Master’s thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Inertial measurement unit modeling

David Cesenek

Supervisor: Ing. Jan Chudoba
May 2019

ii

UL MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4 N\
Student's name: Cesenek David Personal ID number: 420253

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

Study program: Cybernetics and Robotics

Branch of study: Cybernetics and Robotics
N\ J
Il. Master’s thesis details
e N

Master’s thesis title in English:

Inertial measurement unit modelling

Master’s thesis title in Czech:

Modelovani inercialni mérici jednotky

Guidelines:

Topic of the thesis is a design and an implementation of a simulation environment for the modelling of the real inertial
measurement unit (IMU) designated for the service mobile robot navigation support.

- research state-of-the-art simulation environments and assess their features and usability for the specified task

- choose an optimal environment and implement a model of the inertial unit according to parameters provided by the thesis
supervisor

- after consultation with the supervisor develop a method of the designed model testing

- validate the implemented model against the real device

Bibliography / sources:
[1] Thrun, S., Burgard, W. and Fox, D., Probabilistic Robotics. Cambridge, Mass: MIT Press. 2005.
[2] Roland Siegwart, lllah Reza Nourbakhsh and Davide Scaramuzza, Introduction to Autonomous Mobile Robots, MIT
Press, 2011.
Name and workplace of master’s thesis supervisor:
Ing. Jan Chudoba, Intelligent and Mobile Robotics, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 09.01.2019 Deadline for master's thesis submission: 24.05.2019

Assignment valid until:
by the end of summer semester 2019/2020

Ing. Jan Chudoba prof. Ing. Michael Sebek, DrSc. prof. Ing. Pavel Ripka, CSc.
Supervisor’s signature Head of department’s signature Dean’s signature

o J
lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

At the first place, I would like to thank
my supervisor, Ing. Jan Chudoba, for
many useful pieces of advice and unrelent-
ing support during the work on this thesis.

I am grateful for help and support
to all my colleagues from the team
connected to the research project to
which this thesis contributed. It was
my honor to cooperate with you. The
consultations with experts Ing. Martin
Sipos Ph.D., and doc. Ing. Radislav
Smid Ph.D. helped me a lot. I thank you
for your time and helpfulness.

I appreciate the support of my whole
family and friends. My work on this
thesis would be much harder without your
support and kind words of encouragement.
Jesus Christ, thank you for your sacrifice
on the cross and being alive right now.
In your power, I was able to finish this
thesis, and you have literally saved my life.

And the last but not least, I thank the
CTU in Prague for being a very good alma
mater.

iii

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 22, 2019

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, 22. kvétna 2019

Abstract

The inertial measurement unit (IMU) sen-
sors are massively used in mobile ser-
vice robots to provide orientation esti-
mation. This thesis is concerned with
modeling and simulation of IMU sensor
in the robotics simulator Gazebo. The
main goal of this thesis is to simulate the
heading angle output of a real IMU sensor
Bosch BNOO055 with high fidelity. To en-
able the IMU model evaluation I designed
and implmented a custom IMU simulation
framework as a ROS package. This frame-
work approximates the given trajectory
with the help of a Gazebo simulation of
a robot model with attached IMU sensor
model, captures the simulated IMU out-
put and generates data for the comparison
concerning provided dataset measured by
real BNOO055. I used the best currently
available IMU plugins to implement two
different URDF/SDF IMU models. The
simulations demonstrated the function-
ality of implemented IMU models, but
also revealed the fidelity limitations of
current IMU plugins in Gazebo, and led
to a discussion about possible future im-
provements.

Keywords: inertial measurement unit,
IMU, noise analysis, noise modeling,
simulation, Gazebo, ROS, BNO055

Supervisor: Ing. Jan Chudoba

iv

Abstrakt

Inercidlni mérici jednotka (IMU) patii
mezi zdkladni senzorické vybaveni soucas-
nych mobilnich robotu, kde se pouziva
predevsim pro odhadovani ohamzité ori-
entace robotu v prostoru. V této praci
se komplexné zabyvam simulaci IMU v
robotickém simulatoru Gazebo za tce-
lem co nejvérnéjsiho modelovani odha-
dovaného whlu natoceni robotu, ktery
je jednim z pfimych vystupt IMU sen-
zoru Bosch BNOO055. Pro podporu vyhod-
noceni kvality IMU modelu vzhledem k
redlnym datim z BNOO055 jsem navrhl
a implementoval simula¢ni prostredni v
ramci Robotického Operac¢niho Systému
(ROS), které aproximuje zadanou trajek-
torii, ulozi data ze simulovaného IMU
a vygeneruje podklady pro vyhodnoceni
kvality IMU modelu vzhledem k redlnym
datim z BNOO055. Na zakladé nejlepsich
dostupnych IMU plugini v Gazebu jsem
implementoval dva URDF /SDF modely
IMU sensoru, jejichz funkénost byla né-
sledné ovérena radou experimenta v si-
muldtoru. Provedené simulace potvrdily
funkénost modela a zaroven poukazaly na
limity realisti¢nosti souc¢asnych plugini v
Gazebu a nastinily moznosti dalsiho vy-
voje pro zvyseni vérnosti simulaci IMU.

Klicova slova: inercidlni mérici
jednotka, IMU, analyza Sumi,
modelovani Sumi, simulace, Gazebo,

ROS, BNOO055

Preklad nazvu: Modelovani inercidlni

mérici jednotky

Contents

Introduction 1
Thesis outline
1 Inertial measurement unit 3
1.1 Inertial navigation
1.2 Gyroscopeoveiiiiii...
1.2.1 Mechanical gyroscope.
1.2.2 Optical gyroscope 6
1.2.3 MEMS gyroscopes 6
1.3 Accelerometer 8
1.3.1 Mechanical accelerometer [9l
1.3.2 Piezoelectric accelerometer .. [10l
1.3.3 Piezoresistive accelerometer .
1.3.4 Thermal accelerometer. 10/
1.4 Supplementary sensors
1.5 Multisensor data fusion........ 11
1.6 Noises, error causes and technical
parameters..................... [11]
16.1Bias......................
1.6.2 White noise 14
1.6.3 Sensitivity
1.6.4Range
1.6.5 Bandwidth [14]
1.6.6 Systematic errors
1.6.7 Other parameters
1.7 Allan variance noise analysis . ..
1.8 Calibration 20/
2 Simulation 21
2.1 IMU simulation requirements. . .
2.2 Mobile robotic simulators 23|

2.2.1 State of the art robotics

simulators 23
2.2.2 Gazebo, V-rep and Webots
COMPATISON © o vt e 25|
2.2.3 The finalist selection 26/
23ROS ...
2.4 Gazebo 28]
3 IMU modeling 31
31Rawdata....................
3.1.1 Mobile robot 32|
3.1.2 IMU sensor BNOO055
3.1.3 BNOO55 noise analysis.
3.2 Simulation framework
3.2.1 General framework design . . .
3.2.2 Trajectory tracking.........

3.2.3 Data comparison...........

3.3 IMU model

3.3.1 Noise modeling

3.3.2 Available

IMU plugins

4 Experiment results
4.1 Gazebo generic IMU plugin
4.1.1 Trajectory A

4.2 Hector IMU

plugin............

4.2.1 Trajectory A
4.2.2 Trajectory B
4.2.3 Trajectory C
4.2.4 Trajectory D
4.3 Experiment summary

5 Conclusion
5.1 Future work

A Bibliography
B CD contents

2 ERPAREREE=EEE EEE

89

Introduction

In the last decade, the importance of mobile service robots increased rapidly.
Formerly expensive products on the edge of state-of-the-art inventions and
sci-fi became widely available to the general public. Nowadays, various types
of mobile robots such as drones, robotic lawn mowers or vacuum cleaners
start to be involved in our lives on an everyday basis.

An example of a contemporary mobile service robot is depicted in the figure
This robotic vacuum cleaner implements smart navigation algorithm, a
few cleaning modes, many safety features and can be easily controlled from a
smartphone.

Figure 1: Visualization of the operation of robotic vacuum cleaner DUORO
Xcontrol profi,

One of the essential skills every autonomous mobile service robot must
have is the ability to localize and navigate itself. Without enough precise
localization, the robot cannot act autonomously and fulfill tasks successfully.
To accomplish the localization robots perceive their surroundings using various
types of sensors. In the last years, especially satellite navigation systems
are being used for that purpose. However, in many situations, the satellite
navigation signal is not available, and at this point, the deployment of other
sensors becomes essential.

Among them, the family of so-called "inertial sensors" plays a vital role.
An inertial sensor utilizes the measurement of the forces acting on its body.
Based on the type of the sensor it can convert the forces to accelerations
or angular velocities, and as a consequence, the instantaneous position, or
orientation can be estimated. The inertial measurement unit (IMU) is a

1

Introduction

sensor from this category (see chapter |1| for details). It can estimate both the
movements and orientation in 3D space. Modern technologies enabled the
production of very low-cost IMU sensors, and thus they are commonly found
not only in the mobile robots but literally in almost every modern "smart"
device starting from smart watches and ending with a common car.

The increasing demand for better and better mobile service robots places
high requirements not only on navigation-related sensors but also on the
speed of the robot development process itself.

In this area, the mobile robotics industry hugely benefits from the advent of
computer simulations and specialized robotics simulators. The rapid growth
of computing power in the last two decades enabled the performing of com-
puter simulations with high physical fidelity, which is used massively in the
development process.

In this thesis, I connect the worlds of computer simulation and real hard-
ware. In particular, I cover in detail the whole process of IMU modeling and
subsequent simulation in the Gazebo robotic simulator.

The primary aim of this thesis is to create a simulation environment
for IMU testing together with an accurate model of a one particular low-
cost IMU sensor Bosch BNOO055 with a strong emphasis to heading angle
estimation. The IMU model in robotic simulator should then serve for the
rapid development purposes of the future generations of mobile service robots,
where the BNOO055 IMU is being considered as a primary source of heading
angle estimation.

Apart from being a master’s thesis, at the same time, this work is also a
part of a real research-oriented international project in close cooperation with
a high-tech industrial company.

. Thesis outline

In the first chapter |1}, I describe theoretically the IMU sensors. Their working
principles, types, technical parameters together with error causes and related
issues are mentioned. The second chapter [2| is devoted to the simulation.
It provides an overview of state-of-the-art robotic simulators and argues
for the selection of the Gazebo robotic simulator. Chapter |3| is the heart
of this thesis. I describe there the properties of the mobile robot, and the
nature of the provided datasets measured in experiments with the real robot.
I also discuss the parameters of BNOO055 and perform the Allan variance
noise analysis. Subsequently, I introduce a design and implementation of a
custom simulation framework to enable the IMU simulation in Gazebo/ROS
environment. Finally, in the last part of this chapter, the modeling of the
IMU sensor itself is described.

The experimental results from the simulations are summarized in the
chapter 4l Finally, the conclusion is to be found in the last chapter [5.

Chapter 1

Inertial measurement unit

The inertial measurement unit (throughout this thesis referred to as ‘IMU")
is an electronic device, a sensor with own control unit and I/O interface,
that usually comprises of several gyroscopes, accelerometers and sometimes
also other additional sensors to measure its rotational and translational
movements. Flowchart depicts the general structure of the basic IMU
as presented in . To enable measurements of any motion in the three-
dimensional space usually three accelerometers and three gyroscopes with
mutually perpendicular axes are used. Thus, the output of a typical IMU
sensor comprises accelerations and angular velocities. By integrating these
values over time the current position and orientation of the moving IMU can
be computed, and its trajectory estimation acquired.

Rate avros Orientation Initial velocit Initial positi
ate gy integration nitial velocity nitial position
Transform to Substract g from
Integrate to get Integrate to get
Accelerometers local-level \emcal
S velocity position
navigaition frame accelelatlon

ACCELERAT[ON VELO(ITY POSITION

Figure 1.1: A simplified IMU block diagram

This chapter describes IMU in the context of mobile robotics from different
viewpoints. It was taken into consideration that the main scope of this thesis
lays in the simulation of an existing and consumer-oriented IMU attached
to a service mobile robot. Thus, the following sections offer an overview of
existing solutions and approaches rather than deeper look into theory under
IMU’s surface.

In the first section [1.1] T define the term inertial navigation. Subsequently,
in sections 1.2, [1.3] and -, I describe the fundamental physical principles of
IMU component sensors. A bit more attention is paid to MEMS accelerometers
and gyroscopes that constitute the cornerstone of researched types of IMUs.

Section mentions the basic ideas behind the multisensor data fusion
used to get the IMU output. Possible error causes are described closely

3

1. Inertial measurement unit

together with most important technical parameters and Allan variance noise
analysis in the sections |1.6| and |1.7]
Finally, the calibration of IMU sensor is mentioned in |1.8|

B 1.1 inertial navigation

The origin, the evolution, and also the application of IMU sensors are closely
related to concepts of dead-reckoning and inertial navigation.

Dead (deduced) reckoning stands for the process, which estimates the
current position based on the knowledge of the previous pose, instantaneous
velocity, course, and time duration.

In the inertial navigation, the dead reckoning approach is used in conjunc-
tion with the IMU sensor. The inertial navigation system (INS) uses IMU
output to continuously update an estimation of a current position without
any external reference. Running INS is subject to ever-increasing error since
any arbitrarily small measurement error integrates over time which results in
wrong position estimation. Despite this disadvantage, INSs are widely used
in aviation, marine, space, automotive, robotics or military applications. INS
either works as an additional sensor enhancing the behavior when external
navigation systems such as GNSS!| cannot provide reliable data, or as the
primary navigation sensor when INS accuracy is sufficient for a specific appli-
cation (e.g., some guided missiles, undersea applications). Inertial navigation
is of importance for mobile robotics because mobile service robots often work
in GNSS-denied environments?, or the robot is not equipped with an external
navigation system by intention due to production price constraints.

There are basically two types of INS [3].

Gyrostabilized INSs are historically older. In this case, the inertial sensors
are mounted on the platform that is mechanically isolated and stabilized from
moving object itself. This solution requires heavy mechanical construction,
but modern devices of this type offer high accuracy.

The second type is called strapdown INS. The IMU sensor is firmly attached
directly to the sensed object and undergoes the same movements as the object.
This approach leads to smaller, lighter and more durable INS, which in
contrary requires higher computation power to compute the desired physical
quantities. In this thesis, I am dealing with this type INS.

B2 Gyroscope

A gyroscope is a sensor measuring orientation and angular velocities.

In general, any gyroscope exploits the fact that the rotating frame is a non-
inertial reference frame [2]. When an object rotates, there are observable
deviations from the expected behavior that would satisfy all Newton’s laws.
Based on the measured differences and the knowledge of the transformation

!Global navigation Satellite Sytem, such as well known GPS
2Typically indoor environment, where the GNSS navigation is not usable

4

1.2. Gyroscope

gyroscope frame

direction
of the movement

3-axis gimbal

(a) : Coriolis effect, blue arrows rep-
resent acceleration a.,[4] (b) : Classic mechanical gyroscope, H

Figure 1.2: Physical principles used in gyroscopic sensors

between inertial and non-inertial reference frames the rotation of the object
itself can be computed.

B 1.2.1 Mechanical gyroscope

Mechanical gyroscopes are historically oldest. Their working principle and
structure shows figure A rapidly spinning inner wheel (rotor) mounted
within a three-axis gimbal tends to maintain its orientation regardless of the
change in the outer frame orientation due to angular moment conservation.

This principle demonstrated Walter R. Johnson already in 1832 when he
constructed so-called rotascope @, but mechanical gyroscope was named
and popularized by Léon Foucault in 1852 who used it to prove earth’s
rotation. The advent of electrical engines enabled permanent rotor rotations
and opened the way for practical applications of mechanical gyroscopes,
like, e.g. gyrocompassﬂ However, multiple gyroscopes in an arrangement
similar to present IMUs were developed for the first time probably later
in 1942 in Germany during the WWII as a part of the navigation device
for V-2 missiles. They used a pair of mechanical gyroscopes, each with two
degrees of freedom, along with one mechanical accelerometer. After the war, a
massive development of mechanical gyroscopes for inertial navigation systems
continued in conjunction with guided missiles [7].

Although mechanical gyroscopes are not being used in the field of mobile
robotics because of their heaviness, complexity, high costs, and energy con-
sumption, they are worth to mention because they prepared the ground for
more sophisticated gyroscopic sensors and for expansion of inertial navigation
itself.

3 A gyrocompass is an application of the mechanical gyroscope used to determine the
north direction. It was developed in the beginning of 20th century for nautical navigation

]

spin axis

inner wheel (rotor)

1. Inertial measurement unit

B 1.2.2 Optical gyroscope

Optical gyroscopes avail themself of the Sagnac effect. Assume a ring made
of two parallel optical fibers with two light sources, as depicted in figure [1.3|
If the ring is not rotating, it takes to light the same time to travel through
the optical fibers. When the ring rotates with rotation rate Q [rad-s~!], a
measurable difference Al, [m] occurs between trajectories the light takes in
opposite directions.

There are two types of optical gyroscopes. A fiber optic gyroscope (FOG)
uses a coil from optical fiber and laser as a source of light. A phase difference
A®, [rad] is measured, which is proportional to the rotation rate €. Using
the special theory of relativity equation |1.1/ can be derived [8].

_ 27Al,D

AD,
cA

Q (1.1)

where ¢ [m-s7!] stands for the speed of light in vacuum, A [m] is a
wave-length of used light and D [m] is a diameter of the fiber loop.

Instead of fiber optic loop, a ring laser gyroscope (RLG) utilizes a set of
mirrors or prisms which forms a loop from laser beams. RLG sensor maintains
two laser beams in opposite directions in such a way that standing waves
have the same number of nodes. When the RLG sensor rotates, the resonant
frequencies start to differ between each other, which is measured.

Compared to the mechanical gyroscope, both FOG and RLG gyroscope
evince better properties and precision. Because of the absence of moving parts
optical gyroscopes are also lighter and more durable which predetermines
them for critical aircraft, space, and military applications. However, there
are almost no applications of optical gyroscopes in consumer-oriented mobile
service robots because of very high costs and a big chassis compare to widely
used MEMS gyroscopes.

B 1.2.3 MEMS gyroscopes

In the field of mobile robotics and consumer products, the most used gyro-
scopic sensors are MEMS' gyroscopes.

The abbreviation MEMS stands for the term "Micro-Electro-Mechanical
System," which refers to the advanced technology used for manufacturing
microscopic devices containing moving parts. Sensors made with MEMS
technology can be very tiny (typically only a few millimeters big) although
they usually contain auxiliary circuits on the same chip too. Since silicon is
the primary material MEMS sensors are made from and MEMS technology
is already well established, the MEMS sensors price is usually very affordable
in comparison to other sensor types [10]. The details of used fabrication
technologies are commonly not available for end customers, and thus they lie

4" Counterpropagating light waves take slightly different times to traverse a loop rotating
in inertial space."|[8|

1.2. Gyroscope

M M

a) no rotation b) with rotation

Figure 1.3: Ilustration of Sagnac effect, [@I]

: =
O

Figure 1.4: Application of Coriolis effect in MEMS gyroscopes. The orange
arrows indicate the force applied to the structure due to resonating mass, |\

not in the scope of this thesis. A brief overview of the manufacturing proce-
dures provides author , and further details can be found for example in [12].

All MEMS gyroscopes exploit somehow the Coriolis effect. Figure
shows its principle in a simplified way. The person in the picture wants to
move from the center to the edge of the disc. When she moves farther from
the center her tangential speed relative to the ground, depicted with grater
blue arrow, increases. Coriolis acceleration describes the increasing of this
tangential speed during her movement, which is caused by a rotating disk
- her reference frame. Any moving object within a rotating reference frame
undergoes Coriolis effect. The Coriolis effect can be formaly expressed as the

equation [1.2]
F. =ma. = 2mw x v, (1.2)

where m [kg] is a mass of moving object, w [rad-s~!] is an angular rate of
a rotating refence frame, and v = w X r is the instantaneous speed of moving

7

1. Inertial measurement unit

Llylsl
3

u
b N
a
housing (b) : piezoeletrical
(a) : mechanical
Figure 1.5: Accelerometers working principles, based on pictures from [14],|15
object in the distance r [m] from the rotation center, and a, [m - s?] is

so-called Coriolis acceleration.

The MEMS gyroscopes use several techniques to achieve nonstop vibrations
of some tangible structure (inertial mass) and to measure angular rate. Among
the frequently used structures belongs[2]:

B tuning fork - a fork-like structure comprises two inertial masses that are
electrostatically induced to vibrate in one axis. When sensor rotates,
the fork vibrates out of its plane, which is sensed. Affordable MEMS
gyros usually use this working principle or its variants (e.g., "butterfly"
structure [11]).

B vibrating ring - instead of a fork-like structure, a ring resonates within
an elastic mounting. Under the rotation of the sensor, the stationary
wave changes which can be measured.

B hemispherical resonator - a very precise resonator in the shape of wine
glass enables manufacturing of small gyroscopes with superior properties,
but the high costs preclude usage in the field of customer-oriented mobile
robotics|13].

. 1.3 Accelerometer

An accelerometer is a sensor measuring the acceleration, or more precisely,
it estimates the acceleration by measuring the impacts of the inertial forces.
Therefore an accelerometer can also be used to measure vibrations or an
orientation. There are several main physical principles employed in accelerom-
eters.

1.3. Accelerometer

X X
f Spring suspension
y /

EEEEEEEEEM®E
Sensing Combs

| — —
Stopper PN

Anchor

Figure 1.6: The layout of the mechanical MEMS accelerometer|12].

B 1.3.1 Mechanical accelerometer

The basic principle of the mechanical accelerometer depicts the picture [1.5a.
The proof mass is elastically attached to the sensor housing. According to
second Newton’s law, a non-zero acceleration a occurs when a force F is
applied to the sensor’s body. If the acceleration a occurs in the sensitive axis,
the sensor measures the deflection x of the proof mass m and estimates the
value of a.

Picture 1.6/ shows the layout of mechanical accelerometer realized in MEMS
technology. Mostly a capacitive transducer converts the mass deflection to
the change of capacity. Among its advantages belong the insensitivity to the
temperature and a very low drift. The structure of a "comb capacitor" is used
to increase the total measured capacity change.

Let us suppose that the proof mass m can move only in the direction of
axis x. For the corresponding value of accelaration |ay| = & then holds the
equation:

mi + bx + kx = ma, + Np (1.3)

where b [n - s-m™!] is a damping coefficient, k [N - m™!] is a spring
constant and Np stands for the Brownian noise’| [12]. The mechanical MEMS
accelerometers belong to the most frequently used accelerometers in IMU. To
their main advantages belong the cheap manufacturing, good low-frequency
sensitivity, and the fact, that they also measure the gravity which can be used
to determine the orientation. However, their big issue is the high sensitivity
to vibrations, especially to hard mechanical shock that can cause a loss of
calibration [16].

5Stochastic part of the damping force, caused by particle collisions of the ambient
medium with the moving mass m.

1. Inertial measurement unit

B 1.3.2 Piezoelectric accelerometer

Piezoelectric accelerometer exploits the piezoelectric effect present in some
materials such as quartz or some types of ceramics. When a mechanical
strain applies to these materials, they generate a charge proportional to
the applied force. Therefore, the piezoelectric effect can be employed to
fabricate accelerometers without moving parts as depicted in the picture
1.5b. Piezoelectric accelerometers have many advantages, such as no wear,
extremely wide dynamic range as well as a low output noise or the ability to
work without a power source. On the other hand, this type of accelerometers
cannot measure static acceleration [15].

B 1.3.3 Piezoresistive accelerometer

Similarly to the previous accelerometer type, the piezo properties of some
materials are used, but in this case the electrical resistance of the materials
changes when stress applied. However, the lower sensitivity predetermines
them for the shock measurements rather than for typical IMU applications
[17].

B 1.3.4 Thermal accelerometer

The thermal accelerometers are a relatively new category of MEMS accelerom-
eters that use the MEMSIC [, Instead of proof mass, they use a heated gas
and sense its position with temperature sensors. This approach leads to very
reliable sensors with no wear and high resistance to vibrations and excellent
shock survivability, but at the cost of higher power consumption needed the
heat the gas[16].

B 14 Supplementary sensors

In theory, the triplets of accelerometers and gyros suitably oriented in three
perpendicular axes should assure the full 6 degrees of freedom (DOF) position
and orientation information.

Even so, sometimes one can also find additional sensors such as an air
pressure sensor, temperature sensor or magnetometer implemented aside from
accelerometers and gyros. Multiple sensors leading into estimations of the
same physical quantity provide desired redundancy, which increases the total
value of the sensor. The details of these sensors are described in the book
118].

5 Advanced technology that integrates the MEMS sensor with other circuits on a one
single CMOS walfer.

10

1.5. Multisensor data fusion

. 1.5 Multisensor data fusion

When IMU is used in mobile robotics, the primary aim is to get the best
possible estimation of instantaneous position and orientation. Outputs from
multiple component sensors can be processed and combined to provide better-
resulting output.

There are various techniques used to fuse the sensor measurements. Most
of them are somehow related to Bayes rule, which is a handy tool to combine
sensor outputs with prior beliefs about the state of the world and which
regards the pros and cons of the component sensors. Popular approaches
include Kalman filter, or Monte Carlo methods such as Particle filter [19].

In the case of IMU, the accelerometer, gyroscope (and magnetometer) are
fused together in order to get the precise orientation. The generic data fusion
algorithms can be also used to incorporate external sensors such as GPS in
the total position information.

The data fusion can be performed as a part of the post-processing in the
computer, but a better IMU typically contains a digital motion processor
(DMP) with built-in data fusion algorithms to get improved orientation
information while the position relies only on the accelerometer.

The detailed description of the multisensor data fusion of the 9 DOF IMU
can be found in [20].

B 1.6 Noises, error causes and technical parameters

As every sensor in the real world, also every IMU sensor is a subject to
various types of errors leading to imperfect, noisy sensor’s output. The IMU
errors can be roughly broken down into two categories: stochastical and
deterministic errors.

Stochastical errors are commonly called noises and can be formally de-
scribed as random processes - signals of stochastic nature. Since there is no
deterministic formula defining them, they are described statistically. In the
time-domain, the noise can be characterized for example by its mean value,
autocorrelation, autocovariance or probability distribution function. However,
in engineering practice, the frequency domain description is mostly used
for its good mathematical properties. The power spectral density function
(PSD) describes how the distribution of the signal’s power is depending on the
frequency. It is used as one of the main tools to describe the random process.
Assuming that the noises presented in the output from IMU sensors are
weak-sense stationarity random processes (roughly speaking, their statistical
properties are not changing over time), and the IMU’s output is a discrete
signal, according to Wiener-Khinchin theorem the power spectral density
function is equal to the Fourier transform of the corresponding autocorrelation
function [21]. PSD function S(w) can be then defined as

11

1. Inertial measurement unit

e}

S(w) = Z Top(k) - €7 I9F (1.4)

k=—00

where w is the angular frequency, and
rew(k) = B [2(n)z(n —)] (1.5)

where 7, is the autocorrelation function of the discrete random process x
and F'[..] stands for expected value.

Some of these noises can be directly addressed by different statistical tech-
niques like signal filtering or noise modeling (see section |1.7)).

Deterministic errors can be caused by systematic errors like manufacturing
imperfections and are generally easier to describe and suppress. They can be
typically compensated by a precise sensor calibration (see section |1.8)).

The overall sensor’s noise resitance truly determines the resulting quality
and performance of the sensor. To describe it, manufacturers have intro-
duced many technical parameters. Since the IMU is more or less always
a combination of accelerometers and gyroscopes, the IMU parameters are
rather a combination of parameters of each partial sensor. Unfortunately,
the terminology in this field is very ambiguous. Especially the low-cost IMU
sensors, mainly used for customer oriented service mobile robots, have often
poor documentation and important parameters are missing.

Here I introduce the essential error causes concurrently with the most often
used IMU parameters describing them. More detailed description of IMU
errors is to be found in [14], [22].

B 16.1 Bias

Ideally, a sensor at rest (with no input at all) would always have zero output.
But in reality, there is often a non-zero offset called bias in signal output.
The bias can be roughly split into two components.

bias=initial offset + bias drift (1.6)

While rather fixed initial offset (described by bias repeatability parameters
such as Turn-on to Turn-on Bias) is caused more by manufacturing issues
and can be removed by initial precise calibration, the bias instability is a big
issue. These bias changes can be caused for example by temperature drift
during the operation time, power supply voltage drift or by mechanical stress
on the system.

The parameter In-run bias stability (or bias instability) is the theoretical
accuracy of bias estimation when running continuously under fixed operating
conditions. Formally, it is defined as a minimum of Allan Variance graph (see
section |1.7)). It is one of the best indicators of the gyroscope or accelerometer

12

1.6. Noises, error causes and technical parameters

ACCELEROMETER | GYROSCOPE

R R R R R RN T R RN
L

NAVIGATION > <100ug <0.01%h

Q ATTITUDE & HEADING > 100pg <x<3mg 0.05°h<x<25%h
FLIGHT STABILIZATION > ~25°%h

~1 mg

e’ STABILIZATION > 100pg<x<1mg 0.001°/h<x<10%h

NAVIGATION
& TARGETING > 100pg<x<500ug 0,002°/h<x<0,05°/h

) POSITIONING >

@' STABILIZATION >

ORIENTATION OR >
STABILIZATION

Figure 1.7: IMU performence requirements (in-run bias stability) per application

type, source:

LOW PERFORMANCE ; HIGH PERFORMANCE %

accuracy and performance. The IMU performance requirements from the
viewpoint of this parameter are nicely summarized in the picture [1.7. How-
ever, for the cheaper sensors, this parameter is not usually defined by the
manufacturer and has to be found out experimentally.

Rate random walk parameter describes the low-frequency bias fluctuations
in long-term scale, sometimes it is also called as a flicker noise. It can be
caused by temperature effects or by other unclear reasons . Typical units
are [m/s?/s/v/Hz] and [rad/s/s/v/Hz] for accelerometers and gyroscopes
respectively. Low rate random walk coefficients are important for the long-
term applicability of IMU and low bias drift.

Bias drift and its fluctuations are hard to compensate and usually, they
are modeled as a random walk.

13

1. Inertial measurement unit

B 1.6.2 White noise

Commonly as white noise is considered a random signal with zero mean and
equal intensity at all frequencies (i.e., with a constant PSD function). In the
context of inertial sensors, it stands rather for an added random signal with
zero mean value over a long period, with a correlation time shorter than the
sampling rate. Thermo-mechanical events on the microscopic level mainly
cause these signal fluctuations [25]. It is usually defined as noise density
under specific conditions.

When the angular velocities or accelerations are integrated to estimate
the orientation angles and the velocity, the white noise starts to manifest
itself as a random walk process. Then it make sense to describe the white
noise density as parameters angle random walk (ARW)[rad/s/+/Hz] in case
of gyroscopes or analogically velocity random walk (VRW)[m/s%/v/Hz] in
case of accelerometers.

Especially for the measurement of signals with low amplitude, the white
noise can contribute to the total measurement error. Thanks to its zero
mean, signal filtering can well mitigate the unwanted effects of white noise in
short time horizon, however, in a long-term application, the resulting angular
(velocity) random walk together with other errors cause ever-increasing error
preventing the IMU sensors from being used separately for a long time.

B 1.6.3 Sensitivity

In general, the sensor’s sensitivity stands for the rate of conversion between
the output and input. The imperfection of scale factor is usually called scale
factor error or scale factor nonlinearity and is expressed as ppm’.

B 1.6.4 Range

Input range parameter stands for the maximal change in the input signal
(expressed as change of measured physical quantity) the sensor can capture,
whereas the full range parameter is the characterizes which motion can be
measured. It is worth to note that there is usually a tradeoff between the
full range and a resolution of the output signal. A high value of full range
parameters leads to lesser resolution and vice versa.

B 1.6.5 Bandwidth

Bandwidth describes the behavior in a frequency domain. It shows how
the amplitude of the sensor’s output depends on the frequency of its input
signal. In the datasheet, there is a bandwidth usually depicted as a frequency
response chart, or as a tolerance band regarding a reference frequency (given
as a percentage, or in dB). For the mobile robot’s localization, especially
the low frequencies are of interest and the ability to measure the static
acceleration for accelerometers is desired. Conversely, it is important to

"parts per milion

14

1.7. Allan variance noise analysis

avoid excessively high frequencies that can cause mechanical resonance of
the inertial sensor and consequently even harm the inertial sensor. For that
reason, high-frequency vibrations pose one of the threats to MEMS inertial
sensors and can negatively influence the measurement accuracy.

B 1.6.6 Systematic errors

To get meaningful results, the alignment of all axis of the internal accelerom-
eters and gyroscopes is important. The measure of unwanted sensitivity in
other axis is usually listed in the datasheet in % as a parameter Cross-axis
sensitivity and can be well suppressed by calibration.

The user should also pay attention to the attachement of the sensor itself
to the board, and subseqently, to the alignment of the board containing the
sensor to the robot’s reference frame. Every physical connection introduces
a coordinate transformation and misalignment on any level can result in
erroneous output.

B 1.6.7 Other parameters

When choosing the right IMU sensor, one may also pay attention to im-
plementation details. There is plenty of different package sizes, from tiny
"one-chip" solutions to the pre-prepared development boards or shields with
separately placed components. Also, the IMU power consumption may vary
among different devices, even though the power consumption of a MEMS IMU
sensor is typically very low and negligible compared to the power consumption
robot’s actuators.

IMU sensors provide several ways to communicate with other devices. There
are IMUs with analog and digital outputs available. The standard solution
comprises serial buses such as SPI or 12C with various output sampling rates
and different precisions of internal AD converters. Sometimes there are also
additional pins for direct synchronization of external sensors available too.

Last but not least, the IMU sensors also differ in included special fea-
tures. Better IMU sensors are well equipped smart sensors including pro-
grammable microprocessor, buffers, temperature compensation, self-checks,
auto-calibration or an intern DSP chip as well.

B 1.7 Alan variance noise analysis

Probably the most frequently used IMU noise identification approach is called
Allan variance analysis. This method was developed originally by David W.
Allan in 1966 to analyze frequency stability of atomic clocks and oscillators
[26], but over the years it became virtually the standard method also for IMU
sensor noise analysis, which is also defined in standard IEEE Std 952-1997
[27].

In general, Allan variance is a time-domain analysis that can indetify basic
IMU noise terms such as quantization noise, white noise or bias instability by

15

1. Inertial measurement unit

T) (Stride)

l«——T=3T)——>» m=3

Output

b
-<
-

A

< » Overlapping Samples

Time

Figure 1.8: Example of cluster forming in Allan variance "overlapping" method,
28]

analysing the Allan deviation plotted as a function of a cluster size in the log
scale.

For the Allan variance analysis description, let us assume an output of
gyroscope, the procedure for the accelerometer is analogical. Following theo-
retical description is based mainly on the paper [29], and the IEEE standard
Std 952-1997 [28]. A more hands-on approach is given for example in the
Freescale tutorial [28].

Let Q(t) be the discrete angular velocity signal measured by stationary
gyroscope, that has N samples, sampled with a period 9. Let a cluster be a
group of m consecutive samples with time duration

T = mmy, (1.7)

where m can be arbitrary integer satisfying the condition

N -1
m<——. (1.8)

For the k-th cluster’s average rate (average angular velocity) can be written

1 kto+T1
On(7) = — / Q(t) dt (1.9)

For difference of two consecutive clusters & then holds

&k = Q1 (t) — Qu(?) (1.10)

The set of all consecutive differences &; over all clusters with the same length
can be seen as a set of random variables, whose variance can be computed by
the formula

1 N-—-2m

= sy L &) (1.11)

k=1

16

1.7. Allan variance noise analysis

1 N-—2m

)= =gy 2 (B~ (1.12)

which is called Allan variance for a clusters with size 7 = m7y [29]. Thus,
the Allan deviation is defined as

—2m
o(r) = a2(7):J g Z [rmtC I oG M OB E)

Alternatively, Allan variance (deviation) can be computed also from the
output angle 6.

The Allan variance analysis relys on the fact that there exists a unique
relationship between Allan variance o%(7), described by equation |1.12, and
the PSD function of the intrinsic random processes (noises) that are present in
the analysed signal [28]. Assuming that the rate (7) is a stationary random
process, it can be proved that holds the equation

sin® (mf7)
(mfr)?

where Sq(f) stands for PSD function of random process Q(7) and f is
frequency. If the PSD function Sq(f) of a particular noise is identified, it can
be substituted into the equation [1.14] and the corresponding Allan varinace
can be computed. The Allan variance analysis exploits this relationship in
the opposite direction. Applying equation [1.13| to the measured sampled
data yields Allan deviation o(7), which can be plotted in log scale against
the cluster size 7. Because the relationship [1.14/ can also be understood as
passing the total power output of the random process through a filter with
transfer function in the form

2(1) = 4/000 daf - Sa(f) - (1.14)

His) = & (1.15)

there exists conjunction between the type of underlying random process and
the cluster size 7. In other words, the filter’s bandwidth is changig with the
varying cluster size 7. So if the PSD function of a particular noise in the
signal is known, the noise parameters can by estimated from the log scale
Allan deviation graph (further called only "graph").

In the following list, the noise-related formulas for Allan variance compu-
tation for the five basic IMU noises are provided. The corresponding PSD
functions and details are to be found in [27].

8 Quantization noise:
2
3Q%

o) = =5

(1.16)

where @, is the quantization-noise coefficient. The magnitude of this
noise corresponds to the graph with the slope —1 at 7 = /3 s.

17

1. Inertial measurement unit

8 White noise:
Q2

T

o2 (1) (1.17)

where @ is the angle (velocity) random-walk coefficient which can be
found as the value where the graph’s curve with the slope —% intersects
the value 7 =1 s.

B Bias instability:
2B2 ia3

O'g(T):TX In2 —

2$2x (sinz + 4z cosx) + Cj(2x) — C;(4x)

(1.18)
where B is the bias instability coefficient; x = 7 fo7, where fy is the
cut-off frequency of the underlying PSD function and C; is cosine-integral
fuction. In the graph, the value of Allan deviation of the plateau for
T >> fp can be used to estimate the bias instability coefficient according
to approximative formula

B~ 21n(2)

-ADEVp ~ 0.664 - ADEVp (1.19)

where ADFEVpg is the correspondig value of plateau in the graph.

B Rate random walk:
K2
o?(1) = = (1.20)
where K is rate-random walk coefficient, whose value can by read off as
the the value of the graph with slope % at T=3 s

B Rate ramp:

R2’7'2
2
where R is the rate ramp coefficient. Rate ramp noise is a systematic
error, a very slow deterministic drift over time. The magnitude of rate
ramp R coeffiecient can be found in graph with slope +1 at 7 = /2 s

o2 (r) =

(1.21)

® Other noises: other noises such as sinusoidal noise or exponentially
correlated noises can also be described by the Allan variance although
they are not so important for IMU sensors. Details are provided in [27].

If holds the assumption that the random processes present in the data are
statistically independent, for the Allan variance can be written [27]:

o?(r) = 02(7) + 02 (1) + o () + ... (1.22)

The accuracy of noise estimated parameters depends on a few factors. Aside
from the errors caused by imperfections and distortions in the input data, also
the Allan variance analysis method itself has theoretical accuracy limitation.
It depends on the ratio of the total number of samples N to the number of

18

1.7. Allan variance noise analysis

Rate Random

Correlated Walk

Noise

Sinusoidal

Bias

Instability | T

Figure 1.9: The characteristic parts of Allan deviation plot in log scale, [27]

samples M used to build the cluster with the size corresponding to the region
where the noise parameter was estimated. It practically means that noise
parameters such as Angular random walk or Quantization noise will be found
with better accuracy than Rate random walk or Ramp noise parameters that
are found for greater values of 7. The percentage error can be expressed as
1
O = ———— (1.23)
2(47 — 1)

This equation can be also used to determine the total number of data samples
N needed to achive a desired accuracy of certain parameter estimation.

The Allan variance noise analysis procedure for a gyroscope’|can be sum-
marized in the following steps:

1. get N samples from stationary measurement sampled with a certain
sampling rate 7

2. form the clusters with size 7 = m7y, overlapping method is frequently
used (see figure |1.8)

3. compute the Allan variance and subsequently Allan deviation from either
average of the output rate, or the output angles

4. repeate the previous two steps for different cluster sizes, plot the Allan
deviation in log scale against the value of cluster size 7 and estimate the
noise parameters from the graph

5. repeat the analysis separately for each axis of the gyroscope

8analogically for the accelerometer

19

1. Inertial measurement unit

The relations between the particular noises and the Allan deviation log
scale graph nicely summarizes the figure [L.9. The noise analysis of particular
IMU sensors are described for example in thesis [30] or in paper [29].

. 1.8 Calibration

"Calibration is the process of comparing instrument outputs with known ref-
erence information and determining the coefficients that force the output to
agree with the reference information over a range of output values" [14].

Nowadays, the IMU sensors come to market usually already calibrated by
the manufacturer that also prescribes recommended working conditions such
as temperature range. Better IMUs have sometimes even a self-calibration
at one’s disposal [31]. Nonetheless, available IMUs commonly enable also
manual calibration, which could be very useful when high precision is of
interest.

The standard method of accelerometer’s calibration uses a linear matrix
model comprising gains (sensitivity) and offsets for three axes. By placing the
accelerometer in several defined orientations, these parameters can be found
and used for calibration. Additional parameters such as cross-axis sensitivity
can also be taken into account by extending the basic model. Similarly,
an angular rate test serves as a calibration procedure for gyroscopes. An
extensive description of the calibration methods present authors in [32] or in
133].

20

Chapter 2

Simulation

"Scientists have simulated ideas since the beginning of time."
Dr.Richard Gran, Appolo Lunar Module Autopilot designer

Since the very beginning of time, people seek answers to hard questions
in many fields of science. The progress there is possible only thanks to
the unique human ability to think abstractly, to imagine. To decrease the
amount of abstraction, people create models describing the complex reality
in a simplified manner and use them to estimate the desired information and
to come to conclusions.

A simulation can be defined as a creation of such models that can be ma-
nipulated logically to decide how the physical world works [34]. However, in a
modern understanding, the simulation in the scientific domain is inseparably
connected to computers and numerical methods.

While simple problems are easily solvable analytically, and the knowledge
of physical laws provides there sufficient intuition only with a pen and paper,
in more complex cases, the researched problem may be too hard to get a
closed-form solution, or not easy to imagine. At this moment the computer
simulation saves the day. High computational power and numerical methods
such as Monte Carlo approach or iterative solvers can be applied to hard
mathematical problems to obtain an approximate solution. A vast amount
of models incorporated into a single simulation enables studying of model
interactions on different abstraction levels. By all means, the simulation can
be beneficial even in simple cases, where it can provide the validation of
computed results and better insight into the simulated issue.

The history of computer simulation can be traced back to 1940s when during
the Manhatten project ['| the first digital computers were used for physical
simulations. Since that moment, computer simulation becames gradually
inherent tool in many fields. In last years, the capability to precisely simulate
and predict the behavioral of very complex systems together with the ever-
increasing computer performance enables the advent of new disciplines in
the technical field such as virtual and augmented reality or virtual product

! American military research and developement project in 1942 - 1946 that resulted in
the very first nuclear weapons.

21

2. Simulation

development (digital twins). Especially the industry benefits massively from
the applied simulations that can significantly decrease the production costs,
increase the reliability of products and accelerate whole development.

In this chapter, I review modern robotics-oriented simulation software tools.
In the first section 2.1], I state a few requirements the tool must or should
have in order to simulate the IMU sensor attached to the mobile service robot.
In the next section 2.2 I discuss the properties of a few particular robotic
simulators that are meeting the previously stated requirements. Their pros
and cons are discussed with respect to the goal of this thesis. Finally, in
sections [2.3| and [2.4, I describe more deeply the finalist of the selection - the
Gazebo simulator in conjunction with ROS?.

. 2.1 IMU simulation requirements

To be able to simulate IMU sensor attached on the mobile service robot, the
simulation tool should fulfil following requierements:

B real physical simulation

® in-built support for both mobile robot and IMU sensor simulations
B casy definition of various test scenarios

B open source software if possible

B ROS compatibility

In addition, it would be really nice to have:

® high-quality documentation and tutorials

B high degree of possible customisation

B contemporary, still evolving software with a vibrant user community
® 3D GUI support for visualization

® programmable in widely used programming language, such as Python or
C++

® UNIX support

B easy portability of the code between simulation and real robot

2Robotic Operating System is a well established robotics middleware. It is described in
detail in section2.3|

22

2.2. Mobile robotic simulators

. 2.2 Mobile robotic simulators

The phenomenon of simulation brought an entirely new development paradigm
to mobile robotics. The algorithms can be now easily and safely debugged
in the simulator environment in a much shorter time than before, without
the danger of damaging an expensive robot or causing any other kind of loss.
Also, new types of kinematics structures can be tested without the need for
expensive prototypes or without a particular testing environment. As a result,
much time and money can be saved.

Over the last twenty years, various specialized mobile robotic simulators
appeared on the market. Among them, there are many free, open source
projects too. Contemporary mobile-robotic-oriented simulators provide much
more than just the estimation of real robot’s behavioral. They typically come
with a set of frequently used robots and environment models and offers a
wide variety of robotics-specific additional tools such as controller tuners or
plotting tools. The user can also benefit from rich visualization in both 2D
or 3D.

From the technical point of view, the modern simulators are usually stan-
dalone applications that can run in real-time in multiple processes on dis-
tributed computers and that utilize a physics engine library [°| to estimate the
resulting response of the model.

According to [36], the simulator’s activity during a generic simulation can
be described by the following equations 2.1, 2.2] and |2.3. The simulator
periodically updates the system state (i.e. the state of the simulated model)
x by recomputing the following equations in a loop.

x, =f (Xk, U (Xk, tk) , tk) (2.1)
tr+AL
Xk+1 = /)'(kdt + Xk (2.2)
173
thr1 =t + At (2.3)

The function f describes the change of the system states x over time,
which should express to the real physical properties of the simulated object,
whereas u (xg, t) is the control command, and tj, is a step-size of simulation
time. More detailed description of the working principles of mobile robotics
simulators is to be found in [37].

I 2.2.1 State of the art robotics simulators

Although multiple papers comparing the quality and performance of mobile
robotic simulators have been already published, for example, [38, |39, 136,

3The computer software responsible for simulation of physical behavior, usually developed
as external libraries. Among the most frequently used physics engines belong Open Dynamics
Engine (ODE), Dynamics Animation and Robotics Toolkit (DART), BULLET or PhysX.
Details and their comparison can be found in [35].

23

2. Simulation

o

}:v—rep

Name

Current version

License

Developer

OS support

Real physics
engine

Model formats

Model editor

World modeling

Programming
language

Extensibility

ROS support

Documentation

Community

Comparative
advantages

Webpage

Gazebo
9.0.0

Apache 2.0

Open Source Robotics
Foundation (OSRF)

Linux; on other OS
complicated
ODE, Bullet, Simbody,
DART
SDF/URDF, OBJ, STD,
Collada

yes, limited capabilities
only simple models included,

access to a big open source
model databases possible

C++

plugins, API

yes, full support

tutorials, API reference

big comunity, alive public
forum and mailing list

close integration with ROS,
active community support,
clear development
roadmap, XML world
description

www.gazebosim.org

V-REP
3.6.1

proprietary / GNU GPL

Coppelia Robotics GmbH.

Linux, MS Windows, macOS

ODE, Bullet, Vortex, Newton

OBJ, STL, DXF, 3DS,
Collada, URDF

yes, full-featured editor
including mesh manipulation

many high-quallity models
included

C++, Lua, Java, Python

API, plugins, add-ons,
embedded scripts
yes, ROS interface

tutorials, API reference

community, public forum

fluid dynamics simulations,
huge model database,

intuitive model editor, full-
featured and stable SW

www.coppeliarobotics.com

Webots
R2019a
originally proprietary
(recently changed to Apache
2.0)

Cyberbotics Ltd.

Ubuntu Linux, MS
Windows, macOS

extended ODE version

VRML, X3D

yes

many high-quallity models
included

C/C++, Python, Java,
MATLAB

API, plugins, add-ons

yes, ROS controller

tutorials, API reference

public forum, customer paid
support and mentoring

fast custom rendering, big
model database,

well-documented, tested
and stable SW

https:/ /cyberbotics.com/

Table 2.1: The comparison of mobile robotics simulators

37, |40], most of them are somewhat outdated because of rapid progress and
changes in this field. Often the simulator’s drawbacks mentioned in older
papers have been already fixed in current versions or the development of
the simulator itself has been discontinued recently. To my best knowledge,
probably the best-updated list of currently available robotic simulators is to
be found on corresponding English Wikipedia webpage [41]. There are also
included tables comparing their main properties and pros and cons.

24

2.2. Mobile robotic simulators

Besides the prevalence of small or old projects, several well-established,
mobile-robotics-oriented simulators can be distinguished. I selected three
particular simulators from them for deeper comparison: Gazebo, V-rep, and
Webots.

B 2.2.2 Gazebo, V-rep and Webots comparison

All three simulators are currently actively developed and widely used in prac-
tice. As mature software tools, they are all suitable for complex simulations
with mobile robots. They offer a high degree of customization, 3D visualiza-
tions and have built-in model editors. Based on the official documentation
available in the project webpages [42, 43, 44], they all support plenty of sensor
models including the inertial sensors.

In Webots and Gazebo, ready-to-use IMU models exist. The mechanical
structure of the real IMU sensor itself is not simulated, but angular velocities,
accelerations, and orientation are computed directly by the physics engine,
which calculates them internally for every simulated body. In V-rep simulator,
the physics engine is also used, but the accelerometer and gyroscope are sep-
arate models whose output is determined by measuring the force interactions
between two simulated masses [45]. In general, in all simulators, IMU models
should return noiseless*("ground truth") values for accelerations, angular
velocities, and orientation, unless artificially noise is applied to the IMU’s
output [46], [47], [48].

The basic properties of simulators are compared in table [2.1|

Now the question is, which one is the best choice? In a comprehensive
study [49] from 2014, authors studied the user feedback of more than one
hundred researchers and engineers from both different countries and different
areas of mobile robotics research. Survey participants were asked about,
what simulator do they use as a main toll, how they are satisfied with it,
and what other simulation tools they know or tried. Gazebo came out as
the most frequently used (15% of participants), the best-known and the best
community having simulator. In comparison, Webots and V-rep were both
identically used by 7% of participants. However, in terms of documentation,
tutorials, quality of API and support especially V-rep obtained better rating.
The authors conclude that both Gazebo and V-rep are a good choice.

In the same year, Lucas Nogueira made a comparative analysis between
Gazebo and V-rep simulators [40]. He did a few experiments with the same
model in both simulators and compared them from different viewpoints. He
concludes that Gazebo is better integrated with ROS and provides more
ready-to-use plugins created by the community. On the other hand, V-rep
provides more in-built features especially when it comes to model editing
capabilities. And last but not least, during the experiments, V-rep also had a
slightly smaller demand for computational power.

In the same year, one more paper concerning mobile robotics simulators

4physics engine imperfections, or the incorrect setting can cause a noisy IMU output

25

2. Simulation

was written [37]. Authors compared Gazebo only with Microsoft Robotics
Developer Studio (whose development has been discontinued in the mean-
while), 2D Carmen simulator and pure ODE physics engine. They were
mainly focused on the physical accuracy and conclude that pure ODE physic
engine with their ad-hoc implementation of experiment-specific wrapping
code provided slightly more accurate results than Gazebo, which was using
ODE physics engine too.

Probably the newest study concerning the V-rep and Gazebo has been
published in 2018 [50]. Authors compare V-rep, Gazebo and ARGoS sim-
ulators. They more or less confirm the results already published in [40].
They argue that V-rep is the most complex, easy-to-use and full-featured
simulator, while Gazebo maintains better ROS compatibility and overcomes
V-rep’s performance when it comes to large scale environment but lacks some
features and is sometimes more difficult to use. The ARGoS simulator, mainly
designed for robotics swarms, obtained the lowest rating.

To my best knowledge, there is no up-to-date paper comparing all three
simulators including Webots. It can be possibly caused by the pricing policy
of its developer company Cyberbotics Ltd. While the V-rep is available for
free for non-commercial and educational purposes, and Gazebo is completely
open source from its beginning, the Webots was subject to a charge even for
universities and maybe for that reason was the university’s research mainly
focused on other simulators®. But recently, on the 18th December 2018, the
company Cyberbotics Ltd. announced that from this day forward the new
Webots’ versions become completely open source software under Apache 2.0.
licence [51]. This decision together with a great heritage of well-tested and
documented proprietary software makes Webots a serious competitor of the
other simulators.

B 2.2.3 The finalist selection

As described in previous subsections, all three introduced simulators represent
advanced state-of-the-art tools with generally similar capabilities. All of
them are usable from the viewpoints of the technical requirements for IMU
simulation. Also, to my best knowledge, there is no paper at all concerning
directly the topic of fidelity of IMU simulation in any robotics simulator.
Based on available papers, the V-rep simulator seems to be slightly better
than its competitors, especially when it comes to the number of features.
According to official project website, also Webots is feature-rich and stable
sofware. But since this thesis is strictly speaking also a part of commercial
research project, strong integration with ROS, and open source code were
desired, the V-rep’s proprietary license was a limiting factor. For the same
reason, the Webots simulator was finally not considered, because the selection
of the simulator was done already a few months before Webots become open
source software, even though it overcomes Gazebo in terms of stability and
documentation. In addition, the mentioned possible Gazebo drawbacks such

5The company itself claims that Webots is widely used at many universities.

26

2.3. ROS

1 ROS
| e | ol

Figure 2.1: The simplified structure of the ROS computational graph

as more difficult model definition or smaller model database does not play a
vital role from the point of this thesis.

Thus, I picked up Gazebo simulator in conjunction with ROS as the main
simulation tool for this thesis. The following sections describe them more
deeply.

B 23 ROS

Robotic Operating System is a robotic middleware rather than an operating
system in a standard understanding, although it has some similarities with
the classical operating systems. It aims to make development and research in
the field of robotics easier by providing a unified framework and guidelines
to enable the reuse of the code. In the last years, ROS has become more or
less a standard in both industry and university research concerning mobile
robotics.

Because the robotics is an extensive field with quite diverse types of
hardware with often conflicting requirements, the heart of the ROS consists
of a hardware-independent infrastructure that provides unified inter-process
communication. Besides, ROS provides also supportive visualization and
simulation tools, a hardware abstraction layer, and hardware-specific libraries
implementing algorithms for particular applications such as control, navigation
or mapping.

Running ROS system can be seen as a distributed system, a so-called
computational graph, whose separate processes are called ROS nodes. The
computational graph has several basic parts:

® Nodes are processes that serve a specific task (e.g., motor driver). Usually,
multiple nodes are communicating with each other over topics.

® Master node is part of the ROS core that registers other nodes and
manages the communication among them. Without the master node

27

2. Simulation

administration, the regular nodes cannot communicate. In the running
ROS system, there can always be only a single master node.

® Topics are communication buses with a specific name and data type
that identify the content of the messages. They are used by nodes to
send messages on the publish/subscribe basis. ROS defines a family of
standard data types; however, custom datatypes’ definition is possible
too.

B Messages are simple data snippets that are sent over topics among nodes.

B Bags are special ROS format for logging, storing and replaying the
captured messages.

The ROS components are stored in a unified way, sometimes called a ROS
filesystem. A package is the basic organizational unit of source code that can be
built separately and usually contains a ROS node, or library implementation.
Every package has its own directory and a unique manifest XML file. A
repository is then a collection of packages that share mutual VCS°L

The project developed under ROS usually contains multiple packages and
is build using the automated CMake-based build system called Catkin.

The picture 2.1] depicts an example of the communication between two
nodes 1 and 2. Firstly, during the initialization of node 1 master node registers
that node 1 wants to publish messages on a certain topic. At the moment
when node 2 starts, and when the master figures out that node 2 subscribes
the same topic, the master node arranges the peer-to-peer communication
from node 1 to node 2. If a service instead of messages were used, the
procedure would be similar except for applying principles of bidirectional
client-server communication. The master node also arranges the access to
ROS parameter server or data logging. The ROS fully supports programming
languages Python, C++, and Lisp (for these languages the complete client
libraries are available).

A more in-depth description of ROS is to be found in the official online
documentation [52], or in the handbook [53].

. 2.4 Gazebo

The development of Gazebo simulator started in 2002 and was officially
introduced in 2004 at the University of Southern California to create high
fidelity, powerful and 3D open source simulator [54]. Firstly, it was developed
as a part of the Player/Stage’ project, but in 2012 the Open Source Robotics
Foundation responsible for ROS adopted the Gazebo project. Since that time,
Gazebo won strong ROS-oriented user community. And it is likely to be also
developed in the future thanks to the clear development roadmap [50].

SVersion Control System
"Player is another open source robotics middleware, whereas Stage is a 2D simulator.
Both tools are still maintained but in last years often replaced by ROS and Gazebo.

28

2.4. Gazebo

8 Internal API
z * § External API
G Z E B O Exectuable
o Library

client gui

rendtﬁul
w

[collision] [comms }

 engine AP[|
SdPaty /N /\\ """"""""""""""""""

traries (ODE | Bullet | [OPCODE | RAPID | [boost::asio)[protobuf| oGrRe][QT |

Figure 2.2: Simplified Gazebo dependency graph [49]

Gazebo’s main properties and advantages have been already mentioned in
the previous section [2.2.2] and in the table 2.1l In this section, I only briefly
describe the Gazebo’s structure and its connection to ROS.

Gazebo simulator consists of two main parts. gzserver is the simulator’s
core running the simulation loop responsible for the computation of physical
simulations, using external physics engines such as ODE. gzclient provides
3D visualization and handy GUI tools to control the underlying gzserver or
model world or edit models. There is also gzweb that can be used instead of
gzclient on a web server. The decoupling of the computational and rendering
parts enables running of computationally-expensive gzserver on a mainframe
and visualizing the output on an ordinary computer for ideal load balance.
More detailed structure is depicted in the picture 2.2,

XML-like SDF files define all objects in the simulation including the world
model. SDF format has some advantages over the older ROS URDF format,
which lacks capabilities like joint loops, or friction definition. However, the
robots defined under URDF can be easily converted to SDF thanks to provided
parser. There are several SDF models’ categories like, e.g., world, model, or
actor that can include links, joints, sensors or other parts whose properties
can be defined using specific tags. For example, a simple differential drive
wheeled robot model, can consist of a rigid box (robot’s body), two cylinders
(drive wheels) connected by revolute joints, and one ball joint instead of caster
wheel.

SDF language has various tags, that allow to set the model properties.
For example, visual tag describes the final appearence in the visualization.
Apart of basic shapes, colors, and textures, custom materials and Collada
meshes can be add to model for realistic appearence. The complete SDF
specification is available online in [56].

To make the models execute the desired behavior, either the user can

29

2. Simulation

& cAzEBO +

(XX
(XX
see

ROS + ros_control

Simulation Hardware -
Gazebo Reality
Simulator Input/Output
Encoders Actuators
URDF Sensors on the real robot Servos, etc
<transmission> readSim() write Sim()
elements
hardware_interface::RobotHWSim
+ Provides Position, Velocity, and Effort Interfaces Embedded Controllers
Gazebo Plugin between Gazebo and ros_control Joint Stats £.g. PID loop to follow effort
bo_ros_control (encoder tic} ‘setpoint
Lo osootw [T
interfaces via pluginib - - readHW() writeHW() Jeint Efforts
Joint States. Joint Efforts
(radians)) :_interface::RobotHW (Nm)
F v Provides it Velocity, and Effort faces
Forward State i Joint Limits i ros_control hardw:
Transmissions Enforce limits (optional) +
Account for special bl Forward State Scint Limits H
i Transmissions ree limits (optional) |
Effort Transmissions | Account for special il R e S
Account for special
Effort i |
Account forspecid |
/ mechanis: |
""""""" S

Joint State Interface
e.g. JointSiate Interface

Joint Command Interfaces

Hardware Resource Interface Layer
V! e.g. Effortointinterface

Joint States
(radians)

Controller

Manager
Loads, unloads andpealls updates to control

Controller:
joint_state_publisher
Publishes /joint_states topic
for robot_publisher

Joint Efforts.
(Nm)

list_controllers
load_controller

unload cnmrnl\er.
switch cummHer-

Figure 2.3: How ros_control is connected to Gazebo and real HW in order to
control the robot’s (model’s) movement

Controller:
e.g. joint_trajectory controller
Send a rajectory from Movelt! eic

implement the actions as a C++ plugin and assign it to the corresponding
model, or one can use ROS-compatible plugins, that make the model’s control
accessible over standard ROS communication interface. In other words, rather
than defining the model’s behavior directly in Gazebo’s plugin, the commands
are sent to models as ROS messages or services over specific ROS topics.
This approach is very versatile because it splits the simulation and behavior
logic. The algorithms developed under ROS for real robots apply without any
change also to models in Gazebo and vice versa. For the movement control
ros_control package can be used. A comprehensive flowchart in the picture
shows how it communicates with Gazebo simulator and real hardware
as well. Similarly, there are also ROS-Gazebo sensor plugins, defining the
sensor’s behavior. The approach using ROS for the logic definition was used
also in this thesis and is described more in the next chapter.

Further details concerning Gazebo simulator are to be found in the project’s

offical webpage .

30

Dave Coleman
Updated Jul 30, 2013

Chapter 3
IMU modeling

This chapter is devoted to the design and implementation of the IMU model
and supportive simulation framework. As stated in the preliminary chapter,
the primary goal of this thesis is the creation of an accurate BNO055 IMU
model with emphasis to heading angle estimation to increase the fidelity of
robot’s simulations for future rapid development purposes.

In the first section [3.1, I expand on the nature of the raw data. I discuss
the properties of the IMU sensor BNOO055, and I describe the Allan noise
analysis of the BNOO055 here. I also describe the mobile robot on which the
real experiments were carried out.

Subsequently, in section [3.2] I propose the design of a custom simulation
framework suitable for IMU model development concerning the main goals of
this thesis. I also provide some interesting implementation details.

And finally, section 3.3/ deals with the ROS/Gazebo IMU model design and
implementation.

. 3.1 Raw data

Virtually the only source of information available for IMU model develop-
ment in this thesis, except for the official datasheet provided by the IMU’s
manufacturer, were raw data from real experiments provided by the project
owner in the form of ready-to-use datasets in CSV files. Since this thesis is
written about a part of a real industrial research and development project, the
raw data were not gathered by myself, but measured by different company’s
department few months before this thesis started. During the work on this
thesis, the experimental setup consisting of a mobile robot with the BNO055
IMU sensor was not physically available for any further experiments.

All the experiments were performed in a flat, but the outdoor environment,
on a custom mobile robot, which is closer described in the corresponding
subsection |3.1.1] The particular testing scenarios and trajectories are then
compared in chapter /4l

For each dataset the few different types of raw data were provided.

The reference position and orientation information was provided as a
set of waypoints (sampled position and orientation information with precise
timestamps) with sampling rate approximately 5 Hz, measured by very precise

31

3. IMU modeling

aNavs GPS sensor [57] which has a theoretical accuracy of 0.01 - 0.03 meters
and which provides the orientation in form of quaternions with about 0.25°
uncertainty.

The IMU raw data was measured by the Bosch BNO055 IMU sensor, which
is closely described in subsection |3.1.2

The data capture system from ROS was used to store the data in ROS
bags format that was afterwards converted to CSV files.

B 3.1.1 Mobile robot

All the raw data were measured on a differential drive wheeled mobile robot.
The robot has two separately controlled rear wheels and two front freely
movable caster wheels, as depicted in the picture |3.1. Differential drive
mobile robots are frequently used because of their simplicity and easy control.

>

Yo'

>» X,

Figure 3.1: The differential drive mobile robot with two front caster wheels

The following equations can describe the kinematic behavior of a differential
drive robot.

Let us assume the robot’s movements only in the horizontal plane. Three
independent coordinates fully determine the robot’s state

X = [Tao, Y, 0] (3.1)

32

3.1. Raw data

where 6 stands for the robot’s heading angle (throughout this thesis also
called a yaw angle). The only controllable joints are the rear wheels, which
leads to two joint coordinates

a=[e,)" (3.2)

where ¢; and @, are angles of left and right rear wheels respectively.

A homogenous transformation can be defined to transform the coordinates
between the world’s and robot’s frames. The homogenous coordinates are
given then

Xo = [Tw, Yu, 1] (3.3)

Xrob = [fEroby Yrob, 1]T (34)

If we define the transformation matrix in the following way

cos(0) —sin(0) 0 xy,
w _ |sin(@) cos(8) 0 yy
rob — 0 0 1 0 (3 5)
0 0 0 1
for the transformations holds
Xy = Ty Xrob (3.6)
Xrob = (Tgob)_lxw (3.7)

Note that in general, for the circular motion holds the formula

V=wXr (3.8)
wl=¢
lv|=v

where r is the radius vector, w is the vector of angular velocity.

Now let vy, v, are the linear velocities of left and right rear wheels, and let
&1, ¢ are angular wheel velocities (or shortly "wheel velocities") of left and
right rear wheels respectively.

So if we assume that the movement is not possible in the direction of Y.y
axis, it is easy to see that for the velocities of the robot in the robot’s frame
holds

v + Uy R(SOZ + (Pr)

Trop = ——5— = 5 (3.9)
Grop = 0 (3.10)

. vr—v R(Gr — 1)
b= = = (3.11)

Pluging in 3.9, [3.10|, [3.11| into the derivative of equation |3.7| yields the
kinematics model of the differential drive in world’s reference frame

33

3. IMU modeling

Ty = g (&1 + r)cos(0) (3.12)
o = (@1t g)sin(0) (313)
b=]W (3.14)

where equations |3.12], [3.13| and |3.14| are the solution of the direct kinematic
task, which can be also rewritten into to matrix equation

Ty Leos(0) Leos(9)] 1 .
N R R ¥l
Uw| = | 5sin(0) 5sin(0) (3.15)
0 _R R Pr
2L 2L ——
S q
%, = Sq (3.16)

For the purpose of robot’s simulation and control, solving the inverse kine-
matics task is useful. Generally, the closed-form solution requires solving the
matrix equation |3.16| which leads to the matrix equation

q=S"%, (3.17)

In case of this robot, the matrix S is not easily invertible and the solution
can not be foud analytically. However, the closed-form solution still exists
and can be found by solving the inverse kinematics task iteratively using the
Jacobi matrix approach. In this way the solution was obtained as

o= % (Lé + cos(0) iy + sin(é)yw) (3.18)
G = % (~L6 + cos(0)w + sin(0)ju) (3.19)

The URDF/SDF model of this mobile robot and the equations|3.18 and |3.19
were provided by a different company’s department. Due to the proprietary
license, I am not allowed to publish the model’s details and pictures.

Nevertheless, many open source models of differential drive mobile robots
very similar to this one exist (e.g., well-known TurtleBot). Also, the solution
of inverse kinematics for differential drive robot including the full derivation
can be found in the literature, for example in [58].

B 3.1.2 IMU sensor BNO055

Bosch BNOO055 is a smart 9-degrees-of-freedom IMU sensor. In addition to
the standard 3-axis accelerometer and gyroscope, also a 3-axis magnetometer,
32-bit microcontroller running proprietary BSX3.0 FusionLib software, and
temperature sensor are included. Thanks to the embedded microcontroller

34

3.1. Raw data

the IMU sensor can operate in few different operating modes with inbuilt
features like sleeping mode, interrupts caused by motion, multisensor data
fusion, filtering, and auto-calibration. If the FusionLib software features
are enabled, the sensor can directly produce also the absolute orientation
in the form of quaternions, or Euler angles computed from filtered linear
accelerations, angular velocities and magnetometer’s output. Some of the
technical parameters available in the official datasheet are listed in table 3.1l

Bosch BNOO055
Gyroscope Accelerometer
Range programmable, 125 — 2000°/s | programmable, £2 - +16g
AD convertor 16bit 14bit
Sensitivity 16LSB/°/s 1LSB/mg
- tolerance +1 (max +3) % +1 (max +4) %
- temperature drift | £0.03 (max +0.0.7) %/K +0.03 %/K
Nonlinearity £0.05 (max £0.2) %FS +0.5 (max 2) %FS
Zero rate/g offset +1 (max £3)°/s +80 (max £150) mg
- temperature drift | £0.015 (max £0.03) °/s per K +1 (max £3.5) mg/K
- voltage drift 0.1°/s/V +1.5 (max £2.5) mg/K
Bandwidth programmable, 12 — 523 Hz programmable, 8 — 1000Hz
Output noi
”d':;si't‘;'se 0.014/s//Hz (at 47Hz) 150 (max 190) pg//Hz
C Axi
ros?. ?(Is +1 (max +3) % +1 (max £2) %
Sensitivity

Table 3.1: Selection from BNO055 IMU sensor’s datasheet [59]

During all the experiments with the mobile robot, a rapid development
shield called "Adafruit 9-DOF Absolute Orientation IMU Fusion Breakout -
BNOO055" was used instead of direct implementation of the sensor chip itself.
All the raw data were captured in the so-called "IMU" data fusion mode. In
this mode, the magnetometer is not used, and thus only the accelerometers
and gyroscopes are fused to get the absolute orientation output with the
output rate 100Hz. Also, the otherwise adjustable parameters like bandwidth
or range are set automatically in this mode.

For an accurate simulation, the recognition and description of noise sources
are important. Unfortunately, the official datasheet [59] is not very talkative
when it comes to this point. Some noise-corresponding values are provided by
the manufacturer (see table 3.1), but the listed values do not provide the full
picture of noises, especially when it comes to long-term operation. Important
parameters are either completely missing (e.g., in-run bias stability), or the
values are defined in such a way that they are not related a much to the
scenarios in which the raw data were gathered. The thing is that raw data
were measured when the IMU sensor BNO055 was in "IMU" mode using
internal data fusion, auto-setting, and filtering algorithms while datasheet
assumes only simpler sensor’s modes, usually only for defined temperature
25°C.

35

3. IMU modeling

Thus, I regard the values listed in datasheet by the manufacturer as rather
as additional information, and I decided to perform the experimental noise
analysis to get the long-term noise description.

B 3.1.3 BNOO055 noise analysis

For the noise analysis, I used the Allan variance overlapping method. Its
theoretical background was provided in section 1.7, Because the original
experimental setup with Adrafruit board mounted on the mobile robot was
not available for any further experiments. I had to make the static data
acquisition necessary for the Allan variance analysis myself.

I done the data acquisition on a different hardware rapid development
board, so-called IMU wing-board for "Atmel Xplained Pro" which however
implements the same IMU chip BNOO055. The arrangement of the testing
setup depicts the picture 3.2, I configured BNOO055 IMU chip in the same
way as the IMU used in the experiments with the mobile robot ("IMU" data
fusion mode, magnetometer off, auto-settings and filtering on, 100Hz). An
exception is the UART bus which was used instead of I12C bus together with
the UART/USB converter (no 12C/USB converter was available), but it
should not have any influence on the measured data. The data were gathered
into ROS bags by Lenovo X201 in default hardware configuration, OS Linux
Mint 19 which was running an open source BNO055 ROS driver [60]. In
total, I measured three independent datasets, each of duration approximately
six hours. All measurements were performed at standard room temperature
(about 23°C). The output units of the IMU were set to rad/s and m/s? for
angular velocities and linear accelerations respectively.

Over the years, many tools for Allan variance analysis were implemented.
Sensor fusion and tracking toolbox for Matlab implements the complete set of
tools for Allan variance analysis, but it is an extra paid tool [61]. Alternatively,
there are also open source scripts implemented by the Matlab community
provided over Matlab File-Exchange platform. In the Python world, there is
an open source Python module called AllanTools [62]. For this thesis, I used a
tool provided by GAVlab team (The GPS and Vehicle Dynamics Laboratory
at the Auburn University) that is already customized to cooperate directly
with the ROS bag data format [63].

The initial attempts to get the Allan deviation graphs and to compute
noise parameters using the tool [63] led to strange results. Subsequently,
when plotting the raw data, I found out that the Allan variance analysis is
quite sensitive to outliers’. Despite my best effort to ensure a quiet place
under constant conditions when measuring the static data, in every dataset,
I obtained were some outliers leading to wrong Allan deviation graphs. Thus,
I applied the data post-processing to filter out the outliers. For that purpose,
I used the interquartile range (IQR) statistical approach. This method was
successfully exploited by the author in thesis |30] to post-preprocess the raw

'In this case, rare samples with extraordinarily high values compared to the rest of the
data.

36

3.1. Raw data

Figure 3.2: The testing setup used for static data acquisition, the sensor itself
was placed on a piece of soft foam to mitigate the prospective influence of any
vibrations of the surface beneath the sensor.

data before IMU Allan variance noise analysis.
The IQR is a statistical measure of dataset’s variability which is defined as

IQR = Q3 — Q1 (3.20)

where (01 and Q3 are first and third quartiles of the dataset respectively. The
figure |3.4] explains the meaning of the minimum and maximum thresholds,
given by equations :

min = Q1 — IQR (3.21)

mar = Q2 + IQR (3.22)

This filtering was implemented as a post-processing Python script which
replaces the detected outliers by the mean value before the analysis.

The pictures and [3.7] show graphically the resulting Allan deviation
graphs plotted based on data computed by the script . Note that the
ADEYV axes have units rad/s and m/s? for the gyroscope and accelerometers
respectively. The obtained results were afterward converted to appropriate
units. Table [3.2] summarizes the estimated noise parameters. The values
in the brackets are theoretical accuracies computed according to equation
and converted to the uncertainty of parameters. The final estimation of
the noise parameters (highlighted by green color) was obtained by averaging
individual noise parameters of three independent measurements using the

37

3. IMU modeling

Gyroscope X - raw output data - static measurement

0.04
0.02

0
©
o
= 0.00 A
2
(@]
S
¢ —0.02
©
S
2 ~0.04 1
£ -0

—0.06 -

_0.08) T T T T T

5000 10000 15000 20000 25000
ROStime +1.5563e9

Figure 3.3: Example of raw data with outliers, the ROS time units are nanosec-
onds

weighted average. The greater the uncertainty of the entry was, the smaller
the weight the entry got.

For the accelerometers, the estimated velocity random walk parameter
V RW value for all three axes are very similar and they can be also expressed
as

5.4-1073

VRW, ~ 5.4-103m/s/v/3600s = o "

/s?/VHz = 0.00009 m/s*/VHz
(3.23)
assuming gravitation constant g = 9.81m/s?, V RW units can be converted

to noise density format which is also defined in the sensor’s datasheet (see
selected parameters in table 3.1).

VRW, ~9ug/VHz (3.24)
VRW, ~6.4-107% m/s/Vh ~ 11ug/VHz (3.25)
VRW, ~7.5-107% m/s/Vh ~13ug/VHz (3.26)

Also values for gyrosope can also be analogically converted to the white
noise densitis. The estimations of the angle random walk parameters ARW
are then:

38

3.1. Raw data

IQR
—
Ql Q3
Ql - 1.5 x IQR Q3+ 1.5xIQR
. Median
- -3¢ —20 -1g 0o 1o 20 30 40
-2.6980 -0.67450 0.67450 2.6980

24.65% 50% 24.65%

—éllcr —llicr —icr -lo 0o lo Zlcr 3lcr 46

15.73% 68.27% 15.73%
—4dag -30 —éo —io do llo 2Icr 3|o Io

Figure 3.4: The principle of IQR outlier filtering method,[64]

.32
ARW, ~ 0.32°)s/\/h = 0.32° /s /v/36005 — %%/5 — 0.00533°/s/v/ Tz

(3.27)
ARW, ~ 0.5°/s/Vh ~ 0.00833°/s/VHz (3.28)
ARW, ~ 0.17°/s/V'h ~ 0.002833°/s /v H z (3.29)

The estimated noise parameters are smaller than the values defined in
datasheet (see table [3.1)). The difference is more distinct for accelerometer,
where the found values are roughly 10-times smaller (i.e., better) than the
value from the datasheet. For the gyroscope, the difference between estimation
and datasheet values is much lower. When taking into account the fact the
datasheet values are defined only for the simple sensor’s modes and that
the datasets used for Allan variance were gathered in the fusion "'IMU"
mode, which utilizes on-chip noise filtering algorithm, I can conclude that the
estimated VRW and ARW parameters are correct and correspond to the
reality.

The bias instability of accelerometer expressed in standard industrial format
is about 20 — 40mg. It seems to be a reasonable value for a low-cost IMU.
However, when it comes to the gyroscope bias instability estimation, the
obtained parameters are extraordinary good for such a low-cost IMU sensor.
The estimated value is about 1°/h while the usual bias instability for MEMS

39

3. IMU modeling

Allan deviation - accelerometer Allan deviation - gyroscope
1073 1073 — X
—Y
—z
1074 4
> >
frr i}
[=} o
< < 105
1074
1075 4
— X
— Y
—z
107 100 100 100 10? 10° 104 102 10t 100 10t 107 109 104
Tau(s) Tau(s)
(a) : Accelerometer (b) : Gyroscope

Figure 3.5: The Allan deviation graphs - experiment 1

Allan deviation - accelerometer Allan deviation - gyroscope
1073 4 — X
—Y
1073 4 —z
1074 4
> >
o o
o [a}
< <
1074
1075 4
X
—Y
z 106 4
; r T T T T T T T T T T T T
1072 107! 10° 10t 10? 10° 10* 1072 107! 10° 10t 10? 10° 10*
Tau(s) Tau(s)
(a) : Accelerometer (b) : Gyroscope

Figure 3.6: The Allan deviation graphs - experiment 2

IMU sensors in this price category is greater than 5°/h. Often, this value is
equal even to tens of degrees per hour.

That fact that the gyroscope’s bias instability parameters estimation is
problematic also depict directly the curves in the Allan deviation plots|3.5b)
3.6bl and [3.7bl Instead of having a clear plateau, the deviation often drops
unexpectedly which can lead to wrong parameter estimation. To exclude the
potential influence of wrong analysis implemented in the script [63], I also
doublechecked the parameters by different script [65] in Matlab. Nonetheless,
it only confirmed the published results and the curves found during the
previous analysis.

Another possible distorting factor may also be the UART bus, which did
not work flawlessly. Irregularly, the sensor produced messages with an error
flag: BUS_OVER_RUN_ERROR instead of sending messages with measured data.
This error message presumably indicates that a new message arrives even

before the previous message has been read from the UART’s receiver buffer
[66]. Because of that, I also tried another BNO055 UART ROS driver [67],

40

3.1. Raw data

Velocity random walk [m/s/+h]
Measurement X axis Y axis Z axis
1 0.0049 + (0.0003) |0.0064 + (0.0004) | 0.0060 + (0.0004)
- 2 0.0053 + (0.0003) |0.0072 £ (0.0006) | 0.0080 + (0.0006)
% 3 0.0063 + (0.0005) [0.0057 + (0.0005) | 0.0081 + (0.0005)
€ | Estimation: | 0.0054 =+ (0.0003) |0.0064 + (0.0005) | 0.0075 =+ (0.0005)
o
% Bias instability [m/s?/h]
8 Measurement X axis | Y axis Z axis
< 1 0.1576 + (0.0043) 0.3237 £ (0.0050) | 0.5654 + (0.0102)
2 0.3157 + (0.0043) | 0.4152 + (0.0060) | 0.5466 + (0.0139)
3 0.1915 + (0.0045) |0.1701 + (0.0051)| 0.1900 + (0.0076)
Estimation: | 0.2220 £ (0.0044) |0.2973 £ (0.0053) | 0.3971 £ (0.0099)
Angle random walk [°/+/h]
Measurement X axis Y axis Z axis
1 0.3315 + (0.0020) |0.4846 + (0.0030) | 0.1723 + (0.0010)
2 0.3255 + (0.0020) |0.4826 + (0.0030) | 0.1682 + (0.0010)
8_ 3 0.3334 + (0.0160) |0.5162 + (0.0025) | 0.1680 + (0.0001)
8 Estimation: | 0.3287 £ (0.0028) |0.4958 + (0.0028) | 0.1683 £ (0.0003)
)
5 Bias instability [°/h]
O | Measurement X axis Y axis Z axis
1 1.7588 + (0.3038) |0.8924 + (0.1848)| 1.5149 + (0.1179)
2 1.1141 + (0.3460) [0.7823 £ (0.1978) | 0.9223 + (0.1626)
3 0.7697 + (0.2293) |1.4535 + (0.2448)| 0.5834 + (0.1307)
Estimation: | 1.1729 + (0.2845) |1.0117 £ (0,2061) | 1.0315 =+ (0.1346)

Table 3.2: IMU noise parameters estimated based on overlapping Allan variance
analysis as estimated with tool and converted to proper units

but the problem persisted. It may be an issue of the used UART/USB
converter, but also many other BNO055’s users reported a similar issue in
various online discussion forums. It seems that the problem is bound solely
to UART communication bus and the BNOO055 itself. Presumably, this issue
is not present on the Adafruit board used in experiments with a mobile robot
since it prefers the I2C communication bus. Thus, I assess the gyroscope’s
bias-stability parameters as untrustworthy, rather best-case, estimation.

It turned out that the tool supports only the detection of ARW/VRW
and bias instability noise terms. It is however not a big issue in the view of
the weird behavior in the end at the end of Allan deviation graphs. Even so,
I tried to estimate at least roughly the rate random walk parameters (RRW)

using the Matlab script [65]. The results are summarized in the table

These values can be then converted to more common units. For the
accelerometer, the resulting rate random walk more or less corresponds to

41

3. IMU modeling

Allan deviation - accelerometer

Allan deviation - gyroscope

ADEV

10-3 4

104 4

ADEV

10-5 4

10-6 4

1072 107t 10°

10t 10? 10° 104

Tau(s)

(a) : Accelerometer

1072 107t 10°

10t 102 10° 104

Tau(s)

(b) : Gyroscope

Figure 3.7: The Allan deviation graphs - experiment 3

5 Rate random walk [m/s/h/+4h]

® | Measurement X axis Y axis Z axis

g 1 1.3959 £ (0.1643) |7.0561 & (0.1380) | 1.6995 + (0.3366)

EJ 2 7.2666 £ (0.0600) |8.7305 + (0.2047) X

§ 3 1.3998 £ (0.1815) [8.1712 £ (0.6371)| 0.4332 £ (0.1105)

< | Estimation: | 4.8584 + (0.1061) |7.8522 + (0,2392) | 0.7164 + (0.2396)

Rate random walk [°/h/+4h]

& | Measurement X axis Y axis Z axis

] 1 2.8305 + (0.3333) X 4.6363 £ (0.2196)

UE; 2 1.5235 £ (0.4467) X 1.4006 + (0.2803)

o 3 X 0.8891 + (0.1657)
Estimation: | 2.1364 £ (0.6381) 2.2234 + (0.2119)

Table 3.3: The estimation of rate random walk parameters, as find out by the

tool [65]

expected values for a MEMS accelerometer.

RRW, ~ 4.86 m/s/h/Vh ~

4.86

=~ 225-10°m/s%/VH .

3600 - 60 5-10°m/s’/VHz (3.30)
RRWy, ~3.5-107° m/s*/VHz (3.31)
RRW4, ~0.3-107° m/s*/VHz (3.32)

For the gyroscope, the estimation was possible only for two axes, the
resulting parameter estimations can be then rewritten as:

RRWg, ~ 2.14°/h/Vh ~

2.14

RRWq, ~0.18-107% rad/s*/VHz

3600 - 60 180

™

42

~0.17-107% rad/s*/vVHz (3.33)

(3.34)

3.2. Simulation framework

Similar to the gyroscope bias instability parameters, these values are smaller
by orders of magnitudes compared to a ordinary MEMS low-cost IMU sensors.

While for the accelerometer the estimated parameters correspond by order
of magnitude to the expected parameter values, for the gyroscope, only the
angle random walk parameter seems to be trustworthy. Better insight into
gyroscope’s behavior could provide a brand new analysis, ideally based on
static datasets with the length of tens of hours, measured in truly defined
laboratory conditions using I12C communication bus. But such a kind of
noise analysis was neither in the primary scope of this thesis nor technically
possible.

. 3.2 Simulation framework

In this thesis, as a simulation framework are called all the scripts created
to enable meaningful simulations of IMU sensor in Gazebo simulator. To
understand the following framework’s philosophy, it is worth to remind that
all the resources available during this thesis were only:

B 3 few datasets with raw data measured by real IMU sensor BNO055 on
the mobile robot and corresponding datasets consisting of waypoints
measured by precise GPS, as described in previous section (3.1

® the basic URDF/SDF model of the real mobile robot with the solution
of its inverse kinematics task

Thus, to be able to simulate the output of the IMU sensor and evaluate
its quality concerning the real measurement I had to solve a few additional
tasks before I could start to work on actual IMU modeling. So, I placed the
following demands on the framework’s functionality:

B trajectory tracking of the real robot’s trajectory by the robot model in
Gazebo simulator

® data acquisition of the simulated IMU sensor
B data post-processing for both simulated and real IMU sensors

® semiautomated IMU output comparison, evaluation, and saving of results

In the following subsection [3.2.1] I first describe the overall structure
and high-level design of the framework. Subsequently, implemented solu-
tions of above-stated problems are described more in detail in next sub-
sections. And finally, an extensive user documentation of this framework,
including the example configuration file is accessible as a README.md in the
imu_simulation_framework directory on the attached CD (see appendinx

B).

43

3. IMU modeling

utils.py

helper and signal
processing functions

offline__result_comparison.py

offline comparison of data
produced by script
result_comparison.py

.ini file
cofiguration of
whole framework

[$

path__follower.py

raw data
GPS, IMU

.csv files

i

post-processed data

GPS raw data pre-processing .csv files

and control of robot's model

1

error__publisher.py

instantaneous distance and
orientation errors publisher

comparison graphs
in form of pictures

result__comparison.py ‘

simulated IMU data capture, ‘
| pre-processing, and comparison
with the real IMU output

—

imu_yaw__publisher.py

(i toor)

- computes YAW angle of the rqt_multiplot tool

| simulation gt and simulated
IMU output

GAZEBO
real-time visualisation
of simulated IMU output

Robot model

wheel__velocity__controller

IMU model

—

Figure 3.8: Simplified high-level flowchart of the IMU simulation framework,
blue boxes correspond to separate ROS nodes

B 3.2.1 General framework design

The main idea behind the framework’s design was to simulate as good as
possible the real experiments with a mobile robot in Gazebo to be able in
the end compare the outputs of the simulated and real IMU sensors directly.

For that purpose, I designed the framework as a set of mutually com-
municating ROS nodes. This way of design ensures good modularity and
can be easily extended or modified if needed. It was implemented in the
programming language Python 2.7, which is fully supported by ROS and well
portable. Also, the Python-based implementation can directly benefit from
the rich variety of modules for the data processing, plotting or computations.

Figure [3.8 shows the framework’s structure from a high-level point of view.
Its operation can be described as follows.

In the beginning, the script path_follower starts and loads the raw GPS

44

3.2. Simulation framework

data from the path defined in the given ini configuration file’. According
to the user’s setting the raw GPS data are pre-processed and converted to
the set of waypoints in 2D (i.e., the coordinates [t;, x;,y;, 0;], where t; is
the time of reaching the waypoint i and 6; stands for robot’s heading (yaw)
angle. Also, the start and stop times stamps of the experiment are identified.
The waypoints are then used as an input for the inverse kinematics model,
which converts them to the set of wheel velocities, needed to follow the same
trajectory in simulation as the real robot did. The waypoints together with
computed wheel velocities are stored in temporary file trajectory_data.csv
which is subsequently loaded by other parts of the simulation framework. Also,
a unique file-name prefix including the date and time-related to the start of the
simulation is generated py path_follower and the start and stop timestamps®
information are automatically detected. These information are then sent
via custom ROS service to result_comparison script. Thanks to that all
the files generated by path_follower or result_comparison are stored in
a well-arranged way with the same file-name prefix and result_comparison
can load the corresponding part of IMU raw data from the file path defined in
a configuration file. IMU raw data are then automatically truncated to match
to the trajectory data and pre-processed. After that result_comparison is
ready to gather the IMU data.

When the result_comparison is ready, path_follower sets the robot
model in the simulator to the initial robot’s position (in agreement with the
initial position from the GPS raw data) using ROS service supported by
Gazebo simulator and the control loop starts to run.

At this point, according to setting loaded from the configuration file,
two different scenarios can happen. If the feedback control is disabled, the
path_follower simply publishes the computed wheel velocities with correct
timing, relying fully on the underlying wheel_velocity_controller (see
subsection [3.2.2| for details) in Gazebo to control the movement of the robot,
which is, in fact, open-loop control. On the other hand, when the feedback
control is enabled, the error_publisher script comes on the scene. With
a certain frequency, it publishes the heading and distance error’l Based on
that a wheel velocities’ "correction” is computed using PID controllers and
afterward, the wheel velocities are published. When tuned properly, the
feedback control significantly improves the trajectory approximation when
the robot in simulator starts to go wrong. The trajectory tracking algorithm
and control are discussed in subsection [3.2.2. 'When the path_follower
ends, it generates the graph with the history of both angle and distance error,
showing the quality of trajectory approximation.

Both result_comparison and error_publisher subscribe to the ROS

2The format of the raw input data required by the simulation framework is described in
the user documentation, available on the attached CD.

3Start and stop ROS timestamps corresponding to the desired part of GPS raw data do
not necessarily correspond the first and last entries of the raw data CSV file. User can set
start and stop index in the config file.

4Euclidian distance between the reference waypoint’ coordinates and the actual robot’s
coordinates in the simulator.

45

3. IMU modeling

topic over which the wheel velocities are sent to the wheel_velocity_controller
in Gazebo. They use this topic for synchronization and trigger their activity
(IMU data acquisition of error computation) immediately when path_follower
starts to publish the wheel velocities.

If no error occurs during the simulation, path_follower manages to
publish all the precomputed wheel velocities, and immediately after that
it stops the robot (send zero wheel velocities) and sends stop request to
result_comparison. error_publiser stops automaticaly when it cannot
compute the error anymore (after the time duration of experiment elapses).
Also premature shutdown of the experiment is possible by sending manually
the SIGINT signal®| to result_comparison. In that case, the data captured
until this moment are saved and comparison is executed.

According to the settings in the configuration file, several graphs are gen-
erated by result_comparison in the end of the simulation. For now, the
primary output is the comparison of the yaw angles computed from the real
and simulated IMU data which lies in the main scope of this thesis. In addition
to that also helper functions for trajectory tracking algorithm tuning were
implemented, for example, simulated versus desired ground-truth trajectory
plotting, or wheel velocities analysis graphs. Following the same general
signal processing approach, which was already implemented in general utils
script, result_comparison can be prospectively extended in the future to
compare also directly angular velocities or accelerations.

The post-processed simulated IMU output data cropped real IMU raw data,
and the actual wheel_velocities of the robot model from the simulator,
are also saved in the form of CSV files to enable even offline processing.
offline_result_comparison can load exactly this data and execute the
analysis offline, but utterly different tool like Matlab can be used for this
purpose too.

For the purpose of real-time visualisation of simulated IMU output the
rqt_multiplot [68] was used. The ROS node imu_yaw_publisher only
converts the orientation in imu ROS topic from quaternions to yaw angle to
directly visualize this angle rather than quaternions.

B 3.2.2 Trajectory tracking

In a mobile robotics, the trajectory tracking describes the problem of following
the desired path (typically defined as a set of waypoint) when also fulfilling all
the time constraints. The time constraints make it much harder problem to
solve compared to the simple path tracking problem where only the following
of a given path is of interest regardless of time constraints.

For the IMU model evaluation, the ideal scenarios would be basic defined

®This is typically done by pressing Ctrl+C in the corresponding console on UNIX
operating systems.

46

3.2. Simulation framework

paths that could be easy implemented directly in Gazebo. But it was not
possible since the real robot was not available for any further experiments.
Also, the original control algorithm itself, which would be ideal for mimicking
the robot’s movement in Gazebo simulator accurately, was not provided. So
the trajectory tracking (or at least a good approximation of the original
trajectory in the simulator) based on purely GPS raw data was needed to
solve.

The provided SDF robot model implements wheel_velocity_controller’.
Because the solution of inverse kinematics was known (see equations |3.18|
3.19)) using it to control directly the robot was logical approach.

The computation of wheel velocities was implemented in path_follower,
in particular in functions:

B load_reference_trajectory_data - this function loads the raw data,
do the pre-processing (data truncating, interpolation and normalization”)
it computes the linear velocities as difference between coordinates of
consecutive waypoints divided by time difference.

B compute_wheel_velocities_inverse_kinematic_model - computes the
wheel velocities needed to reach the waypoints in desired time

Real vs. simulated robot position

y [m]

—— reference position
simulated position

T T T T T T T

-4 -2 0 2 4 6 8
x [m]

Figure 3.9: Open loop control, path comparison, trajectory A

After first experiments with wheel_velocity _controller in Gazebo it
turns out though that it does not work perfectly. Even after hours of tuning

SROS PID controllers, separately connected to drive wheels, controlling the wheel velocity
and dealing internally with the robot’s dynamics.
"Make the robot start in the origin no matter what were the original coordinates.

47

3. IMU modeling

of its underlying PID controllers, it was not working sufficiently. Although it
manages to well approximate the speed on straight parts of the trajectory,
in the sharp windings the controller failed to make the robot turn in the
desired direction fast enough, which was leading to ever-increasing angle and
distance error, as depicted in the figure 3.9, In addition to imperfect velocity
controller, also the robot model iteself tended steadily to turn a bit in one
direction because of small asymmetry of the front wheels. So clearly the naive
open-loop control was not sufficient in this case, and different approach had
to be found.

Even though there have been some papers published about the differential
drive trajectory tracking problem, for example, [69], or [70], therein pro-
posed solutions are based on advanced control techniques such as non-linear
control theory. Unfortunately, an implementation from scratch of such a
controller assumes a deep understanding of the advanced control theory and
does not correspond to the topic of this thesis at all. Because of that, I
tried to find an existing ROS/Gazebo trajectory tracking controller that
would be easily applicable in my simulation framework. Despite my best
effort, I did not find any easy-to-use solution that would directly co-operate
with wheel_velocity_controller, which has to be kept due to backward
compatibility with the rest of the whole project.

So finally I ended up with the assumption that the precise trajectory
tracking is not strictly necessary to be able to say something about the
quality of simulated IMU outputs (see subsection [3.2.3 for details about
data comparison and IMU model evaluation) and I designed my own control
solution to improve insufficient behavior of Gazebo velocity controller.

To improve the behavior of wheel_velocity_controller I designed and
implemented a custom feedback PID control loop that ad hoc slightly increase
or decrease the wheel velocities to improve the turning behavior. The following
Python code snippet shows the simple yaw angle control, as implemented in
function control_wheel_velocities in path_follower. Note that variable
self.yaw_error contains the signed difference between the reference and
simulated yaw angle and thus can be used to determine the turning direction.
Its value is periodically computed by error_publisher published via custom
ROS topic.

I part

self .E_yaw = self.E_yaw + self.yaw_error

D part

ed_yaw = self.yaw_error - self.yaw_error_old
self.yaw_error_old = self.yaw_error

PID controller

u_yaw = np.abs(self.yaw_error * self.Kp_yaw +
self .E_yaw * self.Ki_yaw + ed_yaw * self.Kd_yaw)

48

3.2. Simulation framework

if (self.yaw_error < 0): # turn right
velocity_left = velocity_left + u_yaw
velocity_right = velocity_right - u_yaw

else: # turn left
velocity_left = velocity_left - u_yaw
velocity_right = velocity_right + u_yaw

In addition to the yaw controller, I designed and also implemented a
"distance" PID feedback controller, which converts the Euclidian distance
error to the similar correction of wheel velocities. This controller is coupled
after the yaw controller, and the main idea is to turn the robot even a bit more
in the direction to the reference waypoint. The turning direction is computed
as the angle between the vector among coordinates of the robot’s current
position and the reference waypoint with respect to the current robot’s yaw
angle.

B Experimental results

The experiments shows that the feedback control improves the trajectory
tracking approximation significantly.

Both distance and yaw angle control provide the best results in the sense of
the smaller average distance and yaw angle errors (see figure |3.10)), but when
it comes to the yaw angle approximation only, the distance PID controller
introduces an artificial yaw error - small oscillations that are unwanted with
respect to the fact that yaw angle is the primary quantity of comparison (see
yaw error in the figure |3.10b). Thus, best results can be achieved by yaw
angle PID controller only, when properly tuned (see figure 3.11). Therefore
for IMU simulation, this approach was used. The constants of PID controllers
can be set in the configuration file.

Real vs. simulated robot position

—— reference position

y milated position Yaw error
6 =47
N\
Pz \. 5

10 20 30 40 50 60 70
Time [secs]

)

error [rad]
o =
o

7\
NI%

2 /
L2 dist:
/ pl o istance error
0 N v E
\// goos—

000l . d

-4 -2 0 2 4 6 8 0 10 20 30 40 50 60 70
x[m] Time [secs]
(a) : Path comparison (b) : Control errors

Figure 3.10: Feedback PID control - yaw + distance control, trajectory A

49

3. IMU modeling

Real vs. simulated robot position

Yaw error

6 1
0 T T T T

4 0 10 20 30 40 50 60 70
Time [secs]

L2 distance error
0 014
—— reference position
simulated position

-4 -2 0 2 4 6 8 0 10 20 30 40 50 60 70
x[m]
Time [secs]

error [rad]

y[m]

error [m]

(a) : Path comparison (b) : Control errors

Figure 3.11: Feedback PID control - yaw control only, trajectory A

Bl 3.2.3 Data comparison

Some comparison approach is needed to evaluate the quality of the imple-
mented IMU models, with emphasize to the yaw angle estimation.

For the purpose of comparison approach description, let assume two signals
describing the robot’s yaw angle over time. The ground truth signal g(t)
is given by either GPS in the case of provided raw data greqi(t), or is pro-
vided internally by Gazebo simulator as a ground truth signal gsm, (). The
estimated yaw angle signal f(¢) is the angle estimation by either real IMU
sensor BNOO55 fcq(t) (where yaw angle is estimated internally on chip by
proprietary algorithm) by the IMU model in ROS/Gazebo fgin,(t), which is
in detail described in later section [3.3l

In general, the comparison of two random signals is always a challenging
task. Because of the randomness, there is no simple deterministic metric
which could be directly applied to evaluate the similarity of signals, and the
comparison should be made on a statistical basis. For that kind of analysis,
many repetitions of both random signals must be available, the more the
better. Then various types of statistic measures can be applied to both group
of signals, and these can be then compared to each other and evaluate the
amount of similarity.

In this thesis, I face a much harder situation. Only a ver7 limited number
of datasets with raw IMU data was provided, and additional experiments
with the sensor and mobile robot were not possible. Besides, most of the
datasets were measured exclusively for different trajectories. There is was no
bigger set of IMU measurements done for one single trajectory. Because of
that, a truly reliable statistical comparison of the real IMU sensor BNO055
with IMU model in Gazebo is not possible. But still, some similarity measure
is needed to compare the g(t) with f(t), which would permit at least some
kind of comparison of the IMU model with the real IMU sensor, based on

50

3.2. Simulation framework

the limited datasets available.

One of the most frequently used time-domain signal similarity measures is
a cross-correlation function. Unluckily, it does not make much sense in this
case. It is a reasonable similarity measure to find some pattern in the noisy
signal but does not consider the similarity of the nature of noises, which is
desired in this case.

Another simple metrics is a signal difference. It is well known that in
short-term operation even a low-cost IMU sensor usually provides accurate
angle estimation. The main subject of interest is the long-term behavior.
And here can the simple signal difference shed some light on the trend of
error-growing process. When plotted graphically it shows directly how the
yaw estimation error evolves. It mirrors the sum of all underlying noises
and error causes in time domain. Formaly, the yaw estimation errors can be

defined as
€real (t) = |g7“eal(t) - freal(t)| (335)

esim(t) = |gSim(t) - fszm(t)’ (336)

for real IMU and simulated IMU respectively.
In this thesis, the desired state is to see similar yaw estimation error in the
simulation as for real measurements, in other words

|eraw(t) - esim(t)| ~ 0 (337)

Since noises are random, the effort to have a precise matching of e;q,, (%)
and egm(t) does not make much sense. But what is desired is a similar
long-term error trend of both simulated and real IMU sensors in a statistical
sense.

For trend extracting, the median filtering can be used. The median filter
is a non-linear filter, which computes for each discrete time step of the signal
the value as a median over the window size which can be formally defined as

y(n) = medjz(n —k),z(n—k+1),...,z(n+ k)] (3.38)

where x(n) is a discrete input signal, k is a window size, and y(n) is output
filtered discrete signal [71].

In this way the comparison was implemented in function plot_yaw_difference,
the signal processing functions were implemented as general purposes func-
tions in module utils. When the signals are differently sampled, both signals
are firstly interpolated, and then their difference is computed and plotted.
Optionally, the function can try to make a precise time alignment of the yaw
estimation and corresponding ground truth signals based on cross-correlation.

To see "under the surface" of the frequency-domain, I also implemented
the automated plotting of PSD function. For that purpose, different methods
can be used. I used Welch’s method, which provides a good trade-off between
the frequency resolution and variance of PSD estimation and belongs to

o1

3. IMU modeling

the non-parametrical methods (does not need a priori knowledge about the
signal). The Welsch’s method can in a simplified way described as follows
[72):

1. Split the random signal into partially overlapping segments.

2. For each segment estimate the periodgram®

3. Get the final PSD estimation as average over the local estimates.

In the simulation framework, I used Welsch’s method algorithm available in
the module scipy.signal and implemented it in the function compute_psd_welch
in utils, which automatically sets the biggest possible segment size (nperseg
parameter). The result_comparison script then automatically plots the
PSD function graph in log-scale for yaw angle output fsim (t), frear(t), and
also for the yaw angle errors e, (t) and e,eq(t).

B 3.3 IMU model

The modeling of IMU sensors in ROS/Gazebo world is done on the input-
output basis. Rather then simulation of the partial components of the sensor
itself, which would be more computation demanding, Gazebo takes the ground
truth angular velocities and accelerations computed by the physics engine
and "corrupt” them desirably by IMU noise model to simulate the real IMU
behavior.

In this thesis, the Gazebo 9.0.0. was used with the default physic engine
ODE (Open Dynamics Engine) which is probably the most commonly used
physic engine among the robotic simulators [35]. On the lowest level, the
accelerations and angular velocities (computed as a rate of change of the
orientation in three axes) are part of the state vector of every tangible body
simulated in ODE.

In every iteration of the ODE simulation loop, the forces are applied to
the simulated bodies, that have a defined weight and consist of several parts
connected with joints that introduce mechanical constraints. Based on known
physics laws such as Newton mechanic laws the resulting forces are computed
and virtually applied to the bodies. Since the mass of the body is know, the
acceleration and angular velocity vectors can be updated.

Gazebo simulator supports the majority of conventional sensors including
IMU as a part of its core functionality, which is tightly bound with the
SDF model-description language. In SDF, there are special tags for all
currently supported sensors. So theoretically, it could be sufficient to define
the sensor in the robot’s SDF file and set its properties there according to
SDF documentation [56].

8Estimation of the spectral density of the signal, commonly computed by FFT algorithm.

52

3.3. IMU model

Apart from the core Gazebo sensor support, there is also the possibility
of using Gazebo plugins written in C++ to model the sensor’s behavior.
Gazebo plugins have direct access to almost all Gazebo functionalities via
C++ API, and thus they can even completely take over the simulations of
sensor’s functionality since they have the full access to the physics engine.
Compared to SDF sensor models only, plugins offers better modularity and
customization options and can be easily connected to ROS.

So in Gazebo simulator, all sensors are ordinarily implemented also as
plugins publishing the standard ROS messages, even though the plugins are
often more or less only wrappers for the core sensors’ support.

Iimplemented the model of IMU sensor as a small box with a negligible mass
in xacro file. The following code snippet shows the simplified'’| implementa-
tion in such a way that the Gazebo plugin with the logic of IMU sensor itself
can be easily changed by replacing the contents of insert_imu_gazebo_part
macro in file imu_sensor.gazebo.xacro. This code snippet assumes that
the robot has a link called world_link to which is the IMU sensor attached.
This link is also then used to compute the appropriate accelerations and
angular velocities by the physics engine. Macro box_inertial computes
the corresponding values of inertia tensor for the IMU model automatically,
according to known formulas for box shape |73].

<7xml version="1.0"7>
<robot name="imu" xmlns:xacro="http://www.ros.org/wiki/xacro">

<xacro:include filename="$(find urdf)/sensors/
components/imu_sensor.gazebo.xacro"/>

<link name="imu_link">

<visual>
<origin xyz="0 0 0.4" rpy="0 0 0 "/>
<geometry>

<box size="0.08 0.04 0.005"/>
</geometry>
<material>
<color rgba="0 0 0.8 0.5"/>

</material>

</visual>

<collision>
<origin xyz="0 0 0" rpy="0 O 0"/>
<geometry>
<box size="0.08 0.04 0.005"/>

9xarcro is an XML-like macro language which helps to keep the URDF/SDF files in a
well-arranged way.

0The variables were replaced by hard-coded values in this code snippet for better
readability.

53

3. IMU modeling

</geometry>
</collision>

<xacro:box_inertial mass="0.002" length="0.08"
width="0.04" height="0.005" />
</link>

<joint name="joint_imu" type="fixed">
<axis xyz="0 0.0 0.0"/>
<origin xyz="0 0 O " rpy="0 0 0 "/>
<parent link="world_link" />
<child link="imu_link" />

</joint>

<xacro:insert_imu_gazebo_part/>

B 3.3.1 Noise modeling

To simulate both the white noise and random walk (bias drift), the following
simple noise model can be considered [74].

Let SN)[k] is the discrete output of the real gyroscope. Then the gyroscope
model can be described as

Q[k] = Q[E] + b[k] + n[k] + initial offset (3.39)

where the Q[k] is the ground truth angular velocity, b[k] is current bias drift
(random walk term) and n[k] is a additive white noise term.
For the additive white noise model then holds:

nlk] = ogqwlk], w[k] ~N(0,1) (3.40)
Ogd = \;% (3.41)
where o4 is the ARW coefficient, and At is the sampling time.
A simple random walk model can be defined as:
blk] = blk — 1] + opgqw[k] (3.42)
Obga = OpgV AL (3.43)

where 0y, is corresponding to the gyroscope rate random walk parameter.

In this way, the noise can modeled independently for all gyroscopes and
acceleroemters (for all three axes). There are also more complex approaches to
model the IMU noise, published for example in [75], the stochastic modeling
theory is provided in comprehensive handbook [76].

o4

3.3. IMU model

B 3.3.2 Available IMU plugins

To my best knowledge, until now, four different open source ROS/Gazebo
IMU plugins were created and published.

B GazeboRoslmu

The official Gazebo documentation mentions two ROS/Gazebo IMU plugins
[77]. The first one GazeboRosImu is probably the oldest IMU plugin in
Gazebo/ROS world which was created by the ROS community in 2003
[78]. This plugin access directly the physics engine interface and the IMU
measurements are computed directly by ROS and not Gazebo.

The plugin offers only basic features. Gravity is not included in the
accelerometer’s output, and the only noise model is additive while noise that
is described by a single standard deviation parameter that is then applied
identically to all output values. It can be considered as a deprecated solution
now.

B Gazebo generic IMU plugin

The second officially mentioned Gazebo plugin is called GazeboRosImuSensor
and inherits more logically directly from Gazebo SensorPlugin class. Com-
pare to the previous solution, the gravity is included in accelerations, and
Gazebo handles the computation. This plugin is a wrapper for the core
Gazebo IMU support implemented in gazebo/sensors/ImuSensor.cc. The
sensor position, reference frame, fixed offsets and level of white noise can be
set.

The underlying Gazebo core IMU implementation supports an extended
white noise model. For each accelerometer’s or gyroscope’s axis the additive
white noise can be defined independently as a standard deviation and mean
value. The white noise can also be set to the bias in the sense that a spcified
amount of white noise is added to the set offsets when the IMU model is
loaded, which corresponds to the bias repeatability, but the bias random
walk is not simulated. Also, for now, no noise is applied to the orientation
IMU output at all [47]. However, it is likely that the future of random walk
modeling (i.e., low-frequency bias drift) will appear in the future Gazebo
release since there is an open pull request to integrate this feature |79).

The IMU model based on this plugin was implemented as imu.xacro
file. The corresponding Gazebo part is to be found directly in the official
documentation [77].

B RotorS IMU plugin

A custom IMU plugin was developed by the team from Autonomous Systems
Lab at ETH University in Ziirich [80] as a part of RotorS project. RotorS
is a MAV!'!| Gazebo simulator, a complex simulation environment, that also

U\ icro air vehicle - remotely controlled small air vehicles such as drones

55

3. IMU modeling

includes various MAV models, worlds definitions etc. Whole RotorS simulator
is well documented on its website [81].

According to the source code and documentation, this plugin has clearly
the best noise model among all available plugins. It has more complex random
walk model than the one described by equations |3.42],|3.43. It models the
random walk as a low-frequecy drift with drift frequency f; = % according
to the approach described in [76]. In particular, the bias drift is implemented
there as:

blk] = ¢gablk — 1] + opgaw[k] (3.44)

b[k] = e(‘i) D[k — 1] + \/—abg $ Oy - % : (e(_zfi) - 1) ~wlk] - (3.45)

which can be rewritten as

blk] = T8 bk — 1] + abgV _2; (emHabt— 1) wlk], (3.46)

where At is sampling time, and 74 is correlation time of the low-frequency
drift.

This plugin uses a custom format of produced messages that can be con-
verted to standard ROS topics by a helper plugin gazebo_ros_interface_plugin.

Nonetheless, even my best effort, I was not able to make this plugin work.
Even though Gazebo simulator built the resulting SDF model successfully,
all dependencies were fulfilled, and Gazebo registered both the sensor and
helper plugins, no ROS messages were produced at all. In the official project’s
website, another two Gazebo users announced the same issue with this plugin
in a bug reporting system, but the issue thread is still without any reply
from the developer team [82]. By all accounts, it seems that although the
RotorS sensor Gazebo plugins are available in a stand-alone Ubuntu package
ros-melodic-rotors-gazebo-plugins, they were never meant to be used
outside the RotorS framework.

B Hector IMU plugin

Another custom plugin was implemented by Johannes Meyer from Hector
team at TU Darmstadt in 2012.

Similarly to the previous RotorS plugin, it also implements the low-
frequency drift in addition to the white noise. What makes this plugin
unique are custom ROS services that enable online calibration and reconfig-
uration of plugin’s parameters, and also the yaw angle has separate noise
model including the low-frequency drift which is an especially exciting feature
concerning this thesis primary goal.

56

3.3. IMU model

On the other hand, beside a brief description at ROS wiki [83], no additional
documentation or support is provided and putting the plugin into operation
was quite tricky.

Keeping the same notation as in previous plugin, the bias drift is computed
by formula:

blK] = e~ 45 bk — 1] + At - w[H, (3.47)
where
wg[k] ~ N(Ov O-drift\/%) (348)

According to [83], the ogy;f is a standard deviation of the drift error. Unfor-
tunately, the reference or derivation of the equation above is provided neither
in the documentation nor in the source code. From comparison of equations
3.46 and |3.47it can be seen that even though the formula is similar, the o4,
parameters does not directly correspond to the rate random walk parameter
Obg-

This plugin was implemented as imu_hector.xacro, with the following
Gazebo part:

<?7xml version="1.0"7>
<robot name="imu" xmlns:xacro="http://www.ros.org/wiki/xacro">

<xacro:macro name="insert_gazebo_part_imu">
<gazebo>
<plugin filename="libhector_gazebo_ros_imu.so"
name="hector_imu_plugin" >

<alwaysOn>true</alwaysOn>
<bodyName>imu_link</bodyName>
<topicName>imu</topicName>
<serviceName>/imu/calibrate</serviceName>
<gaussianNoise>0.0</gaussianNoise>
<updateRate>100.0</updateRate>
<frameName>imu_link</frameName>

<I-- Accelerometer config, 3 values are corresponding
to x,y,z axis respectively —->

<accelOffset>0 0 0 </accelOffset>
<accelGaussianNoise>0 O 0</accelGaussianNoise>
<accelDrift>0 0 O </accelDrift>
<accelDriftFrequency>0 0 0</accelDriftFrequency>

<!-- Gyroscope config -->

<rateOffset>0 0 0</rateOffset>
<rateGaussianNoise> 0 0 0</rateGaussianNoise>
<rateDrift>0 0 O </rateDrift>
<rateDriftFrequency> 0 O 0</rateDriftFrequency>

<l-- Separate error model for YAW angle -->

o7

3. IMU modeling

<yawOffset> 0 </yawOffset>

<yawGaussianNoise> 0 </yawGaussianNoise>
<yawDrift> 0 </yawDrift>

<yawDriftFrequency> 0 </yawDriftFrequency> -->

</plugin>
</gazebo>
</xacro:macro>
</robot>

To keep this code snippet simple, all the parameters are equal to zero. In the
real experiments, the parameters were set online by the result_comparison
script where the custom setter function was implemented.

o8

Chapter 4

Experiment results

In this chapter, I describe the simulations done to evaluate the implemented
Gazebo IMU models described in the previous chapter. For the comparison,
I selected four different trajectories with time duration of approximately 10
minutes of robot’s driving, which is long enough to see the effects of bias drift.
The paths (trajectories')) corresponding to the used datasets are depicted in
figures [4.1}

In the following text, I tag all data or results corresponding to the ex-
periments with the real mobile robot and real IMU sensor BNOO055 as real,
on the other hand, tag simulated corresponds to data or results related to
simulations performed in Gazebo and to the IMU model. The trajectories
were approximated in Gazebo 9.0.0. and ROS Melodic by the feedback con-
trol algorithm described in section |3.2.2) when only the yaw angle control
was used. I performed all simulation at laptop Lenovo X201, Intel Core
i5 CPU Mb540, 4GB RAM, Intel HD graphics, with the operating system
Linux Mint 18 OS. Because of older hardware setup of the used computer,
the simulations were run in a mode without visualization (without gzclient).

Before the simulations were made, several reductive assumptions about
the provided raw data were accepted. Namely, I worked on the following
assumptions:

® The terrain imperfections can be considered as insignificant, and the
robot’s movement can be simulated on an ideally flat surface in the
simulator.

® There were no significant mechanical stresses and vibrations caused by
external sources that influenced the robot and the IMU output.

® No temperature and voltage drift occurred in the IMU sensor during
real experiments.

® The ambient temperature did not vary among different experiments and
was similar to common room temperature.

!Every dataset includes a trajectory description - set of waypoints from GPS and corre-
sponding raw IMU measurements. In this chapter, I call the datasets simply "trajectories".

99

4. Experiment results

Trajectory A Trajectory B
25
6
20
4 15
E E
> > 104
2
5
0
0
-4 -2 0 2 4 6 8 0 5 10 15 20 25 30 35
x[m] x [m]

(a) : Trajectory A, followed iteratively (b) : Trajectory B, followed only once

Trajectory C

o] Trajectory D

y[m]

T T T T T T
-4 -2 0 2 4 6

x [m] x [m]

(c) : Trajectry C, followed iteratively (d) : Trajectory D, followed iteratively

Figure 4.1: Testing trajectories used in experiments

These assumptions are somewhat optimistic, but necessary to accept due
to the lack of information about the provided datasets.

B 41 Gazebo generic IMU plugin

I done the first set of experiments with generic Gazebo IMU plugin (see
subsection , which is a standard solution recommended in the official
Gazebo tutorial. This plugin implements only the white noise model, which
is described by one standard deviation parameter op;te.

The average values of white noise parameters found by Allan variance
analysis over all axis are approximately (see subsection :

VRW ~7-107* m/s*/VHz (4.1)
ARW ~5-1072 °/s/VHz (4.2)

Unfortunately, there is no one-to-one matching of these parameters to the
parameters of this IMU plugin. The above values correspond in fact to PSD

60

4.1. Gazebo generic IMU plugin

function, which is a function of frequency (bandwidth). If the used sensor’s
bandwidth is known, the VRW and ARW parameters can be approximately
calculated to RMS noise, which can be then considered as a standard deviation
of the white noise process [84].

Here the used bandwidth is not known, because the BNO055 IMU sensor
set it automatically in the "IMU fusion mode." To get at least a rough
estimation, I assumed that bandwidth was 500Hz for accelerometer and 116Hz
for the gyroscope. These values are in the middle of possible bandwidth sizes
according to datasheet [59].

Oaecet = T+ 107 /500 & 0.017 m/s? (4.3)

gyro A 0.05 - /116 & 0.06 °/s ~ 1% -0.05- ~ 0.00105 rad/s (4.4)

Nonetheless, there is only a one single standard deviation parameter that
is applied directly also to the orientation output in the form of quaternions,
which is of the main interest.

Since the Allan noise analysis did not reveal the white noise directly for the
orientation output and the particular scheme of internal data fusion algorithm
of BNOO055 is unknown, I assumed that mainly the gyroscope contributes to
the yaw angle estimation. The angular velocities including the corresponding
amount of white noise are integrated and iteratively applied to the resulting
position. Thus, I set initially o nite as:

Owhite = 0.00105 rad/s (4.5)

B 4.1.1 Trajectory A

B Experiment 1 - short term experiment

Firstly, I let the model follow only one iteration of the trajectory A, which
took about 1 minute long.

The yaw comparison in figure 4.2/ shows that for the short-term experiment,
the simulated output matches the real signal very well. However, in the closer
look to the estimated yaw angle (figures |4.4, |4.5)), it can be seen that even
after only one minute, a small bias drift of real yaw estimation occurred, while
the simulated yaw estimation overlaps the ground truth simulation signal
almost entirely, except for small amount of white noise.

The maximal real yaw angle estimation error was about 1.5°, which is an
almost negligible error when assuming short-term operation of the mobile
robot. The figure 4.4] also shows that in reality, the output from the real
BNOO055 is sampled on much lower frequency than 100Hz. It may be the
attribute of the internal data fusion algorithm, or the data were downsampled
as a part of post-processing during real experiments.

61

4. Experiment results

YAW angle comparison

37 k&a—./v
2
T 17
o
°
2 07
©
2
> 1
I N) AN AN N N i p imulated gt
real gt
—— imulated IMU
5] —— real BNOO55
0 10 20 30 40 20 00 "
Time [sec]

Figure 4.2: Trajectory A, short-term experimet, yaw angle comparison

Yaw error
—_— 2 T
©
o
S1-
5]
0 - e NN e & S M
0 10 20 30 40 50 60 70
Time [secs]
Distance error
0.25
g 0.20 A
5 0.15
® 0.10 A
0.05 A
0 10 20 30 40 50 60 70
Time [secs]

Figure 4.3: Trajectory A, short-term experimet, control (trajectory approxima-

tion) error

62

4.1. Gazebo generic IMU plugin

YAW angle comparison

2.40 A
2.35
)
o
; 2.30 A
(=]
c
<
=
£ 2.25 1
.......... simulated gt
2.20 A real ot
—— simulated IMU
—— real BNOO55
o 68 70 72

Time [sec]

Figure 4.4: Trajectory A, short-term experimet, detail of yaw angle outputs
after one minute

Yaw error
0.025 A
0.020 A
=)
S 0.015
s
o
2
0.010 A
g
0.005 A
—— real BNOO55 vs. real gt
0.000 4 —— simulated IMU vs. simulated gt
0 10 20 30 40 50 60 70
Time [sec]

Figure 4.5: Trajectory A, short-term experiment, yaw error, smoothed by median
filter with a window size of 101 samples

63

4. Experiment results

B Experiment 2 - long-term experiment

Based on the previous detailed look at the signal, I doubled the value of
Owhite for the further experiments:

Cwhite = 0.00215 rad/s (4.6)

YAW angle comparison

3 .
2 .
5 19
o
Q@
g 07
©
=
<
> —1 -
JENY,J00 S N N N N 1 RN N N N U simulated gt
{ real gt
—— simulated IMU
=37 —— real BNO055
0 100 200 300 400 500 600 700

Time [sec]

Figure 4.6: Trajectory A, long-term experiment, yaw angle comparison

The figures show that with inceasing time, the real yaw angle
signal undergoes steadily growing bias drift leading to growing error of yaw
angle estimation. In the end of this experiment, the real yaw angle estimation
error is about 0.25 rad ~ 15°, which is already significant error for any
navigation purposes.

Figure reveals a limited functionality of the designed simple trajectory
tracking approximation realized by the PID yaw control only in long-term
scale. One can see the growing yaw control error with unwanted oscillations
in sharp windings. The main reason is an increasing delay, which leads to
imperfect timing of the control loop. This delay is also evident in figure
4.7, where the peaks on the simulated signal (i.e., the place where the robot
turned) are delayed by a few seconds compared to real signal.

However, the trajectory tracking imperfection does not play a big role in
IMU model evaluation, since the simulated IMU output is always compared to
the simulated ground truth and afterward the yaw errors are compared to each
other. In this experiment, I also plotted the power spectral density functions
to see the behavior in the frequency domain. The parameter "nperseg" in the
graphs stands for the number of samples per one segment in the Welsch’s

64

4.1. Gazebo generic IMU plugin

YAW angle comparison

1.0
0.9 1
=)
o
o 0.8 1
()]
C
@©
=
< 0.7
o6d |4 AS e simulated gt
real gt
—— simulated IMU
—— real BNOO55
0.5 1 :
670 675 680 685 690 695 700

Time [sec]

Figure 4.7: Trajectory A, long-term experiment, detail of yaw angle outputs
after approximately 11 minutes

Yaw error
3 -
g 21
S
£ -
w
0 A T T T T T T T T
0 100 200 300 400 500 600 700
Time [secs]
Distance error
0.8 A
0.6 A

Error [m]
o
iy

o
N
!

©
o
1

0 100 200 300 400 500 600 700
Time [secs]

Figure 4.8: Trajectory A, long-term experiment, control errors

PSD estimation algorithm. The PSD functions of both simulated and real
yaw signals look very similar (see figure |4.10), even though from the time-

65

4. Experiment results

Yaw error

0.25

A)

o
=
o

=
*q\‘,

°
Al
S}

Yaw error [rad]

0.05 ﬂ//\k‘

——— real BNOO55 vs. real gt

0.00 —— simulated IMU vs. simulated gt |
I I I I
0 100 200 300 400 500 600 700
Time [sec]

Figure 4.9: Trajectory A, long-term experiment - yaw errors, smoothed by
median filter with a window size of 519 samples

Power Spectral Density functions - Welch's method
simulated IMU vs. real IMU yaw angle estimation, nperseg: 32768

I T T TTTIT I T T TTTIT I
103 —— simulated IMU yaw estimation |

—— real IMU yaw estimation

10t L

)
/
N

i
<
w

PSD [rad”~2/Hz]

jury
2
[

10—7 L]

103 1072 1071 10° 10t
frequency [Hz]

Figure 4.10: Trajectory A, long-term experiment - PSD function of yaw angle
outputs

66

4.2. Hector IMU plugin

domain comparison is clear that the generic IMU plugin lacks the drift feature.
The reason is, that in the area of lower frequencies, several dominant peaks
are corresponding to the repetitions of the trajectory A, which manifests
themselves as low-frequency signals with much higher power than the bias
drift. Therefore in this PSD graph, the bias drift is not observable at all. The
presence of low-frequency bias drift in real yaw signal is nevertheless noticeable
clearly from the second PSD graph showing the PSD functions of yaw errors
(figure . In this case, the simulated yaw output has significantly smaller
power on low frequencies by a few orders of magnitude.

Power Spectral Density function - Welch's method
yaw angle errors, nperseg: 65536

100 -
1072

10—4 -

o Wy,

PSD [rad”™2/Hz]

10-10 4

10—12 -

10—14 4
—— simulated IMU yaw error PSD
107 4 —— real IMU yaw error PSD

1073 1072 107! 10° 10!
frequency [Hz]

Figure 4.11: Trajectory A, long-term experiment - PSD function of yaw errors
smoothed by median filter with window size 101 samples

The performed experiments showed the fundamental limitation of the
generic Gazebo IMU plugin. Because it does not simulate the low-frequency
bias drift, it is suitable only for short-term experiments and lacks the fidelity
in longer experiments.

Thus, I made all other experiments for different trajectories with the Hector
IMU plugin only.

B 4.2 Hector IMU plugin

The main comparable advantage of the Hector IMU plugin is a separate noise
model for yaw angle output including the bias drift simulation. Tunable input
parameters of its noise model correspond to the variables in the equation [3.47]

and [3.48t

67

4. Experiment results

Yaw errors - real IMU datasets

0.30
—— trajectory A
0.25 - trajectory B
—— trajectory C
—— trajectory D
0.20 A
T 0.15 A
o
2 0.10 1
9]
2
2 0.05 -
0.00 A
—0.05 A
-0.10 T T T T T T T
0 100 200 300 400 500 600
Time [sec]

Figure 4.12: Yaw errors for real datasets, signals smoothed by median filter
with window size 591 samples

B o,nite - Standard deviation of the white noise
® f; - mean frequency of the low-frequency bias drift
B 04 - standard deviation of the bias drift

While a reasonable estimation of ope can be used from the experiments
with generic IMU plugin (see equation 4.6), neither fq nor og.;y were found
directly by Allan variance noise analysis. Besides, the found rate random
walk parameters, corresponding to the gyroscope bias fluctuations seems
to be very unreliable. Moreover, the Hector IMU plugin does not compute
the orientation from the noisy gyroscope and accelerometer data, but in
every discrete timestep, it takes directly the orientation and apply the noise
yaw model separately. Thus, I roughly estimated f; and og4.;y based on the
available real datasets and then I experimentally verified the correctness of
the estimation.

For that purpose, I plotted the yaw errors and corresponding PSD func-
tions of the four used datasets (figures |4.12, |4.13). The detail of PSD
functions for lower frequenciesshows in figure 4.13| shows that there is a peak
at approximately

f=~0.015 Hz (4.7)

which is equal to perid (correlation time) approximately
T~ 70 sec (4.8)

When comparing this figures with the resulting yaw output PSD function
from the long-term experiment with generic IMU plugin (figure 4.10)) and

68

4.2. Hector IMU plugin

Power Spectral Density function - Welch's method
real IMU yaw angle errors, nperseg: 32768

10—1 .
1072 .
10-3 4
N
<
< 107 4
kel
o
3 1075
o
1075 5 .
—— trajectory A
trajectory B
10-7 - — trajectory C
—— trajectory D

1072 107!
frequency [Hz]

Figure 4.13: Low-frequency part of PSD for real yaw errors; before Welsch’s
algorithm, signals were smoothed by median filter with window size 591 samples

with the yaw output in the short-term experiment (figure |4.2), it can be
seen that f is roughly equal to the frequency of trajectory iteration. The
figure |4.13 therefore shows that the repetition movement pattern (in case of
trajectories A, C, D) has also some influence to yaw error in real datasets.
Thus, I do not consider the frequency peak at f as a correct estimation for
fa parameter.

Because the length and the sampling rate of the datasets limit the frequency
resolution of PSD functions, for frequencies lower than 10~2 Hz, the PSD
functions do not provide much information. Despite this, the trend of PSD
for the lowest visible frequencies suggests that holds:

fa<0.01 Hz (4.9)
Thus, I set the initial estimation of f; as:
fa=0.005 Hz (4.10)

From the figure [4.12/ T also estimated the maximal magnitude of step changes
in the yaw angle estimation error signals as approximately

AO ~ 0.05 rad (4.11)

The equation |3.48| shows that 04,5 is not directly the standard deviation
of the generated white noisd?, because it is damped (multiplied) by /2fs.
To achieve similar changes in simulated yaw angle estimation, a meaningful
value of 04, seems to given by formula

2O'drqut is called a bias drift standard deviation by the official plugin description in [83]

69

4. Experiment results

A©

Considering the estimated value (equation 4.10) yields:
0.05
Odrift ~ m =0.5 rad (413)

B 4.2.1 Trajectory A

Firstly, I run the simulation with the initial parameters (equations 4.6,
4.10,4.13) three times. To save the space, I do not put all resulting graphs
such as control errors or yaw comparison into this text since at first glance,
they all look almost identical and do not provide much information. However,
all the generated graphs from all experiments are included as files on the
attached CD in directory experiment results (see appendix B)). Figures

Yaw errors
odr,-ft=0.5 rad, fd=0005 Hz

0.251 real BNOO55 vs. real gt
simulated IMU vs. simulated gt: experiment 1
simulated IMU vs. simulated gt: experiment 2
0.20 1 simulated IMU vs. simulated gt: experiment 3
B 0.151
s
@
2 0.10
©
>
0.05 A
0.00 4 M»N f /\
0 100 200 300 400 500
Time [sec]

Figure 4.14: Trajectory A, long-term experiments with Hector plugin - yaw
error comparison

4.14] and [4.15| depict the resulting yaw errors and corresponding PSD functions
respectively. The results show a significant improvement in both time and
frequency domain in comparison to the generic Gazebo IMU plugin. The
bias drift looks realistically. However, it is hard to evaluate based only on a
limited number of datasets and a few repetitions of the same simulation.

It seems that in real data, the steep changes in yaw error signals are caused
somehow by the abrupt changes robot’s movement itself and that the bias
drift itself has a rather slower tendency. Thus, I tried to decrease the fy. I

70

4.2. Hector IMU plugin

Power Spectral Density function - Welch's method
IMU yaw angle errors, nperseg: 32768, 04i+=0.5 rad, f;=0.005 Hz

1071 4—
| L
10-3 | \\ '
107
~
<
?‘ 1077 I
kel
£
2 10-°
o
10—11 .
—— real BNOO55 IMU yaw error PSD
—— simulated IMU yaw error PSD: experiment 1
10713 4 —— simulated IMU yaw error PSD: experiment 2 .
—— simulated IMU yaw error PSD: experiment 3
L T T TTTTT I L T T TTTTT I L T T TTTTT I 1

1072 107! 10° 10t
frequency [Hz]

Figure 4.15: Trajectory A, long-term experiments with Hector plugin - PSD
functions of yaw errors

Yaw errors
O4rir=1.118 rad, f;=0.001 Hz

T
0257 real BNOOS55 vs. real gt
—— simulated IMU vs. simulated gt: experiment 1
—— simulated IMU vs. simulated gt: experiment 2 A
0.20 4 —— simulated IMU vs. simulated gt: experiment 3 IU \

015 — U

el MO WM« J

0.05 NTAY /i }\M\ N‘/ﬁf\ Al v\\/\
V RAA

0 100 200 300 400 500
Time [sec]

Yaw error [rad]

0.00

Figure 4.16: Trajectory A, long-term experiments with Hector plugin - yaw
error comparison

set the following parameters:

f4=0.001 Hz (4.14)
Oarige = 1.118 rad (4.15)

71

4. Experiment results

Power Spectral Density function - Welch's method
IMU yaw angle errors, nperseg: 32768, 04ir=1.118 rad, f;=0.001 Hz

I .
TR
i A
10—3 N
10-°
N
<
< 1077
> 10™ |
o
a
-9
o | |
10—11 4 L -
—— real BNOO55 IMU yaw error PSD
—— simulated IMU yaw error PSD: experiment 1
10-13 4/ —— simulated IMU yaw error PSD: experiment 2 PO ..
—— simulated IMU yaw error PSD: experiment 3
L T TTTIT 1 T T T 1 LT TTTIT 1 1

1072 1071 10° 10!
frequency [Hz]

Figure 4.17: Trajectory A, long-term experiments with Hector plugin - PSD
functions of yaw errors

With the same configuration I made also simualtions for the other datasets,
resulting graphs are in following subsections. Yaw errors were smoothed by
median filter with the window size of 519 samples.

B 4.2.2 Trajectory B

Yaw errors
Udrjft=l.118 rad, fd=0.001 Hz

I I
—— real BNOO55 vs. real gt 1
—— simulated IMU vs. simulated gt: experiment 1
—— simulated IMU vs. simulated gt: experiment 2
0.10 4 —— simulated IMU vs. simulated gt: experiment 3

0.08 L MM/'\

Ll LML Bl
i LRVt
) .Urdh\ \M n All N
ALY R

0.12

Yaw error [rad]

0.00

Figure 4.18: Trajectory B, long-term experiments with Hector plugin - yaw
error comparison

4.2. Hector IMU plugin

Power Spectral Density function - Welch's method
IMU yaw angle errors, nperseg: 32768, 04i=1.118 rad, f4=0.001 Hz

10—1 4
10—3 4
10—5 -
N
<
2\‘ 10—7 4
©
o
2 107° -
o
10—11 p
—— real BNOO55 IMU yaw error PSD
—— simulated IMU yaw error PSD: experiment 1
10713 + simulated IMU yaw error PSD: experiment 2
—— simulated IMU yaw error PSD: experiment 3

1072 1071 10° 10!
frequency [Hz]

Figure 4.19: Trajectory B, long-term experiments with Hector plugin - PSD
functions of yaw errors

For the illustrative purposes, I also include one figure with comparison of
yaw outputs for trajectory B, which was followed only once. The detail of
signal after approximately 10 minutes can be seen in figure This figure
clearly shows that both real and simulated signals are influenced by the bias
drift.

YAW angle comparison

2.95 A
2.90 1
2.85 A
k<)
o
— 2.80 1
[}
i)
5
5 2.75 A
>
2.70 1 :
---------------- simulated gt
2.65 A real gt
—— simulated IMU
2.60 1 _1 rea\l ENOOSS

538 540 542 544 546 548 550 552
Time [sec]

Figure 4.20: Trajectory B, long-term experiments with Hector plugin - detail of
yaw angle output after approximately 10 minutes

73

4. Experiment results

B 4.2.3 Trajectory C

Yaw errors
O'dr,'ft=1.118 rad, fd=0.001 Hz
—— real BNOO55 vs. real gt
0.20 4 — simulated IMU vs. simulated gt: experiment 1
—— simulated IMU vs. simulated gt: experiment 2
—— simulated IMU vs. simulated gt: experiment 3
0.15 1
5
©
s
@ 0.10
2
©
>
0.05 1
0.00 1
0 100 200 300 400 500 600
Time [sec]

Figure 4.21: Trajectory C, long-term experiments with Hector plugin - yaw
error comparison

Power Spectral Density function - Welch's method
IMU yaw angle errors, nperseg: 32768, 04ir=1.118 rad, f;=0.001 Hz

10—1 -

10—3 -

10—5 -

10—7 -

PSD [rad”™2/Hz]

10—9 4

10—11 p
——— real BNOO55 IMU yaw error PSD

—— simulated IMU yaw error PSD: experiment 1
—— simulated IMU yaw error PSD: experiment 2
—— simulated IMU yaw error PSD: experiment 3

10-13 4

1072 107! 10° 10!
frequency [Hz]

Figure 4.22: Trajectory C, long-term experiments with Hector plugin - PSD
functions of yaw errors

74

4.2. Hector IMU plugin

B 4.2.4 Trajectory D

Yaw errors
Udrjft=1.118 rad, fd=0.001 Hz
0.25 17— real BNOOS5S5 vs. real gt
—— simulated IMU vs. simulated gt: experiment 1
—— simulated IMU vs. simulated gt: experiment 2
0.20 4+ —— simulated IMU vs. simulated gt: experiment 3
'8 0.15 4
s
o
% 0.10 A
>
0.05 A
0.00 A
0 100 200 300 400 500 600
Time [sec]

Figure 4.23: Trajectory D, long-term experiments with Hector plugin - yaw
error comparison

Power Spectral Density function - Welch's method
IMU yaw angle errors, nperseg: 32768, 04,i+=1.118 rad, f4=0.001 Hz

10—1 4
10—3 4
10—5 4
N
<
< 107
S 10771
o
o
-9 |
¢ 10
10—11 4
—— real BNOO55 IMU yaw error PSD
—— simulated IMU yaw error PSD: experiment 1
10-13 4 —— simulated IMU yaw error PSD: experiment 2
—— simulated IMU yaw error PSD: experiment 3

1072 107! 10° 10!
frequency [Hz]

Figure 4.24: Trajectory D, long-term experiments with Hector plugin - PSD
functions of yaw errors

75

4. Experiment results

B a3 Experiment summary

The performed experiments proved that the generic Gazebo IMU plugin is not
sufficient for any long-term experiments when a high fidelity of the simulated
IMU output is required. The main reason is the lack of any slow bias drift
simulations.

The Hector IMU plugin enables such simulations, but the underlying noise
models do not directly correspond to standard parameters used to noise
description in IMU sensors, and also the noisy gyroscope and accelerometer
data are not fused to produce appropriately noisy orientation output.

As a workaround, I used only the separate yaw angle noise model and
estimated its parameters based on reasoning done on the top of provided
datasets from real IMU. The set of subsequent experiments proved that in
terms of both frequency and time domain behavior, the output signal looks
much more realistic compared to the output of a generic IMU plugin.

However, it is important to emphasize here, that a solid statistical com-
parison and IMU model evaluation was not possible at all, due to the very
limited number of datasets®. And last but not least also the simulations in
Gazebo were quite time demanding. On the used computer, the simulations
had to run in real-time.

Based on the inspected datasets, to simulate the yaw output of BNOO055, I
consider as reasonable f; valus laying approximately in the interval:

fa € (0.0008;0.007) Hz (4.16)
or in terms of corresponding correlation times approximately:

74 € (150;1250) sec (4.17)

When the magnitude of the yaw error changes is estimated in the time
domain, and the f; is selected, it can be then converted to appropriate o4y
parameter using the equation 4.12|

3Apart from four utilized datasets, I had access to few more. But they had often either
incomplete or corrupted GPS or IMU raw data. Nonetheless, reliable statistical analysis
would require a much higher number of datasets than was available at all.

76

Chapter 5

Conclusion

In this thesis, I dealt extensively with the modeling and simulation of the
inertial measurement unit (IMU) in a robotic simulator for the future rapid
development support of service mobile robots. In agreement with the thesis’s
assignment, I accomplished the following steps:

® [went into the theory of IMU sensors, and described their working
principles, properties and main error causes together with the most
important technical parameters.

B | researched available state-of-the-art robotic simulators. V-rep, Webots
and Gazebo were compared more closely concerning the main goals of
this thesis.

#® The Gazebo simulator was finally selected as the simulation environment.

® [implemented two different IMU models based on available Gazebo IMU
plugins. The models were set to simulate the real behavior of real IMU
sensor BNOO055 with emphasis to the fidelity of the robot’s heading angle
estimation.

® [also implemented a custom IMU simulation framework as a ROS pack-
age. It communicates with the Gazebo simulator and enables the control
of the robot model with respect to provided raw GPS data (trajectory
tracking approximation). It captures the simulated IMU output and
simulated ground truth position, does the data post-processing, saves
the data, and provides semi-automated evaluation of the simulated IMU
model with respect to datasets measured by real IMU sensor.

B | performed a set of simulations in Gazebo using the implemented IMU
simulation framework. The experiment results clearly showed that the
IMU model based on standard Gazebo IMU plugin is not sufficient
for long-term simulations due to the lack of low-frequency bias drift
modeling. The second IMU model based on Hector plugin can model
yaw angle bias drift, but its proper tuning is tricky since its parameters
do not directly correspond to ordinary technical parameters of BNOO055.
However, using this IMU model even with roughly estimated parameters
can still significantly enhance the fidelity of BNO055’s simulations in

77

5. Conclusion

comparison with the standard Gazebo IMU plugin. A solid statistical
evaluation of IMU model was not possible yet and should be done before
real usage of this IMU model for rapid development purposes in the
industry.

In addition to the assignment of this thesis, I also solved the following
problems:

B [designed and implemented a custom feedback PID controller to improve
the insufficient open-loop control of the differential drives mobile robot
model in Gazebo simulator. This controller helps to approximate the
original trajectory provided as a set of waypoints.

® | performed a few long-term static measurements with real BNO055 IMU
sensor and then I analyzed the noise characteristics of BNO055 IMU
sensor by Allan variance method, nonetheless only white noise related
parameters were determined reliably.

Working on this thesis was quite a challenging task, because of too many
"degrees-of-freedom" and a broad scope of different problems and needed
skills.

The original experimental setup with the mobile robot and the original
control algorithm were not provided at all. The particular conditions under
that the provided datasets were obtained were unknown. An last but not
least, the noise parameters listed in the official datasheet and obtained by
Allan variance analysis were not much useable. Also, the comprehensive
documentation for Hector IMU plugin was missing, which led to problems
when putting Hector IMU plugin into work.

I had to use the reverse engineering approach extraordinarily often. Since
this thesis also contributed to the real research project in an international
company, work on this thesis also comprised a significant amount of commu-
nication in foreign language and cooperation across a few countries.

. 5.1 Future work

In this thesis, I did the modeling of real BNOO055 sensor in a simplified way,
based on many reduction assumptions. The following ideas can serve as
guidelines for the future work concerning this topic.

® The solid statistical analysis and evaluation of the Hector IMU plugin
should be done. Ideally, one should perform many independent long-term
experiments under well-defined conditions on a few defined trajectories
with the real robot (maybe even with a few different pieces of BNO055)
and replicate these experiments also with the IMU model in Gazebo. A
long duration of experiments together with a more sophisticated method
of power spectral density computation could increase the desired insight
into low-frequency domain behavior and answer the question whether

78

5.1. Future work

the Hector IMU plugin is sufficient for a high fidelity BNOO055 yaw angle
output simulations.

If the statistical analysis proves that the model based only on Hector
IMU plugin and its yaw angle noise model is not sufficient, one should
consider the implementation of a brand new custom IMU plugin. A good
starting point can be the source code of the RotorS IMU plugin. Its
noise model has reasonable physical meaning, and implementation of a
known data fusion algorithm would enable its application also for the
yaw angle output simulation.

In some datasets, the real BNO055 seems to tend to prefer one direction
during the low-frequency bias drift. Also, a pattern in the robot’s
movement seems to have an impact on bias random walk behavior.
These phenomenons should be analyzed.

All experiments in Gazebo were performed on an ideally flat surface
without any imperfections. Introducing small terrain bulges in the
simulated world could better mirror the reality.

Adding of an optimal trajectory tracking algorithm to the IMU simulation
framework could increase its utility value.

79

80

Appendix A
Bibliography

RobZone Limited. DUORO XCONTROL PROFI - RoboZone.cz. [On-
line; accessed 08-05-2019]. 2019. URL: www . robzone . cz/roboticke-
vysavace/duoro-x-control-profi,

Gregory Dudek and Michael Jenkin. “Inertial Sensors, GPS, and Odom-
etry”. In: Springer handbook of robotics. Berlin: Springer, 2008, pp. 477—
490. 1SBN: 978-3-540-23957-4.

John L. Weston David H. Titterton. Strapdown inertial navigation
technology - 2nd edition. The Institution of Electrical Engineer, 2004.

John Geen and David Krakauer. “New iMEMS® angular-rate-sensing
gyroscope”. In: Analog Dialogue 37.3 (2003), pp. 1-4.

Wikimedia Foundation. 3D gyroscope — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 01-02-2019]. San Francisco (CA), 2019. URL:
https://commons.wikimedia.org/wiki/File:3D_Gyroscope.png.

Walter R Johnson. “ART. III.—Description of an Apparatus called the
Rotascope, for exhibiting several phenomena and illustrating certain

laws of rotary motion”. In: American Journal of Science and Arts
(1820-1879) 21.2 (1832), 264B.

Walter Wrigley. “The History of Inertial Navigation”. In: Journal of
Navigation 30 (01 Jan. 1977). DOI: |10.1017/S0373463300043642.

B. T. Meggitt (eds.) K. T. V. Grattan Y. N. Ning (auth.) Optical Fiber
Sensor Technology: Devices and Technology. 1st ed. Optoelectronics,
Imaging and Sensing 2. Springer US, 1998, pp. 303-310. 1SBN: 978-1-
4613-7651-4.

Yves Paturel. “Fiber Optic Gyro: Theory & Applications”. In: (2014).
URL: http://ainegypt . org/event /papers/Full?y 20paper /20 ¢
%20MELAHAY,202014 . pdf|

Wikimedia Foundation. Microelectromechanical systems — Wikipedia,
The Free Encyclopedia. [Online; accessed 31-01-2019]. San Francisco

(CA),2019. URL: https://en.wikipedia.org/wiki/Microelectromechanical _

systems|

Martin Vagner. “Navrh a identifikace rozsireného modelu MEMS gy-
roskopu”. PhD thesis. Vysoké uceni technické v Brné, 2015.

81

www.robzone.cz/roboticke-vysavace/duoro-x-control-profi
www.robzone.cz/roboticke-vysavace/duoro-x-control-profi
https://commons.wikimedia.org/wiki/File:3D_Gyroscope.png
https://doi.org/10.1017/S0373463300043642
http://ainegypt.org/event/papers/Full%20paper%20-%20MELAHA%202014.pdf
http://ainegypt.org/event/papers/Full%20paper%20-%20MELAHA%202014.pdf
https://en.wikipedia.org/wiki/Microelectromechanical_systems
https://en.wikipedia.org/wiki/Microelectromechanical_systems

A. Bibliography

[12]

[13]

23]

[24]

Volker Kempe. Inertial MEMS: principles and practice. Cambridge
University Press, 2011.

David M Rozelle. “The hemispherical resonator gyro: From wineglass
to the planets”. In: Proc. 19th AAS/AIAA Space Flight Mechanics
Meeting. 2009, pp. 1157-1178.

Priyanka Aggarwal. MEMS-based integrated navigation. Artech House,
2010.

Manfred Weber. Piezoelectric Accelerometers - Theory and Application.
[Online; accessed 03-02-2019]. 2012. URL: https : //www . mnf . de /
manual/transducermane.pdf|

James Fennally. Capacitive Vs Thermal MEMS for High-Vibration
Applications. New York City, 2016. URL: https://www.automation}
com/automation-news/article/capacitive-vs-thermal - mems
for-high-vibration-applications|

Tarun Kanti Bhattacharyya and Anindya Lal Roy. “MEMS piezoresis-

tive accelerometers”. In: Micro and smart devices and systems. Springer,
2014, pp. 19-34.

Jacob Fraden. Handbook of modern sensors. 2013.

Hugh Durrant-Whyte and Thomas C Henderson. “Multisensor data
fusion”. In: Springer Handbook of Robotics. Springer, 2016, pp. 867-896.

Long Dinh Tran. “Data Fusion with 9 Degrees of Freedom Inertial
Measurement Unit To Determine Object’s Orientation”. In: (2017).

Chris Chatfield. The analysis of time series: an introduction. Chapman
and Hall/CRC, 2016.

NovAtel. IMU Errors and Their Effects. [Online; accessed 25-04-2019).
2014. URL: www.novatel .com/assets/Documents/Bulletins/APNO64|
pdfl

Xsens Technologies B.V. Gyroscopes - Xsens 8D motion tracking. [On-
line; accessed 28-01-2019]. URL: https://www . xsens . com/ tags /
gyroscopes/|

IMU, what for: performance per application infographic. [Online; ac-
cessed 07-03-2019]. 2018. URL: https : //www . thalesgroup . com /
en/worldwide/aerospace/topaxyz-inertial-measurement-unit-
imu/infographic|

Gyroscope - VectorNav Library. VectorNav Technologies, llc. 2009. URL:
https://www.vectornav.com/support/library/gyroscopel

David W Allan. “Statistics of atomic frequency standards”. In: Pro-
ceedings of the IEEE 54.2 (1966), pp. 221-230.

ISS Board. “IEEE standard specification format guide and test pro-
cedure for single-axis interferometric fiber optic gyros”. In: IEEE Std
(1998), pp. 952-1997.

82

https://www.mmf.de/manual/transducermane.pdf
https://www.mmf.de/manual/transducermane.pdf
https://www.automation.com/automation-news/article/capacitive-vs-thermal-mems-for-high-vibration-applications
https://www.automation.com/automation-news/article/capacitive-vs-thermal-mems-for-high-vibration-applications
https://www.automation.com/automation-news/article/capacitive-vs-thermal-mems-for-high-vibration-applications
www.novatel.com/assets/Documents/Bulletins/APN064.pdf
www.novatel.com/assets/Documents/Bulletins/APN064.pdf
https://www.xsens.com/tags/gyroscopes/
https://www.xsens.com/tags/gyroscopes/
https://www.thalesgroup.com/en/worldwide/aerospace/topaxyz-inertial-measurement-unit-imu/infographic
https://www.thalesgroup.com/en/worldwide/aerospace/topaxyz-inertial-measurement-unit-imu/infographic
https://www.thalesgroup.com/en/worldwide/aerospace/topaxyz-inertial-measurement-unit-imu/infographic
https://www.vectornav.com/support/library/gyroscope

[34]

[35]

[39]

A. Bibliography

Allan Variance. “Noise Analysis for Gyroscopes”. In: Freescale Semicon-
ductor Document Number: AN5087 Application Note Rev. 0 2 (2015).

Naser El-Sheimy, Haiying Hou, and Xiaoji Niu. “Analysis and modeling
of inertial sensors using Allan variance”. In: IEEE Transactions on
instrumentation and measurement 57.1 (2008), pp. 140-149.

Leslie Barreda Pupo. “Characterization of errors and noises in MEMS
inertial sensors using Allan variance method”. MA thesis. Universitat
Politechnica de Catalunya, 2016.

Myung Hwangbo, JunSik Kim, and Takeo Kanade. “IMU self-calibration
using factorization”. In: IEEE Transactions on Robotics 29.2 (2013),
pp. 493-507.

Mark Pedley. “High precision calibration of a three-axis accelerometer”.
In: Freescale Semiconductor Application Note 1 (2013).

David Tedaldi, Alberto Pretto, and Emanuele Menegatti. “A robust
and easy to implement method for IMU calibration without external

equipments”. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2014, pp. 3042-3049.

Richard Gran. What is simulation? [Online; accessed 03-03-2019].
Youtube, 2012. URL: https://www.youtube. com/watch?v=0CMafswcNkY.

Tom Erez, Yuval Tassa, and Emanuel Todorov. “Simulation tools for
model-based robotics: Comparison of bullet, havok, mujoco, ode and
physx”. In: 2015 IEEFE international conference on robotics and au-
tomation (ICRA). IEEE. 2015, pp. 4397-4404.

Patricio Castillo-Pizarro, Toméas V Arredondo, and Miguel Torres-
Torriti. “Introductory survey to open-source mobile robot simulation
software”. In: 2010 Latin American Robotics Symposium and Intelligent
Robotics Meeting. IEEE. 2010, pp. 150-155.

Miguel Torres-Torriti, T Arredondo, and P Castillo-Pizarro. “Survey
and comparative study of free simulation software for mobile robots”.
In: Robotica 34.4 (2016), pp. 791-822.

J. Craighead et al. “A Survey of Commercial amp; Open Source Un-
manned Vehicle Simulators”. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation. Apr. 2007, pp. 852-857. DOTI:
10.1109/R0OBOT. 2007 .363092.

Aaron Staranowicz and Gian Luca Mariottini. “A Survey and Com-
parison of Commercial and Open-source Robotic Simulator Software”.
In: Proceedings of the 4th International Conference on PErvasive Tech-
nologies Related to Assistive Environments. PETRA ’11. Heraklion,
Crete, Greece: ACM, 2011, 56:1-56:8. 1SBN: 978-1-4503-0772-7. DOI:
10.1145/2141622.2141689. URL: http://doi.acm.org/10.1145/
2141622.2141689.

83

https://www.youtube.com/watch?v=OCMafswcNkY
https://doi.org/10.1109/ROBOT.2007.363092
https://doi.org/10.1145/2141622.2141689
http://doi.acm.org/10.1145/2141622.2141689
http://doi.acm.org/10.1145/2141622.2141689

A. Bibliography

[40]

[41]

[42]
[43]
[44]

[45]

[49]

[50]

Lucas Nogueira. “Comparative analysis between gazebo and v-rep
robotic simulators”. In: Seminario Interno de Cognicao Artificial-SICA
2014 (2014), p. 5.

Wikimeadia Foundation. Robotics simulator — Wikipedia, The Free
Encyclopedia. [Online; accessed 25-03-2019]. 2019. URL: https://en!
wikipedia.org/wiki/Robotics_simulator|

Open Source Robotics Foundation. Gazebo. [Online; accessed 25-03-
2019]. URL: http://gazebosim.org,

Coppelia Robotics Ltd. Coppelia Robotics V-REP. [Online; accessed
25-03-2019]. URL: http://www.coppeliarobotics.com.

Cyberbotics Ltd. Webots. Ed. by Cyberbotics Ltd. [Online; accessed
25-03-2019]. URL: http://www.cyberbotics. com.

Coppelia Robotics Ltd. V-REP forum: Questions/Answers around V-
REP: Accelerometer or Gyroscope. [Online; accessed 18-05-2019]. 2013.
URL: http://www.forum. coppeliarobotics.com/viewtopic.php?
t=93l

Coppelia Robotics Ltd. V-REP forum: Questions/Answers around V-

REP: Sensor noise. [Online; accessed 18-05-2019]. 2018. URL: |http |
//forum.coppeliarobotics.com/viewtopic.php?t=7457,

Open Source Robotics Foundation. Gazebo: tutorial: Sensor noise model.
[Online; accessed 18-05-2019]. 2014. URL: |gazebosim.org/tutorials?
tut=sensor_noise&cat=sensors|

Cyberbotics Ltd. Webots documentation: Lookup Table. [Online; ac-
cessed 18-05-2019]. 2019. URL: https : // cyberbotics . com/ doc /
reference/distancesensor#lookup-table|

Serena Ivaldi, Vincent Padois, and Francesco Nori. “Tools for dynamics
simulation of robots: a survey based on user feedback”. In: arXiv
preprint arXiv:1402.7050 (2014).

Lenka Pitonakova et al. “Feature and performance comparison of the
V-REP, Gazebo and ARGoS robot simulators”. In: Annual Conference
Towards Autonomous Robotic Systems. Springer. 2018, pp. 357—-368.

Tom Norton. Version R2019a - Webots Goes Open Source. Ed. by Cyber-
botics Ltd. [Online; accessed 25-03-2019]. URL: https://cyberbotics|
com/doc/blog/Webots-2019-a-release.

Open Source Robotics Foundation. Documentation - ROS Wiki. Ed. by
Open Source Robotics Foundation. [Online; accessed 29-03-2019]. URL:
https://http://wiki.ros.org/|

Lentin Joseph and Jonathan Cacace. Mastering ROS for Robotics

Programming: Design, build, and simulate complex robots using the
Robot Operating System. Packt Publishing Ltd, 2018.

84

https://en.wikipedia.org/wiki/Robotics_simulator
https://en.wikipedia.org/wiki/Robotics_simulator
http://gazebosim.org
http://www.coppeliarobotics.com
http://www.cyberbotics.com
http://www.forum.coppeliarobotics.com/viewtopic.php?t=93
http://www.forum.coppeliarobotics.com/viewtopic.php?t=93
http://forum.coppeliarobotics.com/viewtopic.php?t=7457
http://forum.coppeliarobotics.com/viewtopic.php?t=7457
gazebosim.org/tutorials?tut=sensor_noise&cat=sensors
gazebosim.org/tutorials?tut=sensor_noise&cat=sensors
https://cyberbotics.com/doc/reference/distancesensor#lookup-table
https://cyberbotics.com/doc/reference/distancesensor#lookup-table
https://cyberbotics.com/doc/blog/Webots-2019-a-release
https://cyberbotics.com/doc/blog/Webots-2019-a-release
https://http://wiki.ros.org/

[59]

[66]

A. Bibliography

Nathan Koenig and Andrew Howard. “Design and use paradigms for
gazebo, an open-source multi-robot simulator”. In: 2004 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS)(IEEE
Cat. No. 04CH37566). Vol. 3. IEEE. 2004, pp. 2149-2154.

Dave Coleman. Gazebo tutorial: ROS control. Ed. by Open Source
Robotics Foundation. [Online; accessed 06-04-2019]. 2013. URL:

|/ /gazebosim.org/tutorials/7tut=ros_controll

Inc. Open Source Robotics Foundation. SDF. Ed. by Inc. Open Source
Robotics Foundation. [Online; accessed 06-04-2019]. 2019. URL:
|//sdformat.org/specl

ANAVS GmbH. The Multi-Sensor RTK-Module. Ed. by ANAVS GmbH.
[Online; accessed 12-04-2019]. 2019. URL: https://anavs.de/multi~
|[sensor-rtk-module/.

E. Maulana, M. A. Muslim, and A. Zainuri. “Inverse kinematics of a
two-wheeled differential drive an autonomous mobile robot”. In: 2014
Electrical Power, Electronics, Communicatons, Control and Informatics
Seminar (EECCIS). Aug. 2014, pp. 93-98. DOI:|10.1109/EECCIS. 2014
7003726l

Bosch Sensortec. “BNOO055 Intelligent 9-axis absolute orientation sen-
sor”. In: Bosch Sensortec, Baden- Wiirttemberg, Germany (2016). URL:
https : //ae-bst . resource . bosch . com/media/ _tech/media /
|datasheets/BST-BN0055-DS000. pdf.

Michal Drwiega. bosch imu driver. [Online; accessed 25-04-2019]. 2017.
URL: https://github.com/mdrwiega/bosch_imu_driver|

Mathworks. Sensor fusion and tracking toolbox. [Online; accessed 25-
04-2019]. 2019. URL: https://nl.mathworks.com/products/sensory
[fusion-and-tracking.html|

Anders E.E. Wallin. AllanTools PyPI. [Online; accessed 25-04-2019].
2019. URL: https://pypi.org/project/AllanToolsl

Dan Pierce. GitHub - GAVLab - allan variance - Allan variance ap-
proach for characterizing inertial signals. [Online; accessed 26-04-2019].
2017. URL: https://github.com/GAVLab/allan_variance,

Interquartile range — Wikipedia, The Free Encyclopedia. [Online; ac-

cessed 30-04-2019]. San Francisco (CA), 2019. URL:
wikipedia.org/wiki/Interquartile_range#/media/File:Boxplot|
vs_PDF.svg

Juan Jurado. Tools for Inertial Allan Variance Analysis and Simulation.
[Online; accessed 30-04-2019]. 2017. URL: https://nl.mathworks. com/
matlabcentral/fileexchange/61777-tools-for-inertial-allan+
[variance-analysis—and-simulation,

Cypress developer community. UART overrun error - Cypress de-
veloper community. [Online; accessed 30-04-2019]. 2011. URL:
[//community.cypress.com/docs/DOC-12028|

85

http://gazebosim.org/tutorials/?tut=ros_control
http://gazebosim.org/tutorials/?tut=ros_control
http://sdformat.org/spec
http://sdformat.org/spec
https://anavs.de/multi-sensor-rtk-module/
https://anavs.de/multi-sensor-rtk-module/
https://doi.org/10.1109/EECCIS.2014.7003726
https://doi.org/10.1109/EECCIS.2014.7003726
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BNO055-DS000.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BNO055-DS000.pdf
https://github.com/mdrwiega/bosch_imu_driver
https://nl.mathworks.com/products/sensor-fusion-and-tracking.html
https://nl.mathworks.com/products/sensor-fusion-and-tracking.html
https://pypi.org/project/AllanTools
https://github.com/GAVLab/allan_variance
https://en.wikipedia.org/wiki/Interquartile_range#/media/File:Boxplot_vs_PDF.svg
https://en.wikipedia.org/wiki/Interquartile_range#/media/File:Boxplot_vs_PDF.svg
https://en.wikipedia.org/wiki/Interquartile_range#/media/File:Boxplot_vs_PDF.svg
https://nl.mathworks.com/matlabcentral/fileexchange/61777-tools-for-inertial-allan-variance-analysis-and-simulation
https://nl.mathworks.com/matlabcentral/fileexchange/61777-tools-for-inertial-allan-variance-analysis-and-simulation
https://nl.mathworks.com/matlabcentral/fileexchange/61777-tools-for-inertial-allan-variance-analysis-and-simulation
https://community.cypress.com/docs/DOC-12028
https://community.cypress.com/docs/DOC-12028

A. Bibliography

[67]

[79]

Christian Holl. GitHub - Hacks4ROS: C++ Node for the Bosch IMU
BNOO055 (UART). [Online; accessed: 28-04-2019]. 2016. URL: https
//github.com/Hacks4R0S/h4r_bosch_bno055_uart.

Ralf Kaestner. rqt_multiplot - ROS wiki. [Online; accessed 03-05-2019).
2018. URL: http://wiki.ros.org/rqt_multiplot|

D. Chwa. “Tracking Control of Differential-Drive Wheeled Mobile
Robots Using a Backstepping-Like Feedback Linearization”. In: IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans 40.6 (2010), pp. 1285-1295. 1ssN: 1083-4427. DOI: |10.1109/
TSMCA.2010.2052605.

Khoshnam Shojaei et al. “Adaptive trajectory tracking control of a dif-
ferential drive wheeled mobile robot”. In: Robotica 29.3 (2011), pp. 391—
402. DOI: [10.1017/S0263574710000202.

James D. Broesch. Applications of DSP: Median Filter. [Online; accessed
23-04-2019]. 2009. URL: https://www.sciencedirect.com/topics/
engineering/median-filters!

Peter Welch. “The use of fast Fourier transform for the estimation of
power spectra: a method based on time averaging over short, modified
periodograms”. In: IEEE Transactions on audio and electroacoustics
15.2 (1967), pp. 70-73.

List of moments of inertia — Wikipedia, The Free Encyclopedia. [Online;
accessed 09-05-2019]. San Francisco (CA), 2019. URL: https://en|
wikipedia.org/wiki/List_of_moments_of_inertia.

ETH ASL. IMU Noise Model. [Online; accessed 09-05-2019]. 2016. URL:
https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Modell

Petko Petkov and Tsonyo Slavov. “Stochastic modeling of MEMS
inertial sensors”. In: Cybernetics and information technologies 10.2
(2010), pp. 31-40.

Peter S Maybeck. Stochastic models, estimation, and control. Vol. 3.
Academic press, 1982.

Open Source Robotics Foundation. Gazebo turorial: Using Gazebo plu-
gins with ROS. [Online; accessed 02-05-2019]. URL: http://gazebosim!
org/tutorials?tut=ros_gzplugins#IMU.

Andrew Howard Nate Koenig. gazebo::GazeboRosIMU Class Refer-
ence. [Online; accessed 03-05-2019]. 2008. URL: http://docs.ros|
org /diamondback /api/gazebo _plugins/html /classgazebo _1 |
1GazeboRosIMU.htmll

James Goppert. pull request 2673: Add random walk support to Gaus-
sitanNoise - Bitbucket. [Online; accessed 07-05-2019]. URL: https://
bitbucket . org/osrf/gazebo/pull-requests/2673/add-random+
walk-support-to-gaussiannoise|

86

https://github.com/Hacks4ROS/h4r_bosch_bno055_uart
https://github.com/Hacks4ROS/h4r_bosch_bno055_uart
http://wiki.ros.org/rqt_multiplot
https://doi.org/10.1109/TSMCA.2010.2052605
https://doi.org/10.1109/TSMCA.2010.2052605
https://doi.org/10.1017/S0263574710000202
https://www.sciencedirect.com/topics/engineering/median-filters
https://www.sciencedirect.com/topics/engineering/median-filters
https://en.wikipedia.org/wiki/List_of_moments_of_inertia
https://en.wikipedia.org/wiki/List_of_moments_of_inertia
https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model
http://gazebosim.org/tutorials?tut=ros_gzplugins#IMU
http://gazebosim.org/tutorials?tut=ros_gzplugins#IMU
http://docs.ros.org/diamondback/api/gazebo_plugins/html/classgazebo_1_1GazeboRosIMU.html
http://docs.ros.org/diamondback/api/gazebo_plugins/html/classgazebo_1_1GazeboRosIMU.html
http://docs.ros.org/diamondback/api/gazebo_plugins/html/classgazebo_1_1GazeboRosIMU.html
https://bitbucket.org/osrf/gazebo/pull-requests/2673/add-random-walk-support-to-gaussiannoise
https://bitbucket.org/osrf/gazebo/pull-requests/2673/add-random-walk-support-to-gaussiannoise
https://bitbucket.org/osrf/gazebo/pull-requests/2673/add-random-walk-support-to-gaussiannoise

A. Bibliography

Fadri Furrer et al. “Robot Operating System (ROS): The Complete
Reference (Volume 1)”. In: ed. by Anis Koubaa. Cham: Springer Interna-
tional Publishing, 2016. Chap. RotorS—A Modular Gazebo MAV Simu-
lator Framework, pp. 595-625. 1SBN: 978-3-319-26054-9. DOI:
978-3-319-26054-9_23, URL: http://dx.doi.org/10.1007/978-34
[319-26054-9_23|

Fadri Furrer. RotorS simulator wiki - GitHub. [Online; accessed 23-
03-2019]. 2017. URL: https : //github . com/ethz - asl/rotors _|
[simulator/wikil

Wang Liu Liu. use librotors__gazebo _imu plugin.so in turtlebot simulator
- issue 495 - ethz - asl - RotorS - GitHub. [Online; accessed 23-03-2019].
2018. URL: https://github.com/ethz-asl/rotors_simulator/
Johannes Mayer. hector__gazebo__plugins - ROS wiki. [Online; accessed
21-03-2019]. 2016. URL: http://wiki . ros . org/hector _gazebo |
Matt Duff. Calculating Spectral Noise Density to RMS Noise. [Online;
accessed 11-05-2019]. 2010. URL: https://www.youtube.com/watch?

v=ywChrIRIXWQ

87

https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23
http://dx.doi.org/10.1007/978-3-319-26054-9_23
https://github.com/ethz-asl/rotors_simulator/wiki
https://github.com/ethz-asl/rotors_simulator/wiki
https://github.com/ethz-asl/rotors_simulator/issues/494
https://github.com/ethz-asl/rotors_simulator/issues/494
http://wiki.ros.org/hector_gazebo_plugins
http://wiki.ros.org/hector_gazebo_plugins
https://www.youtube.com/watch?v=ywChrIRIXWQ
https://www.youtube.com/watch?v=ywChrIRIXWQ

88

Appendix B
CD contents

The structure of the attached CD is depicted in the figure [B.2l For the
simplicity, I do not mention all the files generated from the experiments are
depicted separately, but rather introduce how the files are orderd (see the

figure B.1)).

I— trajectory A
| }— sigma=0.5, fd=0.005
| | 1
| | | F— 20190516-174258_control_error.png
| | | F— 20190516-174258_imu_yaw.png
| | | |F— 20190516-174258_trajectory.png
| | | F— 20190516-174258_yaw_error.png
| | | |F— 20190516-174258_yaw_errors_difference.png
| | | I— 20190516-174258_yaw__errors__psd.png
| | | L— 20190516-174258_yaw_psd.png
|| =2
| | | F— 20190516-160849_control_error.png
[I I
| | —3
| L— sigma=1.118, fd=0.001
| =1
| =2
| =3
I— trajectory B
| 1
| =2
| —3
I— trajectory C
| =1
| =2
| —3
L trajectory D
—1
—2
-3

Figure B.1: The structure of the directory experiment results, all numbered
directories include similar files to the content of the directory
trajectory A/sigma=0.5, £d4=0.005/1/

89

B. CD contents

|_

| I— trajectory A

| | F— sigma=0.5, fd=0.005

| | L— sigma=1.118, fd=0.001
| | trajectory B

| }— trajectory C

| — trajectory D

F— IMU models

F— components

F— imu_sensor.config.xacro
I— imu__sensor.gazebo.xacro
I— imu__sensor__hector.gazebo.xacro

I— imu__sensor__hector.urdf.xacro
L

imu__sensor.urdf.xacro
F— imu_hector.xacro
l— imu.xacro
— LICENSE
F— README. htm|
— README.md
L— README.pdf
— imu__simulation__framework
F— CMakeLists.txt
F— config.ini
I—— flowchart.png

F— launch

| |— error_publisher.launch

| F— imu_yaw_publisher.launch

| F— path_follower.launch

| L— result_comparison.launch
F— LICENSE

F— msg

| b ErrorCoordinates2.msg

| L— ImuYaw.msg

I— offline processing

| — compare_yaw.py

| I— offline__result__comparison.py
| — plot__multiple_errors.py

F— package.xml

— README.htm|

— README.md

— README pdf

I— rqt__multiplot_imu_config.xml
I— scripts

| I— error__publisher.py
| F— imu_yaw_publisher.py
| = _init__py

| F— path_follower.py
| b result_comparison.py
|

|

I— utils.py

— utils.pyc

I— setup.py

L—srv
L— StartStopTime.srv

Figure B.2: The structure of the root directory on the attached CD
90

