
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 18, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: ArtilEcho - a strategy game for blind people

 Student: Tomáš Jozífek

 Supervisor: Ing. Filip Křikava, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

Design and implement Artillery for blind users. Artillery is a classical turn-based strategy game in which
tanks fights each other in combat simulation, a theme relating to one the origin uses of computer for
calculating the trajectories of rockets and other military-based calculations.
The game should support multiplayer over a network with a user interface suitable for blind users.
Analyze approaches for the game user interface design targeting visually impaired people.
Implement the selected approach including proper documentation and testing.
Evaluate the game with the target audience.

References

Will be provided by the supervisor.

Bachelor’s thesis

ArtilEcho – a strategy game for blind
people

Tomáš Jozífek

Katedra softwarového inženýrství
Supervisor: Ing. Filip Křikava, Ph.D.

May 15, 2019

Acknowledgements

Many thanks to my friend Lukáš Tyrychtr for introducing me to Python
programming and helping me whenever I got stuck. To my brother Martin,
thanks to whom I got interested in audio games in the first place. To Jakub
Blažek for sharing his broad knowledge of this topic and my supervisor Filip
Křikava for nudging me towards sensible solutions.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2019 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Tomáš Jozífek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Jozífek, Tomáš. ArtilEcho – a strategy game for blind people. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2019.

Abstrakt

Videohry jsou velmi populární forma zábavy, jenž díky použití grafiky není
bohužel přístupná lidem s těžkým zrakovým postižením. Naproti tomu audi-
ohry pro interakci používají hlasovou syntézu se zvuky, a tak umožňují hraní
počítačových her nevidomým. Tato práce se zaměřuje na tvorbu tahové audi-
ohry, konrétně hry typu artilerie pro více hráčů podobné hře ShellShock Live.
Práce také poskytuje přehled o audiohrách a o jejich návrhu.

Klíčová slova audiohra, artilerie, implementace audiohry, nevidomým pří-
stupné hry, zvuková odezva, Python

Abstract

Video games are an extremely popular form of entertainment, but cannot
be enjoyed by people with severe visual imparity since they use computer
graphics as the primary source of interaction. Audio games, on the other
hand, rely on speech synthesis and sounds making it possible for even fully
blind people to play computer games. This thesis focuses on the creation of
a turn-based multiplayer artillery-type audio game similar to ShellShock Live.
It also provides a general overview of audio game design.

vii

Keywords audio game, artillery, audio game implementation, blind friendly
games, accessible computer gaming, audio feedback, Python

viii

Contents

Introduction 1

1 Audio Games 3
1.1 Overview . 3
1.2 History . 3
1.3 Audio Game Genres . 6

2 Design 11
2.1 Making the Core Mechanics Accessible 11

3 Implementation 15
3.1 Choosing Implementation Technologies 15
3.2 Architecture . 17
3.3 Unit Tests . 20

4 Assessment 21
4.1 Experiment Setup . 21

Conclusion 25

Bibliography 27

A List of Used Abbreviations 29

B Contents of the Attached CD 31

ix

List of Figures

1.1 Eureka A4 . 4
1.2 SoundRTS . 8

2.1 ShellShock Live . 11
2.2 Waveform visualization [3] . 12
2.3 Oscillator properties . 13
2.4 Sound curve . 13

3.1 Spawning the game server . 18
3.2 Client components . 19
3.3 Server components . 19

4.1 Evaluation form results – 1 . 23
4.2 Evaluation form results – 2 . 24

xi

Introduction

Computer games are extremely popular. Through distribution networks like
Steam1, Google Play Store or Apple App Store, they are more accessible than
ever before. According to Newzoo [1] market researchers, the gaming industry
reached a new all-time high with over 2.3 billion active players and an esti-
mated revenue of $137.9 billion. Unfortunately hardly any game contributing
to those numbers can be played by people with severe visual imparity. With
a relatively low number (footnote) of people suffering from vision loss, the in-
dustry is not incentivized to make the games blind-friendly. Instead, visually
impaired have to rely on largely amateur-developed audio games for the same
kind of entertainment, missing many of the ideas and concepts from video
games because of that.

An audio-game is a game that uses sound as its primary means of feedback
to the player. The commonly used methods for this are speech synthesis,
sounds and tone generation. From which sounds and tone generation can pass
a lot of non-complex information in an instant compared to speech synthesis,
which can describe almost anything, but requires much more time to do so.

I come from a family with many members visually impaired. As such,
we know many more with this kind of disability. Growing up, I played many
video and audio games and wondered which game mechanics could be adapted
to the audio form. During the time I was learning to code, I came across
an artillery game named ShellShock Live2. After figuring out how the game
could be converted and confirming with my friends there was nothing alike
available, in 2012 I created the first prototype. Since then, no one made
anything similar, so I chose to undertake this project again as part of this
bachelor’s thesis with the intention of releasing the finished game.

ShellShock Live is a turn-based multiplayer game. At the beginning, each
player gets a tank and chooses or is assigned a side on which they will fight.

1https://store.steampowered.com/
2https://www.shellshocklive.com/flash/

1

https://store.steampowered.com/
https://www.shellshocklive.com/flash/

Introduction

The game is two dimensional. The X axis is assigned to width while the Y is
height, meaning that the player sees everything from the side as a cross-section
of the terrain with tanks placed on top. When it is their turn, the player can
control their tank’s movement, gun angle and the power with which the gun
will shoot. The goal is to score more points than the enemy team. Points
are assigned to the team whose player manages to hit one of the enemy tanks,
with the amount given depending on the accuracy and the type of ammunition
used.

To port such a game into an audio form, I will
− research ways in which the game can provide coherent feedback exclusively

through sound,
− implement the game using this information,
− document and test the implementation, and
− evaluate the game with the target audience.

2

Chapter 1
Audio Games

1.1 Overview
As mentioned, audio games communicate information to their players through
sound. Some feature an accessible GUI (graphical user interface) while other
rely purely on sounds. Those relying on accessible GUI have an advantage
in the form of pre-made components for entering and displaying information.
The other can better customize their feel with custom voices and sounds. Their
complexity ranges from a simple button masher to a strategy game requiring
a player’s full concentration to succeed.

1.2 History
I find the history of audio games quite interesting, especially in the Czech
Republic where some blind used a PC before the general public did.

1.2.1 The Beginning
The first audio game I was able to find was named Touch Me and was made by
Atari in 19743. The objective was to remember a constantly growing sequence
of buttons. The machine would play the sequence, represented by sounds and
lights and the player was supposed to repeat it. This game was housed in
an arcade cabinet and although not very popular, its portable clone Simon
was.4 Both games and their subsequent variations could be enjoyed by almost
everyone as they opted out of using only the visuals as feedback.

Although playable by the blind, Touch Me was never intended to be, as
well as any of the text-based adventure games, which thanks to the advent of

3https://www.arcade-museum.com/game_detail.php?letter=T&game_id=12694
4https://web.archive.org/web/20060527173859/http://www.hasbro.com/simon/pl/

page.newscelebrate/dn/default.cfm

3

https://www.arcade-museum.com/game_detail.php?letter=T&game_id=12694
https://web.archive.org/web/20060527173859/http://www.hasbro.com/simon/pl/page.newscelebrate/dn/default.cfm
https://web.archive.org/web/20060527173859/http://www.hasbro.com/simon/pl/page.newscelebrate/dn/default.cfm

1. Audio Games

speech synthesis in the eighties were playable. So when the industry moved
away from text and embraced graphics, this natural compatibility faded away.

Everything up to this point was inaccessible to blind people in Eastern
Europe that was cut off by the cold war. Apart from a few who managed to
import machines like VersaBraille5, the most technologically advanced thing
used by the blind in the Czech Republic before the regime changed were
portable cassette recorders and players.

1.2.2 First Computer for Blind in the Czech Republic

After the iron curtain fell, however, the blind got their first computer. But not
just a computer, a portable one. The government even subsidized the purchase
through the Social Security Administration so that people could afford it.
This was the computer to have for almost a decade, as the most active users
provided support for the less invested ones.

Figure 1.1: Eureka A4

Named Eureka A46 this 8-bit computer was made to be a personal secre-
tary. It had no graphical output, only a speech synthesizer, and the keyboard
consisted of only 20 buttons — seven Perkins style ones for typing, eight
function keys, four cursor keys, and a shift key. The rest of the IO (input
output) consisted of two RJ-11 ports for dial-up, a parallel port for printing,
a DIN connector for an external keyboard among other things and a floppy

5https://victoriancollections.net.au/items/58d08b1fd0d0103314f1e328
6https://www.sensorytools.com/eureka.htm

4

https://victoriancollections.net.au/items/58d08b1fd0d0103314f1e328
https://www.sensorytools.com/eureka.htm

1.2. History

disk drive, which served as the only long term storage option, as the com-
puter did not let the user into its internal memory. The features included
a text editor, date and time-related functions, calculator, a music editor that
supported polyphony of up to four voices, telephone book, the dial-up related
suite, various disk functions and an interpreter of Eureka flavored Basic. This
interpreter allowed the community to develop all kinds of software, from social
support amount calculators, through timetable applications to games.

1.2.3 Games on the Eureka A4
Audio games as the name implies, rely heavily on the ability of a system to
produce sound. The games here were constrained by a mono sound output,
an inability to conveniently play back prerecorded sounds, and I have never
heard its tone generator change volume. The kinds of games available included
classic text adventures, math, memory, and other quizzes and only a few that
required real-time user input.7

One of which was the Hockey game. First, it could explain the rules and
controls, then it would ask for the number of shots they want to catch. Next, it
would play a random sound animation representing the approach followed by
four different tone and noise sequences corresponding to a puck coming from
above or the left, center or the right. The player had to react by pressing
the right key, or key combination to catch the puck. Finally, the score would
be announced, and the player asked if they want to play again.

The most interesting game to me was named Rockets. There were two
tones. The player controlled one with their arrow keys, while the other was
slowly lowering its frequency one half-tone at a time. The objective was to
match that tone and press a space to shoot, which increased their score. Then
the whole thing repeated, but with faster and faster descending tones aka
rockets, until the player could not keep up.

1.2.4 Standardization
After Eureka A4 came MS-Dos running Aria8 from the same company. It
traded some of Eureka’s features for its size, but due to the absence of an in-
tegrated code editor, the games had to be programmed externally, which
resulted in a pack of only eight games, mostly ports from Eureka A4 being
released here.

There were and are many more braille note-taking devices with varying
feature sets before and after Eureka, especially in the west [2]. But I was not
able to find reliable information about gaming on the earliest ones.

During the nineties, MS-Dos and then Windows gained popularity and
as the platforms were used not only by the blind, the capabilities of systems

7List or many Czech Eureka A4 games: http://ftp.braillnet.cz/e_games/
8https://www.sensorytools.com/aria.htm

5

http://ftp.braillnet.cz/e_games/
https://www.sensorytools.com/aria.htm

1. Audio Games

running them were vast. With the right hardware, all the IO (input and
output) used by today’s audio games was there. Screen reader, tone generation
networking and in the later years stereo could all be used in conjunction to
create games not much different from those played today.

1.2.5 Stagnation

Throughout the two-thousands, audio games flourished. The Blind Eye9, ex-
plored the limits of binaural audio. It allowed its players to explore a virtual
city simulating ambient sounds around them, although its replayability was
limited, this game was quite unique especially for its time. The game Tech-
noshock10 was a Doom-inspired first-person shooter made in 2007, with a co-
herent story, enemies to shoot and puzzles to solve in each level. The player
had a mission to free hostages from an advanced droid filled facility.

This goes to show how sophisticated games were. However, over the years
the interest in the development of new and exciting titles seems to have faded.
The main driving force behind new releases reduced to a few successful indi-
viduals and a handful of computer savvy blind gamers. There are new releases,
but the games do not use the full potential of today’s hardware. Some games
are just renamed iterations of older ones, and some are straight copies with
different sounds. There is also a very widely used framework called BGT
(Blastbay Game Toolkit)11 written for use with Angelscript12, which signif-
icantly reduces the amount of coding experience required for one to make
a game, but limits its users in various ways as the project is long abandoned.
Games made using it are constrained to a single processor thread, non-binaural
sound, the Windows operating system and the inbuilt networking implemen-
tation among other things.

1.3 Audio Game Genres
Today, there are many audio games and audiogame genres. This section pro-
vides a basic overview of some of them.

1.3.1 Copies of Real Card and Board Games

Even in the Eureka A4 era, people were remaking classical card and board
games into the digital form. Among the older ones were the card game Prší,
the Czech variant of Mau-Mau with multiplayer support13, or games like Bat-

9https://audiogames.net/db.php?action=view&id=theblindeye
10http://www.tiflocomp.ru/games/ts/index.php?lang=en
11https://www.blastbay.com/bgt.php
12https://www.angelcode.com/angelscript/
13http://www.suscik.cz/program.php

6

https://audiogames.net/db.php?action=view&id=theblindeye
http://www.tiflocomp.ru/games/ts/index.php?lang=en
https://www.blastbay.com/bgt.php
https://www.angelcode.com/angelscript/
http://www.suscik.cz/program.php

1.3. Audio Game Genres

tleship14, Concentration15, Backgammon16, and many more. These were de-
veloped independently so many lacked multiplayer and were hard to make.

This changed in 2010 when the creators of an already popular monopoly
adaptation added a new game and re-branded it to RS Games Client17. The client
has a list of games, each with its lobby where people can chat and a list of
rooms. Those could be created and joined by each player. This created
a place where people could meet and play together without the hassle of cre-
ating a game server. I need to mention QuentinC’s Playroom18 as it is similar
in concept but offers a different set of games.

The game rooms consist of standard UI elements like lists, tables, text in-
put boxes, etcetera. The games are turn-based, and the action accompanying
sounds usually do not convey any new information over what is described by
the voice synthesizer. This makes the games easier to develop as every action
can use already existing infrastructure for interaction with the player.

1.3.2 Racing games

Racing games like Top Speed19 commonly use stereo sound to indicate, where
on the track the player’s car is. When the sound of the car’s engine comes from
the left for example, the car is on the left side of the road, and the player is
expected to compensate. Each game also commonly features an announcement
system, so the player knows what turn comes next. The problematic part is
overtaking and how to distinguish cars in front of the player from those behind
them.

1.3.3 Simulators

People sighted or blind, want to experience things they will not be able to in
the real world. Like flying a plane, being a train or a subway conductor or
a truck driver. These depend on detailed sound design in order to immerse
their players in the virtual world. The challenge is to provide the necessary
information for the games to be engaging, but not to interfere too much with
their main objective. To simulate what the particular experience sounds like.

14https://audiogames.net/db.php?action=view&id=Accessible%20Battleship
15https://audiogames.net/db.php?action=view&id=Wincon
16http://www.azabat.co.uk/downloads.html
17https://rsgames.org/downloads/
18https://www.qcsalon.net/
19http://www.playinginthedark.net/download_e.php

7

https://audiogames.net/db.php?action=view&id=Accessible%20Battleship
https://audiogames.net/db.php?action=view&id=Wincon
http://www.azabat.co.uk/downloads.html
https://rsgames.org/downloads/
https://www.qcsalon.net/
http://www.playinginthedark.net/download_e.php

1. Audio Games

1.3.4 Real Time Strategies
My favorite audio game SoundRTS20 attempts to recreate the feel of War-
craft21 a popular franchise created by Blizzard. The game map is 2D featur-
ing a top-down view. It is a landscape with trees, mines, water, and pastures.
Each player gets some starting resources like a few workers, and a base of
some sort. Players use workers to gather resources and construct buildings
like houses, farms, barracks and so on. Each building has a purpose, some can
accept workers with resources, some can recruit/create new units, and some
allow the player to recruit a new kind of unit or to upgrade other buildings.
Each player has the same goal, to eliminate other players units and buildings
completely.

To make the game accessible SoundRTS split the map into squares named
the same way as a checkerboard. The player can select a square using arrow
keys. When on a square, units, and buildings on it can be selected. The stereo
is used to indicate where each object is relative to the center. The game also
describes them using cardinal directions. There are many keyboard shortcuts
for selecting different kinds of objects like buildings, workers and military
units. Instead of single trees or large open spaces, the game contains forest
objects for wood extraction and meadow objects which can be built on.

Figure 1.2: SoundRTS

The game includes graphics, which can be best described as rudimen-
tary, consisting only of colored circles and squares. However, the inclusion

20http://jlpo.free.fr/soundrts/
21https://en.wikipedia.org/wiki/Warcraft

8

http://jlpo.free.fr/soundrts/
https://en.wikipedia.org/wiki/Warcraft

1.3. Audio Game Genres

of graphics meant that siblings with different levels of visual imparity could
enjoy the game together, which is rarely the case with any audio or video
game.

1.3.5 First Person Shooters

Games of this genre give their players a virtual gun and place them on the bat-
tlefield. With objectives ranging from capture the flag, where the team able
to fight their way through to the flag and hold the ground around it for
the longest wins, to free for all, where killing the most enemies gets the player
to the top of the scoreboard. The games utilize stereo much the same way
a conventional first-person shooter would, the only change being the addi-
tion of sound markers to objects of interest, such as enemies, objectives, and
items. Some games get rid of the third dimension altogether to help with
orientation. Some games employ a radar which tells the player whether there
is empty space, a wall or an enemy directly in front of them. Other games
use ambient noise like a humming generator or a running television to aid in
positional awareness. One very successful game not deviating too much from
this formula is SWAMP22. It is set in a zombie apocalypse-themed wasteland
with large maps to explore and cooperative missions to complete. Players can
capture bases using in-game food and go scavenging together in search of new
weapons, ammunition, armor, and other items. This is one of a few commer-
cial successes among audio games. Its creator even released a head tracking
device with support for his and other games, which makes SWAMP a virtual
reality audio game, possibly even the first.

1.3.6 Text Adventures

Although mentioned in the history section, this genre persisted. From interac-
tive audio stories where decisions were made by selecting a file with the correct
number, adventure game engines like the Czech made Dousabel Sound Adven-
ture23, to the text-based hacking game Code 7 (a video game with accessibility
features). These games provide something so many audio games lack. A story.

1.3.7 Video Games

Some blind people try and play video games designed for sighted players.
The most popular are fighting games like Mortal Kombat where the player is
able to orient by listening to the stereo sound effects emitted by characters.
They can also gauge the distance between them and the enemy by throwing
a projectile and observing how long it takes to impact.

22https://www.kaldobsky.com/ssl/audiogames.php
23http://www.dousabel.cz/dsa/

9

https://www.kaldobsky.com/ssl/audiogames.php
http://www.dousabel.cz/dsa/

1. Audio Games

1.3.8 Browser Games
Although not video games, browser games were a popular form of entertain-
ment in the two-thousands enjoyed by both blind and sighted as the games
used text for most of their interaction. Often a player would take care of
a virtual object of interest like a warrior or a village. Progress was made by
giving commands like upgrade a building or go hunting which cost time. Play-
ers could interact with others in non-interactive battles where math together
with randomness decided about success or failure. One example from this
genre would be Legend of the Green Dragon24

24http://lotgd.net/home.php?

10

http://lotgd.net/home.php?

Chapter 2
Design

As mentioned in the introduction I have chosen to convert the game named
ShellShock Live.

Figure 2.1: ShellShock Live

2.1 Making the Core Mechanics Accessible
Enabling players to see my game through their ears is what makes or breaks
this project. I know the game concept works when well executed because I am
essentially copying an existing game that managed to stay alive for over ten
years. This section focuses on how do I translate information from graphics
to sound.

11

https://www.shellshocklive.com/flash/

2. Design

2.1.1 The Terrain Exploration
The first thing I thought of when converting the game was the terrain. From
the three tools available, prerecorded sounds will not help, because the map
changes throughout the match. Using the speech synthesis surely is possi-
ble, but in my opinion not practical as reading out the map description with
the info about where the craters are would be too much for the imagination
of even the most advanced players. With this reasoning, I chose to use a tone
generator.

Tone generator/oscillator a piece of software made to generate waveforms.
The basic ones are sine, square, saw and triangle. Some oscillators have many
settings, especially those used in the music industry. The settings I am most
interested in are the wave shape, frequency, volume, and pan. Pan, also called
stereo balance, controls how loud the left channel will be compared to the right.
I will also need a noise generator.

Figure 2.2: Waveform visualization [3]

The map is represented by an array of numbers and describing it is quite
simple. I create a sine oscillator, set its pan, so the generated sound is coming
mostly from the left channel and its frequency to match the leftmost terrain
point value. Higher frequencies represent the higher points on the map and
lower frequencies the lower ones. I do this in a loop for each point on the map,
and each time I adjust the pan, so the tone moves from the left channel
slowly to the right. For example, the tone representing the hilltop will be
pitched quite high and reproduced by the left channel with the same amplitude
as by the right one. I refer to this as the center of the perspective. Here
the perspective is static. The player looks at the center of the map and like
in the real world, objects on the left are heard from the left.

This is the backbone of the map exploration function. However, there are
also tanks in the picture. To represent them I could change the waveform of
the oscillator if a tank currently occupies the point. That is how I did it in
the prototype. However, there is quite a bit more information presented to
the sighted player by the original game. The player has an arrow above their
tank to indicate who is currently playing, their nick is visible and the tanks
are color coated so nobody can mistake their ally for an enemy.

Even though there are two perspectives mixed, the result does not seem
to be confusing and provides almost every piece of information as the video
game version.

12

https://upload.wikimedia.org/wikipedia/commons/7/77/Waveforms.svg

2.1. Making the Core Mechanics Accessible

Figure 2.3: Oscillator properties Figure 2.4: Sound curve

2.1.2 Tying it Together
Let us look at the rest of the accessibility features through a typical gameplay
scenario, from launching the game to the winner announcement.

When the game launches, a window appears. That window contains
a menu bar at the top, from which the user can select to join a room, create
his own and a few other things like set their nick or view the credits window.

When the user wants to connect to a room, they select a menu item la-
beled List rooms. A dialog window with the list of currently available rooms
opens. They can then go through the list which contains text information
about the room’s name, its capacity and the number of currently connected
players. They can also use the map exploration function to determine what
map is currently set in each room. Upon finding the desired one, they push
the connect button.

This causes the room list dialog to close and a new room dialog to appear.
As a room master the player can set various things like the map, the room
size and the number of rounds, they can also kick players and start the game
if everyone connected is ready. When connecting to the room, only the option
to choose a team is available. Each player can also get the room status report
which informs them if the game can be started, or why it cannot. When ready,
the player presses the button labeled Ready.

After the game starts, each player is told, whose turn it is, if theirs, they
hear a sound notification instead of an announcement. If unsure, the game of-
fers a keyboard shortcut which repeats the information. At this point, I would
expect the player to go through all player nicks and listen to the sounds they
got by pressing the number row keys. Each plays the info sounds representing
friendliness and such, their greeting sound and then their nickname is pro-
nounced by the speech synthesis. After that, the player could use the map
exploration function to hear where the tanks got placed. If unsure about
the placement of any one, in particular, they can start the exploration just for
a small area around each tank. Finally, they are expected to choose a weapon,
take aim and fire, if not in the mood for such violence, the option to skip their
turn is also available. After the shot finishes its business, the synthesizer an-

13

2. Design

nounces how many points the person scored. That is added towards their
team’s score, which can be accessed by another keyboard shortcut.

After the game ends, a winning team is announced, along with both of
the team’s scores.

14

Chapter 3
Implementation

3.1 Choosing Implementation Technologies

3.1.1 Programming Language
For the development of this game, I chose Python mainly because I know it
the best, but also because I used it to create the first prototype back in 2012,
so I knew all the necessary libraries providing an accessible GUI (Graphical
User Interface), or bindings to speech engine APIs (Application programming
interface) are available for it.

3.1.2 User Interface
I am using wxWidgets25 for the GUI. It is an open source multiplatform GUI
toolkit, using native UI elements on each supported OS (operating system).
This allows screen readers native to each one to cooperate without any addi-
tional changes to any code. Moreover, wxWidgets is freely licensed allowing
it to be used in any kind of project from open-source to a monetized propri-
etary one. WxWidgets is not written in Python, so I need a bindings library
wxPython26 to be able to use it.

3.1.3 Sound
For the sound feedback I am using a cross-platform proprietary audio engine
FMOD Core developed by Firelight Technologies27 specifically designed for
use in games. Their other product the FMOD Studio is a game audio design
suite, using the core as its backend. Together they are very popular used in
many games like the Crysis series or Kingdom Come Deliverance, which might

25https://www.wxwidgets.org/
26https://wxpython.org/
27https://fmod.com/

15

https://www.wxwidgets.org/
https://wxpython.org/
https://fmod.com/

3. Implementation

have contributed to their quite benevolent licensing structure. This structure
is split into tiers based on the game development budget. Unsurprisingly
I fit in their lowest tier with game development budget under 500,000$, which
grants me the permission to use all the features of their products for the small
price of free, provided I include their logo on the splash screen and the text
“Made with FMOD Studio by Firelight Technologies Pty Ltd.” somewhere in
the credits. Again, this library is not written in Python, so I use the work of
my friend Lukáš Tyrychtr who made a bindings library Pyfmodex28 allowing
me to use it.

3.1.4 Model Classes

At first, I wrote my own serializable model classes. After discovering this
solution is not viable, I moved to Google Protocol Buffers. It is a very widely
used library for model class implementation, but its Python API deviates too
much from its core coding style. That is why I chose Pydantic29. It provides
serialization and type checking functionality, has a much friendlier API and
an option to add a custom data validation.

3.1.5 Network Communication

During the idea phase of this project, I thought about making a web-based
client. This is why I decided on WebSockets for network communication.
There was one problem though, the WebSockets30 library for Python is asyn-
chronous, meaning it can be called only from asynchronous python functions.
Since I was new to asynchronous programming, my friend Lukáš Tyrychtr
helped me to develop a wrapper that converts this asynchronous API into
a synchronous one, with some additional features. We called this library
Python Websockets Communicator or Pywco for short.

3.1.6 Speech Synthesis API

Many speech synthesizers have an API for use by external software, but each
one is a little different. That is why I chose accessible_output231 as it unifies
mainly Windows-based speech synthesizer APIs into one. This means I lose
access to some of the more specific features of some synthesizers, but gain
confidence, that my game will be compatible with almost any players speech
software of choice.

28https://www.pydoc.io/pypi/pyfmodex-0.5.1/
29https://pydantic-docs.helpmanual.io/
30https://websockets.readthedocs.io/en/stable/intro.html
31https://web.archive.org/web/20190410084503/hg.q-continuum.net/

16

https://www.pydoc.io/pypi/pyfmodex-0.5.1/
https://pydantic-docs.helpmanual.io/
https://websockets.readthedocs.io/en/stable/intro.html
https://web.archive.org/web/20190410084503/hg.q-continuum.net/

3.2. Architecture

3.1.7 Event Manager
I use Blinker32 for event management. Its job is to pass information from Py-
wco, user interface and model services into the controller. For that, it employs
signals which can be sent and connected to. These signals can be named, or
distinguished by their instance address (every instance being unique). I use
both types, named for Pywco, as I cannot pass instances over the internet and
nameless for the rest of my application.

3.2 Architecture
The application is split into three parts, the code needed exclusively by the server,
the client and the code shared between them. This common code consists
of model classes, non-serializable data types, communication protocol info,
and shared set of utilities like a self-destructing event handler or an anima-
tion/timer service.

The client only code contains:
− model: an instance containing the game data,
− controllers: handling each event, dictating what shall be done,
− user interface: communicating with the player,
− speech and sound: providing additional feedback to the player,
− services and utilities: map exploration, shot animation and other code

that I was not able to put anywhere else.

The server only components are:
− controllers: again handling various events,
− model: another instance containing the server data,
− model services: manipulating data in the model,
− other services: for complex operations with different types of data.

I am taking inspiration from the game room clients described earlier. That
means I chose to have one default server to which every client connects. Each
room gets a new process running on a different port, which makes the default
server more stable as in-game bugs are unlikely to bring it down. It should
also help with scalability as in the future these instances could be spawned on
an entirely different server.

First only the default server (in the code named room_dispatcher) and
the client are connected. When the client wishes to create a room, a new
process is spawned and given only the port number it is supposed to run on
through the command line arguments. Immediately after starting, it connects
to the default server and asks for the rest of its information, like its name and
id. Upon receiving those, it tells the default server it is ready. The default

32https://pythonhosted.org/blinker/

17

https://pythonhosted.org/blinker/

3. Implementation

Figure 3.1: Spawning the game server

server then sends a message to the client informing them on which port and
address the room was created, after which the client uses that information and
connects. The code is not expecting a failure. If it occurs, usually no message
is displayed. The only exception is, when the client connection fails, the client
will be informed. If everything goes smoothly, at the and, there will be two
connections, one between the default server and the room/game server and
the other between the room/game server and the client. The former is used
to update the room status like the number of players connected or the map
selected and the latter obviously for transferring game data.

The client is only used for input and output, the validation and computing
are done on the server side. A typical path for an event propagation looks like
this:

1. client changes the number of rounds in the user interface,
2. user interface handles the event sending a blinker signal with the new

value,
3. client controller handles the blinker signal and sends a command to

the server,
4. server controller calls the model service to set the value,
5. model service validates the value, if OK, the value gets set and a deferred

event instructing the server to update it on all clients is generated,

18

3.2. Architecture

Figure 3.2: Client components Figure 3.3: Server components

6. after the server controller finishes executing the handler, deferred event
service is called to execute all queued events,

7. the queued event causes the server controller to be called and broadcast
the new room game settings,

8. client controller receives the new settings and saves them directly to its
model,

9. the UI is called to update the displayed data.
This introduces some latency problems. Because aiming waits for the server

to validate whether the player is allowed to aim before playing the aim sound,
Some redundant code would be necessary, to provide the client with a better
experience.

I am using intermediary layers for almost any component, for example,
I interface with the speech API through an execution queue, because the li-
brary essentially requires calls to originate from a single OS thread, the same
as some UI components. These layers also allow me to implement some fea-
tures like a speech buffer/history into the speech API one.

3.2.1 The Network Communication Protocol

Networking wrapper, Pywco, uses string values for commands. Those are
supplied in the form of an enum class to its constructor. The instance then
accepts any command that is present in said enum paired with any keyword
arguments containing serialized data. If the transfer succeeds and if the other
side has connected a handler to a blinker signal with the same name (the same
enum value), the handler will be called along with the same keyword argu-
ments. Because Pydantic produces a dictionary as its serialization output and
accepts the same unpacked dictionary on the other side, transferring objects
is quite simple.

19

3. Implementation

Protocol definition - common
from enum import Enum

class RoomCommands(Enum):
...

UPDATE_ROOM = "Update room"
UPDATE_PLAYER_LIST = "Update player list"

...

Model class - common
from pydantic import BaseModel

class PlayerList(BaseModel):
players: Dict[int, Player] = {}

Server - sending new data to all clients
def broadcast_player_list(self, sender):
player_list: PlayerList = self.model.player_list

self.room_pywco.broadcast(RoomCommands.UPDATE_PLAYER_LIST,
player_list=player_list.dict())

Client - receiving updated data
def update_player_list(self, sender, player_list):

player_list = PlayerList(**player_list)
self.model.player_list = player_list

Listing 1: Example from implementation – object transmission

3.3 Unit Tests
At the time of writing, the implementation contains 146 unit tests for tank
movement, game room setup, and math services. I am using the inbuilt
Python library named unittest, which integrates well with the PyCharm33,
the integrated development environment I am using.

33https://www.jetbrains.com/pycharm/

20

https://www.jetbrains.com/pycharm/

Chapter 4
Assessment

I intend to make the game presented in this thesis available to the community
of blind and visually impaired. Before making a public release, I wanted
to gather some early feedback. In this chapter, I describe the setup and
the results of a short experiment I did for that purpose. To make the test

come to fruition, I had to:
1. create a portable game binary,
2. set up a public server,
3. record a game tutorial explaining all the different sounds,
4. make the questionnaire, and finally
5. post a download link on AudioGames.net34 forum, which is a popular

site for downloading and discussing audio games.

4.1 Experiment Setup
I decided on a public test. The idea was to make the current version of
the game public for a limited amount of time, asking each player to fill in
a small form after testing.

4.1.1 Evaluation Form

I wanted to see whether the game is understandable to newcomers while being
aware of their familiarity with audio games in general, as I do not consider
my game to be easy to get into for people who never played one before. I
would like for this project to make some amount of money that could be put
towards server maintenance or commissioned music, but I was unsure which
monetization model to use. Lastly, while personally wanting to develop the

34https://AudioGames.net

21

https://AudioGames.net

4. Assessment

game further, I wanted a second opinion along with some inspiration for future
features.

The questions were:
1. How familiar are you with audio games? (1 Not familiar – 5

Extremely familiar)
2. Was the game fun? (1 Not fun – 4 Very fun)
3. Which game mechanic did not make sense? (Options)

− Map exploration
− Soundpacks
− Aiming
− Shot flight
− Other

4. Should I continue development after graduation? (1 No – 4 Yes)
5. Would you pay for the finished game? (Options)

− Make it free, I swear I will donate.
− Make it free, with features like custom soundpacks as a premium.
− Make it paid, but no subscriptions!

6. Feedback box (Text)
7. Feature suggestions? (Text)

4.1.2 Results
The game was available on Saturday, May 4th from 17 pm to 1 am CEST
(Central European Summer Time). In this time, around a dozen people tried
playing the game and six filled in the form. The actual results are shown on
4.1 and 4.2. Overall the results are very encouraging as the game received
on average three-point-sixty-six out of four points under the question about
fun, so I think it has the potential to be entertaining. The majority of play-
ers were fairly familiar with audio games as expected from users of an audio
gaming forum. The map exploration feature was marked as confusing while
another person praised its simplicity, so no conclusion could be made. Fortu-
nately, it was the only one marked as not making sense. The most voted for
monetization model was the free game with paid premium features. Although
winning only by one vote, given the ShellShock Live used the same model,
I am planning on implementing it.

22

4.1. Experiment Setup

Figure 4.1: Evaluation form results – 1

23

4. Assessment

Figure 4.2: Evaluation form results – 2

24

Conclusion

Unlike in video games where the interaction is based on the game providing
graphical feedback to the player, audio games rely on speech synthesis and
sounds. This allows people with severe visual imparity to enjoy playing com-
puter games. This thesis presents the design and implementation of an audio
game. Concretely, a port of an artillery-type video game to the audio form
called ArillEcho.

I have researched existing audio games and their sound feedback to gain
a better understanding of the topic, which helped me to successfully create
ArtillEcho. It is an over-a-network multiplayer game in which teams of play-
ers compete to determine who can score more points by accurately shooting
their enemies. The game can describe terrain, tank positions, shell flight and
explosions without speech which is used for game statistics like a score or
the number of rounds remaining. The server implementation is partly cov-
ered by unit-tests. The eight-hour-long beta-test of the game was announced
on AudioGames.net forums, and about a dozen people tried playing it. Out
of them, six filled in my questionnaire giving the game three point sixty-six
out of four star rating.

In the future, I will focus on two things. First to improve the documenta-
tion, which in the current version is regrettably absent. Second, I would like
to improve game stability and add features that will make the game even more
fun to play. This includes password protected game rooms, chat, connection
recovery and encryption, more weapons, maps, and better sound design.

25

Bibliography

1. NEWZOO. Newzoo’s 2018 Report: Insights Into the $137.9 Billion Global
Games Market. In: [online]. 2018 [visited on 2019-05-08]. Available from:
https://newzoo.com/insights/articles/newzoos-2018-report-
insights-into-the-137-9-billion-global-games-market/.

2. GERVEN, Clara Van; TAYLOR, Anne. The Information Age Braille Tech-
nology Timeline. In: [online]. 2011 [visited on 2019-04-26]. Available from:
https://web.archive.org/web/20160327200657/https://nfb.org/
Images/nfb/Publications/fr/fr28/fr280109.htm.

3. OMEGATRON. Waveforms.svg. In: [online]. 2006 [visited on 2019-04-
26]. Available from: https://commons.wikimedia.org/wiki/File:
Waveforms.svg#filehistory.

27

https://newzoo.com/insights/articles/newzoos-2018-report-insights-into-the-137-9-billion-global-games-market/
https://newzoo.com/insights/articles/newzoos-2018-report-insights-into-the-137-9-billion-global-games-market/
https://web.archive.org/web/20160327200657/https://nfb.org/Images/nfb/Publications/fr/fr28/fr280109.htm
https://web.archive.org/web/20160327200657/https://nfb.org/Images/nfb/Publications/fr/fr28/fr280109.htm
https://commons.wikimedia.org/wiki/File:Waveforms.svg#filehistory
https://commons.wikimedia.org/wiki/File:Waveforms.svg#filehistory

Appendix A
List of Used Abbreviations

GUI Graphical user interface

OS Operating system

API Application programming interface

IDE Integrated development environment

IO Input output

29

Appendix B
Contents of the Attached CD

readme.txt..................short guide on running the server and client
bin..............directory containing the executable version of the client
src

implementation..source code
thesis...source files in LATEX

doc..text of this thesis
thesis.pdf.........................text of this thesis in PDF format

31

	Introduction
	Audio Games
	Overview
	History
	Audio Game Genres

	Design
	Making the Core Mechanics Accessible

	Implementation
	Choosing Implementation Technologies
	Architecture
	Unit Tests

	Assessment
	Experiment Setup

	Conclusion
	Bibliography
	List of Used Abbreviations
	Contents of the Attached CD

