
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 4, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Efficient multiplication of sparse matrices

 Student: Ladislav Bartůněk

 Supervisor: doc. Ing. Ivan Šimeček, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2019/20

Instructions

1) Study various sparse matrix storage formats. [1, 2]
2) Study algorithms for matrix multiplication and discuss their usage in sparse matrix multiplication. [3, 4]
3) Implement selected algorithms in C/C++ after an agreement with the supervisor.
4) Optimize these algorithms and parallelize them using Open MP technology
5) Test these algorithms on your own generated sparse matrices and on sparse matrices available from
publicly available sources (e.g. MatrixMarket, ...).
6) Measure the performance of these algorithms on faculty server STAR.
7) Compare the performance with already existing libraries solving sparse matrix multiplication (e.g.
Eigen [5] library).

References

[1] DONGARRA, Jack. Survey of Sparse Matrix Storage Formats [online]. 1995 [cit. 2017-02-22]. Dostupné z:
http://www.netlib.org/linalg/html_templates/node90.html
[2] LICHÝ, Lukáš. Efektivní násobení řídkých matic [online]. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, 2015. Dostupné
také z: https://dip.felk.cvut.cz/browse/pdfcache/lichyluk_2014bach.pdf. Bakalářská práce.
[3] ZVONÍK. Rychlé násobení matic a Strassenův algoritmus ve Winogradově úpravě [online]. 2010. Dostupné z:
http://people.fjfi.cvut.cz/pelanedi/tema/skriptatemakonecsemestru/strassenzvonik.pdf
[4] YUSTER, Raphael a Uri ZWICK. Fast Sparse Matrix Multiplication. ACM Transactions on Algorithms (TALG) [online].
2005. Dostupné z: http://dl.acm.org/citation.cfm?id=1077466
[5] Eigen: Dostupné z: https://eigen.tuxfamily.org/dox-devel/group__TutorialSparse.html

Bachelor’s thesis

Efficient multiplication of sparse matrices

Ladislav Bart̊uněk

Department . . . Department of Theoretical Computer Science
Supervisor: Ing. Ivan Šimeček, Ph.D.

May 15, 2019

Acknowledgements

I would like to thank my supervisor Ing. Ivan Šimeček, Ph.D. for having godly
patience with me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Ladislav Bart̊uněk. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bart̊uněk, Ladislav. Efficient multiplication of sparse matrices. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2019.

Abstrakt

Tato práce popisuje formáty ř́ıdkých matic XY, YX a CRS, algoritmy násobeńı
řidké matice s ř́ıdkou matićı a zároveň popisuje algoritmy použivané pro pa-
ralelńı algoritmy. Součást́ı práce je implementace v C++, testy nad reálnými
matice a porovnáńı výsledk̊u s vypoč́ıtanými předpoklady

Kĺıčová slova ř́ıdké matice, násobeńı ř́ıdkých matic, paralelńı algoritmy

Abstract

This work describes formats of sparse matrices XY, YX and CRS, algorithms
of multiplication of sparse matrix with sparse matrix and describes algorithms
used in parallel computation. Thesis includes implementation in C++, tests
with real matrices and comparison of results with calculated expectations

Keywords sparse matrices, sparse matrix multiplication, parallel algorithms

vii

Contents

Introduction 1

1 Theoretical background 3
1.1 Matrices . 3
1.2 Sparse matrices . 3

1.2.1 Density . 4
1.2.2 Order . 4

1.3 Storage formats . 4
1.4 Multiplication of matrix with matrix 5
1.5 Time complexity . 5
1.6 Parallel computation . 6

1.6.1 Motivation . 6
1.6.2 Description and synchronization 6
1.6.3 Thread local storage . 7

2 Storage formats for matrices 9
2.1 Dense matrix . 9
2.2 Coordinate XY . 10
2.3 Coordinate YX . 11
2.4 Compressed row storage . 11

3 Realization 13
3.1 Software used . 13

3.1.1 Third party code . 13
3.1.1.1 ANSI C library for Matrix Market I/O 13
3.1.1.2 OpenMP library 13
3.1.1.3 Eigen library 13

3.1.2 Wolfram Mathematica 14
3.1.3 Doxygen and Graphviz 14
3.1.4 Gnuplot . 14

ix

3.1.5 Git . 14
3.1.6 Valgrind . 14

3.2 Hierarchy . 15
3.2.1 Matrix . 15
3.2.2 MatrixDense . 16
3.2.3 MatrixDenseX . 16
3.2.4 MatrixDenseY . 16
3.2.5 MatrixCoord . 16
3.2.6 MatrixXY . 16
3.2.7 MatrixYX . 16
3.2.8 MatrixCRS . 16

3.3 Algorithms . 17
3.3.1 Abbreviations . 17
3.3.2 Thread architecture . 18
3.3.3 Storing of results . 18
3.3.4 Seq. alg. for CRS · CRS 18
3.3.5 Par. alg. for CRS · CRS 19
3.3.6 Seq. alg. for XY · YX 21
3.3.7 Par. alg. for XY · YX 21
3.3.8 Seq. alg. for YX · XY 22
3.3.9 Par. alg. for YX · XY 23

3.4 Summary . 25

4 Testing 27
4.1 Methodology of measurement 27
4.2 Hardware and software . 27
4.3 Measurements . 28

4.3.1 Sequential algorithms 28
4.3.1.1 My algorithms 28
4.3.1.2 Eigen comparison 28

4.3.2 Parallel algorithms . 29
4.3.2.1 My algorithms 29
4.3.2.2 Eigen comparison 30

4.3.3 Comparison of speed-up 31

Conclusion 37
Further work . 38

Bibliography 39

A List of used abbreviations 41

B Contents of enclosed CD 43

x

List of Figures

1.1 Graphical example of elements of matrix being processed with op-
eration of matrix multiplication [1] 5

1.2 Generic example of dual core processor [2] 7

3.1 UML graph of Matrix Hierarchy 15

4.1 Comparison of my sequential algorithms depending on the size of
the matrix with density of 1% . 29

4.2 Comparison of my sequential algorithms depending on the density
of the matrix with fixed size of 10000 30

4.3 Comparison of my best sequential algorithm with Eigen sequential
computations with fixed density of 1% 31

4.4 Comparison of my parallel algorithms depending on the size of the
matrix with density of 1% . 32

4.5 Comparison of my parallel algorithms depending on the density of
the matrix with fixed size of 10000 33

4.6 Comparison of my parallel algorithms with Eigen parallel compu-
tation with fixed density of 1% . 34

4.7 Comparison of my best parallel algorithms with Eigen parallel com-
putation with fixed size of 20000 and fixed density of 1% 35

xi

List of Tables

2.1 Storage format representation of XY matrix 10
2.2 Storage format representation of YX matrix 11
2.3 Storage format representation of CRS matrix 11

xiii

Introduction

Storing data is a very common operation in computer science, how to approach
it and how to handle the data afterwards can be a big task and it has been
improving ever since there were first computers. Using the correct storage
formats can mean difference between a very fast program and an unusable
binary blob.
Matrices are one of the most important storage formats in computer science.
They are used in most of the modern programs. Sometimes matrices contain a
large number of zero elements. These matrices are called sparse matrices and
we can and should use this fact to improve performance of various operations
on those.
The multiplication of matrix and matrix are one of the very basic operations,
as such these should get proper attention while dealing with matrix storage
formats.
This study looks into multiple ways to store matrices, such as XY, YX and
CRS and handle these multiplications with these matrices, and how they are
handled during parallel computation.

1

Chapter 1
Theoretical background

This chapter will explain most of the terms used in this thesis.

1.1 Matrices

A matrix is a rectangular arrangement of numbers or other mathematical
objects. In computer science it is used as a two-dimensional array. Matrices
have a large use in computer graphics. A matrix A of a type (m,n) is a set
of m · n values. Element ar,c, r ∈ 1, 2, . . . ,m, c ∈ 1, 2, . . . , n is placed on row r
and column c.
Symbolical example of matrix A of a type (m,n)

Am,n =

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
am,1 am,2 · · · am,n

1.2 Sparse matrices

Sparse matrices are typically big objects containing a large number of zero
values. In contrast, if most of the elements are non-zero, then the matrix is
considered dense. Large sparse matrices often appear in scientific or engineer-
ing applications when solving partial differential equations.

3

1. Theoretical background

1.2.1 Density

Density is the measurement of how much a row, column or matrix is filled
with elements. The easy way to find out density is the number of elements/size of object.
For example a matrix with 5 rows and 6 columns with 15 elements will have
density equal to:

ρ = 15/(5 · 6)

ρ = 15/30

ρ = 50%

1.2.2 Order

Square matrix is matrix with equal rows and columns. Matrix with n rows
and columns has it’s order equal to n.

1.3 Storage formats

Dense matrices are most commonly stored as a two-dimensional array,
as opposed to large sparse matrices which require a different storage format.
Those formats ignore zero values and concentrate on non-zero elements and
expect every non-defined element to be a zero value.

Few examples:

• Coordinate (XY or YX)

• Compressed Row Storage (CRS) [3]

• Compressed Column Storage (CCS) [4]

• Block Compressed Row Storage (BCRS) [5]

• Compressed Diagonal Storage (CDS) [6]

• Jagged Diagonal Storage (JDS) [7]

• Skyline Storage (SKS) [8]

• Quad Tree (Q-tree) [9]

This work uses dense, coordinate and CRS. Coordinate format is used, as
it is, used by MatrixMarket. For use in the multiplication operations I chose
Coordinate format and CRS format, as they are effective and simple storage
formats, that do not rely on specific spread of values to be efficient. Dense
matrices are used as result containers due to their low time complexity for
storing values.

4

1.4. Multiplication of matrix with matrix

Figure 1.1: Graphical example of elements of matrix being processed with
operation of matrix multiplication [1]

1.4 Multiplication of matrix with matrix

Multiplication of matrix and matrix is commonly used in computer sci-
ence. A good example of sparse matrix multiplication is the method of finite
elements [10].
Multiplication is such transformation, that takes matrix Am,n and matrix Bn,p

and transforms it into matrix product ABm,p. 1.1 Where each entry is defined
as:

(ab)ij =
m∑

k=1
aijBkj

1.5 Time complexity

Time complexity, or in other words algorithmic complexity, is being used
in computer science to evaluate the performance of an algorithm. The goal
of time complexity is to classify algorithms according to their performances
independent on details of implementation. For this purpose O(n) notation is
mostly used where n describes size of the input to be processed. [11]

5

1. Theoretical background

1.6 Parallel computation

1.6.1 Motivation

”For many decades, Moore’s law has bestowed a wealth of transistors
that hardware designers and compiler writers have converted to usable per-
formance, without changing the sequential programming interface. The main
techniques for these performance benefits—increased clock frequency and smarter
but increasingly complex architectures—are now hitting the so-called power
wall. The computer industry has accepted that future performance increases
must largely come from increasing the number of processors (or cores) on a
die, rather than making a single core go faster. This historic shift to multi-core
processors changes the programming interface by exposing parallelism to the
programmer, after decades of sequential computing.” [12]

Even though this quote is quite old, it’s still relevant today. Multi-thread
execution of code can be used for several purposes. Main ones are for net-
work communication, execution of user interface while executing code in the
background, or to increase performance in areas where heavy computation
is needed. Multi-threaded execution can be performed even on single core
processors, however you cannot obtain any speed-ups on those. Executing a
sequential code on a multi-core or multi-threaded processors can be a waste
of the potential of a given processor, if it is otherwise unoccupied. Therefore
we want to to maximize the potential by using all cores and threads of the
processor for our heavy computation.

With multi-core technology progressing further, especially on graphics pro-
cessing units, the parallel computation is more important. This can be used
in multiple ways. One can be everyday enjoyment in the form of games, which
can take a huge amount of processing power [13]. This is due to heavy 3-D
rendering, which is also used in the film industry. Another usage can be in
the form of cryptocurrency mining [14], which can consume near to an infinite
amount of power. The most notable usage is probably volunteer computing
[15], where vast numbers of computers can be used to parallel science compu-
tation that would take an enormous amount of time even on our best super
computers.

1.6.2 Description and synchronization

Multi-core processors have two main layers. One layer is the individual
cores, which have their own cache memory, while the second layer handles
management of the individual cores and serves as a bus between the cores

6

1.6. Parallel computation

Figure 1.2: Generic example of dual core processor [2]

and the rest of the computer. 1.2 This can create several issues regarding
synchronization. These are called race conditions [16], the most common of
which is that two threads read a value, while both want to add a value to it.
Both add their value in their cache memory and pass it down to the main bus,
which sequentially writes both of these values into the memory, resulting in
only one value being added while the algorithm goes on.

Another problem that is less common, but still potentially dangerous to
the computational power, is false sharing. This may happen if array elements
share a cache line and both are updated at the same time, which may lead to
sloshing of independent data back and forth, noticeably slowing down compu-
tation. [17]

1.6.3 Thread local storage

Thread local storage (TLS) is a dedicated storage area that can only be
accessed by one thread. TLS variables can be seen as global variables that
are only visible to a particular thread and not the whole program. [18] As
such, this area can be used to spread different values to different threads, or
to contain results specific for a given thread until a later time, where we will
synchronize these values with the main thread.

7

Chapter 2
Storage formats for matrices

This section describes all matrix formats used in this thesis. Coordinate
and CRS formats are used for multiplication, while dense matrix formats are
used for saving results.

2.1 Dense matrix

Both dense matrix implementations are implemented as two-dimensional
arrays, where the individual rows or columns must be individually allocated
to prevent false sharing during parallel computing. The main motivation
behind implementing both of these is the time complexity of saving the results
from the multiplication. These two implementations are used for two different
multiplications. DenseMatrixY is internally ordered first by the Y coordinate
and then by the X coordinate, whereas DenseMatrixX is internally ordered
first by the X coordinate. As such, if one thread is using only one row or
column (depending on which implementation and multiplication is used) for
storing values and no other thread will be using it at any point in time, we can
safely use them without synchronization and without fear of race conditions
and false sharing. 1.6.2

9

2. Storage formats for matrices

2.2 Coordinate XY

Coordinate format is a basic format for sparse matrices used commonly on
MatrixMarket. Each non-zero element is stored as a triplet of coordinate X,
coordinate Y, and a value which is supposed to be stored at these coordinates.
XY format is ordered first by X coordinate and then by Y coordinate. Format
can be defined as three arrays, each storing a given element of the triplet or
as a single structure array where one element of the array equals one element
of the sparse matrix.

A matrix stored as:

X Y val
1 6 1
2 3 6
3 3 8
3 4 7
4 2 9
4 6 4
5 1 2
5 5 3
6 3 1

Table 2.1: Storage format representation of XY matrix

Will have following graphical representation:

0 0 0 0 0 1
0 0 6 0 0 0
0 0 8 7 0 0
0 9 0 0 0 4
2 0 0 0 3 0
0 0 1 0 0 0

10

2.3. Coordinate YX

2.3 Coordinate YX

The only difference between XY and YX is its order of elements. Coordinate
YX is ordered first by Y coordinate and then by X coordinate, so the same
example from Coordinate XY would be internally represented like:

X Y val
5 1 2
4 2 9
2 3 6
3 3 8
6 3 1
3 4 7
5 5 3
1 6 1
4 6 4

Table 2.2: Storage format representation of YX matrix

2.4 Compressed row storage

Compressed Row Storage formats is one of the most general formats. They
make absolutely no assumptions about the sparsity of the matrix and they
don’t store any unnecessary elements. However, they are not very efficient in
addressing.

Compressed row format consists of three arrays. First two arrays may be
implemented as one array and they consist of x indexes and values of elements.
Third array points to the first two arrays to determinate where individual row
starts. [19]

A matrix stored as:

val 3 2 5 1 7 8 5 6 2 3 2
colInd 3 5 5 2 6 1 4 6 3 2 5

rowPtr 1 3 4 6 9 10

Table 2.3: Storage format representation of CRS matrix

11

2. Storage formats for matrices

Will have following graphical representation:

0 0 3 0 2 0
0 0 0 0 5 0
0 1 0 0 0 7
8 0 0 5 0 6
0 0 2 0 0 0
0 3 0 0 2 0

12

Chapter 3
Realization

This chapter will describe whole part of my implementation work.

3.1 Software used

In this section I will mention every software and foreign code I have used
to implement this work.

3.1.1 Third party code

3.1.1.1 ANSI C library for Matrix Market I/O

For easy usability of MatrixMarket format I have used ANSI C library for
Matrix Market I/O [20], it is a small library with the code included, which
helped me to read and write MatrixMarket format to use in my implementa-
tion.

3.1.1.2 OpenMP library

For easy parallel computation I used OpenMP library. [21]

3.1.1.3 Eigen library

As a third party library for sparse matrix multiplication I chose Eigen
library. [22] From this library I used sparse·sparse matrix multiplication,
sparse·dense matrix multiplication in sequence and in parallel.

13

3. Realization

3.1.2 Wolfram Mathematica

For various calculations, verifying correctness of output and other small
tasks I have used Wolfram Mathematica. [23]

3.1.3 Doxygen and Graphviz

For generating UML diagram I used Doxygen [24] with Graphviz [25] in-
stalled.

3.1.4 Gnuplot

For generating various graphs in this thesis. [26]

3.1.5 Git

As a versioning software and for back up purposes I used Git [27] with
bitbucket.org as a repository storage [28].

3.1.6 Valgrind

For various testing purposes I used Valgrind [29].

14

3.2. Hierarchy

3.2 Hierarchy

This section will describe every implemented class used in my project.
All storage formats were implemented as described in 2. The UML diagram
is available on 3.1

Figure 3.1: UML graph of Matrix Hierarchy

3.2.1 Matrix

The main superclass is called Matrix, every other matrix storage class de-
rives from it. It handles correct multiplications, base variables. It also handles
defining second matrix when multiplying with unknown matrix.

15

3. Realization

3.2.2 MatrixDense

MatrixDense is a superclass to MatrixDenseX and MatrixDenseY. This
makes things a little bit more easy to use and ensures, that both of these have
the correct functions.

3.2.3 MatrixDenseX

MatrixDenseX is a dense matrix that orders arrays first by X coordinate.
It is used in XY·YX multiplication for storing results.

3.2.4 MatrixDenseY

MatrixDenseX is a dense matrix that orders arrays first by Y coordinate.
It is used in CRS·CRS and YX·XY multiplication for storing results.

3.2.5 MatrixCoord

MatrixCoord is superclass to MatrixXY and MatrixYX. It commonizes
several functions and makes some handling more easy.

3.2.6 MatrixXY

Coordination XY format is used as a base for all input matrices from Ma-
trixMarket and it is implemented to be capable of converting from and to CRS
format and from dense matrix. It is the only one implemented to be able to
be loaded from a file and saved to a file.

This class allow multiplication with YX format sequentially and in parallel.

3.2.7 MatrixYX

This class allow multiplication with XY format sequentially and in parallel.

3.2.8 MatrixCRS

This class handles operations with CRS format matrix. This class doesn’t
contain any uncommon functions, only base functions needed by all matrices
and multiplication with itself.

16

3.3. Algorithms

3.3 Algorithms

All algorithms were implemented as described below. CRS format has been
implemented to be multiplied with itself and YX has been implemented to be
multiplied with XY. Both of these multiplications were implemented in both
sequence and parallel. Results of all algorithms were tested with each other
and one was tested with third party multiplication algorithm, the software
itself has a parameter to run these tests.

3.3.1 Abbreviations

These are the abbreviations used in this section, especially in the algorithms
themselves:

• A - Matrix A

• B - Matrix B

• ANZ - Number of non-zero elements in matrix A

• AX - Number of columns in matrix A

• AY - Number of rows in matrix A

• Ax - Elements of column x from matrix A

• Ay - Elements of row y from matrix A

• Aax - Average number of elements in a row of matrix A

• Aay - Average number of elements in a column of matrix A

• in parallel - Given for cycle will be executed in parallel by multiple
threads

• res - Result matrix

• p - Number of processes

• ρ(A) - Density of matrix A

• TLS - Thread local storage

• Point.X, Point.Y - X and Y coordinates respectively of given Point

• Point.V alue - Value associated with given Point

17

3. Realization

3.3.2 Thread architecture

All my parallel algorithms use all threads provided to calculate the results.
However in some there’s a master thread, that performs some secondary calcu-
lations that need to be calculated just once and need to be done sequentially.
These tend to be much smaller than the parallel calculation.

3.3.3 Storing of results

There are several common problems. One of them is the problem of storing
the results. There are several options, most notable are vector of XY matrix,
regular map, hash map and DenseMatrix. Vector has a time complexity of
O(1) of storing values that are already existing, however when storing non-
existing values it reaches O(n), which is totally unacceptable. Map has time
complexity of storing values O(log(n)), which is still a little bit too slow. For
Hash map although it has best time complexity on paper for storing results,
which is equal to O(1), the overhead of those operations can be quite slow.
However if we preallocate the entire resut matrix with DenseMatrix, we can get
time complexity of O(1) with next to zero overhead. However this comes at a
cost, that we need to preallocate all fields upfront. This cost is O(resX ·resY),
which may be better or worse depending on the density of the result matrix.
This also means, that when merging results in parallel algorithms, we need to
check the entire result sub-matrices if the values are present.

The density of the result matrix tends to be much bigger than a density of
input matrices, as there needs to be just one matching pair of elements from
matrices A and B to form an element in result Matrix, however elements from
matrices A and B can be reused to form more results. 1.4

3.3.4 Seq. alg. for CRS · CRS

This multiplication works by taking a single element and multiplying it
with all elements it needs to be multiplied with while storing the result in a
result dense matrix. As every element from matrix A needs to get multiplied
with every element from row By, this search is pretty easy thanks to having
row pointers in second matrix.

18

3.3. Algorithms

1: procedure CRSMultCRSSeq(A,B, res)
2: init(res)
3: for i← 1 to AY do
4: for j ← A.rowPtr[i] to A.rowPtr[i+ 1] do
5: idx← A.indexes[j]
6: val← A.values[j]
7: for l← B.rowPtr[idx] to B.rowPtr[idx+ 1] do
8: res[i][B.indexes[l]]← res[i][B.indexes[l]] + val ·B.values[l]
9: end for

10: end for
11: end for
12: end procedure

• Initialize and null result matrix in time O(BX ·AY)

• For each row Y in AY in time O(AY)

• Find begin and end of given row in time O(1)
• For each non-zero element of given row in time O(Ay)
• Find X coordinate of given element in time O(1)
• Find Value of given element in time O(1)
• Using given X, find beginning and end of the row in time O(1)
• For each member of given row in time O(Bax)
• Multiply given element with found element in matrix A

and save them in time O(1)

AY ·Ay can be replaced with ANZ . By just adding and multiplying these
complexities we can get overall complexity of this algorithm, which is:

O(BX ·AY +ANZ ·Bax)

3.3.5 Par. alg. for CRS · CRS

For parallel multiplication there are several approaches. One approach is
to have each thread store their own results in their own result matrix, and
then merge these results in a critical region of code. This can be sped up
by each thread remembering, which Y coordinate they accessed, as the par-
allel split is happening on for, that resolves, y coordinate for the result matrix.

19

3. Realization

I chose simpler approach, which is to use the appropriate result matrix,
which is DenseMatrixY. DenseMatrixY contains individually allocated rows
of the dense matrix, as such, we can ensure there are no false sharing or race
conditions from multiple processes accessing the same region of memory, and
that we can store the output matrix directly and without splitting any results
into different matrices. This process saves every result created directly to the
result matrix. As such this approach could be slower at higher densities of
matrices, but at lower densities this algorithm should outperform any more
complicated approach, which will be addressed later in this thesis.

1: procedure CRSMultCRSPar(A,B, res)
2: parallelInit(res)
3: for i← 1 to AY do in parallel
4: for j ← A.rowPtr[i] to A.rowPtr[i+ 1] do
5: idx← A.indexes[j]
6: val← A.values[j]
7: for l← B.rowPtr[idx] to B.rowPtr[idx+ 1] do
8: res[i][B.indexes[l]]+ = val ·B.values[l]
9: end for

10: end for
11: end for
12: end procedure

• Initialize and null result matrix in time O(BX ·AY)

• For each row Y in AY do in parallel in time O(AY /p)

• Find begin and end of given row in time O(1)

• For each non-zero element of given row in time O(Ay)

• Find X coordinate of given element in time O(1)
• Find Value of given element in time O(1)
• Using given X, find beginning and end of the row in time O(1)
• For each member of given row in time O(Bax)
• Multiply given element with found element in matrix A

and save them in time O(1)

If matrix A is spread reasonably well, then AY · Ay/p can be replaced
with ANZ/p. The most-inner cycle can be expressed as O(Bax). The overall
complexity is:

O(BX ·AY + (ANZ/p) ·Bax)

20

3.3. Algorithms

3.3.6 Seq. alg. for XY · YX

The XY multiplied with YX needs to do a search before the inner cycle.
The search itself would have complexity of O(log(BNZ)). With the cycle
that it would be wrapped in the complexity would be O(ANZ · log(BNZ)).
This can be reduced into O(BNZ) by preparing the result of the searches
by iterating through the second matrix and saving the searched values into
an array. From now on this will represented by PrepareSearches function.
With this the algorithm is pretty similar to the one used for Compressed Row
Storage format multiplication.

1: procedure XYMultYXSeq(A,B, res)
2: init(res)
3: secondBegins← PrepareSearches(B)
4: for i← 1 to ANZ do
5: PA← A.Points[i]
6: for j ← secondBegins[PA.X] to secondBegins[PA.X + 1] do
7: PB ← B.Points[j]
8: res[PB.X][PA.Y]+ = PA.V alue · PB.V alue
9: end for

10: end for
11: end procedure

• Initialize and null result matrix in time O(BX ·AY)

• Perform preparation of searches in time O(BNZ))

• For each element in A in time O(ANZ)

• For each element in Bx in time O(Bay)
• Multiply given elements and store them in time 1

By just adding and multiplying we can get time complexity of:

O(BX ·AY +BNZ +ANZ ·Bay)

3.3.7 Par. alg. for XY · YX

This algorithm is just a sequential algorithm with parallel elements added
into them. The most obvious is that the main loop now runs in parallel. For
synchronization there’s a sum of results at the end, where the entire result
matrix is split into (p − 1) parts, and the algorithm is run (p − 1) times. In
each run every thread takes a different part adding all results matching the
part of their private result matrix into the final result matrix, allowing to
merge the results in time O(AY ·BX).

21

3. Realization

1: procedure XYMultYXPar(A,B, res)
2: init(res) for all processes
3: SecondBegins← PrepareSearches(B)
4: for i← 1 to ANZ do in parallel
5: PA← A.Points[i]
6: for j ← SecondBegins[PA.X] to SecondBegins[PA.X + 1] do
7: PB ← B.Points[j]
8: TLS.res[PB.X][PA.Y]+ = PA.V alue · PB.V alue
9: end for

10: end for
11: MergeResults
12: end procedure

• Initialize and null result matrices in time O(BX ·AY)

• Perform preparation of searches in time O(BNZ)

• For each element in A in time O(ANZ/p)

• For each element in Bx in time O(Bay)
• Multiply given elements and store them in time 1

• Merge results in O(AY ·BX)

By just adding and multiplying we can get time complexity of

O(BX ·AY +BNZ +ANZ ·Bay/p+AY ·BX)

which can be summarized to:

O(2 ·AY ·BX +BNZ +ANZ ·Bay/p)

3.3.8 Seq. alg. for YX · XY

The YX multiplied with XY is really slow unless you convert the second
matrix into a format that is sorted by Y coordinate. As such there’s not much
we can do to prevent this without using algorithm to multiply a Coordinate
matrix with YX format, which is described at another section of this chapter.
This algorithm won’t be measured in the results, as it is too slow to compare
with other algorithms.

22

3.3. Algorithms

1: procedure YXMultXYSeq(A,B, res)
2: init(res)
3: for i← 1 to ANZ do
4: for j ← 1 to BNZ do
5: if A.Points[i].X == B.Points[j].Y then
6: PA← A.Points[i]
7: PB ← B.Points[j]
8: res[PB.X][PA.Y]+ = PA.V alue · PB.V alue
9: end if

10: end for
11: end for
12: end procedure

• Initialize and null result matrix in time O(BX ·AY)

• For each element in A in time O(ANZ)

• For each element in B in time O(BNZ)
• Check if the elements should multiply and save them in time 1

By just adding and multiplying we can get time complexity of:

O(BX ·AY +ANZ ·BNZ)

3.3.9 Par. alg. for YX · XY

This uses the same main cycles as XY·YX sequential multiplication. How-
ever as source matrices are in form of YX and XY, the calculations can be
easily segmented into sub-matrices, which can streamline the process of mul-
tiplication. The first two PrepareSearches calls are used internally to di-
vide matrices into sub-matrices. This algorithm splits the matrix A into p
sub-matrices AsY X divided by the Y coordinate. As such we need to use
DenseMatrixY to store data to prevent false sharing and race conditions. All
result matrices are initiated only on coordinates, that are actually going to
be used. The matrix B is split by the master process into p BsXY matrices,
that are converted into BsY X matrices and PrepareSearches generates data
for faster processing by the inner cycle. After that, every thread iterates their
AsY X sub-matrix multiplying needed elements from given BsY X . After all
multiplications are done, every process, except the master, saves all the values
multiplied into the final result matrix, while master process prepares another
batch of BsY X .

23

3. Realization

1: procedure YXMultXYPar(A,B, res)
2: PrepareSearches[A]
3: PrepareSearches[B]
4: for i← 0 to p do in Parallel
5: TLS.As← A.submatrix(i)
6: end for
7: init(res) for all processes
8: Parallel begin
9: for repeat← 0 to p do

10: if master then
11: Bs← B.submatrix(repeat)
12: Bs← ConvertXY − Y X(Bs)
13: subBegins← PrepareSearches[Bs]
14: end if
15: barrier
16: for i← 1 to TLS.AsNZ do
17: PA← TLS.As.Points[i]
18: for j ← subBegins[PA.X] to subBegins[PA.X + 1] do
19: PB ← Bs.Points[j]
20: TLS.res[PB.X][PA.Y]+ = PA.V alue · PB.V alue
21: end for
22: end for
23: MergeResults
24: end for
25: Parallel end
26: end procedure

• Perform preparation of searches in time O(ANZ +BNZ)

• Divide matrix A into sub-matrices As in time O(ANZ/p)

• Initialize result matrices in time O(BX ·AY)

• For each thread p in time O(p)

• Master extracts the sub-matrix Bs in time O(BNZ/p)
• Master reorders the sub-matrixBs in timeO((BNZ/p)·log(BNZ/p))
• Master prepares searches in time O(BNZ/p)
• For each non-zero element for sub-matrix As in time O(AsNZ)
• for each non-zero element of row Bsy in time O(Bsay)
• multiply and save value in time O(1)

• Merge sub-results into result matrix in time O((AX/p) · (BY /p))

24

3.4. Summary

First for clarity we need to estimate a few values. If the matrix is rea-
sonably even, then O(AsNZ) can be estimated as O(ANZ/p). Same goes for
O(Bsay), which would become O(Bay/p).
By replacing estimated values, adding and multiplying provided complexities
pre main loop we get:

O(pre main loop) = O(ANZ +BNZ +ANZ/p+BX ·AY)

The main loop is a little bit more tricky. The merging and Master tasks
will be done sequentially once, however for the rest of the part master does the
preparing, while rest of the processes do the merging part. So for the rest it
depends on what takes more time. If we look at their complexities, the master
tasks take O(BNZ/p(1 + log(BNZ/p))) and the merging takes O((AX/p) ·
(BY /p)). So the preparations for the inner loop take:

O(inner loop prep) = O(BNZ/p(1 + log(BNZ/p)) + (AX/p) · (BY /p)+

+max(BNZ/p(1 + log(BNZ/p)) + (AX/p) · (BY /p)) · (p− 1))

This already takes into account all the runs done, so there’s no need to
multiply with p in the final complexity.
The inner loops are pretty simple:

O(inner loops) = O((ANZ/p) · (Bay/p))

The overall complexity can be expressed as:

O(pre main loop) +O(inner loop prep) + p ·O(inner loops))

3.4 Summary

For sequential algorithms, CRS·CRS and XY·YX are similar if you consider
only the time complexity from the most inner loop in these two, with CRS·CRS
having the complexity of O(ANZ ·Bax) and XY·YX having O(ANZ ·Bay). The
difference in the overhead is just with XY·YX having extra O(BNZ), which
is negligible. The YX·XY has time complexity O(ANZ ·BNZ), which is much
slower than rest of these two and therefore isn’t even worth measuring, as the
results would be on completely different scale.

For parallel algorithms YX·XY and XY·YX have identical time complexity
from the most inner loop of O(ANZ · Bay/p), however YX·XY handles the
data a lot better and doesn’t require any synchronization of data afterwards,
and therefore should outperform the XY·YX. CRS·CRS algorithm has similar

25

3. Realization

the most inner loop time complexity of O(ANZ ·Bax/p), and considering that
CRS is much simpler algorithm with very little overhead, it should be on par
with YX·XY. This very much depends on if the streamlining of the data is
worth the speed-up.

26

Chapter 4
Testing

This chapter contains all measurements done for implemented algorithms.
Namely CRS·CRS in sequence (3.3.4) and in parallel (3.3.5), XY·YX in se-
quence (3.3.6) and in parallel (3.3.7) and YX·XY in parallel (3.3.9). It also
contains measurements done to Eigen library (3.1.1.3). Eigen library is used
for it’s sparse matrix multiplication with sparse matrix and with dense matrix
in sequence and in parallel.

4.1 Methodology of measurement

For each result there were at least 10 instances of independent measurement
over the same matrices. This was done to prevent the measurement errors
and attempt to show the true potential of algorithms, which can be off set by
various random events. However with longer running processes there are still
noticeable measurement errors for the slower algorithms.

4.2 Hardware and software

Measurement was done on Star cluster on node-017 (gpu-01) with following
configuration:

• CPU: 2x 6core Xeon 2620 v2 @ 2.1Ghz

• RAM: 31978 MB

• Compiler version: g++ 4.8.5

• OpenMP version: 3.1

All programs were compiled as C++ code with -O3 optimization.

27

4. Testing

4.3 Measurements

This section will contain individual measurements and comparisons done
with some more details about why these measurements were done.

The variables in these testings are:

• Density - 1.2.1 describes how many elements are there in the matrix

• Size - This represents the order of the matrix

• Thread count - This applies only to parallel algorithms and represents
how many parallel computations are launched at the same time.

4.3.1 Sequential algorithms

4.3.1.1 My algorithms

The figure 4.1 is representing one of the two base benchmarks of a sparse
matrix multiplication algorithm. These benchmarks test performance of the
algorithm over various sizes with equal density of the matrix. These two
sequential algorithms (3.3.4, 3.3.8), although they are quite similar with their
time complexity, have vast difference with bigger sizes and therefore more
elements. From the figure we can see that at lower sizes the difference is quite
negligible and the main reason, why one could be a lot faster than the other
is cache optimization. The CRS·CRS algorithm uses the same array to store
results in one main cycle, therefore this should result in less cache misses,
while the YX·XY jumps with the result saving over almost the entire matrix.

The figure 4.2 represents the other base benchmark of a sparse matrix
multiplication and that is various densities of the matrix with fixed size of the
matrix. In this figure CRS·CRS algorithm is again superior, while XY·YX
having comparable performance at the around 1% density and less and vastly
different performance already at 2% density.

4.3.1.2 Eigen comparison

The figure 4.3 compares my best sequential algorithm with two sequential
from Eigen (3.1.1.3) library. The sparse·sparse algorithm was chosen, be-
cause it is probably the most similar algorithm to the CRS·CRS (3.3.4). The
sparse·dense algorithm was chosen, because it is the only Eigen matrix multi-
plication algorithm, that supports multi-threading. The CRS·CRS algorithm
only slightly performs much better than even the sparse·sparse algorithm,

28

4.3. Measurements

 0

 5

 10

 15

 20

 25

 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 i
n
 s

e
c
o
n
d
s

size of matrix

Legend
Sequential CSR*CSR

Sequential XY*YX

Figure 4.1: Comparison of my sequential algorithms depending on the size of
the matrix with density of 1%

which can be explained by the output format, which is dense matrix in my
algorithms and sparse·sparse algorithm produces sparse matrix. It also has
much better performance over the sparse·dense algorithm, which can be ex-
plained by difference in the formats and that the algorithm needs to search
the entire dense matrix during the multiplications.

4.3.2 Parallel algorithms

4.3.2.1 My algorithms

The figures 4.4 4.5 repeat the two base benchmark tests with parallel
algorithms using 12 threads. Although parallel XY·YX (3.3.7) is considerably
slower than the two other algorithms, the rest of them are quite similar in their
performance, although parallel CRS·CRS (3.3.5) is really simple algorithm
while the parallel YX·XY one is quite complex. This was probably caused by
the big overhead that is needed to make YX·XY more efficient.

29

4. Testing

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ti
m

e
 i
n
 s

e
c
o
n
d
s

Density in %

Legend
Sequential CSR*CSR

Sequential XY*YX

Figure 4.2: Comparison of my sequential algorithms depending on the density
of the matrix with fixed size of 10000

4.3.2.2 Eigen comparison

The figure 4.6 compares my two best parallel algorithms with the only
Eigen parallel matrix multiplication algorithm in one of the benchmarks, that
is equal density of 1% and 12 threads. As this is sparse·dense matrix, it is a
bit different, and as such, it can be explained, that my algorithms performed
a lot better than the Eigen algorithm.

The figure 4.7 compares the same algorithms, however over a different
benchmarks. This time the size of a matrix is fixed at 20000 and density
is fixed at 1%, but the number of threads vary. My two best algorithms
are similar in performance, while the Eigen is considerably slower, which is
probably due to the different format that Eigen library is using and able to
parallelize.

30

4.3. Measurements

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 i
n
 s

e
c
o
n
d
s

size of matrix

Legend
Eigen Sparse*Dense
Eigen Sparse*Sparse

My Sequential CRS*CRS

Figure 4.3: Comparison of my best sequential algorithm with Eigen sequential
computations with fixed density of 1%

4.3.3 Comparison of speed-up

This subsection will show speed-ups between sequential and parallel versions
for all used algorithms. YX·XY sequential algorithm is really slow and wouldn’t
properly represent the speed-up and the parallel algorithm is quite similar
to the XY·YX, therefore I will compare the YX·XY parallel algorithm with
XY·YX sequential algorithm. All speed-ups are calculated as speed up =
sequential time/parallel time . The matrices used are of size 18000 and den-
sity 1%. The parallel time is from a test result, that used 12 threads. All
times are in seconds.

YX·XY XY·YX CRS·CRS Eigen Sp·De
seq time 15.542777 15.542777 4.566569 121.982469
par time 3.885607 13.179994 1.984337 31.408147
speed-up 4.00 1.18 2.30 3.88

Although CRS·CRS is the fastest, the speed-up is only 2.30, which is second
lowest. The XY·YX offers very poor increase in performance (speed-up is
only 1.18). At lower sizes of matrices the time of parallel algorithm was even
slower than a sequential one, which is probably due to the need to merge the
results after the multiplication. For example at size 10000, the parallel XY·YX

31

4. Testing

 0

 2

 4

 6

 8

 10

 12

 14

 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 i
n
 s

e
c
o
n
d
s

size of matrix

Legend
Parallel CSR*CSR

Parallel YX*XY
Parallel XY*YX

Figure 4.4: Comparison of my parallel algorithms depending on the size of
the matrix with density of 1%

took 3.98 seconds, while the sequential took only 2.74 seconds. YX·XY and
Eigen both offer very good increase in performance (speed-up is 4.00 and 3.88
respectively), however Eigen algorithm is the slowest one of them all, which
was probably due to different result storage format.

32

4.3. Measurements

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ti
m

e
 i
n
 s

e
c
o
n
d
s

Density in %

Legend
CSR*CSR

YX*XY
XY*YX

Figure 4.5: Comparison of my parallel algorithms depending on the density
of the matrix with fixed size of 10000

33

4. Testing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 i
n
 s

e
c
o
n
d
s

size of matrix

Legend
Eigen Parallel Sparse*Dense

My YX*XY
My CRS*CRS

Figure 4.6: Comparison of my parallel algorithms with Eigen parallel compu-
tation with fixed density of 1%

34

4.3. Measurements

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12

ti
m

e
 i
n
 s

e
c
o
n
d
s

density

Legend
My Parallel CSR*CSR

My Parallel YX*XY
Eigen Sparse*Dense

Figure 4.7: Comparison of my best parallel algorithms with Eigen parallel
computation with fixed size of 20000 and fixed density of 1%

35

Conclusion

The goal of this thesis was to compare different storage formats of matrices
and algorithms of their multiplication and their effectiveness with parallel
computing. In this thesis I implemented dense, CRS, XY and YX formats
and I implemented XY·YX, YX·XY and CSR·CSR as both sequential and
parallel algorithms.

I analysed these implemented algorithms and their time complexities and
compared them with each other and with Eigen library.

The XY·YX sequential algorithm seriously underperformed compared to
CRS·CRS sequential algorithm. To my surprise sequential CRS·CRS algo-
rithm outperformed even the Eigen sparse multiplication. The parallel algo-
rithm of CRS·CRS also performed a little bit better than parallel YX·XY.
And again to my surprise both of these performed vastly better, than the only
parallel implementation that Eigen library offers. My expectation was that
the YX·XY will be better at higher densities, due to better handling of the
input and result matrices. However this was simply not true and is probably
due to big overhead, that YX·XY parallel algorithm had.

YX·XY algorithm achieved a speed-up of an impressive 400%. However
the simplicity of CRS·CRS algorithm won against any other type of algorithm
used. CRS·CRS dominated all tests for sequential and parallel algorithms.
The only case where anything came close was parallel multiplication, where
at the same conditions CRS·CRS achieved 1.98 seconds and YX·XY achieved
3.89 seconds.

37

Conclusion

Further work

Further work could include more input storage formats, some specific types of
matrices and specific algorithms for these types of matrices.

38

Bibliography

[1] Wikipedia, the free encyclopedia: Matrix Multiplication. 2019. Dostupné
z: https://en.wikipedia.org/wiki/Matrix_multiplication#/media/
File:Matrix_multiplication_diagram_2.svg

[2] Wikipedia, the free encyclopedia: Diagram of a generic dual-core proces-
sor. 2019. Dostupné z: https://en.wikipedia.org/wiki/Multi-core_
processor#/media/File:Dual_Core_Generic.svg

[3] Dongarra, J.: Compressed Row Storage. Nov 1995. Dostupné z: http:
//netlib.org/linalg/html_templates/node91.html

[4] Dongarra, J.: Compressed Column Storage. Nov 1995. Dostupné z: http:
//netlib.org/linalg/html_templates/node92.html

[5] Dongarra, J.: Block Compressed Row Storage. Nov 1995. Dostupné z:
http://netlib.org/linalg/html_templates/node93.html

[6] Dongarra, J.: Compressed Diagonal Storage. Nov 1995. Dostupné z:
http://netlib.org/linalg/html_templates/node94.html

[7] Dongarra, J.: Jagged Diagonal Storage. Nov 1995. Dostupné z: http:
//netlib.org/linalg/html_templates/node95.html

[8] Dongarra, J.: Skyline Storage. Nov 1995. Dostupné z: http://
netlib.org/linalg/html_templates/node96.html

[9] Šimeček, I.: Sparse Matrix Computations with Quadtrees. In Proceedings
of Workshop 2008, ročńık 1, Prague: CTU, 2008, ISBN 978-80-01-04016-
4, s. –.

[10] Dostupné z: https://math.nist.gov/mcsd/savg/tutorial/ansys/
FEM/

39

https://en.wikipedia.org/wiki/Matrix_multiplication#/media/File:Matrix_multiplication_diagram_2.svg
https://en.wikipedia.org/wiki/Matrix_multiplication#/media/File:Matrix_multiplication_diagram_2.svg
https://en.wikipedia.org/wiki/Multi-core_processor#/media/File:Dual_Core_Generic.svg
https://en.wikipedia.org/wiki/Multi-core_processor#/media/File:Dual_Core_Generic.svg
http://netlib.org/linalg/html_templates/node91.html
http://netlib.org/linalg/html_templates/node91.html
http://netlib.org/linalg/html_templates/node92.html
http://netlib.org/linalg/html_templates/node92.html
http://netlib.org/linalg/html_templates/node93.html
http://netlib.org/linalg/html_templates/node94.html
http://netlib.org/linalg/html_templates/node95.html
http://netlib.org/linalg/html_templates/node95.html
http://netlib.org/linalg/html_templates/node96.html
http://netlib.org/linalg/html_templates/node96.html
https://math.nist.gov/mcsd/savg/tutorial/ansys/FEM/
https://math.nist.gov/mcsd/savg/tutorial/ansys/FEM/

Bibliography

[11] Sipser, M.: Introduction to the Theory of Computation. Course Technol-
ogy Inc, 2006, ISBN 0-619-21764-2.

[12] Adve, S. V.; Adve, V. S.; Agha, G.; aj.: Parallel Computing Research at
Illinois.

[13] Research, J. P.: The Balance of Power in Gaming.

[14] Ankalkoti, P.: A Relative Study on Bitcoin Mining. Dostupné
z: https://www.researchgate.net/publication/318850089_A_
Relative_Study_on_Bitcoin_Mining

[15] Dostupné z: https://boinc.berkeley.edu/trac/wiki/
VolunteerComputing

[16] Unger, S. H.: Hazards, critical races, and metastability. Dostupné
z: https://ieeexplore.ieee.org/document/391185?tp=&arnumber=
391185

[17] Thompson, M.: Aug 2011. Dostupné z: https://dzone.com/articles/
false-sharing

[18] Developers, B.: . Dostupné z: https://theboostcpplibraries.com/
boost.thread-thread-local-storage

[19] Dongarra, J.: 1995. Dostupné z: http://netlib.org/linalg/html_
templates/node91.html

[20] MatrixMarket: 2019. Dostupné z: http://math.nist.gov/
MatrixMarket/mmio-c.html

[21] Developers, O.: 2019. Dostupné z: https://www.openmp.org/

[22] Developers, E.: 2019. Dostupné z: http://eigen.tuxfamily.org/
index.php?title=Main_Page

[23] Wolfram: 2019. Dostupné z: http://www.wolfram.com/mathematica

[24] Developers, D.: 2019. Dostupné z: http://www.stack.nl/˜dimitri/
doxygen/index.html

[25] Developers, G.: 2019. Dostupné z: http://www.graphviz.org/Home.php

[26] Developers, G.: 2019. Dostupné z: http://www.gnuplot.info/

[27] Developers, G.: 2019. Dostupné z: http://git-scm.com/

[28] Developers, B.: 2019. Dostupné z: http://bitbucket.org/

[29] Developers, V.: 2019. Dostupné z: http://valgrind.org/

40

https://www.researchgate.net/publication/318850089_A_Relative_Study_on_Bitcoin_Mining
https://www.researchgate.net/publication/318850089_A_Relative_Study_on_Bitcoin_Mining
https://boinc.berkeley.edu/trac/wiki/VolunteerComputing
https://boinc.berkeley.edu/trac/wiki/VolunteerComputing
https://ieeexplore.ieee.org/document/391185?tp=&arnumber=391185
https://ieeexplore.ieee.org/document/391185?tp=&arnumber=391185
https://dzone.com/articles/false-sharing
https://dzone.com/articles/false-sharing
https://theboostcpplibraries.com/boost.thread-thread-local-storage
https://theboostcpplibraries.com/boost.thread-thread-local-storage
http://netlib.org/linalg/html_templates/node91.html
http://netlib.org/linalg/html_templates/node91.html
http://math.nist.gov/MatrixMarket/mmio-c.html
http://math.nist.gov/MatrixMarket/mmio-c.html
https://www.openmp.org/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.wolfram.com/mathematica
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.graphviz.org/Home.php
http://www.gnuplot.info/
http://git-scm.com/
http://bitbucket.org/
http://valgrind.org/

Appendix A
List of used abbreviations

XY Coordinate format column major

YX Coordinate format row major

CRS Compressed row storage

RAM Random-access memory

CPU Central processing unit

GPU Graphics processing unit

41

Appendix B
Contents of enclosed CD

readme.txt.....................Brief description of contents of this CD
src..Folder for all source code

mult Source code for the main program for multiplication
gen............................Source code for the matrix generator
eigen Source code for the Eigen multiplication
thesis...........................Source code of this thesis in LATEX

text ... Folder for this thesis
thesis.pdf..............................This thesis in PDF format

43

	Introduction
	Theoretical background
	Matrices
	Sparse matrices
	Density
	Order

	Storage formats
	Multiplication of matrix with matrix
	Time complexity
	Parallel computation
	Motivation
	Description and synchronization
	Thread local storage

	Storage formats for matrices
	Dense matrix
	Coordinate XY
	Coordinate YX
	Compressed row storage

	Realization
	Software used
	Third party code
	ANSI C library for Matrix Market I/O
	OpenMP library
	Eigen library

	Wolfram Mathematica
	Doxygen and Graphviz
	Gnuplot
	Git
	Valgrind

	Hierarchy
	Matrix
	MatrixDense
	MatrixDenseX
	MatrixDenseY
	MatrixCoord
	MatrixXY
	MatrixYX
	MatrixCRS

	Algorithms
	Abbreviations
	Thread architecture
	Storing of results
	Seq. alg. for CRS CRS
	Par. alg. for CRS CRS
	Seq. alg. for XY YX
	Par. alg. for XY YX
	Seq. alg. for YX XY
	Par. alg. for YX XY

	Summary

	Testing
	Methodology of measurement
	Hardware and software
	Measurements
	Sequential algorithms
	My algorithms
	Eigen comparison

	Parallel algorithms
	My algorithms
	Eigen comparison

	Comparison of speed-up

	Conclusion
	Further work

	Bibliography
	List of used abbreviations
	Contents of enclosed CD

