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Abstract 

 

GALIMZIANOVA, Zulfiia: Comparative analysis of binary classification algorithms. [Master Thesis] – Czech 

Technical University in Prague. Faculty of Electrical Engineering, Department of Computer Science. Supervisor: 

Ing. Miroslav Bureš, Ph.D.  

 

In this work a new modification of the SVM algorithm that employs a new regularization term is proposed. 

We propose to formulate the constraints of the classification model in a uniform manner and demonstrate an 

algorithm to find the solution of the new optimization problem in an efficient manner. The performance was 

compared to the baseline SVM algorithm on a public dataset. The experiments were conducted following the 

Monte-Carlo cross-validation scheme and the performance metrics were chosen as accuracy, recall, precision, and 

f1-score. The computational performance analysis was done in terms of the number of iterations that was required 

by the algorithms to converge. The resulting metrics vectors were compared using Wilcoxon’s signed rank test to 

identify the statistical significance of the findings. Our results on a public dataset demonstrated statistically 

significant improvements both in terms of accuracy and computational performance over the baseline SVM 

algorithm. As such, the method has the potential to be implemented in real-world applications in an effective and 

cost-efficient manner. 

 

Keywords:     optimization problem, binary classification, machine learning, support vector machine, SVM, 

comparative analysis.
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1 Introduction 

 

The AI methods are revolutionizing many fields of industry, medicine, business and academia through a 

variety of solutions becoming available to solve complex tasks in an effective and efficient way thanks to the 

recent methodological (e.g., deep learning) and technical (e.g., GPU computing) advancements [1]. A 

considerable boost to the popularization of the AI tools was an open visual recognition challenge ImageNet, where 

a deep convolutional neural network resulted in an unprecedented performance improvement of the traditional 

machine learning methods [2].    

Regardless of the application, machine learning methods are the core of the AI tools (see Figure 1.1). In 

particular, many practical tasks, such as object detection in surveillance video or treatment response prediction 

based on genetic testing, are solved through formulating them as a classification problem. In such formulation, 

for each object of interest a vector of features is formed and the categorical labels are assigned to each of them. 

Although the classification problem is in general multiclass problem, it can and usually is re-formulated in terms 

of binary classification, using techniques such as one-against-many.  

A significant contribution to the theory of machine learning, specifically, to object classification, was 

done by V. Vapnik, who proposed to consider the learning as optimization problem [3]. This, in turn, facilitates 

the use of optimization theory in AI systems development. At its current state, machine learning is an 

interdisciplinary field of research that combines disciplines such as statistics, information theory, theory of 

algorithms, probability theory and functional analysis. 

In 1963, Vapnik and Chervonenkis proposed a method of separating hyperplanes, which has become a 

basis for the development of SVMs [4]. The method has become one of the most popular ML algorithms for 

supervised classification. SVMs have been applied to multitude of applications, including image analysis, digit 

recognition and bioinformatics. 

 

Figure 1.1. A schematic representation of an AI-based tool. Adapted from NVIDIA’s CEO J. Huang’s 

keynote speech at GTC 2019 Technology Conference. 
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2 Methods 

 

2.1 Binary classification problem 

 

Let us formulate the task of binary classification. Given a set of objects 𝑈, each of which belongs to one 

of the two given classes 𝐶−1 or 𝐶1, we will describe them as a feature vector 𝑥 =  (𝑥1, … ,  𝑥𝑚).  

Let us have n objects 𝑢1, … , 𝑢𝑛 ∈ 𝑈. Based on these, the training dataset 𝑇, containing 𝑛 feature vectors 

{𝑥𝑖}, where 𝑖 =  1, . . . , 𝑛, is formed. In the training dataset, for each input vector 𝑥𝑖 its label is stored as the class 

index 𝑦𝑖  ∈  {1,−1}, which contains object 𝑢𝑖. Thus, the training dataset is obtained as 𝑇 =

 ((𝑥1, 𝑦1),… , (𝑥
𝑛, 𝑦𝑛)). 

The binary classification task is to find which of the given classes, i.e., 𝐶−1 or 𝐶1 object 𝑢 belongs, given 

the m-dimensional input features, or to find the mapping 𝑓(𝑥, 𝑤)  →  {−1, 1}, where 𝑥 is the feature vector and 

𝑤 is the model parameters vector. 

 

2.2 SVM Formulations 

 

SVM is a machine learning method for supervised learning. It could be used for the classification as well 

as regression tasks. 

In its linear form, the algorithm builds a hyperplane in the space of the features, such that to separate the 

sets of points from the two given classes. Its objective function is 

 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝛽, (2.1) 

  

where 𝑥 is the input vector of features, and 𝑤 is a vector orthogonal to the separating hyperplane defined as 

𝑓(𝑥) = 0, and the hyperplanes that contain the points in the feature space closest to it with 𝑓(𝑥) = ±1. The 

distance to these points from the hyperplane is defined as  

 

𝑙 =
1

‖𝑤‖
. (2.2) 

  

 

Since we want to apply this to a binary classification problem, we will ultimately predict y = 1 if f(x) ≥ 0 

and y = −1 if f(x) < 0. 

Multiple separating hyperplanes can exist (see Figure 2.1). 
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Figure 2.1 An example of separating hyperplanes in two-dimensional space. 

 

 The SVM problem is the search of an optimal separating hyperplane such that the distance between it 

and the closest points of the two classes is the largest, such as illustrated in Figure 2.2. 

 

 

Figure 2.2 An example of an optimal hyperplane in two-dimensional space. 
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To build such optimal hyperplanes we can consider only small portion of data from the training sample. 

These points form the support vectors and define the margins of a hyperplane. Computationally, the method is 

then formulated as an optimization task with linear constraints: 

 

min
𝑤,𝑏

1

2
‖𝑤‖2, 

1 + 𝑦𝑖(𝛽− < 𝑤, 𝑥
𝑖 >)  ≤  0, 𝑖 =  1, 𝑛, 

(2.3) 

  

where  𝑥𝑖 is the 𝑖-th feature vector from the training dataset, and 𝑦𝑖 is its class label. 

Assuming the linear separability of the classes, let us define the penalties. To do so, we first introduce 

the variables ξ𝑖 > 0: 

 

min
𝑤,𝑏,ξ

1

2
‖𝑤‖2 + С∑ξ𝑖

𝑛

𝑖=1

, 

1 + 𝑦𝑖 ∗ (𝛽 − 〈𝑤, 𝑥
𝑖〉) ≤  ξ𝑖 , 

  ξ𝑖 ≥ 0, 𝑖 =  1, 𝑛, 

(2.4) 

 

where 𝐶 is regularization parameter. 

Therefore, 

 

〈𝑤, 𝑥𝑖〉 − 𝛽 ≥ 1, if 𝑦𝑖 = 1 (2.5) 

and 

〈𝑤, 𝑥𝑖〉 − 𝛽 ≤ −1, if 𝑦𝑖 = −1. (2.6) 

 

 

The search of the minimum of this function with respect to 𝑤, 𝑏 and 𝜉 in the system (2.4) is equivalent 

to the search of saddle points of its Lagrangian: 

 

L(w, β, ξ, α) =  
1

2
‖𝑤‖2 + C∑ξ𝑖

𝑛

𝑖=1

+∑𝛼𝑖(1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥
𝑖〉) − ξ𝑖)

𝑛

𝑖=1

), (2.7) 
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where  

  ξ𝑖 ≥ 0, 𝛼𝑖 ≥ 0, 𝑖 =  1, 𝑛, (2.8) 

 

We differentiate the Lagragian, and, taking into account the constraints, obtain  

 

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕𝑤
= 𝑤 −∑𝑦𝑖

𝑛

𝑖=1

𝛼𝑖𝑥
𝑖 = 0, 

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕𝛽
=∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0, 

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕ξ𝑖
= 𝐶 − 𝛼𝑖 = 0. 

(2.9) 

 

This way, by incorporating the constraints as penalty terms into Lagrangian, a dual optimization problem 

is defined, which is a quadratic optimization problem with respect to the Lagrangian multipliers 𝛼𝑖. 

The dual problem takes the following form:  

 

max
𝛼≥0

→𝜑(𝛼), 

𝜑(𝛼) =  −
1

2
‖∑𝑦𝑖

𝑛

𝑖=1

𝛼𝑖𝑥
𝑖‖

2

+∑𝛼𝑖

𝑛

𝑖=1

, 
(2.10) 

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0, (2.11) 

0 ≤ 𝛼𝑖 ≤ С, 𝑖 =  1, 𝑛. (2.12) 

 

By looking at the dual problem, we see that (2.1) can also be expressed using inner products (2.9) as  

 

𝑓(𝑥) =∑𝛼𝑖
∗𝑦𝑖〈𝑥

𝑖, 𝑥〉 + 𝛽

𝑛

𝑖=1

. (2.13) 

 

Thus, the SVM training comes down to optimization problem (2.10)-(2.12). 
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Consider another formulation of the SVM learning problem. When the points from the different classes 

are not separable, the system might not have a solution and we could consider minimization of the following 

penalty: 

min →ξ 

1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥
𝑖〉) ≤ ξ, 𝑖 =  1, 𝑛; 

(2.14) 

Since this penalty is uniform, we solve the following problem: 

 

min max
𝑖= 1,𝑛

{1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥
𝑖〉), 0}. (2.15) 

 

Let us consider a case of a smooth function: 

 

min
1

2
‖𝑤‖2 + 𝐶ξ 

1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥
𝑖〉) ≤ ξ, 𝑖 =  1, 𝑛, ξ ≥ 0 

(2.16) 

 

Its Lagrangian takes the following form: 

 

L(w, β, ξ, α) =  
1

2
‖𝑤‖2 + Cξ +∑𝛼𝑖{1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥

𝑖〉) − ξ}

𝑛

𝑖=1

), (2.17) 

 

and the dual problem becomes 

 

max
𝛼≥0

→𝜑(𝛼), 

𝜑(𝛼) = min
𝑤,𝛽

𝐿(𝑤, 𝛽, ξ, 𝛼) = 𝐿(𝑤(𝛼), 𝛽(𝛼), ξ, α) 

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕𝑤
= 𝑤 −∑𝑦𝑖

𝑛

𝑖=1

𝛼𝑖𝑥
𝑖 = 0, 

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕𝛽
=∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0, 

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕ξ
= 𝐶 −∑𝛼𝑖

𝑛

𝑖=1

= 0, 

 

 

(2.18) 
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ξ ≥ 0,
𝜕𝐿

𝜕ξ
≥ 0, ξ

𝜕𝐿

𝜕ξ
= 0. 

 

Upon simplification, the dual problem takes the following form: 

 

max
𝛼≥0

→𝜑(𝛼), 

𝜑(𝛼) =  −
1

2
‖∑𝑦𝑖

𝑛

𝑖=1

𝛼𝑖𝑥
𝑖‖

2

+∑𝛼𝑖

𝑛

𝑖=1

, 

 

∑𝛼𝑖

𝑛

𝑖=1

≤ 𝐶, 

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0, 

𝛼𝑖 ≥ 0, 𝑖 =  1, 𝑛. 

(2.19) 
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2.3 SVM training  

 

For the model training we will use an iterative decomposition method. In each iteration the set of variables 

splits into two subsets: the subset 𝐵 of active variables with respect to which the optimization problem is solved 

in this iteration, and subset 𝑁 containing the rest of the variables. 

The algorithm is as follows: 

Step 1. Find a value  𝛼1 satisfying the constraints of the problem (2.20).  Assign 𝑞 ≤ 𝑛 the number of active 

varibles. Set 𝑘 =  1. 

Step 2. If the point 𝛼𝑘 is an optimal solution of (2.20), then return 𝛼𝑘. Otherwise, define the set 𝐵 ⊂

 {1, … , 𝑛}  of cardinality 𝑞, and the define the set 𝑁 ≡ {1,… , 𝑛}\𝐵. According to these sets, define vectors 

𝛼𝐵
𝑘 and 𝛼𝑁

𝑘 ,  

       Step 3. Solve the following problem with respect to 𝛼𝐵: 

 

max
𝛼≥0

→ −
1

2
‖∑𝑦𝑖𝛼𝑖𝑥

𝑖

𝑖∈𝐵

‖

2

+∑𝛼𝑖
𝑖∈𝐵

− 
1

2
‖∑𝑦𝑖𝛼𝑖𝑥

𝑖

𝑖∈𝑁

‖

2

+∑𝛼𝑖
𝑖∈𝑁

 

𝛼𝑖 ≥ 0, 𝑖 ∈ 𝐵, 

(2.20) 

∑𝛼𝑖
𝑖∈𝐵

≤ 𝐶 − ∑𝛼𝑖
𝑖∈𝑁

, (2.21) 

∑𝛼𝑖𝑦𝑖
𝑖∈𝐵

= −∑𝛼𝑖𝑦𝑖
𝑖∈𝑁

. (2.22) 

 

Step 4. Let 𝛼𝐵
𝑘+1 be the optimal solution of the problem (2.19) and 𝛼𝑁

𝑘+1 ≡ 𝛼𝑁
𝑘 . Update 𝑘 ← 𝑘 + 1. 

Continue to Step 2. 

 

2.3.1 SMO algorithm 

 

Let us consider a Sequential Minimal Optimization (SMO) method for solving the SVM problem [5]. The 

method was developed by John Platt and is a method of decomposition with the number of active variables 𝑞 =

 2. The SMO algorithm splits the QP problem into subproblems by following Osuna’s theorem to guarantee the 

convergence [6].  
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Thus, at each step, SMO finds a solution to a simpler problem. For the standard QP problem of SVM the 

smallest possible subproblem includes two Lagrange multipliers, in order to conform to the constraints in (2.11). 

At each step of the algorithm, two Lagrange multipliers are selected to solve the subproblem for these multipliers 

and updates the parameters of SVM.   

The advantage of SMO is that the search for the two Lagrange multipliers can be performed analytically. 

Therefore, the necessity to solve the QP problem is eliminated.  

 

2.3.1.1 Search of Lagrange multipliers 𝜶𝒊 and 𝜶𝒋. 

 

The 𝛼𝑖 and 𝛼𝑗 need to conform to (2.11) and (2.12). As can be seen in Figure 2.3, the inequality in (2.12) 

enforces the variables to the location within the square defined by the 𝑎𝑗 = 𝐶, 𝑎𝑖 = 𝐶, 𝛼𝑗 = 0 and 𝛼𝑖 = 0. At the 

same time, the constraint in (2.11) enforces them to be located on the diagonals defined as follows: 

 

If  𝑦1 ≠ 𝑦2,  

𝛼𝑖 − 𝛼𝑗 = ∑ 𝛼𝑘𝑦𝑘

𝑛

𝑘=1,
𝑘≠𝑖,
𝑘≠𝑗

. (2.23) 

 

If 𝑦1 = 𝑦2,  

𝛼𝑖 + 𝛼𝑗 = ∑ 𝛼𝑘𝑦𝑘

𝑛

𝑘=1,
𝑘≠𝑖,
𝑘≠𝑗

. 
(2.24) 
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Figure 2.3 An illustration of two Lagrangian multipliers conforming to the constraints of the baseline SVM 

problem. 

 

Therefore, the variables need to be constrained by the values at the ends of the respective diagonal lines: 

𝐿 for lower, and 𝐻, for the higher bound, which can be found in a simple manner. First, the algorithm computes 

one of the Lagrangian multipliers without conforming to the constraints, e.g., 𝛼𝑗. Next the bounds 𝐿 and 𝐻 are 

found:  

 

L = max(0, 𝛼𝑗 − 𝛼𝑖  ) , H = min(C, C − 𝛼𝑗 + 𝛼𝑖) , if 𝑦𝑖 ≠ 𝑦𝑗, (2.25) 

 

L = max(0, 𝛼𝑗 + 𝛼𝑖 − C ) , H = min(C, 𝛼𝑗 + 𝛼𝑖) , if 𝑦𝑖 = 𝑦𝑗. 

 

(2.26) 

 

Update the value of 𝛼𝑗: 

 

𝛼𝑗 = 𝛼𝑗 −
𝑦𝑖(𝐸𝑖 − 𝐸𝑗)

𝜂
 (2.27) 

where 

 

𝐸𝑘 = 𝑓(𝑥
𝑘) − 𝑦𝑘 (2.28) 

𝜂 = 2〈𝑥𝑖, 𝑥𝑗〉 − 〈𝑥𝑖, 𝑥𝑖〉 − 〈𝑥𝑗 , 𝑥𝑗〉. (2.29) 
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Here 𝐸𝑘 is the classification error at the 𝑘-th feature vector 𝑥𝑘 of the training set, and 𝜂 is the second 

derivative of the objective function.  

Next, the bounds [𝐿, 𝐻]  are checked for 𝛼𝑗 

 

𝛼𝑗 = {

𝐻, 𝑖𝑓 𝛼𝑗 > 𝐻 

𝛼𝑗, 𝑖𝑓 0 ≤ 𝛼𝑗 ≤ 𝐻

𝐿, 𝑖𝑓 𝛼𝑗 < 𝐿.

 (2.30) 

The 𝛼𝑖 is updated as  

 

𝛼𝑖 = 𝛼𝑖 + 𝑦𝑖𝑦𝑗(𝛼𝑗
(𝑜𝑙𝑑)

− 𝛼𝑗) (2.31) 

 

where 𝛼𝑗
(𝑜𝑙𝑑)

 is the value of 𝛼𝑗 found following (2.27). 

At each step of the algorithm the value of 𝛽 is updated. In case of 0 < 𝛼𝑖 < 𝐶, the value of 𝛽 is found as 

 

𝛽1 = 𝛽 − 𝐸𝑖 − 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
(𝑜𝑙𝑑))〈𝑥𝑖, 𝑥𝑖〉 − 𝑦𝑖(𝛼𝑗 − 𝛼𝑗

(𝑜𝑙𝑑))〈𝑥𝑗, 𝑥𝑗〉. (2.32) 

 

Similarly, when 0 < 𝛼𝑗 < 𝐶 , the value of 𝛽 is found as follows: 

 

𝛽2 = 𝛽 − 𝐸𝑗 − 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
(𝑜𝑙𝑑))〈𝑥𝑖, 𝑥𝑗〉 − 𝑦𝑖(𝛼𝑗 − 𝛼𝑗

(𝑜𝑙𝑑))〈𝑥𝑗, 𝑥𝑗〉. (2.33) 

 

If neither 0 < 𝛼𝑖 < 𝐶 nor 0 < 𝛼𝑗 < 𝐶 satisfy and both 𝛽1 and 𝛽2 defined, then 𝛽 is found as their average 

value: 

 

𝛽 =

{
 

 
𝛽1, 𝑖𝑓 0 < 𝛼𝑖 < 𝐶 
𝛽2, 𝑖𝑓 0 < 𝛼𝑗 < 𝐶

(𝛽1+𝛽2)

2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (2.34) 
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Then the pseudo-code of the algorithm will read as follows: 

 Generate initial 𝛼 =  𝜃 and set initial 𝛽 = 0 

 While the number of the maximal iterations has not exceeded: 

o For each data vector in the dataset: 

 If the data vector can be optimized: 

 Randomly select another data vector  

 Jointly optimize with respect to the two vectors 

 If the objective not improving, break the loop 

o If no vectors were optimized, increment the iteration count 

To solve the problem with the uniform penalties proposed above in (2.19), we now propose the following 

modifications to SMO. The number of active variables will still set to 𝑞 = 2, but since in this formulation the 

constraint ∑ 𝛼𝑖
𝑛
𝑖=1 ≤ 𝐶, is added, we modify the constraints to the Lagrangian multipliers accordingly. The ends 

of the diagonal lines on which 𝛼𝑖 and 𝛼𝑗 should lay in order to conform to the constraints will be computed in a 

different manner (see also illustration in Figure 2.4). 

 

Figure 2.4 An illustration of two Lagrangian multipliers conforming to the constraints of the proposed SVM 

problem (2.19). 

 

Let us assume 𝐶′ = 𝐶 − (𝛼𝑖 + 𝛼𝑗), then the bounds 𝐿 and 𝐻 can be found as follows:  

L = max(0, 𝛼𝑗 − 𝛼𝑖  ) , H = min(C
′,
1

2
(C′ − 𝛼𝑗 + 𝛼𝑖)) , if 𝑦𝑖 ≠ 𝑦𝑗, (2.35) 

 

L = max(0, 𝛼𝑗 + 𝛼𝑖 − C′ ) , H = min(C′, 𝛼𝑗 + 𝛼𝑖) , if 𝑦𝑖 = 𝑦𝑗. 

 

(2.36) 
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3 Experiments 

 

We will analyze the performance of the baseline and proposed methods on the publicly available Iris 

plants dataset [7], [8]. 

In this chapter we provide the description of the experimental setup and the validation methodology employed 

in this work. 

 

3.1 Experimental design 

 

Monte Carlo cross-validation (MCCV) scheme in our experiments. This method randomly selects (without 

replacement) some part of the data to create a training data set, and then assigns the rest of the points to the test 

data set. This process is repeated several times and each iteration we generate new training and test sets (see 

Figure 3.1). 

 

Figure 3.1 Data split in MCCV 

 

Suppose we have a set of 100 data point and we want to use 10% of our data to test our model. Then on 

the first run our test set can contain these points: 35, 13, 21, 73, 50, 52, 18, 79, 39 и 63. On the next iteration, our 

test data might be 8, 21, 6, 59, 66, 97, 33, 79, 69 и 58. Since the partitions are performed independently for each 

iteration, the same point may appear in the test set several times, which is the main difference between the Monte-

Carlo and traditional cross-validation. MCCV allows to explore several more possible data splits, although it is 

unlikely to consider all of them as there are С100
50  ≈ 1028 possible ways to split a set of 100 points equally. 
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Now we split the data set to training and test data sets. Training set is the data on which we fit the model, and 

the test set is the data that we will use to see how well the model works on unseen data.  

 

3.2 Validation metrics 

 

We consider a binary classification problem with two given classes 𝐶−1 or 𝐶1and we want to find the mapping 

𝑓(𝑥, 𝑤)  →  {−1,1}.  

As classification problems might be the most common type of machine learning problems, there is a lot of 

metrics that can be used to evaluate their performance. 

Let us consider the following indicators (see also Figure 3.2):  

• True Positives = | {𝑢𝑖  ∈  𝐶1 |𝑦(𝑥𝑖 , 𝑤)  =  1} |,  

• True Negatives = | {𝑢𝑖  ∈  𝐶−1 |𝑦(𝑥𝑖 , 𝑤) =  −1}|, 

• False Positives =| {𝑢𝑖  ∈  𝐶−1 |𝑦(𝑥𝑖, 𝑤)  =  1} |,  

• False Negatives = | {𝑢𝑖  ∈  𝐶1 |𝑦(𝑥𝑖 , 𝑤)  =  −1} |, 

where 𝑢 belongs to given set of objects 𝑈. 

For the sake of brevity further we shall use the following notations: TP, TN, FP, FN. 

 

Figure 3.2 Illustration of the true positive, false negative, false positive and true negative indicators. 

 

It is obvious, that TP + TN + FP + FN = N, где N = |U|. 

There are some metrics that can be used to evaluate predictions for binary classification problem. 
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 Type Ⅰ error: 

Error of the first kind, false positive classification or false alarm, False Positive Rate: 

 

𝛼 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

 Type Ⅱ error: 

Error of the second kind, false negative classification or miss, False Negative Rate:  

 

𝛽 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁 
 

 Accuracy:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑁
  

 

 Precision: 

The fraction of positively classified objects that truly belong to the positive class over the total number of 

positively classified objects: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 Recall: 

The fraction of positively classified objects that truly belong to the positive class over the total number of 

objects that belong to a positive class:  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

In addition to the above performance metrics, we record the number of iterations that the methods require at 

each run of the MCCV experiment, which will serve us as the computational performance metric. 
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3.3 Statistical analyses 

 

The statistical significance of the difference in classification performance and computational performance 

was done using Wilcoxon’s signed rank test for two samples [9], [10]. In our experimental setting we were able 

to assume the two performance metrics to be paired since each MCCV experiment was conducted such that both 

methods were initialized with the same initial parameters, and were validated using the same training and test 

splits. The significance level was chosen as 𝛼 = 0.001.   
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4 Implementation details 

 

In this Chapter, we provide the software solution specification that was developed as part of our 

experimental setup.  

SVM(self, max_iter=10000, kernel_type='linear', C=1.0, epsilon=0.001) 

Model initialization 

Parameters: max_iter: int (default=10000) 

Limit on the number of iteration without solving the optimization problem 

 kernel_type: string (default='linear') 

Specifies the kernel type to be used in the model. It must be 'linear' or 'quadratic'. If 

nothing is specified, “linear” will be used. 

 C: float (default=1.0) 

Сorrelation coefficient. 

 epsilon: float (default=0.001) 

The minimum difference between the new and the old value of α 

 

Methods. 

Table 4.1 The methods and their description 

fit(self, X, y, alphaInit = None, imodel = 0) Training the both SVM algorithms 

predict(self, X) Object classification based on X characteristic 

vector 

calc_b(self, X, y, w) Calculation of the parameter of the model β 

calc_w(self, alpha, y, X) Calculation of the parameter of the model w 

E(self, x_k, y_k, w, b) Calculation of prediction error 

compute_L_H(self, C, alpha_prime_j, alpha_prime_i, 

y_j, y_i) 

Calculation of boundary values of 𝛼 for standard 

SVM model 

compute_L_H_2(self, C, alpha_prime_j, alpha_prime_i, 

y_j, y_i) 

Calculation of boundary values of 𝛼 for second 

type of SVM model 

get_rnd_int(self, a,b,z) Selection the random number between a and b 

that is not equal to z 

kernel_linear(self, x1, x2) Define linear kernel 

kernel_quadratic(self, x1, x2) Define RBF kernel 
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fit(self, X, y, alphaInit = None, imodel = 0) 

Training the SVM model 

Parameters: X: {array-like}, shape (n, d) 

The matrix of vectors of characteristics from the training set, where (n, d) is the expected 

shape of X 

 y : array-like, shape (n) 

The vector of target values, expected shape of y is n 

 alphaInit: array-like, shape (n) 

Initial value of 𝛼 

 Imodel: int (default = 0) 

The type of SVM algorithm. imodel=0 – standard SVM, if imodel=1 – second type of 

SVM  

Returns:  

support_vectors: array-like 

The list of support vectors 

count: int 

The number of support vectors 

alpha: array-like, shape (n) 

Lagrange multipliers 𝛼  

 

predict(self, X) 

Object classification based on X characteristic vector  

In the case of a binary classification, returns -1 or 1. 

Parameters: X: {array-like}, shape (n, d) 

The matrix of vectors of characteristics from the training set, where (n, d) is the expected 

shape of X 

Returns:  

y_pred: int 

Class labels for samples in X. 

 

 

calc_b(self, X, y, w) 

Calculation of the parameter of the model β 
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Parameters: X: {array-like}, shape (n, d) 

The matrix of vectors of characteristics from the training set, where (n, d) is the expected 

shape of X 

 y : array-like, shape (n) 

The vector of target values, expected shape of y is n 

 w: array-like, shape (d) 

Parameter of the model w, expected shape of w is d  

Returns:  

b: float 

Parameter of the model β 

 

calc_w(self, alpha, y, X) 

Calculation of the parameter of the model w 

Parameters: alpha: array-like, shape (n) 

Lagrange multipliers 𝛼 

 y : array-like, shape (n) 

The vector of target values, expected shape of y is n 

 X: {array-like}, shape (n, d) 

The matrix of vectors of characteristics from the training set, where (n, d) is the expected 

shape of X 

Returns:  

w: array-like, shape (d) 

Parameter of the model w, expected shape of w is d 

 

E(self, x_k, y_k, w, b) 

Calculation of prediction error 

Parameters: x_k: array-like, shape  (d) 

The vectors of characteristics of k-th object, expected shape of x_k is d 

 y_k : int 

Target values of the k-th object 

 w: array-like, shape (d) 

Parameter of the model w, expected shape of w is d 

 b: float 

Parameter of the model β 

Returns: E_k: float  

Classification error 
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compute_L_H(self, C, alpha_prime_j, alpha_prime_i, y_j, y_i) 

Calculation of boundary values of 𝛼 for standard SVM model 

Parameters: C: float  

Сorrelation coefficient. 

 alpha_prime_j: float 

j-th Lagrange multiplier 𝛼𝑗 

 alpha_prime_i: float  

i-th Lagrange multiplier 𝛼𝑖 

 y_i : int 

Target values of the i-th object 

 y_j : int 

Target values of the j-th object 

Returns:  

L, H: float 

Boundary values of 𝛼𝑗 

 

compute_L_H_2(self, C, alpha_prime_j, alpha_prime_i, y_j, y_i) 

Calculation of boundary values of 𝛼 for second type of SVM model 

Parameters: C: float  

Сorrelation coefficient. 

 alpha_prime_j: float 

j-th Lagrange multiplier 𝛼𝑗 

 alpha_prime_i: float  

i-th Lagrange multiplier 𝛼𝑖 

 y_i : int 

Target values of the i-th object 

 y_j : int 

Target values of the j-th object 

Returns:  

L, H: float 

Boundary values of 𝛼𝑗 
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 get_rnd_int(self, a, b, z) 

Selection the random number between a and b that is not equal to z 

Parameters: a: int 

Lower boundary value 

 b: int  

Upper boundary value 

 z: int  

The number i cannot be equal to 

Returns:  

i: int 

Random number 

 

kernel_linear(self, x1, x2) 

Define linear kernel 

Parameters: x1: array-like, shape  (d) 

The vectors of characteristics of the object 

 x2: array-like, shape  (d) 

The vectors of characteristics of another object 

Returns:  

kernel: float 

The value of kernel function 

 

kernel_quadratic(self, x1, x2) 

Define quadratic kernel 

Parameters: x1: array-like, shape  (d) 

The vectors of characteristics of the object 

 x2: array-like, shape  (d) 

The vectors of characteristics of another object 

Returns:  

kernel: float 

The value of kernel function 
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5 Results 

 

This chapter summarizes the results of experiments described in the previous chapters. In order to 

compare the baseline and proposed SVMs, the following steps were conducted: 

1. the performance metrics were chosen as accuracy, recall, precision, and f1-score, as well as the 

number of iterations to conversion; 

2. m=100 runs of MCCV were conducted with a random split of training and testing sets with 75% and 

25% of data, respectively; 

3. the resulting metrics vectors were compared using Wilcoxon’s signed rank test to identify the 

statistical significance of the findings. 

 

5.1 Performance 

 

 Table 5.1 summarizes the performance metrics for the two methods. 

Table 5.1 The median of the metrics for each method 

Median values Baseline SVM Uniform SVM 

Accuracy 0.78 0.85 

Precision 0.65 0.72 

Recall 1.00 1.00 

F1-Score 0.78 0.82 

Number of iterations 10.00 9.00 

 

As we can see from Table 5.1, the median values the performance metrics are consistently higher for the 

proposed method and the median value for the number of iterations is greater for the baseline method. 
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The differences of the metrics were as follows: the median difference of 10.8% at 𝑝 ≪ 0.001  for accuracy (see 

also Figure 5.1), the median difference of 9.0% at 𝑝 ≪ 0.001 for f1-score (see also Figure 5.2), the median  

difference of 14.0% at 𝑝 ≪ 0.001 for precision (see also Figure 5.3) and no statistically significant difference 

found for recall (see also Figure 5.4). Such pairwise comparison was possible, since our implementation of the 

MCCV provided both methods with the same sets of training and test data as well as the initial parameters 

(described in Chapters 3,4) 

 

Figure 5.1 The difference of the accuracy between the proposed and baseline SVMs over the 100 MCCV 

experiments. 

 



32 
 

 

 

Figure 5.2 The difference of the f1-score between the proposed and baseline SVMs over the 100 

experiments. 

 

Figure 5.3 The difference of the precision between the proposed and baseline SVMs over the 100 

experiments. 

 

Figure 5.4 The difference of the recall between the proposed and baseline SVMs over the 100 experiments. 
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5.2 Computational performance analysis 

 

The comparison of the computational performance was done in terms of the number of iterations that was 

required by the algorithms to converge. The difference of the number of iterations over the 100 experiments is 

illustrated in Figure 5.5. There was statistically significant reduction of the number of iterations when using the 

proposed method (median decrease of 3 iterations, 𝑝 ≪ 0.001, Wilcoxon’s signed rank test). 

 

  

 

Figure 5.5 The difference of the number of iterations between the proposed and baseline SVMs over the 100 

experiments. 
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5 Discussion 

 

The machine learning tasks typically suggest a compromise between efficiency and accuracy, with 

accurate methods being more computationally expensive. In this work, we proposed a new modification of the 

SVM algorithm that provides improvements over the baseline SVM both in terms of accuracy and efficiency.  

Our experiments on public data demonstrate statistically significant improvements in classification 

performance in terms of accuracy, precision and f1-score. The performance in terms of recall were at the same 

level as the baseline model without significant differences, indicating that source of the significant improvement 

of 9.8% for F1-score was the precision (statistically significant improvement of 13.1%). Improvement in terms of 

the latter can be impactful in applications such as computerized diagnostics in screening as lowering of false 

positives as it implies that there will be fewer subjects that require further clinical investigations, thus lowering 

the phycological pressure and financial costs associated with over-diagnosis [11]. 

The number of iterations also affects the applicability of the method. As our results suggest, the proposed 

method can lower the number of iterations needed to converge with a statistically significant difference. As such, 

its implementation in real-world applications and systems can potentially lower the time costs of the solutions.  

The design of our experiments followed a probabilistic approach via the use of MCCV technique. As the 

comparative study of the two algorithms was the primary goal, we ensured fair comparison by providing same 

training and test splits as well as initial parameters to both baseline and proposed methods. By doing so, we 

enabled the pairwise statistical analysis (Wilcoxon’s signed rank test) to identify the significance in the set of 

performance metrics. 
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Conclusion 

 

To conclude, we proposed a new modification of the SVM algorithm that employs a new regularization 

term. The experiments on a public dataset demonstrated statistically significant improvements both in terms of 

accuracy and computational performance over the baseline SVM algorithm. As such, the method has a potential 

to be implemented in real-world applications. 
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