Example of design of a drystack masonry structure

Internal wall check

1. Dimension of slab for span 5500 mm

$h s=\left(\frac{1}{30} \approx \frac{1}{25}\right) l$ therefore hs is considered 200 mm
By project documentation in the project is used hollow slab "panel Spirol 200" by manufacturer GOLDBECK. Self weight then is specified equal to $258 \mathrm{~kg} / \mathrm{m}^{2}$

2. Area of load

$$
\mathrm{A} 1=2.75 \mathrm{~m} * 6.75 \mathrm{~m}=\mathbf{1 8 . 5 6} \mathbf{~ m}^{2}
$$

3. Calculation of loads

Permanent Load	$\mathrm{g}_{\mathrm{k}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$	$\gamma[-]$	$\mathrm{g}_{\mathrm{d}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Self-weight of slab	2.53	1.35	3.42
Roof construction	0.59	1.35	0.8

Variable Load	$\mathrm{q}_{\mathrm{k}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$	$\gamma[-]$	$\mathrm{q}_{\mathrm{d}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Snow load	0.75	1.5	1.13
			$\sum \mathbf{1 . 1 3}$

$\mathrm{g}_{\text {(Self weight of the wall STAVSI)k }}=\mathrm{V} * \rho=0.25 \mathrm{~m} * 6 \mathrm{~m} * 3.0 \mathrm{~m} * 920 \mathrm{~kg} / \mathrm{m}^{3}=4140 \mathrm{~kg}=41.4$ kN
$\mathrm{g}_{\mathrm{d}}=41.4 \mathrm{kN} * 1.35=\mathbf{5 5 . 8 9} \mathbf{~ k N}$
$\mathrm{N}_{\text {ed }}=\sum\left(\mathrm{g}_{\mathrm{d}}+\mathrm{q}_{\mathrm{d}}\right) * \mathrm{~A}+\mathrm{g}_{\mathrm{d}}(\mathrm{s}$-weight of wall $)=(4.22+1.13) \mathrm{kN} / \mathrm{m}^{2} * 18.56 \mathrm{~m}^{2}+55.89$
$\mathrm{kN}=155.19 \mathrm{kN}$
4. $f_{u}=6 \mathrm{MPa}$
5. Strength of brick
$\mathrm{f}_{\mathrm{b}}=\delta * \mathrm{f}_{\mathrm{u}}$
(by EC 1996-1-1: δ - form factor, related to the brick dimensions)
For block $500 \times 250 \times 200 \mathrm{~mm} \delta=1.1$
$\mathrm{f}_{\mathrm{b}}=1.1 * 6 \mathrm{MPa}=6.6 \mathrm{MPa}$
6. Characteristic compressive strength of unreinforced masonry using thin layer mortar ($\mathbf{0 . 5} \mathbf{~ m m}$ < thickness $<\mathbf{0 . 3 ~ m m}$)
Use of formula (3.3) for thin mortar masonry
$\mathrm{f}_{\mathrm{k}}=\mathrm{K} * \mathrm{f}_{\mathrm{b}}{ }^{0.85}$, where K is constant from table 3.3 EC 1996-1-1 and equals 0.8
(masonry unit group 1, thin layer mortar)
$\mathrm{f}_{\mathrm{k}}=0.8 * 6.6 \mathrm{MPa}^{0.85}=\mathbf{5 . 2 8} \mathbf{~ M P a}$
7. Design compressive strength of the masonry
$f_{d}=f_{k} / \gamma_{M}$,
$\gamma_{\mathrm{M}}=2.0$ (from table 5.10)
$\mathrm{f}_{\mathrm{d}}=5.28 \mathrm{MPa} / 2.0=\mathbf{2 . 6 4} \mathbf{~ M P a}$
8. Required area on the footing of the wall. (by estimation)
$\mathrm{A}_{\mathrm{req}}=\mathrm{N}_{\max } / 0.7^{*} \mathrm{f}_{\mathrm{d}}$, where $\mathbf{N}_{\text {max }}$ is load without self-weight $=\mathbf{9 9 . 3} \mathbf{~ k N}$
$\mathrm{A}_{\mathrm{req}}=99.3 \mathrm{kN} /(0.7 * 2.64 \mathrm{MPa})=\mathbf{0 . 0 5 4} \mathrm{m}^{2}$
Conclusion: wall width satisfies designed dimensions of the block units:
$500 \times 250 \times 200 \mathrm{~mm}$, with minimum foot area $\mathrm{A}_{\text {eff }}=0.250 \mathrm{~m}^{2}$
Hence design force $\mathrm{F}_{\mathrm{d}}=\operatorname{Aeff} * 0.7 * \mathrm{f}_{\mathrm{d}}=0.25 \mathrm{~m}^{2} * 0.7 * 2.64 \mathrm{MPa}=\mathbf{4 6 2} \mathbf{~ k N}$

9. Slenderness ratio

$h_{\text {ef }} / t_{\text {ef }} \leq 27$, where $h_{\text {ef }}=\rho_{n}{ }^{*} h_{p}\left(h_{p}-\right.$ clear height of wall and $\rho_{n}-0.75$ for walls restrained at both ends); $t_{e f}=\min (b ; t)$. Hence $h_{e f}=3.0 \mathrm{~m}^{*} 0.75=2.25 \mathrm{~m}$; $\mathrm{t}_{\mathrm{ef}}=$ $\min (500 ; 250)=250 \mathrm{~mm}$
$2.25 / 0.25=9 \leq 27$ (not slender)

10. Check of cross sections

A - top of the wall - eccentric load, high vertical load ($\mathrm{N}_{\mathrm{ed}, \mathrm{A}}=\mathrm{N}_{\max }$)
$B-$ effect of slenderness, possibility of buckling $\left(N_{e d, B}=N_{\max }+1 / 2 s\right.$-weight of the wall)

- Vertical resistance A

Eccentricity of design vertical load
Assume $\mathrm{N}_{\text {ed, } \mathrm{A}}=\mathbf{N}_{\text {max }}=\mathbf{9 9 . 3} \mathbf{~ k N}$
$\mathrm{N}_{\mathrm{rd}, \mathrm{i}}=\Phi_{\mathrm{i}} * \mathrm{~A} * \mathrm{f}_{\mathrm{d}}$, where $\Phi \mathrm{m}$ is capacity reduction factor.
$\Phi i=1-2 e_{i} / t$, where $e_{i}=e_{i f}+e_{i a}+e_{i a} \geq 0.05 * t$ is total eccentricity at the top of the wall
$\mathrm{e}_{\mathrm{if}}-$ eccentricity due to loads $\left(\mathrm{M}_{\mathrm{id}} / \mathrm{N}_{\mathrm{id}}=0\right)$
e_{fm} - eccentricity due to horizontal load is 0
$\mathrm{e}_{\mathrm{ia}}-$ initial eccentricity $=\mathrm{h}_{\text {ef }} / 450=2.25 \mathrm{~m} / 450=0.005 \mathrm{~m}(5 \mathrm{~mm})$
$\mathrm{e}_{\mathrm{i}}=0+0+\mathrm{e}_{\mathrm{k}} \geq 0.05 * \mathrm{t}$
e_{i} is $0.05 * \mathrm{t}$ at the top and bottom of the wall, which are the minimum eccentricity design values to be used.

Therefore $\Phi \mathrm{i}=1-2 \mathrm{e}_{\mathrm{i}} / \mathrm{t}$ equals
$\Phi \mathrm{i}=1-2 * 0.05 * \mathrm{t} / \mathrm{t}=\mathbf{0 . 9}$
$\mathrm{N}_{\mathrm{rd,}, \mathrm{i}}=\Phi_{\mathrm{i}} * \mathrm{~A} * \mathrm{f}_{\mathrm{d}}=\mathbf{0 . 9} \boldsymbol{*} \mathbf{0 . 2 5 m} \mathrm{m}^{2} * \mathbf{2 . 6 4} \mathrm{MPa}=\mathbf{5 9 4} \mathbf{k N}>\mathrm{NEd}, \mathrm{A}=\mathbf{9 9 . 3} \mathbf{~ k N}$
Conclusion: The wall satisfies the requirements for total eccentricity at the top and the bottom of the wall.

- Vertical resistance B

Eccentricity of design vertical load
Assume $\mathrm{N}_{\mathrm{ed}, \mathrm{B}}=\mathbf{N}_{\text {max }}+1 / 2$ of the \mathbf{s}-weight $=\mathbf{1 2 7 . 2 4} \mathbf{k N}$
$\mathrm{N}_{\mathrm{rd}, \mathrm{m}}=\Phi_{\mathrm{i}} * \mathrm{~A} * \mathrm{f}_{\mathrm{d}}$, where $\Phi \mathrm{m}$ is capacity reduction factor (table meaning)
$e_{m k} / t=e_{m f} / t+e_{m a} / t+e_{k} / t \geq 0.05$ is relative eccentricity at the middle of the wall
$\mathrm{e}_{\mathrm{mf}}-$ eccentricity due to loads $\left(\mathrm{M}_{\mathrm{id}} / \mathrm{N}_{\mathrm{id}}=0\right)$
$\mathrm{e}_{\mathrm{ma}}-$ initial eccentricity $\mathrm{h}_{\mathrm{ef}} / 450=2.25 \mathrm{~m} / 450=0.005 \mathrm{~m}(5 \mathrm{~mm})$
$\mathrm{e}_{\mathrm{k}}-$ eccentricity due to creep $=0$
0.05 is the minimum relative eccentricity.
$\mathrm{e}_{\mathrm{mk}} / \mathrm{t}=(0+0.005+0) / \mathrm{t} \geq 0.05$
$\mathrm{e}_{\mathrm{mk}} / \mathrm{t}$ is 0.05 t at the middle of the wall, which is the minimum eccentricity design
value to be used. Hence by table $h_{\text {ef }} / \mathrm{t}_{\mathrm{ef}}=9 ; \mathrm{e}_{\mathrm{mk}}=0.05$
Therefore $\Phi \mathrm{i}=\mathbf{0 . 8 5}$
$\mathrm{N}_{\mathrm{rd}, \mathrm{m}}=\Phi_{\mathrm{i}} * \mathrm{~A} * \mathrm{f}_{\mathrm{d}}=\mathbf{0 . 8 5} * \mathbf{0 . 2 5 m} \mathrm{~m}^{2} * \mathbf{2 . 6 4} \mathrm{MPa}=561 \mathbf{k N}>\mathrm{NEd}, \mathrm{B}=\mathbf{1 2 7 . 2 4} \mathbf{~ k N}$
Conclusion: The wall satisfies the requirements for relative eccentricity at the middle of the wall.

Internal column check

1. Area of load

$$
\mathrm{A}=3.875 \mathrm{~m} * 1.25 \mathrm{~m}=\mathbf{4 . 8 4} \mathbf{m}^{2}
$$

2. Calculation of loads

Permanent Load	$\mathrm{g}_{\mathrm{k}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$	$\gamma[-]$	$\mathrm{g}_{\mathrm{d}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Self-weight of slab	2.53	1.35	3.42
Roof construction	0.59	1.35	0.8

			$\sum \mathbf{4 . 2 2}$
Variable Load	$\mathrm{q}_{\mathrm{k}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$	$\gamma[-]$	$\mathrm{q}_{\mathrm{d}}\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
Snow load	0.75	1.5	1.13
			$\sum \mathbf{1 . 1 3}$

$\mathrm{g}_{\text {(Self weight of the pillar STAVSI) } \mathrm{k}}=\mathrm{V} * \rho=0.25 \mathrm{~m} * 0.25 \mathrm{~m} * 3.0 \mathrm{~m} * 920 \mathrm{~kg} / \mathrm{m}^{3}=173 \mathrm{~kg}=$ 1.73 kN
$\mathrm{g}_{\mathrm{d}}=1.73 \mathrm{kN} * 1.35=\mathbf{2 . 3 4} \mathbf{~ k N}$
$\mathrm{N}_{\text {ed }}=\sum\left(\mathrm{g}_{\mathrm{d}}+\mathrm{q}_{\mathrm{d}}\right) * \mathrm{~A}+\mathrm{s}$-weight of column $=(4.22+1.13) \mathrm{kN} / \mathrm{m}^{2} * 4.84 \mathrm{~m}^{2}+2.34=$

28.23 kN

3. $f_{u}=6 \mathrm{MPa}$
4. Strength of brick
$\mathrm{f}_{\mathrm{b}}=\delta * \mathrm{f}_{\mathrm{u}}$
(by EC 1996-1-1: δ - form factor, related to the brick dimensions)
For block $250 \times 250 \times 200 \mathrm{~mm} \delta=1.1$
$\mathrm{f}_{\mathrm{b}}=1.1 * 6 \mathrm{MPa}=6.6 \mathbf{M P a}$
5. Characteristic compressive strength of unreinforced masonry using thin layer mortar ($\mathbf{0 . 5} \mathbf{~ m m}$ < thickness < $\mathbf{0 . 3} \mathbf{~ m m}$)

Use of formula (3.3) for thin mortar masonry
$\mathrm{f}_{\mathrm{k}}=\mathrm{K} * \mathrm{f}_{\mathrm{b}}{ }^{0.85}$, where K is constant from table 3.3 EC 1996-1-1 and equals 0.8
(masonry unit group 1, thin layer mortar)
$\mathrm{f}_{\mathrm{k}}=0.8 * 6.6 \mathrm{MPa}^{0.85}=\mathbf{5 . 2 8} \mathbf{~ M P a}$
6. Design compressive strength of the masonry
$f_{d}=f_{k} / \gamma_{M}$,
$\gamma_{\mathrm{M}}=2.0$ (from table 5.10)
$\mathrm{f}_{\mathrm{d}}=5.28 \mathrm{MPa} / 2.0=\mathbf{2 . 6 4} \mathbf{~ M P a}$
7. Required area on the footing of the wall. (by estimation)
$\mathrm{A}_{\mathrm{req}}=\mathrm{N}_{\max } / 0.7^{*} \mathrm{f}_{\mathrm{d}}$, where $\mathbf{N}_{\text {max }}$ is load without self-weight $=\mathbf{2 5 . 9} \mathbf{~ k N}$
$\mathrm{A}_{\mathrm{req}}=25.9 \mathrm{kN} /(0.7 * 2.64 \mathrm{MPa})=\mathbf{0 . 0 1 4} \mathrm{m}^{2}$
Conclusion: wall width satisfies designed dimensions of the block units:
$250 \times 250 \times 200 \mathrm{~mm}$, with minimum foot area $\mathrm{A}_{\mathrm{eff}}=0.063 \mathrm{~m}^{2}$

Hence design force $\mathrm{F}_{\mathrm{d}}=$ Aeff $* 0.7 * \mathrm{f}_{\mathrm{d}}=0.014 \mathrm{~m}^{2} * 0.7 * 2.64 \mathrm{MPa}=\mathbf{1 1 6 . 4 2} \mathbf{k N}$

8. Slenderness ratio

$h_{\text {ef }} / t_{\text {ef }} \leq 27$, where $h_{\text {ef }}=\rho_{n}{ }^{*} h_{p}\left(h_{p}-\right.$ clear height of wall and $\rho_{n}-0.75$ for walls and pillars restrained at both ends); $t_{e f}=\min (b ; t)$. Hence $h_{\text {ef }}=3.0 \mathrm{~m}$ * $0.75=2.25 \mathrm{~m}$; $\mathrm{t}_{\text {ef }}=$ $\min (250 ; 250)=250 \mathrm{~mm}$
$2.25 / 0.25=9 \leq 27$ (not slender)
9. Check of cross sections

A - top of the wall - eccentric load, high vertical load $\left(\mathrm{N}_{\mathrm{ed}, \mathrm{A}}=\mathrm{N}_{\max }\right)$
$B-$ effect of slenderness, possibility of buckling $\left(\mathrm{N}_{\mathrm{ed}, \mathrm{B}}=\mathrm{N}_{\max }+1 / 2\right.$ s-weight of the pillar)

- Vertical resistance A

Eccentricity of design vertical load
Assume $\mathrm{N}_{\text {ed, } \mathrm{A}}=\mathbf{N}_{\text {max }}=\mathbf{2 5 . 9} \mathbf{~ k N}$
$\mathrm{N}_{\mathrm{rd}, \mathrm{i}}=\Phi_{\mathrm{i}} * \mathrm{~A} * \mathrm{f}_{\mathrm{d}}$, where $\Phi \mathrm{m}$ is capacity reduction factor.
$\Phi i=1-2 e_{i} / t$, where $e_{i}=e_{i f}+e_{i a}+e_{i a} \geq 0.05^{*} t$ is total eccentricity at the top of the wall
$\mathrm{e}_{\text {if }}-$ eccentricity due to loads $\left(\mathrm{M}_{\mathrm{id}} / \mathrm{N}_{\mathrm{id}}=0\right)$
e_{fm} - eccentricity due to horizontal load is 0
$\mathrm{e}_{\mathrm{ia}}-$ initial eccentricity $=\mathrm{h}_{\mathrm{ef}} / 450=2.25 \mathrm{~m} / 450=0.005 \mathrm{~m}(5 \mathrm{~mm})$
$\mathrm{e}_{\mathrm{i}}=0+0+\mathrm{e}_{\mathrm{k}} \geq 0.05^{*} \mathrm{t}$
e_{i} is $0.05 * \mathrm{t}$ at the top and bottom of the wall, which are the minimum eccentricity design values to be used.

Therefore $\Phi \mathrm{i}=1-2 \mathrm{e}_{\mathrm{i}} / \mathrm{t}$ equals
$\Phi i=1-2 * 0.05 * t / t=0.9$
$\mathrm{N}_{\mathrm{rd}, \mathrm{i}}=\Phi_{\mathrm{i}} * \mathrm{~A} * \mathrm{f}_{\mathrm{d}}=0.9 * \mathbf{0 . 0 6 3} \mathrm{~m}^{2} * 2.64 \mathrm{MPa}=149.7 \mathrm{kN}>\mathrm{NEd}, \mathrm{A}=\mathbf{2 5 . 9} \mathbf{~ k N}$
Conclusion: The pillar satisfies the requirements for total eccentricity at the top and the bottom of the wall.

- Vertical resistance B

Eccentricity of design vertical load
Assume $\mathrm{N}_{\text {ed }, \mathrm{B}}=\mathbf{N}_{\text {max }}+1 / 2$ of the \mathbf{s}-weight $=\mathbf{2 7 . 0 6} \mathbf{~ k N}$
$\mathrm{N}_{\mathrm{rd}, \mathrm{m}}=\Phi_{\mathrm{i}} * \mathrm{~A} * \mathrm{f}_{\mathrm{d}}$, where $\Phi \mathrm{m}$ is capacity reduction factor (table meaning)
$e_{m k} / t=e_{m f} / t+e_{m a} / t+e_{k} / t \geq 0.05$ is relative eccentricity at the middle of the wall $\mathrm{e}_{\mathrm{mf}}-$ eccentricity due to loads $\left(\mathrm{M}_{\mathrm{id}} / \mathrm{N}_{\mathrm{id}}=0\right)$
$\mathrm{e}_{\mathrm{ma}}-$ initial eccentricity $\mathrm{h}_{\mathrm{ef}} / 450=2.25 \mathrm{~m} / 450=0.005 \mathrm{~m}(5 \mathrm{~mm})$
$e_{k}-$ eccentricity due to creep $=0$
0.05 is the minimum relative eccentricity.
$\mathrm{e}_{\mathrm{mk}} / \mathrm{t}=(0+0.005+0) / \mathrm{t} \geq 0.05$
$\mathrm{e}_{\mathrm{mk}} / \mathrm{t}$ is 0.05 t at the middle of the wall, which is the minimum eccentricity design value to be used. Hence by table $h_{e f} / \mathrm{t}_{\mathrm{ef}}=9 ; \mathrm{e}_{\mathrm{mk}}=0.05$

Therefore $Ф \mathrm{i}=\mathbf{0 . 8 5}$
$\mathrm{N}_{\mathrm{rd}, \mathrm{m}}=\boldsymbol{\Phi}_{\mathrm{i}} * A * \mathrm{f}_{\mathrm{d}}=\mathbf{0 . 8 5} * \mathbf{0 . 0 6 3} \mathrm{~m}^{2} * 2.64 \mathrm{MPa}=141.37 \mathbf{k N}>\mathrm{NEd}, \mathrm{B}=\mathbf{2 7 . 0 6} \mathbf{~ k N}$
Conclusion: The wall satisfies the requirements for relative eccentricity at the middle of the wall.

External non-load bearing wall exposed to wind load check A3

Non load bearing masonry is laterally loaded, vertical load is not sufficient to avoid possibility of flexural failure. The wall is considered as two-way slab.

1. Characteristic wind load $\omega_{k}\left[k N / m^{2}\right]$

 $\mathrm{w}_{\mathrm{k}}=\mathrm{q}_{\mathrm{b}} * \mathrm{c}_{\mathrm{e}} * \mathrm{c}_{\mathrm{pe}}$, where $\mathrm{q}_{\mathrm{b}}-$ reference mean velocity pressure $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$$\mathrm{q}_{\mathrm{b}}=1 / 2 * \rho * \mathrm{v}_{\mathrm{b}}^{2}\left(\rho\right.$-air density $-1.25 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{v}_{\mathrm{b}}-$ basic wind velocity from a map in EC 1991-$1-4=25 \mathrm{~m} / \mathrm{s}$)
hence $\mathrm{q}_{\mathrm{b}}=0.5 * 1.25 \mathrm{~kg} / \mathrm{m}^{3} * 25^{2} \mathrm{~m} / \mathrm{s}=390 \mathrm{~Pa}\left(\mathrm{~N} / \mathrm{m}^{2}\right)=\mathbf{0 . 3 9} \mathbf{k N} / \mathbf{m}^{2}$
then c_{e} - exposure factor, by figure 4.2 of EC for III terrain category and 3.5 m height of the building $=\mathbf{1 . 3}$
next $\mathrm{c}_{\mathrm{pe}}-$ pressure coefficient chapter 7 of EC figure 7.5 , where $\mathrm{e}=\min (\mathrm{b}$ or 2 h$)=7$ as the least of $9.25 \mathrm{~m}-\mathrm{b}$-crosswind dimension and 2^{*} height. $\mathrm{e}<\mathrm{d}$. Then by table $7.1 \mathrm{c}_{\mathrm{pe}}$ is determined as crossing of $\mathrm{h} / \mathrm{d}=3.5 \mathrm{~m} / 12.75 \mathrm{~m}=0.27$ and zone A ; hence $\mathrm{c}_{\mathrm{pe}}=\mathbf{- 1 . 2}$
$\mathbf{W k}_{\mathrm{k}}=\mathrm{qb}_{\mathrm{b}} * \mathrm{ce}^{*} \mathrm{c}_{\mathrm{pe}}=0.39 * 1.3 *(-1.2)=-0.61\left[\mathrm{kN} / \mathrm{m}^{2}\right]$
2. Design wind load $w_{k}\left[k N / m^{2}\right]$
$w_{d}=w_{k} * 1.5=0.91\left[k N / m^{2}\right]$
3. Flexural strength having a plane of failure parallel to the bed joints $f_{\mathrm{xk} 1}$, and plane of failure perpendicular to bed joints $f_{\mathrm{xk} 2}$, EC 6 chapter 3.6.3.

For thin mortared wall STAVSI block has $\mathbf{f}_{\mathrm{xk} 1}=\mathbf{0 . 2} \mathbf{~ M P a}\left(\mathbf{2 0 0} \mathbf{k N} / \mathrm{m}^{2}\right), \mathbf{f}_{\mathrm{xk} 2}=\mathbf{0 . 3} \mathbf{~ M P a}$ ($\mathbf{3 0 0} \mathbf{k N} / \mathrm{m}^{2}$)

a) plane of failure parallel to bed joints, f_{xk}

b) plane of failure perpendicular to bed joints, $f_{\mathrm{k} 22}$

4. Flexural strength of masonry

$f_{x d 1}=f_{x k 1} / \gamma_{M}+\sigma_{d}$
$\mathbf{f}_{\mathbf{x d 2}}=\mathbf{f}_{\mathbf{x k} 2} / \gamma_{\mathbf{M}}$, where $\gamma_{\mathrm{M}}=2.0($ from table 5.10)
$\sigma_{d}-$ stress from the vertical loading in the critical cross-section
$\sigma_{\mathrm{d}}=\rho_{\mathrm{m}} / 1000 * \mathrm{~h} / 2=9.2 \mathrm{kN} / \mathrm{m}^{3} /(1000) * 3.0 \mathrm{~m} / 2=\mathbf{1 3 . 8} \mathbf{k N} / \mathbf{m}^{2}$
Hence
$\mathbf{f}_{\mathbf{x d} \mathbf{1}}=\mathbf{f}_{\mathbf{x k} 1} / \gamma_{\mathbf{M}}+\boldsymbol{\sigma}_{\mathbf{d}}=200 \mathrm{kN} / \mathrm{m}^{2} / 2+13.8 \mathrm{kN} / \mathrm{m}^{2}=\mathbf{1 1 3 . 8} \mathbf{~ k N} / \mathbf{m}^{\mathbf{2}}$
$\mathbf{f}_{\mathbf{x d} 2}=\mathbf{f}_{\mathbf{x k} 2} / \gamma_{\mathrm{M}}=300 \mathrm{kN} / \mathrm{m}^{2} / 2=\mathbf{1 5 0} \mathbf{k N} / \mathrm{m}^{2}$
5. Design bending moment

- Plane of failure parallel to the bed joints
$\mathbf{M E d}, \mathbf{x}=\mathbf{a}^{*} \mathbf{W} \mathbf{d}{ }^{*} * \mathbf{b}^{*} \mathbf{L}^{\mathbf{2}}$, there we calculate μ is orthogonal ratio of flexural strength
$\mu=f_{\mathrm{xd} 1} / \mathrm{f}_{\mathrm{xd} 2}=0.113 / 0.15=\mathbf{0 . 7 6}$. Next from the chapter 5.5.5 α (bending moment coefficient) can be obtained and equal to $\mathbf{0 . 0 1}(\mathrm{h} / \mathrm{L}=3.0 / 9.25=0.33$; and $\mu=0.67$)
Wall support conditions E (simply supported on 4 edges)
$\mathbf{M E d}_{\mathbf{E d}, \mathbf{x}}=\boldsymbol{\alpha} * \mathbf{W}_{\mathbf{d}} * * \mathbf{b}^{*} \mathbf{L}^{2}=0.01 * 1 \mathrm{~m} * 0.91\left[\mathrm{kN} / \mathrm{m}^{2}\right]^{*}(9.25 \mathrm{~m})^{2}=\mathbf{0 . 7 8} \mathbf{~ k N m}$
- Plane of failure perpendicular to the bed joints
$\mathbf{M E d}_{\mathbf{E}, \boldsymbol{y}}=\boldsymbol{\mu} \boldsymbol{a}^{*} \mathbf{W}_{\mathrm{d}}{ }^{* *} \mathbf{b}^{*} \mathbf{L}^{\mathbf{2}}=0.76 * 0.01 * 1 \mathrm{~m} * 0.91\left[\mathrm{kN} / \mathrm{m}^{2}\right]^{*}(9.25 \mathrm{~m})^{2}=\mathbf{0 . 5 9} \mathbf{k N m}$

6. Resistance moment
$M_{R d, x}=f_{x d 1} * z$, where z-elastic section modulus per 1 meter of the wall $\left[\mathrm{m}^{3} / \mathrm{m}\right]$ and
$M_{R d, y}=f_{x d 2} *$
$\mathrm{Z}=\mathrm{b} * \mathrm{t}^{2} / 6=1 \mathrm{~m} * 0.25^{2} \mathrm{~m}^{2} / 6=0.01 \mathrm{~m}^{3}$
$\mathrm{M}_{\mathrm{Rd}, \mathrm{x}}=\mathrm{f}_{\mathrm{xd1}}{ }^{*} \mathrm{Z}=113.8 \mathrm{kN} / \mathrm{m}^{2} * 0.01 \mathrm{~m}^{3}=\mathbf{1 . 1 3 8} \mathbf{k N m}>$ MEd, $_{\mathrm{x}}=\mathbf{0 . 7 8} \mathbf{~ k N m}$
$\mathrm{M}_{\mathrm{Rd}, \mathrm{y}}=\mathrm{f}_{\mathrm{xd} 2}{ }^{\mathrm{z}}=150 \mathrm{kN} / \mathrm{m}^{2} * 0.01 \mathrm{~m}^{3}=\mathbf{1 . 5} \mathbf{~ k N m}>\mathrm{MEd}_{\mathrm{Ed}, \mathrm{y}}=\mathbf{0 . 5 9} \mathbf{~ k N m}$
Conclusion: the wall thickness is adequate, it can resist flexural forces sufficiently
