
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague March 1, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: A translator of DET scripting language into Java

 Student: Daniil Grankin

 Supervisor: Ing. Ondřej Guth, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2020/21

Instructions

Describe the syntax of the DET scripting language and its existing parser and translator into the Java
language. Both the scripting language and its translator are proprietary; the translator has an ad-hoc design
with no grammar. Design a grammar of the DET language and implement a new grammar-driven translator
from DET scripts into Java. It will produce Java source code optimised for both speed and the minimal
number of temporary objects. Upon agreement with the supervisor, choose features of the DET language
to be implemented in the parser. The parser is considered to be a prototype. Perform tests and compare
the new parser with the old one; the testing and comparison will show both validity and speed of the new
parser.

References

Will be provided by the supervisor.

Bachelor’s thesis

Translator of DET scripting language into
Java

Daniil Grankin

Department of Computer Science
Supervisor: Ing. Ondrej Guth, Ph.D.

May 14, 2019

Acknowledgements

I would like to thank my parents for giving me all the opportunities, my
supervisor and colleagues for guiding me all the way and my friends and life
partner for supporting me.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 14, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Daniil Grankin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Grankin, Daniil. Translator of DET scripting language into Java. Bache-
lor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.

Abstrakt

Ćılem této práce je návrh a implementace vylepšeného skriptovaćıho enginu,
řešeńı problémů a návrh nových vlastnost́ı existuj́ıćı proprietárńı implemen-
tace tohoto enginu. Skriptovaćı engin se použ́ıvá ke zpracováńı skript̊u nap-
saných v jazyce založeném na Javě. Hlavńı nedokonalost existuj́ıćıho skrip-
tovaćıho enginu DET je použit́ı výhradně regulárńıch výraz̊u na zpracováńı
skriptu. Toto je řešeno v prototypu, který je předmětem této práce. Důraz je
kladen na běžně použ́ıvanou techniku konstrukce překladač̊u: skriptovaćı jazyk
je popsán gramatikou, dále se pracuje s abstraktńım syntaktickým stromem.

Kĺıčová slova ANTLR, grammar, AST, Sripting language.

Abstract

The goal of this thesis is to design and develop an improved scripting engine
solution, addressing the problems and revisiting the features of the existing
proprietary Scripting Engine implementation. The Scripting Engine is used to
process the scripts, written in Java-like syntax with custom language extension
into the methods of java classes, which could be compiled, and referenced from
the platform. The main imperfection of the DET Scripting Engine is that it
is relying on the regular expressions as on the script alternation tool. This

vii

flaw is approached in the prototype project, which is the subject of this thesis.
The emphasis is given to the common compiler-construction technique. The
scripting language is described with well-defined grammar. The parsing of the
scripts provides an abstract syntax tree which could be then traversed with
the predefined algorithms.

Keywords ANTLR, grammar, AST, Sripting language.

viii

Contents

Introduction 1

1 The goal of the work 3

2 Theoretical Background 5
2.1 FIX Protocol . 5
2.2 FIX Engine . 5
2.3 Parser . 5
2.4 ANTLR . 6

3 Current State 7
3.1 Input . 7
3.2 Replacement . 7
3.3 Byte code cache . 9
3.4 Optimizations . 10

4 Analysis and Design 13
4.1 Grammar . 14
4.2 Abstract Syntax Tree Processing 14
4.3 Features . 16
4.4 Environment . 16

5 Realisation 19
5.1 Enviroment . 19
5.2 Grammar . 20
5.3 Abstract Syntax Tree Processing 22

6 Testing and validation 33
6.1 Benchmarks . 33
6.2 Validation . 37

ix

Conclusion 39
Future Work . 39

A Acronyms 41

Bibliography 43

B Contents of enclosed CD 45

x

List of Figures

5.1 ANTLR grammar rule representing the DET script syntax 20
5.2 ANTLR grammar rules representing the Message Expression syntax 21
5.3 ANTLR grammar rules representing the Field Access Expression

syntax . 22
5.4 Generated base visitor functionality 23
5.5 The average parsing time of the different implementations. The

blue and orange columns represent single and double visitor pro-
cessing time respectively. The more detailed information could be
found in the Section 6.1.1 . 23

5.6 The tree of the added custom rules and their relation to each other 26

xi

List of Tables

6.1 The result of the benchmarks of the processing of the scripts by
the generated base visitor. 34

6.2 The result of the benchmarks of the processing of the scripts by
the different versions of engine. 35

6.3 The result of the benchmarks of the processing of the scripts with
and without custom code by the prototype. 36

6.4 The result of the benchmarks of the processing of the scripts with-
out custom code by the different engines. 37

xiii

Introduction

In the modern world, international real-time exchange of information related
to the securities transactions and markets is made possible by using the various
messaging protocols. One of such protocols is FIX, which stands for Financial
Information eXchange and provides the format of the messages, which are
used to exchange the data. The message is used as a data container for
various message fields like price, quantity, and others. Each message fields
has a specific number, called tag number, which serves as an index for a
particular field.

Low latency trading is based on algorithms reacting to various market
events and aimed at doing operations faster than competitors to increase the
profitability of trades. The crucial part for low latency trading product is to
maintain and process the constant flow of the data as any latency above the
threshold can result in the loss of profitability.

The Dynamic Electronic Trading platform provides messaging and routing
management tools which allow designing complex business routing solutions
for low latency electronic trading.[2] The main parts of the Platform do not
create objects on the heap since the garbage collector has adverse effects caus-
ing jitter.

One of the most significant parts of the platform is the scripting engine.
The scripting engine is an environment for developing code components. Code
components are mainly used to define the routing logic in terms of matching,
transformation and other actions over the messages. The scripts are written
by the user and transformed to the java code for further execution in the
routing core.

The engine allows the definition of custom functions that can be used in
the scripts. Users can use the extensive list of available built in functions, ex-
plicitly designed for electronic trading purposes. The functions are specifically
annotated static java methods on the backend. Those functions can accept
variable number of parameters and have a return type. Apart from regular
custom functions, there are so-called runtime functions. Runtime function has

1

Introduction

the following features:

• It can be written by the user in the same way as any code component

• The same set of features as in a regular custom function is presented, that
would be an abstract number of parameters, return type, and platform-
wide accessibility

• It can be utilized in the scripts as well as in the code using the request
to the runtime functions provider

All the scripts written by the user are processed during the runtime. There-
fore, it is not required to restart the platform on the script addition or modi-
fication.

The workflow of this project can be represented as a waterfall of the sub-
projects, divided into the chapters:

• Current State: the analysis of the existing version of the engine, describ-
ing the functionality and the problems of the implementation

• Analysis and Design: addressing the problems of the old engine and
designing the solution

• Realisation: description of the developed prototype implementation

• Testing and Validation: comparing the implemented prototype capabil-
ities with the old version of the engine using the benchmarking and the
output validation.

2

Chapter 1
The goal of the work

The main focus of the first version of DET scripting engine is the flexibility
of the script language and performance of outcome java code. The scripting
language special non-java expressions are transformed to java expression by
the engine, and the resulting scripts meet the requirement of minimal tem-
porary objects and overall performance, which is achieved by using various
optimizations.

The engine does not have formally defined syntax but instead uses regular
expressions to replace matched parts of the code. The algorithms which are
used to optimize the code are not efficient in terms of complexity. Many
features were written ad-hoc as workaround resulting in non-optimal design
and maintainability. The used libraries do not allow proper redesigning of the
engine. The user-friendliness suffers from lack of adequate error feedback and
tremendous verification and application time due to the non-organized system
of handling the cache and high complexity of the code transformations.

In this work, all the downsides of the script engine are addressed to de-
liver more pleasant script-development. The performance requirements of the
resulting scripts remain the same. The work is mainly focused on redesigning
the engine to have enough flexibility for elegant extension of the feature set
and yet be capable of the previous functionality. The goal is to improve user
experiences, such as error feedback, intuitive semantics, fewer restrictions in
custom expressions and the building time. Nevertheless, the development ex-
perience should be enhanced as well. By providing the more advanced design,
integration of new features would be effortless. The achieved enhancements
would lead to quick delivering process and convenient overall usage of the
platform.

3

Chapter 2
Theoretical Background

2.1 FIX Protocol

The Financial Information eXchange protocol is an ASCII message-based pro-
tocol, created in 1992 as a communication framework which was used between
the counterparties [6]. The FIX 4.4 possesses 956 tags which are used to build
the messages. The tags are represented by the integers. [3] The message type
could be identified by tag number 35, which will contain one of 92 types of
messages. [4]

2.2 FIX Engine

The FIX engine is an implementation of the FIX protocol, which manages the
messages exchange between counterparties by establishing the connection and
handling the requests. [9] There are many publicly available implementations,
while the electronic trading companies mainly use their proprietary version.

2.2.1 QuickFIX

QuickFIX is an open source FIX engine based on Apache license. While
the core implementation is written in C++, the API is available in many
languages, such as Java, C++, .Net and others. [10]

2.3 Parser

A parser is a component that processes the input into the smaller elements,
which are easier to translate to another language. The processing steps include
the following stages:

• Lexical Analysis: splitting the input string into the tokens.

5

2. Theoretical Background

• Syntactic Analysis: validation of the tokens to form the defined expres-
sions referring to a context-free grammar. An abstract syntax tree is
generated during this stage

• Semantic Parsing: the validation of the implications of the expression
and taking the appropriate actions.

Parsers are widely used in programming languages and exchange protocols.
[12]

2.4 ANTLR

ANother Tool for Language Recognition is a parser generation tool written in
Java and published by the Terence Parr under the BSD License. It is widely
used in many parsing tasks and generally supports any language definable
by the LL(*) grammar. The appliance of the ANTLR could be found in the
Twitter search engine, used to parse the queries. [1]

6

Chapter 3
Current State

The engine can be described as a set of seemingly independent components,
which exchange the data to achieve the common goal – build the script and
apply it to the system.

3.1 Input

The dedicated script editor window is used to capture the user‘s input. After
the user finished development of the script, there is an option to build config-
uration, which passes the code to the backend system for further examination
and appliance on successful validation.

3.2 Replacement

The received code is passed to the replacement component to transform all the
custom expressions into compilable java code. Code replacement component
performs the search using regular expressions which matches the patterns
derived from protocol dictionaries, custom functions, and custom variables.

The regular expression replacements are mainly based on several common
replacements. The following list of the replacements includes the description of
the functionality as well as the example of usage of the particular replacement.
The structure of the list entity would be the following:

• Name

• Description

• Input pattern

• Output pattern

• Example of the input expression

7

3. Current State

• Resulting output expression

All the examples are based on the FIX protocol version 4.4. The list of
the replacements follows:

• Field name to tag replacement
The field does not represent an enum but serves as the alias for the index
in the array of the fields.

{message variable name}.{field name}
{message variable name}[{field tag}]

INFO($M.MsgType);

INFO($M[35]);

• Field tag to method call replacement
As the message variable is not an array, but rather an array wrapper,
the fields are accessed with the method, receiving the index of the field.

{message variable name}[{field tag}]
{message variable name}.getValue({field tag})

INFO($M[35]);

INFO($M.getValue(35));

• Special variables replacement
The short named alias for the variable should be translated to the actual
variable name or to the method which provides the variable.

${special variable name}
{variable name} OR {method name}

String x = $M.getValue(35);
Message y = $A;

String x = m.getValue(35);
Message y = ArrayFunctions.getCurrentMessage();

• Constants replacement
The constants are enums, but given that they are not provided as the
enum class by the fix engine, the enum to the value transformation
should be performed by the engine.

{field name}.{enum of the field value}
{field value}

8

3.3. Byte code cache

if(m.getValue(35) == MsgType.NewOrderSingle){
INFO(m.getValue(1741) == UpfrontPriceType.Percentage);

}

if(m.getValue(35) == "D"){
INFO(m.getValue(1741) == 1);

}

• Custom method replacement
The custom method aliases should be replaced with the actual methods.
{custom method alias}
{actual method}

if(m.getValue(35) == MsgType.NewOrderSingle){
INFO(m.getValue(1741) == UpfrontPriceType.Percentage);

}

if(m.getValue(35) == "D"){
INFO(m.getValue(1741) == 1);

}

After all the regex replacements were done, the code does not contain
any custom expressions and can be described as pure java code. However,
it is not ready to be compiled yet, as the Java code has to be written in the
method of the class. There are predefined templates with different arguments,
return values and method names to fulfill code components requirements.
The template for runtime functions does not contain the method to provide
flexibility to define the parameters and return type in the runtime. The code
is inserted into the template in order to obtain defined Java class with a known
method name. At this step code is ready to be compiled.

3.3 Byte code cache

The compilation of the scripts is a long process in terms of the real-time
functioning system. Byte code cache of every script is stored to minimize
the time needed to execute the scripts. The component responsible for byte
code cache access possesses a map, where the key is the java non-optimized
code, and the value is the byte code, which was created by the compilation
of the optimized java code. The string containing the java class is used to
determine the existence of an already compiled java code. In case the code
was already compiled, byte code can be loaded as the class and used immedi-
ately. In another situation, if the code was not compiled yet, it is passed to
the optimization component, and upon successful optimization, it gets to the
compilation component.

9

3. Current State

When the non-runtime function script is changed, the byte code cache
component invalidates the cache of that script and treats it as a newly created
script.

The runtime functions can be used in other code components. The byte
code cache does not keep track of the usages and invalidate all the byte code
cache of the code-components in case the runtime function is changed. That
leads to the necessary rebuilding of all the scripts upon any change in runtime
function.

3.4 Optimizations

The optimizations component does replacements on certain kinds of expres-
sions. The strategy is to find the code which is to be replaced, replace it and
repeat the process until there is no code to replace. The way those expressions
are detected is parsing the code, building an abstract syntax tree and visiting
of the tree, which will perform optimization search on specific nodes of the
tree. There is a possibility to provide modifiers for expression statements; all
other optimizations are predefined in visitor itself.

The predefined optimizations are described in the following sections.

3.4.1 Auto-cast

Given a variable is initialized with the initial value of the result of the getValue
method, then the type of a variable is determined, and the cast is added
concerning the variable type. It has to be mentioned, that the auto-cast
optimization is not capable of determining the type of a variable, declared
before the assignment.

The following example expression

public boolean match(Message m){
int a = m.getValue(53);
return a == 3;

}

would be transformed to

public boolean match(Message m){
int a = (int) m.getValue(53);
return a == 3;

}

3.4.2 Custom Value Getters and Setters

If getValue method’s result is casted to some type, the optimization tool will
replace the cast with the special method which will retrieve the value with the

10

3.4. Optimizations

desired type. The replacement of the simple cast with special method is done
due to the technical specifications of the internal Message implementation.

The following example expression

public boolean match(Message m){
int a = (int) m.getValue(53);
return a == 3;

}

is transformed to

public boolean match(Message m){
int a = HighPerf.getInt(m, 53);
return a == 3;

}

3.4.3 Custom Comparison Methods

If m.getValue is a part of a comparison expression, the whole comparison
expression is replaced with a custom comparison function, which receives the
message object and corresponding field number as the left operand. The
optimization works when m.getValue is right operand as well in the same
manner. Custom comparison function determines the type of value stored
under the given index. Appropriate comparison methods are selected based
on the type of values.

11

Chapter 4
Analysis and Design

The previous approach to process the scripts using a set of regular expressions
fails in flexibility and performance. The better approach would be to use a
common compiler-construction technique. The parsing was already done in
the previous implementation. However, the parsing, in that case, would only
take place, when the script is inserted to the template of the class, as have
been discussed in Section 3.4. The parsing and validation of the template
is not a necessary thing to do since it would consume the time needed to
parse the class structure every time the processing of the script takes place.
Therefore the improvement would be to create specific script grammar and
the parser based on that grammar.

The feature set should be capable of backward compatibility with the
first generation scripts. Therefore the features, which were supported in the
previous version, should be supported in the new one. Moreover, some of
the features should be improved, and others need to be redesigned due to the
changed structure of the engine. The new features should be added as well to
satisfy the needs of the script developer.

The engine is fed with the data, such as the fields aliases, the constants, the
custom methods, and variables. The source of that data is an environment of
the engine. The prototype version of the environment would be implemented
to feed the prototype engine with the data.

The prototype version of the engine would not be capable of compiling the
scripts and managing the saved bytecode. The project aims to transform the
scripts into the Java code. This project would be late utilized in the platform
to process and transform the scripts.

The more detailed analysis of these aspects would be described in the
following sections.

13

4. Analysis and Design

4.1 Grammar

The regular expressions are too difficult to maintain and lack the needed
flexibility for extending the engine‘s feature set. The specifically designed
grammar would serve a better role in that aspect as it would be well modifiable
and much more flexible and faster than the regular expressions. ANTLR
provides the tools for grammar development, as well as auto-generation of the
parser and a helpful API for AST processing.

The Java 8 grammar for ANTLR could be found on the ANTLR GitHub
repository. [8] It describes the syntax of the java quite well, meeting require-
ments of the DET scripting language syntax. However, grammar still contains
the rules that are not needed in the engine and should be eliminated to mini-
mize the grammar and hence the complexity of the processing.

The grammar would support custom DET expressions, such as the cus-
tom message variable, the custom field access, and other expressions could be
supported and added on demand.

4.2 Abstract Syntax Tree Processing

The speed of the process of script transformation is not obliged to improve,
as it is not a problem of the existing scripting engine. The main enhancement
of the new scripting engine implementation is the improved flexibility of the
tool at the same time keeping it simple enough to decrease the threshold for
developers to maintain the engine.

The ANTLR parses the scripts and outputs the abstract syntax tree which
is to be processed by the engine. The processing can be divided into two parts.

4.2.1 Type Assignment

The type of the necessary nodes, such as the expression node and left-hand
side node, should be discovered and saved for later use in the next steps of
the processing.

The types should cover all the following aspects:

• Basic primitive types

• Arbitrary reference type and special reference types (such as String)

• Custom types to represent the message field access and the constant
enum

• Method arguments type to handle correctly and cast or transform the
arguments into the required type

• The type to combine the types of the subexpressions.

14

4.2. Abstract Syntax Tree Processing

The types would be required in the next processing step, where the types
of nodes would result in different processing ways. The following example
would demonstrate how the processing of the expression should change based
on the types of a subexpression.

4.2.2 String Extraction of Expressions

The string extraction would be then performed on the abstract syntax tree
using the type-information to perform decisions on the extraction of the ex-
pressions.

The types of expressions are necessary to determine the kind of the main
expression, where the main expression is the set of the subexpressions. Partic-
ularly, for example, the message field assignment should be treated differently
from the primitive variable assignment, as in case of message field access, the
access itself should be performed with the specific method dedicated to the
insertion of the data in the message fields, while the primitive variable case
would not require any modifications. The similar logic applies to the vari-
able initialization and relation expressions. Apart from modifying the scripts,
the purpose of the string extraction would also lay in dismissing the unnec-
essary symbols and separating the symbols with the predefined separators, as
the grammar would be designed to skip the whitespaces, tabulators and the
newlines.

4.2.3 JAVA Blocks

Old scripting engine offers an ability to process and execute pure java code
as if it was in public static method of an empty public class. For the sake
of minimalization, not all of the expressions would be supported in the pro-
totype. Complex statements, such as generics and lambdas, are omitted, but
the ability to use those constraints would remain with the introduction of the
dedicated JAVA block.

Code under the JAVA block would not be modified nor optimized during
the processing of the script and would be directly inserted into the resulting
Java code as a block.

The JAVA block would not be intended to be as a commonly used option.
If the developer would lack the functionality of the scripting language, it would
still be possible to implement the logic as part of the plugin creation. The
plugins are the modules, which could be injected as part of some bigger module
of the platform. The requirements for the plugin implementation would be
provided to the clients on demand alongside with the instructions on how to
make a custom function as part of the plugin, which would be injected into
the set of all custom functions and would be available to the scripting engine.

Java Language allows the usage of blocks inside the method. That gives
an opportunity to treat JAVA block as a simple block as the variables declared

15

4. Analysis and Design

inside the block can only be accessed in that same block or its subblocks. The
variables declared before the JAVA block could be referenced inside the block.

4.3 Features

4.3.1 Code Optimizations

The code optimizations remain one of the most significant aspects of the script-
ing engine. The optimizations should be performed in a known amount of
phases with the intention of decreasing processing time.

While all the functionality should remain the same, some of the features
need to be redesigned, as they heavily count on specific patterns in the strings.

The type related optimizations should possess the types of every declared
variable with the purpose of performing the type optimizations in every other
possible place and not only in the declaration expression, where the type is
easily accessible.

The control of the types gives an opportunity to declare IMessage variables,
which would be treated in the same way as the special variables.

4.3.2 Error Position Detection System

There can be a various number of optimizations and modifications on the code
passing it to the engine. Java compiler feedback is not informative enough for
the user to locate the position of the error in original source code. Java
compiler diagnosis includes the position of the diagnostic and the message
itself. All the optimizations provide the information of the code replacement,
mainly the position and length of both input and output code. That is enough
for the engine to trace the error back to the original source code and provide
an informative error message to the user.

4.4 Environment

Building the Scripting Engine 2.0 under the old environment would affect the
development process with the inability to launch the scripting engine sepa-
rately without starting the whole platform. Therefore the new trivial envi-
ronment should be designed. The environment should provide the following
data:

• The FIX Data is needed to validate the engine against the existing script,
which contains FIX constant expressions and FIX field names in message
field access.

• As the tests would expect the engine to produce the result as close to
original engine‘s result as possible, the custom functions and variables

16

4.4. Environment

metadata should duplicate the existing ones in terms of the package,
class and method name.

17

Chapter 5
Realisation

5.1 Enviroment

As was presented earlier, necessary environmental work is required to emulate
the space of the platform and feed the engine with the required data.

5.1.1 FIX Data

The required data for the scripting engine is the message fields, enumerability
of the fields and the enums themselves.

The FIX engine would take the role of the FIX data provider. FIX engine
is a framework, which is generally the implementation of the FIX protocol,
which is used to handle the FIX messages. [9]

The current version of the scripting engine uses a proprietary version of
the FIX engine, which should not be used with the prototype. Therefore an
external FIX engine should be used.

QuickFIX is a free and open source implementation of the FIX protocol.
[10] It provides the FIX data dictionary version 4.4, which would be sufficient
for the prototype. Alongside with the dictionaries, it provides the Java library
with the API to handle FIX messages. [11] The API for the scripting engine
required features has the private modifier, but as the QuickFIX permits to
modify the source code, all the code can be copied to the editable class and
the methods providing public message fields and other field related metadata
could be marked public. That would take place in the prototype, while the
further integration of the scripting engine prototype into the platform would
require the usage of proprietary FIX engine.

5.1.2 Custom Functions and Variables Metadata

The Java ReïňĆections API provides the necessary functionality to search for
the annotated classes and methods and derive the metadata such as annotation

19

5. Realisation

ïňĄelds and method names, which would be needed to provide the names
of custom functions to the engine and ability to convert them to the Java
method invocation. The implementation of the custom functions and variables
metadata provider would use the reflections to scan the classpath for classes,
annotated with the custom annotation, which would indicate the presence
of custom methods and variables inside the class. The class would be then
scanned for the methods annotated with the annotations designed to represent
the custom function or variable. The methods would be saved as well as the
arguments of the annotations, as they contain the name of the alias for the
custom function or the variable.

5.2 Grammar

The DET scripts are made executable by creating a class with the static
method containing the script. That would mean the grammar should not
include any rules other than those used in the Java method blocks. The entry
point of the grammar is represented with the following ANTLR rule, which
could be seen on Figure 5.1

1 scriptRoot
: (blockStatements)* returnStatement ? endOfFile

3 ;

Figure 5.1: ANTLR grammar rule representing the DET script syntax

The rule states that there could be the arbitrary number of the block
statements, as well as no block statements at all. The block statement part
should be followed by the optional return statement and required end of the
file.

As the scripts are not used to implement complex algorithms requiring non-
trivial expressions, many features of Java 8 can be omitted in favor of having
a more minimalistic and maintainable framework. The excluded expressions
are the following:

• Lambdas

• Generics

• Arrays

• Try-catch blocks and exceptions (try-finally is still relevant)

• Method references

• Variable modifiers

20

5.2. Grammar

• Assert statement

• Synchronized blocks

• Bit operators (shift, bit-or, bit-and, bit-xor, etc.)

The additional set of rules is added to handle the message field access
expression. The message field access can be represented as a cartesian prod-
uct of the message expression representation set and field-access expression
representation set.

5.2.1 Message Expression Syntax

The message can be represented as one of the following:

• $SPECIAL VARIABLE

• $SPECIAL VARIABLE(SPECIAL VARIABLE ARGUMENT)

• SPECIAL METHOD()

• VARIABLE

1 customVariableName
: customVariablePrefix Identifier ('(' integer ')')?

3 ;
directMethodInvocation

5 : methodName '(' argumentList ? ')'
;

7 messageVariable
: Identifier

9 ;

Figure 5.2: ANTLR grammar rules representing the Message Expression syn-
tax

ANTLR rules for these representations could be seen on Figure 5.2 The
message syntax representation does not assure the engine of the actual type
of the expression. Any message expression should be checked against the
IMessage type.

5.2.2 Field Access Expression Syntax

The field access representations:

• .FIELD

• [FIELD TAG]

21

5. Realisation

1 fieldAccess_after_primary
: '.' Identifier

3 ;

5 fieldArrayAccess_after_primary
: '[' integer ']'

7 ;

Figure 5.3: ANTLR grammar rules representing the Field Access Expression
syntax

The ANTLR rules could be seen on the Figure 5.3.
The ‘fieldAccess after primary‘ rule does not necessarily capture the mes-

sage field access. Thus it should be checked if it is the valid field of the
message.

5.3 Abstract Syntax Tree Processing

As was stated in the design Section 4.2, the ANTLR‘s parsing process results
in the abstract syntax tree, which is to be processed by the engine.

The processing could be done by using the visitor or listener API, which
was generated alongside the parser to fulfill the needs of the tree processing.
Both implementations are appropriate for the processing the abstract syntax
tree. However, the visitor API is more compact and flexible. The main differ-
ence is that during visitor tree traversal, the children nodes must be explicitly
visited by the visit call, whereas listener methods are called independently by
the walker objects, provided by the ANTLR. That would mean that nodes
which are not called during visitor processing, would not be processed, unlike
during the listener processing. [7] This feature would be later used to skip
unnecessary tokens.

The visitor API allows specifying the behavior for the processing of any
possible node of the tree. The generated base visitor does no other work
rather than passing control to the children of the current node, so any visitor
which extends generated base visitor functionality would have that default
behavior. The return value of the visitor’s methods could be parametrized via
the template. The representation of the base visitor code could be found on
Figure 5.4

The base visitor could be represented as follows:
The two primary processing steps defined in the design could be imple-

mented by a single visitor. However, the benchmark results which can be seen
on the Figure 5.5 shows no significant speed improvement over the imple-
mentation, where the processing is distributed over two visitors. The double
visitor implementation exceeds the processing time by 4 microseconds, which

22

5.3. Abstract Syntax Tree Processing

public class DETBaseVisitor<T>
extends AbstractParseTreeVisitor<T>
implements DETVisitor<T> {

@Override
public T visitNode(DETParser.NodeContext ctx) {

return visitChildren(ctx);
}
...

}

Figure 5.4: Generated base visitor functionality

is less than one percent of the processing time of the old scripting engine.
Thus it would not make any significant difference. Comparing to the time
needed to compile the script, the double visitor added processing time would
be less than 0.001 % of total time.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

One Line Low Complexity Basic

Figure 5.5: The average parsing time of the different implementations. The
blue and orange columns represent single and double visitor processing time
respectively. The more detailed information could be found in the Section
6.1.1

The two visitors approach could seem preferable in terms of the work-
flow and responsibilities distribution. The parts of the code which stand for
type discovering would be separated from the string extraction code, which
in return would come handy as of simplifying massive logic into smaller parts
increases understandability of the code.

The two visitors approach would include the type-assignment visitor and

23

5. Realisation

string extraction visitor.

5.3.1 Type Assignment Visitor

The type visitor would assign the specifically designed types to the nodes of
the tree for further usage of that information to correctly choose the way of
the string extraction. The types would not only represent a special kind of
the expressions but would also contain the logic of string extraction of a par-
ticular type. The types implemented in the prototype would have a common
base interface to maintain specific API, convenient for future development.
Moreover, the common parent interface would allow storing all the types in
the single map. The base interface would be named IType and would have
the following methods:

• getNodeType(): the method would be available across all the types, as
some of the string extraction logic would require to know the type of the
node. The node type could be one of those included in the list:

– INTEGER: the integer as a number itself, the declared primitive
variable of type int or a variable of the reference type Integer

– DOUBLE: the double as a number itself, the declared primitive
variable of type double or a variable of the reference type Double

– CHARACTER: the character as a character itself, the declared
primitive variable of type char or a variable of the reference type
Character

– STRING: the string as the sequence of characters surrounded by
the double brackets, or a variable of the reference type String

– UNKNOWN REFERENCE: this type would represent the refer-
ence types, which are not String nor Object

– MESSAGE FIELD ACCESS: the expression of the field access of
the message

– CONSTANT FIELD ACCESS: the expression of the access of the
imported constant enum

– MESSAGE: the expression, representing the reference to some mes-
sage variable.
Examples:

∗ “$M”
∗ “CUSTOM METHOD()” considering that this method would

return a message
∗ “m” considering that this variable was declared before with the

message type

24

5.3. Abstract Syntax Tree Processing

– READABLE MESSAGE: the expression representing the reference
to some read-only message variable

– CONSTANT ENUM: the expression representing the reference to
some of the imported enum constants.
Example: “.NewOrderSingle”

– FIELD ACCESS: the expression representing the field access.
Example: “.fieldName”

– SPECIAL FIELD ACCESS: the same expression as the
FIELD ACCESS, but verified to be the actual field of the message.
Examples:

∗ “.FIXFieldName”
∗ “[30]”

– EXPRESSION: is the type, used to define the node, having two or
more children

– ARGUMENTS: is the type, used to aggregate the types of the
arguments of the method

• getSymbolPosition(): gets the position of the symbol during the string
extraction. The symbol position is stored relative to the actual position
in the resulting string and could be later referenced by the error provided
by the compiler. The detailed description of what would be the symbol
position can be found in Section 5.3.2.2

• setRequiredType(type): sets the required type to the node and its chil-
dren, if the node type is Expression. The stored required type would be
used during the generation of the output expression, to appropriately
cast the expression to the desired type.

• translate(visitor): extracts the string from the current type using the
visitor to store the symbol position information and process sub expres-
sions if necessary.

The type assignment visitor would require environmental data, mainly fix
data and custom functions metadata. These data would be used to deter-
mine the validity and provide the replacements of the custom functions and
variables, and fix constraints.

The type visitor would assign the type to each node of the Message Field
Access tree member. The tree can be viewed on the tree diagram (Figure 5.2).

The Message Field Access node would receive one of the following types:

• If the children would have the types of Message/ReadableMessage and
the Special Field Access, then the node would be assigned to the Message
Field Access type.

25

5. Realisation

Figure
5.6:

T
he

tree
ofthe

added
custom

rules
and

their
relation

to
each

other

26

5.3. Abstract Syntax Tree Processing

• If the children would have the types of Constant Enum and the Field
Access, then the node would be assigned to the Constant Field Access
type. The type contains a replacement for the constant enum value
alias and the position of the alias. The translate method would save the
position and return the replacement.

• In case the first child is not a Message, ReadableMessage nor Constant
Enum, the node will be assigned to the Simple Expression type, where
the translate method would pass the control of string extraction to its
children.

In any other case, the input would be considered being invalid, and there
would be generated an appropriate error, describing what the expected input
was and why the engine failed to process the script.

The parent of the Message Field Access node would receive the type ac-
cording to the following logic:

• If the Message Field Access node is the only child and has no other
siblings, the type of the node will be adopted by the parent

• If there are several children, the parent would take an Expression type
regardless of the types of the children

The Message Field Access, alongside with other types, are complex types,
which would require more in-depth description. The descriptions would be
in separate sections, providing the information about main types and their
subtypes.

5.3.1.1 Message Field Access Type

The Message Field Access type contains information about the message and
the field which is being accessed. This type has extended API to extract the
string, as there are different types of the expressions, where message field ac-
cess could take place. The API would be extended with the following methods,
which would be used instead of the translate() method, defined in the base
IType interface:

• tanslateGet(visitor): this would process current message field access get-
ter into the string. This method would use the saved required type to
select appropriate getter. If the required type is undefined, the method
will generate a general getValue call, with the return type Object.

• translateSet(visitor, argument): would generate the setter method
choosing according to the argument type.

• translateSet(visitor, messageFieldAccess):
would generate a special method to copy the field of one message to
another.

27

5. Realisation

The setter methods would report the error if the message is read-only since
the fields of such a message could not be changed.

5.3.1.2 Message Expression

The Message Expression is an abstract type, which would be set to either ver-
ified Message or read-only Message expression. The Message expression is a
variable or the return value of the method with type of the message, represent-
ing the FIX message in case of the prototype, which was described in Section
2.1. This class defines a new method to pass the string extraction control to
the subclass which contains information about the message expression. The
Message Expression itself sets the cast to the expression if the required type
was set before, saves the position and calls the child to finish the string extrac-
tion. The subtype would only need to move the current position and return
the replacement for the message expression, as the symbol position would be
already saved.

The subtypes are the following:

• Special Message Variable: the message reference by using custom syntax
with the dollar sign (Example: $M). This type contains replacement
which was derived from the container of custom expressions.

• Special Message Variable With Argument: same custom message refer-
ence, but with the parameter. The parameter would be an index of the
message in the special message array. The type contains replacement
and argument string to build the method appropriately.

• Message Variable: the variable which was declared in the script with the
message type. The type contains only the name of the variable and does
not change it.

• Custom Method: the reference of the custom function. The custom
function could return any type, but in case of message field access, it
would be checked that the type is either a message or read-only message.
This type contains the replacement method which was derived from the
container of custom expressions and the arguments to be inserted into
the method.

5.3.1.3 Field Access Expression

The Field Access Expression would be assigned with one of the two types:
Field Access type or the Special Field Access.

The Field Access type represents the regular field access which is not using
the alias for the message field. It contains the name of the field and the
symbol position. It would either not be changed at all or would be used for
the Constant Field Access.

28

5.3. Abstract Syntax Tree Processing

The Special Field Access type represents the field access in its usual form,
where the field name represents the field of the message, or in array field
access style. The tag of the field is retrieved from the container of custom
expressions and stored for the string extraction, where the getter would be
generated. The tag could also be used by the Message Field Access type,
to extract the information and build type-specific methods according to the
context.

5.3.1.4 Arguments Type

The Arguments type is used to pass the type of the arguments of the custom
method to the actual argument expression and its children.

5.3.1.5 Reference and Primitive Types

The Reference and Primitive types are used to define the types of simple
expressions and pass information, such as required type to the other types.
Furthermore, some of the types have unique methods to generate getter for
message field access. Those types include:

• CharType

• DoubleType

• IntType

• StringType

All of the reference and primitive types have the method to retrieve the cast
expression, which could be placed before any expression on request. They
have predefined string which they would give as a cast expression, and the
UnknownType stores the type name, thus the cast expression is dynamic for
this type.

5.3.2 String Extraction Visitor

The tree is processed once more using the information obtained from type
assignment visitor. The main functionality of the String Extraction Visitor
would be the assembling of the compilable Java code by altering the expres-
sions according to their type and position. Thus the return value for the
visitor‘s base methods would be the string. The aggregator should be used
to combine the string results from the children nodes. The aggregator would
be a method of the visitor, which contains aggregation logic for the three
arguments being:

• The previous aggregated strings.

29

5. Realisation

• The new string.

• Separator

The aggregation logic would only vary in a way which characters to use as a
separator. There are two possible candidates for the separator:

• The whitespace is used in any other case to separate the tokens from
each other

5.3.2.1 String Extraction

There is the default behavior for visitor‘s methods, which is to visit all the
children and aggregate the results using a special method. This behavior is
suitable for most of the nodes, as no changes should be performed in the
context of non-custom code.

There are several patterns the overridden method‘s algorithm could follow:

• Select different aggregation approach: by default, the separator would
be whitespace, but in case of block statements, the statements should
be separated by the newline

• Skip the translation of certain nodes: the java blocks are made possible
by having a specific rule in the grammar so that every block preceded
with JAVA keyword is a so-called Java Statement block. The keyword
JAVA is omitted by the String Extractor Visitor, and the block stays
untouched. As it would be still a block, java compiler would notice if
any of the variables declared in the block are used outside of it and that
would generate a user-friendly error message. The custom variable prefix
should be omitted as well as it does not have any useful information since
the script was already parsed. The end of the file has to be handled with
the special ANTLR symbol as well, so this node should be skipped in
the same manner as the JAVA keyword and custom variable prefix.

• Getting the type from the node and using a type to extract the string: as
was stated before, the types assigned to the nodes would possess enough
data to transform the expressions to the compilable Java expressions.
For some of the nodes, there should certainly be the saved type, and
since every type can handle the translation, the control can be passed
to that type (e.x.: the Expression node, Message Field Access node).

• Building optimized binary operator method based on context and type
of the children: there are several nodes, which require a bit more context
than just the syntax context. The Equality Expression node would check
if the equality or non-equality expression takes place and if it is, the
method will pass the control over to the special class, responsible for
building optimized operators. That class would take the nodes and

30

5.3. Abstract Syntax Tree Processing

their types and based on the types and operator; it would decide which
operator method is suitable for that case. Mainly the types are needed
to check if there is a Message Field Access on either of the sides of
the binary expression, as in that case the method would be changed to
fulfill the optimal extraction of the field, or both field if the Message
Field Access is on both sides. The same strategy goes for the Relational
Expression node, where such binary operators as less than, greater than,
less or equal, greater or equal are used.

• Building the setters and getters during the assignment context: the
assignment algorithm is close to the binary relational expressions ap-
proach, but in assignment context, if the left-hand side is the Message
Field Access, the special setter should be generated, taking either the
argument of arbitrary type or the Message Field Access. If the left-hand
side is anything but the Message Field Access, the control goes to the
children and the string extraction would be performed as if they would
be in separate expressions.

5.3.2.2 Symbol Position Storing

The string extraction in many cases would move the tokens from their initial
position and even transform the sequence of tokens to one or other way around,
so the track of the modifications takes place in string extraction visitor. For
these reasons, the term of Symbol Position is introduced. The Symbol Position
is an information of the original position of the token or the sequence of the
characters in the script. The position would include the following information:

• Line number

• Position of the first character of the sequence in the specified line

• The absolute start and stop positions

The visitor would store the map where key and value would be the final
absolute position and the Symbol Position associated with that position.

To implement the Symbol Position, the extension class for the
org.antlr.v4.runtime.Token class would be created, as the provided class lacks
the functionality of combining two or more tokens into one. The designed class
would take the ANTLR Token class as a constructor parameter and extract
all the necessary information about the token which could potentially be used
later during the tracing the tokens back to the origin.

The stored Symbol Position information would be later used for building
the compilation feedback messages in case any compilation issue would be
detected. The compilation feedback would be represented in java like format.

31

5. Realisation

• The first line of the error would inform the user of which script failed
to be compiled, on which line the error has occurred and the message of
what seems to be wrong. The messages would be provided by either the
java compiler or the engine in case of internal errors such as incorrect
custom variable alias, nonexistent field alias or the assignment of the
read-only message field

• The second line will provide the unchanged line extracted from the orig-
inal script

• The third line is responsible for underlining the problematic symbols
according to the error

32

Chapter 6
Testing and validation

The testing and validation consist of two parts, where the testing would be
benchmarking and comparing the performances and validation would be ver-
ifying the output of the new scripting engine implementation and comparing
functionality and validity of the resulting scripts between the old scripting
engine implementation and the prototype.

6.1 Benchmarks

The benchmarking is necessary to check the performance of the new imple-
mentation and assure that the time needed to process the scripts do not pass
the threshold of the pleasant user-experience. The benchmarking could also
be used in the future improvements of the engine in terms of improving the
processing speed.

The benchmarks should cover the processing of the script as it would take
place in day to day use. That would be every step of the processing including
the parsing of the script stream by ANTLR, analyzing the types and string
extraction.

All the benchmarks would be performed on the same computer with the
following specifications:

• Processor: Intel Core i7-7700K @ 4.20GHz (8 CPUs)

• Memory: 16384MB DDR4 2400 MHz

• Operating system: Windows 10 Enterprise version 1809 build 17763.437

• JRE: 1.8.0 152-release-1248-b22 amd64

The framework for benchmarking was chosen to be the JMH, as it is a tool
to build and run the benchmarks, which can provide results with nanoseconds

33

6. Testing and validation

precision. The benchmark is capable of measuring the average time per oper-
ation, where the operation in this particular case would be the processing of
the single script by the ANTLR, engine or the compiler. [5]

The results would be represented as a data table with the three columns:

• Name: the name of the executed benchmark

• Score: the average time to process a single script. The measurements
Measured in nanoseconds. The measurement is time-based, which means
the operations would run only during the specified period. The period
was set to 10 minutes per iteration, where iteration is set of the executed
operations. There would be 5 warmup iterations and 5 main iterations.

• Error: the maximum deviation from the average score, which shows the
overall steadiness of the benchmark. Measured in nanoseconds.

6.1.1 ANTLR Benchmark

The results of parsing performance were previously mentioned in the realiza-
tion section of abstract syntax tree processing to show that the single visitor
approach would not benefit the overall speed. The ANTLR’s parsing speed de-
pends on many factors, such as the design of the grammar and the complexity
of the script. The benchmark was performed on three scripts:

• Basic script representing the usual parsing complexity script. The com-
plex expressions take places, such as a switch, the loop, and if-else state-
ment. The additional custom DET grammar rules are used in this script.

• Low parsing complexity script written in pure java.

• One line script: a single expression of return.

The results can be seen on the Table 6.1.

Benchmark Description Score Error
Basic script, single visitor 4324.098 54.233

Basic script, couple of visitors 8616.695 96.891
Low complexity script, single visitor 1689.801 17.749

Low complexity script, couple of visitors 3407.846 37.178
One line script, single visitor 156.811 5.410

One line script, couple of visitors 321.881 6.490

Table 6.1: The result of the benchmarks of the processing of the scripts by
the generated base visitor.

The error margin is within 1.5 % of the overall score. Thus the bench-
mark could be considered to be in a steady state. As can be seen from the

34

6.1. Benchmarks

Benchmark Score Error
Basic script, new engine 289898.036 5843.316
Basic script, old engine 498067.283 7139.693

Low complexity script, new engine 198566.901 2671.938
Low complexity script, old engine 131451.030 2219.262

One line script, new engine 83755.539 1873.524
One line script, old engine 71897.885 1938.929

Table 6.2: The result of the benchmarks of the processing of the scripts by
the different versions of engine.

results, the double visitor approach takes two times more time compared to
the single visitor. Whereas the double amount of time could be an argument
to improve the solution using the single visitor approach, the absolute value of
the marginal time increase is quite low compared to the rest of the processing.

6.1.2 Overall Processing

The old engine implementation uses over a hundred of different preprocessors
and modifiers which are not natively supported in the new implementation.
That makes comparing the different implementation rather estimated when
using all the functionality of the old scripting engine, giving a significant
advantage to the new version.

To eliminate the possibility of misjudging the results in favor of the im-
proved engine, the benchmarking will be performed with as few base pre-
processors and modifiers used in old implementation as would be needed to
transform the benchmarking scripts. That set of the preprocessors and mod-
ifiers are logically included in the semantic parsing of the prototype.

In that model, the priority goes to the old implementation, as most of the
old preprocessors base logic is implemented in the visitors of the new engine
and hence are the part of the engine which cannot be turned off or removed.

The benchmarks were performed on both of the engine implementations
with the same scripts used in the ANTLR benchmarks. The results are fol-
lowing:

It could be seen from the results, that in case of the low complexity script
and the short one line script, the new implementation is slower up to 50 %.
The reason why the old implementation did so well in the scripts where custom
expressions are absent is that the engine did not call any of the functionality
which is responsible for the custom logic, apart from the matching of a few
regular expressions against the script, to check if there is any custom code.
The optimizations are not performed so that the optimization would end after
the first phase. On the other hand, the processing of the script with the
custom code took 60 % more time for the old engine.

35

6. Testing and validation

The deceleration is related to the invocation of the methods responsible for
processing the custom code and increased amount of optimization iterations.
The new implementation‘s complexity is mainly dependant on the length of
the script, rather than the content, however as there are few optimizations for
the custom expressions, the presence of that expression in the script would
slightly decrease the processing time. That could be seen from the benchmark
result on Table 6.3, where the basic complexity script is used without the
custom code.

Benchmark Score Error
basicProcessingNoCustom 310527.923 4513.265

basicProcessing 289898.036 5843.316

Table 6.3: The result of the benchmarks of the processing of the scripts with
and without custom code by the prototype.

To sum up the processing benchmark results, the time consumption of the
script processing of the old scripting engine increases with the script’s length
and the more of the custom code there is in the script, the more processing
steps would be performed resulting in the relatively long processing. On the
side of the prototype, the complexity of the parsing would increase with the
script length as well. However, the presence of the custom code would shorten
the evaluation time overall.

The influence of the script length to the processing time could be reviewed
in the following benchmarking model. The old scripting engine would per-
form the processing on the pure Java code. The modifiers and preprocessors
would be absent from the engine. Thus the only alternations would happen in
code optimizations stage only. The prototype would be tested with the same
scripts and without any data from the environment, such as custom functions,
custom variable and FIX constraints. The scripts which would be used in that
benchmarks would be of similar complexity and length as the ones, described
in Table 6.2, but modified to be without any custom code. The long script
would be added to show the relation of the length to processing time. The
results could be seen on Table 6.4. From the benchmark is could be seen

36

6.2. Validation

Benchmark Score Error
Long script, new engine 378314.138 6193.141
Long script, old engine 820613.283 5893.914
Basic script, new engine 241701.036 5843.316
Basic script, old engine 412580.591 4810.353

Low complexity script, new engine 179203.193 3097.632
Low complexity script, old engine 96930.583 1984.317

One line script, new engine 80348.671 1459.959
One line script, old engine 50659.418 1253.076

Table 6.4: The result of the benchmarks of the processing of the scripts with-
out custom code by the different engines.

While for the large script the average time increased by 56% compared to
the basic script, the increase for the old engine was 99%. That results in the
conclusion, where the prototype processing complexity is less than the one in
the old engine.

6.2 Validation

The validation would be performed automatically as well as manually. The
automatic validation would take two inputs, both representing the processing
result of the old or new engine, eliminate the separators, such as tabulators,
whitespaces, and newline and compare the resulting data. Out of 241 scripts,
189 were identical to each other. The rest of the scripts comparison results
contained nonsignificant differences, such as :

• The different path to the custom method, as not all of the used custom
methods were mimicked in the testing module of the new scripting engine

• The missing comments in the new scripting engine output, as the gram-
mar completely omits the comments

That proves the validity of the scripting engine and the compatibility with
the previous generation scripts.

More distinct differences were found in the manual testing while using the
next generation scripts to be processed by the old scripting engine.

The introduced functionality of the engine in the prototype provides intel-
ligent type handling of the message fields. Relevant getter of the field would
be built based on the context of the required type. The following code would
be a perfect example of the type handling capabilities:

int a;
a = $M[30];

37

6. Testing and validation

Provided the $M custom variable is a message, the prototype scripting engine
would detect the type of the variable “a” and would request the message field
access to place the getter with the return value integer. In that case, the
code would be valid and no compilation time issues would be met. While
processing the same code with the old scripting engine implementation, the
engine would generate common getter with return type Object, which would
result in compilation time error, as the types are incompatible. That would
make the scripts using the new generation feature set unusable with the old
generation engine.

38

Conclusion

The scripting engine prototype project carried the functionality of the existing
implementation and brought up a modern solution to the script parsing and
processing problem.

The analysis of the transition from the original version of the engine to
the one presented in this thesis shows the importance of well-defined grammar
describing the functional syntax of the scripts, which are being processed.

The usage of the proprietary regular expressions as the language recogni-
tion tool was analyzed and compared against the grammar-driven parser so-
lution, highlighting the flaws of the original scripting engine and introducing
improvements with the prototype solution. Developing the scripting engine
environment became more manageable and viable.

Future Work

As the prototype would be integrated into the platform, new possibilities
would be opened to create a more user-friendly script development environ-
ment. With the existing grammar and contextual data, the following aspects
of improving user experience on the front-end part could take place in future
work:

• Proper syntax highlighting

• Syntax errors could be visualized to provide immediate feedback to the
developer

• Intelligent code completion could cut down the complexity of the script
development and, as a result, decrease the time needed to implement
the business logic.

39

Appendix A
Acronyms

FIX Financial Information eXchange

DET Dynamic Electronic Trading

ANTLR Another Tool For Language Recognition

AST Another Tool For Language Recognition

41

Bibliography

[1] About The ANTLR Parser Generator. url: https://www.antlr.org/
about.html. (accessed: 12.05.2019).

[2] DET Technologies. url: http://det-tech.com. (accessed: 10.05.2019).
[3] Fields By Tah - FIX 4.4 Dictionary. url: https://btobits.com/

fixopaedia/fixdic44/fields_by_tag_.html. (accessed: 11.05.2019).
[4] FIX 4.4 : Messages by MsgType. url: https://www.onixs.biz/fix-

dictionary/4.4/msgs_by_msg_type.html. (accessed: 12.05.2019).
[5] Java harness for building, running, and analysing nano/micro/milli/-

macro benchmarks written in Java and other languages targetting the
JVM. url: https://openjdk.java.net/projects/code-tools/jmh/.
(accessed: 11.05.2019).

[6] Lee Oliver. Trading protocols: More Fix in FX. url: https://www.
euromoney . com / article / b1321zg719lq20 / trading - protocols -
more-fix-in-fx. (accessed: 10.05.2019).

[7] Terence Parr. The Definitive ANTLR 4 Reference. 2nd. Pragmatic Book-
shelf, 2013. isbn: 1934356999, 9781934356999.

[8] Terence Parr and Sam Harwell. A Java 8 grammar for ANTLR 4 de-
rived from the Java Language Specification chapter 19. url: https :
//github.com/antlr/grammars-v4/blob/master/java8/Java8.g4.
(accessed: 11.05.2019).

[9] Javin Paul. What is FIX Engine in FIX Protocol. url: https : / /
javarevisited . blogspot . com / 2012 / 01 / what - is - fix - engine -
in-fix-protocol.html. (accessed: 11.05.2019).

[10] QuickFIX. url: http://www.quickfixengine.org/. (accessed: 11.05.2019).
[11] QuickFIX/J Java Open Source FIX Engine. url: http://www.quickfixj.

org/. (accessed: 11.05.2019).

43

https://www.antlr.org/about.html
https://www.antlr.org/about.html
http://det-tech.com
https://btobits.com/fixopaedia/fixdic44/fields_by_tag_.html
https://btobits.com/fixopaedia/fixdic44/fields_by_tag_.html
https://www.onixs.biz/fix-dictionary/4.4/msgs_by_msg_type.html
https://www.onixs.biz/fix-dictionary/4.4/msgs_by_msg_type.html
https://openjdk.java.net/projects/code-tools/jmh/
https://www.euromoney.com/article/b1321zg719lq20/trading-protocols-more-fix-in-fx
https://www.euromoney.com/article/b1321zg719lq20/trading-protocols-more-fix-in-fx
https://www.euromoney.com/article/b1321zg719lq20/trading-protocols-more-fix-in-fx
https://github.com/antlr/grammars-v4/blob/master/java8/Java8.g4
https://github.com/antlr/grammars-v4/blob/master/java8/Java8.g4
https://javarevisited.blogspot.com/2012/01/what-is-fix-engine-in-fix-protocol.html
https://javarevisited.blogspot.com/2012/01/what-is-fix-engine-in-fix-protocol.html
https://javarevisited.blogspot.com/2012/01/what-is-fix-engine-in-fix-protocol.html
http://www.quickfixengine.org/
http://www.quickfixj.org/
http://www.quickfixj.org/

Bibliography

[12] What is Parser? url: https://www.techopedia.com/definition/
3854/parser. (accessed: 12.05.2019).

44

https://www.techopedia.com/definition/3854/parser
https://www.techopedia.com/definition/3854/parser

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

wbdcm implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

45

	Introduction
	The goal of the work
	Theoretical Background
	FIX Protocol
	FIX Engine
	Parser
	ANTLR

	Current State
	Input
	Replacement
	Byte code cache
	Optimizations

	Analysis and Design
	Grammar
	Abstract Syntax Tree Processing
	Features
	Environment

	Realisation
	Enviroment
	Grammar
	Abstract Syntax Tree Processing

	Testing and validation
	Benchmarks
	Validation

	Conclusion
	Future Work

	Acronyms
	Bibliography
	Contents of enclosed CD

