) 𝜕𝑟

𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

+ (𝜏A2 − 𝜇𝜏A2) 𝜕𝑟

𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

+ (𝜏B1 − 𝜇𝜏B1) 𝜕𝑟

𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

+ (𝜏A1 − 𝜇𝜏A1)2

2
𝜕2𝑟

𝜕𝜏2
A1

⃒⃒⃒⃒
⃒
𝜇𝜏

+ (𝜏B2 − 𝜇𝜏B2)2

2
𝜕2𝑟

𝜕𝜏2
B2

⃒⃒⃒⃒
⃒
𝜇𝜏

+ (𝜏A2 − 𝜇𝜏A2)2

2
𝜕2𝑟

𝜕𝜏2
A2

⃒⃒⃒⃒
⃒
𝜇𝜏

+ (𝜏B1 − 𝜇𝜏B1)2

2
𝜕2𝑟

𝜕𝜏2
B1

⃒⃒⃒⃒
⃒
𝜇𝜏

+(𝜏A1 − 𝜇𝜏A1)(𝜏B2 − 𝜇𝜏B2) 𝜕2𝑟

𝜕𝜏A1𝜕𝜏B2

⃒⃒⃒⃒
⃒
𝜇𝜏

+ (𝜏A1 − 𝜇𝜏A1)(𝜏A2 − 𝜇𝜏A2) 𝜕2𝑟

𝜕𝜏A1𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

+(𝜏A1 − 𝜇𝜏A1)(𝜏B1 − 𝜇𝜏B1) 𝜕2𝑟

𝜕𝜏A1𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

+ (𝜏B2 − 𝜇𝜏B2)(𝜏A2 − 𝜇𝜏A2) 𝜕2𝑟

𝜕𝜏B2𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

+(𝜏B2 − 𝜇𝜏B2)(𝜏B1 − 𝜇𝜏B1) 𝜕2𝑟

𝜕𝜏B2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

+ (𝜏A2 − 𝜇𝜏A2)(𝜏B1 − 𝜇𝜏B1) 𝜕2𝑟

𝜕𝜏A2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

,

(A.2)

111Multiset number in the notation mentioned above is a number of 𝑏-tuples chosen from 𝑎 types of
elements. There may be multiple elements of the same type in the 𝑏-tuple.

112Binomial coefficient in the notation mentioned above is a number of 𝑏-tuples chosen from a set of 𝑎
elements. Each element can be present only once in the 𝑏-tuple, therefore 𝑎 ≥ 𝑏 must hold.
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where |𝜇𝜏
denotes that the value is obtained at the expansion point, i.e. when the

parameters are equal to their respective means. In such notation, 𝑟|𝜇𝜏
is the estimator

output value when the parameter means are input to the function.
In order to find the mean value of the range estimate, at least the second-order expan-

sion must be used. Provided that random values of the estimator function parameters
are unbiased, all the first-order terms are eliminated, since E [𝜏 − 𝜇𝜏 ] = 0. When the
expectation operator is applied on the second-order terms of the Taylor expansion, the
defining expressions of variances and covariances of the estimator parameters can be
recognized. Therefore, the generic formula for the estimator variance is

E [𝑟] ≈ 𝑟|𝜇𝜏
+ var 𝜏A1

2
𝜕2𝑟

𝜕𝜏2
A1

⃒⃒⃒⃒
⃒
𝜇𝜏

+ var 𝜏B2
2

𝜕2𝑟

𝜕𝜏2
B2

⃒⃒⃒⃒
⃒
𝜇𝜏

+ var 𝜏A2
2

𝜕2𝑟

𝜕𝜏2
A2

⃒⃒⃒⃒
⃒
𝜇𝜏

+ var 𝜏B1
2

𝜕2𝑟

𝜕𝜏2
B1

⃒⃒⃒⃒
⃒
𝜇𝜏

+ cov (𝜏A1, 𝜏B2) 𝜕2𝑟

𝜕𝜏A1𝜕𝜏B2

⃒⃒⃒⃒
⃒
𝜇𝜏

+ cov (𝜏A1, 𝜏A2) 𝜕2𝑟

𝜕𝜏A1𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

+ cov (𝜏A1, 𝜏B1) 𝜕2𝑟

𝜕𝜏A1𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

+ cov (𝜏B2, 𝜏A2) 𝜕2𝑟

𝜕𝜏B2𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

+ cov (𝜏B2, 𝜏B1) 𝜕2𝑟

𝜕𝜏B2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

+ cov (𝜏A2, 𝜏B1) 𝜕2𝑟

𝜕𝜏A2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

. (A.3)

It is straightforward to see that the bias of the estimator can be obtained by omitting
the term 𝑟|𝜇𝜏

from the equation above

Bias [𝑟] = E [𝑟]− 𝑟|𝜇𝜏
. (A.4)

The second task is obtaining an approximation of the estimator variance. For the
sake of reasonable complexity, only the first order expansion will be used; likewise, the
bias of the estimator will be neglected. Since we assume E [𝑟] u 𝑟|𝜇𝜏

, this value is
eliminated from the following equation. The generic formula for the ADS-TWR range
estimator variance is

E [𝑟 − E [𝑟]]2 ≈ E
[︃(︃

(𝜏A1 − 𝜇𝜏A1) 𝜕𝑟

𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

)︃2

+
(︃

(𝜏B2 − 𝜇𝜏B2) 𝜕𝑟

𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

)︃2

+
(︃

(𝜏A2 − 𝜇𝜏A2) 𝜕𝑟

𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

)︃2

+
(︃

(𝜏B1 − 𝜇𝜏B1) 𝜕𝑟

𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

)︃2

+2 (𝜏A1 − 𝜇𝜏A1) (𝜏B2 − 𝜇𝜏B2) 𝜕𝑟

𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

+2 (𝜏A1 − 𝜇𝜏A1) (𝜏A2 − 𝜇𝜏A2) 𝜕𝑟

𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

+2 (𝜏A1 − 𝜇𝜏A1) (𝜏B1 − 𝜇𝜏B1) 𝜕𝑟

𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏
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+2 (𝜏B2 − 𝜇𝜏B2) (𝜏A2 − 𝜇𝜏A2) 𝜕𝑟

𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

+2 (𝜏B2 − 𝜇𝜏B2) (𝜏B1 − 𝜇𝜏B1) 𝜕𝑟

𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

+2 (𝜏A2 − 𝜇𝜏A2) (𝜏B1 − 𝜇𝜏B1) 𝜕𝑟

𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

]︃

= var 𝜏A1

(︃
𝜕𝑟

𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

)︃2

+ var 𝜏B2

(︃
𝜕𝑟

𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

)︃2

+var 𝜏A2

(︃
𝜕𝑟

𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

)︃2

+ var 𝜏B1

(︃
𝜕𝑟

𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

)︃2

+2cov (𝜏A1, 𝜏B2) 𝜕𝑟

𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

+ 2cov (𝜏A1, 𝜏A2) 𝜕𝑟

𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

+2cov (𝜏A1, 𝜏B1) 𝜕𝑟

𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

+ 2cov (𝜏B2, 𝜏A2) 𝜕𝑟

𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

+2cov (𝜏B2, 𝜏B1) 𝜕𝑟

𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

+ 2cov (𝜏A2, 𝜏B1) 𝜕𝑟

𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

𝜕𝑟

𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

.

(A.5)

The format of the result is rather convenient, since only second central moments, i.e.
variances and covariances, are present in the expression.

A.2. Evaluation for the Particular Estimators
In order to estimate the variance and the mean (bias) of the particular estimator,
it is necessary to find its Jacobian and Hessian matrices, i.e. the matrices of first
and second partial derivatives for the particular ranging equation. The full Jacobian
Hessian matrices, i.e. the elements of the matrices, of the estimators (2.48) to (2.50)
are available at the end of this appendix in Section A.4.

In exchange for reasonably complicated equations for means and variances of the
estimators, assumptions on the measurement covariance matrices have to be made. In
the numbered subsections below, the behavior of the estimators under three different
measurement covariance matrix assumptions are investigated. The first two (unnum-
bered) subsections should serve as a guide how to read the graphical results that are
provided with the formulas.

Evaluation for a representative set of values

The formulas in the following sections describe mean and variance of the estimators,
however, a plot of the results for representative intervals of parameter values may
provide more straightforward information. Clearly, it is not possible to visualize a
real function of four parameters, only a real function with two real parameters can be
visualized by means of contour or surface plot. It is rather inconvenient to use two of
the TWR delays as variables and fix the other two delays. Therefore we have chosen
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the parameters to be the true range 𝑟 and the normalized asymmetry of the reply
delays according to

𝒜n = (𝜇𝜏A2 − 𝜇𝜏B1)/(𝜇𝜏A2 + 𝜇𝜏B1). (A.6)

Note that this dimensionless value is plotted on interval from −0.5 to +0.5, which
corresponds to the interval of the ratio 𝜇𝜏A2 : 𝜇𝜏B1 from 1 : 3 to 3 : 1. The interval
of the range values spans from 100 to 106 in order to show the behavior of the mean
and variance of the estimator, when the propagation delays become comparable to
the response delays. In order to be able to solve for the values of the range estimator
parameters, we had to provide a fixed value; it was found convenient to fix the duration
of the negotiation to 10 milliseconds (measured on one node), which is a typical value
for UWB ranging systems. For the sake of simplicity, we will use substitution

Σ𝜇 = 2(𝜇𝜏A1 + 𝜇𝜏A2) = 2(𝜇𝜏B1 + 𝜇𝜏B2) = 𝜇𝜏A1 + 𝜇𝜏A2 + 𝜇𝜏B1 + 𝜇𝜏B2. (A.7)

Therefore we can write for the assumption on duration of the negotiation

Σ𝜇

2 = 10 ms. (A.8)

Also, it is far more convenient to plot estimator bias instead of the estimate mean
value. Expression 𝜎2

Rx will be used to denote the variance of the reception timestamp.
It will become obvious in the following sections that the bias of the estimator can be
normalized by the variance 𝜎2

Rx. Since the variance of the timestamp is expressed in
squared seconds and the bias in meters, it is convenient to include the speed of light
in the normalization.

Biasn [𝑟] = Bias [𝑟]
𝜎2

Rx𝑐0
(A.9)

Consequently, the dimension of the plotted normalized bias value is s−1. In order
to obtain the actual bias value in meters, it is necessary to multiply the reception
timestamp variance (in s2) by speed of light (in ms−1) and the plot contour line value
for particular true range and normalized asymmetry value.

In the other sets of plots the normalized standard deviation of the estimate is plot-
ted, instead of the variance. Similarly to the case of estimator bias, it will become
apparent that the standard deviation of the estimator can be normalized by the stan-
dard deviation of the reception timestamp (further denoted by 𝜎Rx). Therefore the
plotted value is

stdn [𝑟] = std [𝑟]
𝜎Rx𝑐0

=
√︃

var [𝑟]
𝜎2

Rx𝑐
2
0
, (A.10)

and has dimension m−1s. The same holds for the variance plot that is based on Monte–
Carlo Evaluation.

Monte–Carlo evaluation of estimator variance

An experimental evaluation of the estimator performance was performed. The ap-
proach was rather similar to the parametric evaluation of the analytical expressions.
The steps to obtain the Monte–Carlo results follow:
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A. Bias and Variance of the Asymmetric Double-sided TWR

1. Choose a point from the range vs. normalized asymmetry plane.

2. Solve for vector of delay means 𝜇𝜏 , assume fixed duration.

3. Perform 𝑁MC trials:
a) Add AWGN according to the corresponding covariance matrix (scaled by

standard deviation 𝜎Rx) to the vector 𝜇𝜏 .
b) Apply one of the range estimators (2.48), (2.49) or (2.50) and store the re-

sult.

4. Evaluate bias and variance (standard deviation) of the estimate, normalize the
values according to (A.9) and (A.10).

5. Choose the next point from the range vs. normalized asymmetry plane and con-
tinue with step 2. Stop if all point have been already evaluated.

The parameters of the evaluation are summarized in Table A.1. The bias and
variance (standard deviation) of the respective estimator was the outcome of each
Monte–Carlo algorithm run. However, the bias was not observable due to its very low
amplitude and therefore these results are not presented in the following sections.

In order to be able to produce the contour plots of the estimator standard deviations,
the results were smoothed by a two-dimensional moving average filter.113 The 201×250
matrix of standard deviation data was convolved with a 3× 3 kernel, whose all entries
were 1/9. It is worth noting that the data matrix was padded in a nearest neighbor
manner prior to the convolution, in spite of eliminating edge effects that would occur
if the matrix would be padded with zeros. The contours to be plotted were based on
the central part of the convolution result with a size 201× 250.

The contour plots in the following sections should be read as a map. The horizontal
axis (that would represent longitude on a map) represents the true range; the vertical
axis (that would represent latitude on a map) represents the normalized asymmetry.
The contours (lines with constant elevation in a map) are lines with constant bias or
standard deviation here. The bias contours in all figures share the same color gradient
scheme; smoothly from blue color for the positive values through pure black on the
zero contour and further to the red for the negative values. In contrast, the normalized
standard deviation plots use the blue-green-yellow-red gradient scaled on the interval
from zero to one in a linear way.

I. Three-message TWR with perfect time of transmission

Let us assume for this case that all transmission times are known precisely (i.e. their
variance is zero) and all the reception times have the same variance 𝜎2

Rx. Therefore,
all the delay measurements have the same variance 𝜎2

Rx, too.
A case when the negotiation between the two nodes follows the three-message TWR

scheme is investigated. The diagram of the negotiation is provided in Figure 2.3 on
page 16. For that particular case, 𝜏A1 and 𝜏A2 are inherently correlated since they share

113Without smoothing the contours would be inhomogeneous and uneven, so the readability of the plot
would be reduced.
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Table A.1.: Parameters of the Monte–Carlo simulation.
Parameter Unit Value / Interval Points per interval

𝒜n Normalized asymmetry [-] ⟨−0.5; +0.5⟩ 201 linear
𝑟 True range [m]

⟨︀
100; 106⟩︀ 250 logarithmic

1
2Σ𝜇 Duration [s] 10 · 10−6 fixed value
𝜎Rx Std. of reception time [s] 0.250 · 10−9 fixed value
𝑁MC Number of trials [-] 106 per point

the receive time information. On the contrary, 𝜏B1 and 𝜏B2 are mutually independent,
because they share the non-random transmission time while the random reception
times are kept separate. Obviously, the covariance matrix for such case is

Φ𝜏1 = 𝜎2
Rx

⎡⎢⎢⎢⎣
1 0 −1 0
0 1 0 0
−1 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ . (A.11)

The approximate mean values of the range estimates can be obtained by substitution
of covariance matrix to (A.3). The corresponding Hessian matrix elements for the three
range estimators are provided as equations (A.33), (A.35) and (A.37).

E[𝑟1] ≈ 𝑟|𝜇𝜏
+ 0 (A.12)

E[𝑟2] ≈ 𝑟|𝜇𝜏
+ 𝑐0𝜎

2
Rx

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 2(𝜇𝜏A2 − 𝜇𝜏A1)
(Σ𝜇)2

)︃

= 𝑟|𝜇𝜏
+ 𝜎2

Rx

(︃
8 𝑟|𝜇𝜏

+ 2𝑐0(𝜇𝜏A2 − 𝜇𝜏A1)
(Σ𝜇)2

)︃
(A.13)

E[𝑟3] ≈ 𝑟|𝜇𝜏
+ 𝑐0𝜎

2
Rx

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 𝜇𝜏A2 − 𝜇𝜏A1
(Σ𝜇)2

)︃

= 𝑟|𝜇𝜏
+ 𝜎2

Rx

(︃
2 𝑟|𝜇𝜏

+ 𝑐0(𝜇𝜏A2 − 𝜇𝜏A1)
(Σ𝜇)2

)︃
(A.14)

It is obvious that only the 𝑟1 estimator is unbiased. Nonetheless, the bias of the other
two estimators is likely to be negligible when typical values for UWB ranging systems
are assumed.

Figures A.1 to A.3 present the normalized bias with respect to normalized asym-
metry and true range. In the biased cases, the bias is almost range-independent until
the propagation delay 𝑟/𝑐0 is comparable with the mean response delay times 𝜇𝜏B1 and
𝜇𝜏A2. For the extremely long ranges (that are not achievable by the UWB systems) the
zero-bias contour of the estimator 𝑟2 turns towards the negative values of the normal-
ized asymmetry. The zero-bias contour of the estimator 𝑟3 remains on the zero value
of the normalized asymmetry, additionally, the bias magnitude is reduced. It is worth
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noting that contour 10 s−1 in the figure corresponds to a few nanometers of ranging
bias under typical conditions of UWB ranging. This renders the zero-bias assumption
required for variance approximation valid.

The approximate variances of the range estimates can be obtained by substitution
of covariance matrix to (A.5). The corresponding Jacobian matrix elements for the
three range estimators are provided as equations (A.32), (A.34) and (A.36).

E [𝑟1 − E [𝑟]]2 ≈ 𝜎2
Rx

(︃
𝑐2

0(𝜇𝜏B2
2 + 𝜇𝜏A1

2 + 𝜇𝜏B1
2 + 𝜇𝜏A2

2 + 2𝜇𝜏B1𝜇𝜏B2)
(Σ𝜇)2

)︃
(A.15)

E [𝑟2 − E [𝑟]]2 ≈ 𝜎2
Rx

(︃
𝑐2

0(𝜇𝜏B2
2 + 𝜇𝜏A1

2 + 𝜇𝜏B1
2 + 𝜇𝜏A2

2 + 2𝜇𝜏B1𝜇𝜏B2)
(Σ𝜇)2

+ 4𝑐0𝑟(𝜇𝜏A2 − 𝜇𝜏A1) + 8𝑟2

(Σ𝜇)2

)︃
(A.16)

E [𝑟3 − E [𝑟]]2 ≈ 𝜎2
Rx

(︃
𝑐2

0(𝜇𝜏B2
2 + 𝜇𝜏A1

2 + 𝜇𝜏B1
2 + 𝜇𝜏A2

2 + 2𝜇𝜏B1𝜇𝜏B2)
(Σ𝜇)2

+ 2𝑐0𝑟(𝜇𝜏A2 − 𝜇𝜏A1) + 2𝑟2

(Σ𝜇)2

)︃
(A.17)

The contour graphs of the normalized standard deviations of the estimators, i.e. square
roots of the above expressions, are provided in Figures A.4 to A.6. In the (a) subfigures,
the data is based on the three approximate equations, in contrast, the (b) subfigures
present the results of the Monte–Carlo simulation.

As well as in the case of biases, the variances of all the estimators can be consid-
ered range-independent for the corresponding propagation delays that are significantly
shorter than the reply delays. However, for the extremely long ranges the area with
lower variance shrinks and “bends” towards the positive normalized asymmetry values
for 𝑟1, towards the negative normalized asymmetry values for 𝑟2. For the estimator
𝑟3 it remains in the center and enlarges with the growing range. This mutual symme-
try of 𝑟1 and 𝑟2 is somehow expectable due to the nature of the estimator equations.
Nonetheless, there is no explicit mention of true range in the variance approximation
(A.15) for 𝑟1; the range dependency is inherently included in the common term of all
three expressions.

The contours of the Monte–Carlo results follow both the shape and the magnitude
of the analytic approximation; there is an almost perfect match. The dependence of
the standard deviation on the normalized asymmetry is quite weak. We may conclude
that the standard deviation of all three estimators is approximately the same in the
region of realistic ranges. As a rule of thumb the standard deviation of the range
estimate is less than 2/3 of the reception time standard deviation scaled by the speed
of light 𝑐0, i.e. a nanosecond standard deviation of reception time corresponds to 20
centimeter range error.
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Figure A.1.: Normalized bias of 𝑟1, assuming Φ𝜏1.

Figure A.2.: Normalized bias of 𝑟2, assuming Φ𝜏1.

Figure A.3.: Normalized bias of 𝑟3, assuming Φ𝜏1.
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(a) Approximation (b) Monte–Carlo
Figure A.4.: Normalized standard deviation of 𝑟1, assuming Φ𝜏1.

(a) Approximation (b) Monte–Carlo
Figure A.5.: Normalized standard deviation of 𝑟2, assuming Φ𝜏1.

(a) Approximation (b) Monte–Carlo
Figure A.6.: Normalized standard deviation of 𝑟3, assuming Φ𝜏1.
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II. Four-message TWR with perfect time of transmission

A scenario where the delays measured by the A node are not correlated is considered
within this subsection. Such decorrelation can be accomplished by using 4-message
negotiation as is described in Figure A.7. In that case, two complete, independent
single-sided TWR negotiations are performed; of course, each node initiates one of the
negotiations. Consequently, the same measurements are available as in the 3-message
case without the correlation between the 𝜏A1 and 𝜏A2. Nonetheless, the cost of the
extra message has to be paid by virtue of decorrelation.

It is obvious that the corresponding covariance matrix is purely diagonal. Assuming
that all the reception timestamps have the same variance 𝜎2

Rx it is

Φ𝜏2 = 𝜎2
RxI4×4, (A.18)

where I4×4 is an identity matrix of size 4 by 4.
The mean of output values for the particular range estimators is approximated by

the known procedure of substituting the covariance matrix elements and corresponding
Hessian matrix elements into (A.3).

E[𝑟1] ≈ 𝑟|𝜇𝜏
+ 𝑐0𝜎

2
Rx

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 2(𝜇𝜏B1 − 𝜇𝜏B2)
(Σ𝜇)2

)︃

= 𝑟|𝜇𝜏
+ 𝜎2

Rx

(︃
8 𝑟|𝜇𝜏

+ 2𝑐0(𝜇𝜏B1 − 𝜇𝜏B2)
(Σ𝜇)2

)︃
(A.19)

E[𝑟2] ≈ 𝑟|𝜇𝜏
+ 𝑐0𝜎

2
Rx

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 2(𝜇𝜏A2 − 𝜇𝜏A1)
(Σ𝜇)2

)︃

= 𝑟|𝜇𝜏
+ 𝜎2

Rx

(︃
8 𝑟|𝜇𝜏

+ 2𝑐0(𝜇𝜏A2 − 𝜇𝜏A1)
(Σ𝜇)2

)︃
(A.20)

Figure A.7.: Double-sided two-way ranging timing diagram with 4 messages for mea-
surement decorrelation.
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A. Bias and Variance of the Asymmetric Double-sided TWR

E[𝑟3] ≈ 𝑟|𝜇𝜏
+ 𝑐0𝜎

2
Rx

(︃
4(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 𝜇𝜏A2 − 𝜇𝜏A1 + 𝜇𝜏B1 − 𝜇𝜏B2
(Σ𝜇)2

)︃

= 𝑟|𝜇𝜏
+ 𝜎2

Rx

(︃
4 𝑟|𝜇𝜏

− 4 𝑟|𝜇𝜏

(Σ𝜇)2

)︃
= 𝑟|𝜇𝜏

+ 0 (A.21)

The graphical representation of the expressions above is provided in Figures A.8
to A.10. Under assumption of no delay covariance, the only unbiased estimator is the
𝑟3. The bias of 𝑟1 and 𝑟2 exhibits mutual symmetry, see Figures A.8 and A.9. Such
behavior is understandable due to the symmetric nature of the estimator equations
(2.48), (2.49). In all three plots it is noticeable that the range dependency of the
normalized bias is observable for extremely long ranges only. Likewise the 3-message
TWR case, the magnitude of the bias is negligible for reasonable parameters.

The formulas for the range estimator variances are obtained by means of substitution
covariance matrix elements and corresponding Jacobian matrix elements into (A.5).

E [𝑟1 − E [𝑟]]2 ≈ 𝜎2
Rx

(︃
𝑐2

0(𝜇𝜏B2
2 + 𝜇𝜏A1

2 + 𝜇𝜏B1
2 + 𝜇𝜏A2

2) + 4𝑐0𝑟(𝜇𝜏B1 − 𝜇𝜏B2) + 8𝑟2

(Σ𝜇)2

)︃
(A.22)

E [𝑟2 − E [𝑟]]2 ≈ 𝜎2
Rx

(︃
𝑐2

0(𝜇𝜏B2
2 + 𝜇𝜏A1

2 + 𝜇𝜏B1
2 + 𝜇𝜏A2

2) + 4𝑐0𝑟(𝜇𝜏A2 − 𝜇𝜏A1) + 8𝑟2

(Σ𝜇)2

)︃
(A.23)

E [𝑟3 − E [𝑟]]2 ≈ 𝜎2
Rx

(︃
𝑐2

0(𝜇𝜏B2
2 + 𝜇𝜏A1

2 + 𝜇𝜏B1
2 + 𝜇𝜏A2

2)− 4𝑟2

(Σ𝜇)2

)︃
(A.24)

The resulting graphs of normalized standard deviations, along with the Monte–
Carlo results, in Figures A.11 to A.13 show that the variance is the lowest when the
negotiation is symmetric. However, the impact of the asymmetry is not critical. The
range dependency is observable only for extreme ranges. We may say that the standard
deviation of the estimate is 50 to 55 % of the reception timestamp standard deviation
scaled by speed of light. This is a bit lower than in the case of 3-message TWR; the
reason for the slightly improved performance is the mutual independence of all the
delay measurements.

The simulation results match the approximation very well for all three range esti-
mators.
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A.2. Evaluation for the Particular Estimators

Figure A.8.: Normalized bias of 𝑟1, assuming Φ𝜏2.

Figure A.9.: Normalized bias of 𝑟2, assuming Φ𝜏2.

Figure A.10.: Normalized bias of 𝑟3, assuming Φ𝜏2.
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A. Bias and Variance of the Asymmetric Double-sided TWR

(a) Approximation (b) Monte–Carlo
Figure A.11.: Normalized standard deviation of 𝑟1, assuming Φ𝜏2.

(a) Approximation (b) Monte–Carlo
Figure A.12.: Normalized standard deviation of 𝑟2, assuming Φ𝜏2.

(a) Approximation (b) Monte–Carlo
Figure A.13.: Normalized standard deviation of 𝑟3, assuming Φ𝜏2.
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A.2. Evaluation for the Particular Estimators

III. Three-message TWR with imperfect time of transmission

For the sake of completeness, we may consider a 3-message TWR negotiation where
both transmission and reception timestamps have the same variance, i.e. 𝜎2

Tx = 𝜎2
Rx.

Consequently, all the delays have the variance equal to the double of the time of
reception variance. In this case, there is a correlation between the measurements
taken on both nodes. The variance-covariance matrix yields

Φ𝜏3 = 𝜎2
Rx

⎡⎢⎢⎢⎣
2 0 −1 0
0 2 0 −1
−1 0 2 0
0 −1 0 2

⎤⎥⎥⎥⎦ , (A.25)

because one of the timestamps that define the delay is shared with the other delay
measurement performed on the same node.

The mean values of the estimates can be approximated by:

E[𝑟1] ≈ 𝑟|𝜇𝜏
+ 𝑐0𝜎

2
Rx

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 2(𝜇𝜏B1 − 𝜇𝜏B2)
(Σ𝜇)2

)︃

= 𝑟|𝜇𝜏
+ 𝜎2

Rx

(︃
8 𝑟|𝜇𝜏

+ 2𝑐0(𝜇𝜏B1 − 𝜇𝜏B2)
(Σ𝜇)2

)︃
(A.26)

E[𝑟2] ≈ 𝑟|𝜇𝜏
+ 𝑐0𝜎

2
Rx

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 2(𝜇𝜏A2 − 𝜇𝜏A1)
(Σ𝜇)2

)︃

= 𝑟|𝜇𝜏
+ 𝜎2

Rx

(︃
8 𝑟|𝜇𝜏

+ 2𝑐0(𝜇𝜏A2 − 𝜇𝜏A1)
(Σ𝜇)2

)︃
(A.27)

E[𝑟3] ≈ 𝑟|𝜇𝜏
+ 𝑐0𝜎

2
Rx

(︃
4(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 𝜇𝜏A2 − 𝜇𝜏A1 + 𝜇𝜏B1 − 𝜇𝜏B2
(Σ𝜇)2

)︃

= 𝑟|𝜇𝜏
+ 𝜎2

Rx

(︃
4 𝑟|𝜇𝜏

− 4 𝑟|𝜇𝜏

(Σ𝜇)2

)︃
= 𝑟|𝜇𝜏

+ 0. (A.28)

The contour plots of the expressions above are provided in Figures A.14 to A.16. As in
the 4-message decorrelated case, only the 𝑟3 is unbiased. Naturally, due to the double
variances and possibly due to the covariance terms, the bias magnitude is significantly
higher than in the uncorrelated case, i.e. when covariance matrix Φ𝜏2 was assumed.
Nevertheless, the bias is still negligible component of the ranging error.
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A. Bias and Variance of the Asymmetric Double-sided TWR

The approximate variances of the three estimators under assumption of covariance
matrix Φ𝜏3 follow:

E [𝑟1 − E [𝑟]]2 ≈ 𝜎2
Rx

(︃
2𝑐2

0(𝜇𝜏B2
2 + 𝜇𝜏A1

2 + 𝜇𝜏B1
2 + 𝜇𝜏A2

2 + 𝜇𝜏A1𝜇𝜏A2 + 𝜇𝜏B1𝜇𝜏B2)
(Σ𝜇)2

+ 4𝑐0𝑟(𝜇𝜏B1 − 𝜇𝜏B2) + 8𝑟2

(Σ𝜇)2

)︃
(A.29)

E [𝑟2 − E [𝑟]]2 ≈ 𝜎2
Rx

(︃
2𝑐2

0(𝜇𝜏B2
2 + 𝜇𝜏A1

2 + 𝜇𝜏B1
2 + 𝜇𝜏A2

2 + 𝜇𝜏A1𝜇𝜏A2 + 𝜇𝜏B1𝜇𝜏B2)
(Σ𝜇)2

+ 4𝑐0𝑟(𝜇𝜏A2 − 𝜇𝜏A1) + 8𝑟2

(Σ𝜇)2

)︃
(A.30)

E [𝑟3 − E [𝑟]]2 ≈ 𝜎2
Rx

(︃
2𝑐2

0(𝜇𝜏B2
2 + 𝜇𝜏A1

2 + 𝜇𝜏B1
2 + 𝜇𝜏A2

2 + 𝜇𝜏A1𝜇𝜏A2 + 𝜇𝜏B1𝜇𝜏B2)
(Σ𝜇)2

+ 4𝑟2

(Σ𝜇)2

)︃
. (A.31)

The contour plots of the standard deviations based on the equations above and the
respective Monte–Carlo results are provided in Figures A.14 to A.16. The shape of the
contours is rather similar to the 4-message decorrelated case, the magnitude is higher,
however. If the covariances were neglected, the two cases would differ only by scaling
factor of

√
2, since the variances are doubled in Φ𝜏3 with respect to Φ𝜏2. Due to the

covariance, the multiplying factor is even higher.
As well as in the previous sections we can assert that there is an almost perfect

match of the approximation and Monte–Carlo simulation results.
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A.2. Evaluation for the Particular Estimators

Figure A.14.: Normalized bias of 𝑟1, assuming Φ𝜏3.

Figure A.15.: Normalized bias of 𝑟2, assuming Φ𝜏3.

Figure A.16.: Normalized bias of 𝑟3, assuming Φ𝜏3.
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A. Bias and Variance of the Asymmetric Double-sided TWR

(a) Approximation (b) Monte–Carlo
Figure A.17.: Normalized standard deviation of 𝑟1, assuming Φ𝜏3.

(a) Approximation (b) Monte–Carlo
Figure A.18.: Normalized standard deviation of 𝑟2, assuming Φ𝜏3.

(a) Approximation (b) Monte–Carlo
Figure A.19.: Normalized standard deviation of 𝑟3, assuming Φ𝜏3.
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A.3. Remarks
The biases and variances of the ranging estimators for ADS-TWR were approximated
by means of Taylor expansion within this appendix. The results were verified by a
Monte–Carlo simulation, almost perfect match of the simulation results and analytical
approximation was observed. The estimators were evaluated under three different
delay covariance matrix assumptions. When the correlation of the measurements taken
on both nodes were symmetric, only the 𝑟3 estimator (2.50) was unbiased. Under the
assumption of perfect transmission timestamps and 3-message negotiation, 𝑟1 estimator
(2.48) was unbiased. Nonetheless, the magnitude of the bias was negligible (nanometer-
scale) in all the investigated cases.

From the standpoint of variance (standard deviation) it was observed that for re-
sponse delays significantly longer than time-of-flight, the range dependency of the
variance is negligible. A weak dependency on the asymmetry of the response delays
was observed. In all the cases, the estimated range standard deviation is lower than
the standard deviation of the delay measurement scaled by speed of light. Results sug-
gest that decorrelation of the delay measurements, e.g. by introduction of the fourth
message in the TWR negotiation (see Fig. A.7), should provide slight improvement of
the estimator performance in terms of its variance.

We may conclude that the performance of the nonlinear TWR estimators described
by (2.48) to (2.50) is similar to the performance of the linear estimator defined by
(2.33). The bias that is induced by some of the nonlinear estimators is negligible
under common operating conditions.

159



A. Bias and Variance of the Asymmetric Double-sided TWR

A.4. The Complete Jacobian and Hessian Matrices
Note that for the sake of reasonable length substitution

Σ𝜇 = 2(𝜇𝜏A1 + 𝜇𝜏A2) = 2(𝜇𝜏B1 + 𝜇𝜏B2) = 𝜇𝜏A1 + 𝜇𝜏A2 + 𝜇𝜏B1 + 𝜇𝜏B2 (A.7)

is used in the following equations.
Jacobian matrix elements for range estimator (2.48):

𝜕𝑟1
𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
𝜇𝜏B2
Σ𝜇
− 2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)2

)︃
𝜕𝑟1
𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
𝜇𝜏A1
Σ𝜇

)︃
𝜕𝑟1
𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
−𝜇𝜏B1

Σ𝜇
− 2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)2

)︃
𝜕𝑟1
𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
−𝜇𝜏A2

Σ𝜇

)︃
(A.32)

Hessian matrix elements for range estimator (2.48):

𝜕2𝑟1
𝜕𝜏2

A1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 − 4𝜇𝜏B2
(Σ𝜇)2

)︃
𝜕2𝑟1
𝜕𝜏2

B2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 0

𝜕2𝑟1
𝜕𝜏2

A2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 4𝜇𝜏B1
(Σ𝜇)2

)︃
𝜕2𝑟1
𝜕𝜏2

B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 0

𝜕2𝑟1
𝜕𝜏A1𝜕𝜏B2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
−2𝜇𝜏A1
(Σ𝜇)2 + 1

Σ𝜇

)︃
𝜕2𝑟1

𝜕𝜏A1𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 2(𝜇𝜏B1 − 𝜇𝜏B2)
(Σ𝜇)2

)︃
𝜕2𝑟1

𝜕𝜏A1𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2𝜇𝜏A2
(Σ𝜇)2

)︃
𝜕2𝑟1

𝜕𝜏B2𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
−2𝜇𝜏A1
(Σ𝜇)2

)︃
𝜕2𝑟1

𝜕𝜏B2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 0

𝜕2𝑟1
𝜕𝜏A2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2𝜇𝜏A2
(Σ𝜇)2 −

1
Σ𝜇

)︃
(A.33)
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Jacobian matrix elements for range estimator (2.49):

𝜕𝑟2
𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
𝜇𝜏B2
Σ𝜇

)︃
𝜕𝑟2
𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
𝜇𝜏A1
Σ𝜇
− 2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)2

)︃
𝜕𝑟2
𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
−𝜇𝜏B1

Σ𝜇

)︃
𝜕𝑟2
𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
−𝜇𝜏A2

Σ𝜇
− 2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)2

)︃
(A.34)

Hessian matrix elements for range estimator (2.49):

𝜕2𝑟2
𝜕𝜏2

A1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 0

𝜕2𝑟2
𝜕𝜏2

B2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 − 4𝜇𝜏A1
(Σ𝜇)2

)︃
𝜕2𝑟2
𝜕𝜏2

A2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 0

𝜕2𝑟2
𝜕𝜏2

B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 4𝜇𝜏A2
(Σ𝜇)2

)︃
𝜕2𝑟2

𝜕𝜏A1𝜕𝜏B2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
−2𝜇𝜏B2
(Σ𝜇)2 + 1

Σ𝜇

)︃
𝜕2𝑟2

𝜕𝜏A1𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 0

𝜕2𝑟2
𝜕𝜏A1𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
−2𝜇𝜏B2
(Σ𝜇)2

)︃
𝜕2𝑟2

𝜕𝜏B2𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2𝜇𝜏B1
(Σ𝜇)2

)︃
𝜕2𝑟2

𝜕𝜏B2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
8(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 2(𝜇𝜏A2 − 𝜇𝜏A1)
(Σ𝜇)2

)︃
𝜕2𝑟2

𝜕𝜏A2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A2 + 𝜇𝜏B1)

(Σ𝜇)2 − 1
Σ𝜇

)︃
(A.35)
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Jacobian matrix elements for range estimator (2.50):

𝜕𝑟2
𝜕𝜏A1

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
𝜇𝜏B2
Σ𝜇
− 𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1

(Σ𝜇)2

)︃
𝜕𝑟2
𝜕𝜏B2

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
𝜇𝜏A1
Σ𝜇
− 𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1

(Σ𝜇)2

)︃
𝜕𝑟2
𝜕𝜏A2

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
−𝜇𝜏B1

Σ𝜇
− 𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1

(Σ𝜇)2

)︃
𝜕𝑟2
𝜕𝜏B1

⃒⃒⃒⃒
𝜇𝜏

= 𝑐0

(︃
−𝜇𝜏A2

Σ𝜇
− 𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1

(Σ𝜇)2

)︃
(A.36)

Hessian matrix elements for range estimator (2.50):

𝜕2𝑟3
𝜕𝜏2

A1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 − 2𝜇𝜏B2
(Σ𝜇)2

)︃
𝜕2𝑟3
𝜕𝜏2

B2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 − 2𝜇𝜏A1
(Σ𝜇)2

)︃
𝜕2𝑟3
𝜕𝜏2

A2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 2𝜇𝜏B1
(Σ𝜇)2

)︃
𝜕2𝑟3
𝜕𝜏2

B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 2𝜇𝜏A2
(Σ𝜇)2

)︃
𝜕2𝑟3

𝜕𝜏A1𝜕𝜏B2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 − 𝜇𝜏B2 + 𝜇𝜏A1
(Σ𝜇)2 + 1

Σ𝜇

)︃
𝜕2𝑟3

𝜕𝜏A1𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 𝜇𝜏B1 − 𝜇𝜏B2
(Σ𝜇)2

)︃
𝜕2𝑟3

𝜕𝜏A1𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 𝜇𝜏A2 − 𝜇𝜏B2
(Σ𝜇)2

)︃
𝜕2𝑟3

𝜕𝜏B2𝜕𝜏A2

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 𝜇𝜏B1 − 𝜇𝜏A1
(Σ𝜇)2

)︃
𝜕2𝑟3

𝜕𝜏B2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 𝜇𝜏A2 − 𝜇𝜏A1
(Σ𝜇)2

)︃
𝜕2𝑟3

𝜕𝜏A2𝜕𝜏B1

⃒⃒⃒⃒
⃒
𝜇𝜏

= 𝑐0

(︃
2(𝜇𝜏A1𝜇𝜏B2 − 𝜇𝜏A2𝜇𝜏B1)

(Σ𝜇)3 + 𝜇𝜏A2 + 𝜇𝜏B1
(Σ𝜇)2 − 1

Σ𝜇

)︃
(A.37)
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This Appendix shows practical examples of solving TDoA sets of equations by means
of the iterative least-squares solvers described in Section 4.1 (page 111).

B.1. DVB-T Opportunistic Localization
In the first example, a two-dimensional localization is performed in a metropolitan
area by means of measuring TDoA of signals from three synchronized transmitters of
a DVB-T (Terrestrial digital video broadcasting) single-frequency network (SFN). The
related signal processing and method of assigning measurements to the correspond-
ing transmitters is described thoroughly in [125, 163] and further developed in [121].
Herein, only a brief recapitulation is provided.

B.1.1. Obtaining the TDoA measurements
The TDoA measurements were obtained by means of batch processing of a captured
signal. The DVB-T signal was demodulated and its noiseless replica (or at least the
replica of the pilot signals) is correlated with the received signal. It is possible to
evaluate the cross-ambiguity function (CAF), according to its definition in (2.150),
and find the temporal difference between the peaks that correspond to the time delays
of signals received from multiple transmitters [125]. An exemplary evaluation of CAF,
which is based on a signal captured in Prague, Czech republic, is depicted in Figure B.1.
Three peaks can be easily found.

In reality, the full CAF is barely computed, since the frequency of all transmitters in
the SFN is almost identical and Doppler shift is typically negligible. The offset of the
receiver center frequency is estimated and eliminated; then the correlation of signal
and its replica is performed by means of matched filtration.114 In other words a single
fixed-frequency cut of the CAF is obtained. The peaks corresponding to the respective
signal delays can be found e.g. by means of a CA-CFAR detection115 algorithm, as
suggested in [121].

B.1.2. Applying the Newton-Raphson algorithm
Anyway, three peak delays w.r.t. an unknown start of the recording are available, and
therefore 2 linearly independent TDoA measurements are obtainable. Consequently,

114Mismatched filtration is suggested in [121] in order to suppress time-domain sidelobes of the peaks,
which may be misinterpreted as additional transmitter on the expense of minor loss of accuracy
and peak resolution.

115Cell-averaging constant false alarm rate detection.
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only two-dimensional problem can be solved. The receiver is assumed to be in the vicin-
ity of Earth’s surface, which is further approximated by a plane. An ENU coordinate
frame is constructed at the centroid of the transmitter positions, and its height is set
so that the error caused by the Earth’s surface curvature for certain area is minimized
(detailed analysis is available in [164]). The transmitter coordinates are transformed to
this ENU frame (including height) and the receiver position coordinates are estimated
in the East-North plane only. Thus, we define the unknown user position 2-vector 𝑟u
and the a priori known i-th transmitter position 3-vector 𝑟i as

𝑟u =
[︃
𝑟u,𝐸
𝑟u,𝑁

]︃
; 𝑟i =

⎡⎢⎣𝑟i,𝐸
𝑟i,𝑁
𝑟i,𝑈

⎤⎥⎦ 𝑟i. (B.1)

The TDoA measurement equation (2.64) from page 21 has to be adapted to the
different dimensions of the user and transmitter position vectors. The missing user
height 𝑟u,𝑈 = 0, and therefore

𝑑i,j =
⃦⃦⃦⃦
⃦
[︃
𝑟u
0

]︃
− 𝑟i

⃦⃦⃦⃦
⃦−

⃦⃦⃦⃦
⃦
[︃
𝑟u
0

]︃
− 𝑟j

⃦⃦⃦⃦
⃦

=
√︁

(𝑟u,𝐸 − 𝑟i,𝐸)2 + (𝑟u,𝑁 − 𝑟i,𝑁 )2 + 𝑟2
i,𝑈

−
√︁

(𝑟u,𝐸 − 𝑟j,𝐸)2 + (𝑟u,𝑁 − 𝑟j,𝑁 )2 + 𝑟2
j,𝑈 . (B.2)

The Jacobian matrix corresponding to such expression of the TDoA measurement
can be obtained straightforwardly. Note that the height component of the transmitters
can be neglected in the evaluation, since the direction of the gradient in the horizontal
plane remains the same, and the magnitude difference is negligible (unless very close
to a transmitter).

𝐽𝑑i,j =

⎡⎣ 𝜕𝑑i,j
𝜕𝑟u,𝐸
𝜕𝑑i,j
𝜕𝑟u,𝑁

⎤⎦

=

⎡⎢⎢⎢⎣
𝑟u,𝐸−𝑟i,𝐸√︁

(𝑟u,𝐸−𝑟i,𝐸)2+(𝑟u,𝑁−𝑟i,𝑁)2+𝑟2
i,𝑈

− 𝑟u,𝐸−𝑟j,𝐸√︁
(𝑟u,𝐸−𝑟j,𝐸)2+(𝑟u,𝑁−𝑟j,𝑁)2+𝑟2

j,𝑈
𝑟u,𝑁−𝑟i,𝑁√︁

(𝑟u,𝐸−𝑟i,𝐸)2+(𝑟u,𝑁−𝑟i,𝑁)2+𝑟2
i,𝑈

− 𝑟u,𝑁−𝑟j,𝑁√︁
(𝑟u,𝐸−𝑟j,𝐸)2+(𝑟u,𝑁−𝑟j,𝑁)2+𝑟2

j,𝑈

⎤⎥⎥⎥⎦

≈

⎡⎢⎢⎢⎣
𝑟u,𝐸−𝑟i,𝐸√︁

(𝑟u,𝐸−𝑟i,𝐸)2+(𝑟u,𝑁−𝑟i,𝑁)2
− 𝑟u,𝐸−𝑟j,𝐸√︁

(𝑟u,𝐸−𝑟j,𝐸)2+(𝑟u,𝑁−𝑟j,𝑁)2

𝑟u,𝑁−𝑟i,𝑁√︁
(𝑟u,𝐸−𝑟i,𝐸)2+(𝑟u,𝑁−𝑟i,𝑁)2

− 𝑟u,𝑁−𝑟j,𝑁√︁
(𝑟u,𝐸−𝑟j,𝐸)2+(𝑟u,𝑁−𝑟j,𝑁)2

⎤⎥⎥⎥⎦ (B.3)

In order to solve a set of equations of type (B.2), we will apply the non-weighted
Newton-Raphson algorithm, which was described in Section 4.1.1. In our scenario
there are 3 transmitters, the initial guess (prediction) of the user position is denoted
by 𝑟. First, the residuals are computed for all TDoA measurement pairs, i.e.

𝑑1,2 = 𝑑1,2 −
(︃⃦⃦⃦⃦
⃦
[︃
𝑟u
0

]︃
− 𝑟i

⃦⃦⃦⃦
⃦−

⃦⃦⃦⃦
⃦
[︃
𝑟u
0

]︃
− 𝑟j

⃦⃦⃦⃦
⃦
)︃
, (B.4)
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and similarly for 𝑑1,3 and 𝑑2,3. The concatenated Jacobian matrix for all measurements
is constructed according to

𝐽 =

⎡⎢⎣𝐽𝑑1,2
𝐽𝑑1,3
𝐽𝑑2,3

⎤⎥⎦ . (B.5)

The correction of the user position prediction is obtained using the pseudoinverse (4.8):

𝑟u =
(︁
𝐽T𝐽

)︁−1
𝐽T

⎡⎢⎣𝑑1,2
𝑑1,3
𝑑2,3

⎤⎥⎦ . (B.6)

The correction is applied 𝑟 = 𝑟+ 𝑟 and the corrected value is taken as the next, more
accurate prediction (guess) 𝑟 ← 𝑟. The iteration of this loop is stopped successfully
when the correction magnitude drops below a certain threshold and unsuccessfully
when maximal permitted number of iterations is reached.

It is obvious that the TDoA measurements 𝑑1,2, 𝑑1,3 and 𝑑2,3 are linearly dependent.
It does not cause problems in (B.6), since the 2×2 matrix

(︁
𝐽T𝐽

)︁
is inverted. However,

such choice of the measurement vector does not allow to use the weighted variant
of the Newton-Raphson algorithm where the weighting matrix is the inverse of the
TDoA measurement covariance matrix. The optimal covariance matrix that takes into
account the covariances of the measurements is inherently rank-deficient for the set of
TDoA measurements 𝑑1,2, 𝑑1,3 and 𝑑2,3. An apparent solution is to omit one of the
linearly-dependent measurements, which renders the corresponding covariance matrix
full-rank. Here, the non-weighted method is used, thus a sub-optimal solution that
neglects covariances and presumes equal variances of the measurements is obtained.

B.1.3. Experimental results
The DVB-T positioning was tested on 6 signal captures obtained at three different
sites (Rx1 to Rx3) in Prague, Czech Repubic. A signal from three transmitters (Tx1
to Tx3) of a SFN at DVB-T channel 42 were received at each site; the TDoA values
were measured according to [121].

The constellation of the transmitters and receiver sites is provided in Figure B.2.
It is rather unfortunate that the transmitters are located almost on a single axis; the
situation is nearly axially symmetric.116 The horizontal dilution of precision (HDOP) is
evaluated for each point in the area of interest in order to show where the performance
is expected to be poor due to the unfavorable transmitter geometry. The HDOP is
obtained as

𝐻𝐷𝑂𝑃 =
√︁

tr (𝐽T𝐽)−1 (B.7)
evaluated at each point. The HDOP values are depicted in color in the plot; higher
values (warmer colors) correspond to the areas with poor expected positioning perfor-
mance.117

116The symmetry of the problem may cause the solution to be ambiguous, since there would be no
information whether the user is located east or west from the axis of symmetry.

117It is acknowledged that the background map was plotted using the Map–Matlab utility [165], which
uses tiles of the OpenStreetMap.
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Figure B.1.: CAF of a DVB-T signal [125].

Figure B.2.: Constellation of DVB-T transmitters, receiver testing sites, HDOP in
color; area map in background.
(Map source: OpenStreetMap.org)
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Table B.1.: Experimental results of DVB-T – TDoA positioning in Prague [121].
Receiver Latitude [deg] Longitude [deg] HDOP Error [m]

Rx1 I. 50.085 07 14.460 34 0.8 9
Rx1 II. 50.085 10 14.460 18 0.8 3
Rx2 I. 50.080 34 14.396 04 1.7 30
Rx2 II. 50.080 31 14.395 87 1.7 22
Rx3 I. 50.131 75 14.385 94 3.8 9
Rx3 II. 50.131 23 14.387 21 3.7 115

The quantitative results of the 6 runs of Newon-Raphson-based positioning algorithm
are presented in Table B.1. For low values of HDOP the horizontal positioning error is
not higher than a few tens of meters w.r.t. true position (obtained by a GNSS receiver).
In case of the test site Rx3, the HDOP is close to 4, the error was higher than 100 m.
It is probable that the error propagated from the TDoA measurement itself and was
not caused by the positioning algorithm.

In all cases the solution was found within 8 or less iterations of the Newton-Raphson
algorithm, even with the unfavorable geometry of the constellation.

B.2. Ultra-Wide Band System
More general approach was used in case of UWB-TDoA positioning. An UWB tag (the
localized equipment) sends periodically a blink (positioning request) that is captured
by multiple anchors. Each anchor timestamps the reception in its local timescale.
Further, the timestamp is expressed in a master, system-wide, timescale; note that the
exact mechanism of obtaining the master timescale information in the slave anchors is
described in Appendix C.1.

The times of arrival in a common timescale are de facto pseudoranges, thus ToA
positioning approach may be applied. However, we are not interested in estimating
clock offset between the tag and master clocks; consequently, it is possible to eliminate
it by means of differencing the measurements, i.e. obtaining TDoA measurements.118

Moreover, from several experiments it can be observed that the convergence of TDoA
problem is faster and more reliable than of the ToA problem (see e.g. comparison in
Fig. 2.17 on page 74).

B.2.1. General definition of the TDoA measurements
Consider now that in a single epoch we have 𝑛 UWB-pseudorange measurements avail-
able, let us denote their vector 𝜌. We may obtain the vector of TDoA (denoted by 𝑑)
by means of linear transformation of 𝜌

𝑑 = 𝐷𝜌, (B.8)
118In case of GNSS, the estimation of the clock offset (bias) is necessary in order to be able to determine

the satellite positions, et cetera.
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where 𝐷 is a matrix with 𝑛 columns and 𝑛− 1 rows which performs the differencing.
Matrix 𝐷 should have following properties:

• In each row must be one +1 and one −1 element, other elements are zero.

• In each column must be at least one nonzero element.

• Consequently, it is full-rank.

One of the possible forms of 𝐷 follows

𝐷 =

⎡⎢⎢⎢⎢⎣
+1 −1 0 · · · 0 0
0 +1 −1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · +1 −1

⎤⎥⎥⎥⎥⎦ . (B.9)

The covariance matrix of the TDoA measurements can be obtained from the covariance
matrix of the pseudoranges by means of

Φ𝑑 = 𝐷Φ𝜌𝐷
T. (B.10)

B.2.2. Applying the (un)constrained weighted solver
It is obvious that the position of +1 corresponds to the pseudorange measured at the
i-th anchor and position of −1 corresponds to the pseudorange measured at the j-th
anchor when related to the definition of TDoA measurement in Section 2.1.2–IV, eq.
(2.64). Consequently, the residual computation for k-th element of 𝑑 is

𝑑k = 𝑑k − ‖𝑟u − 𝑟i‖ − ‖𝑟u − 𝑟j‖ , (B.11)

where i and j denote the position of +1 and −1 in the k-th line of 𝐷, respectively.
The symbol 𝑟u denotes the 3-dimensional user position vector and 𝑟i, 𝑟j are the 3-
dimensional position vectors of the respective anchors. For convenience, the vectors
are expressed in a local, ENU frame.

Similarly, the k-th line of the Jacobian matrix that is required for obtaining the
correction of the estimated position vector follows (4.29) and thus

𝐽k = 1u,i − 1u,j. (B.12)

By means of vertical concatenation of 𝑛 − 1 lines, it is possible to obtain the whole
𝐽 matrix.

Since the tag in our scenario is expected to be located in approximately constant
height, it is convenient to apply the according constraint. This kind of constraint is
rather useful in the typical UWB-based localization scenario due to geometrical rea-
sons, which will be further commented in the following section. Consistently with the
pseudomeasurement approach from Section 4.1.7 and denoting the assumed tag height
ℎ and its variance 𝜎2

ℎ, we may write the extension of the equation of the constraint as

ℎ =
[︁
0 0 1

]︁
𝑟u. (B.13)
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Such linear constraint yields following expressions for the residual evaluation and Ja-
cobian matrix extension:

ℎ̌ = ℎ−
[︁
0 0 1

]︁
𝑟u (B.14)

𝐽ℎ =
[︁
0 0 1

]︁
. (B.15)

It is worth remarking that if non-ENU frame was used, the
[︁
0 0 1

]︁
expression would

be replaced by the transpose of the horizontal-plane normal vector in that particular
frame.

Now, we have all the information available to write the optimally weighted Levenberg-
Marquardt correction update equations, according to (4.17). One of the following
equations is used, depending on whether the constraint is applied or not.

Unconstrained: 𝑟u =
(︁
𝐽TΦ−1

𝑑 𝐽 + 𝜆Diag(𝐽TΦ−1
𝑑 𝐽)

)︁−1
𝐽TΦ−1

𝑑 𝑑 (B.16)

Constrained: 𝑟u =

⎛⎝[︃ 𝐽
𝐽ℎ

]︃T

𝑊 ′
[︃
𝐽
𝐽ℎ

]︃
+ 𝜆Diag

⎛⎝[︃ 𝐽
𝐽ℎ

]︃T

𝑊 ′
[︃
𝐽
𝐽ℎ

]︃⎞⎠⎞⎠−1 [︃
𝐽
𝐽ℎ

]︃T

𝑊 ′
[︃
𝑑

ℎ̌

]︃
(B.17)

𝑊 ′ =
[︃
Φ−1
𝑑 0

0T 𝜎−2
ℎ

]︃
(B.18)

The update of the user position prediction 𝑟u = 𝑟u+𝑟u is the same for both, constrained
and unconstrained version. It should be remarked that 𝜆 was set according to the
heuristic method described in Section 4.1.3; it was initialized at value 𝜆 = 5, and
coefficients 𝑐−𝜆 = 𝑐+

𝜆 = 5. Typically, the algorithm converges within a few iterations,
until a stop condition is reached.

From (4.38) it is apparent that the covariance matrix of the final estimate is

Unconstrained: Φ𝑟u =
(︁
𝐽TΦ−1

𝑑 𝐽
)︁−1

(B.19)

Constrained: Φ𝑟u =

⎛⎝[︃ 𝐽
𝐽ℎ

]︃T [︃
Φ−1
𝑑 0

0T 𝜎−2
ℎ

]︃ [︃
𝐽
𝐽ℎ

]︃⎞⎠−1

, (B.20)

where the Jacobian matrix is obtained at the point of the final estimate.

B.2.3. Experimental results
As an example we will present results of TDoA positioning that were partially pub-
lished in [5]. The raw measurements were obtained with a PeLoc device at the UWB
measurement polygon of the company RCD Radiokomunikace. Four anchors were
available for the measurement, their geometry is captured in Figures B.3 and B.4;
they were all mounted in the height 280 cm above ground. Note, that the 𝑧-axis is ver-
tical and zero-value corresponds to the ground level. The other two axes were aligned
with the walls of the room, which are depicted in the figures by the heavy gray lines.
The positions of anchors are marked by the triangles. The test run was 85 seconds
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long, the algorithm described in Appendix C.1 was used to synchronize the constella-
tion of the anchors. During the test the tag was moved diagonally across the room,
then along two walls. The tag was stationary in the last 25 seconds.

By means of the following figures, we will provide comparison of the unconstrained
and constrained solution. The Figure B.3 presents the estimated positions in the
horizontal plane, obtained by means of the unconstrained Levenberg-Marquardt algo-
rithm, respectively. In Figure B.3 the identical data was processed by means of the
constrained algorithm – the height (𝑧-position) of the tag was softly constrained to
120 cm above ground, the standard deviation of the constraint was set to 30 cm; in
other words, the tag is located between 60 and 180 cm with 95 % probability.

The time series of the position estimates in all three dimensions are available in
Figure B.5 and Figure B.6 for the unconstrained and constrained solution, respectively.
Note that the last 15 seconds were omitted for the sake of readability. The error bars
in the plot depict 1-𝜎 confidence intervals of the position estimate.

Such constraint solves a couple of problems. By its nature, it improves the accuracy
of the solution in the vertical direction, which is poor otherwise due to unfavorably
high VDOP. Inherently, it deals with the planar symmetry of the whole problem. In
the unconstrained case there are two equivalent solutions above and below the plane of
anchors; in Fig. B.5 it is noticeable that in several epochs the solution was found above
the plane. It is worth remarking that the symmetry may be broken by introduction of
another anchor that is placed substantially out of the plane.

By augmenting the vertical position, the accuracy of the horizontal position esti-
mates is improved as well. The most apparent improvement may be found in the
“corners” of the constellation, where the DOP is poor in general.

Moreover, the pseudomeasurement improved the solution success rate. It is apparent
from comparison of the solutions that in several epochs the unconstrained algorithm
failed to find a valid solution.119

In the test it has been shown that a TDoA-UWB system is capable of achieving
decimeter level accuracy. It is necessary to remark that the positioning accuracy
depends on the quality of time of reception measurements, on the constellation-tag
geometry (the DOP coefficients) and the quality of synchronization of the anchor net-
work. Exploitation of constraints can lead to significant improvement of the positioning
performance in various aspects. The pseudomeasurement implementation of the soft
constraints allows the assumption of constraint uncertainty.

119The estimate was discarded when considered obviously wrong (the absolute value of any position
vector component was more than 104 m), or the iterations resulted in not-a-number value.
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Figure B.3.: Unconstrained TDoA-UWB position estimates in horizontal plane.

Figure B.4.: Constrained TDoA-UWB position estimates in horizontal plane.
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C. Dual Application of Linear KF
in UWB systems

This Appendix documents the exploitation of relatively simple linear Kalman filters by
an UWB-TDoA positioning system. The system consists of PeLoc devices, which were
developed in cooperation with company RCD Radiokomunikace. First use of Kalman
filter is in the wireless synchronization algorithm, that has to achieve sub-nanosecond
accuracy; this task can be understood as a pre-requisity to the TDoA position es-
timation, which is described in Appendix B.2. The second use is in filtering of the
positioning estimates that were obtained by the algorithm described in Appendix B.2.

C.1. Synchronization
It has been mentioned several times that the infrastructure nodes of an UWB posi-
tioning network (the anchors) have to share a common timescale in order to make the
ToA or TDoA measurements meaningful. It is rather inconvenient to provide a time
reference signal to all the anchors via a wired connection. Most probably, a dedicated
coaxial cable would be required in order to achieve the desired accuracy. Fortunately,
it is possible to use the precise timestamping capability of the UWB transceivers to
perform the synchronization in a wireless manner over a line-of-sight link.

Several wireless synchronization algorithms for UWB systems were compared in [103];
the Kalman-filter solution appears to be superior to the others. However, during ex-
perimental evaluation it became apparent that the algorithm described in [103] suffers
from excessive error when the oscillator frequency is drifting. Therefore, an improved
algorithm for estimating the clock state was developed by the author and presented
in [5]. The advantage of this algorithm is that its synchronization segments can be
chained in order to disseminate the precise timing information to the anchors that do
not have direct line-of-sight access to the anchor with the master clock (this feature
was experimentally verified in [6]).

C.1.1. Two-node synchronization
We will begin with a simple synchronization of two nodes; the one-way synchronization
was chosen in order to minimize the time required for synchronization of the network.
This can be done since the anchors are stationary and their position is pre-surveyed;
thus the propagation delay is known and can be compensated. The equipment delays
of the transceivers are known as well. In each anchor, there is a free running reference
clock with approximately 15 ps resolution.

One of the nodes is considered to be the master – its clock defines the master
(system) timescale; the other node is referenced as the slave. The values related to the
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C. Dual Application of Linear KF in UWB systems

master and slave timescale (or the node itself) are denoted by the [M] or [S] superscript.
The synchronization is performed by means of sending a message from master to slave.
The reception time stamp at the slaves receiver 𝑡[S]

𝑅𝑥 can be described by

𝑡
[S]
𝑅𝑥 = 𝑡

[M]
𝑇𝑥 + 𝜏

[M]
𝑇𝑥 + 𝜏

[S]
𝑅𝑥 + ∆𝑡MS + 𝑟MS

𝑐0
, (C.1)

where 𝑡[M]
𝑇𝑥 denotes transmission time stamp in the master timescale – this information

is included in the message and therefore available in the slave node. Symbol 𝑟MS de-
notes the geometric distance between master and slave, 𝜏 [M]

𝑇𝑥 and 𝜏 [S]
𝑅𝑥 are the respective

equipment delays at master transmitter and slave receiver.
The offset between master and slave timescale is denoted by ∆𝑡MS. For ideal clocks

this value would be constant, however, in reality the clock frequency is different from
the nominal, therefore the clock offset changes in time. According to [19], the clock
frequency error should not be worse than ±20 ppm.

Therefore, the synchronization messages have to be sent periodically and the tempo-
ral development of ∆𝑡MS has to be estimated. Consider now that the state of a linear
Kalman filter vector 𝑥 = [𝑥0 𝑥1 𝑥2] corresponds to the clock offset at the particular
epoch ∆𝑡MS, the clock drift ∆𝑡MS and the clock drift rate ∆𝑡MS, respectively. It is
possible to adopt a model which is based on a second-order approximation of the clock
offset

𝑥[𝑘] ≈

⎡⎢⎢⎣
𝑥0[𝑘 − 1] +

´ 𝑡[𝑘]
𝑡[𝑘−1] 𝑥1 +

´
𝑥2 d𝑡 d𝑡+

´ 𝑡[𝑘]
𝑡[𝑘−1]𝒩 (0, 𝜎2

𝑥0) d𝑡´ 𝑡[𝑘]
𝑡[𝑘−1] 𝑥2 d𝑡+

´ 𝑡[𝑘]
𝑡[𝑘−1]𝒩 (0, 𝜎2

𝑥1) d𝑡
𝑥2 +

´ 𝑡[𝑘]
𝑡[𝑘−1]𝒩 (0, 𝜎2

𝑥2) d𝑡

⎤⎥⎥⎦ , (C.2)

where 𝑡[𝑘 − 1] and 𝑡[𝑘] are the times of the respective epochs. In the linear KF notation
(4.50), (4.51) the prediction step holds

𝑥−[𝑘] = 𝐹𝑥+[𝑘 − 1] (4.50)
𝑃−[𝑘] = 𝐹𝑃+[𝑘 − 1]𝐹T +𝑄 (4.51)

𝐹 =

⎡⎢⎣1 𝑇 [𝑘 − 1] 1
2𝑇 [𝑘 − 1]2

0 1 𝑇 [𝑘 − 1]
0 0 1

⎤⎥⎦ (C.3)

𝑄 =

⎡⎢⎣𝑇 [𝑘 − 1]𝜎2
𝑥0 0 0

0 𝑇 [𝑘 − 1]𝜎2
𝑥1 0

0 0 𝑇 [𝑘 − 1]𝜎2
𝑥2

⎤⎥⎦ , (C.4)

where 𝑇 [𝑘 − 1] = 𝑡[𝑘] − 𝑡[𝑘 − 1] and 𝜎2
𝑥0 to 𝜎2

𝑥2 are the state random walk variances
normalized w.r.t. a unit of time.120

The measurement model is rather simple, since the first element of the state vector
is the actual measurement; thus

𝐻 =
[︁
1 0 0

]︁
. (C.5)

120From a practical point of view, it does not matter whether 𝑇 is computed as a difference of the
reception or transmission timestamps.
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The measurement itself can be derived from (C.1) as

𝑦[𝑘] = ∆𝑡MS = 𝑡
[S]
𝑅𝑥 − 𝑡

[M]
𝑇𝑥 − 𝜏

[M]
𝑇𝑥 − 𝜏

[S]
𝑅𝑥 −

𝑟MS
𝑐0

. (C.6)

Considering that the equipment delays 𝜏 [M]
𝑇𝑥 , 𝜏 [S]

𝑅𝑥 and the geometric range 𝑟MS are
known perfectly, the covariance of the measurement is a simple sum of the transmission
and reception timestamp variances.

𝑅 = 𝜎2
Tx + 𝜎2

Rx (C.7)

The measurement update is described by equations (4.52) to (4.56).
The approach described above is able to provide us an estimate of the clock offset

∆𝑡MS at any epoch as the first state value 𝑥0[𝑘]. Its variance is the first element of the
𝑃 [𝑘] matrix. Nonetheless, we are interested in the ∆𝑡MS value at the time of reception
of a bling from a tag, in order to be able to express it in the master timescale.

It is possible to adopt the first line of the model (C.2), i.e. the first line of the 𝐹 -
matrix. Denoting the blink time 𝑡𝑏 and using 𝑡[𝑘] for the time of last available epoch
with measurement update already performed, we may obtain the

∆𝑡MS(𝑡𝑏) ≈ 𝑥0[𝑘] +
ˆ 𝑡𝑏

𝑡[𝑘]
𝑥1 +

ˆ
𝑥2 d𝑡d𝑡 (C.8)

∆𝑡MS(𝑡𝑏) ≈
[︁
1 𝑡𝑏 − 𝑡[𝑘] 1

2(𝑡𝑏 − 𝑡[𝑘])2
]︁
𝑥[𝑘]. (C.9)

This is rather similar to the prediction step of the Kalman filter; we are indeed pre-
dicting the first element of the state vector into an arbitrary moment 𝑡𝑏 . The variance
of this prediction is obtained by means of

var ∆𝑡MS(𝑡𝑏) ≈ 𝐹1𝑃 [𝑘]𝐹T
1 + (𝑡𝑏 − 𝑡[𝑘])𝜎2

𝑥0 (C.10)

𝐹1 =
[︁
1 𝑡𝑏 − 𝑡[𝑘] 1

2(𝑡𝑏 − 𝑡[𝑘])2
]︁
.

Note that 𝐹1 is the equivalent of the first line of the state-transition matrix 𝐹 ; the time
interval between epoch is of course substitute by the interval from the last available
epoch (i.e. the time of last synchronization message reception) to the time of blink
reception.

The blink reception time is converted from the slave timescale to the master timescale
by means of the following equation. Its variance is modified accordingly.

𝑡
[𝑀 ]
𝑏 = 𝑡

[𝑆]
𝑏 −∆𝑡MS(𝑡𝑏) (C.11)

var 𝑡[𝑀 ]
𝑏 = var 𝑡[𝑆]

𝑏 + var ∆𝑡MS(𝑡𝑏) (C.12)

The exploitation of Kalman filter is advantageous over the linear interpolation or
feedback control loop (PI, PII, PID) approaches described in [103], since it provides
the variance of the clock offset inherently – an information about the quality of the
synchronization. In contrast to the poor-performing linear interpolation it is able to
predict the clock state, the synchronization message received after the bling is not
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Table C.1.: Parameters of the proposed three-state synchronization KF.
Parameter Unit Value St. Dev.

𝜎2
Tx Transmission timestamp variance [s] 1.5 · 10−20 ∼ 120 ps
𝜎2

Rx Reception timestamp variance [s] 1.5 · 10−20 ∼ 120 ps
𝜎2
𝑥0 Clk. offset proc. noise norm. var. [s2/s] 5 · 10−20 ∼ 0.2 ps/

√
s

𝜎2
𝑥1 Clk. drift proc. noise norm. var. [1/s] 5 · 10−18 ∼ 2 ppb/

√
s

𝜎2
𝑥2 Clk. drift rate proc. noise norm. var. [1/s3] 5 · 10−18 ∼ 2 (ppb/s)/

√
s

𝑇 Synchronization message period [s] ∼ 0.4

necessary; consequently, there is no significant lag in obtaining the blink reception
time in the master timescale.

Additionally, it is possible to further disseminate the synchronization messages with
the transmission timestamps expressed in the master timescale, which is advantageous
for areas with multiple line-of-sight obstructions. The synchronization message for-
warding will be described in Section C.1.2 below.

Last but not least, it is possible to tune this filter in a fairly straightforward manner.

Experimental results

For the purpose of demonstration of the synchronization algorithm capabilities, we will
use a dataset already presented in [125]. Nonetheless, numerous laboratory test runs
and in-field tests were already successfully performed, see e.g. [104].

The test run is approximately 500 seconds long; three slave anchors are synchronized
to a single master. Even though the anchor hardware is identical, their clock state
evolution is various.121 In the following text, the anchors and the respective clocks
are denoted by the colors that are used to plot the particular data in the figures with
graphical results. The synchronization message was sent by the master every 100
milliseconds, however, the filter measurement update was performed on every fourth
message. The complete set of messages was used to evaluate the errors, since there
was no “ground truth” available.

In the following paragraphs, we will compare the performance of the proposed three-
state Kalman filter (tracking clock, offset, drift, and drift rate) to the two-state Kalman
filter (tracking only clock offset and drift) described in [103]. The filter tuning was
performed on the basis of available information about the clock and timestamping per-
formance and was slightly adjusted during several trials. The parameters are summa-
rized in Tab. C.1. The variances from the table can be interpreted with ease through
the related standard deviations, which are included in the last column. Note that
the synchronization message period 𝑇 is only approximate, the exact value is always
computed from the difference of the respective transmission timestamps. Mostly, it
oscillates around the nominal value, however, it can be multiplied when some synchro-

121Obviously, this was the reason for choosing the particular dataset for demonstration.
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(a) Error in time

(b) Histograms (c) CDF (three-state KF solid; two-state KF
dashed).

Figure C.1.: Comparison of clock offset (𝑥0) estimate errors.

nization messages are lost. The state vector was initialized with zero states, the state
covariance matrix was set to identity matrix.

The time development of the clock offset estimate error (error of the state 𝑥0) pro-
vided by the three-state and two-state KFs is depicted in Figure C.1a. It is apparent
that in case of the red anchor, the KF converged to a very accurate estimate almost
instantly. The two-state Kalman filter struggles with the estimate of the green, and
especially the blue anchor clock offset. It is because it inherently assumes the clock
drift rate to be zero, whilst the three-state KF estimates the drift rate. The clock
offset error magnitude is more than several nanoseconds for a couple of minutes. It
needs to be remarked that such error would cause the pseudoranges (and consequently
the TDoA measurements) to be biased by several meters, which is likely to corrupt
the indoor localization completely.

The clock drift estimates (state 𝑥1) from the two compared KFs occur rather similar
in Figure C.2a. It is obvious that the clock drift of the red anchor does not change,
while the green drift changes very slowly and the clock drift of the blue anchor grows
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(a) Estimates (b) Errors

Figure C.2.: Comparison of clock drift (𝑥1) estimates and respective errors.

Figure C.3.: Clock drift rate (𝑥2) estimated by three-state KF.

rather rapidly. When the estimate errors are examined (see Figure C.2b), it shows up
that the two-state KF estimate exhibits more than 20 ppb error. Although the error
seems to be very small at a first glance, it causes the unacceptable clock offset estimate.
It is worth remarking that the algorithm needs to keep the synchronization accuracy
below sub-nanosecond level with the 400 ms measurement-update period; the required
accuracy is at the part-per-billion level.

The clock drift rate estimated by the proposed three-state KF is depicted in Fig-
ure C.3. The shape estimated curve is very similar to the shape of the clock offset
error envelope of the two-state KF in the bottom part of Figure C.1a.

The substantial difference in the quality of the clock offset estimates provided by
the two filters can be observed on the histograms of the estimate errors (Fig. C.1b);
the two-state estimates of the green and blue anchors clock offsets are severely biased.
The outstanding performance of the three-state KF is documented by the cumulative
distribution function (CDF) of the clock offset error (the solid lines in Fig. C.1c). Even
with rapidly drifting clock it is able to achieve error below 500 ps with 95 % probability.
The performance of the two-state approach is noticeably worse even for the red anchor
with the stable clock.

The quantitative representation of the improvement brought by estimating the clock
drift rate is available in table C.2. Therein, the RMS value of the clock offset error
is employed as a metric. Note that the corresponding range errors are provided as
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Table C.2.: RMS values of the clock offset error and their comparison.

Anchor Two-state KF Three-state KF Improvement
[ps] [cm] [ps] [cm] [ps] [cm] [%]

Blue 2302 69.0 358 10.7 1944 58.3 84.4
Green 687 20.6 221 6.6 466 14.0 67.8
Red 306 9.2 329 9.9 −23 −0.7 −7.5
Total (RMS) 1398 41.9 308 9.2 1090 32.7 77.9

well. The greatest improvement was achieved at the blue anchor, where the error was
suppressed by more than 84 %. The overall improvement (RMS computed over the
three anchors) is almost 78 %.

Clearly, the proposed three-state KF approach promises reliable and accurate esti-
mate of the clock offset. Thanks to the estimation of the clock drift rate, the algorithm
is able to operate even when the clock frequency is unstable, e.g. during the warm-
up period after anchor power-on. It also provides the information about the current
accuracy and does not need to wait for reception of the next synchronization message.

C.1.2. Chained synchronization
The node-to-node synchronization requires a line-of-sight link in order to be able to
compensate for the propagation delay accurately and reliably; the reliability of the
wireless link is required as well. Therefore, only the anchors with the master node “in
sight” have the estimate of the master timescale available.

For such anchor, however, it is possible to update and forward the synchronization
message. Such relayed synchronization message includes the local transmission times-
tamp corrected to the master timescale, the accuracy of the time information, and
indication that it is a relayed information. The next slave node can then process the
relayed messages in the same way as it would process the direct ones from the master
node. For convenience, we will denote the forwarding anchor as the relay.

Such approach allows master time dissemination to the nodes that do not have
direct line-of-sight to the master node available. The chain may consist of multiple
hops (node-to-node segments) organized in a couple of branches. The branches are
allowed to split and merge, however, they should not form closed loops, i.e. no timing
information feedback from the end of the chain to its beginning should occur.

Experimental results

An experimental evaluation of the chained synchronization in UWB network was ex-
perimentally tested and published in [6]. Unsurprisingly, the accuracy of the time
information deteriorates with the quality of received messages and number of hops.
Yet, simulations [5] and experiments [6] have shown that the degradation may be re-
duced by providing multiple paths of the timing information – the slave node receives
messages from two or more relays and performs the KF measurement update for each
of them. The incoming information can be weighted by means of setting the 𝑅 matrix.
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(a) Constellation

(b) Histograms of clock offset differences

Figure C.4.: Serial multi-hop test.

(a) Constellation

(b) Histograms of clock offset differences

Figure C.5.: Parallel branches test.

Two different tests are presented herein; in both the direct line-of-sight link to the
master anchor is available and serves as the reference. Hence, two KF synchronization
algorithms are running in each node. The first one processes the relayed messages
and the other one uses only the direct messages. The performance of the chained
synchronization is assessed by means of comparison of the outputs of these two filters.

In the first test, the relays and slave node were located around the receiver, as
depicted in Figure C.4a. The anchors were equally spaced, all node-to-node distances
were 30 cm long. The direct, reference, synchronization links are illustrated by the
gray arrows, whilst the black arrows show the relayed-message path. The histograms
of the clock offset error (w.r.t. the direct sync. path) are available in Figure C.4b; the
colors of the lines correspond to the colors used for anchors in Fig. C.4a. It is apparent
that the bias and variance of the clock offset estimate grow with increasing number of
hops – the histogram peaks are offset from the center and wider.

The more detailed quantitative results of the test are available in Table C.3. The
standard deviation of the clock offset is below half-nanosecond level even after four
hops. The sub-nanosecond biases from each hop have accumulated into a 1.2 ns bias at
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the slave node. It is believed, however, that this value can be further reduced by means
of more careful survey and compensation of the propagation and equipment delays, or
by the on-the-fly survey of the propagation delay through a TWR measurement. The
errors in the estimation of the clock drift and its rate are negligible.

In the second test it was shown that it is possible to use multiple paths for the
synchronization information. The messages from master were relayed by anchors 𝛼
and 𝛽, the constellation is presented in Figure C.4a. Four KFs were running in the
slave node:

• The reference KF, using only the direct messages from master;

• KF using only messages from relay 𝛼;

• KF using only messages from relay 𝛽;

• KF using messages from both relays.

The histograms of the clock offset error (Figure C.5b) are very similar for all three
relayed KFs. Nevertheless, the quantitative results from Table C.4 prove that the KF
that uses both available paths features lower standard deviation than both single-path
filters. Moreover, the bias is approximately averaged when using two independent
paths. As well as in the case of the first test, the clock drift and its rate are estimated
almost perfectly by means of the chained Kalman filters.

C.1.3. Remarks
The synchronization algorithm that was developed by the author is able to provide
reliable and accurate timing information for the anchors of an UWB network. It
is required for all the synchronized anchors to have link to the master anchor via
one or more line-of-sight segments. Under most circumstances, the sub-nanosecond
accuracy is achieved with a considerable margin. Thanks to the synchronization, it is
possible to provide inputs for the TDoA positioning algorithm, which was described
in Appendix B.2.

There are a few aspects that were not covered in this text, however, may be impor-
tant for the actual implementation. For the purpose of synchronization, the equipment
delays were assumed to be known exactly for the transmission and reception opera-
tion. Nonetheless, for production devices it is only possible to measure an aggregate
delay of an anchor, i.e. the sum of the transmission and reception equipment delays.
Typically, the division of the aggregate delay between the two operations is based on
the information from the device manufacturer.

The analysis of the systematic errors, which was presented in author’s work [6],
shows that only the aggregate delay does matter when measuring the TDoA. The
transmission and reception delays affect the blink receptions in the very same way
as they affect the synchronization messages. Therefore, they either subtract (e.g. the
reception delay in the slave node) or they sum up to the aggregate delays (e.g. blink
reception in a master node, or message relaying). The detailed analysis is available
in [6].
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C.2. Position Filtering

The results presented herein were obtained by means of processing the captured
raw time of transmission and reception data in the Matlab environment. Thus, dou-
ble precision floating point arithmetic was used. For the purpose of implementation
into the anchor processor, the algorithm was converted into a fixed point arithmetic.
64-bit long variables were required, appropriate scaling of the state-vector values and
the covariances was necessary. Due to advantageous properties of the synchronization
KF matrices, it was possible to perform number of the KF computations in a smarter
way than by strictly adhering to the general definitions, which were described in Sec-
tion 4.2.1. For instance, there is no need to evaluate all multiplications by zero in
every KF iteration. The symmetry of the covariance matrices is to be exploited as
well; a 3-by-3 symmetric matrix has only 6 unique elements. From a numerical point
of view it is convenient to adopt the Horner’s method when evaluating the elements of
the state prediction and its covariance – the expression can be interpreted as a poly-
nomial with indeterminate 𝑇 [𝑘 − 1] and coefficients determined by the state vector.
The description of the optimized fixed-point KF and comparison with floating-point
implementation for a particular embedded processor is available in [166].

C.2. Position Filtering
The position estimates obtained on epoch-by-epoch basis are often considered as noisy.
A representative example can be found in Appendix B.2. A Kalman filter, which repre-
sents the dynamic model of the localized body, can be used to make the measurements
smoother.

The data from Appendix B.2 will be processed by two different linear KFs. One
would assume stationary tag, whilst the second would assume constant-velocity linear
motion. Obviously, the tags trajectory is not fully consistent with either of the models;
the process noise setting should reflect the fact.

Assumption: Stationary tag

In this very simple case, the Kalman filter state is the filtered position vector itself.
The position is not expected to change in time, thus, the system model matrix is the
identity matrix. In the equations it yields

𝑥 = 𝑟u 𝐹 = I3×3 (C.13)
𝑦 = 𝑟u 𝐻 = I3×3. (C.14)

The process noise covariance matrix is dependent on the time period between epochs,
which is denoted by 𝑇 ; note that this value may not be constant due to missing
measurements. Rather low values of the normalized process noise variances were set,
since the tag movement is slow

𝑄 = 𝑇 Diag

⎡⎢⎣𝜎
2
Qr𝑥
𝜎2

Qr𝑦
𝜎2

Qr𝑧

⎤⎥⎦ ;

⎡⎢⎣𝜎
2
Qr𝑥
𝜎2

Qr𝑦
𝜎2

Qr𝑧

⎤⎥⎦ =

⎡⎢⎣(0.2 m/
√

s)2

(0.2 m/
√

s)2

(0.1 m/
√

s)2

⎤⎥⎦ . (C.15)
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C. Dual Application of Linear KF in UWB systems

The measurement covariance 𝑅 is the covariance matrix of the position estimate Φ𝑟u,
which can be obtained as an output of the least-squares positioning algorithm (see
Appendix B.2).

The Linear Kalman filter was implemented according to Section 4.2.1 and initialized
with 𝑥+[0] = 𝑟u[0] and 𝑃+[0] = Φ𝑟u[0]. The 0th epoch measurements were not used
in the first measurement update.

The filtered trajectory is depicted by the red line in Figure C.6. Obviously, the
trajectory is smoother than the raw position estimates (black). In the time series
visualization (Figure C.8) it is observable that the variance of the filtered position
estimates is lower due to the additional knowledge provided by the system model.
Note that the a posteriori KF state variance is depicted by the blue area and the
original, raw, variance is visualized by the T-shaped bars, both are related to the right
axis.

Due to the assumption of a stationary tag, the filtered trajectory estimate (red line,
left axis) tends to lag behind the actual position of the tag – the filtered estimate is
“slowed down” by the system model. It is worth noting that increasing 𝑄 or decreasing
𝑅 would reduce this effect, and vice versa.

Assumption: Linear motion
In the second presented case, the state vector contains position and velocity estimates.
The system model matrix 𝐹 reflects that constant velocity is assumed (bottom-right I);
the position prediction is a sum of the current position (top-left I) and time-integrated
constant velocity (I3×3𝑇 ). It is worth reminding that 𝑇 denotes the time interval
between the epochs. Still, only the position vector is available as the input to the
KF, no direct link of the velocity-related part of the state vector to the measurement
vector is available. This is confirmed by a matrix of zeros (O) in the right part of
measurement model 𝐻.

𝑥 =
[︃
𝑟
𝑣

]︃
𝐹 =

[︃
I3×3 I3×3𝑇
O3×3 I3×3

]︃
(C.16)

𝑦 = 𝑟 𝐻 =
[︁
I3×3 O3×3

]︁
(C.17)

The system process noise matrix was set in a similar way as in the stationary case:

𝑄 = 𝑇 Diag

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
Qr𝑥
𝜎2

Qr𝑦
𝜎2

Qr𝑧
𝜎2

Qv𝑥
𝜎2

Qv𝑦
𝜎2

Qv𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
Qr𝑥
𝜎2

Qr𝑦
𝜎2

Qr𝑧
𝜎2

Qv𝑥
𝜎2

Qv𝑦
𝜎2

Qv𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0.05 m/
√

s )2

(0.05 m/
√

s )2

(0.025 m/
√

s )2(︀
0.1 ms−1/

√
s
)︀2(︀

0.1 ms−1/
√

s
)︀2(︀

0.05 ms−1/
√

s
)︀2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C.18)

Non-zero variance is provided to both, position and velocity states. The latter indicates
that the velocity vector may change, the former suggests that the true position may
deviate from the linear-motion model. The implementation and initialization of the
KF is almost identical to the stationary tag case; the velocity is initialized as stationary
value with velocity variance 5 m2s−2.
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C.2. Position Filtering

Figure C.7 presents the filtered results in the horizontal plane, the smoothness of
the trajectory is similar to the one in the previous case. Since the velocity is observed
indirectly, through the state covariances, the filter tends to “overshoot” the corners, or
the true value after initialization, especially when the system noise is underestimated.
From the time-series representation of the results (Figure C.9) it is apparent, that the
KF converges slower than in the previous case. Nonetheless, it does not suffer from
the lag on the straight portions of the trajectory.

It is evident that neither of the two models fits the actual motion perfectly. How-
ever, it was shown that even rather simple KFs may be used to smoothen the position
estimates. With careful tuning the artifacts appearing from the motion model unsuit-
ability suppressed to a reasonable level.
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C. Dual Application of Linear KF in UWB systems

Figure C.6.: Filtered TDoA-UWB positions in horizontal plane – stationary model.

Figure C.7.: Filtered TDoA-UWB positions in horizontal plane – linear motion
model.
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D. Application of Constrained EKF
for UXO Mapping

The use of Extended Kalman filter, which is constrained by means of pseudomeasure-
ment, is illustrated on a positioning algorithm for a platform for UXO (Unexploded
ordnance) mapping. Publications [138, 167, 168] focus on various aspects of the sys-
tem described here. For the localization purpose, three sensors were available – the
MEMS-IMU, GNSS receiver, and UWB transceiver. The mapping platform is a cart
and during mapping only a few distinctive motion types are performed, thus, applica-
tion of constraints is considered beneficial. Nonetheless, the constraints are not known
exactly a priori, they are deduced and adjusted during the mapping run itself. Thus,
soft constrains have to be used in order to allow some amount of uncertainty of the
constraints.

The IMU strapdown mechanization and unconstrained version of the filter will be
described first. Then the constraints will be defined and their inclusion to the filter
will be presented.

The IMU is a MEMS device (Microstrain 3DM-GX3-35) provides raw measurements
from triaxial gyroscope and triaxial accelerometer at 100 Hz rate, nonetheless, the
data was downsampled by factor 2 prior to mechanization and fusion. The IMU
measuremenst were synchronized to the GPST via its own GNSS receiver. Although
the IMU is able to integrate the GNSS and inertial position estimates, only the raw
data was used and the GNSS was used only for the synchronization purpose.

RTK-quality position estimates with 5 Hz rate were produced by the GNSS receiver;
under open-sky conditions the standard deviation was not worse than a few centime-
ters. In certain tests the GNSS solution was not available due to vegetation foliage.

The UWB system outputs position estimate with approximately decimeter-level ac-
curacy. The UWB position estimate was based on TWR measurements, the period
of the positioning fixes was not constant. Usually, the time separation of the UWB-
epochs was 0.25 to 0.45 s. Prior to the fusion of the measurements by means of an
EKF, the data are converted to the navigation frame as was defined in 3.1.2. The
n-frame was referenced to the initialization point of the test.
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D. Application of Constrained EKF for UXO Mapping

D.1. The IMU Mechanization
It is assumed that the IMU measurements are degraded by biases and random walks.

The vectors of accelerometer (acceleration) and gyroscope (angular rate) measurements
from epoch 𝑘 are denoted by 𝑎[𝑘] and 𝜔[𝑘], and they are referenced to the b-frame.122

Symbols 𝛿𝑎[𝑘], 𝛿𝜔[𝑘] correspond to the respective biases; note that the biases are
estimated by the error-state KF, which is described in the following section.

The mechanization of the IMU measurement is performed in the n-frame using
quaternion representation. The attitude is expressed by means of 𝑞, which describes
the transformation from the b-frame to the n-frame, i.e. in the notation of Chapter 3
it would be denoted by 𝑞n

b. The attitude update is performed using the forward
integration as described in (3.48) on page 100 and application of (3.54). Note that the
transport rate can be neglected for the MEMS IMU involved. Prior to the integration,
the bias is subtracted from the measurement. In a single line it can be written as

𝑞[𝑘 + 1] = 𝑞[𝑘]⊗ 𝑞 {(𝜔[𝑘]− 𝛿𝜔[𝑘]) 𝜏𝑠𝑎} , (D.1)

where 𝜏𝑠𝑎 is the time between the successive IMU measurement samples (in this par-
ticular case 20 ms).

The attitude in the halftime between epochs is obtained using forward integration
according to (3.61). Since MEMS IMU is used, the simplified n-frame update (3.72)
can be used. Note that both, accelerometer and gyroscope biases have to be subtracted
from the measurement, thus

𝑣[𝑘 + 1] = 𝑣[𝑘] +
(︁
𝑅
{︁
𝑞[𝑘]⊗ 𝑞

{︁
𝜏𝑠𝑎(𝜔[𝑘]−𝛿𝜔 [𝑘])

2

}︁}︁
(𝑎[𝑘]− 𝛿𝑎[𝑘]) + 𝑔

)︁
𝜏𝑠𝑎. (D.2)

The gravity is compensated by means of the 𝑔 vector, which is a downward-pointing
vector. The position update in the n-frame is performed using backward integration:

𝑟[𝑘 + 1] = 𝑝[𝑘] + 𝑣[𝑘 + 1] 𝜏𝑠𝑎. (D.3)

Since the data is post-processed, it is possible to run backward mechanization; in
such case, the attitude, velocity and position updates follow

𝑞[𝑘 − 1] = 𝑞[𝑘]⊗ 𝑞 {−(𝜔[𝑘]− 𝛿𝜔[𝑘]) 𝜏𝑠𝑎} (D.4)

𝑣[𝑘 − 1] = 𝑣[𝑘]−
(︁
𝑅
{︁
𝑞[𝑘]⊗ 𝑞

{︁
−𝜏𝑠𝑎(𝜔[𝑘]−𝛿𝜔 [𝑘])

2

}︁}︁
(𝑎[𝑘]− 𝛿𝑎[𝑘]) + 𝑔

)︁
𝜏𝑠𝑎 (D.5)

𝑟[𝑘 − 1] = 𝑝[𝑘]− 𝑣[𝑘 − 1] 𝜏𝑠𝑎. (D.6)

It is necessary to remark that the the IMU was initialized to the origin of local
NED coordinate system, the platform was always stationary during initialization. The
attitude was initialized partially from the accelerometers, i.e. the tilts were estimated
from the direction of gravity vector, see (3.82) on page 105. The heading, or yaw angle,
was coarsely initialized by means of a magnetometer measurements; local magnetic
declination was taken into account.

122The b-frame axes are aligned with the platform’s forward, right and down directions. The
b-superscript denoting the frame (as in Chapter 3) was dropped for the sake of simplicity.
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D.2. The Error-state Kalman Filter

D.2. The Error-state Kalman Filter
Each of the subsystems to be integrated produces position estimates, in addition,

the IMU mechanization outputs attitude and velocity. The system that integrates the
subsystem outputs at the position- and velocity-estimate level is sometimes referred
as a loosely coupled system.

There are two goals of the measurement fusion algorithm: first, it should provide the
best possible position estimate; second, it should estimate the IMU biases. According
to [135], the error-state Kalman filter (ESKF) is not estimating the position, velocity
and attitude (PVA) directly, but the state vector is considered to be the error of
the nominal PVA solution (the output of the strapdown mechanization) w.r.t the true
PVA. The true PVA is unknown, only its position component is observed via imperfect
GNSS and UWB measurements. The input to the ESKF is therefore the difference of
the position vector obtained from GNSS (or UWB) and from the nominal position. It
is necessary to remark that the underlying model is nonlinear, since the attitude error
is incorporated in the ESKF as well. Since linearization is required, error-state EKF
is exploited.

The state vector 𝑥 is defined as

𝑥 =
[︁
𝑟T 𝑣T 𝜈T 𝛿T

𝑎 𝛿T
𝜔

]︁T
, (D.7)

where 𝑟, 𝑟 denote the position and velocity error, 𝜈 is the attitude error expressed
as a rotation vector. The six elements of the state vector are the accelerometer and
gyroscope biases, respectively. By modifying expressions from [135] we may obtain the
state transition matrix as follows

𝐹 =

⎡⎢⎢⎢⎢⎢⎣
I I 𝜏𝑠𝑎 O O O

O I −𝑅 {𝑞} [𝑎− 𝛿𝑎]× 𝜏𝑠𝑎 −𝑅 {𝑞} 𝜏𝑠𝑎 O

O O −𝑅 {𝜔 − 𝛿𝜔}T O −I 𝜏𝑠𝑎
O O O I O

O O O O I

⎤⎥⎥⎥⎥⎥⎦ . (D.8)

The small-angle linear approximation is used in the state transition matrix, so the
application of the function process model (4.60) can be performed by means of left
matrix multiplication by 𝐹 . The a priori state vector and its covariance can be
obtained by means of

𝑥−[𝑘] = F𝑥+[𝑘 − 1] (D.9)
𝑃−[𝑘] = 𝐹 [𝑘 − 1]𝑃+[𝑘 − 1]𝐹T[𝑘 − 1] +𝑄. (4.62)

It is worth noting that the state covariance propagation remains the same as in case
of a regular EKF.

The measurement vectors are defined by

𝑦S = 𝑟S − 𝑟𝑦U = 𝑟U − 𝑟. (D.10)

The measurements should be equivalent to the first three elements of the state vec-
tor (the position error vector) and thus the measurement model is linear. It can be
described by means of

𝐻S = 𝐻U =
[︁
I3×3 O3×12

]︁
. (D.11)
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D. Application of Constrained EKF for UXO Mapping

In the measurement update, there is a minor modification of the innovation eval-
uation, since the measurement model is linear. The a posteriori update is therefore
obtained using

𝑧[𝑘] = 𝑦[𝑘]−𝐻𝑥−[𝑘] (D.12)
𝑆[𝑘] = 𝐻[𝑘]𝑃−[𝑘]𝐻T[𝑘] +𝑅 (4.65)
𝐾[𝑘] = 𝑃−[𝑘]𝐻T(𝑆[𝑘])−1 (4.66)
𝑥+[𝑘] = 𝑥−[𝑘] +𝐾[𝑘]𝑧[𝑘] (4.67)
𝑃+[𝑘] = (I−𝐾[𝑘]𝐻[𝑘])𝑃−[𝑘]. (4.68)

The matrix 𝐻 is formed according to the availability of the measurements.

Only GNSS: 𝐻 = 𝐻S 𝑦 = 𝑦S 𝑅 = 𝑅S (D.13)
Only UWB: 𝐻 = 𝐻U 𝑦 = 𝑦U 𝑅 = 𝑅U (D.14)

Both: 𝐻 =
[︃
𝐻S
𝐻U

]︃
𝑦 =

[︃
𝑦S
𝑦U

]︃
𝑅 =

[︃
𝑅S O

O 𝑅U

]︃
(D.15)

Naturally, the measurement update is omitted when neither of the radio position es-
timates is available. It is important to remark that such architecture of the ESKF
allows us to disregard one of the measurement sources; the system can be considered
modular.

The true PVA estimates 𝑟, 𝑣, ˆ̊𝑞 are obtained by means of addition of the a posteriori
estimated errors to the nominal PVA estimates. Note that in case of the quaternion
attitude, the erroneous rotation has to be applied by means of quaternion multiplica-
tion. Omitting the KF epoch identifier, which is the same for all variables involved,
we may write

𝑟 = 𝑟 + 𝑟+ (D.16)
𝑣 = 𝑣 + 𝑣+ (D.17)
ˆ̊𝑞 = 𝑞 ⊗ 𝑞

{︁
𝜈+
}︁
. (D.18)

It is necessary to correct the nominal PVA estimate occasionally, in order to avoid
excessive growth of the error, since the linearization (the small-angle approximation)
used in construction of the 𝐹 -matrix would become inaccurate. When correcting, the
true PVA is assigned to the nominal PVA, the corresponding elements (the first nine)
of the state vector 𝑥 are set to zeros, however, the covariances remain unchanged. The
bias estimates and their covariances are not affected as well.

It is clear that the biases and the attitude and velocity errors are observed via
the state propagation. Therefore, the nominal PVA correction cannot be performed
after each measurement update, because the filter state would be partially reset before
the prediction step. In order to make all state vector elements observable a few full
iterations of the ESKF are necessary.

On one hand, the nominal PVA should be corrected as often as possible, in order
to keep the error low; on the other hand, the intervals between the nominal PVA
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cor rections should be long in order to make the state vector more observable. For
this particular application, a suitable value of 4 corrections per second was found
experimentally.

It is possible to modify the ESKF to run backwards in time in a strightforward
manner. In such case, the prediction step runs from epoch 𝑘 + 1 to 𝑘, and the value
of 𝜏𝑠𝑎 is negative.

D.3. Motion Constraints
As anticipated in the beginning of the appendix, the motion of the platform can be
described by means of constraints rather accurately. The platform is moved over an
area in parallel strips, as shown in Figure D.2. Before each strip, the platform is
stationary at least for a few seconds; the velocity of motion along the strip is constant.
There are three kinds of movements:
Stationary – Zero-velocity update (ZUPT) is performed. No attitude change is possi-

ble, since the platform (cart) cannot be rotated when stationary; the height (n-frame
𝑧-axis position) is constant. The complete nominal velocity estimate is the error,
since the true value is zero. It is necessary to remark that these constraints are
rotationally invariant, thus they can be applied directly in the n-frame. The pseu-
domeasurement related to this motion type will be denoted by ∙ subscript.

Straight motion – In this case the attitude and height are constrained in the same
way as for the stationary condition. The platform moves along its b-frame 𝑥-axis
with a constant velocity 𝑣′𝑥↑, the lateral and vertical velocity components are zero.
The velocity constraint originates in the b-frame, therefore it has to be transformed
to the n-frame in order to become a pseudomeasurement for the ESKF. The pseu-
domeasurement related to this motion type will be denoted by ↑ subscript.

Turn – During the turn, only the height and velocity direction are constrained. The
velocity pseudomeasurement is obtained as a projection of the nominal velocity esti-
mate into the direction of b-frame 𝑥-axis. The attitude is unconstrained completely.
The pseudomeasurement related to this motion type will be denoted by 	 subscript.

The motion constraints for each of the kinds of movements are illustrated in Figure D.3.

It is necessary to define the pseudomeasurements and the respective pseudomeasure-
ment matrices. Since we are constraining the state values, the pseudomeasurement
matrices may be interpreted as a “mapping” to the relevant components of the ESKF
state vector.

The constant-height constraint is rather straightforward; the vertical component
nominal position should be the same as the initialization height, i.e. 0. Therefore the
pseudomeasurement follows

𝑦′h∙ = 𝑦′h↑ = 𝑦′h	 = −𝑟−𝑧 (D.19)

𝐻 ′h =
[︁
O1×2 1 O1×12

]︁
. (D.20)

It is worth noting that this constraint should not be applied when the surface is not
flat and level.
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The velocity constraint is different for each of the motion types. In the stationary
case, ZUPT, any nominal velocity is considered to be an error, see (D.21). The velocity
pseudomeasurement of the straight movement (D.21) is a difference of constant velocity
vector in the direction of b-frame 𝑥-axis transformed into n-frame and the nominal
velocity estimate. The rotation is performed using the last known nominal attitude.
During turns, the velocity pseudomeasurement (D.24) is the difference of the nominal
velocity projected123 into the direction of the b-frame 𝑥-axis expressed in n-frame, and
the nominal velocity estimate.

𝑦′v∙ = −𝑣[𝑘] (D.21)

𝑦′v↑ = 𝑞[𝑘]⊗
[︁
𝑣′𝑥↑ 0 0

]︁T
⊗ 𝑞[𝑘]− 𝑣[𝑘] (D.22)

𝑦′v	 =

⎛⎜⎝𝑞[𝑘]⊗

⎡⎢⎣1
0
0

⎤⎥⎦⊗ 𝑞[𝑘]

⎞⎟⎠
⎛⎜⎝𝑞[𝑘]⊗

⎡⎢⎣1
0
0

⎤⎥⎦⊗ 𝑞[𝑘]

⎞⎟⎠
T

𝑣[𝑘]− 𝑣[𝑘] (D.23)

𝐻 ′v =
[︁
O3×3 I3×3 O3×9

]︁
(D.24)

The attitude constraint is applied only when the platform is not turning. The
attitude-error pseudomeasurement is defined as the rotation between the current and
previous epoch in both, stationary and straight movement, cases. It follows

𝑦′𝜃∙ = 𝑦′𝜃↑ = 𝜈 {𝑞*[𝑘]⊗ 𝑞[𝑘 − 1]} (D.25)

𝐻 ′𝜃 =
[︁
O3×6 I3×3 O3×6

]︁
, (D.26)

where 𝜈{} denotes the attitude parametrization conversion from quaternion to rotation
vector. The uncertainty, or “softness,” of the constraints can be set by setting the
respective pseudomeasurement covariance matrices 𝑅′. In our implementation the
covariances were neglected, thus all the 𝑅′ matrices were diagonal.

The relevant constraints, i.e. pseudomeasurement vectors, matrices and covariance
matrices, are appended to the regular measurements and the respective matrices in
the same way, as was described in Section 4.2.4. In order to avoid performing the
computationally demanding ESKF measurement update in every epoch, the constraint
update was performed in every fourth epoch only.

The choice of the constraint set was performed by means of a neural network (NN).
The detailed description of the NN does not fall in the scope of the thesis, however,
is available in [138, 167]. Two different NN approaches are compared in [138] – the
feed-forward NN and the convolutional NN; only the results of the latter are presented
here. The inputs of the convolutional neural network were the raw accelerometer and
gyroscope measurements.

It is worth remarking that the soft constraints deal with two nuisance characteristics
of the platform motion. First, the platform was pushed by men power over an uneven
surface, thus, the velocity is not perfectly constant and the straight segment may not
be perfectly straight. Second, after the turn, the platform was raised in order to get

123The projection is performed using (4.84), from page 133.
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Figure D.1.: Block diagram of the integrated system.

Figure D.2.: Motion pattern of the platform.

(a) Stationary (b) Straight (c) Turning

Figure D.3.: Constraints for different motion types.
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aligned with the following mapping strip. Such motion violates the constraints, the
platform moves sideways and is rotated. Should the hard constraints be used, such
motion singularities may lead to filter instability.

D.4. Forward-backward Solution Combination

In the postprocessing, it is possible to run the IMU strapdown mechanization and
ESKF both forward and backward in time. When nominal PVA estimates, PVA error
estimates (states of the ESKF) are stored for each epoch in both directions, the forward
and backward estimates of the true PVA can be obtained for each epoch by means of
(D.16), (D.17), and (D.18). The ESKF a posteriori state covariance is assumed to be
the variance of the true PVA estimate.

The forward and backward solution can be combined. The optimal combination is
a covariance-weighted average of the two solutions, as was declared in (4.86), (4.87)
in Section 4.2.5. Due to the attitude representations, this approach cannot be used
directly. For the purpose of solution combination, the ESKF state covariance matrix
will be considered block-diagonal

𝑃 =

⎡⎢⎣ 𝑃 𝑟𝑣 O6×3 O6×6
O3×6 𝑃 𝜃 O3×6
O6×6 O6×3 𝑃 𝛿

⎤⎥⎦ , (D.27)

where 𝑃 𝑟𝑣, 𝑃 𝜃, 𝑃 𝛿 denote the covariance submatrices related to the position and veloc-
ity, the attitude and the biases, respectively. Certainly, such assumption brings certain
suboptimality to the forward-backward combination, since a number of covariances is
neglected.

Denoting the forward, backward and combined (smoothed) solutions by means of
→,← and↔ subscripts, the combination of the estimates of the true position, velocity
and biases can be performed by a straightforward application of (4.86), (4.87):

𝑃 𝑟𝑣
↔ =

(︁
(𝑃 𝑟𝑣
→ )−1 + (𝑃 𝑟𝑣

← )−1
)︁−1

(D.28)[︃
𝑟↔
𝑣↔

]︃
= 𝑃 𝑟𝑣

↔

(︃
(𝑃 𝑟𝑣
→ )−1

[︃
𝑟→
𝑣→

]︃
+ (𝑃 𝑟𝑣

← )−1
[︃
𝑟←
𝑣←

]︃)︃
(D.29)

𝑃 𝛿
↔ =

(︁
(𝑃 𝛿
→)−1 + (𝑃 𝛿

←)−1
)︁−1

(D.30)[︃
𝛿𝑎↔
𝛿𝜔↔

]︃
= 𝑃 𝛿

↔

(︃
(𝑃 𝛿
→)−1

[︃
𝛿𝑎→
𝛿𝜔→

]︃
+ (𝑃 𝛿

←)−1
[︃
𝛿𝑎←
𝛿𝜔←

]︃)︃
. (D.31)

Apparently, two quaternions representing the forward and backward attitude esti-
mate cannot be combined in such straightforward manner; moreover, the covariance
submatrix 𝑃 𝜃 corresponds to the rotation vector attitude parametrization instead of
quaternions. The combined attitude is obtained by means of partial rotation from the
forward to the backward attitude solution. The amount of the rotation along each axis
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is given by the ratio of the diagonal elements of 𝑃 𝜃
→ and 𝑃 𝜃

← submatrices:

𝑞↔ = 𝑞→ ⊗ 𝑞

⎧⎨⎩ Diag
(︁
𝑃 𝜃
→

)︁
Diag

(︁
𝑃 𝜃
→ + 𝑃 𝜃

←

)︁ 𝜈 {𝑞*→ ⊗ 𝑞←}
⎫⎬⎭ . (D.32)

It is necessary to remark that the fraction of the two diagonal matrices with the same
dimensions can be performed as an element-wise division of the corresponding diagonal
elements.

D.5. Experimental Results
Two sets of results are presented here, in order to demonstrate the performance advan-
tage brought by applying the constraints. In the first, open-sky area scenario, accurate
and frequent GNSS position estimates are available. Therefore, UWB/IMU integrated
solution is compared to a GNSS/IMU reference solution. During the second, canopied
area scenario, the GNSS is unavailable; consequently a reference solution is missing.
In order to quantitatively asses the impact of the constraints, artificial outages of the
UWB positioning were simulated.

All the presented results were obtained as a combination of the forward and backward
solutions.

Open-sky area
In the open-sky test, the parallel strips were oriented in the North-South direction.
The length of the strips was approximately 80 m. The reference GNSS/IMU solution
and the raw GNSS data is depicted in Figure D.4a as a black line and red ×-marks,
respectively. In the left part of the figure, the Northern turning point is zoomed in; the
whole trajectory is in the right part, the zoomed part is enclosed by a gray rectangle.

The unconstrained UWB/IMU solution is presented in Figure D.4b. The trajec-
tory starts at the point with zero coordinates, the mapping strips were stacked from
East towards West. The UWB position estimates are depicted by the blue circles;
clearly, they are less frequent and less accurate than the GNSS measurements. The
red ×-marks are the GNSS position estimates, which were not used. It is apparent that
the UWB measurements are sparse when approaching the turn; the operator pushing
the cart was obstructing the line of sight for the UWB anchors, which were located on
the opposite end of the strip. The length of the strip is rather close to the maximal
range of the UWB ranging system, thus, there was not sufficient signal-power margin.
The UWB/IMU solution becomes rather inaccurate when the UWB position update
is not available, the estimated trajectory (solid black line) is uneven and diverging. In
certain parts of the trajectory, the UWB and GNSS position estimates are noticeably
different.

Results which were obtained with the constrained ESKF are provided in Figure D.4c.
The trajectory is considerably smoother than in the unconstrained case, however, still
offset from the GNSS position estimates. Since the GNSS position data is unavailable
to the filter, the offset cannot be eliminated by the constraints; the solution correctly
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follows the UWB position estimates. In the right part of the figure, the NN-based
motion model classification is shown. The blue +-marks depict points with stationary
cart, red and green colors indicate straight and turning motion. The NN was trained
and verified on a different part of the open-sky area test.

Regardless of the positioning method used, it can be observed that before some
strips, there is a move that does not fit to any of the three motion models considered;
it manifests as a “dent” in the trajectory right after the turn.

The quantitative analysis of the two UWB/IMU trajectory estimates is provided in
Table D.1. The RMSE column shows the RMS error of the UWB/IMU solution w.r.t.
the GNSS/IMU solution. The ∆𝑎 and ∆𝑟 columns present the absolute and relative
improvement of the constrained solution w.r.t. the unconstrained one. Apparently,
the constraints bring approximately 10 % accuracy advantage, nonetheless, the RMS
error is still close to 30 cm. Arguably, a dominant part of the error is caused by the
occasional offset between UWB and GNSS position estimates.

Canopied area

The sky view was obstructed by a tree canopy in the second test. The strips were
approximately 30 m long and oriented from Northwest to Southeast direction, the
mapping was performed from Southwest toward Northeast.

Since GNSS was not available, the unconstrained UWB/IMU solution was taken as a
reference. The trajectory estimates of Northwestern turns are presented in Figure D.5a.
Thanks to the shorter mapping strips, the loss of UWB position estimates (blue circles)
due to line of sight shadowing is not a significant problem in the canopied area test.
An overview of the whole trajectory is available as Figure D.6.

In order to demonstrate the difference of the unconstrained and constrained trajec-
tory estimates, two 5 to 10 s long UWB outages were simulated. During that periods,
only the trajectory was estimated using the IMU measurements only. The outage A
occurs in a turn, whilst outage B happens during straight motion. The unconstrained
trajectory solution (Figure D.5c) appears uneven, whilst the constrained solution (Fig-
ure D.5d) is rather smooth. Moreover, the constrained trajectory seems to be more
similar in shape to the reference solution (without outages).

The results are quantitatively compared in Table D.2. The RMS errors of the uncon-
strained solution are rather close to the 0.5 m level during the outages. The introduc-
tion of constraints reduces the horizontal RMS error by 16 % in the turn and by 35 %
when moving straight. Such result is consistent with the fact that tighter constraints
are applied when moving straight (no attitude change is allowed and constant velocity
is forced).

The motion type classification was performed by the same NN as in the open-sky
area; visualization is provided in Figure D.5b. Apparently, a few segments were mis-
classified: the blue ×-marks depicting the stationary platform are appearing on a
straight line (should be red); nearby, a straight segment is incorrectly classified as a
turn (green). Since the constraints are implemented in a soft manner, the effect of the
misclassification is not completely destructive.
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D.6. Remarks
The application of the error-state Kalman filter (ESKF) in a loosely coupled system
exploiting GNSS receiver, UWB transceiver and MEMS IMU was presented in this
appendix. Moreover, it has been shown that introduction of soft constraints that
are implemented as pseudomeasurements (see Section 4.2.4) brings noteworthy per-
formance improvement. The presented architecture is easy to modify; it would be
possible to incorporate additional systems or constraints. More detailed information
about the system can be found in [138, 167, 168].
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(a) GNSS/IMU – reference solution

(b) UWB/IMU unconstrained sol. (c) UWB/IMU constrained solution

Figure D.4.: Open-sky area trajectory estimate results.
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(a) Unconstrained reference solution (b) Motion type according to NN

(c) Simulated outages, unconstrained sol. (d) Simulated outages, constrained sol.

Figure D.5.: Canopied area UWB/IMU trajectory estimate results.
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Figure D.6.: Canopied area trajectory overview.

Table D.1.: Comparison of UWB/IMU trajectory estimate errors w.r.t. GNSS/IMU
reference in the open-sky area scenario.

Error w.r.t. GNSS/IMU

UWB/IMU RMSE [cm] ∆a [cm] ∆r [%]

2D unconstrained 32.1
constrained 28.9 3.2 10.0

3D unconstrained 32.9
constrained 29.5 3.4 10.3

Table D.2.: Comparison of UWB/IMU trajectory estimate errors in the simulated
outages in the canopied area scenario.

A – Turn B – Straight

UWB/IMU RMSE ∆a ∆r RMSE ∆a ∆r
[cm] [cm] [%] [cm] [cm] [%]

2D unconstrained 49.1 46.0
constrained 41.1 8.0 16.3 29.7 16.3 35.4

3D unconstrained 51.4 47.2
constrained 42.2 9.2 17.9 31.8 15.4 32.6
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