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Abstrakt

Tato bakalářská práce zkoumá nejmoderněǰśı algoritmy pro strojové odpov́ıdáńı
na dotazy v přirozeném jazyce se zaměřeńım na porozuměńı textu a mo-
dely založené na hlubokém učeńı. Architektura transformer je prozkoumána a
vyhodnocena na nově vydaném datasetu NaturalQuestions. Práce analyzuje
konkrétńı chyby a omezeńı současných algoritmů a zabývá se jejich možnými
vylepšeńımi.

Kĺıčová slova strojové odpov́ıdáńı na dotazy, porozuměńı textu, strojové
učeńı, neuronové śıtě
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Abstract

This bachelor’s thesis surveys state-of-the-art algorithms for natural language
question answering, focusing on machine reading comprehension and deep
learning based models. The transformer architecture is explored and eval-
uated on the newly released NaturalQuestions dataset. The thesis analyzes
particular errors and limitations of current algorithms and discusses their pos-
sible improvements.

Keywords question answering, machine reading comprehension, machine
learning, neural networks
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Introduction

Question answering is an important topic in the intersection of the fields of
artificial intelligence and natural language processing. The ability to answer
questions posed in natural language is a necessary prerequisite to building
intelligent systems capable of having a meaningful conversation with a hu-
man. Since the advent of computing technology, most of human-computer
interaction has been realized using graphical user interfaces, which is often an
unnatural and ineffective communication channel for humans. Lately, ques-
tion answering has become increasingly popular in commercial applications,
including chatbots, voice assistants (such as Alexa), and web search. Given
the exponential increase in data published on the internet, I believe that in the
near future, question answering will be vital in the everyday use of computing
technology.

The goal of this thesis is to survey state of the art machine learning based
algorithms for question answering in natural language (focusing on recent ad-
vances in machine reading comprehension), to analyze their performance and
limitations, and to use such an algorithm in practice. The thesis consists
of five chapters. In chapter 1, I summarize different aspects of question an-
swering and describe the required theoretical background. Then, in chapter
2, I describe different question answering datasets and neural network based
models. In chapter 3, I explore the NaturalQuestions dataset and implement
a question answering system. I evaluate the performance of this system and
discuss its limitations in chapter 4. Finally, I deploy the trained question
answering system as a web application in chapter 5.
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Chapter 1
Theoretical background

1.1 Question answering

Question answering (abbreviated QA) is one of the oldest topics in computer
science. Since the invention of the computer, researchers have been trying to
build computer systems able to communicate with humans and answer their
queries in natural language, most commonly being English. The key difficulty
of question answering lies in the processing of language and transforming the
knowledge represented in it into machine readable form, which is a non-trivial
task due to the language’s complexity and ambiguity.

We can classify present question answering systems into two categories based
on the approach they use to produce the answer (Jurafsky et al., 2008). One
option is to parse the question into a formal query in a database language
and to search a structured database of knowledge. These systems are called
knowledge-based. The second approach is to extract answers directly from
an unstructured source of information, typically plain text documents, us-
ing information retrieval and natural language processing algorithms. This
method is called information retrieval-based.

In this chapter, I will describe these two paradigms in more detail. After a
brief introduction of the required machine learning background, I will focus
on the recent progress in retrieval-based QA.

1.1.1 Knowledge-based QA

Knowledge-based QA deals with answering questions by reasoning over in-
formation stored in a structured knowledge base. This may be a relational
SQL database or, more commonly, a knowledge graph that follows the Re-
source Description Framework (RDF). In the RDF format, knowledge about
the world is represented in the form of triples (subject, relation, object), where
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1. Theoretical background

each triple represents a single relation between two real-world concepts. As
an example, consider the proposition ”Prague is located in Czech Republic”.
In the language of RDF, we would represent this piece of information with
this triple: (prague, located in, czech republic). We can then execute queries
in the SPARQL query language, for example to retrieve all similar objects
with the same relation. RDF databases can be thought of as a graph with
vertices representing concepts and edges representing relationships between
them. Examples of large knowledge graphs used in practice include Google’s
Freebase, DBpedia or Wikidata. (Lassila et al., 1999; Guu et al., 2015)

Figure 1.1: RDF knowledge graph

Source: https://www.w3.org/TR/rdf11-primer

The answering process usually involves mapping the question into a formal
database query, executing this query in the database engine and processing
its result to generate an answer. For example, Mohammed et al. (2018) have
proposed a baseline system consisting of 4 steps:

• entity detection,

• entity linking,

• relation prediction,

• evidence integration.
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1.1. Question answering

In the first step, entity detection, the system scans the input and identifies the
entity being queried as a substring of the question. This substring then has
to be linked to a specific vertex in the knowledge graph. The next step is to
find the potential relationship being queried. Finally, the system selects n top
entities and relations and returns a score for each of these results. Another
interesting approach, the Neural SPARQL Machine (Soru et al., 2017), uses
recurrent neural networks to directly translate natural language questions to
SPARQL queries.

Knowledge-based QA systems have several notable advantages. Firstly,
because they use optimized databases, they are very computationally effec-
tive and scale well to large amounts of data. They are also well interpretable
and explainable, as it is easy to verify what logical steps the algorithm took
to answer the question.
These systems work well on factoid questions, questions answerable by an
objective fact, such as ”What is the speed of light in vacuum?”, or ”What
is the highest mountain in Slovakia?”, but fail on more complex non-factoid
questions such as ”When are hops added to the brewing process?” or ”What
does the word china mean in chinese?”, that can’t easily be represented by
a knowledge graph. There are also other drawbacks to knowledge-based sys-
tems. Most importantly, the requirement that the information is represented
in a structured database requires a lot of laborous human annotatation. Fur-
thermore, the knowledge base needs to be periodically updated so that the
system can provide up-to-date information.

1.1.2 Information retrieval-based QA

Knowledge-based QA systems can only answer questions about a particular
domain for which a knowledge base exists. To be able to answer open-domain
questions, a QA system needs large corpora of data from multiple domains.
Usually, this data will be downloaded from multiple sources and stored in
different formats. Furthermore, most of information on the web is present in
unstructured formats, such as HTML pages, text documents or PDF files. It
would be impractical, if not outright impossible, to manually convert all of
this data to knowledge bases. Thus we need a way of processing unstructured
documents and extracting knowledge from them without manual annotation.

Retrieval-based QA systems are able to answer natural language questions
without a formal representation of the required knowledge. Instead, they are
only given a corpus of text written in natural language, which they process
and extract facts required to answer the question. This can range from string
matching and extracting simple factoid answers to multi-step reasoning and
answer text generation. (Elworthy, 2000; Ittycheriah et al., 2001; Weston et
al., 2015)
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1. Theoretical background

Most present retrieval-based systems contain core components for docu-
ment retrieval and answer extraction. In the document retrieval step,
the system must choose candidate documents which are likely to contain in-
formation related to the question from a large dataset. This can be done
using keyword matching, by ranking document similarities, or using machine
learning. The selected documents are subsequently analyzed by an answer
extraction component, which then outputs a text answer. Again, this com-
ponent can be implemented in more ways, such as by simple comparison of
strings, using linguistic features or, more recently, with machine learning.

In addition to these core components, a retrieval-based system may use
additional modules for question analysis, answer processing and scoring.

1.1.3 General-purpose QA frameworks

Recently, a number of general-purpose QA frameworks have been developed.
Examples include IBM Watson (Ferrucci et al., 2013), which won the Jeopardy!
quiz show in 2011, and YodaQA (Baudǐs et al., 2015), an open source QA sys-
tem that collects open-domain information from structured and unstructured
sources freely available on the web. This system uses an assortment of compo-
nents to process knowledge bases and fulltext data and then ranks and refines
possible answers returned from these components.

1.1.4 Machine reading comprehension

Machine reading comprehension is a new topic in question answering, enabled
by recent progress in artificial intelligence and availability of datasets. It fo-
cuses on the ability of algorithms to read text and answer questions about
its content. This task was first proposed by Hirschman et al. (1999), who
conducted experiments on a dataset of 600 questions collected from children’s
reading tests. Clark et al. (2016) argue that machine reading comprehension
is a good benchmark for evaluating general progress in AI, since it requires
the computer to understand abstract concepts in text and to make conclusions.

In present machine reading comprehension tasks, an algorithm is given a
natural-language question along with a paragraph of text (called ”context”).
The algorithm’s goal is to select a span of words from the context that ac-
curately answers the input question, or to indicate that the question is not
answerable given any possible span of words from this context.

1.2 Evaluation metrics

In order to objectively compare different QA systems, it is important to set
standard and objective numeric metrics of a system’s performance. Usually,
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1.3. Machine learning

the evaluation consists of running multiple systems on the same set of exam-
ples (or ”dataset”) and comparing the numbers of correct predictions. The
most widely used metrics are (Powers, 2015):

Accuracy measures how often the system is correct in general.

Accuracy = true positives+ true negatives

number of examples
(1.1)

Precision measures the chance that a predicted value is correct.

Precision = true positives

true positives+ false positives
(1.2)

Recall measures the chance that the correct value will be predicted.

Recall = true positives

true positives+ false negatives
(1.3)

F1 score (or F-measure) is the harmonic mean of precision and recall.

F1 = (1
2 · (precision

−1 + recall−1))−1 = 2 · precision · recall
precision+ recall

(1.4)

1.3 Machine learning

In order to understand natural language, a question answering system should
ideally be able to adapt to different and possibly unseen formulations of the
same sentence. Machine learning is a subfield of artificial intelligence that
studies the ability of computers to learn patterns from data without being
explicitly programmed (Murphy, 2012). In supervised machine learning, we
are generally interested in finding a mapping from an input (feature) space X
to an output space Y . This mapping is usually a function ŷ = f(x, θ), where
x ∈ X is the input, ŷ is the predicted value and θ is a set of learnable param-
eters. We teach the algorithm to predict the output variable using a data set
D of training examples (x, y) with x ∈ X, y ∈ Y where the prediction targets
y are known in advance. We select a suitable loss function L(ŷ, y), a metric
of error in prediction between ŷ and y. The parameters θ are then optimized
in a way that minimizes the loss function over all training examples. After
training, the model should be able to generalize to unseen inputs and produce
meaningful predictions.

We can further divide supervised learning problems into two categories
based on the predicted variable y:

• classification - y is an element of a finite set of discrete classes,

• regression - y is a continuous variable.
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1. Theoretical background

I will now summarize a few important machine learning algorithms that
are extensively used in question answering.

1.3.1 Linear regression

Linear regression is one of the most basic and widely used algorithms in su-
pervised machine learning. As its name suggests, the algorithm works by
approximating the independent variable y by a linear function of the vector
of features x ∈ Rn. The algorithm uses two parameters: a vector of weights
w ∈ Rn and a bias b ∈ R. The linear model predicts the dependent variable y
as:

ŷ = wTx + b =
n−1∑
i=0

(wixi) + b (1.5)

An obvious weakness of linear regression is its inherent simplicity, as it
assumes the relationship between x and y is linear, which is sometimes an
incorrect assumption and in these cases the model will give poor predictions.
One way to alleviate this issue is by preprocessing the data manually by ap-
plying transformations to the input features. While this is a valid solution in
most simple problems, it is often very time-consuming or outright impossible
to do when dealing with complicated data.

1.3.2 Neural networks

A neural network is a biologically inspired machine learning model that is
able to accurately model highly nonlinear data. There exist many different
types of neural networks. For the purposes of question answering, the most
significant ones are fully connected feedforward neural networks and recurrent
neural networks.

1.3.2.1 Feedforward neural networks

Fully connected feedforward neural networks (Goodfellow et al., 2016) are a
natural extension of the linear model. The basic building block of a neural
network is the perceptron, a linear function of the inputs multiplied by
certain weight coefficients followed by a nonlinear activation function σ. The
output of a perceptron can be defined as:

y = σ(wTx + b) (1.6)

We can apply h perceptrons to the same input in parallel to form a layer.
This layer will then output h different non-linear projections of the input fea-
tures. A feedforward neural network contains multiple layers, with each one
passing its outputs as the input to the following one. The predicted value ŷ
is the output of the last layer.
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1.3. Machine learning

The numbers of layers and perceptrons in each layer are so-called hyperpa-
rameters, or parameters of the architecture itself. These need to be individ-
ually fine-tuned for each application.

Figure 1.2: Feedforward neural network

It has been proven by Hornik et al. (1989) that feedforward networks are
universal approximators and can model any function. However, in practice it
is common to use deep neural networks with large numbers of layers.

1.3.2.2 Recurrent neural networks

The models discussed so far generate predictions for an input vector of a
fixed size and have no sense of order between different positions of the input
or output. In contrast to this, text is a sequence of words with each word
depending on the other positions. To process this kind of sequential data, it is
possible to use recurrent neural networks (RNNs). A recurrent network reads
one word at a time from the beginning of the text, similarly to the human.
At each time step, it outputs a value for the current position and updates its
internal state (”thought vector”) that contains information about what the
network has read so far. The thought vector is passed along with the input
to the next timestep and the process repeats (Schuster et al., 1997). It is
possible to use the RNN in two ways: Firstly, the outputs for each position
may be used to classify each token or to generate a new sentence. Secondly,
the final internal state can be used as a vector representation of the sentence.
The basic formulas for a recurrent network are:

ht = tanh(Wh · ht−1 +Wx · xt), (1.7)
yt = Wy · ht, (1.8)

9



1. Theoretical background

Figure 1.3: Recurrent neural network

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs

where Wh,Wx and Wy are sets of weights, xt is the current input token and
ht−1, ht and yt are the previous and current hidden state and the output,
respectively.

In practice, more complex RNN variants, such as long short-term mem-
ory network (LSTM), are used because of their better learning properties.
(Hochreiter et al., 1997)

It is also possible to generate sentences by using two RNNs (Sutskever
et al., 2014). The first one, also called encoder, accepts the input sen-
tence (x1, x2..., xn) and outputs the final thought vector. The other RNN,
the decoder, is then initialized with the hidden state and outputs the target
sequence (y1, y2, ..., ym) word after word. This approach is called encoder-
decoder. The probability of each output token yi is modeled as a function of
the previous output tokens yj , j < i and the thought vectors of the encoder
and decoder c, si:

p(yi|y1, ..., yi−1, c) = fθ(yi−1, st, c). (1.9)

1.3.2.3 Attention

Recurrent neural networks have a serious design flaw - they try to encode
sequences of arbitrary length into a fixed-size vector! Indeed, it was shown
by Cho et al. (2014) that RNNs tend to underperform with long sequences.
Attention (Bahdanau et al., 2014) is a mechanism inspired by how humans
process input. It allows the decoder to focus on important parts of text. When
using attention, the decoder model changes to:

p(yi|y1, ..., yi−1,x) = fθ(yi−1, si, ci), (1.10)

where ci is a context vector, that contains information about the input se-
quence relevant for the specific position i. In additive (or Bahdanau) atten-
tion, the context vector is a weighted sum (interpretable as expectation) of
the hidden states of the encoder.

ci =
n∑
j=0

αijhj (1.11)
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1.4. Preprocessing

The coefficients α are determined by a trainable similarity function a of hj
and si and normalized to (0; 1) using the softmax function:

αij = eaθ(hj ,si)∑n
j′=0 eaθ(hj′ ,si)

. (1.12)

This corresponds to the human concept of looking at the input tokens that
are relevant to the current output position.

1.4 Preprocessing

When working with unstructured documents, it is very important to transform
text into a numeric representation that can an algorithm can understand. A
minimal text preprocessing pipeline should contain these steps:

• tokenization - the text is split into a list of words (tokens),

• stemming - word prefixes and suffixes are removed,

• vectorization - the words are encoded to numeric representations.

I will now briefly describe the most important techniques for text vectorization.

1.4.1 Bag-of-words

Bag of Words is the most straightforward algorithm used to map text into a
vector. Firstly, we create the vocabulary V , a set that contains all tokens in
the dataset. Then, we create a matrix of documents D, where each row cor-
responds to a document and each column corresponds to a single word from
the vocabulary. We initialize all values in the matrix to zero. We then iterate
over all documents and set the values in each word’s column to the number of
occurrences of the word in the document.

1.4.2 TF-IDF

Term frequency - inverse document frequency or TF-IDF (Ramos, 2003) is an
extension of the Bag of Words that takes into account the relative importance
of words. For example, in the sentence ”It is raining.”, the word ”it” has
clearly a lower information value than the word ”raining”. Instead of simply
counting occurrences, TF-IDF assigns weights to each words based on their
relevance. If we denote the set of all documents D and the number of occur-
rences of a word (term) t in a document d ∈ D as ft,d, we can compute the
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1. Theoretical background

TF-IDF score of a word as:

tf(t, d) = ft,d∑
t′∈D ft′,d

, (1.13)

idf(t, d) = log
|D|

|{d′|d′ ∈ D ∧ t ∈ d′}|
, (1.14)

tfidf(t, d) = tf(t, d) · idf(t, d). (1.15)

TF-IDF is a simple and widely used algorithm. However, it has one drawback:
it completely ignores semantic similarity, meaning the representations of words
”dog” and ”puppy” have no correlation whatsoever and the neural network will
not be informed that they represent similar concepts.

1.4.3 Word embedding

Ideally, we would like text vectorization to preserve semantic information in
text. This means that we should assign a vector to every word in such a way
that the distance of each pair of vectors in the vector space is be proportional
to the similarity of the words represented by these vectors.

Mikolov et al. (2013) demonstrated that this can be done by training a single-
layered neural network. They proposed two models: The Continuous Bag of
Words (CBOW) and the Skip-gram. The CBOW is trained to predict a word
using its context – the words immediately preceding and following it in the
document. Each input word is converted to a one-hot vector – a vector con-
taining the value 1.0 under its vocabulary index and zeros everywhere else,
similarly to the bag-of-words encoding. The words are then projected to a
lower-dimensional space using a single layer.

This low-dimensional representation is used to predict the target word’s vo-
cabulary index. As a side effect, the representations of words are forced to
reflect their similarity. In a similar manner, the Skip-gram is trained to pre-
dict the context of a word. These models can either be used to pre-compute
word vectors in advance, or can be integrated as the first layer in a larger
neural network.
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Chapter 2
State of the art

In this chapter, I will give an overview of the present state of the art in the
topics of machine reading comprehension and neural question answering.

2.1 Datasets

Because today’s methods for machine reading comprehension are based on
machine learning, research in this field is necessarily driven by the availability
of large annotated datasets. (Rajpurkar; Zhang, et al., 2016)

One of the first datasets large enough to train machine learning models was
released by Hermann et al. (2015), who collected a corpus of (a million) news
articles from websites of CNN and Daily Mail, along with bullet points sum-
marizing each article. They created training examples by removing a single
named entity (name, location, ...) from the bullet points, making the incom-
plete bullet point the query and the named entity the answer. For example,
the bullet point ”– Mary visited England” would be converted to this question-
answer pair: (”X visited England”, ”Mary”). The task (called cloze-style QA)
is then to fill in the ”X” placeholder using an answer (named entity) from
the article. While the CNN/DailyMail dataset is large enough to train neural
networks, it is still a simplification of the general QA problem both because of
the simple structure of the questions and because of its factoid nature (Chen
et al., 2016).

The more recent Stanford Question Answering Dataset (SQuAD) (Rajpurkar;
Zhang, et al., 2016) contains approximately 100 000 questions written by a hu-
man annotator using information from English Wikipedia. The training set is
composed of quadruples (question, context, answer start, answer end), where
context is a short snippet of about 100 to 400 tokens from a Wikipedia article.
The correct answer is a substring of the context between indices answer start
and answer end. Additionally, the dataset contains 50 000 unanswerable ques-
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tions (Rajpurkar; Jia, et al., 2018). This dataset is close to being solved and
several models have in fact reached human performance of 89.452 F1 points.
However, most questions in the dataset are simple reformulations of the an-
swers and for this reason it can’t be used to measure text understanding.

The newly released NaturalQuestions (Kwiatkowski et al., 2019) is the first
dataset to use naturally occurring questions and focus on finding answers by
reading an entire Wikipedia page containing tens of paragraphs. The model
should provide a long answer - the correct paragraph in the page and a short
answer - the correct answer span from the paragraph. The main improve-
ment from the previous datasets is that the questions were not written by
an annotator that has seen the answer in advance, but instead they are real
users’ queries from Google Search. About 50% of the questions do not have a
correct answer. Each question was annotated by 5 humans, who chose a short
and long answer span. Long answer is the smallest paragraph containing the
desired short answer.

2.2 End-to-end models

After the release of the aforementioned datasets, there has been a large rise in
interest in building end-to-end question answering systems using a single neu-
ral network. Since then, a plethora of (often unnecessarily complex) different
architectures have been proposed. Most of these follow a common princi-
ple: they estimate the conditional probabilities of all possible answers a to a
question q using information from a context c as P (a|q, c) = fθ(q, c). In this
section, I will try to summarize some of the most significant ones.

2.2.1 Attentive reader

With the release of the CNN/DailyMail dataset, Hermann et al. (2015) pro-
posed three simple models. Firstly, they used an LSTM recurrent neural
network to select the correct answer token. It works simply by reading the
question and the context paragraph in sequence with a separator token in
between. The network’s final hidden state is then used to predict the answer
token. Their second model, the attentive reader, is very similar, with the
difference that it uses attention over all tokens when predicting the answer.
Their third model, impatient reader, re-reads the entire document when pro-
cessing each question token.

2.2.2 Attention sum reader

The attention sum reader (Kadlec et al., 2016) is a very simple architecture,
also designed for cloze-style QA. The question is first passed through a re-
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current network to obtain an embedding. The document is passed through
a second recurrent network. The probability of each token being the answer
is obtained by taking the dot product between the question embedding and
the network’s output for this position and normalizing the outputs using the
softmax function. The probability of each word from the vocabulary is the
sum of probabilities of its occurrences.

2.2.3 BiDAF

While the previous models work well for cloze-style QA, they aren’t well suited
for the more general span selection task of SQuAD. Seo et al. (2016) proposed
the Bidirectional Attention Flow (BiDAF) that addresses some of the previ-
ous models’ issues. Specifically, BiDAF uses a multi-stage process that avoids
early summarization of the question and obtains a query-aware embedding of
the context.

Figure 2.1: Bidirectional Attention Flow

Source: https://allenai.github.io/bi-att-flow

Firstly, BiDAF embeds the context and the query using independent charac-
ter and word embedding layers. The purpose of the character embedding is
to improve generalization on infrequent and new words that aren’t contained
in the vocabulary. The first key contribution is in the following contextual
embedding layer that uses a recurrent network to refine the word embeddings
based on the context the words are used in.
The actual question understanding is done in the attention flow layer, which
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2. State of the art

applies attention in both directions, query to context and context to query.
The output of this layer is a sequence of query-aware context features that
contain information about the relation of each context word to the query.
Lastly, the query-aware context features are processed by a multi-layered
LSTM network and the outputs for each context token are passed through
a fully-connected layer followed by softmax to obtain final start and end to-
ken probabilities.
Contextual word representations have proven to be quite important for text
understanding. On the SQuAD dataset, BiDAF scored 62.093 F1 points.
When enhanced with pre-trained ELMo word embeddings (Peters et al., 2018),
the score increased to 66.251.

2.2.4 Transformer-based models

So far, all previous approaches used recurrent neural networks with attention
to read sequences. Vaswani et al. (2017) discovered that it is in fact possible
to use attention standalone. They proposed the transformer, a new encoder-
decoder architecture based on attention, as an alternative to the RNNs. From
an input sequence of tokens x = (x1, x2, ..., xn), the encoder generates N inter-
mediate sequences z(i) = (z(i)

1 , z
(i)
2 , ..., z

(i)
n ). The decoder is then conditioned

on the final sequence z(N) and similarly generates N refined representations
of the output sequence y.

The transformer uses an improved variant of attention called scaled dot prod-
uct attention. It is defined as

Attention(Q,K, V ) = softmax(QK
T

√
dk

)V. (2.1)

Apart from this, the attention is multi-headed. This can be interpreted as
the network focusing on more different aspects of the sequence at the same
time. It is accomplished by first applying a linear layer to the features of each
sentence token a number of times to obtain h different linear projections. The
attention is then applied to each projection, the results are concatenated and
passed through a fully-connected layer.

headi = Attention(Q ·Wi,K ·W k
i , V ·W v

i ) (2.2)
MultiHead(Q,K, V ) = Concat(head1, ..., headh) ·W o (2.3)

The encoder and decoder consist of N identical layers (or blocks). Each layer
of the encoder is composed of a self-attention sub-layer, which computes multi-
headed attention between tokens of the input sequence, followed by a feedfor-
ward network with two fully connected layers applied independently to each
token. The decoder layers are similar with two differences. Firstly, the self-
attention is masked so that each sequence position is only allowed to attend to
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previous positions, otherwise the prediction would depend on future tokens.
Secondly, each decoder layer contains a second attention sub-layer attending
to the output of the encoder. (Vaswani et al., 2017)

Figure 2.2: Layers of the transformer.

Source: Vaswani et al. (2017)

Unlike the RNN, which reads one token at a time, the transformer doesn’t
have an inherent representation of time and instead relies on augmenting the
inputs with a positional encoding.

The transformer was originally created for machine translation, on which
it outperformed previous state-of-the-art results while being faster and easier
to train than recurrent networks. It was then applied to other NLP tasks in-
cluding question answering. Recently, Devlin et al. (2018) introduced a model
called BERT (Bidirectional Encoder Representations from Transformers).
BERT is a large transformer encoder trained for two-tasks: masked language
modeling and next sentence prediction. In masked language modeling, a spe-
cific number of tokens is randomly malformed or replaced (similarly to cloze-
style QA) and the network is trained to predict the original words based on
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their context. In sentence prediction, the network is given two sentences and
it should predict if the second sentence logically follows the first one. Training
on these tasks forces the network to create a deep contextual word embedding
that can be used similarly as in Mikolov et al. (2013).
The pre-trained contextual embedding is then used for transfer learning and
model is fine-tuned on different NLP tasks. BERT outperforms previous task-
specific models in eleven tasks and achieves near-human performance (89.147
F1 points) on the SQuAD dataset.
Devlin et al. (2018) have released two pre-trained variants of BERT:

• BERT-base (12 layers, 768 hidden units, 110 · 106 parameters)

• BERT-large (24 layers, 1024 hidden units, 340 · 106 parameters)

One significant disadvantage of BERT is its size. It takes several weeks to pre-
train a BERT model even on the best available hardware. A loaded BERT-
large also requires more than 16 GB of memory, making it impossible to use
on a standard GPU.
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Chapter 3
Implementation

In the practical part of this work, I will implement multiple variants of a QA
system using BERT. I will then train and evaluate them on the NaturalQues-
tions dataset. The dataset consists of two tasks - paragraph selection and
answer span selection. From now on, these will be referred to as ”long an-
swer” and ”short answer”. There are two possible approaches to solving this
dataset:

• Joint - All paragraphs are processed by a single neural network. The
network outputs a possible answer for each paragraph and chooses as
the answer the paragraph from which the most probable answer span
was extracted.

• Pipelined - There are two separate components. The first component
selects n most probable paragraphs and passes them to the second com-
ponent that extracts the most probable answer. The answers still need
to be scored, this can be done by either component.

I will first implement a single model that predicts short and long answers
jointly in a single step. Then I will experiment with making the model more
effective.

3.1 Exploratory data analysis

Before moving to implementation details, it will be beneficial to explore the
NaturalQuestions dataset (Kwiatkowski et al., 2019). This dataset contains a
training set of 307 373 examples (42 GB in total), a development set of 7830
examples and a testing set of 7842 examples of questions entered to Google
search. Each example contains a tokenized question, a full Wikipedia page in
HTML along with its tokens, a list of paragraph start offsets in the page and 5
annotations written by different human annotators. Each annotation contains
a short answer and a long answer that the annotator chose subjectively. The
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long answer is a HTML paragraph, form or other object that contains the
information needed to answer the question. The short answer is a span (or
multiple spans) of words that answer the question precisely. It is always a
substring of the long answer. Both answers are defined by their start and end
offsets in the HTML page. The answer is often not a factoid and may require
some reasoning. The question can be answerable in one of these ways:

• LONG (only a long answer exists)

• SHORT (a full short answer exists)

• YESNO (the answer is a boolean value)

• NONE (the question is unanswerable)

The dataset is split into 50 gzip-compressed files in the JSON lines format. In
this format, the examples are stored as JSON objects delimited by a newline.
A single example from the dataset would look like this (expanded to multiple
lines):

{
"example_id": ...,
"question_tokens": ["where", "is", "prague", "located"]
"annotations": [{

"long_answer": {
"start_token": -1, "end_token": -1,
"start_byte": -1, "end_byte": -1}

"short_answers": [...]
}, ...],
"long_answer_candidates": [{

"start_token": 100, "end_token": 110,
"start_byte": 11454, "end_byte":11655

}, ...
],
"document_tokens": [...],
"document_html": ...

}

In my analysis of the development dataset, I discovered a few notable facts.

About 50 % of all questions are unanswerable. The vocabulary contains 722
901 different tokens. 16.0 % of questions overlap with their answers in at least
one token.

Although there are a few very long outliers, the mean question length in
development set is 9 tokens and the mean paragraph length is only 60 tokens.
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In fact, 91 % of the paragraphs contain less than 300 tokens. Each question
in the development set has 137.1 paragraphs on average and out of these, 98%
don’t contain the correct answer.

Figure 3.1: Histograms of question and paragraph lengths

Both because of the large number of unanswerable question-paragraph pairs
and because of my limited computing resources, I will use a random balanced
sample of the full dataset for training. This sample contains 263 921 valid
training examples, out of which 97 459 (36.9 %) are answerable with a short
answer.

21



3. Implementation

Figure 3.2: Histogram of paragraph counts

3.2 Setup

Deep neural networks are known for their high requirements on processing
power and memory. With some optimizations, all experiments were performed
on a desktop computer with Intel i5-7400 CPU with 8 GB of RAM and a sin-
gle nVidia GTX 1080 GPU with 8 GB VRAM. The computer was running
Ubuntu 18.04 and nVidia driver 410.73 with CUDA version 10.0. All code
is written in Python 3.6, the industry standard programming language for
machine learning. I use Google’s deep learning framework Tensorflow v1.13
(Abadi et al., 2016). Tensorflow is a popular toolkit that defines neural net-
works as static graphs and uses highly optimized automatic differentiation on
GPU.

The implementation consists of these parts:

• scripts for data preprocessing,

• definition of the tensorflow model,

• a script for training and evaluation,

• a script for answer postprocessing,

• a Jupyter notebook for tf-idf scoring.

3.3 Preprocessing

The first step of implementation is to transform the dataset into a format
suitable for machine learning. The preprocessing pipeline thus needs to clean
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up all text and convert it to a matrix of feature vectors readable by Tensorflow.

The text first needs to be tokenized. Even though the question and para-
graphs are already provided as tokens, these can’t be used directly, since they
may not be contained in the pre-trained vocabulary of BERT. For this reason,
I run a WordPiece tokenizer (Wu et al., 2016) (provided by the default BERT
implementation) on every token from all questions and contexts. Each token
is thus split into subword units. This eliminates the need for stemming or
other out-of-vocabulary word handling.

The next step is to create a fixed-length sequence of input tokens that can be
passed to the neural network. I use the recommended BERT input format

[CLS] query [SEP] context [SEP] padding

where the first token in input is always a special ’CLS’ token that instructs
the network to accumulate information about the whole input at this position.
After this follow the query and the context delimited by special separator to-
kens. Finally, the remaining space is padded with zero tokens to indicate to
the network that it shouldn’t be processed. All tokens are then converted to
integer token IDs using a hash map. The network also requires a second input
of segment IDs, which are a way of specifying different logical parts of the
input. In this case, the segment ids ’1’ and ’2’ are used for query and context
positions, respectively.
Finally, the correct start and end positions are selected from the example’s
annotation and mapped to correct input indices. In training mode, the pre-
processing script samples the examples so that more than 30 per cent are
answerable. This greatly increases the training speed and prevents bias. Each
preprocessed example is subsequently saved in the TFRecord file format di-
rectly readable by Tensorflow.
The mentioned preprocessing steps don’t keep the original token positions in
the paragraph, which we need to know in order to evaluate the model’s per-
formance. For this reason, in testing mode the script also saves a mapping
between the original positions and token offsets in a JSON metadata file.

3.4 Modeling

I experiment with a neural network based on the BERT model followed by
multiple variants of a domain-specific classifier. To the best of my knowledge,
there is only one existing BERT implementation for the NaturalQuestions
dataset at the time of writing, a baseline model by Google AI (Alberti et al.,
2019) trained on a Cloud TPU. Throughout this chapter, I will point out
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the similarities and differences with this implementation where necessary. In
all experiments, I will be using the pre-trained BERT model by (Devlin et
al., 2018), specifically the smaller BERT-base (uncased) with 12 transformer
blocks and a hidden size of 768 (110M trainable parameters in total), in con-
trast to BERT-large with 3x more parameters used by Alberti et al. (2019).
This decision is mainly motivated by memory and time constraints, and also
because no experiments have yet been made with the smaller network at the
time of the writing.

The network architecture is quite simple. Firstly, input tokens from the pre-
processing step are processed by the pre-trained transformer encoder. The
sequence outputted by the last transformer layer is then split into individual
vectors for each position and these are passed to a classifier. For the first
experiment, I use a single linear classifier with 2 hidden units. For each input
position, the classifier performs the matrix multiplication
(batch size, hidden size)×(hidden size, 2) and outputs a vector in R2. These
two real values are interpreted as the scores of this position being the start or
end of the short answer. Additionally, the output of the [CLS] token is passed
through a linear classifier and normalized to (0; 1). This number is used as
the probability that the context is a valid long answer.
In addition to fine-tuning the entire transformer with a single linear layer
on top, I experiment with freezing all layers and using only the pre-trained
features to learn a multi-layer classifier. This way, the model can be used in
production with significantly lower hardware requirements. For instance, it
would be possible to run a single pretrained BERT model as a cloud server and
use an API to get embeddings for different task-specific neural networks over
the internet. This would allow the deployment of high-quality NLP models in
standard web servers and embedded devices.

3.5 Training

The network is trained using gradient descent (Ruder, 2016). The most
straightforward way to obtain predictions from the network is to use the soft-
max function and define a threshold probability, for example 0.9, above which
the position is marked as the answer. It is then possible to minimize the stan-
dard cross-entropy loss. In contrast to this, Alberti et al. (2019) use the raw
values of the network and minimize the loss function L = −log pstart−log pend,
where pstart and pend are raw outputs of the network. In case of no correct
answer, the network is taught to predict the [CLS] token. I experimented with
both methods and found that the choice had no visible effect on results, apart
from slower training with the cross-entropy loss.
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3.6 Hyperparameters

The network has a few hyperparameters that could influence its performance.
Because the training of a single model is very time-consuming, it was infea-
sible to do a thorough hyperparameter search and the optimal values were
determined empirically. I will now list the chosen values and justify their
selection.

• batch size: 6

• learning rate: 1 ∗ 10−5

• weight initialization: N (0, 0.052)

• max sequence length: 312

The training batch size was set to 6 out of necessity, in order to fit the model
into GPU memory. Better results could probably be obtained using higher
batch sizes. The learning rate was chosen as recommended by (Devlin et al.,
2018). All weights were initialized by the normal distribution, as is standard
practice with neural networks. The transformer also requires to specify the
maximum sequence length that can be loaded into memory. Alberti et al.
(2019) solve this by splitting long paragraphs into multiple inputs with 512
tokens. However, during data analysis I found out that only 9 % of paragraphs
are longer than 300 tokens. For this reason and also because of memory
constraints I set the maximum input size to 312. I tested setting this value to
384 and splitting the remaining 9 % of paragraphs with a stride of 168 tokens,
which seemed to have little impact on the results.

3.7 Paragraph selection

So far, the network is able to predict a short answer span. However, if there
exist more contexts for a single testing example and the network predicts a dif-
ferent answer span for each one, we need a way of selecting the most probable
one. I evaluated multiple scoring methods, such as using a separate ”confi-
dence” output or predicting the answer category (long/short/none/boolean).
Surprisingly, the most effective method was to simply select the span with the
highest sum of start and end predictions.

The selection of long answers is a related issue. If a short answer exists, it is
logical to set the long answer to the HTML paragraph containing it. However,
there are examples where the short answer doesn’t exist. I solved this by
adding a dedicated output score that predicts the long answer confidence. It
is only used in case there is no predicted short answer. It would also make
more sense to filter the contexts and possibly even determine the long answer
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in advance. For this purpose, I implemented a pipelined system, adding a
TF-IDF paragraph scorer that selects n = 10 best paragraphs to be sent to
the neural network. This makes the prediction much faster, resulting in about
10x speedup.
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Evaluation

In this chapter, I will evaluate the performance of the implemented models on
the NaturalQuestions dataset using standardized metrics. Because inference
on the full development set takes more than one hour, I will use a random
sample of 200 questions (10 000 question-context pairs) as the development
set. I will then use the full development set as the testing dataset. First, I
evaluate the ability of the models to correctly determine if the input question-
context pair is answerable. Second, I compare the performances of various
modifications of the model. Then I evaluate performance in the long and
short answer prediction tasks using the original evaluation script by Google.
Finally, I discuss the results, limitations and possibilities for future research.

4.1 Question answerability

I will now try to predict the answerability of question-context pairs from the
sampled development dataset. I determine whether a question is answerable
or not by selecting the highest scoring span from the context. If the highest
scoring start and end indices are valid context indices, the question is answer-
able. In all other cases, such as when one of them points to the [CLS] token
or to the question, I mark the question as not answerable.

Because this evaluation is done per-context and the contexts are generated
during preprocessing, I use my own evaluation script. I find that the model
has reasonable recall and can accurately flag answerable questions, but its
precision is very low, giving a lot of false positives.

True positives: 82 False positives: 768
True negatives: 9897 False negatives: 11

Precision: 0.096 Recall: 0.882

Table 4.1: Answerability precision and recall
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Based on these results, I argue that the joint prediction approach is not opti-
mal and even though it finds the correct answer for a single training example,
it is vulnerable to adversarial examples, which would seriously degrade its
performance on real-world data.

4.2 Paragraph scoring

Because of the problems associated with joint long answer prediction, I tested a
simple heuristic to select best paragraphs. The heuristic first weighs all tokens
in the question and corresponding contexts and ranks them based on their
tf-idf-weighted word overlap counts with the question. This is implemented
as a dot product between the tf-idf vectors of the query and contexts. I
experimented with 1-gram and 2-gram overlaps (using single words and two
consecutive words). The following table shows the likelihoods of selecting the
correct paragraph using different parameters of the heuristic.

tf-idf features accuracy
1-grams, top-1 24.5
1,2-grams, top-1 25.0
1-grams, top-5 58.0
1,2-grams, top-5 55.5
1-grams, top-10 73.5
1-grams, top-20 85.3
1-2grams, BPE, top-10 70.0

Table 4.2: Paragraph scoring accuracy

The table shows that just by using a simple algorithm, it is possible to reduce
the number of long answers that need to be processed with the neural network
to just 10 with 73.5% accuracy. I experimented with other preprocessing steps,
such as stemming the tokens and using subword tokenization (BPE), however,
these had a negative effect on performance that I attribute to information loss.

4.3 Answer prediction

The following table shows the F1 scores of BERT with various modifications
on the sampled development dataset. BERT base refers to the simple model
with a linear classifier on top. BERT freeze is a model obtained by freezing
all transformer layers and only training three fully connected classifier layers
with 768 hidden units on top, added to increase the number of trainable pa-
rameters. Similarly, BERT freeze + LSTM contains an LSTM layer followed
by two dense layers on top of a frozen BERT model. BERT + tfidf refers to
the pipelined system consisting of the 1-grams, top-10 paragraph scorer and
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the BERT base model for answer prediction. All models were trained for 2
epochs. On average, the training takes about 20 hours to complete.

Long answer Short answer
BERT base 49.9 46.6
BERT freeze 33.6 13.8
BERT freeze LSTM 35.4 15.1
BERT + tf-idf 50.6 44.8

Table 4.3: Comparison of different BERT variants

It is visible in the table that the tf-idf scorer had little negative impact on
the performance and managed to filter out the unnecessary paragraphs. The
BERT freeze models, on the other hand, perform quite poorly at present.

The following table shows the results of BERT-base compared to other
available models on the tasks of long and short answer prediction on the full
development set.

Long answer Short answer
P R F1 P R F1

Untrained
First context (Google AI) 22.2 37.8 27.8
Closest match (Google AI) 37.7 28.5 32.4
Trained
DocumentQA (Google AI) 47.5 44.7 46.1 38.6 33.2 35.7
DecAtt + DocReader (Google AI) 52.7 57.0 54.8 34.3 28.9 31.4
BERTbase (this work) 47.5 54.9 50.9 50.4 40.0 44.6
BERTjoint (Google AI) 61.3 68.4 64.7 59.5 47.3 52.7
Human
Single annotator 80.4 67.6 73.4 63.4 52.6 57.5
Super-annotator 90.0 84.6 87.2 79.1 72.6 75.7

Table 4.4: Comparison of state-of-the-art results

The untrained baselines include first context, a simple baseline that always
selects the first paragraph, and closest match, a heuristic that selects the
paragraph with the largest TF-IDF word overlap. All compared results were
reported in (Kwiatkowski et al., 2019) and (Alberti et al., 2019).

4.4 Extrinsic evaluation

I will now describe specific mistakes that the model makes when predicting
short answers on the development dataset.
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Following the metodology of (Seo et al., 2016), I manually classified incorrect
answers into these categories:

Ambiguous answer boundary (47%)
Almost half of the mistakes are caused by ambiguity in what tokens should to
be part of the answer. These errors are not related to language understanding
and would be ambiguous even to a human.

Example: ”who got the first nobel prize in physics?”
Predicted answer: ”wilhelm conrad rontgen”
Reference answer: ”wilhelm conrad rontgen , of germany”

Failure to understand meaning (25%)
The second most common mistake the network makes is also the most im-
portant one. In a quarter cases, the network is not able to distinguish the
meaning of phrases in text or it is not able to perform reasoning based on
these phrases.

Example: ”who wrote the first declaration of human rights”
Predicted answer: ”mohammad reza pahlavi”
Reference answer: ”cyrus”
In this case, the context contained the phrase ”[...] the cylinder has also been
referred to by mohammad reza pahlavi [...] as [...]” and the network failed
to understand that the verb refer to has a different meaning than the verb to
write.

Example: ”who died in the plane crash grey’s anatomy”
Predicted answer: ”meredith”
Reference answer: ”lexie”
Here, the context contained the substring ”[...] meredith is relatively unscathed
[...]” and the network failed to understand and apply this piece of information.

Failure to understand the point of the question (10%)
In some cases, the network manages to find the correct answer, but doesn’t
understand what the user is looking for.

Example: ”what is the sentencing reform act of 1984”
Predicted answer: ”to increase consistency in u.s. federal sentencing”
Reference answer: ”u.s. federal statute intended to increase consistency in u.s.
federal sentencing”

Word used in different context (8%)
The network sometimes finds a relation also present in the question with a
different meaning.
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Example: ”the south west wind blows across nigeria between”
Predicted answer: ”intertropical convergence zone”
Reference answer: ”arrives in central nigeria in july [...] till september”
Here, the context contained the string ”intertropical convergence zone swing-
ing northward over west africa from the southern hemisphere” and the network
mistook the time relation ”between” for the position.

Required world knowledge (5%)
In a few cases, the question is not answerable without basic knowledge about
the world, such as geography in the following case.

For example: ”where do they grow hops in the us”
Predicted answer: ”kent” (located in UK)
Reference answer: ”the yakima ( washington )” (located in US)

Failure to parse HTML (5%)
Some contexts in the dataset, especially these that were extracted from Wikipedia
forms, contain a large number of HTML tags, which the network can’t un-
derstand. In my opinion, this is not a big issue and could be easily solved by
further fine-tuning the model.

4.5 Discussion

Even though partial results can already be used in production, the machine
reading comprehension task is still far from solved, and there still are many
issues that will have to be addressed. For one, current models are seriously
limited by design. So far, they only operate on a limited window of tokens
and predict the answer by discriminating over all inputs. Furthermore, it can
happen that the answer to a question is not a single span in text, but rather
a set of such spans, which the network cannot handle yet. It is also unclear
to what extent the present models are able to perform reasoning or if they
merely make use of repeated patterns in text without language understanding.

Answer justification is yet another issue to be solved. Explainability and
bias in AI are considered a big issue today and should be addressed before
the deployment of such systems to production. It should always be clear and
verifiable why an answer was returned and the user should always make their
own judgement. Answer justification could possibly be realized by returning a
list of reasoning steps, assumptions and supporting evidence along with each
answer.

Future research topics also include augmenting models with world knowl-
edge or ”common sense” and being able to generate answers in natural lan-
guage in addition to selecting them from text.
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4. Evaluation

Finally, there is the issue of generalization to different languages.

4.5.1 Czech language

So far, machine reading comprehension has been limited to high-resource lan-
guages, specifically English and Chinese. With the recent improvements in
neural machine translation (also thanks to the transformer), it is possible to
translate individual sentences between languages with accuracy close to that
of a human annotator (Bojar et al., 2018). This prompted my idea to cre-
ate machine-translated datasets for machine reading comprehension in lower-
resource languages. If perfected, this could open up a few interesting possibili-
ties. In addition to making design of QA systems in different languages easier,
one could for example compare the performances of QA systems in languages
with difficult morphology or improve robustness of existing systems to content
written by non-native speakers.

After experimenting with this idea, I translated the SQuAD dataset v2.0 to
the Czech language using the best translation model available to date, CUNI-
Transformer (Popel, 2018). Although some contexts are ill-formed due to
being split into multiple inputs during the translation, the overall translation
quality is surprisingly good. The project was realized at the Institute of Formal
and Applied Linguistics, Charles University, whom I would like to thank for
providing computing resources and the translation system. The dataset will
be made available for download at https://zilinec.me/dl.

32

https://zilinec.me/dl


Chapter 5
Deployment

To demonstrate that neural question answering can be effectively used in pro-
duction, I deployed a trained model on my website. I created a web application
that can be used to answer questions about a custom context in real time. The
application contains a backend REST API programmed in Flask, and a simple
frontend programmed in static HTML and Javascript.

The backend accepts the question and context as JSON POST data and re-
turns a JSON response containing a short answer along with a confidence
score. The answer and score is not selected using same method as used for
the NaturalQuestions dataset, but rather using a heuristic that yields longer,
human-friendly answers that could be used in conversation with a chatbot.
This heuristic selects 10 best answer spans and divides them into disjoint sets
of overlapping answers. The set with the most elements is selected as the best
and the final answer is formed as the union of the spans in the set.

The frontend contains a simple form along with a few example questions. It
is is freely available for evaluation purposes at https://zilinec.me/bert/.
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5. Deployment

Figure 5.1: QA web application
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Conclusion

The goals of the thesis were fulfilled. In the beginning of the thesis, I presented
an introduction to question answering followed by an overview of necessary
theoretical background. This includes the essentials of machine learning and
neural network design, methods for text preprocessing and evaluation metrics.
Building on this theory, I described selected state-of-the-art question answer-
ing datasets and neural network architectures, including the Transformer.

In the following practical part of the work, I implemented and trained
a question answering system based on a BERT language model. This was
followed by an evaluation of the results on the new NaturalQuestions dataset.
To improve the performance of the system, I described and tested various
possible modifications. In addition to this, the thesis explored and categorized
the system’s particular errors in prediction and reviewed the limitations of its
design.

Finally, I discussed possibilities for future research and deployed a trained
question answering system as a web application.
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Appendix A
Acronyms

AI Artificial intelligence

BERT Bidirectional Encoder Representations from Transformers

LSTM Long short-term memory

RNN Recurrent neural network

NLP Natural language processing

QA Question answering

TF-IDF Term frequency - Inverse document frequency

TPU Tensor processing unit
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
thesis.pdf..............................the thesis text in PDF format
src.......................................the directory of source codes

impl................... the directory of implementation source codes
thesis..............the directory of LATEX source codes of the thesis
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