

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Master`s Thesis

COMPARATIVE ANALYSIS OF BINARY CLASSIFICATION

ALGORITHMS

Zulfiia Galimzianova

Supervisor: Ing. Miroslav Bureš, Ph.D.

Study Program: Open Informatics

Field of Study: Software Engineering

 May 24, 2019

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

484743Personal ID number:Galimzianova ZulfiiaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science and Engineering

Open InformaticsStudy program:

Software EngineeringSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Comparative analysis of binary classification algorithms

Master’s thesis title in Czech:

Comparative analysis of binary classification algorithms

Guidelines:
Consider the classification problem into two non-intersecting classes. Let there be some set of objects U, each of which
belongs to one of the two represented classes C0 and C1, and is described by an n-dimensional vector of characteristics(x1,
…, xn). Also, suppose there is a function μ(u) that calculates these vectors for any object u � U.
The goal is to build classifiers and to analyze the performance of these classification algorithms.
The tested methods include types of support vector machines (SVM) such as standard SVM (minimizing the sum of squared
errors) and SVM which uses uniform objective function(minimizing the maximum of squared errors).
The experiments on several applications will be conducted to demonstrate the strengths and weaknesses of the classifiers
and quantitatively evaluate their performance.

Bibliography / sources:
Konnov, Igor, Selective Bi-Coordinate Variations for Resource Allocation Type Problems (November 5, 2014). Available
at SSRN: https://ssrn.com/abstract=2519662 or http://dx.doi.org/10.2139/ssrn.2519662
I.V. Konnov (2015) Sequential threshold control in descent splitting methods for decomposable optimization problems,
Optimization Methods and Software, 30:6, 1238-1254, DOI: 10.1080/10556788.2015.1030015
C. Cortes и V. Vapnik, «Support-Vector Networks», Mach. Learn., т. 20, вып. 3, сс. 273–297, сен. 1995.
В. Вапник и А. Червоненкис, Теория распознавания образов. Главная редакцияфизико-математической литературы
издательства «Наука», 1974.
V. N. Vapnik, Statistical Learning Theory, 1 edition. New York: Wiley-Interscience, 1998.

Name and workplace of master’s thesis supervisor:

doc. Ing. Miroslav Bureš, Ph.D., Software Testing Intelligent Lab, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2019Date of master’s thesis assignment: 05.04.2019

Assignment valid until: 19.02.2021

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
Head of department’s signaturedoc. Ing. Miroslav Bureš, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1

Acknowledgements

Throughout the writing of this thesis I have received a great deal of support and assistance. I would first

like to thank my supervisor, Prof. Dr. Miroslav Bureš, for his support and help during my education at Czech

Technical University in Prague. I would like to express my sincere gratitude to Prof. Dr. Igor Konnov, whose

expertise was invaluable in the formulating of the research topic and development of methodology in particular.

I would also like to appreciate Prof. Dr. Ekaterina Turilova, Prof. Dr. Arslan Enikeev, and Prof. Dr. Galim

Vakhitov for the opportunity to participate in the Double Degree program (CVUT, KFU) and the CTU mentors

and Prof. Dr. Karel Frajták as part of it for the great experience of studying in CVUT.

Finally, thanks a lot to my family and friends for their unconditional support and faith in me.

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all the literature and

publications used.

I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb. (copyright

law), and with the rights connected with the copyright act including the changes in the act.

Prague, May, 2019 _________________________

Abstract

GALIMZIANOVA, Zulfiia: Comparative analysis of binary classification algorithms. [Master Thesis] – Czech

Technical University in Prague. Faculty of Electrical Engineering, Department of Computer Science. Supervisor:

Ing. Miroslav Bureš, Ph.D.

In this work a new modification of the SVM algorithm that employs a new regularization term is proposed.

We propose to formulate the constraints of the classification model in a uniform manner and demonstrate an

algorithm to find the solution of the new optimization problem in an efficient manner. The performance was

compared to the baseline SVM algorithm on a public dataset. The experiments were conducted following the

Monte-Carlo cross-validation scheme and the performance metrics were chosen as accuracy, recall, precision, and

f1-score. The computational performance analysis was done in terms of the number of iterations that was required

by the algorithms to converge. The resulting metrics vectors were compared using Wilcoxon’s signed rank test to

identify the statistical significance of the findings. Our results on a public dataset demonstrated statistically

significant improvements both in terms of accuracy and computational performance over the baseline SVM

algorithm. As such, the method has the potential to be implemented in real-world applications in an effective and

cost-efficient manner.

Keywords: optimization problem, binary classification, machine learning, support vector machine, SVM,

comparative analysis.

1

Contents

List of figures ... 3

List of tables ... 5

Abbreviations ... 7

1 Introduction .. 9

2 Methods ... 10

3 Experiments .. 21

4 Implementation details... 25

5 Results ... 30

5 Discussion .. 34

Conclusion .. 35

Bibliography .. 36

2

3

List of figures

Figure 1.1. A schematic representation of an AI-based tool. Adapted from NVIDIA’s CEO J. Huang’s keynote

speech at GTC 2019 Technology Conference. .. 9

Figure 2.1 An example of separating hyperplanes in two-dimensional space. ... 11

Figure 2.2 An example of an optimal hyperplane in two-dimensional space. .. 11

Figure 2.3 An illustration of two Lagrangian multipliers conforming to the constraints of the baseline SVM

problem. ... 18

Figure 2.4 An illustration of two Lagrangian multipliers conforming to the constraints of the proposed SVM

problem (2.19). .. 20

Figure 3.1 Data split in MCCV ... 21

Figure 3.2 Illustration of the true positive, false negative, false positive and true negative indicators. 22

Figure 5.1 The difference of the accuracy between the proposed and baseline SVMs over the 100 MCCV

experiments. .. 31

Figure 5.2 The difference of the f1-score between the proposed and baseline SVMs over the 100 experiments. 32

Figure 5.3 The difference of the precision between the proposed and baseline SVMs over the 100 experiments.

 ... 32

Figure 5.4 The difference of the recall between the proposed and baseline SVMs over the 100 experiments. 32

Figure 5.5 The difference of the number of iterations between the proposed and baseline SVMs over the 100

experiments. .. 33

file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545912
file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545912
file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545919
file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545919
file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545920
file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545921
file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545921
file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545922
file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545923
file:///C:/Users/zulfi/Desktop/дисс/новая%20версия/GalimzianovaZV_MSThesis%20(Автосохраненный).docx%23_Toc9545923

4

5

List of tables

Table 4.1 The methods and their description .. 25

Table 5.1 The median of the metrics for each method .. 30

6

7

Abbreviations

AI: artificial intelligence

GPU: graphics processing unit

CV: computer vision

NLU: natural language understanding

ML: machine learning

DL: deep learning

SVM: support vector machine

MCCV: Monte-Carlo cross-validation

QP: quadratic programming

SMO: sequential minimal optimization

8

9

1 Introduction

The AI methods are revolutionizing many fields of industry, medicine, business and academia through a

variety of solutions becoming available to solve complex tasks in an effective and efficient way thanks to the

recent methodological (e.g., deep learning) and technical (e.g., GPU computing) advancements [1]. A

considerable boost to the popularization of the AI tools was an open visual recognition challenge ImageNet, where

a deep convolutional neural network resulted in an unprecedented performance improvement of the traditional

machine learning methods [2].

Regardless of the application, machine learning methods are the core of the AI tools (see Figure 1.1). In

particular, many practical tasks, such as object detection in surveillance video or treatment response prediction

based on genetic testing, are solved through formulating them as a classification problem. In such formulation,

for each object of interest a vector of features is formed and the categorical labels are assigned to each of them.

Although the classification problem is in general multiclass problem, it can and usually is re-formulated in terms

of binary classification, using techniques such as one-against-many.

A significant contribution to the theory of machine learning, specifically, to object classification, was

done by V. Vapnik, who proposed to consider the learning as optimization problem [3]. This, in turn, facilitates

the use of optimization theory in AI systems development. At its current state, machine learning is an

interdisciplinary field of research that combines disciplines such as statistics, information theory, theory of

algorithms, probability theory and functional analysis.

In 1963, Vapnik and Chervonenkis proposed a method of separating hyperplanes, which has become a

basis for the development of SVMs [4]. The method has become one of the most popular ML algorithms for

supervised classification. SVMs have been applied to multitude of applications, including image analysis, digit

recognition and bioinformatics.

Figure 1.1. A schematic representation of an AI-based tool. Adapted from NVIDIA’s CEO J. Huang’s

keynote speech at GTC 2019 Technology Conference.

10

2 Methods

2.1 Binary classification problem

Let us formulate the task of binary classification. Given a set of objects 𝑈, each of which belongs to one

of the two given classes 𝐶−1 or 𝐶1, we will describe them as a feature vector 𝑥 = (𝑥1, … , 𝑥𝑚).

Let us have n objects 𝑢1, … , 𝑢𝑛 ∈ 𝑈. Based on these, the training dataset 𝑇, containing 𝑛 feature vectors

{𝑥𝑖}, where 𝑖 = 1, . . . , 𝑛, is formed. In the training dataset, for each input vector 𝑥𝑖 its label is stored as the class

index 𝑦𝑖 ∈ {1,−1}, which contains object 𝑢𝑖. Thus, the training dataset is obtained as 𝑇 =

 ((𝑥1, 𝑦1),… , (𝑥
𝑛, 𝑦𝑛)).

The binary classification task is to find which of the given classes, i.e., 𝐶−1 or 𝐶1 object 𝑢 belongs, given

the m-dimensional input features, or to find the mapping 𝑓(𝑥, 𝑤) → {−1, 1}, where 𝑥 is the feature vector and

𝑤 is the model parameters vector.

2.2 SVM Formulations

SVM is a machine learning method for supervised learning. It could be used for the classification as well

as regression tasks.

In its linear form, the algorithm builds a hyperplane in the space of the features, such that to separate the

sets of points from the two given classes. Its objective function is

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝛽, (2.1)

where 𝑥 is the input vector of features, and 𝑤 is a vector orthogonal to the separating hyperplane defined as

𝑓(𝑥) = 0, and the hyperplanes that contain the points in the feature space closest to it with 𝑓(𝑥) = ±1. The

distance to these points from the hyperplane is defined as

𝑙 =
1

‖𝑤‖
. (2.2)

Since we want to apply this to a binary classification problem, we will ultimately predict y = 1 if f(x) ≥ 0

and y = −1 if f(x) < 0.

Multiple separating hyperplanes can exist (see Figure 2.1).

11

Figure 2.1 An example of separating hyperplanes in two-dimensional space.

 The SVM problem is the search of an optimal separating hyperplane such that the distance between it

and the closest points of the two classes is the largest, such as illustrated in Figure 2.2.

Figure 2.2 An example of an optimal hyperplane in two-dimensional space.

12

To build such optimal hyperplanes we can consider only small portion of data from the training sample.

These points form the support vectors and define the margins of a hyperplane. Computationally, the method is

then formulated as an optimization task with linear constraints:

min
𝑤,𝑏

1

2
‖𝑤‖2,

1 + 𝑦𝑖(𝛽− < 𝑤, 𝑥
𝑖 >) ≤ 0, 𝑖 = 1, 𝑛,

(2.3)

where 𝑥𝑖 is the 𝑖-th feature vector from the training dataset, and 𝑦𝑖 is its class label.

Assuming the linear separability of the classes, let us define the penalties. To do so, we first introduce

the variables ξ𝑖 > 0:

min
𝑤,𝑏,ξ

1

2
‖𝑤‖2 + С∑ξ𝑖

𝑛

𝑖=1

,

1 + 𝑦𝑖 ∗ (𝛽 − 〈𝑤, 𝑥
𝑖〉) ≤ ξ𝑖 ,

 ξ𝑖 ≥ 0, 𝑖 = 1, 𝑛,

(2.4)

where 𝐶 is regularization parameter.

Therefore,

〈𝑤, 𝑥𝑖〉 − 𝛽 ≥ 1, if 𝑦𝑖 = 1 (2.5)

and

〈𝑤, 𝑥𝑖〉 − 𝛽 ≤ −1, if 𝑦𝑖 = −1. (2.6)

The search of the minimum of this function with respect to 𝑤, 𝑏 and 𝜉 in the system (2.4) is equivalent

to the search of saddle points of its Lagrangian:

L(w, β, ξ, α) =
1

2
‖𝑤‖2 + C∑ξ𝑖

𝑛

𝑖=1

+∑𝛼𝑖(1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥
𝑖〉) − ξ𝑖)

𝑛

𝑖=1

), (2.7)

13

where

 ξ𝑖 ≥ 0, 𝛼𝑖 ≥ 0, 𝑖 = 1, 𝑛, (2.8)

We differentiate the Lagragian, and, taking into account the constraints, obtain

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕𝑤
= 𝑤 −∑𝑦𝑖

𝑛

𝑖=1

𝛼𝑖𝑥
𝑖 = 0,

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕𝛽
=∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0,

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕ξ𝑖
= 𝐶 − 𝛼𝑖 = 0.

(2.9)

This way, by incorporating the constraints as penalty terms into Lagrangian, a dual optimization problem

is defined, which is a quadratic optimization problem with respect to the Lagrangian multipliers 𝛼𝑖.

The dual problem takes the following form:

max
𝛼≥0

→𝜑(𝛼),

𝜑(𝛼) = −
1

2
‖∑𝑦𝑖

𝑛

𝑖=1

𝛼𝑖𝑥
𝑖‖

2

+∑𝛼𝑖

𝑛

𝑖=1

,
(2.10)

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0, (2.11)

0 ≤ 𝛼𝑖 ≤ С, 𝑖 = 1, 𝑛. (2.12)

By looking at the dual problem, we see that (2.1) can also be expressed using inner products (2.9) as

𝑓(𝑥) =∑𝛼𝑖
∗𝑦𝑖〈𝑥

𝑖, 𝑥〉 + 𝛽

𝑛

𝑖=1

. (2.13)

Thus, the SVM training comes down to optimization problem (2.10)-(2.12).

14

Consider another formulation of the SVM learning problem. When the points from the different classes

are not separable, the system might not have a solution and we could consider minimization of the following

penalty:

min →ξ

1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥
𝑖〉) ≤ ξ, 𝑖 = 1, 𝑛;

(2.14)

Since this penalty is uniform, we solve the following problem:

min max
𝑖= 1,𝑛

{1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥
𝑖〉), 0}. (2.15)

Let us consider a case of a smooth function:

min
1

2
‖𝑤‖2 + 𝐶ξ

1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥
𝑖〉) ≤ ξ, 𝑖 = 1, 𝑛, ξ ≥ 0

(2.16)

Its Lagrangian takes the following form:

L(w, β, ξ, α) =
1

2
‖𝑤‖2 + Cξ +∑𝛼𝑖{1 + 𝑦𝑖(𝛽 − 〈𝑤, 𝑥

𝑖〉) − ξ}

𝑛

𝑖=1

), (2.17)

and the dual problem becomes

max
𝛼≥0

→𝜑(𝛼),

𝜑(𝛼) = min
𝑤,𝛽

𝐿(𝑤, 𝛽, ξ, 𝛼) = 𝐿(𝑤(𝛼), 𝛽(𝛼), ξ, α)

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕𝑤
= 𝑤 −∑𝑦𝑖

𝑛

𝑖=1

𝛼𝑖𝑥
𝑖 = 0,

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕𝛽
=∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0,

𝜕𝐿(𝑤, 𝛽, ξ, 𝛼)

𝜕ξ
= 𝐶 −∑𝛼𝑖

𝑛

𝑖=1

= 0,

(2.18)

15

ξ ≥ 0,
𝜕𝐿

𝜕ξ
≥ 0, ξ

𝜕𝐿

𝜕ξ
= 0.

Upon simplification, the dual problem takes the following form:

max
𝛼≥0

→𝜑(𝛼),

𝜑(𝛼) = −
1

2
‖∑𝑦𝑖

𝑛

𝑖=1

𝛼𝑖𝑥
𝑖‖

2

+∑𝛼𝑖

𝑛

𝑖=1

,

∑𝛼𝑖

𝑛

𝑖=1

≤ 𝐶,

∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0,

𝛼𝑖 ≥ 0, 𝑖 = 1, 𝑛.

(2.19)

16

2.3 SVM training

For the model training we will use an iterative decomposition method. In each iteration the set of variables

splits into two subsets: the subset 𝐵 of active variables with respect to which the optimization problem is solved

in this iteration, and subset 𝑁 containing the rest of the variables.

The algorithm is as follows:

Step 1. Find a value 𝛼1 satisfying the constraints of the problem (2.20). Assign 𝑞 ≤ 𝑛 the number of active

varibles. Set 𝑘 = 1.

Step 2. If the point 𝛼𝑘 is an optimal solution of (2.20), then return 𝛼𝑘. Otherwise, define the set 𝐵 ⊂

 {1, … , 𝑛} of cardinality 𝑞, and the define the set 𝑁 ≡ {1,… , 𝑛}\𝐵. According to these sets, define vectors

𝛼𝐵
𝑘 and 𝛼𝑁

𝑘 ,

 Step 3. Solve the following problem with respect to 𝛼𝐵:

max
𝛼≥0

→ −
1

2
‖∑𝑦𝑖𝛼𝑖𝑥

𝑖

𝑖∈𝐵

‖

2

+∑𝛼𝑖
𝑖∈𝐵

−
1

2
‖∑𝑦𝑖𝛼𝑖𝑥

𝑖

𝑖∈𝑁

‖

2

+∑𝛼𝑖
𝑖∈𝑁

𝛼𝑖 ≥ 0, 𝑖 ∈ 𝐵,

(2.20)

∑𝛼𝑖
𝑖∈𝐵

≤ 𝐶 − ∑𝛼𝑖
𝑖∈𝑁

, (2.21)

∑𝛼𝑖𝑦𝑖
𝑖∈𝐵

= −∑𝛼𝑖𝑦𝑖
𝑖∈𝑁

. (2.22)

Step 4. Let 𝛼𝐵
𝑘+1 be the optimal solution of the problem (2.19) and 𝛼𝑁

𝑘+1 ≡ 𝛼𝑁
𝑘 . Update 𝑘 ← 𝑘 + 1.

Continue to Step 2.

2.3.1 SMO algorithm

Let us consider a Sequential Minimal Optimization (SMO) method for solving the SVM problem [5]. The

method was developed by John Platt and is a method of decomposition with the number of active variables 𝑞 =

 2. The SMO algorithm splits the QP problem into subproblems by following Osuna’s theorem to guarantee the

convergence [6].

17

Thus, at each step, SMO finds a solution to a simpler problem. For the standard QP problem of SVM the

smallest possible subproblem includes two Lagrange multipliers, in order to conform to the constraints in (2.11).

At each step of the algorithm, two Lagrange multipliers are selected to solve the subproblem for these multipliers

and updates the parameters of SVM.

The advantage of SMO is that the search for the two Lagrange multipliers can be performed analytically.

Therefore, the necessity to solve the QP problem is eliminated.

2.3.1.1 Search of Lagrange multipliers 𝜶𝒊 and 𝜶𝒋.

The 𝛼𝑖 and 𝛼𝑗 need to conform to (2.11) and (2.12). As can be seen in Figure 2.3, the inequality in (2.12)

enforces the variables to the location within the square defined by the 𝑎𝑗 = 𝐶, 𝑎𝑖 = 𝐶, 𝛼𝑗 = 0 and 𝛼𝑖 = 0. At the

same time, the constraint in (2.11) enforces them to be located on the diagonals defined as follows:

If 𝑦1 ≠ 𝑦2,

𝛼𝑖 − 𝛼𝑗 = ∑ 𝛼𝑘𝑦𝑘

𝑛

𝑘=1,
𝑘≠𝑖,
𝑘≠𝑗

. (2.23)

If 𝑦1 = 𝑦2,

𝛼𝑖 + 𝛼𝑗 = ∑ 𝛼𝑘𝑦𝑘

𝑛

𝑘=1,
𝑘≠𝑖,
𝑘≠𝑗

.
(2.24)

18

Figure 2.3 An illustration of two Lagrangian multipliers conforming to the constraints of the baseline SVM

problem.

Therefore, the variables need to be constrained by the values at the ends of the respective diagonal lines:

𝐿 for lower, and 𝐻, for the higher bound, which can be found in a simple manner. First, the algorithm computes

one of the Lagrangian multipliers without conforming to the constraints, e.g., 𝛼𝑗. Next the bounds 𝐿 and 𝐻 are

found:

L = max(0, 𝛼𝑗 − 𝛼𝑖) , H = min(C, C − 𝛼𝑗 + 𝛼𝑖) , if 𝑦𝑖 ≠ 𝑦𝑗, (2.25)

L = max(0, 𝛼𝑗 + 𝛼𝑖 − C) , H = min(C, 𝛼𝑗 + 𝛼𝑖) , if 𝑦𝑖 = 𝑦𝑗.

(2.26)

Update the value of 𝛼𝑗:

𝛼𝑗 = 𝛼𝑗 −
𝑦𝑖(𝐸𝑖 − 𝐸𝑗)

𝜂
 (2.27)

where

𝐸𝑘 = 𝑓(𝑥
𝑘) − 𝑦𝑘 (2.28)

𝜂 = 2〈𝑥𝑖, 𝑥𝑗〉 − 〈𝑥𝑖, 𝑥𝑖〉 − 〈𝑥𝑗 , 𝑥𝑗〉. (2.29)

19

Here 𝐸𝑘 is the classification error at the 𝑘-th feature vector 𝑥𝑘 of the training set, and 𝜂 is the second

derivative of the objective function.

Next, the bounds [𝐿, 𝐻] are checked for 𝛼𝑗

𝛼𝑗 = {

𝐻, 𝑖𝑓 𝛼𝑗 > 𝐻

𝛼𝑗, 𝑖𝑓 0 ≤ 𝛼𝑗 ≤ 𝐻

𝐿, 𝑖𝑓 𝛼𝑗 < 𝐿.

 (2.30)

The 𝛼𝑖 is updated as

𝛼𝑖 = 𝛼𝑖 + 𝑦𝑖𝑦𝑗(𝛼𝑗
(𝑜𝑙𝑑)

− 𝛼𝑗) (2.31)

where 𝛼𝑗
(𝑜𝑙𝑑)

 is the value of 𝛼𝑗 found following (2.27).

At each step of the algorithm the value of 𝛽 is updated. In case of 0 < 𝛼𝑖 < 𝐶, the value of 𝛽 is found as

𝛽1 = 𝛽 − 𝐸𝑖 − 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
(𝑜𝑙𝑑))〈𝑥𝑖, 𝑥𝑖〉 − 𝑦𝑖(𝛼𝑗 − 𝛼𝑗

(𝑜𝑙𝑑))〈𝑥𝑗, 𝑥𝑗〉. (2.32)

Similarly, when 0 < 𝛼𝑗 < 𝐶 , the value of 𝛽 is found as follows:

𝛽2 = 𝛽 − 𝐸𝑗 − 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
(𝑜𝑙𝑑))〈𝑥𝑖, 𝑥𝑗〉 − 𝑦𝑖(𝛼𝑗 − 𝛼𝑗

(𝑜𝑙𝑑))〈𝑥𝑗, 𝑥𝑗〉. (2.33)

If neither 0 < 𝛼𝑖 < 𝐶 nor 0 < 𝛼𝑗 < 𝐶 satisfy and both 𝛽1 and 𝛽2 defined, then 𝛽 is found as their average

value:

𝛽 =

{

𝛽1, 𝑖𝑓 0 < 𝛼𝑖 < 𝐶
𝛽2, 𝑖𝑓 0 < 𝛼𝑗 < 𝐶

(𝛽1+𝛽2)

2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (2.34)

20

Then the pseudo-code of the algorithm will read as follows:

 Generate initial 𝛼 = 𝜃 and set initial 𝛽 = 0

 While the number of the maximal iterations has not exceeded:

o For each data vector in the dataset:

 If the data vector can be optimized:

 Randomly select another data vector

 Jointly optimize with respect to the two vectors

 If the objective not improving, break the loop

o If no vectors were optimized, increment the iteration count

To solve the problem with the uniform penalties proposed above in (2.19), we now propose the following

modifications to SMO. The number of active variables will still set to 𝑞 = 2, but since in this formulation the

constraint ∑ 𝛼𝑖
𝑛
𝑖=1 ≤ 𝐶, is added, we modify the constraints to the Lagrangian multipliers accordingly. The ends

of the diagonal lines on which 𝛼𝑖 and 𝛼𝑗 should lay in order to conform to the constraints will be computed in a

different manner (see also illustration in Figure 2.4).

Figure 2.4 An illustration of two Lagrangian multipliers conforming to the constraints of the proposed SVM

problem (2.19).

Let us assume 𝐶′ = 𝐶 − (𝛼𝑖 + 𝛼𝑗), then the bounds 𝐿 and 𝐻 can be found as follows:

L = max(0, 𝛼𝑗 − 𝛼𝑖) , H = min(C
′,
1

2
(C′ − 𝛼𝑗 + 𝛼𝑖)) , if 𝑦𝑖 ≠ 𝑦𝑗, (2.35)

L = max(0, 𝛼𝑗 + 𝛼𝑖 − C′) , H = min(C′, 𝛼𝑗 + 𝛼𝑖) , if 𝑦𝑖 = 𝑦𝑗.

(2.36)

21

3 Experiments

We will analyze the performance of the baseline and proposed methods on the publicly available Iris

plants dataset [7], [8].

In this chapter we provide the description of the experimental setup and the validation methodology employed

in this work.

3.1 Experimental design

Monte Carlo cross-validation (MCCV) scheme in our experiments. This method randomly selects (without

replacement) some part of the data to create a training data set, and then assigns the rest of the points to the test

data set. This process is repeated several times and each iteration we generate new training and test sets (see

Figure 3.1).

Figure 3.1 Data split in MCCV

Suppose we have a set of 100 data point and we want to use 10% of our data to test our model. Then on

the first run our test set can contain these points: 35, 13, 21, 73, 50, 52, 18, 79, 39 и 63. On the next iteration, our

test data might be 8, 21, 6, 59, 66, 97, 33, 79, 69 и 58. Since the partitions are performed independently for each

iteration, the same point may appear in the test set several times, which is the main difference between the Monte-

Carlo and traditional cross-validation. MCCV allows to explore several more possible data splits, although it is

unlikely to consider all of them as there are С100
50 ≈ 1028 possible ways to split a set of 100 points equally.

22

Now we split the data set to training and test data sets. Training set is the data on which we fit the model, and

the test set is the data that we will use to see how well the model works on unseen data.

3.2 Validation metrics

We consider a binary classification problem with two given classes 𝐶−1 or 𝐶1and we want to find the mapping

𝑓(𝑥, 𝑤) → {−1,1}.

As classification problems might be the most common type of machine learning problems, there is a lot of

metrics that can be used to evaluate their performance.

Let us consider the following indicators (see also Figure 3.2):

• True Positives = | {𝑢𝑖 ∈ 𝐶1 |𝑦(𝑥𝑖 , 𝑤) = 1} |,

• True Negatives = | {𝑢𝑖 ∈ 𝐶−1 |𝑦(𝑥𝑖 , 𝑤) = −1}|,

• False Positives =| {𝑢𝑖 ∈ 𝐶−1 |𝑦(𝑥𝑖, 𝑤) = 1} |,

• False Negatives = | {𝑢𝑖 ∈ 𝐶1 |𝑦(𝑥𝑖 , 𝑤) = −1} |,

where 𝑢 belongs to given set of objects 𝑈.

For the sake of brevity further we shall use the following notations: TP, TN, FP, FN.

Figure 3.2 Illustration of the true positive, false negative, false positive and true negative indicators.

It is obvious, that TP + TN + FP + FN = N, где N = |U|.

There are some metrics that can be used to evaluate predictions for binary classification problem.

23

 Type Ⅰ error:

Error of the first kind, false positive classification or false alarm, False Positive Rate:

𝛼 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

 Type Ⅱ error:

Error of the second kind, false negative classification or miss, False Negative Rate:

𝛽 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

 Accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑁

 Precision:

The fraction of positively classified objects that truly belong to the positive class over the total number of

positively classified objects:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 Recall:

The fraction of positively classified objects that truly belong to the positive class over the total number of

objects that belong to a positive class:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

In addition to the above performance metrics, we record the number of iterations that the methods require at

each run of the MCCV experiment, which will serve us as the computational performance metric.

24

3.3 Statistical analyses

The statistical significance of the difference in classification performance and computational performance

was done using Wilcoxon’s signed rank test for two samples [9], [10]. In our experimental setting we were able

to assume the two performance metrics to be paired since each MCCV experiment was conducted such that both

methods were initialized with the same initial parameters, and were validated using the same training and test

splits. The significance level was chosen as 𝛼 = 0.001.

25

4 Implementation details

In this Chapter, we provide the software solution specification that was developed as part of our

experimental setup.

SVM(self, max_iter=10000, kernel_type='linear', C=1.0, epsilon=0.001)

Model initialization

Parameters: max_iter: int (default=10000)

Limit on the number of iteration without solving the optimization problem

 kernel_type: string (default='linear')

Specifies the kernel type to be used in the model. It must be 'linear' or 'quadratic'. If

nothing is specified, “linear” will be used.

 C: float (default=1.0)

Сorrelation coefficient.

 epsilon: float (default=0.001)

The minimum difference between the new and the old value of α

Methods.

Table 4.1 The methods and their description

fit(self, X, y, alphaInit = None, imodel = 0) Training the both SVM algorithms

predict(self, X) Object classification based on X characteristic

vector

calc_b(self, X, y, w) Calculation of the parameter of the model β

calc_w(self, alpha, y, X) Calculation of the parameter of the model w

E(self, x_k, y_k, w, b) Calculation of prediction error

compute_L_H(self, C, alpha_prime_j, alpha_prime_i,

y_j, y_i)

Calculation of boundary values of 𝛼 for standard

SVM model

compute_L_H_2(self, C, alpha_prime_j, alpha_prime_i,

y_j, y_i)

Calculation of boundary values of 𝛼 for second

type of SVM model

get_rnd_int(self, a,b,z) Selection the random number between a and b

that is not equal to z

kernel_linear(self, x1, x2) Define linear kernel

kernel_quadratic(self, x1, x2) Define RBF kernel

26

fit(self, X, y, alphaInit = None, imodel = 0)

Training the SVM model

Parameters: X: {array-like}, shape (n, d)

The matrix of vectors of characteristics from the training set, where (n, d) is the expected

shape of X

 y : array-like, shape (n)

The vector of target values, expected shape of y is n

 alphaInit: array-like, shape (n)

Initial value of 𝛼

 Imodel: int (default = 0)

The type of SVM algorithm. imodel=0 – standard SVM, if imodel=1 – second type of

SVM

Returns:

support_vectors: array-like

The list of support vectors

count: int

The number of support vectors

alpha: array-like, shape (n)

Lagrange multipliers 𝛼

predict(self, X)

Object classification based on X characteristic vector

In the case of a binary classification, returns -1 or 1.

Parameters: X: {array-like}, shape (n, d)

The matrix of vectors of characteristics from the training set, where (n, d) is the expected

shape of X

Returns:

y_pred: int

Class labels for samples in X.

calc_b(self, X, y, w)

Calculation of the parameter of the model β

27

Parameters: X: {array-like}, shape (n, d)

The matrix of vectors of characteristics from the training set, where (n, d) is the expected

shape of X

 y : array-like, shape (n)

The vector of target values, expected shape of y is n

 w: array-like, shape (d)

Parameter of the model w, expected shape of w is d

Returns:

b: float

Parameter of the model β

calc_w(self, alpha, y, X)

Calculation of the parameter of the model w

Parameters: alpha: array-like, shape (n)

Lagrange multipliers 𝛼

 y : array-like, shape (n)

The vector of target values, expected shape of y is n

 X: {array-like}, shape (n, d)

The matrix of vectors of characteristics from the training set, where (n, d) is the expected

shape of X

Returns:

w: array-like, shape (d)

Parameter of the model w, expected shape of w is d

E(self, x_k, y_k, w, b)

Calculation of prediction error

Parameters: x_k: array-like, shape (d)

The vectors of characteristics of k-th object, expected shape of x_k is d

 y_k : int

Target values of the k-th object

 w: array-like, shape (d)

Parameter of the model w, expected shape of w is d

 b: float

Parameter of the model β

Returns: E_k: float

Classification error

28

compute_L_H(self, C, alpha_prime_j, alpha_prime_i, y_j, y_i)

Calculation of boundary values of 𝛼 for standard SVM model

Parameters: C: float

Сorrelation coefficient.

 alpha_prime_j: float

j-th Lagrange multiplier 𝛼𝑗

 alpha_prime_i: float

i-th Lagrange multiplier 𝛼𝑖

 y_i : int

Target values of the i-th object

 y_j : int

Target values of the j-th object

Returns:

L, H: float

Boundary values of 𝛼𝑗

compute_L_H_2(self, C, alpha_prime_j, alpha_prime_i, y_j, y_i)

Calculation of boundary values of 𝛼 for second type of SVM model

Parameters: C: float

Сorrelation coefficient.

 alpha_prime_j: float

j-th Lagrange multiplier 𝛼𝑗

 alpha_prime_i: float

i-th Lagrange multiplier 𝛼𝑖

 y_i : int

Target values of the i-th object

 y_j : int

Target values of the j-th object

Returns:

L, H: float

Boundary values of 𝛼𝑗

29

 get_rnd_int(self, a, b, z)

Selection the random number between a and b that is not equal to z

Parameters: a: int

Lower boundary value

 b: int

Upper boundary value

 z: int

The number i cannot be equal to

Returns:

i: int

Random number

kernel_linear(self, x1, x2)

Define linear kernel

Parameters: x1: array-like, shape (d)

The vectors of characteristics of the object

 x2: array-like, shape (d)

The vectors of characteristics of another object

Returns:

kernel: float

The value of kernel function

kernel_quadratic(self, x1, x2)

Define quadratic kernel

Parameters: x1: array-like, shape (d)

The vectors of characteristics of the object

 x2: array-like, shape (d)

The vectors of characteristics of another object

Returns:

kernel: float

The value of kernel function

30

5 Results

This chapter summarizes the results of experiments described in the previous chapters. In order to

compare the baseline and proposed SVMs, the following steps were conducted:

1. the performance metrics were chosen as accuracy, recall, precision, and f1-score, as well as the

number of iterations to conversion;

2. m=100 runs of MCCV were conducted with a random split of training and testing sets with 75% and

25% of data, respectively;

3. the resulting metrics vectors were compared using Wilcoxon’s signed rank test to identify the

statistical significance of the findings.

5.1 Performance

 Table 5.1 summarizes the performance metrics for the two methods.

Table 5.1 The median of the metrics for each method

Median values Baseline SVM Uniform SVM

Accuracy 0.78 0.85

Precision 0.65 0.72

Recall 1.00 1.00

F1-Score 0.78 0.82

Number of iterations 10.00 9.00

As we can see from Table 5.1, the median values the performance metrics are consistently higher for the

proposed method and the median value for the number of iterations is greater for the baseline method.

31

The differences of the metrics were as follows: the median difference of 10.8% at 𝑝 ≪ 0.001 for accuracy (see

also Figure 5.1), the median difference of 9.0% at 𝑝 ≪ 0.001 for f1-score (see also Figure 5.2), the median

difference of 14.0% at 𝑝 ≪ 0.001 for precision (see also Figure 5.3) and no statistically significant difference

found for recall (see also Figure 5.4). Such pairwise comparison was possible, since our implementation of the

MCCV provided both methods with the same sets of training and test data as well as the initial parameters

(described in Chapters 3,4)

Figure 5.1 The difference of the accuracy between the proposed and baseline SVMs over the 100 MCCV

experiments.

32

Figure 5.2 The difference of the f1-score between the proposed and baseline SVMs over the 100

experiments.

Figure 5.3 The difference of the precision between the proposed and baseline SVMs over the 100

experiments.

Figure 5.4 The difference of the recall between the proposed and baseline SVMs over the 100 experiments.

33

5.2 Computational performance analysis

The comparison of the computational performance was done in terms of the number of iterations that was

required by the algorithms to converge. The difference of the number of iterations over the 100 experiments is

illustrated in Figure 5.5. There was statistically significant reduction of the number of iterations when using the

proposed method (median decrease of 3 iterations, 𝑝 ≪ 0.001, Wilcoxon’s signed rank test).

Figure 5.5 The difference of the number of iterations between the proposed and baseline SVMs over the 100

experiments.

34

5 Discussion

The machine learning tasks typically suggest a compromise between efficiency and accuracy, with

accurate methods being more computationally expensive. In this work, we proposed a new modification of the

SVM algorithm that provides improvements over the baseline SVM both in terms of accuracy and efficiency.

Our experiments on public data demonstrate statistically significant improvements in classification

performance in terms of accuracy, precision and f1-score. The performance in terms of recall were at the same

level as the baseline model without significant differences, indicating that source of the significant improvement

of 9.8% for F1-score was the precision (statistically significant improvement of 13.1%). Improvement in terms of

the latter can be impactful in applications such as computerized diagnostics in screening as lowering of false

positives as it implies that there will be fewer subjects that require further clinical investigations, thus lowering

the phycological pressure and financial costs associated with over-diagnosis [11].

The number of iterations also affects the applicability of the method. As our results suggest, the proposed

method can lower the number of iterations needed to converge with a statistically significant difference. As such,

its implementation in real-world applications and systems can potentially lower the time costs of the solutions.

The design of our experiments followed a probabilistic approach via the use of MCCV technique. As the

comparative study of the two algorithms was the primary goal, we ensured fair comparison by providing same

training and test splits as well as initial parameters to both baseline and proposed methods. By doing so, we

enabled the pairwise statistical analysis (Wilcoxon’s signed rank test) to identify the significance in the set of

performance metrics.

35

Conclusion

To conclude, we proposed a new modification of the SVM algorithm that employs a new regularization

term. The experiments on a public dataset demonstrated statistically significant improvements both in terms of

accuracy and computational performance over the baseline SVM algorithm. As such, the method has a potential

to be implemented in real-world applications.

36

Bibliography

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015.

[2] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int J Comput Vis, vol. 115,

no. 3, pp. 211–252, Dec. 2015.

[3] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, Sep.

1995.

[4] V. N. Vapnik, Statistical Learning Theory, 1 edition. New York: Wiley-Interscience, 1998.

[5] J. C. Platt, “Fast Training of Support Vector Machines using Sequential Minimal Optimization,” in

Advances in kernel methods, MA, USA: MIT Press, 1999.

[6] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for support vector machines.,” in

Proc. of IEEE NNSP’97, 1997.

[7] “UCI Machine Learning Repository: Iris Data Set.” [Online]. Available:

http://archive.ics.uci.edu/ml/datasets/Iris. [Accessed: 21-May-2019].

[8] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annals of Eugenics, vol. 7, no.

2, pp. 179–188, 1936.

[9] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83,

1945.

[10] A. Benavoli, G. Corani, J. Demsar, and M. Zaffalon, “Time for a change: a tutorial for comparing multiple

classifiers through Bayesian analysis,” arXiv:1606.04316 [cs, stat], Jun. 2016.

[11] S. Vaccarella, S. Franceschi, F. Bray, C. P. Wild, M. Plummer, and L. Dal Maso, “Worldwide Thyroid-

Cancer Epidemic? The Increasing Impact of Overdiagnosis,” N. Engl. J. Med., vol. 375, no. 7, pp. 614–617,

Aug. 2016.

