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Abstract

Deep networks learned by standard meth-
ods of discriminative learning are suscep-
tible to adversarial patterns. Training ad-
versarially robust deep networks therefore
requires new learning methods. One in-
teresting option is to include appropriate
prior knowledge that will either generalize
in a stronger sense by using prior informa-
tion, or restrict the search space explored
by the learning method while, after train-
ing, penalizing examples that are unlikely
under the data distribution.

The thesis aims at analyzing and com-
paring different types of prior knowledge
with respect to their impact on adversarial
robustness. A suitable option for convolu-
tional deep networks is to introduce lat-
eral interactions within the convolutional
layers to reflect the assumption of spatial
continuity.
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Abstrakt

Hluboké sítě naučené standardními meto-
dami diskriminačního učení jsou náchylné
k protichůdným vzorům. Výcvik nepřátel-
sky robustních hlubokých sítí proto vy-
žaduje nové metody učení. Jednou zají-
mavou možností je zahrnout vhodné před-
chozí znalosti, které buď zobecní v sil-
nějším smyslu, s využitím těchto před-
běžných informací, nebo omezí vyhledá-
vací prostor prozkoumaný metodou učení,
zatímco po tréninku penalizují příklady,
které jsou nepravděpodobné v rámci dis-
tribuce dat.

Práce si klade za cíl analyzovat a porov-
návat různé typy předchozích poznatků s
ohledem na jejich vliv na robustnost opo-
nentů. Vhodnou volbou pro konvoluční
hluboké sítě je zavedení laterálních inter-
akcí uvnitř konvolučních vrstev, které od-
rážejí předpoklad prostorové kontinuity.

Klíčová slova: předchozí znalosti,
robustní učení, učení, Adversarial vzorky,
hluboká učení, pravděpodobnostní
neuronové sítě, grafické modely, Gibbs
distribuce, podmíněné náhodná pole,
Bayesovy metody, počítačové vidění,
inferenční mechanismy, optimalizace,
vyššího řádu závěr, přibližná Bayesian
marginální závěr, variační inference,
submodulové funkce, robustnost, DNN,
CNN, strojové učení, robustní
optimalizace, diskriminační učení,
laterální interakce

Překlad názvu: Apriorní modely pro
rubustní adversariální hluboké učení
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Chapter 1

Introduction

Recent research [14] has shown that our most successful learning methods
and models have a weakness that we were unaware of. Our state-of-the-art
classifiers are not learning the true underlying concepts that determine the
correct output; rather, they are learning to respond correctly to naturally
occuring data only: when points that do not have high probability in the
data distribution occur, the classifiers present an over-confident and unreli-
able behavior that can be exploited by malicious agents. The existence of
adversarial examples calls into question the applicability of machine learning
systems to high-stakes problems.

Adversarial examples can be created by taking a correctly classified image
and adding small differentials to it, such that the difference between the new
image and the original is imperceptible to the human eye, but the classifier
labels with high confidence the adversarially modified image to an incorrect
class. In domains where security is a big concern, such as automotive systems,
finance, health-care, cyber-security, the adversarial problem poses a great
threat, and it is considered of the highest importance to find a solution to it.

The main original idea of this thesis is to incorporate prior knowledge to
the learning mechanisms of neural networks in order to bias their learning
towards domain-specific robust generalizations achieved by training on the
worst-case adversarial exemplars of each image from the training data. By
combining ideas from robust optimization, energy-based graphical models
and adversarial training, several propositions are derived that can be put to
test as robust learning methodologies for image classification.
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Chapter 2

Related Work

There is a growing body of scientific literature on the problem of adversarial
examples. Starting in the year 2013 with Szegedy et al. [45], and continuing to
this day, we are still working to understand the nature of adversarial examples.
The pursuit for understanding, and for the development of permanent, reliable,
robust solutions to this problem, has already widened our views on how neural
networks achieve the state-of-the-art results they achieve, and on what is
their behavior when working with high-dimensional data.

Robustness is the property that, if a testing example is similar to a training
example, then the testing error should be similar to the training error. This
notion is rooted in Robust Optimization (RO) theory (Ben-Tal et al., 2009
[4]). Robustness is at the core of the adversarial problem, and RO is fre-
quently employed in defenses against adversarial examples. The link between
robustness and generalization is made as early as 2010, by Xu and Mannor
[49] wherein it is shown that a weaker notion of robustness is a necessary
and sufficient condition for asymptotic generalizability of learning algorithms.
Schmidt et al., 2018 [39] observe that adversarial examples are not at odds
with the standard notion of generalization, and that to achieve adversarial
robustness, a classifier must generalize in a stronger sense. Schmidt et al.
show that the sample complexity of robust learning can be significantly larger
than that of standard learning.

The role of the high dimensionality of the data is also a key issue that
needs to be better understood w.r.t. the existence of adversarial examples.
Khoury and Hadfield-Menell, 2018 [26] investigate the hypothesis that the
existence of adversarial examples is due to the high-dimensional geometry of

5



2. Related Work.....................................
data manifolds, combined with the presence of low but non-zero error rates.
The authors explained this phenomenon for a toy dataset by providing a
theoretical upper bound on the average distance to the nearest error, in terms
of the test error.

Nitin Bhagoji et al., 2017 [38] and Hendrycks and Gimpel, 2016 [20] have
tried to fight adversarial examples by using dimensionality reduction tech-
niques, arguing that the principal components with less variance are exploited
in adversarial attacks. Though successful in small datasets like MNIST or
CIFAR-10, this approach has been shown to decrease the performance of the
network dramatically for complex tasks. Moosavi-Dezfooli et al., 2018 [35]
and Guo et al., 2017 [18] have attempted to build preprocessing defenses,
such as denoising. On the other hand Gu and Rigazio, 2014 [17] state that
for any feed-forward architecture, such preprocessing defenses can always be
circumvented by some attack as long as they can be incorporated in it. Partic-
ularily, if the input transformation defense (or any defense, for that matter) is
differentiable, the adversary can incorporate it in any gradient-based attack.

Adversarial training, first proposed by Goodfellow et al., 2014 [14] and by
Huang et al., 2015 [21], is a data augmentation scheme that aids the classifier
to attain robust generalization against adversarial examples by augmenting the
training data in the “most confusing” and “most helpful” manner. Adversarial
training has later been formalized for large-scale usage by Kurakin et al.,
2016b [28]. Theoretical grounds have been uncovered recently by Madry
et al., 2017 [32] that validate and support adversarial training: they show
that training with adversarial examples is approximately equivalent to solving
the RO formulation of learning in an adversarially uncertain environment.
Madry et al. also suggest a notion of computational tractability that limits the
adversary to first-order methods. Further, Projected Gradient Descent (PGD)
is proposed as the benchmark of first-order attacks. The conclusion appears
at sight that we will have to consider a reasonable tradeoff between attack
power and computational tractability, so that solutions can also become more
realistic and applicable. We can find an analogous precendent to support this
claim in the field of computational cryptography.

An adversarially trained network remains, however, differentiable. This
implies the potential weakness that such a network can be attacked using
gradient-based methods. It remains to be seen if such defense mechanisms
could reach the level of performance where the possibility of being attacked
by gradient-based methods is no longer a limitation, because the required
level of distortion to craft a smallest adversarial example is already detectable.
Accomplishing such a level of performance would mean that a solution to the
adversarial examples problem is a possibility.
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..................................... 2. Related Work

Ongoing research has brought us to the understanding that not only the
generalization under the natural data distribution matters, but that, in the
face of a potential adversarial environment, we should aim to generalize in
a stronger sense: a network should be able to reason soundly about the
examples that can be found outside of the natural data distribution, but that
are similar enough to the examples within it, such that a human cannot see
the difference between one and the other.

Up to this point, most studies have been conducted utilizing an `p-norm
similarity metric. Sharif et al., 2018 [41] demonstrate that nearness of inputs
as measured by `p-norms is neither necessary nor sufficient for perceptual
similarity: the “perceptual distance” between two images that are near to
each other according to an `p-norm can already be high enough so that
they can frequently be identified by humans as representing different objects.
There is an active interest in finding appropriate ways to measure perceptual
similarity.

Luo et al., 2018 [31] introduce a new distance metric that considers human
perceptual systems to evaluate the sensitivity of human eyes to image pixels,
in order to guide the attacker to add perturbations with less chances of
being detected. Snell et al., 2015 [43] propose the Multiscale Structural-
Similarity Index Measure (MS-SSIM), a differentiable loss function that is
better calibrated to human perceptual judgments of image quality.

Jang et al., 2017 [23] leverage computer-vision algorithms to develop
better perceptual similarity metrics. The authors evaluate the quality of the
adversarial examples using objective metrics: metrics which are independent
from the optimization objective. Specifically, they use classic techniques
of computer vision: 1) canny edge detection, wherein an indistinguishable
perturbation should maintain the number of edges very close to the value
found in the original image; 2) Fast Fourier Transform (FFT), wherein the
difference on the high-frequency part of the spectrum is used as metric for
feature corruption; and, 3) Histogram of Oriented Gradients (HOG), wherein
the perturbations resulting in smaller HOG vector difference are considered
to have better quality.

Jordan et al., 2019 [25] leverage perceptual similarity metrics like Learned
Perceptual Image Patch Similarity (LPIPS) and Structural Similarity Index
Measure (SSIM) to define a new threat model for adversarial attacks. They
formalize different types of attacks that are orthogonal to each other in the
sense that robustness to one doesn’t imply robustness to the others: 1) delta
additions, which is the class of `p-norm ε-bounded style attacks; 2) affine
transformations: rotations, translations and dilations; and, 3) flow networks,
which they use to constrain the `∞-norm between the coordinates of the

7



2. Related Work.....................................
original and the modified pixels. They show that combining flow attacks with
delta attacks results in more perceptually indistinguishable attacks.

Goodfellow et al., 2014; Kurakin et al., 2016b; Liu et al., 2016; and Tramèr
et al., 2017 [14, 28, 29, 46], discuss the phenomenon of transferability of
adversarial examples between differently trained networks. The property of
transferability raises an important concern since it implies that networks
can be attacked even when the attacker has no access to their model. This
phenomenon is further confirmed and studied by Madry et al., 2017 [32],
where authors show that increasing the capacity of a network decreases the
transferability of adversarial examples to it. This phenomenon was also
observed for adversarially trained networks, where increasing the power of
the adversary used for training, has also the effect of making the network
more robust to transferred attacks.

Kurakin et al., 2016a [27] demonstrate that a high ratio of adversarial
images obtained by white-box attacks –attacks wherein the attacker has full
access to the network model and its defenses– remain being adversarials even
when they are fed to the network through a camera in the physical world.
Moreover, they expect that it will be possible to realize: 1) attacks using
other kinds of physical objects besides images printed on paper; 2) attacks
against different kinds of machine learning systems, such as sophisticated
reinforcement learning agents; 3) attacks performed without access to the
model’s parameters and architecture (using the transferability property); and,
4) physical attacks that achieve a higher success rate by explicitly modeling
the physical transformation during the adversarial example construction
process.

Small rotations and translations have been found to successfully fool neural
network-based classifiers on MNIST and CIFAR-10 by Fawzi and Frossard,
2015 [10]. Engstrom et al., 2017 [8] introduce the notion of robustness to
spatial transformations. They show that even a small number of non-adaptive,
randomly chosen, translational and rotational perturbations of the input are
sufficient to considerably degrade the performance of the model. Engstrom
et al. also found that pixel-based `∞-norm ε-bounded robustness does not
imply any measure of spatial robustness, and that combining pixel-based and
spatial transformation-based attacks has a cumulative effect. This is due to
the aforementioned orthogonality of the attacks.

Adversarial examples can be found in several different domains: Carlini
et al., 2016 [5] proposed an attack against speech recognition systems, where
they show how to craft sounds that are difficult for humans to understand, but
that can be interpreted by speech recognition systems as voice commands, such
as “Call 911” or “Turn on airplane mode”. Grosse et al., 2016 [16] introduce

8



..................................... 2. Related Work

adversarial attacks against malware detecting systems, where adversarial
examples are disguised as bening examples, in order to fool the detecting
system.

Adversarial examples have been found to instantiate the property of uni-
versal transferablity. Moosavi-Dezfooli et al., 2016 [33] show the existence
of small universal perturbations that can fool state-of-the-art classifiers on
natural images. The authors highlighted several properties of universal per-
turbations, and proposed an iterative algorithm to generate them. Moreover,
the authors showed that universal perturbations generalize well across differ-
ent classification models, resulting in image-agnostic and network-agnostic
perturbations. The existence of such perturbations is further explained by the
authors in analyzing the correlation between different regions of the decision
boundary. The studies of adversarial examples have provided us with insights
on the geometry of the decision boundaries learned by machine learning
systems in high-dimensional space.

The existence of universal adversarial examples in the context of semantic
image segmentation is shown by Hendrik Metzen et al., 2017 [19]. Let us
remark that image segmentation is used in high-stakes applications, such
as automated driving and video surveillance. Xie et al., 2017 [48] study
adversarial examples for semantic image segmentation and object detection
that can be transferred across different datasets. Arnab et al., 2017 [2] show
that Mean-field Inference for Dense CRFs confers robustness to untargeted
attacks. Moreover, Arnab et al., 2015 show in a different paper [1] that
Conditional Random Fields (CRFs) with carefully designed higher-order
potentials, defined over cliques, can also be modelled as Convolutional Neural
Network (CNN) layers when using mean field inference. This system presents
the intuitive benefit that the classifier and the graphical model learn to
optimally co-operate with each other during training. This establishes a
precedent for the use of CRFs as a means to confer robustness to Convolutional
Neural Networks (CNNs).

RO has been successfully used to formulate the problem of learning in an
adversarial environment. An instantiation of RO is Distributionally Robust
Optimization (DRO), a paradigm for decision making under uncertainty
where the uncertain data are governed by a probability distribution that is
itself subject to uncertainty. Fathony et al., 2018 [9] propose Adversarial
Graphical Models (AGMs), a distributionally robust framework for leveraging
graphical structure among variables. The proposed method is based on the
DRO formulation: the training data is replaced with an adversarial version
from the set of distributions that matches the statistical summaries of the
training data.

9



2. Related Work.....................................

Figure 2.1: Figure and text borrowed from the original paper by Tsipras et al.
[47]. Visualization of the loss gradient with respect to input pixels. Recall that
these gradients highlight the input features which affect the loss most strongly,
and thus are important for the classifier’s prediction. We observe that the
gradients are significantly more interpretable for adversarially trained networks
– they align well with perceptually relevant features. In contrast, for standard
networks they appear very noisy.

Tsipras et al., 2018 [47] bring some interesting results showing that features
learned by robust models tend to align better with essential data charac-
teristics, and with human perception. The authors suggest that the reason
for this is that the features learned by the standard and robust classifiers
are fundamentally different, which ends up resulting in a tradeoff between
the standard accuracy and adversarially robust accuracy. In figure 2.1 we
can see that the features learned by adversarially trained networks align well
with perceptually relevant features of the input image; whereas, for networks
trained under the standard procedure these gradients have no coherent pat-
terns and appear very noisy to humans. This observation opens the door to
new training methodologies for robust learning that take advantage of the
required alignment of robust features with human perception. A suggested
way to achieve this is by encoding the prior knowledge into the uncertainty
set of each example, when considering the RO formulation.

10



Chapter 3

Propositions

Two main ideas are explored in this thesis.

The first idea is based on the intuition that the principle of spatial continuity
of images also holds in the case of neuron activations; that is, neurons tend
to become active together, as they detect meaningful features from the image.
The results in [47] support this claim by showing that robust features tend to
be more interpretable, and tend to follow the pattern of spatial continuity. It
is also mentioned in [32] that robust learning requires networks with higher
capacity. We claim that the network proposed in this thesis is of high enough
capacity, and accomodates nicely the feature learning requirements of robust
learning.

The second idea developed while investigating the most recent developments
on the scientific literature regarding the problem of adversarial examples.
Many principled and promising results have been obtained by reframing
the learning problem to the framework of robust optimization RO. The
opportunity to contribute to these developments was spotted in [32] when
prior knowledge was proposed for future research as a way of constructing
more meaningful uncertainty sets for RO. We consider the development of
energy-based regularization through the construction of uncertainty sets for
adversarial training, using energy-based models. Energy-based regularization
can be implemented by using energy-based models to convey a notion of
similarity from which the uncertainty set of an example can be obtained
for adversarial training. We claim that the tradeoff between robustness and
accuracy mentioned in [47] diminishes with the use of more precise uncertainty
sets. Moreover, solving the saddle problem is known to increment the sample

11



3. Propositions .....................................
complexity required for learning [39]. By restricting the search space through
the use of a more specific notion of similarity, in comparison to vanilla `p-
norms, we can reduce the sample complexity required for robust learning. The
second idea is summarized as robust learning with energy-based regularization
through meaningful uncertainty sets.

The following list of claims summarizes the grounding principles for our
approach.

Proposition 3.1 (Gilmer et al. 2018 [13])...1. Given enough data and a proper model class, it is possible to remove
adversarial examples on a dataset...2. The only way to reduce the frequency of adversarial examples is to reduce
generalization error...3. Adversarials are not a class: for any model with reasonable accuracy,
most errors are “adversarial” relative to some example data point, in
the sense that for a typical incorrectly classified point there is a small
perturbation that will cause it to be correctly classified. Hence, there is
no identifying characteristic of an adversarial example.

Proposition 3.2 (Schmidt et al. 2018 [39])...1. The sample complexity required for robust learning can be significantly
larger than that of standard learning. This gap is information theoretic
and irrespective of the training algorithm or model family...2. Current approaches may be unable to attain higher adversarial accuracy
on datasets such as CIFAR-10 because the dataset is not large enough
to train a standard convolutional network robustly...3. Network architecture is a crucial factor for learning robustly with a
limited number of examples...4. Adversarial examples are not at odds with the standard notion of gener-
alization. To achieve adversarial robustness, a classifier must generalize
in a stronger sense.

Proposition 3.3 (Tsipras et al. 2018 [47])...1. For a given adversary, we can always separate the features into robust
(utilizing these features can only help robust classification) and non-
robust (the adversary can manipulate these features to a degree where

12



......................................3. Propositions

Figure 3.1: Figure and text borrowed from the original paper by Madry et al.
[32]. A conceptual illustration of “natural” vs. “adversarial” decision bound-
aries. Left: A set of points that can be easily separated with a simple decision
boundary. Middle: The simple decision boundary does not separate the `∞-balls.
Hence there are adversarial examples (the red stars) that will be misclassified.
Right: Separating the `∞-balls requires a significantly more complicated decision
boundary. The resulting classifier is robust to adversarial examples with bounded
`∞-norm perturbations.

they become harmful for the model’s accuracy). A robust classifier cannot
rely on non-robust features...2. Robustness and accuracy might be at odds: if there is any standard
accuracy that can be gained by utilizing non-robust features, the model
trained in standard way will benefit from it (at the expense of reducing
its robust accuracy) and the robust model will not be able to get such a
benefit. Therefore, its standard accuracy will be lower.

Proposition 3.4 (Madry et al. 2017 [32])...1. A principled perspective on adversarial training: adversarial training
with a good enough adversarial amounts to approximately solving the
inner loss maximization task of the saddle problem in the RO framework...2. Robustness against the PGD adversary yields robustness against all first-
order adversaries, that is, attacks that rely only on first-order information.
The limitation on first-order information is to be reminiscent of the notion
of polynomially bounded adversary that is a cornerstone of modern
cryptography...3. A robust decision boundary (such as can be seen in figure 3.1) of the
saddle point problem can be significantly more complicated than a
decision boundary that simply separates the benign data points. Hence,
classifiers with higher levels of capacity are needed...4. Prior knowledge of the sample distribution should be used to construct
the uncertainty set for each example.

13



3. Propositions .....................................
The claims this thesis aims to prove can be summarized in the following

propositions:

Proposition 3.5 (Stochastic neural network with lateral interactions).
A convolutional neural network with stochastic and spatially correlated neu-
rons (lateral interactions) is of high enough capacity to learn the complex
boundaries required for robust learning.

Proposition 3.6 (Regularization through adversarial training).
Adversarial training is a form of regularization; i.e. it aids the classifier
generalize in a stronger sense. Robust learning can make ammends for the
lack of data required to “cover” the uncertainty set of each given image, where
here “covering” means to learn the space occupied by variations that are
sufficiently similar to each given example of the training data.

Proposition 3.7 (Energy-based models for generating uncertainty sets).
Energy-based models provide a meaningful notion of similarity that can be
used to generate the uncertainty sets of the examples in the training data.

14



Chapter 4

Definitions

Let D , N2 denote the convolutional grid of points (p, q) describing either
the pixels of an image, or the neurons of a convolutional layer. Let |D| = n
be its cardinality. Let V , {1, 2, ..., N} be a set of nodes with cardinality
|V | = n where each node i is associated with a value xi for i ∈ V , and with
a coordinate of the grid j ∈ D, such that {xi = xj | ∀i ∈ V, ∃1j ∈ D}. The
points of the grid will be referred to by i ∈ V . Let E denote the edges of the
grid describing the connections between nodes.

Let us consider neural networks with l hidden layers denoted by X(1,··· , l),
and an input layer denoted by X(0). At each layer k let us consider a
corresponding D(k) and V (k). Let X(k)

i denote a single unit in layer k. Let
the events X(k) = x(k) be denoted unambiguously by x(k). Let L , {0, 1}
indicate inactive and active neurons, respectively. In the stochastic setting,
the realizations of neuron activations in the hidden layers of the network take
values x(k) ∈ LV , k > 0. We will use S ≡ LV for the sake of clarity. In the
input layer x(0), each channel of a normalized image contains pixels with
values x(0)

i ∈ [0, 1]. The whole image is thus defined as x(0) ∈ [0, 1]V . Let
T ,

{
(x(0), y)1, . . . , (x(0), y)m

}
denote the set of training examples. From

now on, the parentheses will be dropped from the superindices and we will
refer to x(k) as xk. When convenient and unambiguous, x will be used to
refer to x0 or xk.

When referring to a modular function s : S → R, note that we will say that
s ∈ RS when talking about it as a function s(·), and we will say that s ∈ S
when talking about it as the parametrizing vector of the modular function.
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Chapter 5

Background Theory

In this chapter we will go into the details required to understand the proposed
methods of this thesis. We will discuss material from specific topics such
as probabilistic graphical models, supermodular optimization, variational
inference, and robust optimization.

5.1 Graphical Models

Following the account in [42], let us consider the Belief Network given by a
neural network organized by layers. We are interested in the the propagation
of statistics throughout the network, layer by layer. There are l layers of
hidden random variables Xk for k = 1, · · · , l. Each random variable Xk has
nk components. Let X0 denote the input layer.

Definition 5.1 (Belief Networks). A belief network is defined by:

P
(
X1,··· ,l | X0) =

l∏
k=1

∏
i∈V k

P
(
Xk
i | Xk−1)

The posterior distribution of a belief network at each hidden layer k > 1
given the observation x0 recurrently expresses as:

P
(
Xk | x0) = EP (Xk−1|x0)

[
P
(
Xk | Xk−1)]

=
∫
P
(
Xk | xk−1) · P (xk−1 | x0) · dxk−1

17



5. Background Theory ..................................
Proposition 5.2. The best factorized approximation Q(Xk) =

∏
i∈V k Q(Xk

i )
to P (Xk | x0) in terms of the forward Kullback Leibler (KL) divergence
KL

(
P (Xk | x0) ‖ Q(Xk)

)
is given by the marginals:

Q(Xk
i ) , P (Xk

i | x0) =
∑

(xkj∈L | j∈V k, j 6=i)

P (Xk | x0) (5.1)

Proof. Minimizing over distribution Q the expression KL
(
P (X) ‖ Q(X)

)
=

EP (X)[log P (X)
Q(X) ] is equivalent to maximizing EP (X)[logQ(X)]. Assuming that

Q(X) =
∏
i∈V Q(Xi), the negative cross-entropy above is expressed as:∑

x∈S
P (x) ·

∑
i∈V

logQ(xi) =
∑
i∈V

∑
xi∈L

P (xi) · logQ(xi) (5.2)

The information inequality theorem tells us that, for each i ∈ V , this
expression is maximized when Q(xi) = P (xi).

Theorem 5.3 (Information Inequality [36]). KL
(
P (X) ‖ Q(X)

)
≥ 0 with

equality if and only if Q(X) = P (X).

Proof. Let us invoke Jensen’s inequality, which states that for any convex
function f , we have that f

(∑n
i=1 λi · xi

)
≤
∑n
i=1 λi · f(xi), where λi ≥ 0 and∑n

i=1 λi = 1. Let S be the support of both P (X), and Q(X). Then:

−KL
(
P (X) ‖ Q(X)

)
= −

∑
x∈S

P (x) · log P (x)
Q(x) =

∑
x∈S

P (x) · log Q(x)
P (x)

≤ log
∑
x∈S

P (x) · Q(x)
P (x) = log

∑
x∈S

Q(x) = log 1 = 0

Intuitively, if Q(x) = P (x), ∀x ∈ S, then log P (x)
Q(x) = 0,∀x ∈ S.

Definition 5.4 (Feed-forward approximate inference [42]). The factorized ap-
proximation can be computed layer by layer, assuming that marginals of the
previous layer were already approximated.

P
(
Xk | x0) ≈ EQ(Xk−1)

[
P
(
Xk | Xk−1)]

≈
∫
P
(
Xk | xk−1) · ∏

i∈V k−1

Q
(
xk−1
i

)
· dxk−1
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...................................5.1. Graphical Models

Theorem 5.5 (Neal [37]). A standard neural network which uses sigmoid
activation functions can be seen as an approximation to the inference of
Sigmoid Belief Networks.

Proof. The probability of a single unit Xk
i becoming active is given by

its sigmoid activation: P (Xk
i = 1 | Xk−1) = Sig(wT · Xk−1). Thus, the

propagation layer by layer, as required for feed-forward approximate inference,
can be obtained as:

Xk
i = µi = EQ(Xk−1)[P (Xk

i = 1 | Xk−1)]
var(Xk

i ) = σ2
i = µi · (1− µi)

Considering approximation AP1 by Shekhovtsov et al. [42], we have that:

EQ(Xk−1)

[
Sig
(
wT ·Xk−1)] ≈ Sig

(
wT · EQ(Xk−1)

[
Xk−1]) (5.3)

Using the mean activations EQ(Xk−1)
[
Xk−1
i

]
= Xk−1

i = Q
(
Xk−1
i = 1

)
, the

approximation can be written as Xk = Sig
(
wT ·Xk−1

)
, which represents the

standard propagation rule of a sigmoid layer.

5.1.1 Markov Random Fields

Let us consider the stochastic process with random variablesX = (X1, · · · , Xn),
and probability distribution P (X = x) where the realizations of the random
variables (x1, · · · , xn) ∈ S are structured in a Markov Random Field (MRF).

Definition 5.6 (MRF). An MRF is an undirected graphical model defined by
a graph G = (V,E) in which the neighbourhood Ni ⊆ V of node i ∈ V , known
as the Markov blanket of i, defines the paths of conditional dependencies
of i to the rest of the graph. This is known as the undirected local Markov
property. More specifically, the process X is an MRF if:

P (Xi | Xj , j 6= i) = P (Xi | Xj , j ∈ Ni) (5.4)

Theorem 5.7 (Hammersley-Clifford [36]). A positive distribution P (x) >
0, ∀x ∈ S can be represented as a product of factors P (x) =

∏
c∈C ψc(x) if

and only if it satisfies the following conditional independence properties of
Undirected Graphical Models (UGM), for a graph G:
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5. Background Theory ....................................1. Undirected local Markov property. As described in the definition
of MRF 5.6...2. Factorization property. The distribution factorizes according to the
cliques c ∈ C of the graph G...3. Global Markov property. P (Xi | Xj , Xk) = P (Xi | Xj) whenever
Xi and Xk are separated by Xj in G.

Definition 5.8 (Gibbs distribution [36]). Let G = (V, C) be a hypergraph. The
Gibbs distribution can be written as P (x) = Z−1 ·

∏
c∈C exp (f(xc)), where

f(xc) < 0 is the energy function associated with the variables in the coor-
dinates c given by the system of hyperedges C, and Z =

∑
x∈S exp

(
F (x)

)
is

the normalizing constant, also called partition function.

We can write the Gibbs distribution as a product of factors P (x) =∏
c∈C ψc(x) by defining ψc(x) , exp (f(xc)). Then, an MRF has a Gibbs

distribution, where the system of cliques C of G of an MRF correspond to
the system of hyperedges C of the Gibbs distribution.

Ising model

The Ising model is an MRF arising from the field of statistical physics,
which models the interaction (attractive or repulsive) between neighbouring
nodes, in the presence of an external field. For the attractive case, its energy
function is defined:
Definition 5.9 (Energy function of the attractive Ising model).

F (x) = Fα(x) + Fβ(x) =
∑
ij∈E

Fαij (x) + Fβ(x) = −
∑
ij∈E

αij · |xi − xj |+ 〈β, x〉

Where αij is called interaction parameter, and corresponds to the strength of
the interactions between the nodes i and j; while βi is called external field
parameter, and corresponds to the strength of the influence of the external
field, at each node i ∈ V . We will look at the case where αij = α,∀ij ∈ E.
In the more general case, the energy function of the Ising model is given for
a system of hyperedges C.

F (x) = −α ·
∑
c∈C

f(xc) + 〈β, x〉 (5.5)
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...................................5.1. Graphical Models

CRF Belief Networks

Definition 5.10 (Conditional Random Field (CRF) [36]). A CRF, is a version
of an MRF where all the clique potentials are conditioned on input features:

P (y | x,w) = 1
Z(x,w) ·

∏
c∈C

ψc(yc | x,w)

Let us consider two hidden layers Xk−1 and Xk in a neural network with
weights of layer k referred to as w = wk. The Ising model can be expressed
as a CRF:

P
(
Xk | Xk−1) ∝ exp

(
Fβ(Xk)

)
·
∏
ij∈E

exp
(
Fαij (Xk)

)
P
(
Xk | Xk−1) ∝ exp

(
− α ·

∑
ij∈E
|Xk

i −Xk
j |+ 〈β, Xk〉

)
β = wT ·Xk−1

Using feed-forward approximate inference and approximation AP1 [42] we
get that the required propagation of means is:

P
(
Xk | Xk−1) = EQ(Xk−1)

[
P (Xk | Xk−1)

]
= EQ(Xk−1)

[
1

Z(Xk−1,w) exp
(
Fα(Xk) + Fβ(Xk)

)]

=
EQ(Xk−1)

[
exp

(
Fα(Xk) + 〈wT ·Xk−1, Xk〉

)]
Z
(
EQ(Xk−1)

[
Xk−1],w)

≈
exp

(
Fα(Xk) +

〈
wT · EQ(Xk−1)

[
Xk−1], Xk

〉)
Z
(
EQ(Xk−1)

[
Xk−1],w)

P
(
Xk | Xk−1) ≈ exp

(
Fα(Xk) + 〈β, Xk〉

)
Z(Xk−1,w)

, β = wTXk−1 (5.6)

Remark 5.11. Considering a CRF Belief Network, where each neuron is
a random variable Xk

i that is either active or inactive (binary case), we
are interested in obtaining the mean activation value of each neuron, which
corresponds to the probability of the neuron firing (i.e. becoming active),
given the input x0. Applying lemma 5.2, definitions 5.1 and 5.4, and the
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5. Background Theory ..................................
AP1 approximation, we get that:

P (Xk | x0) = EP (Xk−1|x0)

[
P (Xk | Xk−1)

]
KL≈ EQ(Xk−1)

[
P (Xk | Xk−1)

] AP1≈ P

(
Xk

∣∣ EQ(Xk−1)
[
Xk−1])

KL≈ Q(Xk)

Considering Q(Xk) such that the divergence KL
(
P (Xk

∣∣ Xk−1) ‖ Q(Xk)
)
is

minimized. Then, the mean activations are given by:

Xk
i = P (Xk

i = 1 | x0) ≈ P
(
Xk
i = 1 | Xk−1) ≈ Q(Xk

i = 1) (5.7)

The task of calculating the marginals is known to be intractable [24].
Nonetheless, an efficient approximation using variational inference has been
proposed in [50].

5.2 Variational Inference

The main idea of variational inference [36] is to reduce the problem of inference
to an optimization problem over tractable distributions. Let T be the data
we have. We pick an approximation Q(x) to distribution P (x | T ), from a
tractable family. Then we optimize to make this approximation as close as
possible to the posterior; i.e., the goal is to obtain Q(x) ≈ P ∗(x) , P (x | T ).

Let us introduce some important concepts that will be necessary to under-
stand the algorithm [7] used for variational inference in this thesis.

5.2.1 Supermodular Functions

Let us consider the space RV , {y | y : 2V → R}. For any vector y ∈ RV and
each i ∈ V , y({i}) denotes the component of y associated with i. For a subset
A ⊆ V , let us define y(A) ,

∑
i∈A y({i}). Then y satisfies y(∅) = 0 and can

be identified with a function satisfying y(A) + y(B) = y(A ∩B) + y(A ∪B).

Submodular functions are a family of set functions exhibiting a natu-
ral diminishing returns property, originating in the field of combinatorial
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................................. 5.2. Variational Inference

optimization. Supermodular functions are complementary to submodular
functions, in sign and inequality direction. We will focus on the supermodular
variant, since it is more related to the work presented in this thesis.

Definition 5.12 (Supermodularity). A function f is supermodular if:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B), ∀A,B ⊆ V

Definition 5.13 (Supermodular polyhedra [11]). The supermodular poly-
hedron of a supermodular function f is the polyhedron defined by:

P(f) , {y | y ∈ RV , ∀A ⊆ V : y(A) ≥ f(A)}

The set P(f) is the set of all linear modular functions which are lower bounded
by the function f .

Definition 5.14 (Base polyhedra [11]). The base polyhedron B(f) is a sub-
set of modular functions y which are bounded by f but agree with f on
the full ground set V : that is, the base polyhedron is exactly the set of all
modular upper bounds y of f that are tight at the ground set V . Since B(f)
is bounded, it is also called base polytope.

The base polytope of a supermodular system f is defined by:

B(f) , {y | y ∈ P(f), y(V ) = f(V )}

Theorem 5.15 (Translation of supermodular systems [11]). For any vector
y ∈ RV the translation of a supermodular system by y is the supermodular
system whose rank function is given by f + y : 2V → R. Let the operator +
denote the Minkowski sum. We have that the translation results in:

P(f + y) = P(f) + y

B(f + y) = B(f) + y

Definition 5.16 (Minkowski sum). The Minkowski sum of two sets A and B
is defined as the set formed by adding each element from one set A, to each
element of the other set B.

A+B , {a+ b | a ∈ A, b ∈ B},∀a ∈ A,∀b ∈ B

5.2.2 Supermodularity of the Ising Model

Let each K be completely ordered. Denote the infimum and supremum w.r.t.
this ordering by ∧ (meet operation) and ∨ (join operation), respectively. Now,
Kn is a distributive lattice, partially ordered, with operations infimum and
supremum, and closed w.r.t. meet and join operations.
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5. Background Theory ..................................

κ, κ′ ∈ Kn

κ ∧ κ′ = (κ1 ∧ κ′1, · · · ,κn ∧ κ′n)
κ ∨ κ′ = (κ1 ∨ κ′1, · · · ,κn ∨ κ′n)

A real valued function u : Kn → R
is supermodular if u(κ) + u(κ′) ≤
u(κ ∧ κ′) + u(κ ∨ κ′) holds for all
κ,κ′ ∈ Kn.

κ ∧ κ′

κ

κ′

κ ∨ κ′

K

K

Remark...1. The condition established for supermodularity holds for submodularity
by changing the comparison from ≥ to ≤...2. Any function u : K → R is both supermodular and submodular...3. The sum of supermodular functions is also supermodular.

Supermodularity of the Ising model. Recall that xki ∈ L, where L ≡ {0, 1},
for element i ∈ V k, k > 0, where k denotes the layer of a belief network. We
are interested in evaluating the supermodularity of the energy function of the
attractive Ising model. Considering the previous remarks, we take Fβ to be
supermodular. In order to determine the supermodularity of the attractive
Ising model, it remains only to examine Fα.

Fα(x) = −α ·
∑
ij∈E
|xi − xj | = α ·

∑
ij∈E

u(xi, xj)

u(xi, xj) = −|xi − xj |
u(0, 0) = u(1, 1) = 0; u(0, 1) = u(1, 0) = −1

u(0, 1) + u(1, 0) ≤ u(0, 0) + u(1, 1)
−2 ≤ 0

Therefore, the energy function of the Ising model is a supermodular function
for the attractive case, and a submodular function for the repulsive case.

5.2.3 Frank-Wolfe algorithm

Let us now introduce the Frank-Wolfe algorithm, which is used to perform
inference in the variational inference approach proposed by Djolonga and
Krause [7].
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................................. 5.2. Variational Inference

Suppose S is a compact convex set in a vector space, and f : S → R is a
convex differentiable real-valued function. The Frank–Wolfe algorithm solves
the optimization problem:

minimize
x∈S

f(x) (5.8)

The Frank-Wolfe algorithm is a projection-free first-order method for
smooth constrained optimization. The algorithm maintains feasibility by
approaching the final solution through iterative updates made as convex
combinations of points inside the feasible region, obtained using first-order
Taylor-series approximations of f .

Definition 5.17 (First-order Taylor-series approximation [44]). Let the function
f : S → R be differentiable, and its derivative ∇f , continuous. The value of
f(s) around x ∈ S is approximated by the first-order Taylor series:

Fx,1(s) = f(x) + 〈∇f(x), s− x〉

up to an additive error that vanishes as s approaches x.

The Frank-Wolfe algorithm produces at each iteration a first-order Taylor-
series approximation of f around the value x(t). Then, it minimizes the value
of this approximation over s ∈ S, in order to obtain a new point in the
feasible domain s(t) = arg mins∈S f(x(t)) +

〈
∇f(x(t)), s−x(t)〉, which is used

to improve the solution of the algorithm x(t+1) , (1− γ(t)) · x(t) + γ(t) · s(t).
The algorithm converges when the duality gap is small enough (≤ ε).

Definition 5.18 (Duality gap of the Frank-Wolfe algorithm [44]). Fx,1(s) is
linear and tangent with f(s) at x. The convexity of f implies that Fx,1(s) ≤
f(s) for all s ∈ S. Let x∗ ∈ S be the optimal Frank-Wolfe solution, and
s(t) = arg mins∈S f(x(t)) +

〈
∇f(x(t)), s− x(t)〉. Then:

f(x(t)) +
〈
∇f(x(t)), s− x(t)〉 ≤ f(s)〈

∇f(x(t)), s− x(t)〉 ≤ f(s)− f(x(t))〈
∇f(x(t)), s(t) − x(t)〉 ≤ 〈∇f(x(t)), s− x(t)〉 ≤ f(x∗)− f(x(t))〈

∇f(x(t)), x(t) − s(t)〉 ≥ f(x(t))− f(x∗) (5.9)

The rightmost expression denotes the (unkown) true error of the algorithm,
while the leftmost expression is our duality gap. We establish a maxi-
mum duality gap (close to zero) ε as a stopping criterion, such that if〈
∇f(x(t)), x(t) − s(t)〉 ≤ ε, then we finish running the algorithm.

The analysis of the Frank-Wolfe algorithm is made specifically considering
convex functions f . Nonetheless, let us remark that everything holds the same
for submodular functions. Fujishige and Isotani [12] show that we can solve
the submodular function minimization problem by finding the minimum-norm
point in the base polytope B(f).
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Figure 5.1: Figure and text borrowed from the original paper by Bach [3].
Illustration of Frank-Wolfe conditional gradient algorithm: starting from the
initialization (a), in steps (b), (d), (f), (h), an extreme point on the polytope is
found an in steps (c), (e), (g), (i), a line search is performed. Note the oscillations
to converge to the optimal point.

5.2.4 L-Field

Djolonga and Krause, 2014 [7] propose L-Field, a method for approximating
marginal probabilities in Bayesian submodular and supermodular models
through variational inference. The main ideas are that:..1. We can exploit the property that submodular and supermodular functions

can be bounded by modular functions...2. We can use any modular bound to define a completely factorized distri-
bution Q(A) ∝ exp (s(A)) that can be used as a proxy to approximate
values of interest in the original distribution P (A) ∝ exp (F (A))...3. The intractability of our task is due to the complexity of calculating
the partition function Z, a problem which is known to be #P-hard [24].
Given the supermodular function F , if s(A) ≥ F (A),∀A ⊆ V , we have
that:

logZ = log
∑
A⊆V

exp (F (A)) ≤ log
∑
A⊆V

exp (s(A))

Let the function Ji ∈ AK be defined as 1 if i ∈ A, and 0 otherwise. Also,

26



................................. 5.2. Variational Inference

Algorithm 1 Frank-Wolfe
1: x(0) ∈ S
2: for t = 0, · · · , T do
3: r(t) := ∇f(x(t))
4: s(t) := arg mins∈S 〈s, r(t)〉
5: gt := 〈x(t) − s(t), r(t)〉
6: if gt ≤ ε then return x(t) . Small duality gap: g(t) ≤ ε
7: γ(t) := 2

2+t
8: x(t+1) := (1− γ(t)) · x(t) + γ(t) · s(t)

return x(t)

let us refer to s({i}) in this context as si , s({i}). Then,

log
∑
A⊆V

exp (s(A)) = log
∑
A⊆V

exp
∑
i∈A

s({i})

= log
∑
A⊆V

∏
i∈A

exp (si)

= log
∑
A⊆V

∏
i∈V

exp (si · Ji ∈ AK)

= log
∏
i∈V

∑
Ji∈AK∈{0,1}

exp (si · Ji ∈ AK)

log
∑
A⊆V

exp (s(A)) =
∑
i∈V

log (1 + exp (si)) (5.10)

Since it holds that logZ ≤
∑
i∈V log (1 + exp (si)), then we minimize the

approximation to be as close as possible to the true partition function.

min
s∈B(F )

∑
i∈V

log (1 + exp (si)) (5.11)..4. Fenchel duality and the entropy viewpoint. Consider the dis-
tribution Q with factors Q({i}) = (1 + exp (−si))−1. Let us refer to
Q({i}) in this context as qi , Q({i}). We can go back to the standard
representation by using the distribution Q.

Proof. Consider the Shannon entropy [40] H[q] , −
∑
i∈V qi · log qi, and

the Lovász extension [30], defined for F : 2V → R as the support over
B(F ): f(q) = supq∈[0,1]V qT ·s. The Fenchel dual of the task is expressed
as:

max
q∈[0,1]V

H[q]− f(q)

There is a zero duality gap, and the pair (s∗,q∗) is primal-dual optimal
if and only if:

q∗ =
( 1

1 + exp (−s∗1) , · · · ,
1

1 + exp (−s∗n)

)
and f(q∗) = q∗T · s∗
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5. Background Theory ..................................
This corresponds to the fact that we can return to the standard repre-
sentation with qi = (1 + exp (−si))−1. Therefore, we can reparametrize
the problem from the parameters s to the marginals q. Let us remark
that the stopping criteria of the Frank-Wolfe algorithm ensures the small
duality gap required for primal-dual optimality...5. Task 5.11 involves the optimization of a convex function over the base
polytope B(F ), which has already been considered by Fujishige [11] and
Bach [3]. Furthermore, Jaggi [22] shows that we can use the Frank-Wolfe
algorithm to solve this kind of problems.
Remark 5.19. The supermodular polyhedron P(F ) is unbounded by
definition, which is the reason why we optimize over the base polytope
B(F ). If we can prove that s ∈ P(F ) results in a bounded objective
function, then we can solve the task for the supermodular polyhedron...6. Since we have proven that the attractive Ising model is a supermodular
system, this means we can obtain its base polytope B(F ) and use it as
the domain for the optimization problem.

5.3 Robust Optimization

RO [4] is a framework for dealing with uncertainty in optimization problems.
Uncertainty can be introduced to systems by a variety of sources, such as
measurement devices and floating point operations. Furthermore, uncertainty
can be intrinsically a part of the problem, such as when we must account
for stochasticity. Therefore, we must take this into consideration when
solving optimization tasks, since feasible solutions for some realizations of the
uncertain variables might not be so for others. One of the goals of RO is to
find solutions that remain feasible for all the possible realizations considered
in the uncertainty set U . In order to achieve robustness in the solution, RO
considers the worst-case realizations found in U when solving the optimization
problem.

The basic RO paradigm is based on the following three assumptions [15]:..1. All decision variables represent final decisions: they should get specific
numerical values as a result of solving the problem before the realization
of the uncertainty set U becomes revealed...2. The decision maker is responsible for providing a solution that takes into
consideration the possible realizations from the uncertainty set U only...3. The constraints of the uncertain problem in question are hard, i.e., the
decision maker cannot tolerate violations of constraints.
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................................. 5.3. Robust Optimization

Let us formally define a couple of concepts of interest from the RO frame-
work that are important for understanding robust learning.

Definition 5.20 (Uncertainty set). Let the uncertainty set U of x contain all
the values that x might take, given some perturbation rules.

Definition 5.21 (Perturbation set). Let the perturbation set ∆ of x be:

∆ , { δ | xu ∈ U , δ = xu − x }

Definition 5.22 (Worst-case example). Let the worst-case example of an
uncertainty set be the example that produces the highest value to an objective
function that we aim to minimize.

5.3.1 Robust Learning

Most state-of-the-art methods that aim at robustness against adversarial
attacks implement the RO framework in order to learn robust parameters
θ. The main idea is to learn the parameters θ that minimize the worst-case
empirical risk ρ(θ); i.e., to solve the saddle problem, given the training set T ,
and some allowed perturbation around each example δ ∈ ∆. This is expressed
as follows:

min
θ
ρ(θ), where ρ(θ) = E(x,y)∼T

[
max
δ∈∆
Lθ(x + δ,y)

]
(5.12)

Definition 5.23 (Robust exemplar). Let the uncertainty set U of example x
be generated by applying a rule of similarity to example x. In other words,
let the rule of similarity be used to define the perturbation set ∆. A robust
exemplar is the worst-case example (w.r.t. the loss of the classifier) found in
the uncertainty set of example x.

Definition 5.24 (Adversarial training). Let adversarial training define the
learning process carried out over the robust exemplars obtained from the
training data at each training step.
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Chapter 6

Proposed Methods

6.1 Stochastic neural network with lateral
interactions

Let us have a CNN which encodes a CRF Belief Network, as described in
remark 5.11. At each layer we will have a CRF over the system of hyperedges
C given by applying a convolution operation in the 2-dimensional lattice
that defines each channel. Then, the CRF will correlate the activations of
the artificial neurons. This correlation, which we will refer to as lateral
interactions, is justified by the assumption of spatial continuity of neuron
activations.

In order to carry out the propagation of activations layer by layer, we need
to determine, at each layer, the realization of potentials of the Ising model. We
consider channel-wise interactions only, meaning that the system of hyperedges
is established between members of the same channel. The activations from the
previous layer are seen as the external field, which is “polarizing” each node
of the channel. Since we have encoded a structural prior at each channel, the
relationships established will have to agree or disagree with the polarization
received from the external field. These dynamics determine the realization of
potentials at each channel, which in turn translates into the probability of each
artificial neuron i ∈ V k of channel k > 0 of becoming active: P (Xk

i = 1 | x0).

We will determine the realization of potentials of the Ising model CRF
using the L-Field approach [50].
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6. Proposed Methods ..................................
Let us recall the general form of the energy function F (x) characterizing

the Ising model, and the Gibbs distribution P (x) of the CRF:

F (x) = −α ·
∑
c∈C

f(xc) + 〈β, x〉

P (x) ∝ exp
(
− α ·

∑
c∈C

f(xc) + 〈β,x〉
)

In the context of our CRF Belief Network, CRFCNN, we have at each
channel of layer k > 0:

P
(
Xk | Xk−1) = 1

Z(Xk−1,w)
exp

(
Fα(Xk) + 〈β,Xk〉

)
, β = wTXk−1

We are interested in computing the marginal probabilities corresponding
to feed-forward approximate inference, P (Xk

i = 1 | Xk−1), which represents
the mean activation of neuron i ∈ V k at layer k > 0. For this, we need to
compute the partition function Z.

We can use the modular function Q(Xk = x) ∝ exp (s(x)), which bounds
the Gibbs distribution P (Xk = x | Xk−1), to approximate the partition
function. Recall that for k > 0 we have xki ∈ L, where L ≡ {0, 1}. For
s(x) = 〈s,x〉, this yields Q(Xk

i = 1) = (1 + exp (−si))−1, and the following
optimization task, which is solvable efficiently by the Frank-Wolfe algorithm,
as seen in section 5.2.4.

s∗ = arg min
s∈B(F )

∑
i∈V

log (1 + exp (si))

Let us have xki = 1, ∀i ∈ V k be equivalent to selecting the whole ground set
V k, as required for the base polytope. Then, we have that:

P(F ) , {s
∣∣ 〈s, x〉 ≥ F (x), ∀x ∈ S}

B(F ) , {s
∣∣ 〈s, x〉 ≥ F (x), ∀x ∈ S, 〈s, 1〉 = F (1)}

Proposition 6.1. In this task the objective is bounded for the supermodular
polyhedron P(F ). Given this, we know from remark 5.19 that the condition
〈s, 1〉 = F (1) can be omitted, and we can solve the task over P(F ).

s∗ = arg min
s∈P(F )

∑
i∈V

log (1 + exp (si)) (6.1)

32



.................... 6.1. Stochastic neural network with lateral interactions

Proof. The Frank-Wolfe relies on the minimization of the first-order Taylor
series approximation at each iteration, to approach the optimum. Let r ,
∇
∑
i∈V k log (1 + exp (si)) be the gradient of the objective. We have that it

results in components ri = (1 + exp (−si))−1, which can be seen as sigmoid
functions with range [0, 1]. Let ui ∈ P(F ). Given that each component
of the inner minimization of the Frank-Wolfe can be expressed as ri · ui,
and given that ri is non-negative ∀i ∈ V k, this means that the only way
to have an unbounded minimization task is if some ui = −∞. Now, let
a , F (x). By the definition of the supermodular polyhedron, we must have
that 〈u, x〉 ≥ 〈a, x〉, ∀x ∈ S. Therefore, the values u can take will be lower
bounded by F . On the other hand, if any ri would be negative, then some
ui = ∞ would belong to P(F ) and result in an unbounded minimization
task.

Frank-Wolfe (Application)

As initial value we can use s(0) , β, which lies at a feasible extreme of the
supermodular polyhedron P(F ). We must also establish the descent direction
on the objective, at each time step t of the algorithm. Let the gradient be
denoted as r , ∇

∑
i∈V k log (1 + exp (si)). Then:

∇ log
(
1 + exp (s(t)

i )
)

= exp (s(t)
i )

1 + exp (s(t)
i )

= 1
1 + exp (−s(t)

i )

r(t) =
(

1
1 + exp (−s(t)

1 )
,

1
1 + exp (−s(t)

2 )
, · · · , 1

1 + exp (−s(t)
n )

)
(6.2)

Now we must solve the first-order Taylor-series approximation of the opti-
mization task: u(t) = arg minu∈P(F )〈r(t),u〉. For the standard Ising model,
this task has a closed form solution: u(t)

i = βi − α ·
∑
j∈Ni sign(r(t)

i − r
(t)
j ).

When considering a system of hyperedges on a 2-dimensional lattice, which is
our case, the closed form solution is:

u(t) = β − α ·
∑
c∈C

[
1arg max ri

i∈c
− 1arg min ri

i∈c

]
(6.3)

Finally, we compute the step size for the iteration step t: γ(t) , 2
t+2 , and

we obtain a new solution point: s(t+1) , (1− γ(t)) · s(t) + γ(t) · u(t). Then, we
repeat the process as described in the algorithm until the duality gap is small
enough:

〈
s(t)−u(t), r(t)〉 ≤ ε, or until some pre-established limit of iterations

is reached.
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6. Proposed Methods ..................................
When we terminate the Frank-Wolfe algorithm, we return to the standard

representation using the marginals Q(Xk
i = 1) = (1 + exp (−si))−1.

Differentiability of the proposed method

In order to learn deep neural networks efficiently using the backpropagation
algorithm, we must address the issue of differentiability. The gradients
required for learning are the following:

∂Q(Xk
i = 1)
∂θ

= ∂Q(Xk
i = 1)
∂s∗ · ∂s∗

∂β
· ∂β
∂w

∂Q(Xk
i = 1)

∂s∗i
= ∂

∂s∗i

[
exp (s∗i )

1 + exp (s∗i )

]
= exp (s∗i )

(1 + exp (s∗i ))2

∂s∗
∂β

= ?

Since we don’t have an expression to differentiate by β, we will reparametrize
the task:

s(x) = 〈s,x〉, s ∈ P(F ) ⇐⇒ 〈s,x〉 ≥ Fα(x) + 〈β,x〉, ∀x ∈ S
s′(x) = 〈s′,x〉, s′ ∈ P(Fα) ⇐⇒ 〈s′,x〉 ≥ Fα(x), ∀x ∈ S

s 7−→ s′ + β

s′ = arg min
s′∈P(Fα)

∑
i∈V k

log (1 + exp (s′i + βi)) (6.4)

Performing also the change of variables in the marginals, we get:

Q(Xk
i = 1) = (1 + exp (−(s′i + βi)))−1 (6.5)

Backpropagation can now be computed as:
∂Q(Xk

i = 1)
∂θ

= ∂Q(Xk
i = 1)
∂β

· ∂β
∂w

∂Q(Xk
i = 1)
∂βi

= ∂

∂βi

[
exp (s′i + βi)

1 + exp (s′i + βi)

]
= exp (s′i + βi)

(1 + exp (s′i + βi))2

∂β

∂w = ∂[wT · xk−1]
∂w −→ ∂βi

∂wi
= xk−1

i

We finish this section by reparametrizing accordingly the rest of the ex-
pressions used in the Frank-Wolfe algorithm.

s(0) , β 7−→ s′(0) , 0

r
(t)
i ,

1
1 + exp (−s(t)

i )
7−→ r′i

(t) ,
1

1 + exp (−(s′i
(t) + βi))
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.................... 6.1. Stochastic neural network with lateral interactions

The solution to the first-order Taylor-series approximation in the standard
Ising model becomes u′i

(t) = −α ·
∑
j∈Ni sign(r′i

(t) − r′j
(t)). Likewise, in our

more general case we get:

u′(t) = −α ·
∑
c∈C

[
1arg max r′i

i∈c

− 1arg min r′i
i∈c

]
(6.6)

Robust learning with CRFCNN

The proposed network will be used for both standard learning, and robust
learning. The goal is to test the advantages of its structural prior, first as a
natural defense, and second, as a capacity enhancement that amplifies the
learning of robust features.
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Chapter 7

Experiments

In this section we will describe the trial scenarios with which we will evaluate
the effect of the proposed methods in comparison with standard methods. We
will also describe the specific settings used for the experiments. The reader is
encouraged to reproduce the results obtained.

7.1 BaselineCNN

Layer 1

Convolution 32 feature maps generated by a convolution window of
width 5 and height 5, with stride 1, and padding 0. It yields 32
feature maps of width 24 and height 24.

Batch Normalization For 32 feature maps.
Sigmoid Activation Function Xk = (1 + exp (wT ·Xk−1)−1

Max Pooling Operation performed using a convolution window of
width 3 and height 3, with stride 3, and padding 0. It yields 32
feature maps of width 8 and height 8.

Layer 2

Convolution 10 feature maps generated by a convolution window of
width 5 and height 5, with stride 1, and padding 0. It yields 10
feature maps of width 4 and height 4.

Batch Normalization For 10 feature maps.
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7. Experiments .....................................

Conv
32@5x5
s=1
p=0

MaxPool
@3x3
s=3
p=0

Conv
10@5x5
s=1
p=0

MaxPool
@2x2
s=2
p=0

AvgPool
@2x2
s=0
p=0

10

Softmax

Figure 7.1: Structure of the BaselineCNN, which corresponds to a Sigmoid
Belief Network. The gray blocks represent, first, the input, and then the feature
maps. The creamy yellow windows represent convolution operations. The red
windows represent max pooling operations. The green window represents the
average pooling operation. The output is a vector of probabilities given by
softmax.

Sigmoid Activation Function Xk = (1 + exp (wT ·Xk−1))−1

Max Pooling Operation performed using a convolution window of
width 2 and height 2, with stride 2, and padding 0. It yields 10
feature maps of width 2 and height 2.

Average Pooling Operation performed using a convolution window of width
2 and height 2, with no stride and no padding, since it summarizes each
channel in one value. It yields 10 feature maps of width 1 and height 1.

Softmax In reality, we output Log-Softmax, since the Negative Log-Likelihood
(NLL) loss expects a vector of log-probabilities.

7.2 CRFCNN

Layer 1

Convolution 32 feature maps generated by a convolution window of
width 5 and height 5, with stride 1, and padding 0. It yields 32
feature maps of width 24 and height 24.

Batch Normalization For 32 feature maps.
CRF Activation Function Operation performed using a convolution

window of width 3 and height 3, with stride 1, and padding 0. It
yields 32 feature maps of width 24 and height 24, where each feature
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...................................... 7.2. CRFCNN

Conv
32@5x5
s=1
p=0

CRF
@3x3
s=1
p=0

MaxPool
@3x3
s=3
p=0

Conv
10@5x5
s=1
p=0

CRF
@3x3
s=1
p=0

MaxPool
@2x2
s=2
p=0

AvgPool
@2x2
s=0
p=0

10

Softmax

Figure 7.2: Structure of the CRFCNN, which corresponds to a CRF Belief
Network. The gray blocks represent first the input, and then the feature maps.
The creamy yellow windows represent convolution operations. The blue windows
represent the CRF activations. The blue feature maps indicate that, after
generating the feature maps, the CRF activation is executed on them. The green
window represents the average pooling operation. The output is a vector of
probabilities given by softmax.

map contains correlated activations.

P
(
Xk | Xk−1) = Z−1 · exp

(
− α ·

∑
j∈Ni
|Xk

i −Xk
j |+ 〈β,Xk〉

)
,

α = 1, β = wT ·Xk−1

P
(
Xk
i = 1 | Xk−1) =

∑
(xkj∈L | j∈V, j 6=i)

P
(
Xk | Xk−1)

Xk
i = Q(Xk

i = 1) ≈ P
(
Xk
i = 1 | Xk−1)

Max Pooling Operation performed using a convolution window of
width 3 and height 3, with stride 3, and padding 0. It yields 32
feature maps of width 8 and height 8.

Layer 2

Convolution 10 feature maps generated by a convolution window of
width 5 and height 5, with stride 1, and padding 0. It yields 10
feature maps of width 4 and height 4.

Batch Normalization For 10 feature maps.

CRF Activation Function Operation performed using a convolution
window of width 3 and height 3, with stride 1, and padding 0. It
yields 10 feature maps of width 4 and height 4, where each feature
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7. Experiments .....................................
map contains correlated activations.

P
(
Xk | Xk−1) = Z−1 · exp

(
− α ·

∑
j∈Ni
|Xk

i −Xk
j |+ 〈β,Xk〉

)
,

α = 1, β = wT ·Xk−1

P
(
Xk
i = 1 | Xk−1) =

∑
(xkj∈L | j∈V, j 6=i)

P
(
Xk | Xk−1)

Xk
i = Q(Xk

i = 1) ≈ P
(
Xk
i = 1 | Xk−1)

Max Pooling Operation performed using a convolution window of
width 2 and height 2, with stride 2, and padding 0. It yields 10
feature maps of width 2 and height 2.

Adaptive Average Pooling Operation performed using a convolution win-
dow of width 2 and height 2, with no stride and no padding, since it
summarizes each channel in one value. It yields 10 feature maps of width
1 and height 1.

Softmax In reality, we output Log-Softmax, since the NLL loss expects a
vector of log-probabilities.

7.3 Parameters

Training Epochs 150

Batch Size 120

Optimizer Stochastic Gradient Descent (SGD)

Loss Function Negative Log-Likelihood
Learning Rate 0.01
Momentum 0.9
Weight Decay 0

7.4 Datasets

MNIST Grayscale images (1 channel)

Classes 10
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...................................7.5. Training Settings

Statistics For a nominal pixel range R = [0, 1], MNIST is a normal distri-
bution N (0.1307, 0.3081).

Normalization Normalized to the pixel domain N (0, 1), the pixel range is
R = [−0.4242, 2.8215].

FashionMNIST Grayscale images (1 channel)

Classes 10

Statistics For a nominal pixel range R = [0, 1], FashionMNIST is a normal
distribution N (0.2860, 0.3202).

Normalization Normalized to the pixel domain N (0, 1), the pixel range is
R = [−0.8932, 2.2299].

7.5 Training Settings

Standard The standard training setting refers to training on the original
data.

Adversarial The adversarial training setting refers to training on the aug-
mented data which is the “most confusing”, meaning that at each mini-
batch we perform a PGD attack (for 10 iterations) with random start,
clipped to the range of the data after normalization, with step size of
0.01, and with a maximum `∞-norm perturbation measure ε = 0.3, which
is rescaled to the range of the data ε′ = ε/σT .

7.6 Trial Scenarios

Robustness Against Gaussian Noise. In this scenario we will compare
the accuracy of the classifiers in the presence of Gaussian noise δ ∼
N (0, σ) added to each image, for varying magnitude of σ. The results will
be reported for σ ∈ [0, 1]. It should be noted that in the implementation
the standard deviation of the noise is scaled to the range of the data
(σ/σT ).
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7. Experiments .....................................
Robustness Against Adversarial Attacks. In this scenario we will com-

pare the accuracy of the classifiers in the presence of adversarial pertur-
bations δ ∈ ∆ added to each image, for varying magnitude of the bound
ε of `∞-norm of δ. The results will be reported for ε ∈ [0, 1]. It should
be noted that in the implementation the bound is scaled to the range of
the data (ε/σT ).

p-Robustness Against Adversarial Attacks. This setting differs from
the previous one in that here we are considering a rejecting network: we
decide to reject an input image if the output of the most likely class
is less than p. Then, a successful attack requires the incorrect class to
present a high confidence w.r.t. the chosen p.

It is important to note that the data that will be used in the realization
of these experiments will be taken from the validation set. Therefore, let us
remark that any effect observed will be found in the context of the robust-
generalization abilities of the classifiers.
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Chapter 8

Results

In this section we will examine the behavior of the network architectures previ-
ously described. We will consider the training variants which are standard and
adversarial. The experiments performed aim to shed light on the robustness
and generalization characteristics of each of these networks; therefore, we
should bear in mind that the main observation of interest is the comparison
of accuracy responses, in the presence of perturbations at the input. We
consider two kinds of perturbations: 1) Gaussian noise; and, 2) adversarial
perturbations, which come from adversarial attacks.

Due to the nature of adversarial attacks, that they aim to bring down the
confidence on the correct class, and bring up the confidence on the incorrect
class, we consider also a rejecting network in our tests. We believe that
testing the robustness of the networks in terms of how much the confidence
on the incorrect class can be incremented, is a valuable instrument that could
be taken into account when using deep learning in high-stakes applications.
We evaluate the results obtained for this variant by examining the ratio of
acceptance of given input, and the accuracy on accepted examples (termed
“safe accuracy”).

The results presented are organized first by type of experiment, and then
by dataset (either MNIST or FashionMNIST). The response of all networks
is then shown in one plot per dataset, for each experiment of interest.

We will limit the extent of comments performed in this chapter, and save
them for the concluding remarks.
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8. Results .......................................
8.1 Robustness Against Gaussian Noise

(a) : MNIST

(b) : FashionMNIST

Figure 8.1: Accuracy response of each network to variable magnitudes of stan-
dard deviation σ of Gaussian noise.
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......................... 8.2. Robustness Against Adversarial Attacks

8.2 Robustness Against Adversarial Attacks

(a) : MNIST

(b) : FashionMNIST

Figure 8.2: Accuracy response of each network to variable magnitudes of maxi-
mum allowed `∞-norm perturbation ε.
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8. Results .......................................
8.3 p-Robustness Against Adversarial Attacks

(a) : MNIST

(b) : FashionMNIST

Figure 8.3: Safe accuracy response of each network to variable magnitudes of
maximum allowed `∞-norm perturbation ε.
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(a) : MNIST

(b) : FashionMNIST

Figure 8.4: Accepting rate of each network to variable magnitudes of maximum
allowed `∞-norm perturbation ε.
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Chapter 9

Conclusion

The experiments have indeed shown that the CRFCNN architecture provides
an interesting option for further study in the context of robust deep learning.

For the sake of a better reading, let us refer to four variants StdBaselineCNN,
AdvBaselineCNN, StdCRFCNN, AdvCRFCNN; where the prefix “Std” refers
to standard training, and the prefix “Adv” refers to adversarial training.

We can see in experiments 8.1 and 8.2, for both MNIST and FashionMNIST,
that the StdCRFCNN, presents significantly higher levels of robustness than
the StdBaselineCNN. The comparison doesn’t hold anymore when talking
about the AdvCRFCNN and the AdvBaselineCNN, where the performance
is relatively equal, although slightly better for the AdvBaselineCNN.

In experiment 8.1, we can see in MNIST that the StdCRFCNN presents a
more steep decrease in accuracy than the StdBaselineCNN, with this decrease
starting to manifest in the StdCRFCNN at a higher perturbation than in
the StdBaselineCNN, in terms of the standard deviation of the noise. In
FashionMNIST, the responses of the StdCRFCNN and the StdBaselineCNN
were very similar to each other. The same similarity in responses can also be
seen while comparing the AdvCRFCNN and the AdvBaselineCNN.

For the MNIST dataset, the AdvBaselineCNN provides a very strong
contender that virtually solves the problem of learning robustly. The AdvCR-
FCNN presents very similar response, although with slightly less accuracy.
We conjecture three possible explanations for this behavior: 1) it could be
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9. Conclusion......................................
due to the robust solution achieved being close to optimal; 2) considering
the possibility that the CRFCNN is a network with more capacity than the
BaselineCNN, it might be the case that it needs to train for more epochs
in order to converge, or; 3) learning robustly with the CRFCNN requires
more training data than learning robustly with the BaselineCNN. The second
conjecture could be tested by training for more epochs, while the third conjec-
ture could be proven or refuted by testing the robust learning response of the
networks to varying training data size. Such an experiment would tell us if
the CRFCNN could perform better than the BaselineCNN in the adversarial
training scenario, given enough data.

The most interesting results were those obtained for the FashionMNIST
dataset. In experiment 8.2 we can see a dramatic difference of accuracy
between the StdBaselineCNN and the StdCRFCNN. What is even more, the
StdCRFCNN presents a higher accuracy than both the AdvCRFCNN and the
AdvBaselineCNN, until some critical ε for each. The accuracy presented by
the AdvBaselineCNN is greater than that of the AdvCRFCNN for lower levels
of allowed adversarial perturbation, while the AdvCRFCNN has a better
response for the higher levels.

The experiment 8.3 shows that the StdCRFCNN dominates the StdBase-
lineCNN, and the AdvBaseline dominates the AdvCRFCNN w.r.t. safe
accuracy. An unwanted behavior is presented by the StdCRFCNN wherein
the confidence on predictions starts to increase for higher levels of ε.

If we take the standardly trained versions, it is clearly seen that the CR-
FCNN architecture presents higher levels of robustness than the BaselineCNN,
which fundamentally is a comparison between a network with lateral inter-
actions, and a network without them. More concretely, the results obtained
for FashionMNIST give us the motivation required to keep investigating the
robustness characteristics of the CRFCNN. For FashionMNIST, even though
the StdBaselineCNN achieves basically the same accuracy when there is no
adversarial perturbation, as soon as the adversary is allowed to attack the
network, the StdBaselineCNN drops around 20% below the levels of accuracy
of the StdCRFCNN.

The main drawback of the CRFCNN is that it takes significantly more time
than the BaselineCNN to train it. Calculating the mean activations using
the L-Field method is slow as currently implemented. Every time that we
add a CRF activation to a layer, we need to calculate the marginals using the
L-Field method, for each image being processed. Even though this is done by
batches, L-Field provides with a significant overhead, making deeper networks
an impossibility. We think, however, that the results obtained provide enough
evidence to motivate further investigation, even under this big disadvantage.
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9.1 Future work

Further lines of investigation could include evaluating the response of the
network to other attacks such as Deepfool [34] and Carlini and Wagner
[6], which have been proven to be powerful both in terms of similarity of
adversarial images produced w.r.t. the original examples, and in terms of
circumventing defenses that have worked against basic attacks such as Fast
Gradient Sign Method (FGSM).

As we saw in the experiments performed, the comparisons for the MNIST
dataset didn’t show such a strong evidence as to the robustness characteristics
of the CRFCNN, due to the relative simplicity the task. Therefore, the
responses should be examined for more complex tasks, such as CIFAR-10,
SVHN, STL-10 and CIFAR-100, in order to assess the significance of the
results herein obtained.

Other means of confering robustness should also be studied, in conjunction
with the CRFCNN architecture. Given its response in the standard case,
it could be that combining it with other robustness conferring mechanisms
would boost its robustness to levels closer to those achieved by adversarial
training.

Since the benefits of the CRFCNN can be seen, the only argument against
its usability, even if further positive results are obtained, are in terms of its
efficiency (that is, the time required for training it). Therefore, improving the
efficiency of its implementation is necessary for the CRFCNN to be considered
as an option in practical applications, specially in those that require deeper
architectures.

In the context of adversarial training, we believe that a network such as the
CRFCNN would benefit from more meaningful adversarial examples. That is,
its response could be improved when trained with adversarial examples that
deviate less, in terms of perceptual similarity, from the original images. Given
an `p-norm ε-bound allowed for adversarial training, attacks such as FGSM or
PGD tend to produce images with perturbation patches that are noticeable
by humans. Improving the uncertainty sets (in our context, the adversarial
examples) either by means of the metric used to measure perceptual similarity,
or by means of the adversarial attack used, is a promising line of work
that would allow us to understand better the robustness capabilities of the
CRFCNN, in comparison with that of the BaselineCNN under the same
conditions.
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AGMs Adversarial Graphical Models

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

CRF Conditional Random Field

CRFs Conditional Random Fields

DRO Distributionally Robust Optimization

FashionMNIST FashionMNIST
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RO Robust Optimization
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UGM Undirected Graphical Models
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