
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 21, 2019

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Offline call center analysis

 Student: Boris Pazdera

 Supervisor: Ing. et Ing. Martin Švík Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The bachelor thesis should focus on analysis of the current state of the art of methods of call center
deflection and to design and implement a solution that will automatically transcribe audio calls, analyze
content and show the results of the analysis (annotations, sentiment,...) of the call.
Steps:
1) Research the existing methods.
2) Analyze transcription solutions and select one of the best technology for transcription of call center calls.
3) Analyze text analysis solutions and choose the most suitable technology for the implementation.
4) Design architecture of the final solution.
5) Implement functional prototype of the proposed architecture of the solution.
6) Test implemented solution.
Details of the project will be clarified by consultation with the supervisor.

References

Will be provided by the supervisor.

Bachelor’s thesis

Offline call center analysis

Boris Pazdera

Supervisor: Ing. et Ing. Martin Šv́ık, Ph.D.

May 15, 2019

Acknowledgements

First and foremost I thank my supervisor, Martin Šv́ık. Without his belief,
I would never take the courage to write a thesis in English. I thank you very
much for your long term lead and challenge.

I would like to also express my sincere gratitude to Martin Bacher for the
proofreading of the whole thesis.

I am truly grateful to Mr. Maroš Benka from Phonexia company for
guidance on their software.

I also place on record my gratitude to all who directly or indirectly have
lent their hand in this venture.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Boris Pazdera. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Pazdera, Boris. Offline call center analysis. Bachelor’s thesis. Czech Techni-
cal University in Prague, Faculty of Information Technology, 2019.

Abstrakt

V této práci jsou nast́ıněny základńı možnosti zpracováńı zvukových nahrávek
z call center a jejich hloubkové analýzy z pohledu jak textové, tak zvukové.
Toho je dosaženo návrhem architektury, výběrem správných komponent a re-
alizaćı prototypu.

Kĺıčová slova call centrum, analýza zvukových nahrávek, analýza textu,
vytěžováńı dat

Abstract

This thesis outlines are outlined the basic possibilities of processing audio
recordings from call centers and their in-depth analysis from the perspective
of both text and audio. This is achieved by designing of the architecture,
choosing the right components and implementing the prototype.

Keywords call center, audio analysis, text analysis, text mining, data min-
ing, voice mining

vii

Contents

Introduction 1
Goals . 2

Specific goals . 2

1 State-of-the-art 3
1.1 Real-time analysis . 3
1.2 Content analysis . 4

1.2.1 Audio recording analysis 4
1.2.2 Text analysis . 4

2 Analysis and design 5
2.1 Audio analysis . 5

2.1.1 SpeechTech . 5
2.1.1.1 Speech to Text 6
2.1.1.2 Voice analysis 6
2.1.1.3 Conclusion . 6

2.1.2 NEWTON Technologies 6
2.1.2.1 NEWTON Dictate 6
2.1.2.2 NEWTON Analytics 7
2.1.2.3 Conclusion . 7

2.1.3 Phonexia . 7
2.1.3.1 Language identification 7
2.1.3.2 Technology of Phonexia’s Speech transcription 8
2.1.3.3 Acoustic model 9
2.1.3.4 Language model 9
2.1.3.5 Speech transcription 9
2.1.3.6 Conclusion . 10

2.2 Full-text search and text content analysis 10
2.2.1 Solr . 10

ix

2.2.1.1 Conclusion . 10
2.2.2 Elasticsearch . 11

2.2.2.1 Conclusion . 11
2.2.3 IBM Watson Explorer oneWEX 11

2.2.3.1 Data Ingestion 11
2.2.3.2 Data Enrichment 12
2.2.3.3 Machine Learning 12
2.2.3.4 Exploration . 12
2.2.3.5 Architecture 13

2.3 Cogniware DataCollector . 14
2.3.1 Connector . 14
2.3.2 Data Handler . 14
2.3.3 Crawler . 15

2.4 Conclusion . 16

3 Realisation of prototype 17
3.1 Architecture . 17
3.2 Orchestrator . 18

3.2.1 Data connector . 18
3.2.2 Data Handler . 19

3.2.2.1 Implementation of voice processing 20
3.2.2.2 Methods used for data extraction from voice . 22

3.3 The Voice processing module 22
3.3.1 License cycle management 23
3.3.2 Technologies customization 23

3.3.2.1 Language identification 23
3.4 Text processing module . 24

3.4.1 REST API investigation and data injection 24
3.4.2 Dataset and collection creation 26

3.4.2.1 Dataset . 26
3.4.2.2 Collection . 26

3.5 Graphical user interface . 29
3.5.1 GUI – Search . 29
3.5.2 GUI – Miner . 30

4 Outputs 31

Conclusion 39
Possible further improvements . 40

Bibliography 43

A Acronyms 47

B Supplemental Material 49

x

List of Figures

2.1 The Speech Transcription technology 8
2.2 IBM Watson Explorer oneWEX Data processing scheme 13
2.3 Cogniware DataCollector crawler architecture 14
2.4 Final architecture . 16

3.1 Scheme of request and response . 21
3.2 Range filter example . 28

4.1 High-level architecture . 32
4.2 Prototype GUI – Search . 33
4.3 Prototype GUI – Miner – Expert mode 34
4.4 Prototype GUI – Miner – Sentiment facets analysis 35
4.5 Prototype GUI – Miner – Phrase sentiment analysis 36
4.6 Prototype GUI – Miner – Cause or characteristics analysis 37
4.7 Prototype GUI – Miner – Named entity extraction and analysis . . 38

xi

Listings

3.1 Example of nested JSON . 25
3.2 Example of flat JSON . 25
3.3 Example of length of recording range 28

xiii

Introduction

Each of us is trying to get as much information as possible before making any
decision. We will never have enough of it, as it is impossible and unsustainable
to capture 100 % of all data. In addition, it is very unlikely to analyze them
all due to the volume of the information.

However, with the development of Information technologies, the possibil-
ities are wider and constantly expanding. This is mainly due to the massive
modernization of computer hardware. Previously, we were really limited since
we had only one option and that was “just” human reading and evaluation by
our own cognitive functions.

Now, we have more possibilities due to contemporary technologies, where
we can process, analyze and automatically aggregate data based on many
parameters without any human work. This kind of data processing is also
easily scalable. In the case of data growth in the past, we had to hire, train and
pay new people who would perform ”manual” analysis. Today, we can extend
our systems and/or rent more computer power and process more data with a
minimal financial cost. Especially in this period when we have historically the
lowest unemployment rate of 2.4 % (2018) since 1991 when there was 2.3 %
[1]. We can let people evaluate already cleaned, grouped data in a form that
is easy to read and with no need to read the documents one by one.

We are in a situation when data is one of the most important commodities
to help us make any decision. We are trying to collect even more of them to
get to the imaginary “golden grail” in the form of all available knowledge. No
wonder, because decision-making mechanisms based on the hard data are the
best way in the implementation of any new product, in problem detection of
already running service or in the fast removal of an existing issue.

We collect a lot of data daily with anticipation of future use, without the
current tools for evaluation and analysis. All companies process not only their
own sensor data or data from other systems, but additional data collected from
client channels. They usually process data from e-mail communication and
chat tools, where it is predominantly text analysis. Most of the companies

1

Introduction

have call centers as well, where they generate a lot of data in different formats
(text, call frequency, voice, . . .), but this analysis is much more complicated.

Call centers offer enormous potential for the information extraction, un-
fortunately, we usually use only metadata (length, number of calls, . . .) and
not the content itself. Here is a huge open space and potential to collect very
important information and that is the main reason why I chose data extrac-
tion from voice recordings in call centers topic as my Bachelor’s Thesis. The
whole work is based on obtaining data from voice recordings in the call center
and enabling the possibility of their analysis mainly from the point of the view
of the recording’s content.

The main benefit of the thesis will be the ability to analyze the content of
the voice recordings deeply.

Goals

The goal of this thesis is to design and implement the prototype of software
solution which will provide an opportunity for data analysts to analyze voice
recordings from the text content perspective. This will be accomplished by
extracting the basic information from voice recordings (length, number of
channels, frequency, language, . . .), conversion to the text and then making
basic text mining (sentiment expression extraction, entity extraction, . . .).

Data analysts need to have the option to make a full-text search through
the content of all recordings and to be able to find the document as a search
result with a basic overview of metadata extracted from the voice recording.
The data should be analyzable by a human in GUI via the web browser.

Specific goals

To perform research of existing systems for audio and text processing which
would be suitable for the on-premise solution.

To find out possibilities of data extraction from the audio tracks point of
view, eventually possibilities of entity extraction and making annotations in
text content.

Choose the right third-party components or algorithms that will secure
the individual parts of the solution with an emphasis on the selected system
requirements.

The solution will work with personal data about customers and therefore
it is necessary to propose a solution taking into consideration this fact and
the overall relation to GDPR.

The final part is the implementation of the GUI itself, in which the results
will be displayed and evaluation of the whole implementation.

2

Chapter 1
State-of-the-art

Each call center keeps voice tracks of their calls, but in most cases, they use
only the metadata of those recordings (length, number of calls, occupancy,
etc.), or to report problems with some operator (agent). These recordings
may be sometimes used also for supervision by the manager or a different case
studies. However, the content of individual calls is used only very sporadically,
or companies are only reliant on the notes of individual agents that they write
during the call.

This is the place to be used to get more information and conduct an in-
depth analysis of the call content. However, there is currently no solution that
can help with the proper complex analysis of audio call recordings in which
both voice and text information can be combined and analyzed using methods
for both types of analysis.

1.1 Real-time analysis

In general, some data are extracted directly during a call with the customer,
usually, it is information that can directly assist the agent in a call. It is
therefore primarily an analysis of sentiment or emotion. This data are very
important for a better client experience, where an agent can propose a dif-
ferent solution to a given problem, offer a product/service, or use an “upsell”
technique and that all based on emotions that were extracted from recording.
Among other things, it will increase the satisfaction of individual clients, the
degree of commitment and thus improve the brand in the customer’s mind [2].
Nevertheless, in real-time analysis, it is not possible to do a deeper survey into
the data (data extraction via multiple annotations, comparison with previous
recordings, . . .), which will not allow us to fully use them.

3

1. State-of-the-art

1.2 Content analysis

Data analysis is possible at several levels. Primarily, data can be split and
analyzed in two separate parts (audio and text). From both, different data
can be extracted, or the same data, but in different ways, such as language
via language identification.

1.2.1 Audio recording analysis

Voice recording analysis is possible based on voice amplitude, where recordings
can be classified by height, color, sound intensity and much more.

The sound classification is based on a pre-trained model. The accuracy
depends on the quality of the model. In our case, it is best to use a language
model that is trained directly for the needs of call centers, to get the best
accuracy we should use data coming directly from the call center because each
recording is distorted several times. The sound is transmitted through mobile
phones, where GSM [3] compression is usually performed. Furthermore, the
sound is transformed on the side of the call center itself.

From the voice recordings point of view, for the Speech to Text (STT)
conversion could be considered several solutions for fulfilling the goals of the
bachelor thesis, among which are SpeechTech [4], NEWTON Technologies [5]
and Phonexia [6]. We will look into the details in section 2.1.

1.2.2 Text analysis

There are currently a large number of products and algorithms on the market
that can perform basic analysis and search in text form. The use of algorithms
over textual data is much simpler in most cases. Especially if you need to
extract some additional information from the text, such as different entities,
where you can create an annotation based on certain REGEX rules. For
textual analysis we will consider Solr [7], Elasticsearch [8] and IBM Watson
Explorer oneWEX [9], more in section 2.2.

4

Chapter 2
Analysis and design

Currently, we find many different data solutions (either audio or text) on
the market. However, there is no one that can present both audio and text
representation of data to an analyst for work.

It is not necessary for data to be processed and visualized in real time,
which is almost impossible. The solution must be designed so that data can
be uploaded periodically (daily, weekly, . . .) for processing. In addition, the
result of the data mining must be visible through a web interface that is
intended for authorized users only. At this point, data search and analysis
above the textual representation options must be enabled for the user.

2.1 Audio analysis

In this section, we will go through individual systems from section 1.2.1 for
voice analysis to explore their features, pros, and cons as the research of the
functions which we can add to the whole solution.

2.1.1 SpeechTech

SpeechTech is one of the Czech companies, which are providing voice analysis.
Their software is used by many companies, including the Czech Television for
making real-time subtitles for deaf people [10].

Their main focus is on the call analysis and conversion of speech to text
and vice versa. They provide the whole solution for voice analysis, but they
can also provide the basic modules separately. Their technologies are usually
used in many domains, but generally, the healthcare segment benefits from
these features the most. Speech to text helps them to easily create health
records or record business minutes from meetings. [10]

5

2. Analysis and design

2.1.1.1 Speech to Text

SpeechTech provides STT service in their Cloud, but it could be problematic
to GDPR1 in Europe as the voice data will be sent to other systems. On the
other hand, they also provide an option to have the whole solution on your
MRCP2 server which could be hosted on the company’s network and you can
customize the transferring data to/from services. MRCP would help you also
with the connection to your IVR. [11]

2.1.1.2 Voice analysis

For the voice recording, SpeechTech provides a basic categorization feature
of the call and semantic analysis, which will allow looking on the recordings
based on category. Another function is Dialog analysis, this could also help
the agent’s manager to analyze the effectivity of an agent’s work and behavior.
This system helps to get an overview of the customer and their behavior (i.e.
abusive language detection, ...). [12]

2.1.1.3 Conclusion

Although the SpeechTech service could be possibly used for our use case, their
language support is very limited and for our purpose, it is not enough. Also,
they focus mainly on speech analytics directly from the call center/micro-
phone, in opposite to our use case, where we have a WAV (WAVE) file as an
input.

2.1.2 NEWTON Technologies

NEWTON Technologies was founded in 2008 and their main focus is on voice
recognition especially for the Slavic languages. They provide services for the
Speech to Text conversion and basic analytics around the voice tracks. They
provide the services on their cloud and/or as the on-premise solution3 which
allows wider usage (because of the customer data processing). [13]

2.1.2.1 NEWTON Dictate

One of their technologies is NEWTON Dictate, which opens the abilities to
transform voice to text (speech to text). Their software is prepared for the dic-
tation of voice and transferring to the written form. They propose the solution
suitable mainly for the fields of state administration, justice, or healthcare,
where is not unique to have longer texts. [14]

1General Data Protection Regulation
2Media Resource Control Protocol
3Solution placed inside the enterprise environment

6

2.1. Audio analysis

2.1.2.2 NEWTON Analytics

NEWTON Analytics has a powerful tool for text processing, which provides
the ability to recognize the call topics and keywords or full-text search capa-
bilities in recordings, but the solution is not easily customizable. [15]

2.1.2.3 Conclusion

Although NEWTON technologies have a great solution for the audio record-
ings, there are many things for the nowadays needs as a machine-learned
annotation, which the solution does not provide. Also, the language support
is not enough for our purposes [16].

2.1.3 Phonexia

The Phonexia engine is great for recordings from a call center because their
models are trained on the call center’s recordings and their solution is primarily
designed for this field. “Phonexia specializes in telephony speech - landline,
GSM 4, VOIP5” [17]. Among other things, it offers the opportunity to apply
model training to match the exact needs of the call center because they can
have different transformations and sound compressions.

2.1.3.1 Language identification

Phonexia’s Language detection (LID) feature is based on iVectors [18] tech-
nology, which is completely independent of the text, language, dialect or audio
recording channels. Identification is primarily designed to recognize and clas-
sify any recording based on pre-trained models. This technology combines
the Gaussian Mixture Model (GMM) [19] and iVectors to generate small but
highly representative voice prints.

To obtain representative samples, you need to have a voice recording of
at least 9 seconds, which recordings meet reliably because the average call
duration across all types of call centers is 5.97 minutes [20]. Each of the
languages being tested for a given probability will have a certain likelihood of
matching where the use of formula escore ·100 is required to obtain a percentage
in the range 0 – 100 %. If we summed up all languages, we would get 100 %,
thus the distribution of scores between all languages within the classification.

The advantage is that you can use the already pre-trained model that is
included within the product (choice of 53 languages and dialects). Alterna-
tively, it gives you the opportunity to train your own language based on your
own samples, which can better meet our needs. This is the recommended
practice in many cases where we have a call center for non-native speakers

4Global system for mobile communications – Mobile phone protocol
5Voice over Internet Protocol – delivery of voice communications and multimedia sessions

over Internet Protocol

7

2. Analysis and design

(e.g., English-speaking call center agents for many Asian companies, btw.
Phonexia engine included the Indian English model). Another advantage is
that the engine also supports the Czech language within its preset package.

Language identification technology gives us the possibility to distinguish
them, but it is not recommended to use all 53 pre-trained languages together.
It is much more effective to use identification by means of so-called language
packs, i.e. to use really only the languages we expect in the recordings. We
have all supported languages6 within the default package “default”.

2.1.3.2 Technology of Phonexia’s Speech transcription

The technology is divided into two parts, an acoustic and a language model.
The language model characterizes how are the words in relation in sentences.
On the other hand, the acoustic model describes pronunciation in the record.
This technology is prepared for streaming audio and voice file processing. In
our case, we do the whole recording conversion after the call is completed, so
we do not need to process the audio streaming.

The technology extracts acoustic features out of speech recordings and uses
the acoustic and language models (together with pronunciations for individual
words) in a recognition network to compute hypotheses of words in the record-
ing and to “decode” possible transcriptions. Based on the requested output
types, one or more transcribed texts are returned, possibly with timestamps
and confidence scores for individual variants. [17]

Figure 2.1: The Speech Transcription technology [17]

6Afan Oromo, Albanian, Amharic, Arabic Iraqi, Arabic Levant, Arabic MSA, Azer-
baijani, Bangla Bengali, Bosnian, Burmese, Chinese Cantonese, Chinese Mandarin Creole,
Croatian, Czech, Dari, English American, English British, Farsi, French, Georgian, German,
Greek, Hausa, Hebrew, Hindi, Indonesian, Italian, Japanese, Khmer, Kirundi Kinyarwanda,
Korean, Lao, Macedonian, Ndebele, Pashto, Polish, Portuguese, Russian, Serbian, Shona,
Slovak, Somali, Spanish, Swahili, Tamil, Thai, Tibetan, Tigrigna, Turkish, Ukrainian, Urdu,
Uzbek, Vietnamese

8

2.1. Audio analysis

2.1.3.3 Acoustic model

For the acoustic models training, we need the voice recording and manually
transcribed text. For this purpose, there is great public domain Mozilla’s
largest dataset [21] with human voices and appropriate texts which are suitable
for the training of the acoustic model.

From the technical perspective, there is no difference between languages
and dialects, but we can say that it is good to have the same model for people
speaking in a similar way (British and American English).

2.1.3.4 Language model

This model characterizes the composition of words in recording. Basically,
language models use similar procedures such as textual annotators. It classifies
words based on their occurrences, sequences, n-grams [22] in a training data, in
other words, it provides important information for the speech to text feature.
It puts to the context how are the words in relation and how to interpret
acoustic properties. This is the reason why we need a pretty huge training
dataset. [17]

The accuracy of the language model depends on the training dataset and
this is necessary for finding the most accurate transcription – think of similar-
sounding words that can be distinguished by the context, such as “week” and
“weak”. The training set also limits the words which could be transcribed,
because it is not possible to transcribe words that were not in the training
data. [17]

From the 5th generation of the Phonexia engine is possible to use the
Language Model Customization tool, which provides the possibility to add
new words to the language model. [17]

To get the best results from recordings it is good to customize language
models based on the domain you are working in. Most of the domains have
different distances between the words, a combination of words, weights of n-
grams [23] and many more. Different language models are possible to use with
the same acoustic model without losing any accuracy on the acoustic model.

2.1.3.5 Speech transcription

The speech transcription feature is responsible for the conversion of speech
signals to text. Then it allows us to work with text in the same way we
are accustomed to. With plain text content, we will be able to make textual
annotations, classifications, etc. This will open space for classic text-based
data mining algorithms. In addition, Phonexia’s Speech to Text is specifi-
cally developed for the need of converting speech to text in a busy and loud
environment. [17]

9

2. Analysis and design

Although we can use a voice recording for analyzes, for more depth entity
extraction will be needed a text representation that we get by converting
speech to text.

2.1.3.6 Conclusion

Phonexia is one of the best solutions on the market right now with the focus on
the call centers and their engine is pre-trained for this type of input data. From
the perspective of the methods, it supports all necessary features, which we
will need in the solution and the engine is possible to run on-premise. Overall
Phonexia meets all the requirements and we will use it for our prototype of
the solution 3.

2.2 Full-text search and text content analysis

In this section we will look into the three candidates for text processing, all of
them are based on the Lucene, but only two of them are open source software
– Solr and Elasticsearch. Last is closed source software with long-term history
but as the new product – IBM Watson Explorer oneWEX. I assumed, that in
this case we will decide based on the security view, but I found that there is
no disproportionate difference between open and closed source software [24].

2.2.1 Solr

Solr is a full-text search engine with a long history based on the Lucene [25]
which was developed in 1999. The engine has a huge developer base and
many extensions that could be added. The engine is widely used in many
areas and because of his independence of the file format, it can process any
file containing textual information. The biggest advantage is his capability
to make fuzzy searches and that is the reason, why it is frequently used by
website search engines. [26]

2.2.1.1 Conclusion

Solr is great for any solution based only on the full-text search capabilities,
but it is not enough when we need to make deeper data extraction from the
text content. This is the reason why it is not a good choice for our use case.

10

2.2. Full-text search and text content analysis

2.2.2 Elasticsearch

Elasticsearch is the younger brother of Solr. This engine was developed in
2010 base on Lucene too and right now it is the most popular search engine
according to DB-Engines ranking [27]. It provides an option to run the search
server on multiple servers simultaneously with web-based REST API. More-
over, it has over 20 built-in language analyzers and allows us to use many types
of queries where also a similarity search or clustering and text classification is
supported.

2.2.2.1 Conclusion

Elasticsearch is good for the long-term development of the whole solution, but
the customizations would be hard to implement. The biggest disadvantage is,
that for every change we will need developers and we are unable to effectively
split the work between specialists (annotations, ...).

2.2.3 IBM Watson Explorer oneWEX

IBM Watson Explorer oneWEX (“oneWEX”/“IBM oneWEX”) is an innova-
tion in IBM’s portfolio that specializes in unstructured text analysis. Although
it offers many pre-trained annotators, it is also possible to use the ML7 mod-
els. “IBM Watson R© Explorer oneWEX components collect data from your
enterprise; parse, analyze, and extract meaning from the information; and
create a text index that users can query.” [28]

At the same time, oneWEX also provides a presentation layer that will
be analyzed by an analyst. The whole system provides a view on individual
documents (voice recordings in text form) and a comprehensive view of the
entire dataset. It can, therefore, perform deeper analysis or filter individual
documents based on their own needs.

The whole product contains 4 main parts (Data Ingestion, Data Enrich-
ment, Machine Learning, Exploration), no matter if we use Docker or IBM
Cloud Private based solution. [28]

2.2.3.1 Data Ingestion

OneWEX is an end-to-end solution for textual data. It is able to crawl the
data, analyze and show all the information and provides us multiple out-of-the-
box crawlers, connections (web scraper, filesystem crawler, Box connector, . . .)
and CSV importer for speed up of development. These crawlers and importers
collect data from the source and after the parsing process, they store them
into the index of the dataset. Most of the crawlers have the opportunity to
schedule when it should run, which will ensure we have fresh data all the time.

7Machine learning

11

2. Analysis and design

All crawlers and parsers are prepared for textual content. Although the
filesystem crawler is highly customizable, the customizations are very limited
and they cannot process the voice recordings. This is the huge disadvantage
of these crawlers and the reason why we have to use another software for this
purpose.

2.2.3.2 Data Enrichment

After the oneWEX obtains the data from the source and prepare them for
further processing with the parsers, it starts with data enrichment for every
document separately. It uses analytics pipeline in which extracts the data from
each document, does linguistic analysis, finds meaningful words and phrases,
extracts entities, and performs custom analysis. This step will provide facets
that we can use for further exploration of content.

OneWEX uses LanguageWare as a NLP8 technologies which were de-
veloped by IBM. “The LanguageWare libraries provide the following non-
exhaustive list of features: dictionary look-up and fuzzy look-up, lexical anal-
ysis, language identification, spelling correction, hyphenation, normalization,
part-of-speech disambiguation, syntactic parsing, semantic analysis, facts/en-
tities extraction and relationship extraction” [29]

2.2.3.3 Machine Learning

AI9 and ML are big topics in these days and in previous versions of WEX we
did not have this type of functionality out-of-the-box (but it was able to use
it inside the UIMA10 [30] pipeline). Now the oneWEX obtains these features
too and it helps this product on two different levels.

From the content perspective, we can use ML for the classifications or
annotations of the content. Which provides a wider option of data extraction
capabilities.

From the search perspective, oneWEX provides many different collabora-
tive features, which could improve the search experience itself, but with the
ML we can finally train the model based on the searches which people do in
UI. E.g., every click on the search result is tracked and in addition people can
rank the documents via the stars.

2.2.3.4 Exploration

The last part of the oneWEX is primarily for the end user (data analyst in our
case). OneWEX allows to create custom UI for search applications in Builder
or to use predefined GUI for the data inspection called Miner. Where we have

8Natural language processing
9Artificial Intelligence

10Unstructured Information Management applications

12

2.2. Full-text search and text content analysis

two modes – Expert and Guided. Guided mode is great for the simple data
inspection, but if we would like to investigate some specific relations between
the facets and data, we will have to use proper Expert mode. In this mode,
we will have almost free hands and we can look into the tiniest parts of our
data.

Moreover, in this part, we can influence search queries and the relevancy
of single fields in our documents, add a whitelist/blacklist and synonym lists
which is an important part of every search engine.

2.2.3.5 Architecture

“WatsonTM Explorer oneWEX uses cloud-based resource management based
on container technologies.” [28] and it is separated into two main components
- Data Acquisition and Search/Analytics as you can see in figure 2.2.

The whole left-hand part (blue) describes obtaining the data from the
source and storing them to the dataset. In this section, we can also add the
injection of data from the REST API to the dataset, which is not shown in
the figure 2.2.

The right-hand part (green) shows how is the text content proceeds when
we create a collection from the dataset(s) and how is every document pro-
cessed by the data enricher based on the predefined annotators, dictionaries,
etc. Then we can see how exploration part from the Miner or the Search
Application works.

Figure 2.2: IBM Watson Explorer oneWEX Data processing scheme

13

2. Analysis and design

2.3 Cogniware DataCollector

Although the oneWEX product itself has one of its components designed to
crawl data from a variety of sources, such as filesystem, it is very limited
and unusable for our needs. That’s why we’ll use Cogniware DataCollector,
which gives us more crawl and data processing capabilities. It is a simple
framework, where it is enough to prepare two Java libraries, that can then be
linked together as a crawler. One of them is the “Connector” and the other
“Data Handler” as you can see in figure 2.3. Both should be by definition
general enough, to make it possible to crawl more filesystems or push data to
the multiple destinations with the same parameters (i.e., to different databases
of the same type, but in different destinations).

Figure 2.3: Cogniware DataCollector crawler architecture [31]

2.3.1 Connector

The Connector is used to retrieve data from various systems and data sources.
It is possible to connect to various database systems, social networks, CRM
(Customer relationship management) systems and basically any system with
data and accessible via any type of connection (API, SSH, . . .) which is
executable from Java library. In our case, the data are stored on the same
server where the entire system is running. This means that it was necessary to
create a filesystem connector that gets all the file paths that are then passed to
the second part (the data handler), which takes care of further data processing.

2.3.2 Data Handler

Data handler takes care of all data processing which obtains from the con-
nector. We are able to do anything that we can do in Java, there are no
restrictions. It also supports multithreading, so we can run simultaneously
multiple jobs. That is great especially for the CPU heavy job like working

14

2.3. Cogniware DataCollector

with voice data. In addition, we usually use Data Handler for the cleansing
of the data which we receive, aggregate them to some type of model and then
we send them to the target system.

Although several connections to different databases are prepared, and older
IBM Watson Explorer Analytical Components connector is available too, the
oneWEX is pretty new and the connection is not developed yet.

2.3.3 Crawler

Crawler in the meaning of DataCollector is a connection of Connector and
Data Handler, which is abstract and we can change the data source and target
system (destination) for data. All of this we do inside the DataCollector web
UI. As we mentioned in section 2.3, both classes should be general and in
the Crawler. We should specify which source we will crawl and to which
destination we want to send the result. In other words, we can have the
same Connector and Data Handler, which will do the same work, but for the
different sources and destinations. We can also have multiple crawlers in the
same environment and they are distinguished by the crawler ID.

15

2. Analysis and design

2.4 Conclusion

My proposed software solution consists of three components. The first is the
Phonexia engine, which can analyze the voice recording itself and ensure a
quality conversion between voice and text representation using the Speech to
Text feature.

The second part is the IBM oneWEX, which can retrieve information from
text representation and take care of the visual part (GUI for data analytics) of
the entire system. Nevertheless, these two systems are completely separated
and there is no native connection between them in terms of integration.

This means that we need to use additional software that can perform data
orchestration. In other words, getting raw voice data, make the first process
with data and extract metadata from the recording via Phonexia, then send
the data to oneWEX and let it analyze textual content. For this purpose, we
will use Cogniware DataCollector (CWDC).

The final architecture you can see in the figure 2.4.

Figure 2.4: Final architecture

16

Chapter 3
Realisation of prototype

The prototype of this solution should be able to crawl the audio recordings in
WAV format from the filesystem, extract metadata from voice, convert speech
to text, perform basic data mining above the text data and visualize them in
GUI.

3.1 Architecture

All of these components could work inside the Docker images, which gives
us much wider usage and other advantages. The whole solution is designed
as an on-premise solution because of the fact, that we will process sensitive
information from the client.

That is the reason why we selected all parts to be (or to have an option)
as on-premise software. The solution is a combination of three main modules,
where every module is responsible for a certain part of the whole solution and is
represented by standalone software, which provides the necessary functionality
as you can see in figure 4.1.

The first part of this the prototype is Cogniware DataCollector as the or-
chestrator 3.2, which will allow us to crawl the data from the source filesystem
and handle the extraction of data from voice tracks and store them for text
processing 3.4.

The orchestrator picks up the file from the source, then stores the file
on a Phonexia server for voice processing 3.3. This is the most crucial part
because the accuracy of the rest of the text processing will be just as good as
speech to text conversion. After the orchestrator extracts all necessary data
from Phonexia’s engine, it will create the JSON object with all these data and
push them to the oneWEX index via REST API for further text mining 3.4.

17

3. Realisation of prototype

The last part of the solution is IBM Watson Explorer oneWEX and it
secures two parts of this solution. From the data processing view, it makes
annotations and data extraction above the textual content via the ML anno-
tators and holds the whole data inside the index. In addition, it extends the
solution with GUI, where are the extracted data presented to the data analyst
or another type of user.

3.2 Orchestrator

The main part of the whole solution is an orchestrator, which will allow us
to perform the whole crawling and data handling between the modules. For
this purpose, I chose Cogniware DataCollector (CWDC), which is a highly
customizable solution prepared for similar use cases. This software is divided
into three parts as I described in 2.3.

Both classes are very similar and CWDC is basically just a framework
where we need to develop the main parts. We have to specify what the config-
uration files (JSON) should contain, how it will process the classes and many
more. The biggest advantage is, that when we specify fields in configuration
files, we do not need to redeploy the classes when we need to make the change
(e.g., change of the source/target system, . . .), but we will be able to specify
it in web-based GUI of CWDC.

3.2.1 Data connector

The data connector is responsible for crawling the source and extracting cer-
tain documents, from which we are going to take the content and push to the
Data handler for further processing.

In our case, we have a filesystem as the source of data. I had to prepare a
Java class, which extends the CommonCrawler. It needs to implement several
methods for the purpose of crawling.

The first method is init, where we should add the connection to the
database (usually RDBMS11), or connection to the logger of the CWDC. In
this part, we will also parse the configuration JSON file where we have stored
the information about the folder which we would like to crawl and/or the
extensions of files which we will extract. After this method, we should have
prepared the whole connector for the filesystem.

The next important method is execute. This method starts the whole
crawling and it is executed after the init. The function is responsible for
extracting the data from the source and make all the processing from the
connector part. Inside this method, we have to write the code which extracts
the data from the source and sends individual files (file paths) to the data
handler for further processing. This code is also responsible for the change

11Relational Database Management System

18

3.2. Orchestrator

of the Crawler status (Running/Stopped/Completed/Failed). In this method,
we call another method named crawlData.

The crawlData method is responsible for extracting file paths of WAV files
from the given folder via file path (specified in the configuration JSON). First
of all, it extracts all the file paths and stores them in variable filepaths as set12

of paths. This also gives us the number of all documents (recordings) inside
this folder and then the CWDC GUI provides us a visualization of progress.
After this stage, we have to start with the processing of these files.

Algorithm 1 Filepaths processing
1: procedure crawlData
2: for each filepath i in filepaths do
3: if not shouldFileBeCrawled(i) then //test to included/excluded

file extension
4: continue;
5: end if
6: if processObject(i) then //test if modified
7: Process(i)
8: end if
9: end for

10: end procedure

First of all, we need to check if we want to process the file. The first
check is based on the file extension (included/excluded file extension), if the
file should be crawled, then we continue to the next check. The processing of
the voice data is very difficult and it takes a lot of computer power, so before
we start with the data processing, we should check, if the file was or was not
proceed before. For this purpose, we have the database and we will start with
check if the document is stored in the database (hash, the ID of the document
or any other identification of file modification) or if the file was changed13 For
unchanged files we will skip data processing, in other cases, we will send the
file for processing to the Data Handler. After every file, we increment the
“unchanged” or “changed” counter. This is what we can see in the progress
bar in CWDC’s GUI.

3.2.2 Data Handler

The Data Handler is responsible for the whole data processing and extrac-
tion. First of all the whole part is initialized similarly to the previous data
connector 3.2.1. Because of the fact that this class will send the data to the
oneWEX for further processing, we have to specify the URL in the configura-

12Unordered collection of objects without duplications
13Database is a part of the CWDC, but we have to develop custom logic.

19

3. Realisation of prototype

tion file, credentials, and target destination (dataset) for the data. After the
initialization part, the module is prepared for data processing.

The Data Handler’s class also prepares the JSON object, which we send
to the oneWEX for further processing and visualization. This object contains
the data from different parts (file’s metadata, content, content’s metadata,
voice analysis, . . .).

Processing of the file starts, when the connector sends a filepath to the
handler. First of all, we extract basic metadata from the file (e.g. file exten-
sion, size of the file, ...). Although we do not need this information, it will be
valuable in case of extending the whole solution for example with the e-mail or
other crawlers. This stage is the easiest from the performance perspective. In
the second part, we will start with content extraction from the file containing
the sound track.

3.2.2.1 Implementation of voice processing

We use Phonexia for voice processing. In our case, we make all requests via the
PhonexiaHelper class, where we have a definition of all methods for the data
extraction from voice tracks. We have also RecordingModel class in which we
store all extracted data from track. This second class secures also conversion
from Java object to a JSON object.

Because Phonexia has it’s own web server, every file which we want to
process we have to upload to this server. For every request, we have to be au-
thenticated. “Phonexia Speech Engine provides two authentication methods:
Token authentication and HTTP basic authentication.” [32] We use the first
method, where we obtain the token during the construction of the Phonexia-
Helper object because it is more secure [33]. With every new crawled file, we
create a new token, so it is harder to hack it. On the other hand, we usually
work with one file just for a limited time and the time is usually less than 10
min for approx. 8 min voice recording.

After authentication and built of the helper object, we can start with the
data processing. As we mentioned, we have to upload a file to the Phonexia’s
server. There we have a logical filesystem, where we can have folders, files and
many more. In our case, we use only the root folder, where we are mirroring
the files from our filesystem. In case of multiple folders, or even multiple
data connectors, it will be a good idea to create folders for every connector
(i.e. based on crawler ID) or to create some folder structure on the server,
because if we upload file to the same destination (same file path) it rewrites
the previous file without warning. When we have the file on the server, we
can start with the running of Phonexia’s functions above this file and every
time we are pointing on the file via the file path.

Work with the audio track is CPU14 intensive and it is very time-consuming.
In these cases, we usually make these procedures asynchronous and the Phonexia

14Central processing unit

20

3.2. Orchestrator

engine is no exception, most of the methods are asynchronous. Phonexia pro-
vides three options, how to process the requests – Polling [34], WebSocket
[35], Webhook [36]. We chose polling for the simplification and because we
are doing all requests sequentially anyway.

Figure 3.1: Scheme of polling request and response [32]

The main principle of polling is, that when we make the first request, it
usually takes a longer time to complete the work, so we will receive the URL
(or just ID15 of the request) where we can check the status of the process (in
our case it returns URL /pending/ID). We will send GET requests to this
URL until it returns response code 303, in other cases, it will give us 200 and

15Identifier

21

3. Realisation of prototype

in the header, it will have “Location” redirection. When we will get 303 code,
we know that the job is done and we can pick up the data from the server.
You can see the whole scheme in the figure 3.1.

3.2.2.2 Methods used for data extraction from voice

All methods for voice extraction have a very similar run, we call the REST
endpoint with the technologies, which we want to use for the file on specific
space on the server (specified by file path). Then we are polling for data in
5-sec intervals. For almost all features we have to specify also the language of
recording because we do not know what will be on the input, we have to start
with language detection (LID).

Then we can call the rest of the services with detected language from the
previous step. The rest of the calls are independent and we would call it simul-
taneously. In this prototype, we did not implement it and all requests run in
one thread. The multithreading would be massive performance improvement
and I would recommend implementing it in case of running in production (or
improvement of this thesis). We run these features step by step (under every
feature is sample information which we extracted in this step):

1. Upload file to Phonexia server

• Number of channels

• Length of recording

• Format

• Frequency

2. Language identification

• Language and score of language (confidence) for every channel

3. Speech to Text

• The textual representation of content for every channel

3.3 The Voice processing module

In this section, we will look into the implementation of voice recording analysis.
The main part of voice processing is software, which will perform all meta-
data extraction from voice recordings. For this purpose I choose a Phonexia
platform, mainly because it could work as an on-premise solution, their spe-
cialization is call centers and their engine is highly customizable for better
accuracy.

22

3.3. The Voice processing module

3.3.1 License cycle management

Their server with the whole engine has REST API for voice recording man-
agement and data extraction. It is licensed in many ways based on our re-
quirements (USB dongle, HW license, license server).

Our solution is hosted in the VMWare [37] environment on the cloud, so it
is unable to connect USB dongle and because of the virtualized environment,
we also cannot use HW license. In our case, we chose licensing via the license
server. For licensing, we received a file where we have specified how many
concurrent methods of the same features can be executed.

E.i., we have license 6 times LID16, which means that we can run LID
for 6 concurrent files, but it does not mean, that we can not run STT17

simultaneously, because for other features we have other licenses. So the
license is based on the method and number of concurrent executions. When
we use any method, we connect our system to the Phonexia’s environment
and check if we have or do not have a free license for this job. Every job
(method execution) consumes 1 license from the pool and when the work is
done, the license server is notified and 1 license is refilled. That means we
need an internet connection from the server to the public internet, or at least
to the licensing server.

3.3.2 Technologies customization

Phonexia has many options to improve the already good accuracy. Some of
them are possible to make just by choosing the languages to the package with
which we will work, other improvements are more difficult as the training new
language. In our case, we improved the solution via Langauge identification
package.

3.3.2.1 Language identification

Thanks to the chosen technology and the distribution of the recording among
all languages in the package, it is not recommended to run the identification
over the “default” package, but we should choose and create our own package
(whether using pre-trained languages or our own model). As part of the
solution planned in accordance with the objectives of the Bachelor thesis, we
selected only 2 languages. These are Czech and English American because we
expect that all recordings will be in Czech or English only. There is just one
model for the detection of the Czech language, so there are not many other
ways to choose, but they have more models for English. So we had to choose
only one language with prefix ”English” in our package, or all languages with
this prefix.

16Language identification feature
17Speech to text feature

23

3. Realisation of prototype

If we used both (English American and English British), the probability of
the English recording would be significantly reduced for both languages. It is
because of the confidence which would have to be divided among two languages
in addition to the Czech language. At the same time, only one English model
offers Speech to Text conversion (described in the following subsection 2.1.3.5),
so it is not so important for us to know the exact dialect of English, but to
have a higher value of confidence and the wider difference between Czech and
English would be more important. That is why we used only two languages in
our language pack and these are “Czech” and “English American”. With this
decision, we made a greater difference in confidence and reduced the possible
error rate.

It is this voice-based language identification that allows us to run the
correct language model on the recording when we run the Speech to Text
conversion.

3.4 Text processing module

Textual data mining is another crucial part of the whole solution. We could
create this part from scratch and create it on top of Elasticsearch or Solr
for full-text searching capabilities, but in these cases, the development itself
would be too hard. Instead of that, we chose the IBM Watson Explorer
oneWEX, which has already undergone a long development process and has
all the features which we needed for the prototype.

OneWEX has one big disadvantage. Although the product was coming out
from the older IBM Watson Explorer (containing Analytical and Foundation
components), it is still in development and some of the features are on the
roadmap, but they are not implemented yet. At the same time, there is
a significant number of small bugs and the documentation is weak. This
complicated the whole development process and some of the parts were more
about guessing, based on the experiences with older products, how it could
work.

Our main goal in this section was divided into two parts. In the first
part, we need to investigate possibilities of the REST API which has great
documentation via Swagger [38], but some of the methods are not implemented
without any warning. The second part was in the dataset and collections
preparation.

3.4.1 REST API investigation and data injection

Although oneWEX provides options to crawl data directly via the predefined
crawlers, we cannot use them as we discussed in section 2.3. That is the reason,
why we have to use the REST API capabilities of oneWEX for data injection
into the dataset. We can manage almost everything via the API calls, but
as we said, some of the features are not implemented yet and working with

24

3.4. Text processing module

datasets and collections is very problematic. For this reason, we have to decide
to make this part via administration GUI of oneWEX.

In the end, we chose to use the REST API only for the data injection,
there were some other issues and in some cases, we had to go with method
of Trial and error18. E.g., when we sent the JSON POST request to inject
the data to the dataset, oneWEX was unable to process the nested JSON
(on listing 3.1) and we were able to process and index only JSON with flat
structure (on listing 3.2).

1 {
2 "id": "file.wav",
3 " filepath ": "/ example /file.wav",
4 " duration ": 230.53,
5 " channels ": [
6 {
7 " number ": 0,
8 " language ": " english ",
9 "score": 0.8903

10 },
11 {
12 " number ": 1,
13 " language ": " english ",
14 "score": 0.9402
15 }
16]
17 }

Listing 3.1: Example of nested JSON

1 {
2 "id": "file.wav",
3 " filepath ": "/ example /file.wav",
4 " duration ": 230.53,
5 " language ": " english "
6 }

Listing 3.2: Example of flat JSON

18Method of problem-solving where we repeatedly try to change attempts until we solve
the problem

25

3. Realisation of prototype

The second biggest problem during the process of developing the data
injection via REST API was some unspecified keys that could not appear in
the JSON. E.g., the length is one of them. When we would like to use it for the
length of the recording, but after the oneWEX detects this key, it somehow
bypasses the processing of the request. The number of documents in dataset
was increased, but the record did not appear and we could not show this
document.

All of these bugs and weird behavior of the oneWEX were reported to the
development team of the product. We could not wait for the fix now, so we
dealt with it by renaming of the field. Hopefully, we will see the fix of these
issues in one of the next fix packs (or at least documentation of them).

3.4.2 Dataset and collection creation

As previously shown in section 2.2.3, data is stored in the dataset and one
or more datasets can be connected to the collection. Then all exploration is
made above the specified collection (same for searching and data analysis).

3.4.2.1 Dataset

Dataset is a big index where are the data stored. In our case, we have only
one dataset where we have textual representation of voice recordings with
metadata and extracted information. First of all, we have to create the dataset
and specify the fields of documents which we want to have there.

To create the dataset is the easiest part, we will just specify the name and
description of the dataset. The hard part is to prepare it for data injection.
Unfortunately, there is no option to create fields (specification of name and
type) and the REST API for this purpose did not work properly.

So we were forced to do it via the CSV file importer. We created a CSV
file with a proper header and one row as a sample document (row has to have
at least one field filled). During the import of the CSV, we can add these fields
from CSV to the dataset and it is now only way how you can specify your
own fields and prepare it for the data crawling via API. The dark side of this
approach is, that we will have one document in the index which we cannot
delete (because oneWEX has not implemented method for the deletion of the
document). After we have specified all necessary fields, we can start with the
creation of a collection.

3.4.2.2 Collection

Collection is a combination of multiple datasets, above which we are making
all searches or data analysis. We can add more datasets to the collection,
but in our case, we have only one dataset which we connect to this collection.
During the collection creation, we will select, which fields we want to include
into the collection. This gives us an option to exclude some fields, which

26

3.4. Text processing module

are in the dataset (in documents), but which we do not want to have in the
collection. In some cases, this could make better security when we want to
have the same data (same dataset), but for some people, we want to show
different fields than for others (e.g., information for data analyst and publicly
available data). During this field setup, we can make the field searchable or
not and also create some fields facets.

For the typical application, we have to specify which fields will be a body,
title, and date. This is usual for the search applications, for basic data mining
it is not mandatory.

Next interesting part for all of the data mining application is the option
to extract information from the text. All of the annotators/classifiers are
language dependent and we cannot start without knowing the language. This
part is similar to the Phonexia and the first thing that we need to identify is
the language of the document. If we know languages, which could be on the
input, we can specify them, or we can let the oneWEX automatically decide
which language will be the best for the document. Based on our dataset and
experience we will choose the Czech and English language.

Now we have set up most of the static parts, oneWEX knows languages for
the document and we can start with data extraction. OneWEX gives us many
possibilities, in our use case we will use out-of-box annotators, we will opt-in
Part of Speech19, Sentiment Analysis20, Named Entity Recognition21 and PII
Annotator22.

19Extract words and phrases from unstructured content and mark these extractions as
annotations

20Extract phrases and expressions which convey sentiment
21Extract person names, locations, and organizations from unstructured content
22Extract personal identifiable information with built-in regular expressions.

27

3. Realisation of prototype

All of these annotations are stored as facets and we have to specify how we
want to show them and then how we can filter results based on that. Facets
which are numbers, and we do not need each of these files separately, but we
will appreciate to have them in some ranges (length of recording, date) we
usually specify as ranges with the structure you can see in listing 3.3 (this
needs to be specified for every facet/filter) and an exmaple of this filter you
can see in figure 3.2.

1 [
2 {
3 "label":"till 1 min",
4 "query":"[0, 60)"
5 },
6 {
7 "label":"1 - 2 min",
8 "query":"[60, 120)"
9 },

10 {
11 "label":"more than 3 min",
12 "query":"[120, 9999999)"
13 }
14]

Listing 3.3: Example of length of recording range

Figure 3.2: Range filter example

Other facets (textual, individual numbers) we can aggregate and visualize
as a table or as world cloud. All of these facets could be used for the filtering
of the documents to obtain a better view and more precise insight.

The last part which could possibly improve the search result list is the
Exploration part of collections. For this thesis, this is not the most important
part, but it gives the opportunity to study these sections more in i.e. diploma
thesis. On the other hand in this section, we can set up more precisely NLQ23,

23Natural language query

28

3.5. Graphical user interface

where we can extend the built-in black/white list of oneWEX. We can also
add stop words, synonyms, and boost (or make a lower score) any field within
the collection. In the end, we can use ML training for better results (this was
added in Fix pack 12.0.2.2). OneWEX has many options to rank higher or
lower some of the results based on Collaborative features and there we have
the option to train a ML model which will influence the results based on the
number of clicks on the specific document.

3.5 Graphical user interface

We extracted a lot of information from the file, voice and text data. But we
have it only in text representation, which is good for the computer, but it is
not enough for the data analysts. They need to have all the crucial data in
dashboards and in an eye-pleasant way. For this purpose, we use also Watson
Explorer oneWEX. These features for showing the information are separated
into two different parts. The first one is Builder, where we can create our own
UI on top of collection/s and Miner.

Whereas Builder is prepared for the simple development of UI, Miner is
a standalone part prepared for the data analyst, where we do not need to
change anything and we will have great UI for data insight. We wanted to
have a search and mining part in the same application, where we do not
want to change the URL when we want to do different work. We decided to
create UI where we have the ability to easily switch between these two parts.
We developed two tabs – Search and Miner, in the UI. That will allow data
analysts to change the tool whenever they want.

3.5.1 GUI – Search

The Search tab is designed for full-text searching capabilities and to have an
option to filter the documents which we have in the collection. The whole
window is divided into 6 parts as you can see in the figure 4.2.

1. Tabs to switch between Miner and Search parts

2. Search input field

• Natural language queries
• Field/facet search
• Supports wildcards, logic operators, . . .

3. Refinements (filters/facets)

• Filter based on the facets defined in collections 3.4.2.2

4. Search results list

29

3. Realisation of prototype

• Shows results which satisfy the search query and set refinements

5. Document’s metadata and text content

• Shows metadata of selected document
• Shows extracted textual content of selected document

3.5.2 GUI – Miner

The second tab is prepared for the data analyst to give better insight into
the data and we call it Miner. This part is built-in in oneWEX, but it is
separated from other parts and we need to think about it, when we want
these capabilities in our application. In our case, we accomplished that via
the iframe, where we injected the proper miner part of oneWEX. This will
allow data analyst to easily switch between the miner and search without high
effort and gives the opportunity to use both parts of the solution on one page.
In figure 4.3 you will see expert mode for content analysis.

1. Tabs to switch between Miner and Search parts

2. Facet Analysis

• Selection of facets to analyse
• Selection of feature you want to analyse with

3. Analysis dashboard

• Shows insights of data you have in the collection based on your
selection in Facet analysis part

4. Other tools

• Ability to make a deeper analysis
• Show documents which suit to the selected conditions in dashboard

30

Chapter 4
Outputs

The output of the thesis is a design of the architecture of software solution
and prototype implementation which is able to extract data from the WAVE
audio files, make annotations (extraction of phrases, sentiment, named entity
recognition, . . .) and show this information to the agent for further decision
making.

The final software solution prototype is able to automatically (based on
scheduling) take audio recordings from the filesystem, extracts information
from audio content and convert it into the text. Then it looks into the text
content, makes automatic in-depth text mining and performs predefined anno-
tations. After the whole processing, the information are showed in UI where
the agent has an ability to search in the content (showed on figure 4.2) or
look into the analysis (showed on figure 4.3 and). This thesis and prototype
bring the possibility to improve decisions based on the new data extracted
from audio recordings.

In the architecture in figure 4.1 we used three modules, where we have
Phonexia for audio information extraction, IBM Watson Explorer oneWEX
for text analysis and information visualisation and Cogniware DataCollector
for the orchestration of all requests and data crawling.

31

4. Outputs

Fi
gu

re
4.

1:
H

ig
h-

le
ve

la
rc

hi
te

ct
ur

e

32

Fi
gu

re
4.

2:
Pr

ot
ot

yp
e

G
U

I
–

Se
ar

ch

1.
Ta

bs
to

sw
itc

h
be

tw
ee

n
M

in
er

an
d

Se
ar

ch
pa

rt
s

2.
Se

ar
ch

in
pu

t
fie

ld

3.
R

efi
ne

m
en

ts
(fi

lte
rs

/f
ac

et
s)

4.
Se

ar
ch

re
su

lts
lis

t

5.
D

oc
um

en
t’s

m
et

ad
at

a
an

d
te

xt
co

nt
en

t

33

4. Outputs

Fi
gu

re
4.

3:
Pr

ot
ot

yp
e

G
U

I
–

M
in

er
–

Ex
pe

rt
m

od
e

1.
Ta

bs
to

sw
itc

h
be

tw
ee

n
M

in
er

an
d

Se
ar

ch
pa

rt
s

2.
Fa

ce
t

A
na

ly
sis

3.
A

na
ly

sis
da

sh
bo

ar
d

4.
O

th
er

to
ol

s

34

Fi
gu

re
4.

4:
Pr

ot
ot

yp
e

G
U

I
–

M
in

er
–

Se
nt

im
en

t
fa

ce
ts

an
al

ys
is

35

4. Outputs

Fi
gu

re
4.

5:
Pr

ot
ot

yp
e

G
U

I
–

M
in

er
–

Ph
ra

se
se

nt
im

en
t

an
al

ys
is

36

Fi
gu

re
4.

6:
Pr

ot
ot

yp
e

G
U

I
–

M
in

er
–

C
au

se
or

ch
ar

ac
te

ris
tic

s
an

al
ys

is

37

4. Outputs

Fi
gu

re
4.

7:
Pr

ot
ot

yp
e

G
U

I
–

M
in

er
–

N
am

ed
en

tit
y

ex
tr

ac
tio

n
an

d
an

al
ys

is

38

Conclusion

The aim of this thesis was to analyze the requirements, design an architecture
and implement the prototype of the solution, which will be able to analyze
the content of voice recordings based on the textual representation.

In the State-of-the-art section we investigated call center’s methods for
analyzation of voice calls, where we found out that most of the companies
measure only frequency and length of call analysis, but they do not deal with
the content itself.

In the Analysis and design section we look into the audio and text analysis
software solutions, where we recognize their pros and cons. Based on the
parameters we have chosen Phonexia for the audio analysis and speech to
text conversion, mainly because of their focus on call centers. For the text
analysis we chose IBM Watson Explorer oneWEX, because of its wide variety
of options for annotations, classifications, and simplicity of implementation.
We found the need to use different crawler for data injection, where we chose
Cogniware DataCollector.

In the Realisation of the prototype section we introduced the architecture
of the whole solution and described the implementation of the prototype with
the customizations for better accuracy of the speech recognition. In this part
we also created a GUI for data analysts.

The software solution was designed and developed on the basis of technolo-
gies, which allow to convert the audio recording into a textual form and enable
future analyzation of the content. Advantage of the solution architecture is
its ability to run on one or more servers, providing tremendous flexibility and
easy scalability. It also means that the entire server may be in the company
network and no data can be accessible without authorization to the system
where they are processed, thus preventing GDPR violations.

This solution is a great tool for analyzing audio recordings from call cen-
ters. Of course, this is an application that can be run for any contact center
independent on the company’s products or their target group. Some other
data might be important for analyzing results, or other visualization, but

39

Conclusion

this is set for individual company needs because every company wants to see
different pieces of information on their dashboards in GUI.

The data processing progress is customizable thanks to the selected com-
ponent, such as DataCollector where it is possible to change the settings to
get more information from the REST API or from any data from other sources
(CRM, etc.). The biggest advantage is language independence which does not
affect supported languages.

Eventhough the IBM Watson Explorer oneWEX is still in development and
many parts have their own limitations, it has already become a quality element
that is difficult to replace. Among other things it helped me a lot with the
processing of data and the extraction of knowledge from the textual form. In
the future it would be interesting to use it independently to retrieve data from
the audio track or at least get their text data, for example using one of the IBM
Cloud services such as Watson Speech to Text. On the other hand oneWEX
main focus is the text processing and we can expect connections to other
services for text mining from IBM’s portfolio, instead of audio manipulation.

The whole solution is very robust, which means that it is possible to use
many languages, especially thanks to the wide conversion of voice tracks in
Phonexia and supported languages in text form in oneWEX.

During the analysis part I had to analyse the requirements which are placed
in the final solution. At the same time I had to recognize which modules need
to be in the architecture to get all necessary informations. Depending on the
information I wanted to extract I had to determine features which I would
request from the specific software solutions. Based on the requirements I
chose appropriate software solutions which would enable data extraction from
voice recordings and which would allow me to extract information from textual
data and define how these modules connect together via orchestrator where I
implemented the connections. Penultimate task was the decision how to show
the information to agents where I had to choose software which simplifies and
implements the customizations. Finally, I checked that all the modules were
working properly together, and all important information are showed to the
agent for further decision making.

Based on the goal the thesis succeed in the design of the solution. Regard-
ing IBM there are now 3 opportunities on the market.

Possible further improvements

During the development and analysis, we found a lot of different improve-
ments, which are out of the scope of the thesis. However their implementation
would be tremendously useful. These proposed extensions may be proposed
for the implementation in a follow-up diploma thesis.

In general, the most important disadvantage of sound conversions is the
need for more computational power as I have seen on my own test data. Single

40

Possible further improvements

recording of approx. 8.9 min duration on one CPU is processed for 9.5 min
but this problem can be solved by parallelizing individual tasks.

As it results from the text, the solution could be extended in the future by
acquiring data, for example from e-mail communication, where we would be
able to add a new crawler and data handler in DataCollector or other sources.
Video processing could be added simultaneously as a massive expansion of
video reviews, etc., can be expected in the upcoming years.

Big companies have many clients which usually ask similar questions and
call centers could use it. If we create knowledge base from these recordings
it will help the agents to solve the client’s problems. In this case we will
need to extract some information from the recordings or at least classify and
categorize them.

41

Bibliography

[1] THE WORLD BANK. Unemployment, total (% of total labor force)
(modeled ILO estimate) - Czech Republic, International Labour Organi-
zation, ILOSTAT database [online]. Retrieved in 23 April 2019. Available
from: https://data.worldbank.org/indicator/SL.UEM.TOTL.ZS?end=
2018&locations=CZ&start=1991&view=chart

[2] Garnett, Ofer and Mandelbaum, Avishai and Reiman, Martin. Designing
a call center with impatient customers. Manufacturing & Service Opera-
tions Management, volume 4, no. 3, 2002: pp. 208–227.

[3] Stephen Temple. Who created GSM? [online] Retrieved 23 April 2019.
Available from: http://www.gsmhistory.com/who_created-gsm/

[4] SpeechTech, s.r.o. SpeechTech, Founded: 2010. Available from: https:
//www.speechtech.cz

[5] NEWTON Technologies, a.s. NEWTON Technologies, Founded: 2008.
Available from: https://www.newtontech.net/en/

[6] Phonexia s.r.o. Phonexia Speech Platform, Founded: 2006. Available
from: https://www.phonexia.com

[7] Apache Software Foundation. Solr, Founded: 2004. Available from: http:
//lucene.apache.org/solr/

[8] Elastic NV. Elasticsearch, Founded: February 8, 2010. Available from:
https://www.elastic.co

[9] IBM. IBM Watson Explorer oneWEX, Released: 2018. Available
from: https://www.ibm.com/support/knowledgecenter/en/SS8NLW_
12.0.0/com.ibm.watson.wex.ee.doc/explorer_onewex.html

[10] SpeechTech, s. r. o. O společnosti SpeechTech, [online] Retrieved 23 April
2019. Available from: https://www.speechtech.cz/#o-spolecnosti

43

https://data.worldbank.org/indicator/SL.UEM.TOTL.ZS?end=2018&locations=CZ&start=1991&view=chart
https://data.worldbank.org/indicator/SL.UEM.TOTL.ZS?end=2018&locations=CZ&start=1991&view=chart
http://www.gsmhistory.com/who_created-gsm/
https://www.speechtech.cz
https://www.speechtech.cz
https://www.newtontech.net/en/
https://www.phonexia.com
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
https://www.elastic.co
https://www.ibm.com/support/knowledgecenter/en/SS8NLW_12.0.0/com.ibm.watson.wex.ee.doc/explorer_onewex.html
https://www.ibm.com/support/knowledgecenter/en/SS8NLW_12.0.0/com.ibm.watson.wex.ee.doc/explorer_onewex.html
https://www.speechtech.cz/#o-spolecnosti

Bibliography

[11] SpeechTech, s. r. o. SpeechTech Text to Speech, [online] Retrieved 23
April 2019. Available from: https://www.speechtech.cz/speechtech-
text-to-speech/

[12] SpeechTech, s. r. o. SpeechTech analytics, [online] Retrieved 23
April 2019. Available from: https://www.speechtech.cz/speechtech-
analytics/

[13] NEWTON Technologies, a.s. About our company — NEWTON Tech-
nologies, [online] Retrieved 23 April 2019. Available from: https://
www.newtontech.net/en/about-us/

[14] NEWTON Technologies, a.s. NEWTON Dictate, [online] Retrieved 23
April 2019. Available from: https://www.newtontech.net/en/newton-
dictate/

[15] NEWTON Technologies, a.s. NEWTON Analytics, [online] Retrieved 23
April 2019. Available from: https://www.newtontech.net/en/newton-
analytics/

[16] NEWTON Technologies, a.s. Languages supported, [online] Retrieved
23 April 2019. Available from: https://www.newtontech.net/en/
languages/

[17] Roman Polok. Speech transcription [online] 2018-04-08. Available
from: https://partner.phonexia.com/phonexia-academy/product-
training/speech-transcription/

[18] Martinez, D.; Plchot, O.; et al. Language recognition in ivectors space. In
Twelfth Annual Conference of the International Speech Communication
Association, 2011.

[19] Reynolds, D. Gaussian mixture models. Encyclopedia of biometrics, 2015:
pp. 827–832.

[20] Peggy Carlaw. Customer Service by the Numbers: Average Call Dura-
tion [online] June 9, 2010. Available from: https://customerthink.com/
customer_service_by_the_numbers_average_call_duration/

[21] George Roter. Sharing our Common Voices – Mozilla releases the
largest to-date public domain transcribed voice dataset [online] 2018-
04-08. Available from: https://blog.mozilla.org/blog/2019/02/28/
sharing-our-common-voices-mozilla-releases-the-largest-to-
date-public-domain-transcribed-voice-dataset/

[22] Brown, P. F.; Desouza, P. V.; et al. Class-based n-gram models of natural
language. Computational linguistics, volume 18, no. 4, 1992: pp. 467–479.

44

https://www.speechtech.cz/speechtech-text-to-speech/
https://www.speechtech.cz/speechtech-text-to-speech/
https://www.speechtech.cz/speechtech-analytics/
https://www.speechtech.cz/speechtech-analytics/
https://www.newtontech.net/en/about-us/
https://www.newtontech.net/en/about-us/
https://www.newtontech.net/en/newton-dictate/
https://www.newtontech.net/en/newton-dictate/
https://www.newtontech.net/en/newton-analytics/
https://www.newtontech.net/en/newton-analytics/
https://www.newtontech.net/en/languages/
https://www.newtontech.net/en/languages/
https://partner.phonexia.com/phonexia-academy/product-training/speech-transcription/
https://partner.phonexia.com/phonexia-academy/product-training/speech-transcription/
https://customerthink.com/customer_service_by_the_numbers_average_call_duration/
https://customerthink.com/customer_service_by_the_numbers_average_call_duration/
https://blog.mozilla.org/blog/2019/02/28/sharing-our-common-voices-mozilla-releases-the-largest-to-date-public-domain-transcribed-voice-dataset/
https://blog.mozilla.org/blog/2019/02/28/sharing-our-common-voices-mozilla-releases-the-largest-to-date-public-domain-transcribed-voice-dataset/
https://blog.mozilla.org/blog/2019/02/28/sharing-our-common-voices-mozilla-releases-the-largest-to-date-public-domain-transcribed-voice-dataset/

Bibliography

[23] Ramaswamy, Ganesh N and Printz, Harry W and Gopalakrishnan, Po-
nani S. Apparatus and method for building domain-specific language
models. Feb. 13 2001, uS Patent 6,188,976.

[24] Schryen, G. Security of Open Source and Closed Source Software: An
Empirical Comparison of Published Vulnerabilities. 01 2009, p. 387.

[25] Apache Software Foundation. Lucene, Founded: 1999. Available from:
https://lucene.apache.org/

[26] Apache Software Foundation. Apache Lucene - Query Parser Syn-
tax, [online] Retrieved 23 April 2019. Available from: https://
lucene.apache.org/core/2_9_4/queryparsersyntax.html

[27] solid IT gmbh. DB-Engines Ranking of Search Engines, [online] Retrieved
23 April 2019. Available from: https://db-engines.com/en/ranking/
search+engine

[28] IBM. Product and system architecture overview for Watson Explorer
oneWEX on IBM Cloud Private, [online] Retrieved 23 April 2019.
Available from: https://www.ibm.com/support/knowledgecenter/en/
SS8NLW_12.0.0/com.ibm.watson.wex.ee.doc/c_arch_onewex.html

[29] IBM. BM LanguageWare Resource Workbench, [online] Retrieved 23
April 2019. Available from: https://www.ibm.com/developerworks/
community/groups/service/html/communityview?communityUuid=
6adead21-9991-44f6-bdbb-baf0d2e8a673

[30] Apache Software Foundation. Welcome to the Apache UIMA project,
Founded: 2006. Available from: https://uima.apache.org

[31] Cogniware, s.r.o. Getting started with CWDC, [online] Retrieved 25 April
2019. Available from: http://docs.cogniware.com/cogniware-data-
collector/getting-started-with-cwdc/

[32] Phonexia s.r.o. Phonexia Speech Engine API Documentation [online]
2018-04-08. Available from: https://download.phonexia.com/docs/
spe/#Authentication

[33] Jamie L. Using Token-Based Authentication to Improve Your Website
[online] November 23, 2017. Available from: https://swoopnow.com/
token-based-authentication/

[34] Haupt, Florian and Leymann, Frank and Pautasso, Cesare. A conver-
sation based approach for modeling REST APIs. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture, IEEE, 2015, pp. 165–
174.

45

https://lucene.apache.org/
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://db-engines.com/en/ranking/search+engine
https://db-engines.com/en/ranking/search+engine
https://www.ibm.com/support/knowledgecenter/en/SS8NLW_12.0.0/com.ibm.watson.wex.ee.doc/c_arch_onewex.html
https://www.ibm.com/support/knowledgecenter/en/SS8NLW_12.0.0/com.ibm.watson.wex.ee.doc/c_arch_onewex.html
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=6adead21-9991-44f6-bdbb-baf0d2e8a673
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=6adead21-9991-44f6-bdbb-baf0d2e8a673
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=6adead21-9991-44f6-bdbb-baf0d2e8a673
https://uima.apache.org
http://docs.cogniware.com/cogniware-data-collector/getting-started-with-cwdc/
http://docs.cogniware.com/cogniware-data-collector/getting-started-with-cwdc/
https://download.phonexia.com/docs/spe/#Authentication
https://download.phonexia.com/docs/spe/#Authentication
https://swoopnow.com/token-based-authentication/
https://swoopnow.com/token-based-authentication/

Bibliography

[35] Fette, Ian and Melnikov, Alexey. The websocket protocol. Technical re-
port, 2011.

[36] Jin, Brenda and Sahni, Saurabh and Shevat, Amir. Designing Web APIs:
Building APIs that Developers Love. ” O’Reilly Media, Inc.”, 2018.

[37] VMware, Inc. VMware, Inc., Founded: October 26, 1998. Available from:
http://www.vmware.com/

[38] SmartBear Software. Swagger, Founded: 2011. Available from: https:
//swagger.io

46

http://www.vmware.com/
https://swagger.io
https://swagger.io

Appendix A
Acronyms

AI Artificial Intelligence

API Application programming interface

BFS Breadth-first search

CPU Central processing unit

CRM Customer-relationship management

CSV Comma-separated values

CWDC Cogniware DataCollector

GDPR General Data Protection Regulation

GMM Gaussian Mixture Model

GSM Global System for Mobile communications

GUI Graphical user interface

HW Hardware

IBM International Business Machines

ID Identifier

IP Internet Protocol

JSON JavaScript Object Notation

LID Language identification

ML Machine Learning

MRCP Media Resource Control Protocol

47

A. Acronyms

NLP Natural language processing

NLQ Natural language query

REGEX Regular expression

REST Representational State Transfer

SSH Secure Shell

STT Speech to Text

TV Television

UIMA Unstructured Information Management applications

URL Uniform Resource Locator

USB Universal Serial Bus

VOIP Voice over IP

WAV/WAVE Waveform Audio File Format

WEX Watson Explorer

XML Extensible markup language

48

Appendix B
Supplemental Material

The complete source code of the thesis, snippets of the codes which were
described within thesis and the photos of the final prototype GUI are attached
in the medium alongide with the thesis.

README.md brief description of contents
BT Pazdera Boris 2019.pdf..................thesis in the PDF format
src.......................................the directory of source codes

datahandler................snippets of CWDC’s DataHandler codes
phonexia.... implementation of PhonexiaHelper class with models

connector snippets of CWDC’s Connector codes
thesis source of thesis in LATEX
photos ... photos of the GUI

49

	Introduction
	Goals
	Specific goals

	State-of-the-art
	Real-time analysis
	Content analysis
	Audio recording analysis
	Text analysis

	Analysis and design
	Audio analysis
	SpeechTech
	Speech to Text
	Voice analysis
	Conclusion

	NEWTON Technologies
	NEWTON Dictate
	NEWTON Analytics
	Conclusion

	Phonexia
	Language identification
	Technology of Phonexia's Speech transcription
	Acoustic model
	Language model
	Speech transcription
	Conclusion

	Full-text search and text content analysis
	Solr
	Conclusion

	Elasticsearch
	Conclusion

	IBM Watson Explorer oneWEX
	Data Ingestion
	Data Enrichment
	Machine Learning
	Exploration
	Architecture

	Cogniware DataCollector
	Connector
	Data Handler
	Crawler

	Conclusion

	Realisation of prototype
	Architecture
	Orchestrator
	Data connector
	Data Handler
	Implementation of voice processing
	Methods used for data extraction from voice

	The Voice processing module
	License cycle management
	Technologies customization
	Language identification

	Text processing module
	REST API investigation and data injection
	Dataset and collection creation
	Dataset
	Collection

	Graphical user interface
	GUI – Search
	GUI – Miner

	Outputs
	Conclusion
	Possible further improvements

	Bibliography
	Acronyms
	Supplemental Material

