
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Search for sources of gamma radiation

Bc. David Woller

Supervisor: RNDr. Miroslav Kulich, Ph.D.
May 2019

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

439600Personal ID number:Woller DavidStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Search for sources of gamma radiation

Master’s thesis title in Czech:

Hledání zdrojů gama záření

Guidelines:
Consider a limited space in which one or more sources of gamma radiation may be present. The task is to find a plan for
a mobile robot to explore the space as quickly as possible and determine the location of all resources. The task is complicated
by the fact that the radiation source cannot be detected from one place, but it is necessary to move around it on a circular
arc. The student's tasks are the following:
1. To get acquainted with metaheuristic algorithms for routing problems, especially the article [1].
2. Implement the algorithm [1] and compare the implementation properties with the results from the article.
3. Propose a modification of the algorithm [1] for the search of radiation sources and implement this modification.
4. Experimentally evaluate the properties of the implemented algorithm. Describe and discuss the results obtained.

Bibliography / sources:
[1] Stephen L. Smith, Frank Imeson,GLNS: An effective large neighborhood search heuristic for the Generalized Traveling
Salesman Problem, Computers & Operations Research, Volume 87, 2017, Pages 1-19, ISSN 0305-0548,
https://doi.org/10.1016/j.cor.2017.05.010.
[2] R. Martí, P. M. Pardalos, M. G. C. Resende: Handbook of Heuristics. Springer 2018, ISBN 978-3-319-07123-7
[3] M. Gendreau & Jean-Yves Potvin (ed.), 2019. 'Handbook of Metaheuristics,' International Series in Operations Research
and Management Science, Springer, edition 3, number 978-3-319-91086-4, December.

Name and workplace of master’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D., Intelligent and Mobile Robotics, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2019Date of master’s thesis assignment: 31.01.2019

Assignment valid until:
by the end of summer semester 2019/2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
RNDr. Miroslav Kulich, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank my supervisor,
RNDr. Miroslav Kulich, Ph.D., for guid-
ance and my parents for their support
throughout my whole life.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within in accordance with the method-
ical instructions for observing the ethical
principles in the preparation of university
thesis.

Prague, May 23, 2019

iii

Abstract
This thesis documents the application of
a metaheuristic algorithm GLNS on prac-
tical task - search for sources of gamma
radiation. An individual source of radia-
tion can be precisely located by a robot
carrying a detector if it passes nearby
through a trajectory segment, represented
by a circular arc. As there can be more
than one potential source of radiation and
there are many valid arcs for each of them,
the trajectory planning task can be after
discretization formulated as Generalized
Traveling Salesman Problem with m sets
(sources) and n vertices (arcs), partitioned
into these m sets. The goal is to find a
tour, that visits each set exactly once and
has a minimum length.
For this purpose, an adaptive large neigh-
borhood search algorithm GLNS is modi-
fied and implemented. Additionally, the
planner is adapted to plan with cubic
curves with predefined minimal curvature
as edges, and a procedure for fast estima-
tion of their weights is presented. More-
over, we propose a new intensification pro-
cedure called DenseOpt, which serves to
improve the quality of the solution ob-
tained from the discrete planner by per-
forming a local search in the continuous
space.

Keywords: Generalized Traveling
Salesman Problem, Adaptive Large
Neighborhood Search, GLNS

Supervisor: RNDr. Miroslav Kulich,
Ph.D.
Czech Technical University in Prague
Czech Institute of Informatics, Robotics,
and Cybernetics
Jugoslávských partyzánů 1580/3
16000 Prague 6

Abstrakt
Práce se zabývá aplikací metaheuristic-
kého algoritmu GLNS v praktické úloze -
hledání zdrojů gama záření. Přesná pozice
zdroje záření může být určena robotem
nesoucím detektor, pokud projede v jeho
blízkém okolí po trajektorii odpovídající
kruhovému oblouku. V obecném případě
je zdrojů radiace více a každý z nich může
být detekován průjezdem mnoha různými
oblouky, což umožňuje po vhodné diskre-
tizaci formulaci úlohy jako zobecněného
problému obchodního cestujícího. Je dáno
m množin (zdrojů radiace) a n vrcholů
(kruhových oblouků), rozdělených do m
množin. Cílem je najít takovou sekvenci
vrcholů, aby výsledná trajektorie byla co
nejkratší.
Za tímto účelem byl modifikován a imple-
mentován algoritmus GLNS, který je za-
ložen na heuristickém adaptivním prohle-
dáváním širokého okolí aktuálního řešení
problému. Plánovač je rozšířen o možnost
plánování s kubickými křivkami jakožto
hranami, které navíc dodržují definovanou
maximální křivost. Zároveň je představen
postup, jak pro účely plánování odhado-
vat jejich délku, namísto časově náročnější
přesné kalkulace. Dále je do algoritmu
přidána intenzifikační metoda zvaná Den-
seOpt, která lokálně optimalizuje výsled-
nou trajektorii získanou diskrétním pláno-
vačem, čehož je docíleno prohledáváním
spojitého prostoru přípustných vrcholů v
blízkém okolí vrcholů diskrétního řešení.

Klíčová slova: Zobecněný problém
obchodního cestujícího

Překlad názvu: Hledání zdrojů gama
záření

iv

Contents
1 Introduction 1
1.1 State of the art 2
2 Methods 5
2.1 Planning task formulation 5
2.1.1 Task-specific differences 5
2.1.2 Vertex validity constraint 7

2.2 GLNS description 8
2.2.1 Solver overview 8
2.2.2 Initial tour construction 9
2.2.3 Insertion heuristics 9
2.2.4 Removal heuristics 10
2.2.5 Local optimizations 12
2.2.6 Acceptance and stopping
criteria . 12

2.2.7 Modes of operation 13
2.3 Proposed GLNS modifications
towards GLNSarc 14

2.4 Additional improvements 16
2.4.1 Cubic interpolation of edges . 16
2.4.2 Precomputing and estimating
edge weights 18

2.4.3 Optimization through
intensification - DenseOpt 21

3 Experimental results 23
3.1 Comparison with original GLNS
implementation 23

3.2 GLNSarc performance 25
3.2.1 Progress in quality of solution
during runtime 27

3.2.2 Solving a large problem 29
3.2.3 Planning with cubic edges . . . 30
3.2.4 DenseOpt 33

4 Conclusion 39
Bibliography 41
A Content of the attached CD 43

v

Figures
2.1 Solved GTSP instance 6
2.2 Vertices in the GTSParc 7

3.1 Default problem 100_12000 26
3.2 GLNSarc performance on

variable_n dataset 26
3.3 GLNSarc performance on

variable_m dataset 27
3.4 GLNSarc performance on

variable_m_n dataset 27
3.5 Best weight progress in individual
trials . 28

3.6 Best weight progress - 50 runs
averaged . 28

3.7 Solved large problem 200_24000 29
3.8 Straight line vs. cubic curve edges 30
3.9 Solved problem 60_7200 with
cubic edges . 31

3.10 Edge weight precomputing - line
vs. cubic . 32

3.11 Edge weight estimation -
uniformly vs. variably dense table 33

3.12 Effect of DenseOpt on 5_125 . . 35
3.13 Effect of DenseOpt on 5_600 . . 36

Tables
2.1 Vertex parameters in the GTSParc 6
2.2 Vertex validity constraint -
parameters . 7

2.3 GLNS parameters - description . 13
2.4 GLNS modes of operation -
settings . 14

3.1 C++ vs. Julia GLNS
implementation 24

3.2 Default problem 100_12000
parameters . 25

3.3 Datasets description 25
3.4 Solving large problem - results . . 30
3.5 Solving problem 60_7200 with
cubic edges - results 32

3.6 Precomputed tables of weights -
parameters . 33

3.7 DenseOpt performance on
variable_m_n dataset 34

3.8 DenseOpt performance on
variable_m_n_v2 dataset 34

3.9 Tour weights after DenseOpt -
precise planning 37

3.10 Tour weights after DenseOpt -
planning with estimated weights . . 37

vi

Chapter 1
Introduction

The ultimate goal of the task motivating this thesis is to detect sources of
gamma radiation in a previously unknown area, such as a place of a nuclear
accident. The detection is to be carried out as quickly and precisely as
possible, with subsequent use of UAV (Unmanned Aerial Vehicle) and UGV
(Unmanned Ground Vehicle) [GZ17].

First, the area is mapped by the UAV carrying a photogrammetry multi-
sensor system and a gamma detector. The objective of this phase is to quickly
build a 3D map of the area surface and to locate regions with potential pres-
ence of radiation sources. As the UAV can carry only a lightweight gamma
detector with limited accuracy and it also has to keep certain altitude above
the terrain, it can only locate radiation sources with precision up to several
meters. For more details, see [GL18].

Second, a UGV with more accurate gamma detector is deployed to inspect
all previously discovered regions of interest and precisely locate sources of
radiation. As the UGV motion is substantially slower than that of the UAV,
it is crucial to optimize its trajectory while taking advantage of all of the
already acquired information.

A position of a single radiation source can be reliably detected by following
a specific trajectory in its close neighborhood. If task-specific conditions
described in Section 2.1.2 are met, this partial trajectory is representable
by a circular arc. Each region can be covered in many different ways, i.e.,
many valid circular arcs can be sampled. Besides that, the ordering of regions
exploration is not fixed and is also subject to optimization. Therefore, after
appropriate discrete coverage of individual regions, the planning problem can
be reformulated as the well known NP-hard Generalized Travelling Salesman
Problem (GTSP). Given n nodes (circular arcs) divided into m sets (regions
of interest), the aim is to find such a trajectory, that passes through exactly
one node from each set and is optimal with respect to some criterion, e.g.
minimum length. This modified variant of the GTSP with circular arcs as
vertices is from now on referred to as the GTSParc and modified GLNS solving
it is being called GLNSarc.

This thesis introduces GLNSarc algorithm solving the GTSParc, evaluates
its performance in several experiments, and proposes two major improvements
to the GLNSarc functionality. It is structured as follows. Chapter 1 describes

1

1. Introduction
the motivation and presents alternative approaches. Chapter 2 is dedicated
to the theoretical aspects of this thesis. It provides formal definitions of the
GTSP and the GTSParc in Section 2.1. Section 2.2 describes original GLNS
and Section 2.3 covers necessary modifications of GLNS towards solving the
GTSParc and thus transformation to GLNSarc. Section 2.4 then introduces
proposed improvements of GLNSarc, such as time-efficient planning with cubic
edges and intensification procedure called DenseOpt. Chapter 3 describes
experimental setup and presents obtained results. It covers the performance
of GLNSarc compared to the original GLNS implementation, time demands of
planning with cubic edges and efficiency of possible solutions and beneficial
effects of DenseOpt. Chapter 4 then summarizes work done, coherently
interprets experimental results and proposes areas of future research.

1.1 State of the art

The GTSP is a combinatorial optimization problem extensively studied in
operations research with many practical applications, such as location-routing
problems, material flow system design, post-box collection, stochastic vehicle
routing, arc routing or timetabling [AVS96]. There is no polynomial time
known exact solution for this problem and new approaches on how to find
acceptable solutions to large problems in reasonable time are still being pro-
posed.
Over the years, various approaches have been developed. Let’s start with
the optimal solver described in [NB91]. This approach utilizes a Lagrangian
relaxation to compute a lower bound on the optimal solution weight and
heuristically determines an upper bound. Then, vertices and edges that are
guaranteed not to be present in the optimal solution are removed, and the
solution is then obtained using a branch-and-bound procedure. A maximal
problem successfully solved contains only 104 vertices. However, the experi-
ments complementing the article were carried out in 1991 with corresponding
technology.
With the use of branch-and-cut [GT97] algorithm, maximal size of the opti-
mally solved problem later grew to 442 vertices.
As for heuristical non-optimal approaches - there are several solvers using
genetic and memetic algorithms. The best solver from this family is called
GK [GK10] and it performs well on problems with up to 200 sets (while
finding solutions close to those best known in minutes).
Another commonly used approach utilizes reduction of the GTSP to an asym-
metric TSP problem instance with the same amount of nodes [NB93] and
subsequent solving of this TSP problem with a heuristic TSP solver. This
approach was most recently adapted in GLKH solver [Hel15], which combines
reduction to TSP with TSP LKH solver [Hel00]. In terms of the quality of
the best solution found, GLKH often outperforms GK, although it can be
up to two orders slower on the same problem instance. GLKH was tested on
problems with up to 17180 sets and 85900 vertices - larger than any of the
remaining solvers mentioned.

2

................................... 1.1. State of the art

Finally, there is GLNS [SI17]. GLNS performs adaptive large neighborhood
search and is designed directly for the GTSP problems. Thus no reduction to
TSP is used. The basic idea of a large neighborhood search is to iteratively
apply constructive and destructive heuristics on the current solution, while
there can be more than one heuristic of each kind. The search is adaptive,
i.e., the previous performance of individual heuristics affects the probability
of their selection in future iterations [PR18]. According to [SI17], GLNS
outperforms both GK and GLKH, especially on non-metric or non-clustered
GTSP instances. However, GLNS is tested on instances of up to 10000
vertices and it is not suitable for significantly larger problems due to memory
requirements.

3

4

Chapter 2
Methods

2.1 Planning task formulation

This section provides a formal definition of the GTSP and also elaborates
on potential problems arising from differences between the practical task of
searching for radiation sources and the general, non-specific definition.

Assume a weighted graph G = (V,E,w) and a partition of V into m sets
PV = {V1, ..., Vm}, where. V is a set of n vertices. Vi ∩ Vj = ∅ for all i 6= j. ⋃mi=1 Vi = V. E is a set of edges such that all vertices are connected, apart from vertices

from the same set. w is a mapping assigning a weight to each edge w : E −→ R

Lets also define tour T over graph G as a closed sequence of vertices and edges
T = (v0, e0, v1, e1, ...vm−1, em−1), where each edge connects two consecutive
vertices - ei = (vi−1, vi) and em−1 = (vm−1, v0). A set of vertices present in
the tour T is denoted as VT , a set of edges then ET .

The GTSP objective is to find a tour in G that contains exactly one vertex
from each set and has a minimum length, i.e., it minimizes the tour length
w(T) defined as

w(T) =
∑
e∈ET

w(e). (2.1)

An example of a solved GTSP instance is shown in Figure 2.1, where
vertices of the same color belong to the same set.

2.1.1 Task-specific differences

There are aspects of the planning task solved that prevent us from using
the previously given the GTSP formulation and already implemented solvers.
Due to the following, the formulation has to be slightly changed, and the
solver appropriately modified.

5

2. Methods.......................................

Figure 2.1: Solved GTSP instance

Vertex definition

Contrary to GTSP, where a vertex is a point, a single vertex in the GTSParc
represents a circular arc - a special trajectory segment such that passing by
it allows a precise radiation source detection in a corresponding region of
interest. A minimal vertex representation consists of the following parameters:

Symbol Parameter description
x, y planar coordinates of circular arc center
r arc radius
α angle between x-axis and arc axis
ω angular size of the arc

Table 2.1: Vertex parameters in the GTSParc

Parameters are also depicted in Figure 2.2a.

Vertex weighting

As each vertex represents a segment of a robot trajectory, its length influences
the total trajectory cost. In the original GTSP implementation described
in [SI17], only edges, not vertices, have weights assigned. Therefore this
difference must be taken into consideration while implementing various metrics
in the algorithm. In GLNSarc, weight w of each vertex is defined as w = ωr.

Vertex connecting

There is no restriction on the direction, in which a vertex is to be passed,
therefore connecting two vertices is ambiguous. The original algorithm
considers only the possibility, that edge weights are dependent on vertex order

6

............................... 2.1. Planning task formulation

(a) : Parameters definition (b) : Vertex connecting

Figure 2.2: Vertices in the GTSParc

- an edge from a to b might have a different weight than an edge from b to a.
However, in the GTSParc, even with a fixed order, there are still four ways,
how to connect two consecutive vertices, as shown in Figure 2.2b. Therefore,
GLNS solver has to be modified accordingly.

2.1.2 Vertex validity constraint

While detecting sources of radiation along circular arcs, only certain arcs
are of use. The following constraint was provided as a part of this thesis
assignment. The source is detectable by passing through a circular segment
if the following condition is met:

I
2r(r+d)(1−cos (l

2r
−|θ|))+d2+h2 + cB

I
d2+h2 + cB

< K. (2.2)

Parameters are described in Table 2.2.

Symbol Parameter description
I intensity of the radiation source
r radius of circular arc
d distance from source to the closest point of arc
l arc length
θ angle between arc axis and line from arc center to source
h height of detector above terrain
cB background radiation
K experimentally set constant

Table 2.2: Vertex validity constraint - parameters

If the arcs corresponding to the same radiation source are concentric and
a potential source lies close to their center, this constraint limits only the
maximal radius of these arcs.

7

2. Methods.......................................
2.2 GLNS description

GLNS is a GTSP solver introduced by S. L. Smith and F. Imeson [SI17] based
on an adaptive large neighborhood search. This section gives a brief overview
of its functioning, a full description of the algorithm, including thorough
performance comparison with other approaches, can be found in [SI17].

2.2.1 Solver overview

GLNS implements an adaptive large neighborhood search, which is a meta-
heuristic planning approach based on the iterative application of constructive
and destructive procedures on a current solution. Adaptive means, that these
procedures are being selected proportionally to their previous performance.

Algorithm 1 GLNS
1: Input: A GTSP instance (G,PV)
2: Output: GTSP tour T
3: for i = 1 to cold_restarts do
4: T ←− initial_tour(G,PV)
5: Tbest,i ←− T
6: repeat
7: Select a removal heuristic R and insertion heuristic I
8: Select number of vertices to remove Nr

9: Tnew ←− T
10: Remove Nr vertices from Tnew using R
11: Insert Nr vertices to Tnew using I, one from each set not visited

by Tnew
12: Locally re-optimize Tnew
13: if w(Tnew) < w(Tbest,i) then
14: Tbest,i ←− Tnew
15: end if
16: if accept(Tnew, T) then
17: T ←− Tnew
18: Record improvement made by R and I
19: end if
20: until stop criterion met
21: Update selection weights of heuristics
22: end for
23: return tour Tbest,i that attains mini∈{1..cold_restarts}w(Tbest,i)

GLNS pseudocode is given in Algorithm 1. First, an initial random tour
is generated (line 4). Then, the following process runs iteratively. A pair
of a removal heuristic and an insertion heuristic is selected, according to
their selection weights (line 7). These heuristics are then applied to remove
and insert Nr vertices (lines 8 to 11), thus creating a modified tour Tnew.
The modified tour Tnew is subject to local optimization techniques MoveOpt

8

...................................2.2. GLNS description

and ReOpt (line 12) and is consequently accepted or declined, while using
standard simulated annealing criterion (line 16). This process repeats until
one of the stop criteria is met (line 20). After that, the planner updates
selection weights of the heuristics (line 21) and either starts the whole process
again in a new cold restart or returns the best tour found overall.
Each cold restart is split into two phases - initial descent and warm restarts.
The initial descent ends after a certain fixed number of non-improving itera-
tions. Then, there are several warm restarts, starting with the best solution
currently found and with slightly higher simulated annealing temperature
(which otherwise decreases with every iteration). This temperature is used
in acceptance criterion (line 16), to allow for accepting non-improving tours
with a small probability. Each warm restart also ends after a certain fixed
number of non-improving iterations.

2.2.2 Initial tour construction

Two approaches are proposed for initial tour construction in GLNS.
Random insertion tour construction is based on random insertion heuristic.
First, a randomly selected vertex v ∈ V is added to T . The following step
is then repeated m− 1 times: a random set Vi is selected from PV \PT and
such vertex vi ∈ Vi is picked and added to T , that minimizes the insertion
cost given by Equation 2.3.
Random tour construction creates the initial tour completely randomly. All
m sets in PV are randomly shuffled, and one vertex is picked from each set
uniformly randomly.
Random insertion tour construction is preferred in the fast planning mode
defined in Section 2.2.7. Otherwise, random tour construction is used.

2.2.3 Insertion heuristics

Insertion heuristic is a function, that takes GTSP problem instance (G,PV)
and a partial tour T = (VT , ET) as an input and returns an updated partial
tour T visiting one additional set. There are four basic insertion heuristics
described in GLNS - nearest, farthest random and cheapest. All of these
heuristics follow the same framework - first, a set Vi ∈ PV \PT (i.e., newly
visited set) is selected. Then, an edge (x, y) ∈ ET and vertex v ∈ Vi
minimizing the insertion cost

cost = w(x, v) + w(v, y)− w(x, y) (2.3)

are found. Finally, edge (x, y) is deleted from ET , edges (x, v) and (v, y)
are added to ET and v to VT . The only difference between the individual
heuristics is in the way, how the set Vi is picked. Before specifying that, it is
necessary to define set-vertex distance.
Set-vertex distance needs to be precomputed ∀Vi, i ∈ {1, 2...,m} and
∀u ∈ V \Vi and is given by

dist(Vi, u) = minv∈Vi{min{w(v, u), w(u, v)}}. (2.4)

9

2. Methods.......................................
Nearest insertion, picks such a set Vi that contains a vertex v with minimal
distance to a vertex from the partial tour T , i.e.

Vi = argminVi∈PV \PT
minu∈VT

dist(Vi, u). (2.5)

Farthest insertion picks such a set Vi, whose closest vertex to a vertex on
partial tour T is at a maximal distance, i.e.

Vi = argmaxVi∈PV \PT
minu∈VT

dist(Vi, u). (2.6)

Cheapest insertion picks the set Vi containing the vertex v that minimizes
the insertion cost;

Vi = argminVi∈PV \PT
minv∈Vi,(x,y)∈ET

{w(x, v) + w(v, y)− w(x, y)}. (2.7)

In Random insertion, set Vi is picked uniformly randomly from PV \PT .
Insertion heuristics are further randomized by adding noise to calculated
insertion cost;

cost = (1 + rand)(w(x, v) + w(v, y)− w(x, y)), (2.8)

where rand ∈ [0, η] is a uniformly randomly sampled number, and η is so-
called additive noise.
Set selection in the nearest, farthest and random insertion heuristic can be
generalized in a single framework while using an unnormalized probability
mass function Λ. It is defined as

Λ = [λ0, λ1, ..., λl−1], (2.9)

where l is the number of sets in PV \PT . To select a set, an index k ∈ {1, ..., l}
is randomly selected while using Λ and a set Vi ∈ PV \PT with k-th smallest
distance to the tour is picked. Depending on λ, this procedure is equivalent
to nearest (λ = 0), random (λ = 1) or farthest (λ =∞) insertion. Also, by
selecting other values of λ, hybrid versions of these heuristics are added to
the algorithm.
The bank of insertion heuristics contains the previously listed heuristics with
all combinations of predefined values of λ and η, see Table 2.4.

2.2.4 Removal heuristics

Given a tour T = (v0, e0, v1, e1, ...vm−1, em−1), removal heuristics remove Nr

vertices from T and return a closed partial tour. There are four removal
heuristics in GLNS: random removal, worst removal, distance removal, and
segment removal. First three heuristics are designed for removing one vertex
at a time, so to remove Nr vertices, such heuristic is simply applied Nr times.

Worst removal removes such vertex vj from T that maximizes removal
cost

rj = w(ej−1) + w(ej)− w(vj−1, vj+1). (2.10)

10

...................................2.2. GLNS description

Therefore, a vertex resulting in the greatest reduction in tour length is
removed, together with edges ej−1 and ej . To make the tour closed again,
edge (vj−1, vj+1) is added.
Random removal removes a vertex vj selected from T uniformly randomly.
Again, edges ej−1 and ej are removed and edge (vj−1, vj+1) is added.
Distance removal attempts to remove vertices, that are close to each other.
The procedure is described in Algorithm 2. The first vertex to be removed is
picked randomly and added to a set called Vremoved (line 4). The remaining
Nr − 1 vertices are selected in the following way. For each of them, a vertex
vseed is randomly picked from Vremoved (line 6). Then, the closest vertex to
vseed is removed from tour T (line 7) and added to Vremoved.

Algorithm 2 Distance removal
1: Input: GTSP tour T , number of vertices to remove Nr

2: Output: Updated GTSP tour T
3: Vremoved = ∅
4: Uniformly randomly remove a vertex v from T and add it to Vremoved
5: for i = 1 to Nr − 1 do
6: Select vertex vseed from Vremoved, uniformly randomly
7: Remove such vertex vj from T , that minimizes rj =
min{w(vseed, vj), w(vj , vseed)}

8: Add vj to Vremoved
9: end for

10: return T

Each time a vertex vj is removed from T , edges ej−1, ej are removed as
well and edge (vj−1, vj+1) is added to T .

Segment removal removes a continuous segment of the tour of the length
Nr, starting with uniformly randomly selected vertex vj . All vertices from vj
to vj+Nr−1 and all edges between the first and last vertex are removed and
an edge from vj−1 to vj+Nr is added.
Similarly to the insertion heuristics, distance, random, and worst removals
can be generalized using a single framework and the probability mass function
Λ defined in Equation 2.9. Let VT denote a set of vertices present in T . To
find a vertex to be removed, an index k ∈ {1, 2, ...|VT |} is randomly selected,
according to Λ = [λ0, λ1, ..., λ|VT |−1]. Then, the vertex vj ∈ VT with the
k-th smallest value rj is removed, together with removing edges ej−1, ej and
adding edge (vj−1, vj+1).
This way, random removal can be performed by setting λ = 1, worst removal
for λ =∞ and closest vertex selection (utilized in distance removal) for λ = 0,
along with custom randomized heuristics for other values.

Adaptive weights

GLNS maintains a bank of insertion and removal heuristics. Each heuristic is
assigned a weight, which is initialized to 1. At each iteration, one insertion

11

2. Methods.......................................
and one removal heuristic are selected from the bank, using a roulette wheel
selection mechanism according to the weights assigned. With the selected
heuristics, the current tour T is destroyed, and a new tour Tnew is created.
The instant score of the heuristics used is evaluated as

score = max{w(T)− w(Tnew)
w(T) , 0}.

At the end of each cold restart, the overall score scoretrial for each heuristic
in that cold restart is obtained by averaging all instant scores.

Then, the weight w of each heuristic is updated as

w = εw + (1− ε)scoretrial, (2.11)

ε being a fixed constant.

2.2.5 Local optimizations

There are two local optimizations present in GLNS - MoveOpt and ReOpt.
MoveOpt attempts to optimize the order of the sets by randomly removing
a vertex from the current tour and reinserting such a vertex from the same
set, that minimizes the insertion cost. Thus, set order in the tour might be
changed.
ReOpt re-optimizes the choice of vertices in all sets, while keeping the set
order fixed. It performs a search for the shortest cycle across all sets in the
given order. This search can be executed exactly while using an optimal
graph search algorithm such as A* with an admissible heuristic. In GLNSarc,
a simple breadth-first search is employed.

2.2.6 Acceptance and stopping criteria. Acceptance criteria
At each iteration, a new tour Tnew is created and accepted or discarded.
For this purpose, GLNS uses a standard simulated annealing acceptance
criterion. Given a temperature T , new tour Tnew is accepted with
probability min{exp(w(T)−w(Tnew)

T), 1}, where T is the best tour found
in the trial so far. The temperature T is decreased at every iteration as
T = cT , where c < 1 is so called cooling rate.. Stopping criteria
The GLNS planning process consists of several phases - one or more cold
restarts, each of them consisting of an initial descent phase and several
warm restarts. Stopping criteria of these phases are as follows.
Initial descent and warm restarts both end, when the best solution
found is not improved for a fixed number of consecutive iterations.
Planning process ends either after last cold restart, or after meeting one
of the alternate stopping criteria: maximum planning time is exceeded
or a tour with the weight lower than some given bound is found.

12

...................................2.2. GLNS description

2.2.7 Modes of operation

GLNS utilizes several fixed parameters, all of which are described in Table 2.3.
There are three modes of operation proposed in [SI17] - fast, medium, and slow.
Each of these modes has different settings in terms of runtime, parameter
values, and internally used subroutines. Table 2.4 shows parameter settings
for these modes.
Most notably, the individual modes differ in the number of cold restarts,
warm restarts, and the number of non-improving iterations needed before
terminating current warm restart. Also, the fast mode does not utilize
the computationally expensive cheapest insertion heuristic and uses random
insertion tour construction, thus starts with greedily created better quality
solution than default or slow mode.

Parameter or constant Description
m number of sets
Iterations number of iterations used for cooling rate

c determination - c is set so that after this
number of iterations, tour with p2% higher
cost is accepted with the probability of 1/2

Warm iterations - first after this number of non-improving itera-
tions, warm restart ends

Warm iterations - last after this number of non-improving itera-
tions, an initial descent or warm restart
starting with initial improvement ends

Initial acceptance p1 constant used for acceptance temperature
initialisation; in the first trial, a tour with
p1% higher cost than the current best is
accepted with the probability of 1/2

Final acceptance p2 constant used for cooling rate c determina-
tion

Warm restart acceptance p3 constant used for acceptance temperature
re-initialisation; at the beginning of each
warm trial, a tour with p3% higher cost
than the current best is accepted with the
probability of 1/2

Reaction factor ε constant used in updating heuristic weights
Initial tour construction random tour or random insertion tour con-

struction
Maximum removals maximal number of vertices to remove in

each iteration
λ values values for building probability functions in

generalized heuristics frameworks
Additive noise η values of additive noise used in insertion

heuristics

Table 2.3: GLNS parameters - description

13

2. Methods.......................................
GLNS mode

Parameter Fast Medium Slow
Cold restarts 3 5 10
Warm restarts 2 3 5
Iterations 60m 60m 150m
Warm iterations - first 10m 15m 25m
Warm iterations - last 15m 30m 50m
p1 (%) 5 5 5
p2 (%) 0.05 0.05 0.05
p3 (%) 0.5 0.5 0.5
ε 0.5 0.5 0.5
Tour init. Random insert Random Random
Max. removals min{20, 0.1m} min{100, 0.3m} 0.4m
Iters. of MoveOpt min{20, 0.1m} min{100, 0.3m} 0.4m
Cheapest insertion No Yes Yes
Insertion λ vals. (0, 1/2, 1/

√
2), 1,

√
2, 2,∞)

Distance removal λ vals. (1/
√

2, 1,
√

2, 2,∞)
Worst removal λ vals. (1/

√
2, 1,
√

2, 2,∞)
Additive noise η vals. (0, 0.25, 0.75)

Table 2.4: GLNS modes of operation - settings

2.3 Proposed GLNS modifications towards
GLNSarc

As described in Section 2.1.1, graph vertex in the GTSP definition corresponds
to a circular arc in the GTSParc. This arc represents a part of a trajectory and
has certain properties, that have to be taken into account while employing
GLNS to solve the GTSParc. The main issues arise from the fact, that the
arc has a nonzero length and that connecting two vertices is ambiguous.
Necessary modifications to the algorithm solving these issues are described in
detail in this section.

Vertex duplication

In Section 2.1.1, a vertex was described by the following tuple of parameters
-
〈
x, y, r, α, ω

〉
. This representation is sufficient for problem formulation

but impractical for implementation, as it requires distinguishing between
various ways of vertex connecting. Instead of doing that, an additional
parameter sign ∈ {±1} is added. This parameter determines, in which
direction the vertex is to be passed through (-1 for clockwise passage, +1
for anticlockwise). Naturally, this doubles the total amount of vertices in
our GLNSarc implementation, as each vertex is inserted with both possible
sign values. On the other hand, the problem with edge connecting is solved,
because the original GLNS allows the possibility, that weights w(v1, v2) and
w(v2, v1) differ, which is the case now.

14

..................... 2.3. Proposed GLNS modifications towards GLNSarc

Tour weight

Let T = (v0, e0, v1, e1, ..., vm−1, em−1) be a tour and w(T) its weight. In
GLNSarc, this weight is calculated as

w(T) =
m−1∑
i=0

w(ei) +
m−1∑∑∑
j=0

w(vj), (2.12)

where vi, ej are vertices and edges from T and w(v), w(e) their respective
weights. The bold expression in Equation 2.12 is newly added in GLNSarc.

Cheapest insertion and unified insertions

In all insertion heuristics, the insertion cost of a vertex vnew ∈ Vi, Vi ∈ PV \PT
is minimized. In cheapest insertion, this cost is minimized to select both Vi
and vnew, whereas in remaining three unified insertions, Vi is already selected
as described in Section 2.2.3 and only vnew is sought. In all cases, the insertion
cost cinsert has to be modified as follows:

cinsert = w(vj , vnew) + w(vnew, vj+1)− w(ej) +w(vnew). (2.13)

Here, vj and vj+1 are two consecutive vertices in T before insertion and
w(vj , vnew), w(vnew, vj+1) and w(ej) weights of corresponding edges.

Worst removal

Worst removal removes such vertex vj ∈ VT , that maximizes the removal cost
cremove. GLNSarc modification is again rather straightforward:

cremove = w(ej−1) + w(ej)− w(vj−1, vj+1) + w(vj). (2.14)

ReOpt

Re-Opt subroutine attempts to optimize the choice of vertices while keeping
the set order fixed. This is achieved by performing a graph search through
all sets, in which only edges between two consecutive sets are considered.
When expanding from vertex x ∈ Vi to vertex y ∈ Vi+1, current score in y is
calculated as

score(y) = score(x) + w(x, y) +w(y). (2.15)

Also, first vertex a ∈ V1 is initialized with score(a) = w(a), instead of zero.

MoveOpt

MoveOpt subroutine attempts to optimize the sets order by randomly remov-
ing a vertex vi from a tour T and reinserting another vertex vj from the same
set to any position in the tour so that the insertion cost is minimized. This
cost cinsert is modified the same way as in cheapest and unified insertions, i.e.

cinsert = w(vj , vnew) + w(vnew, vj+1)− w(ej) +w(vnew). (2.16)

15

2. Methods.......................................
Remarks

Some parts of GLNS were not formally modified, although the original idea
behind them might have changed in GLNSarc due to task reformulation.
Set-vertex distance from a set V to a vertex u is still defined as

dist(V, u) = minvi∈V (min(w(u, vi), w(vi, u))). (2.17)

In GLNSarc, these distances are precomputed after vertex duplication. There-
fore the value obtained corresponds to the shortest path to or from u to V ,
no matter the sign of u, v (=their orientation) or the edge (u, v) direction.
A different situation arises in distance removal, described in Algorithm 2.
The motivation is to remove vertices from a current tour T , which are “close
to each other” At each iteration, a vertex vseed is selected randomly from the
set of already removed vertices Vremoved. The next vertex vj to be removed
from T is obtained as

vj = argminvj∈T (min(w(vseed, vj), w(vj , vseed))). (2.18)

Here, GLNSarc considers only edges between vertices vseed, vj and not their
oppositely oriented variants available in the GTSParc instance, as these
variants are not present in T .

2.4 Additional improvements

Apart from modifying GLNS to solve the GTSParc and implementing it as
GLNSarc, further improvements were made to obtain a more versatile solution.
These improvements involve planning with realistically weighted edges (other
than primarily used straight lines), precomputing or estimating them in a
reasonable time and an the intensification procedure, which further improves
the solution obtained for discretely defined GTSParc instance.

2.4.1 Cubic interpolation of edges

In the default mode, the GLNSarc evaluates edge weight from a vertex a to a
vertex b as the Cartesian distance between their endpoints, i.e., the edge is
interpolated by a straight line. For various reasons, this approach is not very
realistic. The resulting trajectory is not smooth - it does not have defined
derivatives at every point and thus can’t be executed without stopping the
robot and rotating in place. Such maneuver can be performed only by a
holonomic robot, and the corresponding edge length is no longer proportional
to the time required for passing it, as there may be either lot of rotational
movement needed or none at all.
As an alternative, it is possible to interpolate edges in GLNSarc by a single
segment of Ferguson cubic curve [YQ99]. This curve is defined by a start
point P0, an endpoint P1 and tangent vectors in these points: P ′

0 and P ′
1,

while the magnitude of these vectors affects the shape, length, and curvature

16

............................... 2.4. Additional improvements

of the resulting curve. The general formula describing any point on the cubic
curve P (t) is

P (t) = a0 + a1t+ a2t
2 + a3t

3, (2.19)

where t ∈ 〈0, 1〉, ai = [aix, aiy]T , i = 0..3.
Individual parameter tuples a0..a3 can be obtained from leading points and
tangent vectors as

a0 = P0

a1 = P ′
0

a2 = 3(P1 − P0)− 2P ′
0 − P ′

1

a3 = 2(P0 − P1) + P ′
0 + P ′

1

(2.20)

From here, P (t) can be expressed as

P (t) = (1−3t2+2t3)P0+(3t2−2t3)P1+(t−2t2+t3)P ′
0+(−t2+t3)P ′

1. (2.21)

Keeping predefined curvature

A cubic curve prescribed by Equation 2.21 is smooth, but it still may be
unsuitable for a nonholonomic robot due to excessively sharp turns. Let’s
assume that the robot has a minimum turning radius of rmin. Then, the
maximal permissible curvature Kmax can be then obtained as

Kmax = 1
rmin

. (2.22)

The goal is to find the shortest possible edge with the curvature K such
that K < Kmax. This can be achieved by adjusting magnitude of vectors P ′

0,
P ′
1, by finding appropriate scaling parameters k0 and k1,

P ′
0 = k0P

′
0norm

P ′
1 = k1P

′
1norm

,
(2.23)

where P ′
0norm

, P ′
1norm

are vectors of a unit length.
Now, let’s examine the curvature K of a general cubic curve prescribed by
Equation 2.21. In 2D, the curvature K(t) of differentiable curve P (t) =
[x(t), y(t)]T can be calculated as follows:

K(t) = |x
′(t)y′′(t)− y′(t)x′′(t)|
(x′2(t) + y′2(t))

3
2

. (2.24)

After substituting x(t), y(t) by corresponding expressions and evaluating
their derivatives as

P ′(t) = [x′(t), y′(t)]T = a1 + 2a2t+ 3a3t
2

P ′′(t) = [x′′(t), y′′(t)]T = 2a2 + 6a3t
(2.25)

the curvature K(t) can be rewritten as

17

2. Methods.......................................

K(t) = a

b
a = |(2a2y + 6a3yt)(3a3xt

2 + 2a2xt+ a1x)
− (2a2x + 6a2xt)(3a3yt

2 + 2a2yt+ a1y)|

b = ((3a3xt
2 + 2a2xt+ a1x)2 + (3a3yt

2 + 2a2yt+ a1y)2)
3
2

(2.26)

Note that a1 = a1(k0), a2 = a2(k0, k1) and a3 = a3(k0, k1), thus K =
K(k0, k1, t).
Now let’s examine the curve length L, which is to be minimized. Using a
symbolic representation P (t) = [x(t), y(t)]T , it is defined as

L =
∫ 1

0

√
(dx(t)
dt

)2 + (dy(t)
dt

)2dt, (2.27)

and after substituting derivatives

L =
∫ 1

0

√
(a1x + 2a2xt+ 3a3xt2)2 + (a1y + 2a2yt+ 3a3yt2)2dt. (2.28)

As the length L is an integral over a definite interval t ∈ 〈0, 1〉, L =
L(k0, k1).
Finally, let’s proceed to solve the original task of appropriately scaling the
cubic curve. Given points P0, P1, unit vectors P0

′
norm, P1

′
norm and the

maximal curvature Kmax, the goal is to minimize L = L(k0, k1) given by
Equation 2.28, while it must hold that max(Kt∈〈0,1〉(t, k0, k1)) < Kmax. As
extrema of Equation 2.26 couldn’t be found analytically, this optimization
problem is being solved numerically with the use of NLopt nonlinear opti-
mization library [NLo].
In the GLNSarc implementation, parameters k0 and k1 are not treated sep-
arately, but as a single parameter k = k0 = k1. With the optimization
algorithm used, tuning these parameters separately yielded less consistent
results, occasionally missing a global optimum, thus producing an edge either
too curved or too long. The evident drawback of this simplification is that
with both parameters tied together, the edge obtained is no longer the shortest
cubic curve possible.

2.4.2 Precomputing and estimating edge weights

Another problem is that before GLNS planning run, all edge weights need
to be calculated. In case of straight lines, this is not an issue even for large
problems, even though the number of edges can rise to n2. However, previously
described process of determining cubic edge parameters is significantly more
time consuming, as shown in Figure 3.10. Therefore various approaches
addressed in this section were examined so that that edge weights can be
determined in a reasonable time.
A basic idea behind speeding up the edge weights determination process is to

18

............................... 2.4. Additional improvements..1. precompute a sufficiently dense look-up table, mapping various edge
shapes to a corresponding weight (with the maximal edge curvature
being fixed),..2. estimate edge weights for the current planning problem at the beginning
of the planning process instead of calculating them,..3. plan with estimated weights, and..4. after the planning finishes, substitute estimated edge weights in the
solution with precisely calculated ones.

Determining edge shape and weight

A cubic edge between two vertices is determined by the points P0, P1 and
vectors P0

′
norm, P1

′
norm. However, edge position and orientation are not

needed in determining its length. If the edge is moved and rotated, so that P0

is in origin and P0
′
norm points to [1, 0], no information about the edge shape

and length is lost the representation can be narrowed down to P1new = [x, y]
and angle α. Here, P1new is the new position of P1 and α is the angle
determining direction of P1

′
norm_new.

Thus, the table with precomputed weights maps only three parameters tuple
[x, y, α] to the corresponding weight (with Kmax fixed).
The table size can be further reduced by considering the symmetry between
some edge shapes. For example, the table size is reduced by half only by
reflecting over x-axis all such edge shapes, that has P1 lying below the x-axis.

Look-up table sampling

Initially, the look-up table values were precomputed while using a uniform
sampling with a fixed step over some predefined range. This yielded unsatis-
factory results, because some edge weight estimates were off by several orders
of magnitude, thus leading to solutions of no value. Precomputing the table
with denser sampling did not solve this issue.
It was discovered that in case of some edge shapes, even a small difference
in its parameters [x, y, α] leads to a significant change of its length. Also,
interpolating by a single segment of Ferguson cubic curve does not work well
for all possible configurations. For example, if P ′

0 and P ′
1 both lie on the line

from P0 to P1 and point in an opposite or identical direction, the resulting
curve has de facto infinite length. This is due to the requirement on keeping
maximal curvature K < Kmax and limited flexibility of the curve.

Variable density sampling

The previously described issues were attempted to be solved by precomputing
edge weights in a grid with a variable density, depending on the rate of change
in a weight. The grid space is 3-dimensional, as the edge shape is defined
by [x, y, α]. Let’s define a grid cell as a cube C in x × y × α space, where

19

2. Methods.......................................
x ∈ 〈xmin, xmax〉, y ∈ 〈ymin, ymax〉, α ∈ 〈αmin, αmax〉 and denote its eight
vertices (corresponding to edge shapes) as ei, i ∈ 〈1..8〉. Also, let’s define
maximal allowed absolute deviation in edge weight as precision pmax. Let’s
also define a map M , that stores and maps edge shapes ei to corresponding
weights wi.

Precomputing then proceeds recursively as follows:..1. Start with a cube C, covering the whole edge shape space defined by
〈xmin, xmax〉, 〈ymin, ymax〉, 〈αmin, αmax〉. Map M = {}...2. For all vertices ci of cube C, calculate the corresponding edge weight wi
and add the pair 〈ci, wi〉 to map M ...3. Calculate the maximal absolute deviation p over ci, i ∈ 〈1..8〉 from

mean({ci|i ∈ 〈1..8〉})..4. If p > pmax and further splitting is possible, split cube C and continue
with step 2.

In step 4, the cube is split so that the interval covered by each variable is
halved. In the general case, eight sub-cubes are obtained.
It is advisable to set some maximal splitting level for each variable. If a
certain resolution is reached, the cube is no longer split in this variable. This
prevents issues caused by different scale or even units of the variables - with
non-bounded splitting in all three variables, the procedure might be getting
excessively accurate in one variable and insufficiently in another, causing M
size to grow needlessly.
It might also be necessary to initially cover the space with multiple smaller
cubes instead on a single one. By doing that, some initial precision is ensured
- if the single initial cube is chosen badly, it may happen than the precision
condition initiating further splitting is accidentally met too soon.

Searching the look-up table

To estimate the edge weight, we need to determine its shape by performing
the previously described transform, find a shape in the look-up table that is
closest to the given one and read the corresponding weight. In the case of the
uniformly sampled look-up table with a fixed step in individual parameters,
this can be performed in constant time.
With variable density sampling, however, finding the closest tuple of param-
eters 〈x, y, α〉 in M is not a trivial task. To perform this operation in a
reasonable time, a k-d tree containing edge shapes as nodes is built after
loading precomputed M . Edge weight estimation is then performed in 2
steps. First, the closest tuple 〈x, y, α〉 to the given one is found in the k-d
tree, which is an operation with average logarithmic time complexity. Then,
the corresponding weight can be read from the map M .

20

............................... 2.4. Additional improvements

2.4.3 Optimization through intensification - DenseOpt

As explained in Chapter 1, the planning task definition is originally continu-
ous, and each set is discretely covered by a finite number of vertices to allow
utilization of GLNS. The basic assumption is, that if vertices are sampled
uniformly and densely enough, the solution obtained from GLNS is close to
the optimal one, with the same set ordering.
DenseOpt is a newly proposed intensification optimization technique per-
formed on a resulting tour T obtained by GLNS. The idea is to search the
close neighborhood of each vertex in T and randomly sample new admissible
vertices, not present in the preceding GLNS search formulation G = (V,E,w).
If the newly sampled vertex improves the weight of T , it replaces the originally
present one. The process is described in Algorithm 3.

Algorithm 3 DenseOpt
1: Input: GTSParc tour T = (v0, e0, v1, e1, ..., vm−1, em−1)
2: Output: Updated GTSParc tour T
3: Array indices = [0, 1, ...,m− 1]
4: for i = 1 to Nd do
5: Uniformly randomly shuffle array indices
6: for j = 0 to m− 1 do
7: index = indices[j]
8: Vertex v = vindex from T
9: for k = 1 to Ns do

10: Sample valid vertex vnew close to v
11: if vnew improves w(T) then
12: Replace vindex in T by vnew
13: Update edges eindex−1, eindex in T
14: end if
15: end for
16: end for
17: end for
18: Return T

The whole tour T is optimized Nd times (line 4). In each iteration, a
random order of resampling is created by shuffling array indices (line 5).
Then, each vertex from the tour T is resampled Ns times (lines 9-10) as vnew.
Sampling of vnew is limited to a predefined range of parameters r, α, and ω.
This range is determined by the original density of a set coverage so that
vnew is sampled anywhere between its closest neighbors. If vnew improves
tour cost w(T), it is added to T and vindex is removed (lines 11-12). Also,
edges eindex−1 and eindex are newly generated, so that the newly added vnew
is connected to the rest of the tour T (line 13). As the vertex vindex in T is
being replaced continuously, its original position is stored in copy v, so that
new vertices vnew are sampled in the same region (line 8). Parameter values
used were Nd = 5, Ns = 50. Higher values did not yield better results.

21

22

Chapter 3
Experimental results

GLNSarc implementation performance and all the additional improvements
were tested on various instances. This Chapter describes the performed
experiments and discusses the obtained results. It is structured as follows:
Section 3.1 compares the performance of the first version of GLNSarc with
the original GLNS implementation on a set of GTSP instances. Section 3.2
examines performance of GLNSarc after adaptation to the GTSParc with the
use of four custom generated datasets. Each of these datasets enables to
inspect influence of different trends, such as an increase inm, n or randomness
in sets coverage by vertices. Section 3.2.3 covers issues linked to planning with
cubic edges - namely weights precomputing time requirements and efficiency
of weight estimation. Finally, Section 3.2.4 evaluates the beneficial effects of
DenseOpt and studies its effects when applied on a solution with cubic edges,
that was obtained from planning with roughly estimated edge weights.
All measured times further presented were obtained with Intel Core i7-7500U
CPU (2.70 GHz), while running on a single core with 5.8 GB of RAM available
to the process.

3.1 Comparison with original GLNS
implementation

The original GLNS solver [SI17] is implemented in the Julia language. The
GTSParc solver is written in C++, and it was first implemented as a GLNS
solver, which was then transformed into the GTSParc solver by applying
necessary modifications described in Section 2.3. This approach made it easy
to asses the functionality and performance of the initial C++ implementation.
Table 3.1 compares running times and best tour weights obtained by the two
GLNS implementations; both running in the fast mode. Both implementations
were tested on a subset of small GTSP instances provided in [OdLM13].
These results show that both implementations return practically the same
results in terms of the best tour weight. Julia implementation stores edge
weights in integers, thus resulting weights are not identical. As for the running
times, C++ implementation is faster by one order for smaller problems, but
by up to one order slower for problems with a higher number of sets m.

23

3. Experimental results..................................
Problem size Time (s) Weight

Problem name m n C++ Julia C++ Julia
5eil51 5 51 0.04 1.04 74.99 75
10eil51 10 51 0.11 1.06 144.78 145
15eil51 15 51 0.30 1.07 203.24 201
5berlin52 5 52 0.03 1.04 2,065.90 2,065
10berlin52 10 52 0.10 1.05 3,223.39 3,223
15berlin52 15 52 0.27 1.08 4,689.99 4,691
5st70 5 70 0.03 1.27 102.74 103
10st70 10 70 0.09 1.19 212.18 211
15st70 15 70 0.27 1.42 249.76 248
5eil76 5 76 0.03 1.23 73.86 74
10eil76 10 76 0.10 1.18 127.39 127
15eil76 15 76 0.29 1.31 185.81 186
5pr76 5 76 0.03 1.11 19,245.10 19,246
10pr76 10 76 0.09 1.45 35,794.90 35,795
15pr76 15 76 0.27 1.33 52,154.80 52,156
10rat99 10 99 0.10 1.59 325.03 324
25rat99 25 99 1.21 1.46 508.79 509
50rat99 50 99 10.69 2.10 816.78 814
25kroA100 25 100 1.14 1.51 10,430.40 10,429
50kroA100 50 100 10.83 1.95 15,943.60 15,944
10kroB100 10 100 0.12 1.35 5,921.22 5,920
50kroB100 50 100 10.78 1.76 15,843.90 15,842
25eil101 25 101 1.34 1.67 238.68 237
50eil101 50 101 10.35 2.01 403.37 396
25lin105 25 105 0.81 1.60 8,226.05 8,223
50lin105 50 105 11.14 2.21 11,296.30 11,294
75lin105 75 105 43.04 4.10 13,135.00 13,134

Table 3.1: C++ vs. Julia GLNS implementation

The slower performance of Julia on smaller problems may be due to the
fact, that a Julia program is compiled at runtime (’just in time’ compilation).
In the case of the small problems, the compilation accounts for most of
the runtime. The C++ performance was analyzed using CLion built-in
profiler, and it has shown, that the most expensive operations attribute to
two GLNSarc components. First of them is the BFS search used in ReOpt
local optimization. The second is utilization of C++ STL containers in
general. The analysis indicates, that not the most suitable containers were
always selected, as querying various structures or modifying them is more
time consuming, than would be adequate. For example, set-vertex distances
are stored in an std::map container, which maps a pair 〈set.id, vertex.id〉
to a distance value. Reading distance from this map has O(log(p)) time
complexity, where p is the number of pairs in the map. If a hashmap was
implemented instead of the map, this operation could be performed in constant
time. Issues like this, that were identified during performing experiments,

24

................................. 3.2. GLNSarc performance

were not fixed on the go so that all of the experiments could be compared
with each other. As shown later, even the current GLNSarc implementation is
capable of solving GTSParc instances of the same size as the original GLNS
implementation. Also, when planning with precisely computed cubic edges,
the planning times of the current GLNSarc implementation are negligible
compared to the duration of computing edge weights.

3.2 GLNSarc performance

GLNSarc performance is evaluated on three different datasets (variable_n,
variable_m, variable_m_n), all of them being derived from the same default
problem 100_12000. Each dataset is designed to capture different trend -
either the influence of change in the number of vertices n, in the number
of sets m or both. The default problem is visualized in Figure 3.7 and its
parameters are given in Table 3.2. This problem contains 100 identical sets,
each of them containing 120 oriented and concentric vertices. There are
5 possible values of r, 12 values of α, 2 values for sign and ω is fixed to
π/3. Making all possible combinations of these four parameters produces
120 vertices. The sets are placed in space randomly, with minimal distance
between individual sets being limited to 45, and the size of the space covered
is limited to 550 in both dimensions.

Parameter Value or range
m 100
n 12000
No. of vertices per set 120
Vertices α values {0, π/6, ..., 11π/6}
Vertices ω values π/3
Vertices r values {5, 10, 15, 20, 25}

Table 3.2: Default problem 100_12000 parameters

All problems were generated by removing vertices or sets from the default
problem - for details, see Table 3.3. Vertices were removed randomly from
each set, while sets were removed according to their distance to the point
[0, 0] (farthest to closest).

Dataset variable_m variable_n variable_m_n
No. of problems 17 24 20
m values {20, 25,...,100} 50 {5, 10,..., 100}
Vertices per set 2400/m {5, 10,...,120} {25, 30,..., 120}

Table 3.3: Datasets description

The plots in Figures 3.2, 3.3 and 3.4 show GLNSarc performance on the
generated datasets in terms of the planning time and the number of iterations
needed. All tests were carried out in the fast mode.

25

3. Experimental results..................................

Figure 3.1: Default problem 100_12000

According to [SI17], GLNS runtime in the fast mode is O(mn). Figure 3.2a
shows linear dependence of the runtime on n with m fixed. However, Figure
3.3a indicates polynomial relation between m and the runtime. Therefore,
GLNSarc implementation is probably suboptimal. Figure 3.4a then confirms,
that the time complexity while increasing both m and n is polynomial.
As for the number of iterations - GLNS warm restarts end after reaching a
fixed number of non-improving iterations (for details see Table 2.4), which is
a multiple of m. Figure 3.2b does not indicate any evident relation between n
and number of iterations, when m is fixed. Figures 3.3b and 3.4b document,
that number of iterations indeed increases linearly relative to m.

0 1000 2000 3000 4000 5000 6000

n

5

10

15

20

25

30

35

40

45

50

ti
m

e
 (

s
)

Increasing problem size in n - time

(a) : variable_n - time

0 1000 2000 3000 4000 5000 6000

n

6000

6500

7000

7500

8000

8500

9000

9500

it
e
ra

ti
o
n
s

Increasing problem size in n - iterations

(b) : variable_n - iterations

Figure 3.2: GLNSarc performance on variable_n dataset

26

................................. 3.2. GLNSarc performance

20 40 60 80 100

m

0

50

100

150

200

250

300

350

ti
m

e
 (

s
)

Increasing problem size in m - time

(a) : variable_m - time

20 40 60 80 100

m

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

it
e
ra

ti
o
n
s

10
4 Increasing size in m - iterations

(b) : variable_m - iterations

Figure 3.3: GLNSarc performance on variable_m dataset

0 2000 4000 6000 8000 10000 12000

n

-100

0

100

200

300

400

500

600

700

800

ti
m

e
 (

s
)

Increasing problem size in m, n - time

(a) : variable_m_n - time

0 2000 4000 6000 8000 10000 12000

n

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

it
e
ra

ti
o
n
s

Increasing problem size in m, n - iterations

(b) : variable_m_n - iterations

Figure 3.4: GLNSarc performance on variable_m_n dataset

3.2.1 Progress in quality of solution during runtime

The GLNSarc runtime is mainly influenced by m (determining the number of
non-improving iterations before exiting each warm restart) and the mode of
operation (determining most notably number of cold restarts). The behavior
of GLNSarc in the fast mode was observed in detail on three problems: small
with 25 sets, medium with 50 sets, and large with 100 sets. Each of these
problems contains 120 vertices per a set. Figure 3.5 displays the current best
weight in separate trials, while peaks in the plots correspond to cold restarts
of trials.
Figure 3.6 then shows the progress of the best weight over all cold trials,
while the complete runs are in the left plots and the second halves of the
runs are in the right plots. The data shown were obtained by averaging 50
planner runs for each problem. The complete runs show that the biggest
improvement is achieved during the first cold trial, no matter the problem
size. The detailed plots of the second halves of the planning processes show

27

3. Experimental results..................................
ongoing best weights improvement, but the total improvement in the second
half of the planning is insignificant compared to the first cold trial.

0 500 1000 1500 2000 2500 3000

Iterations

1400

1500

1600

1700

1800

B
e

s
t

to
u

r
w

e
ig

h
t

Best weight progress - m=25, n=3000, fast mode

run 1 - 1432.77

run 2 - 1432.77

run 3 - 1432.77

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations

2800

2900

3000

3100

B
e

s
t

to
u

r
w

e
ig

h
t

Best weight progress - m=50, n=6000, fast mode

run 1 - 2797.45

run 2 - 2799.48

run 3 - 2797.45

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Iterations

5400

5600

5800

6000

6200

6400

B
e

s
t

to
u

r
w

e
ig

h
t

Best weight progress - m=100, n=12000, fast mode

run 1 - 5508.08

run 2 - 5495.56

run 3 - 5498

Figure 3.5: Best weight progress in individual trials

0 500 1000 1500 2000 2500 3000

Iterations

1420

1440

1460

1480

1500

1520

A
v
e
ra

g
e
d
 b

e
s
t
w

e
ig

h
t

Avg. best weight - 50 runs, m=25, n=3000, fast mode

1000 1500 2000 2500 3000

Iterations

1432.9

1432.92

1432.94

1432.96

1432.98

1433

A
v
e
ra

g
e
d
 b

e
s
t
w

e
ig

h
t

2nd half of iterations - detail

0 1000 2000 3000 4000 5000 6000

Iterations

2800

2850

2900

2950

3000

3050

A
v
e
ra

g
e
d
 b

e
s
t
w

e
ig

h
t

Avg. best weight - 50 runs, m=50, n=6000, fast mode

3000 3500 4000 4500 5000 5500

Iterations

2801

2802

2803

2804

2805

2806

A
v
e
ra

g
e
d
 b

e
s
t
w

e
ig

h
t

2nd half of iterations - detail

0 2000 4000 6000 8000 10000 12000 14000

Iterations

5500

5600

5700

5800

5900

6000

A
v
e
ra

g
e
d
 b

e
s
t
w

e
ig

h
t

Avg. best weight - 50 runs, m=100, n=12000, fast mode

6000 7000 8000 9000 10000 11000 12000 13000

Iterations

5505

5510

5515

5520

5525

A
v
e
ra

g
e
d
 b

e
s
t
w

e
ig

h
t

2nd half of iterations - detail

Figure 3.6: Best weight progress - 50 runs averaged

28

................................. 3.2. GLNSarc performance

These results suggest that the fast mode is sufficient for all three problem
sizes tested and that solving problems of similar size in medium or slow
mode would probably yield negligible improvement compared to fast mode.
However, all three problems contain clustered and non-overlapping sets with
vertices uniformly sampled in the close neighborhood of the potential source
of radiation. If the motivating task wouldn’t imply such configuration, fast
mode results for similarly sized but structurally different problems might be
less satisfactory.

3.2.2 Solving a large problem

According to [SI17], GLNS was not tested on problems significantly larger
than 10000 vertices. The stated reason for this is that GLNS always stores
edge weights in a complete distance matrix and that for large problems, the
memory requirements start to be too high.

GLNSarc was successfully tested on a problem with 200 sets and 24000
vertices. Detailed results are shown in Table 3.4. In GLNSarc C++ imple-
mentation, the distance matrix stores edge weights as 8-byte doubles. For a
problem with 24000 vertices, the size of the distance matrix exceeds 4.5 GB.
Therefore the memory requirements are indeed a limiting factor.

Figure 3.7: Solved large problem 200_24000

29

3. Experimental results..................................
Attribute Value
Problem name 200_24000
Problem size m = 200, n = 24000
Planner mode fast
Planning time 4h 23min 35s
Iterations 37264
Best weight 13367.4
Best weight after DenseOpt 13354.7

Table 3.4: Solving large problem - results

3.2.3 Planning with cubic edges

Planning with cubic edges instead of straight lines is closer to real-world
problems. Figure 3.8 illustrates the difference between optimal trajectories
for these two edge types. The trajectory using cubic edges has maximal
curvature Kmax = 1

rmin
= 0.2 and is smooth.

Figure 3.8: Straight line vs. cubic curve edges

Computing edge weights at runtime

GLNSarc computes a matrix of edge weights between all possible pairs of
vertices before planning. Once computed, edge type does not affect the
planning process, so strictly speaking, the planning time is not affected by the
edge type. However, the computing time of cubic edge weights is significantly
higher than for straight lines, and unfortunately, all or vast majority of
weights is indeed queried during the planning process, so postponing weights
computing until they are needed is not an option.
Figure 3.10 compares time requirements of weights precomputing for both
edge types. There measurements are performed on dataset variable_m_n_v2.
The number of sets in this datasets increases from 5 to 100 by 5 and the
number of vertices by 120, as each set contains 120 vertices. The dependence

30

................................. 3.2. GLNSarc performance

of the total precomputing time on n is quadratic and can be estimated as

tprecomp =
n(n− n

m)c
2 , (3.1)

where c is a time constant determined by the edge type. It is assumed that all
sets are the same size, and that edge weight does not depend on its direction.
On the hardware used, the value of this constant evaluated to 52 ns for
straight lines and 0.47 ms for cubic curves. This leads to the conclusion that
even small problems cannot be solved with cubic edges in a reasonable time
due to the time demands of edge weights precomputing (assuming that the
weights are not known in advance). To illustrate this issue further - a medium
sized problem with 60 sets and 7200 was solved (see Figure 3.9 and Table 3.5
for detailed results). While planning in the fast mode finished in 82 seconds,
precomputing all edge weights consumed more than 6 hours.

Figure 3.9: Solved problem 60_7200 with cubic edges

31

3. Experimental results..................................
Attribute Value
Problem name 60_7200
Problem size m = 60, n = 7200
Planner mode fast
Edges precomputing time 6h 39 min 30s
Planning time 77 s
Iterations 7911
Best weight 3824
Best weight after DenseOpt 3809

Table 3.5: Solving problem 60_7200 with cubic edges - results

0 2000 4000 6000 8000 10000 12000

n

0

0.5

1

1.5

2

2.5

3

3.5

4

ti
m

e
 (

s
)

Precomputing weights - lines

(a) : Straight lines

500 1000 1500 2000 2500 3000 3500 4000

n

0

500

1000

1500

2000

2500

3000

ti
m

e
 (

s
)

Precomputing weights - cubic

(b) : Cubic curves

Figure 3.10: Edge weight precomputing - line vs. cubic

Precomputing and estimating edge weights

To solve the issue of disproportionate time requirements of cubic edges
weight computing compared to planning time needed, various approaches
to estimating edge weights instead of precise computation during runtime,
introduced in Section 2.4.2, were tested.

First attempts utilized a table of weights that covers the space of edge
shape parameters α, x, y uniformly. An example of a solution, where planning
was based on weights obtained from this table is shown in Figure 3.11a.
Parameters of the table used are given in Table 3.6. Even though the table
covers the space large only enough to solve the problem shown and it is quite
big in terms of memory requirements, some edge weights were estimated
poorly, as the solution with precisely computed weights shown in Figure 3.8b
differs significantly.

In the following attempt, variably dense table described in Table 3.6 was
used. The solution obtained from planning with edge weights estimated from
this table is shown in Figure 3.11b. Unlike in the previous attempt, there is
no extremely underestimated edge going beyond the figure boundaries, but
overall, the estimation precision is still poor, and the solution obtained is

32

................................. 3.2. GLNSarc performance

(a) : Uniformly dense table (b) : Variably dense table

Figure 3.11: Edge weight estimation - uniformly vs. variably dense table

unsatisfactory. Also, as the table is not sampled uniformly, searching for the
closest precomputed shape is no longer a constant time operation.

Precomputed shapes are stored in a k-d tree, and NN (nearest neighbor)
search must be performed for every estimated edge. For the problem shown,
which has 20 sets and 1440 vertices, searching the k-d tree for NN and reading
corresponding weights took 149 s, while estimating 1968499 edges (1421 edges
were out of range, and their weight was computed precisely). That is about
0.075 ms per edge, which is circa 10 times faster than computing the weight
precisely. This value is, however, dependent on the size s of a precomputed
table stored in the k-d tree. Searching k-d tree has O(log(s)) time complexity,
whereas precise weights computing is O(n2).

In conclusion, the approaches elaborated in this section do accelerate edge
weights precomputing significantly, but planning with the estimated weights
does not lead to useful solutions. The next section provides a solution to this
problem, but at the cost of relaxing problematic vertices position.

Parameter Uniformly sampled table Variably sampled table
x, y range 〈−200, 200〉 〈−200, 200〉
x, y resolution 5 〈1, 10〉
α range 〈0, 2π〉 〈0, 2π〉
α resolution π/180 〈π/180, π/36〉
No. of weights 3682561 4524275
Size 117 MB 144 MB
Min. weight precision undefined 10

Table 3.6: Precomputed tables of weights - parameters

3.2.4 DenseOpt

Application of the DenseOpt intensification procedure was tested on two
previously used datasets - variable_m_n and variable_m_n_v2.

33

3. Experimental results..................................
Problem Best tour weight After denseOpt Rel. improvement (%)
5_125 287.44 265.84 7.5
10_300 644.85 612.38 5.0
15_525 878.54 835.43 4.9
20_800 1092.70 1044.86 4.4
25_1125 1450.32 1390.82 4.1
30_1500 1682.23 1607.52 4.4
35_1925 1973.60 1883.96 4.5
40_2400 2262.74 2172.86 4.0
45_2925 2557.01 2464.20 3.6
50_3500 2827.73 2717.00 3.9
55_4125 3091.62 2971.75 3.9
60_4800 3393.69 3273.88 3.5
65_5525 3638.18 3491.25 4.0
70_6300 3861.62 3713.05 3.8
75_7125 4076.86 3934.63 3.5
80_8000 4410.73 4265.44 3.3
85_8925 4660.72 4496.22 3.5
90_9900 4971.73 4794.31 3.6
95_10925 5233.00 5050.15 3.5
100_12000 5476.30 5274.32 3.7

Table 3.7: DenseOpt performance on variable_m_n dataset

Problem Best tour weight After DenseOpt Rel. improvement (%)
5_600 275.36 265.76 3.5
10_1200 635.13 612.26 3.6
15_1800 863.83 835.71 3.3
20_2400 1078.15 1043.16 3.2
25_3000 1432.77 1391.03 2.9
30_3600 1662.15 1608.06 3.3
35_4200 1948.42 1883.90 3.3
40_4800 2240.87 2169.33 3.2
45_5400 2535.35 2450.95 3.3
50_6000 2799.19 2705.22 3.4
55_6600 3074.44 2973.17 3.3
60_7200 3360.68 3250.42 3.3
65_7800 3626.75 3498.26 3.5
70_8400 3860.59 3712.77 3.8
75_9000 4104.47 3954.58 3.7
80_9600 4406.75 4270.81 3.1
85_10200 4672.13 4512.84 3.4
90_10800 4966.85 4775.25 3.9
95_11400 5211.59 5015.80 3.8
100_12000 5504.73 5290.52 3.9

Table 3.8: DenseOpt performance on variable_m_n_v2 dataset

34

................................. 3.2. GLNSarc performance

The difference between them is, that problems in the first dataset contain
sets with a variable number of vertices, depending on the problem size, whereas
problems in the second dataset always have 120 vertices per a set, evenly
distributed in terms of α and r. In these experiments, GLNSarc was planning
with straight lines as edges. DenseOpt is performed for a total number of 5
iterations after GLNSarc planning finished. In each iteration, 50 vertices are
uniformly randomly sampled in the close neighborhood of each vertex present
in the best tour found (in a random order). For a vertex v with parameters r
and α, this neighbourhood is limited to intervals 〈max(r−5, 5),min(r+5, 25)〉
and 〈α − π/6, α + π/6〉. These ranges correspond to the density of vertex
sampling in both datasets. Parameter ω is kept constant, and r is limited to
interval 〈5, 25〉, again in correspondence with the datasets.

Table 3.7 shows performance of DenseOpt on the variable_m_n dataset.
The relative improvement was calculated as B−A

B , where B is the best tour
weight before performing DenseOpt, and A is the weight of the same tour
after DenseOpt. Here, it varies from 3% to 7%, while better results are
obtained on smaller problems. Table 3.8 then shows performance on the
variable_m_n_v2 dataset, where the improvement is consistently about 3%.

Examples of how DenseOpt affects the solution are visualized in Figures
3.12 and 3.13. In case of problem 5_125 DenseOpt converges to the shortest
possible arcs. Sets in this problem contain randomly placed vertices.

(a) : 5_150 optimal plan (b) : 5_150 after DenseOpt

Figure 3.12: Effect of DenseOpt on 5_125

35

3. Experimental results..................................

(a) : 5_600 optimal plan (b) : 5_600 after DenseOpt

Figure 3.13: Effect of DenseOpt on 5_600

As for the second problem 5_600, vertices with the smallest possible radius
are already present in the optimal path returned by GLNSarc, and DenseOpt
only slightly rotates these. This problem contains a larger number of vertices
that are displaced uniformly. Improvement in the solution weight is visually
almost imperceptible.

This observation might explain the better performance of DenseOpt on the
variable_m_n dataset, that contains problems similar to 20_150. Universally,
shorter vertices seem to be preferable. If they are already present in the
problem solved and are sampled sufficiently densely, DenseOpt adjusts only
their α value, thus rotates them.

Applying DenseOpt after cubic edges estimation

Planning with estimated weights described in Section 3.2.3 does not yield
satisfying results. After the estimated weights in the resulting tour are
replaced by precisely computed edges, the solution turns out to be often
useless due to a large difference between its real weight and the estimated
one, as shown in Figure 3.11. However, even though the real edge weight
is often estimated poorly, its presence in the solution indicates, that there
should be a better alternative in its close neighborhood. The assumption
is that performing DenseOpt after planning with estimated weights could
converge to it, thus leading to an acceptable solution.

DenseOpt influence on tour weight after planning with precisely computed
edge weights is presented in Table 3.9. Due to the rapidly growing time
requirements of edge weight computing, only 4 smallest problems are included,

36

................................. 3.2. GLNSarc performance

w(T) Avg. time (s)
Problem Min Max Mean St. dev. Precomputing Planning
5_125 265.71 266.10 265.96 0.15 5.16 0.01
10_300 612.34 616.98 613.86 2.12 37.83 0.07
5_600 265.69 265.82 265.74 0.05 128.05 0.08
10_1200 612.35 617.28 615.96 1.89 580.84 0.44

Table 3.9: Tour weights after DenseOpt - precise planning

w(T) Avg. time (s)
Problem Min Max Mean St. dev. Estimating Planning
5_125 265.75 266.20 265.96 0.14 11.54 0.33
10_300 612.29 616.96 612.90 1.43 15.46 0.38
5_600 265.75 265.88 265.79 0.04 24.07 0.35
10_1200 612.27 612.57 612.40 0.09 79.60 0.75

Table 3.10: Tour weights after DenseOpt - planning with estimated weights

and each of them is solved only 10 times. Table 3.10 then presents results
of performing DenseOpt on the same problems, but after planning with
estimated edge weights. Edge weights estimation was performed while using
a variably sampled table with parameters given in Table 3.6. Mean values of
final tour weights differ very little, and even other observed properties such
as minimal weight, maximal weight, and standard deviation across all runs
stay within a similar range.
This leads to the conclusion that the planning process with cubic edges can
indeed be significantly accelerated without decreasing the solution quality by
using a table of precomputed edge weights, given that the solution is then
optimized by DenseOpt. A drawback of this approach is that before solving
any problem a sufficiently large and dense table of weights must be available.
Also, the table is valid only for a single predefined value of maximal edge
curvature Kmax.

37

38

Chapter 4
Conclusion

This thesis is motivated by a practical task, whose goal is to search for sources
of gamma radiation while using a UAV and a UGV. The objective of the UAV
is to quickly estimate the approximate location of the sources of radiation.
These locations are then to be determined precisely by the UGV, and the task
solved here is to find an optimal or at least as good as a possible trajectory to
do so. Each source of radiation can be precisely located by passing through a
circular arc trajectory segment in its close neighborhood, while these segments
can be connected arbitrarily. This task can be after suitable discretization
formulated as the GTSP with certain modifications caused by using circular
arcs as vertices and is referred to as the GTSParc.
The state of the art GLNS algorithm was successfully modified to solve the
GTSParc, and this modified version is being called GLNSarc. GLNSarc was
first implemented as a GTSP solver, and its performance was compared with
the original GLNS implementation on various GTSP instances. Results of
these tests show that GLNSarc finds solutions of the same quality as GLNS
and therefore is likely to be implemented correctly.
After adapting to solve the GTSParc, GLNSarc was tested on four newly
generated GTSParc datasets, and its performance was analyzed in detail.
Relationship between separate problem characteristics such as problem size,
number of sets m or number of vertices n and computation time needed were
experimentally assessed on these datasets, containing problems of up to 100
sets and 12000 vertices. Also, a large problem of 200 sets and 24000 vertices
was successfully solved. According to [SI17], original GTSP implementation
was not tested on problems significantly larger than 10000 vertices, so solving
a problem with 24000 vertices is a success. It was also shown, that for the
GTSParc instances based on the practical task, GLNSarc can be utilized in the
fast mode, as slower modes of operation do not further improve the quality of
the solution. This may be due to the fact, that all of these problems contain
clustered, non-overlapping sets.
After successfully implementing GLNSarc, two major improvements were
added. The first one is the option to plan with cubic curves as edges instead
of straight lines. These curves are generated so that the predefined maximal
trajectory curvature (corresponding to the minimal robot turning radius) is
always kept. Precomputing of these cubic edge weights is O(n2) time consum-

39

4. Conclusion......................................
ing and significantly increases total planning time. Therefore, a procedure of
estimating their weights from the precomputed variably dense weight table
is proposed and tested. If the resulting tour with estimated edge weights is
subject to the proposed intensification procedure, acceptable solutions with
cubic edges are obtained.
Another improvement added is the intensification method called DenseOpt.
The GTSParc formulation and GLNSarc approach are discrete, but the mo-
tivating task is, in fact, continuous. This can be utilized to obtain a better
quality solution without breaking constraints on vertex validity. DenseOpt
takes the GLNSarc final solution as an input, performs a randomized local
search around each vertex and potentially samples, and adds newly generated
valid vertices to the tour if they improve the total tour cost. In other words,
GLNSarc determines a set ordering, and approximate the position of the
best vertex from each set and DenseOpt further refines this solution. The
experimental results have shown, that improvement of the total tour weight
is between 3-7%, depending mainly on the problem size and distance between
individual sets.
In conclusion, the assignment has been fulfilled, as the motivating planning
problem can be successfully solved by GLNSarc. Planning with cubic edges was
added so that the trajectories generated are suitable even for non-holonomic
robot and DenseOpt intensification compensates for the imprecision caused
by problem discretization.
Further work can lie in researching how to sample vertices so that the area
of potential sources of radiation covered by one set of vertices is the largest
possible. Datasets generated for purposes of testing GLNSarc contain only
sets with concentric vertices, without further examination of how large area
such a set covers or how to maximize this area.
Also, the proposed procedure of estimating edge weights from a precomputed
table is limited by this table size, because satisfactory edge weight estimation
requires a sufficiently dense table, whose size increase rapidly with the prob-
lem space size. On the other hand, precise computation of weights proved to
be time-consuming. Therefore, it would be beneficial to determine a formula
for estimating the cubic edge weight with a certain maximal curvature, that
would be reasonably accurate, yet fast to compute.
Finally, the quality of the GLNSarc solution is limited by the density of vertex
sampling, as the original problem is, in fact, continuous. This is partially
compensated by DenseOpt local intensification. However, it might be feasible
to implement a continuous version of GLNSarc. Individual sets would be
defined only by constraints on vertices, insertion heuristics, removal heuristics,
and other mechanisms would be adapted accordingly, and the high-level
principles of adaptive large neighborhood search would remain the same.

40

Bibliography

[AVS96] Gilbert Laporte, Ardavan Asef-Vaziri and Chelliah Sriskandarajah,
Some applications of the generalized travelling salesman problem,
The Journal of the Operational Research Society 47 (1996), 1461–
1467.

[GK10] Gregory Gutin and Daniel Karapetyan, A memetic algorithm for
the generalized traveling salesman problem, Natural Computing 1
(2010), 47–60.

[GL18] Petr Gabrlik and Tomas Lazna, Simulation of gamma radiation
mapping using an unmanned aerial system, 15th IFAC Conference
on Programmable Devices and Embedded Systems PDeS 2018 51
(2018), 240–254.

[GT97] Matteo Fischetti, Juan José Salazar González and Paolo Toth, A
branch-and-cut algorithm for the symmetric generalized traveling
salesman problem, Operations Research 45 (1997), 327–494.

[GZ17] Tomas Lazna, Tomas Jilek, Petr Gabrlik and Ludek Zalud, Multi-
robotic area exploration for environmental protection, Lecture
Notes in Computer Science 10444 (2017), 240–254.

[Hel00] Keld Helsgaun, An effective implementation of the lin–kernighan
traveling salesman heuristic, European Journal of Operational
Research 126 (2000), 106–130.

[Hel15] , Solving the equality generalized traveling salesman prob-
lem using the lin–kernighan–helsgaun algorithm, Mathematical
Programming Computation 7 (2015), 269–287.

[NB91] Charles E. Noon and James C. Bean, A lagrangian based ap-
proach for the asymmetric generalized traveling salesman problem,
Operations Research 39 (1991), 528–687.

[NB93] , An efficient transformation of the generalized traveling
salesman problem, INFOR: Information Systems and Operational
Research 31 (1993), no. 1, 39–44.

41

Bibliography
[NLo] NLopt, Nonlinear Optimization library,

https://nlopt.readthedocs.io.

[OdLM13] M. Mestria, L. S. Ochi and S. de Lima Martins, Grasp with path
relinking for the symmetric euclidean clustered traveling salesman
problem, Computers Operations Research 40 (2013), 3218–3229.

[PR18] Rafael Martí, Panos M. Pardalos and Mauricio G. C. Resende,
Handbook of heuristics, Springer, 2018.

[SI17] Stephen L. Smith and Frank Imeson, GLNS: An effective large
neighborhood search heuristic for the generalized traveling salesman
problem, Computers and Operations Research 8 (2017), 1–19.

[YQ99] J. Ye and R. Qu, Fairing of parametric cubic splines, Mathematical
And Computer Modelling 30 (1999), 121–131.

42

Appendix A
Content of the attached CD

Filename or directory Description
GLNS C++ GTSP solver
modified_GLNS C++ GTSParc solver - GLNSarc
data GTSParc problem datasets
results GLNSarc test results
weights precomputed edge weights tables
DP.pdf text of this thesis
readme.txt detailed data description, code instructions etc.

43

	Introduction
	State of the art

	Methods
	Planning task formulation
	Task-specific differences
	Vertex validity constraint

	GLNS description
	Solver overview
	Initial tour construction
	Insertion heuristics
	Removal heuristics
	Local optimizations
	Acceptance and stopping criteria
	Modes of operation

	Proposed GLNS modifications towards GLNSarc
	Additional improvements
	Cubic interpolation of edges
	Precomputing and estimating edge weights
	Optimization through intensification - DenseOpt

	Experimental results
	Comparison with original GLNS implementation
	GLNSarc performance
	Progress in quality of solution during runtime
	Solving a large problem
	Planning with cubic edges
	DenseOpt

	Conclusion
	Bibliography
	Content of the attached CD

