
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague March 1, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Nonlinear conjugate gradient method

 Student: Aleksandr Efremov

 Supervisor: doc. Ing. Ivan Šimeček, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2019/20

Instructions

1) Study the nonlinear conjugate gradient method [1,2].
2) Discuss advantages and drawbacks of different choices for the CG update parameter and restart criteria.
3) Explore various proposed hybridizations of the basic methods (see, e.g., [1]).
4) Compare the convergence properties of different methods.
5) Consider possible optimizations (e.g. heuristic scheme for parameter selection).
6) Implement the improved method, analyze achieved results.

References

[1] William W Hager and Hongchao Zhang. A survey of nonlinear conjugate gradient methods. Pacific journal of
Optimization, 2(1):35–58, 2006.
[2] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the agonizing pain,
1994.

Bachelor’s thesis

Nonlinear Conjugate Gradient Method

Aleksandr Efremov

Department of Theoretical Computer Science
Supervisor: doc. Ing. Ivan Šimeček, Ph.D.

May 15, 2018

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Aleksandr Efremov. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Efremov, Aleksandr. Nonlinear Conjugate Gradient Method. Bachelor’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2018.

Abstract

In this thesis we study nonlinear conjugate gradient methods for unconstrained
optimization. We outline the possibilities and limits of existing methods for
unconstrained optimization. Theoretical properties of the conjugate gradi-
ent methods are compared with other basic algorithms. The thesis reviews
different variants of nonlinear conjugate gradient methods.

The conjugate gradient update parameter plays an important role in the
convergence properties of nonlinear conjugate gradient method. Several for-
mulas for the conjugate gradient update parameter exist and were proven to
have plausible convergence properties. No generally optimal choice exists.
In practice, the performance with different choices of the formula can vary
significantly on different problems.

We propose a heuristic method that automatically adjusts the value of
the parameter. Numerical results show that the performance of the heuristic
method is often close to the performance of the best choice of the formula for
a given problem.

Keywords conjugate gradient method, unconstrained optimization, contin-
uous optimization, local optimization, mathematical optimization

v

Abstrakt

V této práci studujeme nelineárńı metody sdružených gradient̊u pro nepod-
mı́něnou optimalizaci. Uvád́ıme možnosti a limity stávaj́ıćıch metod nepodmı́-
něné optimalizace. Teoretické vlastnosti metod sdružených gradient̊u se porov-
návaj́ı s daľśımi základńımi algoritmy. Práce porovnává r̊uzné varianty ne-
lineárńıch metod sdružených gradient̊u.

Parametr β (tzv. conjugate gradient update parameter) má významný vliv
na konvergenčńı vlastnosty nelineárńıch metod sdružených gradient̊u. Exis-
tuje několik vzorc̊u pro volbu parametru které maj́ı vyhovuj́ıćı konvergenčńı
vlastnosti, nicméně neexistuje optimálńı volba. V praxi se výkon metody
s r̊uznými vzorci může výrazně lǐsit v závislosti na r̊uzných problémech.

Navrhujeme heuristickou metodu, která automaticky upravuje hodnotu
parametru. Experimentálńı výsledky ukazuj́ı, že výkonnost heuristické metody
je často bĺızká výkonnosti nejlepš́ı volby vzorce pro daný problém.

Kĺıčová slova metoda sdružených gradient̊u, nepodmı́něná optimalizace,
spojitá optimalizace, lokálńı optimalizace, matematická optimalizace

vi

Contents

Introduction 1

1 Prerequisites 3
1.1 Notation . 3
1.2 Multivariate Functions . 3
1.3 Optimality Conditions . 5

2 Unconstrained Optimization 9
2.1 Methods for Local Optimization 9
2.2 Complexity and Convergence Properties 12
2.3 Overview of Iterative Descent Algorithms 15

3 Conjugate Gradient Methods 23
3.1 Linear Conjugate Gradient Method 23
3.2 Nonlinear Conjugate Gradient Methods 26
3.3 Line Search Methods . 27
3.4 Convergence Properties . 28
3.5 Formulas for the Direction Update Parameter 29
3.6 Hybrid Conjugate Gradient Methods 32
3.7 Restart Strategies . 34

4 Heuristic Method 37
4.1 Ideas for Heuristic Methods . 37
4.2 The New Method . 39
4.3 Numerical Results . 44
4.4 Conclusion . 51
4.5 Future Work . 51

Conclusion 53

Bibliography 55

A CUTEst environment 61

B Implementation details 63

C Contents of enclosed CD 65

vii

List of Figures

1.1 An example of a strictly convex function 7
1.2 An example of a nonconvex function with infinitely many local

minimas . 7

2.1 An example of a descent algorithm convergence to a saddle point . 11
2.2 An example of three methods applied to a quadratic function . . . 15

4.1 Performance profiles based on the number of iterations 47

ix

List of Tables

4.1 Numerical experiment based on the number of iterations 48
4.2 Experiment on the heuristic method with different values of weights

update parameter . 49

xi

Introduction

Mathematical optimization is widely used in science, engineering, economics,
and industry. An optimization problem can be defined as the problem of
finding the best solution between all feasible solutions where a solution is a
set of variables and its “cost” is determined by some objective function.

In this thesis, we focus our attention on unconstrained continuous opti-
mization problems where variables are real numbers and objective functions
are multivariate real functions. That is, we have no constraints and any vec-
tor from Rn is a feasible solution. Therefore, given some objective function
f : Rn → R, our problem is to find x ∈ Rn that minimizes f(x). The problem
might appear to be easy on the first sight, but we will soon find out that,
in general, such problems are unsolvable and our best hope is to find an ap-
proximate solution numerically. In recent years, there has been a growing
interest in solving unconstrained optimization problems, since such problems
often arise in increasingly popular field of machine learning.

The main interest of the thesis is nonlinear conjugate gradient methods,
which are widely used in many practical large-scale optimization problems
because of their simplicity and low memory requirements. By “methods” here
we mostly refer to variants of a general method that differ by the choice of a
single parameter β. Motivated by the fact that no optimal choice is currently
known, we propose a heuristic method that automatically adjusts the value of
the parameter as the iterations of the method evolve.

1

Introduction

Thesis Structure
• Chapter 1 contains the necessary preliminaries on multivariate functions

and optimality conditions.

• In Chapter 2 we discuss the possibilities and limitations of unconstrained
optimization methods. To provide the necessary context in which non-
linear conjugate gradient methods are studied, we briefly outline several
fundamental methods and discuss their properties.

• Chapter 3 starts with the description of the linear conjugate gradient
method that was initially proposed to minimize quadratic functions.
Consequently, we describe its extension to the nonlinear conjugate gra-
dient method for general functions. Properties of different choices for
the direction update parameter β, hybrid methods and restart criteria
are discussed.

• In Chapter 4 we propose a heuristic method, discuss the proof-of-concept
implementation and present numerical results.

2

Chapter 1
Prerequisites

This chapter is devoted to a review of the required mathematical background
on multivariate functions and optimality conditions.

1.1 Notation

For vectors in Rn we use bold font and normal font for their coordinates,
e.g x = (x1, . . . , xn). Throughout this thesis we consider vectors in Rn as
column vectors and use transpose symbol xT to transform to row vectors
when required. Similarly, we use bold font and capital letters for matrices and
use AT to denote the matrix transpose.

We often work with sequences of vectors {x0,x1, . . . } = {xk}∞k=0 and use
simplified notation {xk}. Thus, xk is used to denote k-th vector in a sequence
rather than k-th variable xk.

We use ‖x‖ to denote the Euclidean norm, that is, for x ∈ Rn

‖x‖ = ‖x‖2 =
√

xTx.

1.2 Multivariate Functions

In this section we review the mathematical tools required to recognize minimas
of multivariate functions. We assume that the reader is familiar with basic
calculus concepts such as derivatives and continuity for univariate functions.

Gradient and Hessian

Unconstrained optimization algorithms often rely on derivative information
about the objective function. Generalizations of derivatives to multivariate
functions, the gradient and Hessian, are essential to multivariate optimization.

Definition 1.1 (Partial derivative, [1, p. 63]). Let {e1, . . . , en} be the natural
basis of Rn. For a function f : Rn → R we use ∂xif to denote the function
Rn → R defined for any x = (x1, . . . , xn) as

∂xif(x) = lim
t→0

f(x + tei)− f(x)
t

and we call it the partial derivative of f with respect to variable xi.

We say that a function f : Rn → R is differentiable if all its partial deriva-
tives exist for any x ∈ Rn. Moreover, if all partial derivatives are continuous,
we say that f is continuously differentiable.

3

1. Prerequisites

Definition 1.2 (Gradient, [1, p. 65]). Let f : Rn → R be a differentiable
function. Then the function ∇f : Rn → Rn defined by

∇f =


∂x1f
∂x2f

...
∂xnf

 ,

is called the gradient of f .

Definition 1.3 (Hessian, [1, p. 65]). If ∇f is differentiable, we say that f is
twice differentiable. Then the Hessian of f is the function ∇2f : Rn → Rn×n
defined as

∇2f =


∂2
x1x1f ∂2

x2x1f · · · ∂2
xnx1f

∂2
x1x2f ∂2

x2x2f · · · ∂2
xnx2f...

...
∂2
x1xn

f ∂2
x2xn

f · · · ∂2
xnxn

f

 ,
where ∂2

xixj
f represents taking the partial derivative of f with respect to xj

first, then with respect to xi.

Taylor’s Theorem and Approximations

Taylor’s theorem is the basis for many theoretical results in optimization. Here
we present its reduced version which leads to an important idea of approxi-
mating general functions by suitable functions that are easy to analyze.

Theorem 1.1 (Taylor’s Theorem [2, Theorem 2.1]). Suppose that f : Rn → R
is continuously differentiable and that δ ∈ Rn. Then there exists a constant
t ∈ (0, 1) such that

f(x + δ) = f(x) +∇f(x + tδ)Tδ (1.1)

for any x ∈ Rn. Also, we have:

f(x + δ) = f(x) +∇f(x)Tδ + o(‖δ‖). (1.2)

Moreover, if f is twice continuously differentiable, then there exists a constant
t ∈ (0, 1) such that

f(x + δ) = f(x) +∇f(x)Tδ + 1
2δT∇2f(x + tδ)δ, (1.3)

and
f(x + δ) = f(x) +∇f(x)Tδ + 1

2δT∇2f(x)δ + o(‖δ‖2). (1.4)

4

1.3. Optimality Conditions

Note that the order symbol o here relates to behavior near zero, that is,
f(x) = o(g(x)) is used to mean that

lim
x→0

f(x)
g(x) = 0,

in other words, f(x) goes to zero “faster” than g(x). This notation is common
in numerical analysis but, conversely, is typically used in computer science
to denote [3, Chapter 3] a bound for x → ∞ and can be quite misleading.
Further in the thesis we use O and Ω notation with the typical computer
science meaning of the growth rate as x goes to infinity.

Equations (1.2) and (1.4) lead to a straightforward way to approximate
a function in a small neighborhood around any point x. For a differentiable
function f and a point y = x + δ, where ‖δ‖ is sufficiently small, we obtain
the following linear approximation:

f(y) ≈ f(x) +∇f(x)Tδ. (1.5)

Furthermore, for a twice differentiable function f we have the quadratic ap-
proximation

f(y) ≈ f(x) +∇f(x)Tδ + 1
2δT∇2f(x)δ. (1.6)

1.3 Optimality Conditions

In unconstrained optimization problems we are seeking for a solution that
minimizes the objective function. In this section we define how such a solution
can be recognized.

Generally, we would be the happiest if we find a solution x that minimizes
the objective function f over all Rn.

Definition 1.4 (Global minimum). We call a point x∗ a global minimum of
a function f if f(x∗) ≤ f(x) for all x ∈ Rn.

However, we often do not have enough information about the function
structure (or do not have the analytical tools to use the information from the
formula of the function) and can only rely on local techniques.

Definition 1.5 (Local minimum). A point x∗ a local minimum of a function f
if there exists ε > 0 such that f(x∗) ≤ f(x) for all x ∈ Rn and ‖x− x∗‖ < ε.

Generally, given a local minimum point x∗, there is no much easier way
to decide if x∗ is also a global minimum than to find all local minimas and
compare their values. On the other hand, several conditions allow us to check
if some point is a local minimum efficiently.

Theorem 1.2 (First-order necessary condition [2, Theorem 2.2]). If x∗ is a
local minimum of a continuously differentiable function f then ∇f(x∗) = 0.

5

1. Prerequisites

Hence, if ∇f(x∗) 6= 0 we can say that x∗ is not a local minimum. However
∇f(x∗) = 0 is not a sufficient condition of x∗ being a minimum.

Definition 1.6 (Stationary point). A point x∗ is a stationary point of f if
∇f(x∗) = 0.

A stationary point can be a minimum, maximum, or neither of them (a sad-
dle point). Therefore, additional information from the Hessian values is re-
quired.

Definition 1.7 (Positive definite matrix). We say that a matrix A ∈ Rn×n
is positive definite if xTAx > 0 for all nonzero vectors x. If xTAx ≥ 0 for all
x ∈ Rn we say that A is positive semidefinite.

Theorem 1.3 (Second-order necessary condition, [2, Theorem 2.3]). If x∗ is a
local minimum of a twice continuously differentiable function f then ∇2f(x∗)
is positive semidefinite.

Hence, a point is not a minimum if the Hessian is not positive semidefinite
at this point. Consequently, we have the following sufficient condition:

Theorem 1.4 (Second-order sufficient condition, [2, Theorem 2.4]). Let f
be a twice continuously differentiable function. If ∇f(x) = 0 and ∇2f(x) is
positive definite then the point x is a local minimum of f .

Note that if ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite but not
positive definite, then this second-order condition does not allow us to decide
if x∗ is a minimum and higher order tests or other methods must be used.

On the other hand, no such general conditions exist for global minimas.
As a result, most of unconstrained optimization algorithms only aim at finding
a local solution.

However, there exists a class of functions for which global and local opti-
mization are equally hard.

Definition 1.8 (Strictly convex function). A function f : Rn → R is strictly
convex if

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y)

for all x,y ∈ Rn and all 0 ≤ λ ≤ 1.

Theorem 1.5. Let f be a differentiable strictly convex function. If f has a
stationary point x∗, then x∗ is a unique global minimum of f .

Therefore, a local optimum of a strictly convex function is also a global op-
timum (Figure 1.1) and can be found by local optimization methods. On the
other hand, general nonconvex functions can have infinitely many local min-
imas with significaltly higher function values (Figure 1.2). Therefore, global
optimization is naturally much harder for nonconvex functions.

6

1.3. Optimality Conditions

x

−1

0

1

y

−1

0

1

f
(x
, y

)

0

1

Figure 1.1: An example of a strictly convex function f = 1 − e−(x2+y2). It has a unique
global minimum at (0, 0).

x

−4 −3 −2 −1 0 1 2 3 4

y

−4
−3
−2
−1

0
1

2
3

4

f
(x
, y

)

5
10
15
20
25
30
35
40

Figure 1.2: An example of a nonconvex function f = x2 + y2 + 10 sin2 x+ 10 sin2 y. It has
a global minimum at (0, 0) and inifintely many local minimas with higher function values.

7

Chapter 2
Unconstrained Optimization

In this thesis we consider unconstrained optimization problems:

minimize f(x)
subject to x ∈ Rn,

where f : Rn → R is a real-valued multivariate function.
In most of the cases, for an arbitrary, nonconvex function f we have little

hope to find a global minimum. In fact, it is known that continuous global
optimization is undecidable1 [4]. Existing (general) methods for global opti-
mization usually rely on some heuristic or randomization (e.g., particle swarm
methods [5], simulated annealing [6]) and only try to solve the problem and
offer no guarantee to find a global minimum in finite time.

Quite often, in real-world applications, many local minima have sufficiently
low function values and it is not important to find the global minimum. In
such cases local optimization methods are widely used. Local optimization
theory is developed substantially deeper and many numerical methods are
widely available. Moreover, most of the popular algorithms for global opti-
mization make use of local methods and move from one local minimum to
another, better one (e.g., tunneling algorithm [7], filled function method [8]).
This thesis is subsequently focused on local optimization.

We also limit our attention to methods that are based on the information
about function derivatives and require the objective functions to be smooth,
that is, their second derivatives exist and are continuous. Nonsmooth opti-
mization problems are not uncommon in practice. One possible way to solve
them are derivative-free methods [9] which are not reviewed in this thesis, see,
e.g., [2, Chapter 9]. Another ways are to use subgradients, generalization of
the concept of gradients to non-differentiable functions [10], or smoothing, a
way to approximate the objective function by a smooth function [11].

2.1 Methods for Local Optimization

Most practical algorithms for unconstrained local optimization have similar
structure (Algorithm 2.1) that relies on the idea of iterative descent. The
algorithm starts at some point x0 (an initial guess) and successively generates

1That is, there can exist no algorithm that solves every possible problem of the class in
finite time.

9

2. Unconstrained Optimization

a sequence of points {xk}, decreasing the value of f at each iteration:

f(xk) < f(xk−1),

until some local minimum x∗ is found (or approximated with sufficient ac-
curacy). The algorithm usually converges to a minimum that is close to the
initial guess x0 (though not necessarily to the closest one). Therefore, if some
knowledge about the objective function structure or rough location of satis-
factory minimum is available, it is reasonable to choose x0 to be an estimate
of the solution, thus guiding the algorithm towards the required minimum or
speeding up the convergence. Otherwise, an initial guess may be chosen in
some arbitrary manner.

Algorithm 2.1 General Iterative Descent (f,x0)
Determine the initial search direction d0;
Set k ← 1;
while xk−1 is not optimal do

Determine the step size αk−1;
. usually by minimizing f along the line xk−1 + αk−1dk−1

Set xk ← xk−1 + αk−1dk−1;
Determine the next search direction dk;
Set k ← k + 1;

end while
return xk−1;

In each iteration, algorithms of this type determine some descent direc-
tion dk, usually relying on first-order derivative (gradient ∇f) or second-order
derivative (Hessian ∇2f) information.

For a direction dk, the step size αk is determined by a line search method
and the next point xk+1 = xk + αkdk is obtained so that the value of the
objective function is decreased, i.e.

f(xk+1) = f(xk + αkdk) < f(xk). (2.1)

The ideal choice for αk would be to minimize f along the line xk+αdk, that is

f(xk + αkdk) = min
α∈R

f(xk + αdk). (2.2)

Note that solving (2.2) is itself an unconstrained optimization problem of min-
imizing the one-dimensional function φ(α) = f(xk+αdk). For a general func-
tion f we do not have any explicit formula for the solution of (2.2). This exact
line search strategy is completely theoretical and is never used in practice since
even in one dimension case we cannot find an exact minimum of a function
in finite time [12, p. 28]. Even finding a local minimum of φ with a sufficient
precision can be expensive and require many evaluations of f and ∇f .

10

2.1. Methods for Local Optimization

Instead, it is often sufficient to perform inexact search to find α that sat-
isfies certain conditions that are required for the convergence of a particular
method. It is not enough to simply reduce the function value by any amount
for which the inequality (2.1) holds. Consider an example of a function which
has minimum value f(x∗) = −1 and a sequence of iterates {xk} for which
f(xk) = c/k for some constant c > 0. Clearly, the values satisfy the inequal-
ity (2.1) but the sequence {f(xk)} has its limit in zero and the algorithm never
reaches the minimum. For this reason, some additional conditions must be
enforced to ensure the convergence. In practice, efficient inexact line search
methods exist and typically require a small number of function and gradient
evaluations to find sufficiently good α. We will get back to the line search
conditions in the context of nonlinear conjugate methods in the Section 3.3.

Another approach for the choice of direction and distance to the next
iterate xk are trust region methods [13]. The trust region approach first de-
termines a maximum step length (trust region radius) and only then seeks a
direction and step to improve the function value. Many common algorithms
can be used with both line search and trust region approaches [2, Chapter 4],
however there appears to be no straightforward way of using trust region strat-
egy with the main interest of this thesis, conjugate gradient methods, and we
do not discuss it further.

The Algorithm 2.1 can be terminated when the necessary condition for
a local minimum is satisfied, i.e. ∇f(xk−1) = 0. The sufficient condition,
positive definiteness of ∇2f(xk−1), is usually not checked in practice because
of high computational cost of such tests. This implies that the algorithm
may end up in any stationary point, i.e. local maximum or saddle point.
Algorithms can indeed get stuck in any stationary point (see Figure 2.1),
however, and practical experience suggests that algorithms are attracted to
non-minimum points only under tolerably rare special conditions.

x

0

1

2

y
−1

0
1

2

f
(x
, y

)

0

1

x0

Figure 2.1: An example of a descent algorithm converging to a saddle point. Consider a
function f(x, y) = 0.5x2 − 0.5y2 + 0.25y4. It has two local minimas at points (0,−1) and
(0, 1) and a saddle point (0, 0). Now, consider a descent algorithm with an iteration of the
type xk = xk−1 − α∇f(xk−1), where α is any scalar value. If started at any point with
y = 0, all consecutive iterations have y = 0 and the algorithm has no chance to reach any
of the mimimas and can only converge to a saddle point [12, Example 1.2.2].

11

2. Unconstrained Optimization

However, as we will see in the next section, even local optimization meth-
ods are not guaranteed to reach a solution in a finite number of steps. Typi-
cally, algorithms are terminated when the gradient becomes sufficiently small,
i.e. ‖∇f(xk−1)‖ < ε, or even ‖∇f(xk−1)‖ < ε‖∇f(x0)‖, for some tolerance
value ε > 0. This is also useful to resolve problems caused by round-off errors.
Other, problem-dependent, termination criteria are used sometimes.

2.2 Complexity and Convergence Properties

In this section, we summarize the existing theoretical results for unconstrained
optimization.

Despite the fact that local optimization appears to be “easier” than global
optimization, it is still “hard” from computational complexity theory perspec-
tive. Local minimization is known to be NP-hard2 in the worst case [14].
In contrast to discrete optimization, where rigorous theoretical classification
in terms of complexity classes is often available, continuous optimization field
appears to offer substantially less deep theoretical analysis and tends to study
algorithms more from numerical, experimental perspective.

To our best knowledge, local minimization algorithms are only guaranteed
to converge towards a solution in each iteration, and strictly convex quadratic
functions are the only class of functions for which we have methods with finite
termination guarantees. It is worth to mention, however, that after some finite
number of iterations such methods reduce the function to a value that is essen-
tially indistinguishable from the solution in finite precision arithmetic. More-
over, the optimal value of a general function can also be an irrational number,
hence it has no finite representation in typical computational models anyway.
Therefore, by “solving the problem” we often means finding an approximate
solution x within some tolerance ε of the exact solution x∗, e.g. ‖x−x∗‖ < ε.

Global convergence

The major question is whether the sequence {xk} converges to a local min-
imum x∗ at all when an algorithm is started far from all minimas. Typical
result [2, Section 3.2] for descent algorithms is

lim
k→∞
‖∇f(xk)‖ = 0

under mild assumptions that f is bounded below on Rn and its gradient ∇f
is continuous. In other words, we can be sure that iterations of the algorithm
get closer to a stationary point in each iteration. However, this does not imply

2The class of NP-hard [3, Chapter 34] problems contains all the problems that are at least
as hard as the hardest problems in NP. It is widely believed that for some of the problems
in NP there can be no faster than exponential time algorithm. No efficient algorithms to
solve NP-hard problems are currently known.

12

2.2. Complexity and Convergence Properties

that the algorithm reaches the point in a finite number of iterations. In fact,
in most of the cases, the algorithms are not guaranteed to reach a stationary
point after finitely many iterations even if no round-off error occurs.

Furthermore, for some algorithms, including conjugate gradient methods,
only slightly weaker result can be proven:

lim inf
k→∞

‖∇f(xk)‖ = 0.

That is, just some subsequence of gradients converges to 0. The algorithm
still iterates towards a stationary point but in a less predictable manner.

Rate of local convergence

The mere knowledge of the fact that an algorithm converges towards a sta-
tionary point is of little value in practice unless we know how quickly it ap-
proaches the solution. Local convergence rate describes the speed of conver-
gence of an algorithm when it reaches some sufficiently close neighborhood
of the solution x∗, where precise requirements for the neighborhood vary for
different algorithms.

Results are usually [1, Section 8.4] of the type

‖xk − x∗‖ ≤ c‖xk−1 − x∗‖p (2.3)

for all sufficiently large k and constants c, p > 0. The higher the value of p,
the faster the convergence.

In particular, when c ∈ (0, 1) and p = 1, we say that the convergence
is linear. Expanding the inequality (2.3), we can get

‖xk − x∗‖ ≤ ck‖x0 − x∗‖+ ξ, (2.4)

where ξ is negligible, assuming that x0 lies inside the local convergence region
and the sequence {xk} behaves reasonably close to (2.3) for small k as well.
This rate is quite fast. For example, to reduce the distance between the
starting point x0 and the solution x∗ by a factor of ε, i.e.

‖xk − x∗‖ ≤ 1
ε
‖x0 − x∗‖, (2.5)

only O(log(1/ε)) iterations are required.
For p = 2, the convergence is quadratic. It follows that

‖xk − x∗‖ ≤ c(2k−1)‖x0 − x∗‖2
k

+ ξ. (2.6)

This rate is extremely fast and the reduction (2.5) can be achieved in only
O(log log(1/ε)) iterations.

13

2. Unconstrained Optimization

The cases where p > 1, or equivalently,

lim
k→∞

‖xk − x∗‖
‖xk−1 − x∗‖ = 0 (2.7)

are referred to as superlinear convergence.
Local convergence does not precisely describe the rate of convergence of

the initial iterations, which may be far from the solution. For general non-
convex functions there are especially few guarantees of the size of the local
convergence region and there is hardly any practical way to determine it be-
forehand. Mentioned results only show that eventually the algorithm will
reach the region. Nonetheless, in practice the convergence of initial iterations
is typically adequately fast.

Computational complexity and storage requirements

Computational complexity approach aims to quantify the number of elemen-
tary operations to find the solution exactly or within some ε tolerance. How-
ever, such analysis is complicated for several reasons.

As we have seen before, algorithms are not guaranteed to terminate in a fi-
nite number of iterations. Also, descent algorithms usually require to evaluate
the objective function or its derivatives in every iteration to perform the line
search and determine the direction. We consider the objective function f to
be a “black-box”, i.e. that we can access the function through some “oracle”
which can give us the function value (and, when required, derivatives) at any
given point. The objective function can be arbitrarily complex, therefore it
is impossible to bound the computational cost of its evaluation. Any compu-
tational complexity approach would also have to account for computation in
real numbers and use the appropriate computational model.

Only a small number of nontrivial results is available. Computational cost
of a single iteration, excluding the cost of the function evaluations and the
line search is often studied. Storage requirements also play an important role.
In many practical applications, e.g. deep learning, the dimension3 n can typ-
ically be as large as several millions, thus making it impossible to use O(n2)
memory to store any matrices. Moreover, even matrix-vector multiplication
in time O(n2) can be impractical. In such conditions, preference is given to
methods which avoid storage of any matrices and use only O(n) memory for
vectors and perform only vector-vector additions and scalar-vector multipli-
cations in time O(n). However, as we will see in Section 2.3, lower time and
memory complexity is overbalanced by slower convergence.

3Here and further in the text we use n to denote the dimension of the problem, i.e.
f : Rn → R and xi ∈ Rn.

14

2.3. Overview of Iterative Descent Algorithms

2.3 Overview of Iterative Descent Algorithms

In this section, we provide a brief and informal overview of widely known
algorithms based on the iterative descent. We describe the steepest descent
method, Newton-type and Quasi-Newton methods, and, our main interest,
conjugate gradient methods, which we further discuss in more detail in Chap-
ter 3. More detailed analysis can be easily found in any of numerous books
on nonlinear optimization. The algorithms differ mainly in the way of how
descent direction is selected.

The reviewed methods have been known for a long time, and are still
widely used in practice. Steepest descent method can be traced back to a pa-
per of 1847 by Cauchy [15], and peak research interest in unconstrained local
optimization methods was attained in the 1970s and 1980s. No substantially
better methods have been found since then. More complex, specialized or
heuristic algorithms were proposed, but there exists no single optimal algo-
rithm that works well on all problems in general. This fact is also supported
by the “No free lunch theorems for optimization” [16], which, informally, state
that any two optimization methods have similar average performance when
measured over all possible problems.

There exist several ways of how to interpret the algorithms. In the follow-
ing review, we view them from the perspective of approximating function f by
an appropriate model φ, which we can easily minimize analytically. Suppose
that at iteration k we reached some point xk. By finding a suitable model
φk and its minimum y∗, we may hope that setting xk+1 = y∗ would bring us
closer to the solution.

x0

(a) Steepest descent

x0

(b) Newton’s method

x0

(c) Conjugate gradient

Figure 2.2: Three methods applied to the quadratic function f(x) = xT (2 1
1 6)x. Plots

show iterations of the methods on the contour plot of f . All three methods are started at
the point x0 = (−9, 5) and iterate towards the minimum at (0, 0). Note that the steepest
descent method does not reach the solution in a finite number of steps.

15

2. Unconstrained Optimization

Steepest descent

The steepest descent is the simplest and least computationally expensive
(per iteration) of the methods. It does not require to evaluate the Hessian and
relies entirely on the gradient values. The main advantage of the method is its
simplicity, both theoretical and practical. This leads to numerous analytical
results of the convergence as well as wide application in practice.

Recall the first-order Taylor series expansion (1.2) of f around some sta-
tionary point x. For every y ∈ Rn we have

f(y) = f(x) +∇f(x)T (y− x) + o(‖y− x‖).

Consider the approximation

φk(y) = f(xk) +∇f(xk)T (y− xk) + 1
2α‖y− xk‖2, (2.8)

where α is some constant. Note that in terms of second-order Taylor series
expansion (1.3) this can also be interpreted as approximating the Hessian
by I/α, where I is the identity matrix.

Finding the stationary point y∗ of φ from the equation

∇φk(y∗) = ∇f(xk) + 1
α

(y∗ − xk) = 0,

we obtain
y∗ = xk − α∇f(xk),

The choice of α, such that the line minimization rule (2.2) holds, gives us
the best possible approximation of type (2.8) that yields the greatest decrease
of a function value. This leads exactly to the iterate of the steepest descent
method:

xk = xk−1 − αk−1∇f(xk−1). (2.9)

The method derives its name from the fact that, among all possible di-
rections, dk = −∇f(xk) is the one along which f decreases most rapidly
in the sense that

dk = argmin
v∈Rn

{
∇f(xk)Tv | ‖v‖ = ‖∇f(xk)‖

}
.

The method is strongly globally convergent even with practical inexact
line search [2, p. 39] in the sense that

lim
k→∞
‖∇f(xk)‖ = 0.

The iteration (2.9) requires only gradient evaluation and two vector opera-
tions. Hence, the step computation needs only O(n) operations and O(n) stor-
age (excluding operations required for the line search and gradient evaluation).
This is the best complexity among all the known algorithms of similar type.

16

2.3. Overview of Iterative Descent Algorithms

The steepest descent converges linearly when sufficiently close to a station-
ary point [12, p. 34]. The fact that in each iteration the algorithm uses only
the gradient at the current point and completely ignores any second-order in-
formation about the function is the primary reason behind its simplicity, but it
is also a huge drawback. When the line search is exact, consecutive gradients,
and therefore directions, are orthogonal, i.e dTk+1dk = ∇f(xk+1)T∇f(xk) = 0.
This gives rise to a zigzagging behavior, where, in a sense, each iteration “un-
does” part of the progress of the previous iteration. Even on some strictly
convex quadratic functions the steepest descent method does not reach the so-
lution in a finite number of iterations and converges towards it infinitely (Fig-
ure 2.2a).

Stochastic gradient descent

An important extension of the steepest descent method, the stochastic gra-
dient method [17, Section 5.9] can be used to minimize functions that can
be expressed as sums of other functions, i.e. f(x) =

∑m
i=1 fi(x). On such

functions, the standard steepest descent method would need to evaluate the
gradient of all m subfunctions per iteration, which can be prohibitively ex-
pensive. The iterations of the stochastic gradient descent are defined as

Randomly choose subset t ∈ {1, . . . ,m},
xk = xk−1 + αk−1

∑
i∈t
∇fi(xk−1).

The size of the subset t can be fixed to be independent of m, hence only O(1)
gradients must be evaluated per iteration.

In expectation, the method is globally convergent when all functions fi are
convex [18]. The iteration of the method is much cheaper than the iteration
of the steepest descent and achieves comparable progress.

Moreover, the method is often used without the line searches (which can
be expensive) and the value of α is obtained by some efficient procedure [19],
typically in time O(1). Even though such methods need not to be globally
convergent, they are extremely efficient when exact solution is not required and
it is sufficient to achieve just a good decrease of the objective function value.
For example, such methods are extremely popular in machine learning [17,
Chapter 6].

Newton-type methods

In contrast to the steepest descent method, Newton-type methods are the more
computationally expensive and make full use of the second-order information
by evaluation the Hessian matrix in each iteration.

17

2. Unconstrained Optimization

Given xk, the Newton’s method obtains xk+1 by minimizing the quadratic
approximation (1.6) of f around xk:

φk(y) = f(xk) +∇f(xk)T (y− xk) + 1
2(y− xk)T∇2f(xk)(y− xk).

A point y∗ is a stationary point of φk if

∇φ(y∗) = ∇f(xk) +∇2f(xk)(y∗ − xk) = 0.

Moreover, if ∇2f(xk) is invertible, we have that

y∗ = xk − (∇2f(xk))−1∇f(xk)

and this is the pure Newton iteration. In order to avoid the possible diver-
gence, more general iteration

xk = xk−1 − αk−1(∇2f(xk−1))−1∇f(xk−1) (2.10)

is used in practice.
Curiously, the basic method of the form (2.10) is not guaranteed to con-

verge globally when started far away from a stationary point and only con-
verges locally when started sufficiently close [20]. Several methods exist to en-
sure global convergence [21]. Hessian is not guaranteed to be positive definite
and the term (∇2f(xk−1))−1 in (2.10) is often replaced by (∇2f(xk−1)+cI)−1

for some choice of value c so that the matrix∇2f(xk−1)+cI is positive definite.
Newton methods attain fast quadratic rate of convergence (2.6) when close

enough to a stationary point [20]. In particular, they minimize strictly convex
quadratic functions in a single iteration (Figure 2.2b).

In practice, Newton-type methods are often much faster than steepest de-
scent in terms of the number of iterations. The price to pay is a high iteration
cost. The computational burden of evaluating, storing and inverting Hessian
in each iteration makes Newton methods impractical even on problems with
quite moderate dimension. As we have seen, Newton-type methods require to
compute both gradient ∇f(xk) and Hessian inversion (∇2f(xk))−1 in each it-
eration, which leads to O(n2) storage and up to O(n3) operations per iteration
(excluding operations required for the line search and gradient evaluation).

Quasi-Newton methods

The motivation behind Quasi-Newton methods is to avoid the high compu-
tational cost of Newton-type methods, caused by the requirement to calcu-
late the inverse Hessian at each step. Instead of working with the Hessian
directly, Quasi-Newton methods maintain the approximation of the inverse
Hessian H−1.

Then, each iteration is computed as

xk = xk−1 − αk−1H−1
k−1∇f(xk−1).

18

2.3. Overview of Iterative Descent Algorithms

Therefore, the Hessian is no longer required to be evaluated and inverted
at each step and time complexity is reduced to O(n2) operations required to
compute the matrix-vector product. The method still requires O(n2) memory
to store the matrix H−1.

Typically, Quasi-Newton methods do not achieve the quadratic conver-
gence rate of Newton-type methods, but still attain quite fast superlinear
rate (2.7) of local convergence [22].

However, for large-scale problems even O(n2) time and memory require-
ments can be prohibitive. This motivated the interest in the limited-memory
Quasi-Newton methods. This algorithms do not store H−1

k explicitly, but in-
stead keep a certain information from m previous iterations, for some constant
value of m, requiring only O(mn) storage. This information allows to com-
pute the approximate product H−1

k ∇f(xk) by performing (excluding the cost
of gradient evaluation) a constant number of vector operations in time O(mn).
Limited-memory methods have only linear rate of convergence in the worst
case, but on many problems show comparable performance to standard Quasi-
Newton methods and give satisfactory results even for small values of m, say
m ≤ 7 [23].

Conjugate gradient methods

Here we briefly outline the properties of conjugate gradient methods, which
are deeply analyzed in Chapter 3.

When applied to a strictly convex quadratic function f , the linear con-
jugate gradient method iterations decrease the function value along the se-
quence of directions which are conjugate with respect to the Hessian matrix.
This method avoids zigzagging behavior of the steepest descent method and
is guaranteed to minimize a strictly convex quadratic function of n variables
in at most n iterations (Figure 2.2c).

From Taylor’s theorem (1.4) we can see that any function can be ap-
proximated by a positive definite quadratic function, when close enough to
a local minimum. Hence, we can hope that the algorithm’s fast convergence
on quadratic functions can be applied towards general functions and yield
good local convergence properties. In the next chapter, we will describe a re-
markably straightforward way to extend the algorithm to its nonlinear version
which minimizes any continuously differentiable functions.

Iterations of nonlinear conjugate gradient methods are of the form

xk = xk−1 + αk−1dk−1,

where d0 is the direction of steepest descent, i.e d0 = −∇f(x0), and

dk = −∇f(xk) + βkdk−1, for all k ≥ 1, (2.11)

where the scalar βk can be obtained by various methods which we will discuss
in detail in Chapter 3. Typical choices for βk do not involve the evaluation of

19

2. Unconstrained Optimization

the Hessian and can be computed in O(n) operations. Therefore, the whole it-
eration (excluding the cost of the line search and gradient evaluation) requires
only O(n) operations and space. Hence, each iteration is almost as simple to
compute as the iteration of the steepest descent.

The motivation behind the directions (2.11) and avoiding the evaluation of
Hessian is to keep the algorithm suitable for large-scale problems while attain-
ing faster convergence rate than that of the steepest descent method. From
the equation (2.11) we can see that at each iteration the search direction dk
can be expressed as a linear combination of gradients at preceding steps, i.e.

dk =
k∑
i=0

ci∇f(xi),

where the precise values of coefficients c depend on the formula for β. In-
formally, we can hope that the direction update (2.11) with a suitable choice
of β would allow the algorithm to accumulate enough second-order informa-
tion about the function structure and would lead to a similar positive effect
on performance as the implicit approximation of the Hessian in the case of
limited-memory Quasi-Newton methods.

The global convergence depends on the choice of β and generally only the
weaker result can be shown

lim inf
k→∞

‖∇f(xk)‖ = 0,

which also holds for inexact line searches.
Crowder and Wolfe show [24] that the rate of convergence is only linear,

even with exact line searches. Thus, as far as the theoretical results on con-
vergence are concerned, conjugate gradient methods are not better than the
steepest descent method. Nonetheless, conjugate gradient methods typically
solve problems significantly more rapidly than the steepest descent method
and are widely used in large-scale optimization. We devote Chapter 3 to more
detailed description of conjugate gradient methods.

Comparison of methods

Generally, when the Hessian is available and it is affordable to invert and
store it, one may expect to achieve the best results with Newton-type methods.
Otherwise, Quasi-Newton methods attain reasonably close performance and
are the method of choice when the requirement of O(n2) storage and O(n2)
operations per iteration is tolerable.

One should also be aware of the cost of a function and gradient evaluation.
If the computation needed for a function and gradient evaluation is Ω(n2)
operations, Quasi-Newton methods require only slightly more computation
than methods with O(n) iteration cost. Therefore, when O(n2) storage is
available, Quasi-Newton methods are preferable in such cases.

20

2.3. Overview of Iterative Descent Algorithms

In large-scale optimization, O(n2) storage can be prohibitive and functi-
ons typically can be evaluated in O(n). Hence, limited-memory Quasi-Newton
methods and conjugate gradient methods are preferred for solving large prob-
lems. There is no simple way to tell which one of them is the best for any
particular problem and it is recommended to measure their performance ex-
perimentally [23]. Limited-memory Quasi-Newton methods typically need less
iterations but are more complex and require more computation per iteration.
On the other hand, conjugate gradient methods have the advantage of a very
cheap iteration and are quite popular for that reason.

Nowadays, the steepest descent method is rarely used in its basic form
on general functions. On the other hand, the stochastic gradient method
is extremely popular and is perhaps the most frequently used optimization
algorithm in statistics and machine learning, where it is often used without
the line search procedure with constant values of α. This method is faster
as there is no overhead related to running the one-dimensional optimization
method in every iteration, and there is typically no need to find the exact
minimum and good decrease of the function value is acceptable.

However, one must be careful when applying such kind of advice in prac-
tice. On some ill-posed problems even more complex methods can fail or be
significantly slower than some of the simpler methods. Therefore, it is always
recommended to perform numerical experiments on the available data.

Implementations

All the discussed methods are widely available in various mathematical soft-
ware packages. Some examples are:

• MATLAB provides the function fminunc that is implemented with Quasi-
Newton method [25].

• In Mathematica, the FindMinimum function can be used with Newton-
type, Quasi-Newton or conjugate gradient methods [26].

• Scipy package for Python contains Newton-type, Quasi-Newton and con-
jugate gradient methods that can be accessed via the scipy.optimize.
minimize function [27].

• NLopt library is written in C and provides interfaces to C++, Fortran,
Julia, Python, R, etc. It provides Newton-type and Quasi-Newton meth-
ods for unconstrained optimization [28].

21

Chapter 3
Conjugate Gradient Methods

As we have seen in Chapter 2, conjugate gradient methods have attractive
properties due to their simplicity. We devote this chapter to a deeper study
of the method. We start our review with the linear conjugate method, pre-
decessor of nonlinear methods, which was initially designed for solving linear
systems of equations. After that we describe how the linear method was ex-
tended to a general nonlinear scheme. In the further sections, we describe
different variants of the nonlinear method and their properties.

3.1 Linear Conjugate Gradient Method

Consider the problem of minimizing a quadratic function f : Rn → R:

f(x) = 1
2xTAx− bTx, (3.1)

where A ∈ Rn×n is a symmetric4 positive definite matrix and b ∈ Rn.
For the symmetric A it holds that

∇f(x) = Ax− b

and
∇2f(x) = A.

When A is positive definite, the function f is strictly convex and has the
unique global minimum in the point x∗ such that ∇f(x∗) = 0. Therefore, the
solution to the problem of minimizing (3.1) is also a solution to the problem
of finding x ∈ Rn satisfying

Ax = b. (3.2)

The conjugate gradient method was first introduced by Hestenes and
Stiefel in 1950s [29] as an iterative method for solving linear systems of equa-
tions Ax = b with square, symmetric positive definite A ∈ Rn×n. It can
also be applied to more general systems with invertible, but not symmetric or
positive definite A after transformation to ATAx = ATb (note that ATA is
always positive definite). As we will see further in this section, the conjugate
gradient method solves these problems in at most n iterations. This method
is often referred to as the “linear conjugate gradient method”.

4Note that the symmetricity of the matrix A is not a restriction. It is easy to show
that any quadratic form xT Ax can be replaced by the equivalent 1/2 · xT (A + AT)x and
(A + AT) is always symmetric.

23

3. Conjugate Gradient Methods

The name of the method stems from the fact that it produces a sequence
of directions {d0, . . .dn−1} such that the directions are conjugate with respect
to matrix A, that is

diAdj = 0, for all i 6= j. (3.3)

Algorithm 3.1 Linear Conjugate Gradient (A,b,x0)
Initialize r0 ← Ax0 − b; d0 ← −r0; k ← 1;

while rk−1 6= 0 do
αk−1 ←

rTk−1rk−1

dTk−1Adk−1
; (3.4a)

xk ← xk−1 + αk−1dk−1; (3.4b)
rk ← rk−1 + αk−1Adk−1; (3.4c)

βk ←
rTk rk

rTk−1rk−1
; (3.4d)

dk ← −rk + βkdk−1; (3.4e)
k ← k + 1; (3.4f)

end while
return xk−1;

The Algorithm (3.1) starts at some point x0 (an initial guess that may be
given as an input or selected arbitrarily, e.g., as a zero vector) and generates a
sequence {xk} by successively minimizing the quadratic function f (3.1) along
the directions {dk}.

Values of rk are exactly the values of the gradient ∇f(xk) (or, equiva-
lently, the residual of the linear system: rk = Axk − b). Equation (3.4c) is
used instead of direct gradient computation for efficiency reasons to avoid the
matrix-vector product Axk and reuse the value Adk−1 from previous iteration.

It is easy to show that, in case of the quadratic function f , the equa-
tion (3.4a) gives us the exact analytical solution for the one-dimensional min-
imization problem

f(xk + αkdk) = min
α∈R

f(xk + αdk)

and no line search procedure is required.
Note that the method does not require to store the whole sequence of

directions {d0, . . . ,dk−1} and computes each new direction dk using only the
negative gradient −∇f(xk) (which is the steepest descent direction for f at
point xk) and the previous direction dk−1. The choice (3.4d) of the scalar
βk ensures the conjugacy property (3.3). The name of the method is a bit
misleading in the sense that it is the search directions, not the gradients
(which are in fact orthogonal), that are conjugate with respect to A.

24

3.1. Linear Conjugate Gradient Method

For the proofs of the mentioned properties, we refer the interested reader
to the original publication [29]. Many sources with modernized and simplified
analysis are available, see, e.g., [30] or [2, Section 5.1].

Convergence

In their original paper [29], Hestenes and Steifel proved that conjugate gra-
dient method finds the solution of a linear system in at most n steps, if no
rounding-off error occurs.

Theorem 3.1 ([2, Theorem 5.2]). For every k > 0, xk minimizes f over the
set

{x | x = x0 + span(d0, . . . ,dk−1)},
where span(S) denotes the set of all finite linear combinations of a set of
vectors S, that is

span(v0, . . . ,vn−1) =
{
n−1∑
i=0

civi

∣∣∣∣∣ ci ∈ R
}
.

A well-known fact that a set of conjugate vectors is linearly independent
implies that x0 + span(d0, . . . ,dk−1) = Rn and xn minimizes f over Rn. This
directly leads to the following result.

Theorem 3.2. For any starting point x0 ∈ Rn the sequence {xk} generated
by the Algorithm (3.1) converges to the solution of the system (3.2), or equiv-
alently, to the minimum point of the function (3.1) in at most n steps.

Another advantage of the method is that it can approach the solution in
much fewer than n iterations. Recall that for a matrix A ∈ Rn×n eigenvalues
λ1, . . . , λn are scalars such that Avi = λvi for some vectors vi ∈ Rn. In partic-
ular, eigenvalues of positive definite matrices are all positive numbers. When
eigenvalues of A are distributed in a favorable way, the algorithm approaches
solution quickly [30]. For example, we have the following result.

Theorem 3.3 ([2, Theorem 5.4]). If A has only m distinct eigenvalues, then
the linear conjugate gradient method will terminate at the solution in at most
m iterations.

Preconditioning methods can be used to speed up the convergence by
transforming the linear system to M−1Ax = M−1b, where M−1A has more
favorable eigenvalue distribution [30]. For example, the smaller the condition
number of A, the faster the convergence. For a matrix A with eigenvalues
0 < λ1 ≤ λ2 ≤ · · · ≤ λn the condition number is defined as κ(A) = λn/λ1.

Today, the linear conjugate gradient method is often applied to a large
problems where it is infeasible to run n iterations and only approximate solu-
tions are required. Usually, a sufficiently accurate solution is reached in much
fewer than n iterations.

25

3. Conjugate Gradient Methods

Complexity

In every step, the Algorithm (3.1) computes one matrix-vector product Adk,
two inner products dTk (Adk) and rTk rk, and three vector sums for xk, rk,dk.
Therefore, the time-complexity per iteration is O(n2) and execution of n steps
requires O(n3) operations. However, the matrix-vector multiplication can be
performed in time O(m), where m is the number of nonzero elements in the
matrix. For many real-world problems A is sparse and m ∈ O(n) and the
algorithm has complexity of O(mn). At any point in the algorithm we need to
store the vectors x, r,d only for the current and previous iteration. Therefore
the space complexity is O(n). For large problems the linear conjugate gradient
method has the advantage that it does not require to store any matrices.

3.2 Nonlinear Conjugate Gradient Methods

In 1960s Fletcher and Reeves showed [31] that the linear conjugate gradient
method can be extended to minimize general smooth functions f : Rn → R.
This surprisingly simple extension gives us the nonlinear conjugate gradient
method.
Algorithm 3.2 General Nonlinear Conjugate Gradient (f,x0)

Evaluate g0 = ∇f(x0);
Initialize

d0 ← −g0; k ← 1;

while gk−1 6= 0 do
Compute αk−1; (3.5a)
xk ← xk−1 + αk−1dk−1; (3.5b)
Evaluate gk = ∇f(xk); (3.5c)
Compute βk; (3.5d)
dk ← −gk + βkdk−1; (3.5e)
k ← k + 1; (3.5f)

end while
return xk−1;

Similarly to the linear method, the Algorithm 3.2 takes the first step in
the direction of the steepest descent and generates consecutive directions by
the formula (3.5e). For a general function, the conjugacy condition (3.3) is
no longer well defined, as the Hessian matrix is no longer constant. The ex-
tension destroys all properties of the method, specific for quadratic functions.
Thus, the nonlinear method is based on a heuristic idea that suitable choice
of β, which we discuss in Section 3.5, would yield some conjugacy-like property
and the method would be fast in a neighborhood of a local minimum, where
the function is very close to its quadratic approximation. Different conjugate

26

3.3. Line Search Methods

gradient methods mostly correspond to different choices of the parameter β,
which we will discuss in the Section 3.5, but in the following review we will
see that other improvements are also possible.

3.3 Line Search Methods

For a general function, we can no longer use the value of α (3.4a) which was
used for quadratic functions and cannot obtain similar formula analytically.
Therefore some practical inexact line search procedure must be used. As we
have briefly mentioned in the Chapter 2, some condition on the step must be
enforced for the algorithm to be convergent.

In the case of conjugate gradient algorithms, the Wolfe line search condi-
tions [32] are the most frequently used, however they are also applicable to
other algorithms mentioned in the Chapter 2.

The standard Wolfe conditions are:

f(xk+1) ≤ f(xk) + δαk∇f(xk)Tdk, (3.6)
∇f(xk+1)Tdk ≥ σ∇f(xk)Tdk, (3.7)

where dk must be a descent direction, i.e. ∇f(xk)Tdk < 0 and δ, σ are
constants such that 0 < δ ≤ σ < 1. The condition (3.6) ensures that the
reduction of function value f(xk + αkdk)− f(xk) is proportional to the value
of αk and the derivative along the direction dk. In practice, quite small
values of δ are used, e.g., δ = 10−4. The second requirement, often called the
curvature condition, ensures that the slope of the function at the new point is
greater than the initial slope.

The strong Wolfe conditions enforce the stronger bound instead of the
condition (3.7):

|∇f(xk+1)Tdk| ≤ σ|∇f(xk)Tdk|. (3.8)

For the conjugate gradient algorithms, small value of σ = 0.1 is preferable, as
it ensures higher search precision, even though slightly more computation is
required to satisfy the condition compared to higher values of σ.

Sometimes generalized Wolfe conditions are used, where the curvature
bound (3.8) is replaced by more general

σ1∇f(xk)Tdk ≤ ∇f(xk+1)Tdk ≤ −σ2∇f(xk)Tdk. (3.9)

There hardly exist more intuitive explanations for the Wolfe conditions,
however they play crucial role in every convergence proof. For our purpose, it
is important to know that they can always be satisfied for every function that
is smooth and bounded from below [2, Lemma 3.1], and practical algorithms
exist (e.g. a method by Moré and Thuente [33] for strong Wolfe conditions)
that can find suitable α using just a small number of function and gradient
evaluation. In order to ensure good results in finite-precision arithmetic, Wolfe

27

3. Conjugate Gradient Methods

line search algorithms are based on rather technical and complex steps and
we do not discuss them in this thesis.

In 2005, Hager and Zhang introduced [34] the approximate Wolfe condi-
tions:

σ∇f(xk)Tdk ≤ ∇f(xk+1)Tdk ≤ (1− 2δ)∇f(xk)Tdk, (3.10)
where δ < min{0.5, σ}. The motivation for this change was to increase the
search accuracy with finite precision arithmetic. It is believed that the higher
accuracy of the step length can speed up the convergence of the algorithm.
The method performed well in their numerical tests but no theoretical results
exist that guarantee the global convergence.

In 2011, Day showed [35] that nonlinear conjugate gradient methods can
be globally convergent when the step size α is chosen to be a constant value.
This is a promising result as running a line search method in each iteration
imposes significant overhead on the performance. However, the right choice of
the constant requires some nontrivial information about the function structure
and numerical results in the paper suggest that this method is unlikely to be
efficient in practice.

3.4 Convergence Properties

We will see in the next section that nonlinear conjugate gradient methods
with different β are known to be globally convergent under suitable line search
conditions.

Formally, such results make the following mild assumptions [36] about the
function:

Let L denote the set of all points where the value of f is smaller than
f(x0):

L = {x ∈ Rn | f(x) ≤ f(x0)}.
Smoothness Assumption: the function f is L-smooth5 in some neighbor-

hood N of L. That is, there exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, for all x,y ∈ N .

Intuitively, L measures how much the gradient of f can change between two
nearby points. The constant bound on L implies that the function does not
make infinitely steep “jumps” and behaves “reasonably”.

Boundedness Assumption: there exists a constant B such that ‖x‖ ≤ B
for all x ∈ L.

In the following sections, we say that the method is globally convergent if,
for every function satisfying the assumptions, the sequence of gradient norms
converges to zero in the sense that

lim inf
k→∞

‖∇f(xk)‖ = 0. (3.11)
5The same condition is often also referred to as ∇f being Lipschitz continuous

28

3.5. Formulas for the Direction Update Parameter

Equation (3.11) implies that there exists at least one cluster point of the
sequence {xk}, which is a stationary point [36]. However, in practice the
sequence would typically have only one cluster point.

As for the local convergence rate, nonlinear conjugate gradient methods
converge linearly and, as far as theoretical results are concerned, there is no
difference in the convergence rate for different choices of β. At the same time,
numerical results suggest that their performance can vary greatly.

3.5 Formulas for the Direction Update Parameter

To simplify the notation, we define and use in the subsequent text

gk = ∇f(xk),
yk = gk+1 − gk,
sk = xk+1 − xk = αkdk.

Many different formulas for the parameter β were proposed since the first
publication of the method by Fletcher and Reeves. We now present several
basic choices.

Fletcher-Reeves formula

In their initial paper [31], the following coefficient was used:

βFRk = gTk gk
gTk−1gk−1

= ‖gk‖2

‖gk−1‖2
. (3.12)

In 1970, Zoutendijk [37] showed that the FR method with the exact line
search is globally convergent. Al-Baali extended [38] this result to the inexact
strong Wolfe line searches (3.6), (3.8) with σ < 0.5. Powell [39] demonstrated
that the FR method is susceptible to “jamming” behavior. That is, if the
method generates a poor search direction, which is almost orthogonal to the
gradient, then it is likely that the step will be tiny and the next direction will
be poor as well. It follows that the FR method can generate long sequences
of unproductive iterations and be very slow.

Polak-Ribiére formula

Another choice of the parameter was independently proposed by Polak and
Ribiére [40] and Polyak [41] in 1969:

βPRk = gTk yk−1
‖gk−1‖2

= gTk (gk − gk−1)
‖gk−1‖2

Note that the Polak-Ribiére method avoids the drawback of the FR method.
Whenever the previous step is tiny, it holds that gk+1 ≈ gk and βPRk+1 ≈ 0.

29

3. Conjugate Gradient Methods

From the direction update formula (3.5e) we can notice that the next direction
dk+1 will be very close to the direction of the steepest descent −gk+1. Thus,
whenever a poor direction is generated, the PR method essentially performs
a restart and makes next move in the the steepest descent direction.

Quite surprisingly, the PR method is not globally convergent even with
exact line searches on nonconvex functions. Powell [42] showed a 3 dimen-
sional example where the PR method cycles infinitely without converging to
a solution. He also suggested to modify the method by setting

βPR+
k = max{0, βPRk }. (3.13)

Gilbert and Nocedal [43] proved that this method is globally convergent with
strong Wolfe line searches (3.6), (3.8). There is no simple explanation of why
setting β = 0 when βPR becomes negative yields global convergence. The
result of Gilbert and Nocedal is based on quite sophisticated proof which
does not give much insight on why negative values of β cause nonconver-
gence of the PR method. Despite its simplicity, the PR+ method is re-
garded as one of the most efficient methods (see, e.g., performance evalua-
tion by Dai and Ni [44]) and remains to be perhaps the most frequently used
method.

Hestenes-Steifel formula

In the original method that was proposed for solving linear systems of equa-
tions by Hestenes and Steifel [29], the coefficient β was given by

βHSk = gTk yk−1
dTk−1yk−1

.

Note that it differs from the formula (3.4d) that we used in our presentation
of the Algorithm 3.1, but both formulas are in fact equivalent on quadratic
functions and exact line searches. The formula (3.5) is interesting because of
the remarkable property that it implies that

dTk+1yk = 0 (3.14)

holds on general functions with inexact searches as well [45]. For the linear
algorithm on quadratic functions, the equation (3.14) is equivalent to the
conjugacy property dTk+1Adk = 0. For this reason, the condition (3.14) is
sometimes referred to as the conjugacy condition for general functions.

For the exact line search, βHS = βPR, therefore the HS method has similar
properties to the PR method [45]. In particular, Powell’s [42] counterexample
of convergence also holds for the HS method and the following modification
is used to ensure the global convergence:

βHS+
k = max{0, βHSk }.

30

3.5. Formulas for the Direction Update Parameter

Conjugate Descent formula

Fletcher proposed the conjugate descent methods with β calculated by

βCDk = ‖gk‖2

−dTk−1gk−1
.

The name “conjugate descent” stems from the fact that with the strong Wolfe
line search the method is guaranteed to produce the sufficient descent direc-
tion, that is

gTk dk < −c‖gk‖2 (3.15)
holds for all k and some constant c > 0. However, Dai and Yuan showed [46]
that the CD method is not guaranteed to converge with the strong Wolfe line
search conditions, but converges under the generalized strong Wolfe condi-
tions (3.6), (3.9) with σ1 < 0 and σ2 = 0.

Dai-Yuan formula

The CD method turns out to be inferior even to the FR method [36] in practice.
However, the sufficient descent property (3.15) motivated Dai and Yuan to
seek for other methods with that property. They proposed [47] a new method
with the sufficient descent property, where

βDYk = ‖gk‖2

dTk−1yk−1

and proved that the standard Wolfe conditions (3.6), (3.7) are sufficient for
its convergence.

Hager-Zhang formula

More recently, Hager and Zhang proposed [34] a new method with

βNk =
(

yk−1 − 2dk−1
‖yk−1‖2

dTk−1yk−1

)T gk
dTk−1yk−1

They proved that the truncated method

β̄Nk = max{βNk , ηk}, (3.16)

where
ηk = −1

‖dk−1‖min{η, ‖gk−1‖}
and η > 0 is a constant (η = 0.01 in the experiments in [34]), is globally
convergent with the standard Wolfe line searches (3.6), (3.7). Moreover, their
implementation CG DECENT, written in C, where the β̄N method is com-
bined with the approximate line searches (3.10), showed significantly improved
numerical performance on average [34].

31

3. Conjugate Gradient Methods

Discussion

We have outlined several of the best known methods for the conjugate gradi-
ent parameter choice. It is important to note that all the described methods
reduce to the same linear conjugate gradient method (Algorithm 3.1), when
applied to strictly convex quadratic functions with exact line searches. This
is a favorable property and is perhaps one of the main reason for good per-
formance on general functions, because, as we have mentioned in Chapter 1,
any function is well approximated by a quadratic function in a local minimum
neighborhood.

A reader may perhaps feel that the motivation behind the methods is
described too briefly and obscurely, but, as far as we know, there is hardly
any deeper motivation for the outlined methods. The primary aim in the de-
sign of the methods was to satisfy the existing results describing sufficient
conditions for the global convergence. For example, see Theorem 2.1 and
Theorem 2.2 in the survey by Hager and Zhang [45].

We would like to point out that the described methods (as well as the hy-
brid methods which are discussed in Section 3.6) rely purely on the function
gradient values and can be computed in O(n) operations. Daniel [48] proposed
fundamentally different parameter that required the evaluation of the Hessian:

βDk = gTk∇2f(xk−1)dk−1
dTk−1∇2f(xk−1)dk−1

,

but it did not attain much further interest due to the high computational cost.

3.6 Hybrid Conjugate Gradient Methods

As we have seen in the previous section, various methods for the choice of
the direction update parameter β exist and have different advantages and
drawbacks. Therefore, hybrid methods have been proposed to combine the
existing methods and try to attain the best features while minimizing the
influence of drawbacks.

Early hybrid methods were aimed to combine methods, which were known
to be globally convergent but were susceptible to jamming (e.g., FR, DY, CD),
with the other type of methods, which performed better in practice but were
not convergent without modifications (e.g., PR and HS).

Combinations of FR and PR methods

Touati-Ahmed and Storey [49] suggested the following hybrid method:

βk =
{
βPRk , if 0 ≤ βPRk ≤ βFRk ,

βFRk , otherwise.

32

3.6. Hybrid Conjugate Gradient Methods

Similar method was also proposed by Hu and Storey [50]:

βk = max{0,min{βPRk , βFRk }}.

Nocedal and Gilbert [43] suggested

βk = max{−βFRk ,min{βPRk , βFRk }}

and consequently proved that any method with |βk| < βFRk is globally con-
vergent with the strong Wolfe line search (3.6), (3.8). Numerical results
by Dai [44] suggest that such combinations are not significantly better than
the PR method, if at all.

DYHS method

On the other hand, the method suggested and proven to be globally convergent
by Dai and Yuan [51] with

βDYHSk = max{0,min{βHSk , βDYk }} (3.17)

turned out to perform much better than the PR method [51] and is be-
lieved to be one of the most efficient methods along with the PR+ method.

This is a good demonstration of the fact that different methods are de-
signed in a heuristic manner and studied more from the perspective of numer-
ical experiments rather than theoretical results. To our best knowledge, no
precise theoretical explanations exist for the huge difference in performance be-
tween the DYHS method and methods based on a combination of FR and PR.

Discussion

Several other hybrid methods were proposed, e.g. methods based on param-
eterized combinations c1β1 + c2β2, however no significant improvement was
achieved [45].

The parameter β plays a crucial role in the performance of a nonlinear
conjugate method. To our best knowledge, no generally optimal choice for β
currently exists, though PR+, DYHS and the method of Hager and Zhang
are believed to be the best of currently known and give better numerical
results on average. Furthermore, there exist no guidelines for the choice of
the most suitable parameter β for a particular function types. In fact, on
some problems, methods that are believed to be the best may be significantly
inferior to some other method (see, for example, Table 2 and Table 8 in the
testing by Dai [44]). This happens in quite a chaotic manner and, as far as
we know, there were no attempts to establish if such behavior is caused by
some properties of the parameter β, or the structure of particular objective
functions, or by some other reason.

33

3. Conjugate Gradient Methods

3.7 Restart Strategies

Another modification that is used in nonlinear conjugate gradient methods is
to restart the iteration by setting dk = −∇f(xk) when some restart condition
is satisfied. Essentially, this is equivalent to starting the algorithm anew from
the point xk.

Regular restarts and n-step quadratic convergence

In the very first paper on the application of conjugate gradient method to
general functions, Fletcher and Reeves suggested [31] to restart the method
every n steps. This idea comes from the observation that only the set of
at most n vectors in n dimensional space can be conjugate. Even though
conjugacy condition is not well defined for the nonlinear method, it seems
plausible to restart the algorithm to prevent the imagined loss of conjugacy.
Cohen [52] proved that, when this technique is applied, the algorithm attains
n-step quadratic local convergence rate, that is

‖xk+n − x∗‖ ≤ c‖xk − x∗‖2

for all sufficiently large k and some constant c. Applying the same rea-
soning as in the case of quadratic convergence (2.6), one can expect to re-
duce the distance between the first point x0 and the solution x∗ by a fac-
tor of ε in O(n log log(1/ε)) iterations when the region of local convergence is
reached. However, this result is not so surprising, if we recall that any function
is approximated well by a quadratic function near a minimum point. At some
point, the algorithm will reach that quadratic region and will behave like the
linear conjugate gradient method from that point.

Even though this result is interesting, it may not be very useful in prac-
tice. Firstly, when the method is applied to large-scale problems, one would
typically expect to obtain satisfactory solution in much less than n iterations.
Secondly, the n-step restart method does not take in consideration any in-
formation about the algorithm state, other than the number of iterations.
For example, it is undesirable to restart the algorithm when it is in a favor-
able region and is making long steps towards the solution. Such restarts would
make the algorithm discard all second-order information and would degrade
the performance. On the other hand, it is unreasonable to wait for the next
n-th iteration if the algorithm is stuck in a sequence of tiny steps. This moti-
vated the interest in other restart strategies that are based on other conditions
than iteration counts.

Restart conditions

One popular strategy suggested by Powell [39] makes use of the fact that the
gradients are mutually orthogonal when the linear conjugate gradient method

34

3.7. Restart Strategies

is applied to a quadratic functions. Even though it does not hold for nonlinear
method on general functions, it is reasonable to expect that gradients are close
to being orthogonal. Therefore, the algorithm is restarted when

|gTk gk−1| ≥ 0.1‖gk‖2. (3.18)

Powell also suggested to restart the method when the direction is too far from
the steepest descent direction, i.e. the following condition is not satisfied

−1.2‖gk‖2 ≥ gTk dk ≥ −0.8‖gk‖2.

Birgin and Mart́ınez [53] proposed similar condition that restarts the algorithm
whenever the direction is almost orthogonal to the gradient and the next step
is likely to be tiny:

|gTk dk| > −10−3‖gk‖‖dk‖.

Discussion

Similarly to the choice of the parameter β, no choice of the restart condition
is guaranteed to be optimal and it is recommended to try different options
or combinations of them. In some cases, an algorithm can achieve the best
performance without any restarts at all.

35

Chapter 4
Heuristic Method

In this chapter we propose a heuristic method for the parameter β selection.
We describe our implementation and provide numerical results. Finally, di-
rections for the further research are discussed.

4.1 Ideas for Heuristic Methods

Motivation

Motivated by the fact that no optimal choice of β exists, we seek for a generic
procedure that would automatically select the appropriate parameter for a
given function. A straightforward idea to achieve the optimal behavior is to
take m different methods β1, . . . , βm, and at each iteration k consecutively
perform m independent iterations β1

k, . . . , β
m
k , stopping as soon as one of the

methods reaches the solution. Obviously, such algorithm would terminate in
the optimal (among the chosen methods) number of iterations but its efficiency
is debatable. It would require us to perform m times more computation and
use m times more storage (to store the vectors xi,di and gi for each inde-
pendent method βi). As a result, it is likely that the performance of such
algorithm would be inferior even to the worst of the selected methods.

Goals

In the resulting algorithm we would like to preserve the attractive properties
of nonlinear conjugate gradient methods (Algorithm 3.2): low computational
cost and memory consumption. Furthermore, it seems reasonable to maintain
algorithm’s close relation to the linear conjugate gradient method (Algorithm
3.1) due to the fact that the nonlinear method’s efficiency by a large part stems
from the efficiency of the linear method on quadratic functions. Therefore,
we would like our algorithm to be equivalent to the linear conjugate gradient
method on quadratic functions with exact line search.

The lack of the general knowledge about the reasons of bad performance of
various methods rules out the possibility to make use of information that we
can directly obtain from the function formula. We would also like to avoid the
direct use of second-order derivative information as computing the Hessian
would break the attractive property of conjugate gradient methods. Thus,
we have decided to use only a heuristic approach, where at each iteration we
would choose the value of β according to some local reasoning about the state
of the algorithm and hope that it would result in a good performance globally.

37

4. Heuristic Method

Example

We show a somewhat naive initial idea to illustrate this heuristic approach.
Again, we take a set of different formulas b = {β1, . . . , βm}. This time, we
store only one instance of x,d and g per iteration and perform a separate
iteration for each βi and, for the next step, among all xik we take the one at
which the function value is the smallest. That is:

Algorithm 4.1 A naive example of a heuristic approach
Evaluate g0 = ∇f(x0);
Initialize

d0 ← −g0; k ← 1;
Compute α0;
x1 ← x0 + α0d0;
Evaluate g1 = ∇f(x1);

while gk−1 6= 0 do
for βi ∈ b do

Evaluate βik;
dik ← −gk + βikdk−1;
Perform independent line search to find αik;
xik+1 ← xk + αikdik;
Evaluate f(xik+1);

end for

Find I = argmin
1≤i≤m

f(xik+1);

Set xk+1 = xIk+1;
Evaluate gk+1 = ∇f(xk+1);
k ← k + 1;

end while
return xk−1;

Discussion

The obvious disadvantage of the Algorithm 4.1 is the need to perform addi-
tional line search and function evaluation per each βi. The line search and
function evaluation are typically the bottleneck of each iteration and the com-
putational cost of this heuristic is too high to be of any use in practice.

38

4.2. The New Method

Experiments on our set of benchmark problems (see Table 4.1) suggest
that this method is unlikely to be of any use in practice. Even taking a
larger number of various formulas for β (e.g. all mentioned in Chapter 3)
reduces the number of iterations by at most 30% compared to the average
number of iterations of the standard method (Algorithm 3.2), though on a
significant number of problems there is no reduction at all. However, for
m different formulas of β we have to perform approximately m times more
function and gradient evaluations and the method is almost m times slower
even for functions which take only O(n) time to evaluate.

Numerical experiments (e.g. [44]) suggest that “better” formulas for β
(e.g., βPR+ and βDYHS) converge in a number of iterations that differs from
the best formula for many problems by at most 30%. It is likely that any
heuristic method can perform at most around 30% more computations per
iteration to bring any significant improvement in overall performance. This
allows us to perform only a small number of additional vector-vector opera-
tions per iteration. Therefore, we conjecture that, to be efficient, any heuristic
algorithm has to rely only on rather limited amount of data available at each
iteration: a previous point xk, function value f(xk) (which is typically eval-
uated in the line search procedure), gradient value gk and direction dk and
possibly the same entries from a constant number of previous iterations.

4.2 The New Method

Subsequently, we consider a new method, which again depends on a set of
different methods b = {β1, . . . , βm}. Now, at each iteration we compute βk
as

βk =
m∑
i=1

wiβ
i
k,

or equivalently
βk = wT

k bk, (4.1)

where w = (w1, . . . , wm) is a vector of weights with each weight wi describing
how “good” is the value of βi compared to other values of β. At each iteration,
based on the values of βi and some condition of optimality (to be discussed
in the next subsection), we compute a vector of local weights vk and update
the global weights as

wk =
{

v1 , if k = 1,
(1− c)wk−1 + cvk , otherwise.

(4.2)

The constant 0 ≤ c ≤ 1 controls how strongly the local weights of each
iteration influence the global weights. Note that setting c = 0 makes the
algorithm ignore all the updates and uses the same weights as computed in

39

4. Heuristic Method

the first iteration, i.e. wk = v1. On the other hand, with c = 1 all the previous
weights are ignored and wk = vk.

We also maintain an important property of w at each iteration:

wi ≥ 0, for 1 ≤ i ≤ m, (4.3)

and
m∑
i=1

wi = 1. (4.4)

We feel that this property is important for two reasons:
Firstly, if βk is computed by (4.2), it is easy to show that the following

inequality holds:
min

1≤i≤m
βik ≤ βk ≤ max

1≤i≤m
βik.

Although we do not have a direct proof, we believe that this fact plays an
important role in the global convergence of our algorithm (which happens
in our numerical experiments). If methods with the chosen formulas βi are
globally convergent under the chosen line search condition, it is likely that our
method is globally convergent too.

Secondly, the property of w allows us to use an alternative approach
to (4.2) to compute βk. We can let βk be a discrete random variable such
that

Pr[βk = βik] = wi. (4.5)

Then, we have that the expected value of βk is

E[βk] = wT
k bk,

which exactly matches the equation (4.2). One may hope that the fact that
the value of βk exactly matches one of the formulas (i.e. βk = βik for some i)
may bring some plausible properties for our algorithm.

Optimality condition for β

Now it only remains to find a suitable way to determine how “good” is the
value of βi to compute the weights v. This appears to be a nontrivial task
as no way to find a generally optimal β (or even to determine which of two
formulas βi and βj will give better results) is currently known. We describe
a possible solution, however this remains to be an open problem and requires
further research.

We need to find some condition to reason about the optimality of the
values of βi based on a very limited information available at each iteration.
In Section 3.5 we have already mentioned6 the extended conjugacy condition
(3.14) for general functions:

dTk yk−1 = 0.
6Recall that we have defined gk = ∇f(xk), yk = gk+1 − gk and sk = xk+1 − xk.

40

4.2. The New Method

As we have seen before, this condition holds when β is chosen by the HS
method. It also holds for the linear method on quadratic functions with the
exact line search. However, in practice the HS method is far from the most
efficient one. In the case of the inexact line searches this condition can be
unreasonable and even harmful for the performance. In case of inexact line
searches, Perry [54] proposed to replace it by the following condition:

dTk yk−1 = −gTk sk−1. (4.6)

The condition is based on the fact that from the mean value theorem it fol-
lows [55] that, for any twice continuously differentiable function, there exists
some t ∈ [0, 1] such that

dTk yk−1 = dTk∇2f(xk−1 + tαk−1dk−1)sk−1. (4.7)

Perry proposed to use the approximation of the Hessian by a matrix Bk (also
used in Quasi-Newton methods) such that

Bksk−1 = yk−1, and (4.8)
Bkdk = −gk. (4.9)

Combining (4.7) and (4.9), we obtain

dTk yk−1 = dTk (Bksk−1) = (Bkdk)T sk−1 = −gTk sk−1,

which is exactly the condition (4.6).
Furthermore, Dai and Liao extended [56] the condition with a parameter t

such that
dTk yk−1 = −tgTk sk−1. (4.10)

Finding the right t in some adaptive manner could probably improve the
performance of an algorithm, however, no formula to choose t in an optimal
manner is currently known. Hence, we leave it for the further research and
consider t = 1, which is equivalent to the condition (4.6).

Weights update procedure

We describe how to find the vector of weights vk based on the conjugacy
condition (4.6). After having evaluated βik, we can find the direction produced
by this formula as

dik = −gk + βikdk−1.

Subsequently, we can determine how “far” is the direction from satisfying the
condition (4.6). Suppose that the condition (4.6) is satisfied by some dopt.
Then we can compute the vector of “errors” γ = (γ1, . . . , γm) as

γi = |(dik)Tyk−1 − (dopt)Tyk−1| = |(dik)Tyk−1 + gTk sk−1|. (4.11)

41

4. Heuristic Method

Then, we have to compute the vector of weights v = (v1, . . . , vm) by giving
higher weights to entries with smaller γi. Moreover, for the resulting vector w
to satisfy the properties (4.3, 4.4), weights v must also satisfy the properties.

Hence, we need to rescale the vector of errors γ in a “reverse” order. The
smaller is γi, the higher should be vi. Additionally, all weights vi should sum
up to 1. One possible way to achieve it is to apply the softmin function to the
vector γ, which is defined as

softmin(γ) = exp(−γ)∑m
i=1 exp(−γi)

, (4.12)

where all vector operations are applied elementwise, for example exp(−γ) =
(exp(−γ1), . . . , exp(−γm)).

One problem of using the function as defined by (4.12) is that when all
values of γi are rather small, exp(−γi) is very close to 1, and it is likely that
numerical result of softmin(γ)i is indistinguishable from 1/m and no weights
change happens.

To avoid that, we compute v as

v = softmin
(

γ

µ

)
, (4.13)

where µ is a mean value of the vector γ, i.e.

µ =
∑m
i=1 γi
m

.

This rescaling procedure gives plausible results, although many other ways are
possible. It appears that the exact way of weights rescaling has no significant
influence on the performance of the algorithm.

42

4.2. The New Method

The algorithm description

We can now present the algorithm in its entirety.

Algorithm 4.2 The heuristic algorithm(f,x0,b = (β1, . . . , βm), c)
Evaluate g0 = ∇f(x0);
Initialize

d0 ← −g0; k ← 1; wi = 0 for all 1 ≤ i ≤ m;

while sufficiently good solutuion is not found do

Compute αk−1;
xk ← xk−1 + αk−1dk−1;
Evaluate gk = ∇f(xk);
Evaluate bk = (β1

k, . . . , β
m
k);

Compute dik for all 1 ≤ i ≤ m as
dik ← −gk + βikdk−1;

Compute γk as in (4.11);
Compute vk as in (4.13);
Compute wk by (4.2);
Compute βk either by (4.1) OR

select randomly with probability (4.5);
dk ← −gk + βkdk−1;
k ← k + 1;

end while
return xk−1;

Discussion of the algorithm

The Algorithm 4.2 has only rather moderate overhead per iteration compared
to the standard conjugate gradient method (Algorithm 3.2). Per each itera-
tion, O(m) additional vector operations are performed, where m is the number
of different formulas for β. To be precise, it takes around 2m vector operations
to compute the directions dik and the vector γk, and a small constant num-
ber of operations to maintain other vectors. Additionally, the evaluation of
the formulas βik requires to perform some vector operations, however different
formulas rely on similar dot products such as gTk gk−1 and gTk dk−1 which can
be reused so it is likely that the evaluation of all formulas will take a lot less
than m vector operations. It is important to note that no additional function
or gradient evaluations are required.

43

4. Heuristic Method

4.3 Numerical Results

Our method (Algorithm 4.2) is compared with the standard method (Algorihm
3.2) with existing formulas for β (Section 3.5) on a subset of benchmark un-
constrained problems from the CUTEst [57] testing environment. The meth-
ods are compared based on the number of iterations required to achieve the
solution. Appendix A contains the description of the testing environment.
Implementation details are explained in Appendix B.

For each unconstrained differentiable problem, the CUTEst testing envi-
ronment provides the interface to evaluate the objective function f and its
gradient ∇f at any point. An initial point x0 is also provided.

Tested methods

For our tests, we choose the subset of the formulas

Btest = (βFR, βPR+, βDYHS , β̄N)

The motivation for this choice is that βFR is the basic method and βPR+,
βDYHS , β̄N show better results that other widely known formulas. We do not
include other formulas mentioned in Section 3.5 and 3.6 as they show either
slightly inferior or comparable results on our test problems.

The experiments on the following methods:

• FR : nonlinear conjugate gradient (Algorithm 3.2) with βFR (3.12)

• PR+ : Algorithm 3.2 with βPR+ (3.13)

• DYHS : Algorithm 3.2 with βDYHS (3.17)

• HZ : Algorithm 3.2 with β̄N as proposed by Hager and Zhang (3.16)

• Hmin : An algorithm from the example (Algorithm 4.1) with B = Btest

• Hw : The proposed heuristic method (Algorithm 4.2) with deterministic
formula (4.1) and B = Btest

• Hrand : The proposed heuristic method (Algorithm 4.2) with probabilis-
tic selection of formula (4.5) and B = Btest

Testing parameters

All methods are run with Moré-Thuente line search algorithm [33] that satisfies
the strong Wolfe conditions (3.6, 3.8). We chose the strong Wolfe conditions
over the standard Wolfe conditions (3.6, 3.7) as they are required for global
convergence of methods FR and PR+. The values of δ and σ (see Section 3.3
for the discussion) are set to be 0.01 and 0.1.

44

4.3. Numerical Results

The Moré-Thuente algorithm accepts an additional parameter, an initial
guess of the value of α. Although it is not necessary for convergence, providing
a suitable initial guess can reduce the number of operations significantly. As
suggested in [2, Chapter 3.5], we use

α-guessk =


1
‖g0‖ , if k = 0,

αk−1
gT

k−1dk−1

gT
k

dk
, otherwise.

For the restarts (Section 3.7), the Powell’s condition (3.18) is chosen, al-
though other mentioned conditions give similar results on average and bring
slight improvement over unrestarted method.

The used termination condition is

‖g‖ ≤ 10−4.

We set the maximum limit on iterations as 10n, where n is the dimension-
ality of the problem. If a method fails to achieve the termination condition on
some problem, we label its result as ’F’. Additionally, a method may fail inter-
nal conditions of the Moré-Thuente algorithm, which causes an error. This is
not uncommon in tests done in the published papers (e.g., [34]) on very large
problems. The errors are caused by precision problems, in our tests the errors
happened when the value of α is very small, e.g., less than 10−13, which is
way beyond the adequate precision of the floating point computations. Then
we label the result as ’E’. Otherwise, the result is the number of iterations
required to achieve the termination condition.

There appears to be no generally optimal value for the weights update
parameter c of our heuristic method Hw and Hrand, in this tests we show the
results for c = 0.25, which seems to be a reasonable choice. In most of the
cases, values of 0.1 < c < 0.9 seem to have low effect on the performance.

The result of the probabilistic method Hrand is computed as the average
result of 10 runs with different random generator seeds. For reproducibility
purposes, we refer to the implementation or the implementation details in
Appendix A.

Test problems selection

The CUTEst environment contains around 100 unconstrained test problems.
Out of this problems, we selected a subset by the following criteria:

• We excluded the problems on which every method fails (typically prob-
lems of very high dimension).

• We excluded the problems on which every method succeeded in less
than 50 iterations. Such tests are of a small interest since there would
typically hardy be any difference in the performance between different
methods.

45

4. Heuristic Method

• We excluded the problems on which different methods converged to dif-
ferent local minimas. Many test problems are nonconvex and have sev-
eral minimas. Difference in the direction update can cause methods
to converge to different minimas with which have significantly differ-
ent function value and distance from the starting point. This happens
chaotically and it is unfair to claim that one method is better than other
if it converges to a closer minimum. Hence, we excluded such tests. For-
mally, we exclude a problem if the set of resulting points of all methods
contains two points x∗i ,x∗j such that ‖x∗i − x∗j‖ > 2 · 10−3.

Additionally, some problems can be parameterized and be used with sev-
eral different dimensionalities. On such problems, among all the variants, we
took ones with highest and lowest dimensionalities which satisfy the previous
criteria.

As a result, our testing set contains 35 problems, which may appear to
be quite low, but it is typical for the research paper to use similar number of
testing problems for numerical results (e.g., [44, 34]).

The names of the problems together with their dimensionalities are listed
in Table 4.1. Initially, the problems in the CUTEst do not contain formulas of
their functions, however, they can be found, e.g., in [58]. We do not include the
formulas in this thesis, as it appears there is hardly any noticeable connection
between the formula and the performance of methods on the problem (other
than dimensionality).

Experiments

Test based on the number of iteration

The results of testing of all the methods can be seen in Table 4.1. Heuristic
methods use the value of c = 0.25. Results of basic methods are comparable
to those reported in other papers, e.g. [44]. Each cell contains the number of
iteration in which an algorithm reaches the termination condition for a prob-
lem. If an algorithm does not terminate in the maximum iterations bound,
we mark its result as ’F’. If it fails due to round-off errors, result is marked
with ’E’.

Performance profile

Subsequently, we have use the performance profiles proposed in [59] to display
the performance of each method, in terms of number of iterations. The per-
formance profile plot (Figure 4.1) for a given method shows the fraction p(τ)
of problems for which the method is within a factor τ of the best solver. For-
mally, for the set of problems P, set of methods S, and each problem p ∈ P
and method s ∈ S, let

tp,s = number of iterations required to solve p by method s.

46

4.3. Numerical Results

If a method fails to solve a problem, we set tp,s = ∞. The performance of
method s on problem p is compared with the best performance by any solver
on this problem. The performance ratio is defined as

rp,s = tp,s
minm∈S {tp,m}

.

To obtain an overall assessment of the performance of the method, the per-
formance profile

ρs(τ) = 1
|P|
|p ∈ P : rp,s < τ | .

The value of ρs(τ) can be thought of as an estimate of the probability for
the solver to have a performance within a factor of τ of the best possible
performance for a random problem from P. The methods with higher values
of ρs(τ) are to be preferred as they are more likely to show near-optimal
performance.

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

p(
)

FR
PR+
DYHS
HZ
Hmin

Hw

Hrand

Figure 4.1: Performance profiles based on the number of iterations.

Values of weights update parameter

Additionally, in Table 4.2 we specifically compare the performance of Hw with
different values of the weight update parameter c in order to determine its
influence on the performance. Extreme values of c = 0.1 and c = 0.9 are
compared to c = 0.5 and already tested c = 0.25.

47

4. Heuristic Method

Problem N FR PR+ DYHS HZ Hmin Hw Hrand

CHNROSNB 50 341 363 377 405 323 346 377
CRAGGLVY 100 72 84 68 85 73 80 74
DIXMAANE 3000 197 198 201 197 185 188 199
DIXMAANE 9000 299 277 322 319 294 302 317
DIXMAANG 3000 167 143 166 166 127 151 160
DIXMAANG 9000 326 207 248 270 207 233 261
DIXMAANH 3000 172 140 144 187 139 137 159
DIXMAANH 9000 211 372 263 280 217 230 301
DIXMAANJ 9000 157 223 129 175 190 188 165
DIXMAANK 9000 175 166 182 173 199 181 175
DIXMAANL 9000 142 155 166 153 160 164 156
DIXON3DQ 1000 4327 2948 7821 3177 2673 3656 3720
DECONVU 63 128 138 98 136 98 98 109
EIGENALS 110 259 271 229 308 340 288 250
EIGENBLS 110 343 349 334 344 312 333 344
EIGENCLS 462 1656 1830 1911 2158 1432 1712 1779
EIGENCLS 30 119 116 111 115 101 111 111
FLETCHCR 1000 7887 8350 7626 8543 7782 8037 8017
FMINSRF2 1024 449 378 255 1004 240 255 390
FMINSRF2 49 71 74 62 47 60 60 64
FMINSURF 1024 211 280 239 248 240 250 263
FMINSURF 5625 540 602 616 753 507 465 592
GENHUMPS 1000 4779 4721 4531 3726 1065 4713 4654
GENHUMPS 500 4647 F 1588 2215 4543 3161 F
GENROSE 500 2220 2225 2232 1859 2058 2185 2181
LIARWHD 10000 63 E 237 18 13 E E
MOREBV 1000 39 30 40 37 38 38 35

PENALTY2 50 109 108 113 105 F 120 104
POWELLSG 10000 1285 58 180 33 32 171 68
POWELLSG 5000 672 50 666 46 112 96 58

POWER 10000 471 419 509 420 358 363 418
POWER 1000 143 117 149 116 126 103 119

SPARSINE 1000 2766 2830 6698 2910 4111 3260 3153
SPMSRTLS 1000 112 108 108 111 104 105 110

TRIDIA 5000 2290 2226 2503 2229 1579 1850 2121

Table 4.1: Numerical experiment based on the number of iterations.
First two columns represent the problem name and dimensionality. Numbers show the count
of iterations untill the termination condition is satisfied. For every problem, we mark the
best performance among all the methods with green color and the worst with red.

48

4.3. Numerical Results

Problem N c = 0.1 c = 0.5 c = 0.9
CHNROSNB 50 343 348 347
CRAGGLVY 100 77 79 66
DIXMAANE 3000 187 188 186
DIXMAANE 9000 299 298 301
DIXMAANG 3000 133 138 154
DIXMAANG 9000 283 282 267
DIXMAANH 3000 150 152 151
DIXMAANH 9000 222 246 258
DIXMAANJ 9000 188 191 195
DIXMAANK 9000 183 184 187
DIXMAANL 9000 167 164 167
DIXON3DQ 1000 4147 2829 3595
DECONVU 63 103 124 103
EIGENALS 110 245 478 253
EIGENBLS 110 327 323 328
EIGENCLS 462 1537 1583 1698
EIGENCLS 30 111 118 112
FLETCHCR 1000 7976 7943 7970
FMINSRF2 1024 251 326 226
FMINSRF2 49 60 62 60
FMINSURF 1024 228 250 209
FMINSURF 5625 611 538 480
GENHUMPS 1000 4649 4598 4737
GENHUMPS 500 3721 636 2855
GENROSE 500 2152 2261 2147
LIARWHD 10000 24 19 17
MOREBV 1000 38 38 38

PENALTY2 50 158 136 120
POWELLSG 10000 102 66 40
POWELLSG 5000 72 40 92

POWER 10000 361 362 365
POWER 1000 104 106 104

SPARSINE 1000 3318 3499 3488
SPMSRTLS 1000 104 104 113

TRIDIA 5000 1733 2098 1616

Table 4.2: Experiment on the heuristic method Hw with different values of
weights update parameter.
First two columns represent the problem name and dimensionality. Tested values are c = 0.1,
c = 0.5 and c = 0.9. Numbers show the count of iterations untill the termination condition
is satisfied. For every problem, we mark the best performance among all the methods with
green color and the worst with red.

49

4. Heuristic Method

Discussion

Optimal range for weights update parameter

Firstly, we address the choice of weights update parameter c and discuss the
results in Table 4.2. There appears to be no significantly outstanding choice,
however the performance tends to improve slightly with the decrease of c in
many cases. Smaller values of c mean that the algorithm gives more preference
to its “memory” of previous weights, while higher values tend to overwrite pre-
vious weights quicker. After comparing the results in Table 4.2 and Table 4.1,
we conclude that the choice of c = 0.25 was adequate.

Performance of the heuristic methods

Secondly, we attempt to reason about how the proposed heuristic algorithms
compare to the existing formulas of β. The results in Table 4.1 show that the
proposed methods converge to solutions on the test problems.

It is noticeable that the naive Algorithm 4.1 converges in the smallest
number of iterations in most of the cases (although it is notable that it can
also be the worst on some occasions). However, after comparing the actual
numbers of iterations, we conclude that the improvement is rather marginal
and is unlikely to compensate for the increased computational cost (see also
the discussion in Section 4.1).

It is harder to say something about the Algorithm 4.2. It does not attain
the best results, but it is also far from the worst case on the majority of the
problems. Overall, the results in Table 4.1 appear to be quite chaotic, both
for old and new methods.

Surprisingly, the probabilistic algorithm Hrand is rarely better than the
deterministic version Hw. It appears that the randomized choice of β equal
to one of the formulas (4.5) does not lead to the performance improvement.
Additionally, the overhead of pseudo-random number generation is likely to
make it even slower in practice.

The performance profile plot (Figure 4.1) allows us compared the perfor-
mance of methods to the optimal performance for each problem. It turns out
that the heuristic methods Hmin and Hw are more likely to show near-optimal
performance, compared to basic methods. The heuristic methods perform
within the factor of approx. 1.4 of the best performance on more than 80% of
problems and for values of τ ∈ [1.0, 1.4] have the highest probability among all
the methods (except for the small range where the PR+ method outperforms
the Hw method). For higher values of τ , the HZ algorithm is more robust, but
only slightly. The profile also confirms that the Hprob method is inferior.

We end this section with a conclusion that the Hw method is significantly
more likely to show close-to-optimal performance than the basic methods,
however it is unlikely to be significantly faster than the best of the other
methods.

50

4.4. Conclusion

4.4 Conclusion

Even though the proposed heuristic method (Algorithm 4.2) does not bring
fundamental improvements, the experiments show that its performance is close
to optimal with high probability. Hence, when the best formula of β for a given
problem is not known in advance, it may be reasonable to apply the heuristic
method with the weights update formula (4.1), as it ensures that the perfor-
mance (measured as the number of iterations) will not be much worse than
that of the best method. However, it also adds some computational overhead
per iteration and it is hard to determine under what conditions it leads to
overall performance improvement. Notably, the method does not require to
perform additional function and gradient evaluations or line searches, hence it
is likely to be practical when the cost of function evaluation is high and even
a small number of additional iterations is expensive and undesirable.

4.5 Future Work

There is still a lot of space for further research and improvement. Here we
describe possible future work directions.

Best choice of formulas βi
We tested the proposed method with the choice of formulas

B = (βFR, βPR+, βDYHS , β̄N).

It is interesting to consider other combinations and determine if inclusion of
some formula gives significant performance improvement or if some combina-
tions are redundant.

Conjugacy condition

We have used the conjugacy condition (4.10) with the firm value of t = 1.
It is natural to ask if there are better values of t and try to find an adaptive
procedure to adjust the value of t to a local structure of the problem.

Optimality conditions

Currently, it is not known how to determine which values of β are better based
on some local (or even global) information about the function. We have used
the conjugacy condition (4.10) to rate the optimality of different vaules of β.
It is interesting to find a better condition. In general, it could be a great
breakthrough and lead to improved conjugate gradient methods.

51

4. Heuristic Method

Global convergence proof

The experiments showed that the proposed method converges to a solution on
the test problems, when invoked with globally convergent formulas of β. Thus,
the next step would be to attempt to find a proof of the global convergence
using, e.g., Theorem 2.1 and Theorem 2.2 in [45], which are widely used in
such proofs. However, it seems there is no straightforward way to proof the
convergence of the generic method based on β =

∑
iwiβi for any globally

convergent βi. Even proving that the algorithm decreases the function value
at each iteration is hard and it seems that it is unavoidable that such proof
must be based on formulas of particular choice of βi as in the generic case,
the fact that some property holds for the iterates of a method with β = βi
does not directly imply that the same property holds for the method with
β =

∑
iwiβi.

In several research papers (e.g., [60], [61]), methods with β = c1β1 +
c2β2 are considered and convergence proofs are given, however every separate
combination of β1 and β2 requires a separate proof based on the particular
formulas. It is not currently known if global convergence of any β1 and β2
implies the convergence of the method with β = c1β1 + c2β2 and c1 + c2 = 1.

52

Conclusion

The goal of the thesis was to study methods for unconstrained optimization.
In particular, we focused on the study of nonlinear conjugate gradient methods
and attempted to find a better method.

We presented the theoretical background for the unconstrained optimiza-
tion algorithms. The possibilities of unconstrained optimization algorithms
and theoretical results were presented. We compared several basic methods
such as the steepest descent method, Newton-type methods and conjugate
gradient methods.

The properties of the conjugate gradient method were studied in detail.
We outlined several options for the choice of the conjugate gradient update
parameter as well as their possible combinations and the effect on the perfor-
mance of the method.

A heuristic method based on several existing formulas was proposed. Our
method automatically combines the selected formulas and adapts to the given
problem, thus avoiding the drawbacks of existing hybrid methods. To our best
knowledge, no similar ideas were considered in the existing research papers.

Numerical experiments showed that our heuristic method converges to the
solutions of the test problems and often performs close to the best choice
of the formula for a given problem and requires only a small computational
overhead. In its current state, it does not bring a fundamental improvement,
however, it gives a promising direction for the further research.

53

Bibliography

[1] E. K. Chong and S. H. Zak, An introduction to optimization. John Wiley
& Sons, 4 ed., 2013.

[2] J. Nocedal and S. J. Wright, Numerical Optimization. Operations Re-
search and Financial Engineering, Springer New York, 2 ed., 2006.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 3 ed., 2009.

[4] W. Zhu, “Unsolvability of some optimization problems,” Applied Mathe-
matics and Computation, vol. 174, no. 2, pp. 921–926, 2006.

[5] Y. Shi et al., “Particle swarm optimization: developments, applications
and resources,” in Proceedings of the 2001 Congress on Evolutionary
Computation, vol. 1, pp. 81–86, IEEE, 2001.

[6] M. Locatelli, “Simulated annealing algorithms for continuous global opti-
mization: convergence conditions,” Journal of Optimization Theory and
applications, vol. 104, no. 1, pp. 121–133, 2000.

[7] A. V. Levy and A. Montalvo, “The tunneling algorithm for the global
minimization of functions,” SIAM Journal on Scientific and Statistical
Computing, vol. 6, no. 1, pp. 15–29, 1985.

[8] G. Renpu, “A filled function method for finding a global minimizer of
a function of several variables,” Mathematical programming, vol. 46, no. 1-
3, pp. 191–204, 1990.

[9] A. R. Conn, K. Scheinberg, and P. L. Toint, “Recent progress in un-
constrained nonlinear optimization without derivatives,” Mathematical
programming, vol. 79, no. 1-3, p. 397, 1997.

[10] N. Z. Shor, Minimization methods for non-differentiable functions.
Springer Science & Business Media, 3 ed., 2012.

[11] S. Xu, “Smoothing method for minimax problems,” Computational Op-
timization and Applications, vol. 20, no. 3, pp. 267–279, 2001.

[12] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Springer Science & Business Media, 2003.

55

Bibliography

[13] J. J. Moré, “Recent developments in algorithms and software for trust
region methods,” in Mathematical programming, The state of the art,
pp. 258–287, Springer, 1983.

[14] K. G. Murty and S. N. Kabadi, “Some NP-complete problems in quadratic
and nonlinear programming,” Mathematical programming, vol. 39, no. 2,
pp. 117–129, 1987.

[15] A. Cauchy, “Méthode générale pour la résolution des systemes
d’équations simultanées,” Comp. Rend. Sci. Paris, vol. 25, no. 1847,
pp. 536–538, 1847.

[16] D. H. Wolpert and W. G. Macready, “No free lunch theorems for opti-
mization,” IEEE transactions on evolutionary computation, vol. 1, no. 1,
pp. 67–82, 1997.

[17] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016.

[18] S. Bubeck et al., “Convex optimization: Algorithms and complexity,”
Foundations and Trends in Machine Learning, vol. 8, no. 3-4, pp. 231–
357, 2015.

[19] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint, 2016. arXiv:1609.04747.

[20] J. J. Moré and D. C. Sorensen, “Newton’s method,” tech. rep., Argonne
National Lab., IL (USA), 1982.

[21] W. Murray, “Newton-type methods,” in Wiley Encyclopedia of Opera-
tions Research and Management Science (J. J. Cochran et al., eds.), John
Wiley & Sons, 2011.

[22] C. G. Broyden, J. Dennis Jr, and J. J. Moré, “On the local and super-
linear convergence of quasi-newton methods,” IMA Journal of Applied
Mathematics, vol. 12, no. 3, pp. 223–245, 1973.

[23] J. Nocedal, “Theory of algorithms for unconstrained optimization,” Acta
numerica, vol. 1, pp. 199–242, 1992.

[24] H. Crowder and P. Wolfe, “Linear convergence of the conjugate gradi-
ent method,” IBM Journal of Research and Development, vol. 16, no. 4,
pp. 431–433, 1972.

[25] Mathworks, “Matlab documentation, fminunc.” [online]. Accessed
2018-05-15.

[26] Wolfram, “Mathematica documentation, FindMinimum.” [online]. Ac-
cessed 2018-05-15.

56

Bibliography

[27] “Scipy v1.1.0 reference guide, scipy.optimize.minimize.” [online]. Ac-
cessed 2018-05-15.

[28] S. G. Johnson, “Nlopt documentation.” [online]. Accessed 2018-05-15.

[29] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving
linear systems,” Journal of Research of the National Bureau of Standards,
vol. 49, no. 6, 1952.

[30] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain,” tech. rep., Carnegie Mellon University,
PA (USA), 1994.

[31] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gra-
dients,” The computer journal, vol. 7, no. 2, pp. 149–154, 1964.

[32] P. Wolfe, “Convergence conditions for ascent methods,” SIAM review,
vol. 11, no. 2, pp. 226–235, 1969.

[33] J. J. Moré and D. J. Thuente, “Line search algorithms with guaran-
teed sufficient decrease,” ACM Transactions on Mathematical Software
(TOMS), vol. 20, no. 3, pp. 286–307, 1994.

[34] W. W. Hager and H. Zhang, “A new conjugate gradient method with
guaranteed descent and an efficient line search,” SIAM Journal on opti-
mization, vol. 16, no. 1, pp. 170–192, 2005.

[35] Y.-H. Dai, “Convergence of conjugate gradient methods with constant
stepsizes,” Optimization Methods and Software, vol. 26, no. 6, pp. 895–
909, 2011.

[36] Y.-H. Dai, “Nonlinear conjugate gradient methods,” Wiley Encyclopedia
of Operations Research and Management Science, 2011.

[37] G. Zoutendijk, “Nonlinear programming, computational methods,” Inte-
ger and nonlinear programming, pp. 37–86, 1970.

[38] M. Al-Baali, “Descent property and global convergence of the
fletcher—reeves method with inexact line search,” IMA Journal of Nu-
merical Analysis, vol. 5, no. 1, pp. 121–124, 1985.

[39] M. J. D. Powell, “Restart procedures for the conjugate gradient method,”
Mathematical programming, vol. 12, no. 1, pp. 241–254, 1977.

[40] E. Polak and G. Ribiére, “Note sur la convergence de méthodes de
directions conjuguées,” Revue française d’informatique et de recherche
opérationnelle. Série rouge, vol. 3, no. 16, pp. 35–43, 1969.

57

Bibliography

[41] B. T. Polyak, “The conjugate gradient method in extremal problems,”
USSR Computational Mathematics and Mathematical Physics, vol. 9,
no. 4, pp. 94–112, 1969.

[42] M. J. Powell, “Nonconvex minimization calculations and the conjugate
gradient method,” in Numerical analysis, pp. 122–141, Springer, 1984.

[43] J. C. Gilbert and J. Nocedal, “Global convergence properties of conju-
gate gradient methods for optimization,” SIAM Journal on optimization,
vol. 2, no. 1, pp. 21–42, 1992.

[44] Y.-H. Dai and Q. Ni, “Testing different conjugate gradient methods for
large-scale unconstrained optimization,” Journal of Computational Math-
ematics, pp. 311–320, 2003.

[45] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient
methods,” Pacific journal of Optimization, vol. 2, no. 1, pp. 35–58, 2006.

[46] Y.-H. Dai and Y. Yuan, “Convergence properties of the conjugate descent
method,” Advances in Mathematics, p. 06, 1996.

[47] Y.-H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with
a strong global convergence property,” SIAM Journal on optimization,
vol. 10, no. 1, pp. 177–182, 1999.

[48] J. W. Daniel, “The conjugate gradient method for linear and nonlinear
operator equations,” SIAM Journal on Numerical Analysis, vol. 4, no. 1,
pp. 10–26, 1967.

[49] D. Touati-Ahmed and C. Storey, “Efficient hybrid conjugate gradient
techniques,” Journal of Optimization Theory and Applications, vol. 64,
no. 2, pp. 379–397, 1990.

[50] Y. Hu and C. Storey, “Global convergence result for conjugate gradi-
ent methods,” Journal of Optimization Theory and Applications, vol. 71,
no. 2, pp. 399–405, 1991.

[51] Y. Dai and Y. Yuan, “An efficient hybrid conjugate gradient method for
unconstrained optimization,” Annals of Operations Research, vol. 103,
no. 1-4, pp. 33–47, 2001.

[52] A. Cohen, “Rate of convergence of several conjugate gradient algorithms,”
SIAM Journal on Numerical Analysis, vol. 9, no. 2, pp. 248–259, 1972.

[53] E. G. Birgin and J. M. Mart́ınez, “A spectral conjugate gradient method
for unconstrained optimization,” Applied Mathematics and optimization,
vol. 43, no. 2, pp. 117–128, 2001.

58

Bibliography

[54] A. Perry, “A modified conjugate gradient algorithm,” Operations Re-
search, vol. 26, no. 6, pp. 1073–1078, 1978.

[55] Y. Narushima and H. Yabe, “A survey of sufficient descent conjugate gra-
dient methods for unconstrained optimization,” SUT journal of Mathe-
matics, vol. 50, no. 2, pp. 167–203, 2014.

[56] Y.-H. Dai and L.-Z. Liao, “New conjugacy conditions and related nonlin-
ear conjugate gradient methods,” Applied Mathematics and Optimization,
vol. 43, no. 1, pp. 87–101, 2001.

[57] N. I. Gould, D. Orban, and P. L. Toint, “Cutest: a constrained and un-
constrained testing environment with safe threads for mathematical opti-
mization,” Computational Optimization and Applications, vol. 60, no. 3,
pp. 545–557, 2015.

[58] L. Lukšan, C. Matonoha, and J. Vlcek, “Modified cute problems for sparse
unconstrained optimization,” tech. rep., 2010.

[59] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Mathematical programming, vol. 91, no. 2, pp. 201–
213, 2002.

[60] N. Andrei, “A hybrid conjugate gradient algorithm for unconstrained op-
timization as a convex combination of HS and DY,” Studies in Informatics
and Control, vol. 17, no. 1, p. 57, 2008.

[61] S. S. Djordjević, “New hybrid conjugate gradient method as a convex
combination of LS and CD methods,” Filomat, vol. 31, no. 6, pp. 1813–
1825, 2017.

59

Appendix A
CUTEst environment

CUTEst7 is a widely used testing environment for mathematical optimization.
It contains a set of problems for constrained and unconstrained optimization.
The problems are believed to reflect the qualities of many practical problems
and are frequently used as the only benchmark to evaluate the performance
of new methods in numerical optimization research.

For any given problem, CUTEst provides an interface obtain the initial
guess point, evaluate the objective function at any given point and other,
problem-dependent facilities, such as gradient, Hessian and constraint evalu-
ation.

The CUTEst environment is implemented in the Fortran language. Testing
problems are stored in the special format .SIF and can be decoded by the
special utility sifdecode. Decoding procedure produces problem-dependent
Fortran subroutines (e.g. for function evaluation, etc.) and data files that can
be accessed from a Fortran interface. Hence, each new problem must first be
decoded and compiled.

CUTEst environment can be used directly from the Fortran and also pro-
vides interfaces for C and MATLAB languages. In our implementation we
used the Julia language wrapper that is discussed in Appendix B. It is much
more convenient to setup and use the Julia interface than the mentioned in-
terfaces provided by CUTEst.

7https://github.com/ralna/CUTEst

61

https://github.com/ralna/CUTEst

Appendix B
Implementation details

Julia language

The methods where implemented in Julia language8, version 0.6.2. Julia is
a modern language, aimed primarily on numerical computations. Julia aims
to combine the expressiveness of scripting languages like Python or R with
the speed of C or Fortran. For this reasons, the Julia language is the perfect
choice for our purposes.

Line search algorithm

We used the Moré-Thuente line search algorithm and its implementation
MoreThuente in the LineSearches.jl9 package, version 6.0.1.

Random number generation and seeding

For random number generation, which is required in the probabilistic version of
Algorithm 4.2 with weights update (4.5), we used the the Distributions.jl10

package, version 0.15. Numbers are drawn from Categorical distribution
that implements the discrete distribution that is required for (4.5).

In the tests, the result of the probabilistic method is a mean value of
results of 10 independent iterations, where the internal random generator,
GLOBAL RNG, is initialized by calling srand(i), where seed i is the iteration
number. Hence, by repeating the same procedure on the same version of the
package, one should be able to get exactly the same output, as the output of
the pseudo-random generator is exactly defined by the seed value.

Interaction with CUTEst

The CUTEst environment was initially implemented in Fortran language. Its
installation and setup is a highly nontrivial task itself, however, we used the
wrapper for Julia, CUTEst.jl11 package, version 0.3.3. The package does the
installation and setup automatically and provides a convenient interface for
accessing the testing environment.

8https://julialang.org/
9https://github.com/JuliaNLSolvers/LineSearches.jl

10https://github.com/JuliaStats/Distributions.jl
11https://github.com/JuliaSmoothOptimizers/CUTEst.jl

63

https://julialang.org/
https://github.com/JuliaNLSolvers/LineSearches.jl
https://github.com/JuliaStats/Distributions.jl
https://github.com/JuliaSmoothOptimizers/CUTEst.jl

Appendix C
Contents of enclosed CD

readme.txt file with instructions on launching the tests
src.......................................the directory of source codes

impl......................................implementation and tests
thesis....................................source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

65

	Introduction
	Prerequisites
	Notation
	Multivariate Functions
	Optimality Conditions

	Unconstrained Optimization
	Methods for Local Optimization
	Complexity and Convergence Properties
	Overview of Iterative Descent Algorithms

	Conjugate Gradient Methods
	Linear Conjugate Gradient Method
	Nonlinear Conjugate Gradient Methods
	Line Search Methods
	Convergence Properties
	Formulas for the Direction Update Parameter
	Hybrid Conjugate Gradient Methods
	Restart Strategies

	Heuristic Method
	Ideas for Heuristic Methods
	The New Method
	Numerical Results
	Conclusion
	Future Work

	Conclusion
	Bibliography
	CUTEst environment
	Implementation details
	Contents of enclosed CD

