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Abstract

Adversarial machine learning has two principal objectives: to design an attacker which

is able to circumvent a detector; and to design a detector that is able to detect those

attackers. We model the adversarial setting with game theory and propose that the

solution of the game is in a Stackelberg equilibrium. To find the equilibrium, we start

with the expected risk minimisation framework (ERM) and the game model from

which we derive a bilevel optimisation task yielding an optimal detector. We then

propose a learning algorithm that approximates a solution of this task. To support

our theoretical findings, we solve a practical real-world problem of detecting attacks

to a URL reputation service. A key part of our learning algorithm is the model of an

attacker. We propose an attack algorithm to a URL reputation service that obfuscates

the attacker’s primary goal by generating covering activity with projected gradient

descent and a fast gradient sign method. Using genuine data provided by Trend Micro

Ltd., we show that an adversarial detector outperforms an anomaly detector at all

false positive rates (1%, 0.1% a 0.01%) and successfully learns to detect unseen attacks

carried out by our attacking algorithm.

Keywords: adversarial machine learning, game theory, machine learning, sta-

tistical learning, neural networks, network security
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Abstrakt

Adversarialńı strojové učeńı má v principu dva ćıle: navrhnout útočńıka, který je

schopen obej́ıt detektor; a detektor, který úspěšně detekuje dané útočńıky. Tyto

protich̊udné motivy jsou v této práci modelovány pomoćı teorie her a je předpokládáno,

že řešeńı hry lež́ı ve Stackelbergově rovnováze. Abychom tuto rovnováhu nalezli,

ukážeme, že z minimalizace očekávaného rizika (ERM) a herńıho modelu lze odvodit

dvouúrovňovou optimalizačńı úlohau jej́ımž řešeńım je optimálńı detektor. Dále

navrhneme úč́ıćı algoritmus, který řeš́ı tuto úlohu a jehož výstupem je aproximace

(lokálně) optimálńıho detektoru. Prezentovanou teorii aplikujeme na realný problém

útok̊u na reputačńı systém URL adres. Kĺıčovým prvkem námi navrhženého uč́ıćıho

algoritmu je model útočńıka, proto navrhneme algoritmus útok̊u na reputačńı systému

URL adres, který je schopen zamaskovat primárńı ćıl útočńıka generováńım kryćı

aktivity. Útoč́ıćı algoritmus je založen na projektovaném gradientńım sestupu (PGD) a

metodě znaménka gradientu (FGSM). Za použit́ı legitimńıch dat od společnosti Trend

Micro Ltd. ukazujeme, že námi navržený adversariálńı detektor překoná detektor

anomálíı na všech zkoumaných úrovńıch false positives (1%, 0.1% a 0.01%) a je úspěšně

schopen detekovat nové útoky našeho útoč́ıćıho algoritmu.

Kĺıčová slova: adversarialńı strojové učeńı, teorie her, strojové učeńı, statistické

učeńı, neuronové śıtě, śı̌tová bezpečnost
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Adversarial Machine Learning in Network Security

Introduction

In recent years, computer science has seen an advent of powerful algorithms that are

able to learn from examples. Even though the notion of learnable algorithms was

recognised and studied in pioneering ages of the field already, its wide-range real-world

applications were to be implemented only with the presence of big available data collec-

tions and vast memory and computational resources. Therefore, nowadays one meets

the abundance of machine learning techniques used to solve various problems. The

field spans from theoretical research to practical applications in areas such as medical

diagnosis, financial predictions and, most importantly in case of this work, computer

security.

Most of the applications follow a similar scenario: a problem is formalised following a

standard machine learning paradigm; a vast data set is collected and a proper algorithm

giving the best results is found forming a model of the problem. However, in some

applications, once such a model is deployed to a complex real-world environment, one

soon identifies the model performance’s deteriorates due to the key aspects of the reality

that have been omitted in the standard machine learning point of view.

An example is seen in computer vision. It was found that deep neural networks

that reign competitions in image classification [1] are prone to so called adversarial

images [2]. In particular, the state-of-the-art image classifiers based on deep neural

networks score very well in terms of prediction accuracy when given genuine images.

However, such a classifier can be fooled with an image that was purposely adjusted.

To put it simply, what is seen as an unambiguous cat by a human observer can be

confidently labelled as a dog by a classifier. For instance, this phenomenon challenges

traffic sign classification used in autonomous vehicles because it has been shown that a

few well-placed stickers are able to fool the classifier and make it misrecognise a yield

sign for a main road sign [3].

To reflect such weakness, problems are reframed to a game-theoretic setting in which

two autonomous rational players compete while following their mutually conflicting

objectives [4–6]. The aforementioned example with images is, consequently, extended

in the following way. One of the players acts as an image classifier and aims to maximise

classification accuracy, whereas the other player, an attacker, perturbs the images to

lower prediction confidence or, even better, to make the classifier misclassify the image.

Of course, the same is seen in computer security—the field defined by adversar-

ial nature. Intruders desire to circumvent a detector by adjusting their attacks [7];

malware is developed by optimising an executable binary [8], and spams are improved

statistically to avoid detection [9].

The aforementioned examples are instances of adversarial machine learning which

is a field defined by two principal objectives: to design an attacker which is able to

circumvent a classifier; and to design a classifier that is able to detect those attackers.

In this work, we closely examine both aspects of adversarial machine learning and design

1



Adversarial Machine Learning in Network Security

an attacker and a detector uniquely combining machine learning and game theory.

In contrast to classical statistical learning, an adversarial setting such as network

security has three critical properties: firstly, only benign activity can be recorder;

secondly, malicious activity responds to the presence of a detector and is optimised

to meet the attacker’s goal; and thirdly, a real-world detector is allowed to falsely

misclassify only a limited portion of benign users.

To address those three properties, we start with the expected risk minimisation

framework [10] and adjust it account for a strict false positive rate constraint. We

then define a model of an attacker and a detector as two competing entities that play

a Stackelberg game [11] and derive an optimisation task that builds upon statistical

learning and game theory. Inspired by the state-of-the-art algorithms solving complex

games [12, 13], we propose an algorithm that gives an approximate solution to the

game optimisation task, that is the algorithm outputs an adversarial detector robust

to potential attacks. A critical part of our approach is an attack algorithm which is

used as an opponent in the detector’s algorithm and the detector learns to detect its

attacks. In contrast to standard classifiers, our adversarial detector is stochastic. This

means that its output is a posterior class distribution rather than a most probable class

as it is done with standard classifiers. The final label is then drawn from the detector’s

output.

We work with a real-world example to demonstrate our algorithms: a URL reputa-

tion service is usually used by anti-malware programs deployed at an end-user’s device

to warn the user that it is about to enter a malicious site. However, the reputation

service gets misused by malicious actors who this way check wether a newly deployed

malicious site of theirs has already been exposed. Using the proposed algorithms, we

solve the task and design such a robust adversarial detector that is capable of recog-

nising whether a user using this reputation service is benign or malicious solely based

on URLs it queried the reputation service with and information in the corresponding

HTTP requests. This is done based on real-world data provided by Trend Micro Ltd.

To support our claims, we empirically show that the same level of robustness, which

is achieved by our detector, is not reached with an anomaly detector on the provided

real-world data. In particular, at the false positive rates 1%, 0.1% and 0.01%, we show

that the adversarial detector allows significantly lower portion of successful attacks. In

addition, we show that our detector robustly detects attacks with more than 10 low-

scored URLs per day. Last but not least, we present our detector labels a few samples

in the provided benign dataset as malicious with high confidence. On closer inspection,

we find that those users exhibit suspicious behaviour and are likely a genuine attacker

or an infected computer.

Structure of Thesis: In Background (Sec. 1) and Related work (Sec. 2), we re-

view related work on adversarial machine learning. In Problem Analysis (Sec. 3), we

identify specific requirements of adversarial machine learning and formally propose a

2
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solution to the problem of adversarial detection of malicious activity. In Game Defini-

tion (Sec. 4), we formally define a game in which a detector detects malicious users of

a URL reputation system. Also, we propose two attack types: a good queries attack

which performs straight-forward greedy attack and a gradient optimises attack’s cost

by composing obfuscation activity; and two detector types: an anomaly detector that

omits the adversarial nature of the task and an adversarial detector that utilises it.

In Experiments (Sec. 5), we empirically evaluate performance of proposed models and

algorithms on real-world data provided by Trend Micro Ltd. In addition, we analyse

the results and identify critical differences between proposed models.

3
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1 Background

This section gives a brief introduction to the background of the thesis topic. We discuss

risk minimisation, regularisation and define a Neyman-Pearson Task. Then we present

important notions of game theory and neural networks that are essential to this work.

A thorough study on related work and state-of-the-art solutions is given in the next

section.

1.1 Risk Minimisation

A classifier f ∈ F is a mapping f : X 7→ C that determines which class c ∈ C a sample

x ∈ X belongs to. For the purposes of this work, we only describe binary classification

in the following pages, however, the task is, naturally, expandable to a general discrete

set C. In the classical risk theory, the classifier f is a subject to minimisation of expected

risk R(f) given a cost function ` : C × C 7→ R.

R(f) = E
x,c

[
`(f(x), c)

]
(1)

Formally, the Expected Risk Minimisation (ERM) is given by:

min
f∈F

R(f) (2)

Typically when working with binary classification, ` is considered a 1-0 loss which

assigns an equal cost of magnitude 1 for misclassifying objects and a zero cost for

correct classification. The expected risk in this case accounts only for the rate of false

positives and false negatives. If we employ 1-0 loss into the expected risk, we arrive at

the following form:

R(f) =
∑
c∈C

p(c)

∫
x:f(x)6=c

p(x|c) dx (3)

The integral can be considered a probability of classifying objects x to an incorrect

class given a correct class c, ie. f(x) 6= c. Let us consider binary classification in which

C = {B,M} where M stands for a positive class (M as a malicious class) and B for

a negative class (B as a benign class). In the context of this work, the positive class

refers to malicious activity, ie. activity that is desired to be uncovered, and the negative

class covers benign, legitimate or normal behaviours. To conclude, the risk R(f) can

be rewritten as a mixture of two types of errors: the false positives rate and the false

negatives rate.

R(f) = p(B) · FPR(f) + p(M) · FNR(f) (4)

5
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In practice, computing an expected risk often involves intractable integrals. There-

fore, the risk is empirically estimated from observed samples. The empirical risk R̂(f)

estimated from a set of training samples Tm = {(xi, ci)}mi=1 is defined as follows:

R̂Tm(f) =
1

m

∑
(xi,ci)∈Tm

L(f(xi), ci) (5)

Vapnik [10] showed that with increasing m the empirical risk R̂Tm(f) approaches

R(f).

1.2 Regularisation

When examining possible classifiers, we usually have a priori knowledge of certain clas-

sifier instances being more suitable than others. Hence, some classifiers f correspond

to models that are more likely to be inadequate, and some are a priori preferred. The

reasons may vary, but mostly one desires to decrease models complexity to avoid over-

fitting. To capture this knowledge, a regularisation term Ω : F 7→ R penalising some

classifiers f is often added to the risk.

1.3 Neyman-Pearson Task

The Neyman-Pearson Task [14] is a problem in which the priori class probabilities

are unknown and thus only the false negative rate (FNR) is minimised while the false

positive rate (FPR) is maintained lower than a given threshold.

min
f∈F

FNR(f) s.t. FPR(f) ≤ τ0 (6)

1.4 Game Theory

In the context of this work, let us consider a game of two players: a defender (denoted as

-1) and an attacker (denoted as +1). A player i ∈ {-1,+1} is associated with its action

space Ai. A player plays a pure strategy ai ∈ Ai or a mixed strategy σi ∈ ∆(Ai) which

is a probability distribution over the player’s actions space. Each player is expected to

be a rational actor which carries out activity according to its risk. A player’s risk is a

function Ri that evaluates what risk is taken depending on players’ strategies.

In a Stackelberg Game, the player -1 is a leader that commits to a strat-

egy publicly while the player +1 is a follower who exploits the leader’s public

strategy. In other words, the follower (here an attacker) recognises the commit-

ted mixed strategy σ-1 and selects a pure strategy a+1 that minimises its risk

R+1(σ-1, a+1) = Ea-1∼σ-1 R+1(a-1, a+1). An action a+1 that responds to σ-1 minimises

risk R+1(σ-1, a+1) is called a best response.

BR(σ-1) = argmin
a+1∈A+1

R+1(σ-1, a+1) (7)

6
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The defender is expected to be a rational actor too, therefore, it optimally crafts its

mixed strategy. Knowing the attacker plays a best response a∗+1 ∈ BR(σ-1) it commits

to play σ∗-1 that minimises its risk R-1(a∗+1, σ-1) = Ea-1∼σ-1 R-1(a∗+1, a-1). The tuple

(σ∗-1, a
∗
+1) is called a Stackelberg equilibrium (SE). Since the attacker can arbitrarily

choose any a∗+1 ∈ BR(σ-1) (because all of them are optimal to the attacker), we define a

strong Stackelberg equilibrium (SSE) in which the attacker breaks ties in favour of the

defender, that is the attacker plays such a∗+1 ∈ BR(σ-1) which minimises the defender’s

risk R-1(a+1, σ-1).

min
σ-1,a+1

R-1(a+1, σ-1) s.t. a+1 ∈ BR(σ-1) (8)

1.5 Neural Networks

A neural network is a function approximator that consists of layered linear functions

whose output is transformed with a non-linear activation. Literature proposes a great

variety of neural networks architectures [1, 5, 6, 15–19]. In the context of this work, we

define a feed forward neural network with fully-connected layers. A feed forward neural

network takes an input x and transforms it with its layers one-by-one in a predefined

sequence so that the output of the layer l is the input of the layer l+1. The last layer’s

output is the output of the neural network. We define a fully connected layer as:

y = f(W · x+ b) (9)

where x ∈ RN is the layer’s input and y ∈ RM is the layer’s output. The matrix

W ∈ R(M×N) and the vector b ∈ RM are parameters of the layer. The function f is an

activation of the layer.

Often, a rectified linear unit (ReLU) [15] is used as an activation.

f(x) = max{0, x} (10)

In this work, we use a scaled exponential linear unit (SeLU) [16] which is defined

by the following function:

selu(x) = λ

{
x x > 0

α · (ex − 1) otherwise
(11)

The authors of SeLU [16] propose the constants have the following values: α ≈
1.6733 and λ ≈ 1.0507.

In classification problems, a neural network f(c, x) approximates the posteriori

probability p(c
∣∣x) where c ∈ C is a class and x ∈ X is an object which is to be labeled.

To make a final decision about an input x, the class with highest probability is taken,

i.e. argmaxc∈C f(c, x). Usually, classification neural networks are trained by minimising

7
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a cross-entropy loss. For a target distribution ŷ and an estimated distribution y, the

cross entropy is defined as follows:

l(ŷ, y) =
∑
c∈C

ŷ(c) · log(y(c)) (12)

Since in classification problems each sample has one particular class assigned, the

cross entropy loss changes. Given a sample x, its true class c and an estimator f , the

loss is given by log(f(c, x)). With a mini-batch gradient descent, one can optimise the

parameters of the neural network. Let θ be parameters of a neural network fθ(c, x),

then a gradient of the cross entropy loss can be estimated with m samples (called a

mini batch) as follows:

1

m

m∑
i=1

∇θ log(f(ci, xi)) (13)

The mini-batch gradient descent adjusts parameters of the neural net in each step

t by drawing m samples (ci, xi) from the joint data distribution p(c, x) and subtracting

gradient of the loss scaled with a learning rate γ:

θt+1 = θt − γ · 1

m

m∑
i

∇θ log(f(ci, xi)) (14)

8
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2 Related Work

Examining adversarial aspects of various machine learning problems has currently been

a popular topic. Mainly, this was triggered by Goodfellow et al. [2] who showed that

neural networks are susceptible to adversarial examples. Since then many endeavours

have been carried out to enhance neural networks or other machine learning algorithms

by making them robust. Some tried to develop a provably robust classifier [20], while

others reframed the classification problem to incorporate aspects of game theory [11].

Huang et al. [21] identify that there are several assumptions in the machine learning

scheme that are often violated. For instance, they consider the data distribution is

non-stationary. Barreno et al. [22] point out that some data may be generated by

adversaries who play an instance of a deception game - that is they purposely adjust

their actions to cover their true intention.

Despite most of the related work deals with image classification, efforts to utilise

the same notions in computer security have been seen too [7, 8, 23]. Susceptibility to

adversarial examples is, however, not the only weakness adversaries exploit, they also

are able to modify future training datasets in their favour [24].

2.1 Adversarial Machine Learning

Lowd et al. [9] explore obfuscate strategies yielding spams that circumvent a spam filter.

The authors consider attacks which are based on adding words to a spammy e-mail,

while other modifications are not allowed. Three pools of words are defined: in the first

attack random words from a dictionary are drawn; the second attack utilises common

legitimate e-mail words; and in the third attack, words that are likely to appear in

legitimate e-mails but are uncommon in spams are added.

To select the final set of words with the greatest effect from one of the three word

pools, a black box threat model is used. In particular, the attacker repeatedly calls

the detector to identify words, which make the detector label the spam as benign. As

expected, the last pool of words mentioned outperforms the others. Moreover, this

shows that additive changes to a malicious object are sufficient for obfuscating the

detector (within this domain). The authors claim they are able to add words to spams

in such a way the tested detection models do not detect 50% of them. We similarly

design the good queries attack 4.4 in which we obfuscate user’s activity by adding

legitimate requests.

To reflect the successful attack algorithm, a defense strategy is proposed. It is shown

that a robust detector which uncovers the adjusted spammy e-mails can be obtained by

simply retraining the model on data now containing the attacks. However, the authors

comment, a repeated obfuscation with a new set of effective words may again defeat

the detector.

A similar notion is seen in more advanced classification models. For instance, deep

neural networks are a popular class of classifiers nowadays for their performance in a

9
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great range of fields. They were shown to outperform other methods in image classi-

fication (ImageNet Challenge [1]), natural language processing [19] and in many other

fields. However, it was found that neural networks are susceptible to artificially crafted

images. In particular, Goodfellow et al. [2] show an adversarial example may be labeled

as an arbitrary class when accordingly adjusted. Moreover, despite the transformation

of an input image is substantially bounded, for example by l∞ norm, classifiers based

on neural networks are prone to be circumvented anyway [3]. The susceptibility to

adversarial samples follows the same observation in spam filtering – a good classifier is

not necessarily robust to test time data manipulation.

As soon as it was recognised the neural networks contain built-in vulnerabilities

which are exploitable, endeavours to improve the architecture were carried out. To

address the weakness, some of the following work focus on a model definition and

consider possible attacks already in the model design. This approach is summarised by

Madry et al. [4] who study adversarial examples in image classification. The authors

identify that expected risk minimisation (ERM) does not necessarily give models robust

to adversarially crafted samples.

Their work extends the training framework based on ERM by a threat model in

which each data point x ∈ RN is assigned a set of perturbations S(x) ⊆ RN that is

available to the adversary. The authors work with Sε(x) that contains perturbations

bounded by l∞, creating an ε-hyper-cube around each x:

Sε(x) = {x′ ∈ RN
∣∣ l∞(x− x′) ≤ ε} (15)

The norm l∞ is used for simplicity and roughly represents human-undetectable

image perturbations. Other approaches, however, consider more complex bounds that

capture domain-specific constraints [25].

To fully relate to an adversarial setting, Madry et al. [4] propose that the adversary

maximises the classifier’s loss function L by modifying an image x to an adversarial

example x′ ∈ Sε(x). This is further incorporated into the ERM framework, arriving at

a saddle point problem:

min
f∈F

E
x,c

[
max

x′∈Sε(x)
L(f(x′), c)

]
(16)

In other words, a solution to the problem gives an optimal robust classifier f ∈ F
that is likely to classify all objects x ∈ RN and their neighbourhood Sε(x) correctly.

We similarly compose a saddle point problem to solve adversarial problems, however,

we assume the attacker’s goal is general and its utility does not only correspond to

classification accuracy.

The saddle point problem given above consists of two sub-problems: training the

neural network and performing the inner maximisation. [4] approach the training part

with Stochastic Gradient Descent (SGD) as it is commonly done in neural networks,

while solving the inner maximisation task with Projected Gradient Descent (PGD) [17].

10
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They conclude the ERM framework extended by this specific threat model gives a

training method that is able to train neural networks in the adversarial setting and to

produce classifiers robust to l∞ bounded image perturbations. In addition, they find

lower error is obtained with higher capacity models, suggesting that a robust model

requires more parameters (eg. layers in neural networks).

To address the susceptibility to adversaries, several proposals of neural networks

enhancements were submitted at ICLR 2018. However, seven out of nine were shown

to be flawed due to following a similar ineffective scheme of masking the gradients [26].

In their paper, Athalye et al. [26] suggest there are three groups of gradient mask-

ing: first, a non-differentiable layer is inserted between the network layers; second, a

classifier randomises its outputs; and third, a function transforms the input in such

a way backward gradient explodes or vanishes. Showing that the submitted defensive

methods follow the schemes, the authors succeeded in circumventing 7 of 9 proposed

models. Concretely, they replaced or removed defensive non-differentiable components

accordingly to estimate the gradient and crafted adversarial samples with PGD.

In our problem, the attacker’s optimisation criterion is not differentiable because

the search space is discrete and hierarchically composed. Inspired by this approach, we

solve the problem similarly and parametrise non-differentiable elements of the criterion

with an interpolating function. We then solve the attacker’s optimisation with PGD.

In addition, Athalye et al. [26] suggest that randomisation of the classifier decision

does not work for this only extends the iterations needed to acquire true gradient but

does not increase robust aspects. We however use a stochastic detector whose decision

is a realisation of a modelled posteriori probability – in other words, we too randomise

the classifier’s output. Importantly, we do so, because we model a mixed strategy

which a detector as a player necessarily plays in an equilibrium. To support the claim,

we show in Sec. 3.1.6 that a stochastic classifier is more general than a deterministic

classifier and outperforms it.

A key aspect of adversarial machine learning is a definition to what extent the

attacker knows private parameters of a defender. In a white box approach, the attacker

has full access to a gradient, a structure or parameters of the classifier [11, 20, 22, 26].

In a black-box approach, the attacker gains access usually only to the output of the

classifier and estimates other private setting from this output [27, 28]. In our game

setting, we work with a white box thread model.

2.2 Provable robustness

Until now, all presented efforts to improve the neural networks susceptibility were

approached empirically and usually without providing provable defenses [4]. A method

that aims to give provable resistance to adversarial samples was proposed by Kotler et

al. [20] who examine a novel network architecture that provably classifies all objects in

a convex neighbourhood of a given image correctly. To achieve that, Kotler et al. [20]

redefine a ReLU [15] in such a way it is not a function anymore but rather a set of

11



Adversarial Machine Learning in Network Security

linear constrains yielding a convex polytope; i.e. a ReLU y = max{0, x} becomes:

y ≥ x (17)

y ≥ 0 (18)

y(l − u) ≤ −ux+ ul (19)

where u and l are an upper, respectively lower bound of x. The bounds are unknown

and need to be estimated for each ReLU.

With a convex relaxation of ReLU, image classification can be rewritten as a linear

program with all components of the network now being linear. In the training process,

the weights of the relaxed neural network are optimised so that the network correctly

classifies not only the input image but also its convex embedding. More specifically,

using a l∞ norm a ε-neighbourhood of an input sample is embedded by a convex

polytope and the network learns to disallow any adversarial samples in it.

Solving the optimisation problem in its LP form with a standard LP solver is not

tractable due to a great number of variables needed to express state-of-the-art deep

neural networks. However, the LP can be conveniently used to form an upper bound

on robust classification accuracy. Now, this upper bound combined with the ReLU

input bounds estimation becomes fully differentiable. The training process follows

standard SGD [29] and gives a robust classifier that allows provably at most 6% error

on MNIST [30]. In contrast, a classical neural architecture is vulnerable up to 80%

error [20].

2.3 Optimising malware

In contrast to image classification, the space of inputs is usually discrete in computer

security. An image can be represented as a vector in [0, 1]n, while executable binaries

span a very sparse subset of the binary space {0, 1}n. Similarly, a set of executable

source codes in a given programming language is a sparse subset of all character strings.

Despite the theoretical difficulties several papers address the issue. [7] propose an ob-

fuscate that optimises a malicious source code by applying some of the predefined

modifications. The obfuscate method utilises the classifier’s gradient to choose the

most appropriate code modification. The set of plausible modifications is given before-

hand and allows only additive changes. Although this significantly limits the attacker’s

action space, the authors claim reaching misclassification rates of up to 69%. [23] focus

on static portable executables which they encode into a binary feature indicator vec-

tors. Again, additive modifications are allowed only and malware is optimised with a

bit gradient ascent. [8] take a different approach to malware optimisation and propose

an agent which is trained with reinforcement learning. The agent is given a portable

executable and its goal is to choose the most suitable modification of a piece of malware

to lower the probability of detection.

12
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2.4 Game-Theoretical Approach

As already shown, the problem of adversarial samples can be modelled as a game of two

actors. However, Brückner et al. [11] propose a more general game model compared

to those already mentioned. In particular, the authors define the players as a classifier

and a data generator consisting of all actors generating data – that is the second player

aggregately covers both benign and malicious actors.

This setting is explored using a game-theoretical point of view. The authors propose

a Stackelberg prediction game in which a classifier, acting as a leader, and a data

generator, acting as a follower, optimise their actions to meet their objectives. They

argue the Stackelberg equilibrium is the most appropriate concept for trainable models,

specifically compared to the Nash equilibrium. It is so, they claim, mainly because once

a model is finalised and deployed, it is not changed anymore and thus the attacker can

potentially learn all details of the model and adjust its actions to it.

In other words, the actions – the choice of model parameters and the test time data

generation – are not carried out simultaneously, but instead the classifier commits to a

specific parameters vector and the attacker utilises the information about the model and

adjusts its attacking strategy accordingly. The later is modelled by a distribution shift

at test time. The data generator transforms a probability of data p to a test time data

probability ṗ which maximises its objective function. In addition, the authors show

that linear and kernel-based models together with suitable objective functions allow

reformulating the problem to a quadratic program which yields the optimal model

parameters.

We define our game very similarly to the Stackelberg prediction game. However, we,

in contrast, consider the data generated by benign users are stationary; and malicious

users only adjust their data in response to the detector. Also, we assume the classifier

is complex and largely non-linear, which leads to problems that do not have analytical

solutions. And finally, we consider the defender necessarily plays a mixed strategy in

order to follow the Stackelberg’s equilibrium.

Amin et al. [12] propose a gradient-based algorithm to solve a normal-form game

by identifying a Stackelberg equilibrium. They assume that one player is a defender

(playing a leader) and the second player is an attacker (a follower). They model a de-

fender’s mixed strategy with a parametrised distribution Dθ and update its parameters

with a gradient descent. To estimate the expectation of the gradient, the authors use

a Monte-Carlo method and sample random variables from corresponding distributions

– for instance the action played by the defender is sampled from Dθ. With convenient

parametrisation of Dθ, this approach provides an algorithm that solves a game in which

the action spaces of both players are finite and discrete.

In this work, we follow this approach and similarly estimate the gradient of Dθ

with a Monte-Carlo method. However, in contrast we deal with a game in which the

defender’s (or in our setting detector’s) action space is infinite – it is in fact a family of

possible classifiers and the mixed strategy is a probability distribution over all classifiers.
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Lockhart et al. [13] propose a general-scheme algorithm that approximately solves

an extensive-form game of two players where each is defined by its policy πi. The

algorithm consists of iterating over a two-step process of both players computing best

responses to the policies from the previous step and updating the policies based on the

now-generated best responses. They prove that if both players employ this algorithm

and update their policies to minimise exploitability, the policies converge to a Nash

equilibrium.

In spite of the fact that we aim to find a Stackelberg equilibrium, we take a similar

approach and construct an algorithm that in each iteration consists of generating the

attacker’s best response and updating the defender’s mixed strategy Dθ by minimising

its expected risk.

2.5 Dataset poisoning

The Stackelberg Prediction Game assumes the model is fixed after deployment. In

practice, however, engineers retrain the model on newly obtained data that might

better represent their population. As this might be done periodically, the adversary

shall take advantage of it and adjust its obfuscate strategy. Concretely, Rubinstein et

al. [24] elaborate on poisoning anomaly detectors.

The poisoning obfuscate consists of purposely providing pre-crafted samples to the

detector over a long period of time in belief, that the samples will create a blind spot in

which all samples are considered benign by the detector. The authors assume that the

input space is usually governed by a distribution of benign samples concentrated only

in certain areas, leaving the rest for anomalous activity. Given a substantial amount

of time, the adversary is gradually able to poison the detector by targeting the large

empty parts of the input space and populating them with benign samples. In future

retraining, the anomaly detector may mistakenly consider those re-populated areas a

new phenomenon and label them benign. The attacker then simply crafts an obfuscate

near to the poisoned areas of the input space.

The authors present that such an obfuscate is possible with an anomaly detector

based on principal component analysis (PCA) which determines directions of the sam-

ple space with greatest variance. Replacing variance in PCA with median absolute

deviation, which in contrary is a robust scale estimator, their model is robust to data

set poisoning and successfully performs anomaly detection in backbone networks.

Despite dataset poisoning is an interesting problem, it is here mentioned to demon-

strate other problems in adversarial machine learning that are not solved in this work.
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3 Problem Analysis

In the present state of Internet, it is common for a site owner to run models classifying

users or their behaviour. The task spans from user’s interests specification to detect-

ing deviating activity. Since such applications are becoming more popular, one may

expect the users to modify their behaviours once they know they are being tracked

and classified. Moreover, behaviour modification may very well be of rational nature,

especially when a malicious user exploits loopholes or carries out lawless activity in

order to pursuit its goal.

In other words, if there is a cost for being disclosed or seen as a certain category,

the users will examine their actions to optimise for lower cost. As a result, machine

learning models of any kind aiming to capture behaviours of those users necessarily

need to have the adversary nature incorporated in their design.

In this work, we deal with a task of detecting malicious activity in network security.

That is a problem that combines adversarial motivations of involved actors and princi-

ples of statistical learning to account for a distribution of observed activity. The goal of

this section is to propose a theoretical background that gives an optimisation problem

for finding a robust activity detector. In the following section, we then introduce an

industrial real-world problem which is an instance of this task and propose a solution

to it using the developed theory.

The straight-forward approach of solving the task of malicious activity detection

would be to collect many examples of both kinds of user activity; that is to asses a

dataset containing well-represented both malicious and benign users. This approach

would follow the standard expected risk minimisation framework (ERM) and would

give an activity classifier that minimises expected risk but omits the adversarial nature.

However, one might arrive at difficulties during the construction of a balanced dataset

for there is usually very few records of malicious activity, disproportionally less than

the collection of normal, benign users. Also, and more importantly, the malicious

actors modify their attack vectors once their method is exposed or they discover details

concerning the detector.

Taking that into account, we consider the setting is a game of a classifier competing

with a body of malicious users. This approach necessarily modifies the ERM framework

and enhances it with game-theoretic notions.

Expected Risk Minimisation A malicious activity detection system is essentially

a classifier that classifies users based on their behaviour. This in principle is a machine

learning problem of finding a classifier f ∈ F minimising expectation of detection

loss `−1 : C × C 7→ R. The classifier is a mapping f : X 7→ C which takes vectors

x ∈ X on its input and produces a decision d ∈ C. However, the ground variable

representing the object to be classified is a user’s activity history h ∈ H which is

translated to a corresponding feature vector by a feature map Φ : H 7→ X . All variables
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and functions related strictly to a detector are subscripted with −1, whereas we use

+1 in the attacker’s case. This choice follows Brückner et al. [11]. ERM consists of

identifying an optimal classifier f that minimises expectation of `-1 over tuples of a

feature vector and a class from X × C. The expected risk can be formulated as a

convex combination of risks conditioned on a class. Assuming there is two classes, i.e.

C = {B,M}, the expected risk can be rewritten as a combination of the risk attained

on the malicious class and the risk attained on the benign class.

Definition 3.1. Let the risk attained on a malicious class M, R-1(f
∣∣M), be the ex-

pectation of the loss conditioned on class M. Let the risk attained on a benign class B,

R-1(f
∣∣B), be the expectation of the loss conditioned on class B.

R-1(f
∣∣M) = E

x

[
`-1(f(x),M)

∣∣M ]
R-1(f

∣∣B) = E
x

[
`-1(f(x),M)

∣∣B ]
Definition 3.2 (Detector’s Expected Risk Minimisation). In standard classification,

the optimal classifier f∗ is the solution of the following problem:

minimise
f∈F

p(B) ·R-1(f
∣∣B) + p(M) ·R-1(f

∣∣M)

3.1 Specifics of Adversarial Machine Learning

In this section, we examine adversarial machine learning in the domain of network

security in general terms. The central task is to detect malicious users in the network

without ideally affecting legitimate users.

The expectations in Def. 3.2 are usually estimated from a set of examples of each

class. However, in the detection problem there are not enough examples of malicious

behaviour and, in addition, this behaviour changes reflecting the current detector. This

imposes two critical properties of adversarial machine learning:

• The priori class probabilities are not known.

• An individual attacker follows its private objective and (possibly rationally)

chooses actions minimising its cost.

3.1.1 Property 1: Unknown Class Probabilities

To reflect the first property, we necessarily need to give up on ERM. We propose to

redefine the detection problem to comply with the Neyman-Pearson Task (recall Sec.

1.3). The Neyman-Pearson task minimises the false negative rate (FNR) while keeping

the false positive rate (FPR) below a certain level. This way the priori class probabilities

are omitted. Inspired by this approach, we defined that the optimal detector minimises
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a risk attained on malicious class R-1(f
∣∣M) and keeps the risk on benign class R-1(f

∣∣B)

below a threshold. This reflects the desired strict constraint of real-world detection

problems which is to identify an optimal detector but to avoid affecting benign users

up to certain tolerance level. Conveniently, with a zero-one loss, the risk attained on

malicious class R-1(f
∣∣M) becomes the false positive rate and similarly the benign class

risk R-1(f
∣∣B) becomes the false negatives rate.

Definition 3.3 (Neyman-Pearson Detection Task). The Neyman-Pearson detection

task minimises the expected loss conditioned on the malicious class while the expected

loss conditioned on the benign class is maintained lower than a threshold τ0.

minimise
f∈F

R-1(f
∣∣M)

subject to R-1(f
∣∣B) ≤ τ0

Using this formulation, prior class probabilities are omitted and, in addition, the

task reflects the nature of security detection problems in which there is a hard constraint

on false positives. In other words, we aim to find a classifier f that does not affect

legitimate activity but given this constraint is the best detector of malicious activity.

3.1.2 Property 2: Adversarial Setting

By assuming an attacker is a rational actor that pursuits its goal, the setting of statisti-

cal learning changes to an adversarial game of two players: a detector and an attacker.

We sort sampled activity into two classes: benign (B) and malicious (M). The former

is activity generated by legitimate users and the later is activity produced solely by an

attacker in pursuit of its objectives.

To avoid detection, each individual attacker obfuscates its primary goal. However, if

a good detector is deployed, obfuscation requires a large quantity of legitimate activity

to make the final activity mask the primary goal entirely and avoid detection. The

obfuscated activity of an attacker, in consequence, is recorder by the detector and

stored as an activity history based on which the detector assigns a label to it.

3.1.3 Stackelberg Game

In practice, the detector is fixed after deployment and the choice of its particular

form and parameters necessarily occurs before the deployment. This is a case of a

Stackelberg game [11] in which the detector is a leader and the attacker is a follower.

For theoretical properties (its existence for instance) we assume a strong Stackelberg

equilibrium is played.

In a Stackelberg game, the follower plays a best response to the leader’s public strat-

egy and the leader optimises this strategy, accounting for the follower’s best response.

In such a setting, the leader optimally plays a mixed strategy while the follower plays
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a pure strategy. This means the attacker obfuscates its activity optimally without a

need of randomisation by playing a best response to detector’s strategy.

As mentioned, the detector may necessarily randomise its actions to achieve the

optimal cost. This translates to a detector playing a mixed strategy σ(f) : F 7→ [0, 1]

instead of a single particular f . To put it differently, the player detector posses a

probability distribution over all possible classifiers σ(f) and, according to it, randomises

the choice of a particular classifier f and labels an input sample x ∈ X as a class d ∈ C,

d = f(x). In conclusion, the detector decides a sample x ∈ X belongs to a class d ∈ C
based on a probability Dσ(d

∣∣x) that is constructed in accordance to σ(f). The notion

is captured in the following definition.

Definition 3.4. A stochastic detector D : X 7→ C is a probability distribution p(d
∣∣x)

generating a decision d ∈ C conditioned on an observed sample x ∈ X . Dσ is given by

a detector playing a mixed strategy σ : F 7→ [0, 1]:

Dσ(d|x) =
∑

f :f(x)=d

σ(f)

3.1.4 Attacker

We model the attacker as a rational actor which plays the action minimising its ex-

pected costs. The particular form of costs and actions depends largely on the domain.

Therefore, here we only present general notions defining the attacker and, later in Sec-

tion 4.3, we propose the attacker’s model that suits the running example of attacks to

a URL reputation service.

According to [11], we propose all attackers follow the same objective and they differ

only in their particular primary goal. That is, the activity obfuscation is practically the

same task shared by all attackers and two attackers differ in what they aim to obfuscate.

The final activity history of each of them is strictly a function of the primary goal.

For that reason, the model of the attacker considers a single-body aggregate player

in which an individual attacker instance is thoroughly defined by its primary goal g ∈ G.

The common shared obfuscation function ψ : G 7→ H takes a primary goal g on its input

and maps it to an activity history h = ψ(g) that obfuscates the primary goal. Since

we assume the attacker is required to meet its primary goal g, the outcomes of the

obfuscation function are limited to contain activity related to meeting the primary

goal, that is ψ(g) ∈ S(g). The set S(g) contains all activity histories that meets the

primary goal g.

The attacker is a rational player which operates in a stochastic environment (goals

have a prior distribution). This is captured by the risk of the attacker defined below.

Definition 3.5. Let the primary goals g ∈ G be generated by a probability p(g). Let

Psi be a family of obfuscation functions ψ : G 7→ H. Let f ∈ F be a classifier and
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Φ : H 7→ X a feature map. The attacker’s risk R+1 : Ψ × F 7→ R is given as the

expectation of its loss `+1 : G ×Ψ× C 7→ R. That is:

R+1(ψ, f) = E
g

[
`+1(g, ψ, f(Φ(ψ(g))))

]
Relating to game theory, the obfuscation function ψ is an attacker’s action and its

best response to σ is given by minimising the attacker’s expected risk Ef∼σ R+1(ψ, f).

Proposition 3.1 (Attacker’s Best Response). The attacker’s best response BR(σ) to

a mixed strategy σ is a set of obfuscation functions ψ : G 7→ H that are the minimisers

of the expectation of the attacker’s loss `+1.

BR(σ) = argmin
ψ

E
g,d

[
`+1(g, ψ, d)

]
Proof.

BR(σ) = argmin
ψ

E
f∼σ

R+1(ψ, f) (20)

= argmin
ψ

E
f,g

[
`+1(g, ψ, f(Φ(ψ(g))))

]
(21)

= argmin
ψ

∑
f

∑
g

`+1(g, ψ, f ◦ Φ ◦ ψ(g)) · p(g) · σ(f) (22)

= argmin
ψ

∑
g

∑
d

∑
f :f◦Φ◦ψ(g)=d

`+1(g, ψ, d) · p(g) · σ(f) (23)

= argmin
ψ

∑
g

∑
d

`+1(g, ψ, d) · p(g) ·
∑

f :f◦Φ◦ψ(g)=d

σ(f) (24)

= argmin
ψ

∑
g

∑
d

`+1(g, ψ, d) · p(g) ·Dσ(d
∣∣Φ ◦ ψ(g)) (25)

= argmin
ψ

E
g,d

[
`+1(g, ψ, d)

]
(26)

3.1.5 Stochastic Detector

The detector’s pure strategy consists of a particular detector f . However, as proposed

above, its optimal strategy is generally mixed and the detector, therefore, randomises

its final decision d ∈ C.
A mixed strategy in case of the detector is a probability distribution σ : F 7→ [0, 1]

which assigns a probability to each particular detector f . The decision d representing

the estimated class of a sample x is, consequently, a random variable whose probability

distribution is the aggregate of probabilities σ(f) for which f(x) = d. To capture that,

we defined a decision distribution D(d|x) in Def. 3.4.
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In this work, we model D(d|x) with a neural network which fruitfully allow us to

bypass potentially infinite enumeration of detectors from F . The detector’s mixed strat-

egy is, in conclusion, represented by the distribution Dθ(d|x) where θ is a parameters

vector.

As proposed by Brückner et al. [11], the attacker’s impact on the setting can be

modelled by a distribution shift. However, in contrast to [11], in this work we assume

only the malicious class activity is governed by adversarial objectives and benign activ-

ity is maintained unchanged irrespective of the detector’s presence. Taking that into

account, we define that the distribution of samples produced by attackers p(x
∣∣M) is

shifted in reaction to the presence of a deployed detector D and changes to ṗ(x
∣∣M).

In a standard classification problem, we find f minimising the expected risk. In our

adversarial setting, the detector is necessarily a distribution D that is a solution to the

Neyman-Pearson Task with a non-stationary distribution of samples ṗ(x
∣∣M).

Proposition 3.2. Let the attacker play a best response BR(σ) to a mixed strategy σ,

then the detector’s risk of a mixed strategy σ attained on malicious activity, R-1(σ
∣∣M),

is given by the best-case expectation of its loss attained on malicious activity.

R-1(σ
∣∣M) = E

f

[
R-1(f)

∣∣M ] = min
ψ∈BR(σ)

E
q,d

[
`-1(d,M)

∣∣M ]
Similarly, the detector’s risk of mixed strategy σ attained on benign activity,

R-1(σ
∣∣B), is given by the expectation of its loss attained on benign activity.

R-1(σ
∣∣B) = E

f

[
R-1(f)

∣∣B ] = E
h,d

[
`-1(d,B)

∣∣B ]
Proof. For the risk of a mixed strategy attained on malicious activity, it holds that:

R-1(σ
∣∣M) = E

f

[
R-1(f)

∣∣M ] (27)

= E
f,x

[
`-1(f(x),M)

∣∣M ] (28)

=
∑
f

∑
x

`-1(f(x),M) · ṗ(x
∣∣M) · σ(f) (29)

Consider a sample x is generated solely by the attacker (due to the M class in

the conditional probability). We substitute x for Φ ◦ ψ(g). Assuming a feature map

Φ : H 7→ X projects each h to one particular feature vector x and a malicious activity

history h is given by a primary goal g obfuscated by a best response obfuscation function

ψ ∈ BR(σ), the sum of probabilities p(g) for which Φ◦ψ(g) = x gives the non-stationary

probability ṗ(x
∣∣M).
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ṗ(x
∣∣M) =

∑
h:Φ(h)=x

ṗ(h
∣∣M) (30)

=
∑

h:Φ(h)=x

∑
g:ψ(g)=h

p(g) (31)

=
∑

g:Φ◦ψ(g)=x

p(g) (32)

Using the substitution and considering the best-case, we arrive at:

R-1(σ
∣∣M) =

∑
f

∑
x

`-1(f(x),M) · ṗ(x
∣∣M) · σ(f) (33)

= min
ψ∈BR(σ)

∑
f

∑
g

`-1(f ◦ Φ ◦ ψ(g),M) · p(g) · σ(f) (34)

= min
ψ∈BR(σ)

∑
g

∑
d

`-1(d,M) · p(g) ·
∑

f :f◦Φ◦ψ(g)=d

·σ(f) (35)

= min
ψ∈BR(σ)

∑
g

∑
d

`-1(d,M) · p(g) ·Dσ(d
∣∣Φ ◦ ψ(g)) (36)

= min
ψ∈BR(σ)

E
q,d

[
`-1(d,M)

∣∣M ] (37)

Similarly for the risk of a mixed strategy attained on benign activity:

R-1(σ
∣∣B) = E

f

[
R-1(f)

∣∣B ] (38)

= E
f,x

[
`-1(f(x),B)

∣∣B ] (39)

=
∑
f

∑
x

`-1(f(x),B) · p(x
∣∣B)σ(f) (40)

=
∑
f

∑
h

`-1(f ◦ Φ(h)),B) · p(h
∣∣B) · σ(f) (41)

=
∑
h

∑
d

`-1(d,B) · p(h
∣∣B) ·Dσ(d

∣∣Φ(h)) (42)

= E
h,d

[
`-1(d,B)

∣∣B ] (43)

Definition 3.6. For simplicity, we interchangeably use σ and Dσ and Dθ as the de-

tector’s strategy. Thus:

R-1(Dσ

∣∣ ·) = R-1(σ
∣∣ ·) = R-1(Dθ

∣∣ ·)
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Proposition 3.3 (Detector’s Optimisation Problem). Let the detector minimise the

expected risk attained on malicious activity, while maintaining the expected risk at-

tained on benign activity upper-bounded by τ0. Let the attacker minimise its expected

risk. Then the stochastic detector Dθ parametrised by θ and the obfuscation function ψ

which are the solution to the following bi-level optimisation problem are the Stackelberg

equilibrium.

minimize
θ,ψ

E
q,d

[
`-1(d,M)

∣∣M ]
subject to E

h,d

[
`-1(d,B)

∣∣B ] ≤ τ0

ψ ∈ argmin
ψ′

E
g,d

[
`+1(g, ψ′, d)

]
Proof. The proposition follows directly from the definitions and propositions above.

3.1.6 On Stochasticity Importance

To understand the importance of stochasticity of a detector, let us present a toy example

in which a deterministic detector has inevitably inferior performance to a stochastic

detector. Consider an instance of a problem in Prop. 3.3 in which the false positive

rate (FPR) constraint allows misclassifying only one benign sample. However, the

distribution of the benign data has two outliers in the region where the attacker places

its obfuscated sample. See visualisation in Fig. 1a which demonstrates this setting.

To achieve best performance, a deterministic detector shapes its decision line so

that one of these outliers is well-classified while the other is misclassified. This solution

meets the constraint. However, the attacker’s the best response obfuscation function

moves the malicious sample towards the one benign sample that is classified correctly.

Had the detector chosen the other outlier to be well classified, the attacker would have

adjusted and placed its attack to the now well classified benign sample. According to

the Detector’s optimisation problem, the optimal deterministic detector achieves zero

detection rate. The final decision line is depicted in Fig. 1b.

Now, consider a stochastic detector instead. To maximise detection rate while still

meeting the FPR constraint, the detector adjusts the posteriori distribution in such a

way that the two outliers are both covered with 50% probability of maliciousness. This

meets the constraint on FPR and maximises detection rate since all possible obfusca-

tions (in the region of possible obfuscations) are given also 50% detection probability.

This is fully shown in Fig. 1c.

3.2 Assumption on Losses

As it is common in ERM, we expect the detector’s loss `-1 is a zero-one loss. This

simplifies the primary objective in the detector’s optimisation problem.
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(a) Problem setting

(b) Deterministic Detector

(c) Stochastic Detector

Figure 1: This figure shows a setting in which a deterministic detector underperforms a stochas-

tic detector. Blue dots correspond to benign samples. Red dot is a malicious sample. Dashed

semi-circle is bounds the region of possible obfuscation of the malicious sample. In Fig. 1b the

blue line is a decision line of a deterministic detector. The arrow shows the obfuscation path

from a primary sample to the obfuscated one. Fig. 1c depicts contours of a stochastic detec-

tor where blue-shaded lines outline areas of high benign-ness probability and red-shaded lines

conversely high maliciousness probability. The shadow line is a 50% boundary. The stochastic

detector gives more optimal solution to the detector’s optimisation problem (Prop. 3.3)
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Proposition 3.4. Let the detector’s loss `-1 be a zero-one loss. Then the detector’s risk

attained on malicious activity R-1(θ
∣∣M) is the expectation of the posteriori probability

of a benign class conditioned on malicious activity. Similarly for the risk attained on

benign activity R-1(θ
∣∣M):

R-1(θ
∣∣M) = min

ψ∈BR(σ)
E
g

[
Dθ(B

∣∣Φ ◦ ψ(g))
∣∣M ]

R-1(θ
∣∣B) = E

h

[
Dθ(M

∣∣Φ(h))
∣∣B ]

Proof. The proof is straight-forward.

R-1(θ
∣∣M) = min

ψ∈BR(σ)
E
q,d

[
`-1(d,M)

∣∣M ] (44)

= min
ψ∈BR(σ)

E
q

[ ∑
d

`-1(d,M)Dθ(d
∣∣Φ ◦ ψ(q))

∣∣M ] (45)

= min
ψ∈BR(σ)

E
q

[
Dθ(B

∣∣Φ ◦ ψ(q))
∣∣M ] (46)

R-1(θ
∣∣B) = E

h,d

[
`-1(d,B)

∣∣B ] (47)

= E
h

[ ∑
d

`-1(d,B)Dθ(d
∣∣Φ(h))

∣∣B ] (48)

= E
h

[
Dθ(M

∣∣Φ(h))
∣∣B ] (49)

The posteriori probability of the stochastic detector Dθ(d
∣∣x) is explicitly modelled

by neural network in this work. Thus we prefer the risk explicitly contains the term.

However, this does not hold generally and in some cases it is more fruitful to estimate

the risk as expectation of loss values (e.g. reinforcement learning).

The same trick which was used in case of the defender cannot by applied to the

attacker. The attacker’s loss `+1 : G × Ψ × C 7→ R is more complex. Naturally, it

consists of two components: a public and a private term. The public cost reflects the

adversarial objective of escaping detection (e.g. detection probability). The private

cost penalises the attacker for too costly obfuscation and is not necessarily adversarial

to the detector’s cost.

This also shows the game is a non-zero sum game as the private term in the at-

tacker’s loss does not have an adversarial equivalent in the detector’s loss.

Following Brückner et al. [11], we defined the attacker as a shared body of attacker

instances. However, if the attacker’s loss is defined conveniently, the attacker’s opti-

misation problem decomposes and it can be solved independently for each attacker’s

instance. The convenient form of the loss is shown Tab. 1.
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d `+1(g, ψ, d)

B Ω+1(g, ψ(g))

M Ω+1(g, ψ(g)) + L0

Table 1: Proposed Attacker’s Loss

The motivation of this particular form of the loss is simple. If an attacker is detected

it pays the amount L0 for acquiring a new license or an account so that it is able to

carry out further activity. However, the more complex activity histories it creates

to obfuscate its primary goal, the more costly carrying out such activity is. This is

represented by a private private cost Ω+1 : G ×H 7→ R.

Recall that the obfuscation function ψ is constrained by the set of activity histories

S(g) such that ψ(g) ∈ S(g), i.e. ψ(g) can only create activity histories in S(g). The

set S(g) defines activity histories that the attacker is able to construct from g.

Proposition 3.5. Let the attacker’s loss be defined by Tab. 1. Let the attacker’s

private cost be a function Ω+1 : G ×H 7→ R. Then the attacker’s best response problem

of finding BR(σ) decomposes into identifying set of optimal obfuscations Ψ∗g such that

if ψ∗ ∈ BR(σ) then ψ∗(g) ∈ Ψ∗g. In other words, Ψ∗g is the set of solutions to the

following problem.

Ψ∗g = argmin
h∈S(g)

L0 ·Dσ(M
∣∣Φ(h)) + Ω+1(g, h)

Proof. Proposition 3.1 defines the attacker’s best response problem in which the ex-

pectation is over variables g and d.

ψ∗ ∈ BR(σ) = argmin
ψ

E
g,d

[
`+1(g, ψ, d)

]
(50)

= argmin
ψ

E
g
E
d

[
`+1(g, ψ, d)

]
(51)

Let us substitute the loss `+1 for its tabular form in Tab. 1. The inner expectation

in Eq. (51) simplifies and becomes:

E
d

[
`+1(g, ψ, d)

]
= Ω+1(g, ψ(g)) ·Dσ(B

∣∣Φ ◦ ψ(g)) + (52)

+ (L0 + Ω+1(g, ψ(g))) ·Dσ(M
∣∣Φ ◦ ψ(g)) (53)

= Ω+1(g, ψ(g)) · (1−Dσ(M
∣∣Φ ◦ ψ(g))) + (54)

+ (L0 + Ω+1(g, ψ(g))) ·Dσ(M
∣∣Φ ◦ ψ(g)) (55)

= L0 ·Dσ(M
∣∣Φ ◦ ψ(g)) + Ω+1(g, ψ(g)) (56)
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This gives us a simplified of the best response problem:

argmin
ψ

E
g

[
L0 ·Dσ(M

∣∣Φ ◦ ψ(g)) + Ω+1(g, ψ(g))
]

(57)

The best response problem now contains only the term ψ(g) and, hence, the expec-

tation can be decomposed. The criterion is minimised if we set ψ(g) to h that minimises

L0 · Dσ(M
∣∣Φ(h)) + Ω+1(g, h). However, the obfuscation function ψ(g) is constrained

by S(g). Taking S(g) into account, we arrive at the following form.

ψ∗(g) ∈ Ψ∗g = argmin
h∈S(g)

L0 ·Dσ(M
∣∣Φ(h)) + Ω+1(g, h) (58)

Ψ∗g simply denotes the solution of the optimisation problem.

3.3 Approximate Best Response

The attacker’s best response problem decomposes into separate optimisation problems

for each primary goal g and the solution of each individual optimisation task is a set Ψ∗g.

The criterion of the task is, however, arbitrarily non-linear (especially in Dθ(d
∣∣x)) and,

therefore, finding the solution requires advanced approximative methods. For instance,

take gradient descent that in principal identifies an approximation of a local minimum.

Thus, in practice we are not able to identify Ψ∗g or its elements accurately.

To address this challenge, we take inspiration in agent-based theory in which each

player in a game is formulated as an agent with a policy π which represents its decision

strategy. For instance, Lockhart et al. [13] or Amin et al. [12] use approximative

methods to find a game’s equilibrium while iteratively adjusting player’s policies. Here,

we deal with a Stackelberg game in which only one player optimises its strategy, the

detector, and the other player plays a best response to it.

We propose to use an iterative attack algorithm π that takes a primary goal g as

its input and outputs an activity history hobf that obfuscates g.

Definition 3.7 (Attack Algorithm). Consider the separate attacker’s problem in Prop.

3.5 to be a non-linear problem with a set of solutions Ψ∗g. Then we define an attack

algorithm π that takes a primary goal g ∈ G and a detector Dθ as its input and generates

an activity history hobf ∈ S(g) that approximates the element of Ψ∗g which is favoured

by the detector. In other words, π approximates the obfuscation function ψ∗ which is

in a strong Stackelberg equilibrium.

Note that the attack algorithm π(g,Dθ) is an approximation of a best response

obfuscation function ψ∗ ∈ BR(Dθ). This is particularly useful in the detector’s opti-

misation problem because its bilevel form can be simplified with an attack algorithm.

Proposition 3.6. Considering the losses in propositions 3.4 and 3.5 and an attack

algorithm π as an approximation of the attacker’s best response, then the detector’s
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optimisation problem in Prop. 3.3 transforms to the following form, if π returns the

best-case activity history in case of a tie.

minimise
θ

E
g

[
Dθ(B

∣∣Φ(π(g,Dθ) ))
∣∣M ]

subject to E
h

[
Dθ(M

∣∣Φ(h))
∣∣B ] ≤ τ0

Notice that there is a practical problem with this formulation: in practice, π(g) does

not necessarily produce a best-case activity history. For example, if π(g) is a gradient

descent-based algorithm, it converges to a local minimum which is (1) not necessarily

a global minimum and (2) is not necessarily the best-case activity history.

3.4 Detector’s Learning Algorithm

In this section, we introduce an iterative training mechanism that finds a local minimum

of the detector’s approximative optimisation problem (Prop. 3.6).

The problem in Prop. 3.6 involves a constraint that we lift to the criterion using

a Langrangian multiplicator. Inspired by Janisch et al. [31] and Suttle et al. [32], we

transform the problem to a maxmin problem and find an approximate solution with

gradient descent. The approach also builds on Lockhart et al. [13] who proposed the

Exploitability Descent which iteratively adjusts players’ policies based on a current best

response.

Recall we defined the risks attained on malicious activity and benign activity re-

spectively. With the definition of the attack algorithm (Def. 3.7) the risks have the

following form.

R-1(θ
∣∣M) = E

g

[
Dθ(B

∣∣Φ(π(g,Dθ) ))
∣∣M ] (59)

R-1(θ
∣∣B) = E

h

[
Dθ(M

∣∣Φ(h))
∣∣B ] (60)

Lemma 3.7. Let L(λ, θ) = R-1(θ
∣∣M) + λ · (R-1(θ

∣∣B)− τ0) be the Langrangian of the

task in Prop. 3.6. Then following statements hold true:

• The solutions of the task in Prop. 3.6 are also solutions of the task below with

corresponding values of λ:

max
λ≥0

min
θ
L(λ, θ)

• The derivative of L(λ, θ) with respect to λ is:

∇λL(λ, θ) = R-1(θ
∣∣B)− τ0
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• The derivative of L(λ, θ) with respect to θ is colinear with the following vector:

∇θL(λ, θ) ∝ p(M) · ∇θR-1(θ
∣∣M) + p(B) · ∇θR-1(θ

∣∣B)

Proof. Using the Langrange multiplicators method, the Langrangian of the detector’s

optimisation problem (Prop. 3.6) becomes:

L(λ, θ) = R-1(θ
∣∣M) + λ · (R-1(θ

∣∣B)− τ0) (61)

The solutions of the problem in Prop. 3.6 are also the solutions of the following

problem:

max
λ≥0

min
θ
L(λ, θ) (62)

The gradient of L(λ, θ) with respect to λ is straight-forward:

∇λL(λ, θ) = R-1(θ
∣∣B)− τ0 (63)

However, notice that in terms of θ, the gradient unveils an interesting fact – that

is, by taking the partial derivatives we assume that λ is fixed. Therefore, we essentially

solve a minimisation problem with λ being a constant:

min
θ
R-1(θ

∣∣M) + λ · (R-1(θ
∣∣B)− τ0) (64)

Since λ and τ0 are constants, we can rearrange the problem (64) to the following

form which is equivalent in terms of the optimal solution.

min
θ
p(M) ·R-1(θ

∣∣M) + p(B) ·R-1(θ
∣∣B) (65)

We dropped the constant term and defined p(B) = λ
1+λ and p(M) = 1

1+λ . Now, we

take gradient of the criterion in (65) and arrive at:

∇θL(λ, θ) ∝ p(M) · ∇θR-1(θ
∣∣M) + p(B) · ∇θR-1(θ

∣∣B) (66)

Due to the rearrangement, the scale of ∇θL(λ, θ) differs from the criterion gradient.

However, the vectors’ directions are alike.

3.4.1 Monte-Carlo Estimates of Gradient

The gradient of the risk attained on benign activity ∇θR-1(θ
∣∣B) is the expectation of

gradient of the posteriori probability Dθ(M
∣∣x).

∇θR-1(θ
∣∣B) = E

h

[
∇θDθ(M

∣∣Φ(h))
∣∣B ] (67)
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And the gradient of the risk attained on malicious activity ∇θR-1(θ
∣∣M) is the

expectation of the gradient of Dθ(B
∣∣π(g,Dθ)).

∇θR-1(θ
∣∣M) = E

g

[
∇θDθ(B

∣∣Φ(π(g,Dθ)))
∣∣M ] (68)

Notice that equations (67) and (68) contain expectations over spaces H and G.

Since H and G are generally discrete and infinite, we estimate the expectations with a

Monte-Carlo method. The approach of estimating gradient with a Monte-Carlo method

is inspired by Amin et al. [12] who estimate policy gradient in similar manners.

This means we draw m random samples {hi} from the distribution p(h
∣∣B) and

m random samples {gi} from the distribution p(g). Once we have m independent

realisations of an activity history and a primary goal, we compute averages of terms in

corresponding expectations which gives us an unbiased estimate of the expectations.

Averaging over {hi} gives the estimate of ∇λL(λ, θ).

∇λL(λ, θ) ≈ 1

m

m∑
i=1

Dθ(M
∣∣Φ(hi))− τ0 (69)

To get ∇θL(λ, θ) estimates, we define γB and γM as the estimates of the gradient

of the risk attained on benign activity, and malicious activity respectively.

γB =
1

m

m∑
i=1

∇θDθ(M
∣∣Φ(hi)) (70)

γM =
1

m

m∑
i=1

∇θDθ(M
∣∣Φ(π(gi, Dθ))) (71)

Having the gradient estimates γM and γB, the gradient of L(λ, θ) becomes:

∇θL(λ, θ) ∼ p(M) · γM + p(B) · γB (72)

Note the convenient property: the scale of ∇θL(λ, θ) is independent on λ which

instead only trims the convex combination of estimates γM and γB. This significantly

helps the learning algorithm’s performance.

3.4.2 Learning Algorithm

To find a local minimum of the Langrangian L(λ, θ) we perform gradient descent for

λ and, conversely, gradient ascent for θ. This is done iteratively in the scheme of the

Exploitability Descent algorithm in [13].

In each iteration of their algorithm, Lockhart et al. [13] generate a best response of

the adversary and then update the player’s policy according to the best response. In

our algorithm, we first sample the realisations {hi} and {gi}. Then, using the algorithm

π, we compute the obfuscated activity histories {hobfi }. This step corresponds to finding
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the optimal best-response function ψ∗ and applying it to each primary goal gi. Finally,

we update λ and θ according to the aforementioned equations.

Algorithm 1: Detector’s Learning Algorithm

Input: αλ, αθ, Dθ, π

1 Initialise θ(0);

2 Initialise λ(0);

3 for t = 1, 2, . . . T do

4 draw m samples {hi} from p(h
∣∣B);

5 draw m samples {gi} from p(g);

6 compute {hobfi } from {gi} with π(g,Dθ(t−1));

7 λ(t) ← λ(t−1) + αλ
m

∑m
i=1Dθ(M

∣∣Φ(hi))− τ0;

8 compute γB from {hi};
9 compute γM from {hobfi };

10 p(B) = λ(t−1)

1+λ(t−1) ;

11 p(M) = 1
1+λ(t−1) ;

12 θ(t) ← θ(t−1) − αθ(p(M) · γM + p(B) · γB);

13 end

14 return Dθ

As mentioned, π in practice does not converge to the optimal best-case obfuscated

activity history hobf but may get stuck in a local minimum. In light of Alg. 1, this may

not be a problem. As long as π is relatively stable and outputs reasonable activity his-

tories, it can be considered as a player with non-optimal, yet consistent strategy which

the detector learns to defend against. The better the approximation and convergence

properties of π are, the more adequate the learning process of the detector becomes.

In contrast to benign activity, the malicious estimate γM in (71) encounters two

problems. First, the distribution p(g) is unknown and, second, ∇θDθ(M
∣∣Φ(π(gi, Dθ))

takes the gradient of a term that involves an algorithm.

The absence of p(g) is critical. Nonetheless, it can be faithfully crafted having the

knowledge of a particular domain. For example, in this work, we propose a set of

reasonable primary goals and uniformly draw from them.

Taking the gradient of Dθ(M
∣∣Φ(π(gi, Dθ)) with respect to θ is problematic because

π is also dependent on θ. In [13], they simply ignore this dependence and consider only

Dθ is a function of θ. Even though we theoretically and empirically worked with a novel

way of differentiating the output of the detector using the implicit function theorem,

our method suffered from convergence issues and it yet requires further research. In

experiments, therefore, we adopt the approach from [13] and consider the output of π

is not differentiable.
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3.4.3 Information Available to Opponents

We assume the game is played in a white box setting from the attacker’s point of view

whereas the detector has now information about the attack algorithm π. That means

the attacker has full knowledge of the detector’s structure and parameters and it has

access to gradients of the detector and the detector has only access to the final obfus-

cated activities and has no knowledge of the way the malicious samples are identified.

For instance, if a gradient-based attacker is used, a detector, with the full knowledge

of the attacker’s algorithm, may purposely adjust gradient in areas where the attacker

performs first steps of gradient descent and, in result, learn to defend attacks from such

an attacker type. However, this is essentially a way of overfitting and our goal is to

attain a detector that solves the detector’s optimisation task in which the opponent is

rational and able to obfuscate its primary goals optimally (in terms of a Stackelberg

Game).

To conclude, we deal with a detection task in network security in which we aim to

robustly detect malicious activity without limiting benign activity. An optimal detector

for this problem is a stochastic binary classifier that can be approximated by solving

the optimisation task in Prop. 3.6. To do so, we propose an algorithm 1 which in T

iterations gives an approximation of an optimal detector.

3.5 Anomaly Detection

Note the problem in Prop. 3.6 requires a model of an attacker. We proposed such

a model, however, we needed to come up with several assumptions concerning the

attacker’s motivation.

Let us now show a different approach which is related to unsupervised anomaly

detection. We now assume no information about the malicious class is known. Thus

we aim to identify a detector for which the risk attained on benign activity is exactly

equal to a threshold τ0.

Definition 3.8 (Anomaly Detection). Let the optimal anomaly detector be a distri-

bution Dθ(d|x), solely parametrised by a vector θ, if it is a solution to the following

problem:

find θ

such that E
h

[
Dθ(M

∣∣Φ(h))
∣∣B ] = τ0

This formulation of the original problem is usually beneficial in that it requires

fewer amounts of theoretical assumptions and the implementation is more straight-

forward. However, the lack of assumptions on the attacker’s motivations causes there

is no guarantee on the final shape of the detector. Performance of a particular anomaly

detector instance is a term of sole empirical tests. We examine performance of a k

nearest neighbours anomaly detector later in Experiments.
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4 Game Definition

In the previous section, we proposed a malicious activity detection problem can be

modelled as a game of two players: a detector and an adversary. The goal of the

detector is to identify the best activity classifier, while the adversary seeks to optimally

modify activity of malicious users in such a way they get misclassified by the classifier.

Below, we show such formulation can solve a real-world problem. We take a URL

reputation service as a running example and formalise it and propose an algorithm that

approximates the optimal solution.

In this work, we consider a network security company that runs a reputation service

which returns rating of a queried URL. For example, if we query the service’s API

with www.google.com, the URL is rated with high score whereas the malicious URL

www.malicious-url.com is rated poorly. This type of a service is usually deployed by

network security companies to provide their security software with access to most up-

to-date database of URL ratings.

The typical usage scenario is coined as follows. A client running on an end-user’s

device encounters the user is about to enter a website. To evaluate the danger level of

the website, the client queries the API of the reputation service with the website URL.

Accordingly, the client may show a warning message notifying the user of expected

danger or carry out an appropriate action.

Usually, URL rating systems aim to identify various URL danger types. Here, we

focus on one particular type of malicious misuse: malware producers that asses a set of

URLs which are used as communication entry-points for deployed malware units. With

one of these URLs, a unit of deployed malware is able to receive commands and adjust

its actions. However, to maintain consistency and availability of its malware units, the

malware producer must regularly check whether any of its URLs has been exposed –

by querying the publicly available URL rating system.

We assume users access the service’s API identified by a license and query it with

HTTP requests. For the sake of simplicity, each request contains one URL whose

reputation score is queried. The key element of an activity history, therefore, is the set

of URLs the user has queried the service with. In particular, we record user’s activity

in a one-day time window. This means an activity history is a discrete object which

contains different number of URLs for each user and captures a 24-hour activity record.

To conclude, the task is as follows: the computer security company desires to dis-

tinguish malicious users of the URL rating service from benign ones based on the URLs

each user queries the service with.

4.1 Formal Definition

In this section, we formally define the running example of this work which is an attack

to a reputation system.

The service is queried with a URL u ∈ U where U is a set of all URLs. The query
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is a typical HTTP request with its attributes and the URL is the subject of the query.

The service securely assigns each query to a user based on a license the user uses. Thus,

we define an activity history h ∈ H as a collection of queries of the user. For example,

if a user sends a sequence of queries for which we record a queried URL, an arrival

timestamp, a source IP or possibly other information, this is recorded and integrally

stored in a corresponding user’s activity history h.

(u1, t1, IP1, . . . ), (u2, t2, IP2, . . . ), . . . , (uk, tk, IPk, . . . ) −→ h (73)

Recall that a user’s activity history h represents the ground object based on which

the detector classifies users. Note that the inner structure of h is discrete. This is

problematic for attackers as there is no direct way of computing gradients with respect

to h or its elements.

In the previous section, we defined a malicious user posses a primary goal that

thoroughly defines its individual instance. In this example, a single malicious user is

defined by a private set of primary URLs Upr ⊂ U. The primary url set contains URLs

which the malicious user necessarily employs to achieve its primary goal – that is to

obtain the current reputation rating for each URL in Upr. In consequence, the primary

goal g ∈ G is defined entirely by the primary URLs.

g = Upr (74)

Given its primary URLs, a malicious user queries the service with URLs U that may

next to its primary URLs also contain legitimate queries which it uses to obfuscate its

activity.

Upr ⊆ U (75)

Recall we assumed the attacker is a rational player thus the particular content of

U changes depending on the classifier. If there was no classifier and, therefore, the

attacker was not motivated to adjust its behaviour, it would presumably query the

service with U resembling primary URLs and perhaps containing just a little overhead,

ie. U ∼= Upr. No detector also means there is no need to strategies with the values of

other HTTP request properties.

Nonetheless, once there actually is a classifier deployed, implying a cost for dis-

closure, the attacker rationally queries the service with additional legitimate URLs to

obfuscate its primary goal. There are essentially to types of primary URLs Upr ob-

fuscation: adding legitimate queries and adjusting properties of each request. Note

that the attacker is required to include all u ∈ Upr which simplifies the problem. The

allowed obfuscation methods limit the activity history derivable from a particular Upr.

That is, each primary URLs set Upr induces a set of histories S(Upr) ⊂ H that contains
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histories derivable from Upr by obfuscation.

S(Upr) = {h ∈ H
∣∣Upr ⊆ urls in h} (76)

We capture this with the obfuscation function ψ : G 7→ H which a malicious user

employs to transform its original primary goal g to an obfuscated activity history h.

Since a primary goal g is solely defined by a primary URLs set Upr, we can redefine

the obfuscation function for this use case to: ψ : 2U 7→ H. The obfuscation is naturally

bounded by the aforementioned types, thus:

ψ(g) = ψ(Upr) ∈ S(Upr) (77)

4.2 Features

The key component of the detector is a feature map Φ : H 7→ X where X ⊂ RN

because the activity history space H is generally a discrete non-numerical set and the

detector D(d
∣∣x) requires numerical inputs. In our running example, H is a space of

all possible HTTP request sequences that query a URL reputation system. Therefore,

we need to construct a feature map Φ that ideally reassembles numerical attributes

which are helpful in distinguishing malicious samples from benign ones. At the same

time, however, we aim to omit spurious features that only provide false or correlated

evidence. In an adversarial setting, these are for example features which the attacker’s

loss function does not depend on. In extreme case, the attacker can arbitrarily adjust

those features so that its activity is not detected and it causes zero additional costs.

The feature map used in this work comprises a histogram and a density of URL

scores, total count of queries and a request time distribution. The first is certainly a

good-quality feature, the second may become a partially spurious feature and the last

is absolutely arbitrary to the attacker’s model we proposed.

In URL scores histogram, we sort URLs in a given activity to bins according to

their scores. Features represent observed frequencies in each bin. URL scores density

is a normed frequency histogram, i.e. we take frequency histogram and normalise it so

that the values sum up to one. Total count simply represents the number of obfuscating

requests (i.e. without requests related to a primary goal). A request time distribution

is again a normed frequency histogram of query times within a day in which requests

were sent.

Intuitively, this feature map points to a straight-forward attack method: add legit-

imate URLs until obfuscation is achieved. We call this method a good queries attack

and use it as a baseline attack (more details in Sec. 4.4).

The good queries attack however cannot properly distribute requests across time

nor it can mix in URLs with different score values to mimic benign users activity.

Therefore, we use a gradient attack that generates obfuscation activity based on a
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criterion gradient. This method is certainly more complex and requires interpolating

the discrete history space H. More details in Sec. 4.5.

4.3 Attacker

In context of the reputation service presented in the previous sections, an attacker

instance is a malicious actor that posses a set of primary URLs Upr and aims to query

the service to find out the reputation of each URL from Upr.

Relating to the definition of the player attacker in Sec. 3.1.4, the attacker’s goal

is to identify an obfuscation function ψ : 2U 7→ H. However, with an assumption on

a particular form of the attacker’s loss, the attacker’s task decomposes and instead

of identifying ψ, the optimal goal obfuscation is a solution of the optimisation prob-

lem in Prop. 3.5. We further defined an obfuscation algorithm π which outputs an

approximation of an optimal adversarial activity history.

That said, to reflect realistic attackers, we extend the attacker’s operation space by

a not-to-attack option. Such an option is needed because the solution to the problem in

Prop. 3.5 gives an optimal activity history h∗ even if the actual cost of carrying out this

activity exceeds the cost of no activity by far. Taking this notion into account, we allow

the attacker to give up on its primary goal and carry out no activity. This activity is

denoted by a token No-Activity . Accordingly, the codomain of an obfuscation function

ψ, the attacker’s loss and the decomposition of the optimisation problem adjust to this

extension.

In effect, this means that given a primary URL set Upr, the attacker solves the

optimisation problem in Prop. 3.5 and checks whether the value of the solution is lower

than the detection cost L0. If it is lower, it carries out the optimal activity history. If

the value of the optimum is larger than L0 does not generate any activity (No-Activity

).

4.3.1 Attacker’s Private Loss

The attacker’s loss (as in Prop. 3.5) has two components: a public term and a private

term. The public term is a single value L0 that is paid if the attacker is detected. The

private term Ω+1(g, h) is undefined and relates to the specifics of the particular problem

domain. Relating to the URL reputation system, we propose a private loss Ω+1(Upr, U)

which reflects only the number of queries the attacker produces to obfuscate its primary

goal g, i.e. the attacker pays an amount Lu for each extra legitimate URL it uses as a

disguise.

Ω+1(Upr, U) = Lu · (|U | − |Upr|) (78)

The particular value of Lu is again domain- and case-dependent. To find a rea-

sonable value, we use a following reasoning: an activity history h that is labelled as

0% malicious (i.e. Dθ(M
∣∣Φ(h)) = 0) costs exactly L0 when it contains L0

Lu
additional

36



Adversarial Machine Learning in Network Security

obfuscation URLs. Below, in Sec. 4.6.2, we propose primary goals for this running

example. Those primary goals contain from 1 to 40 URLs. We propose to limit the

attacker to produce at most 2,000 additional URLs to construct an obfuscation activity

that obfuscates a primary goal of at most 40 URLs. This gives a relation between Lu
and L0.

Lu =
L0

2000
(79)

4.4 Good Queries Attack

In Def. 3.7 we proposed that an approximative approach can be used to obfuscate

primary goals. We take inspiration in Lowd et al. [9] and propose a base line algorithm

that does not give an optimal solution but may carry out a successful attack. This

attack is based on the assumptions that legitimate URLs very well obfuscate primary

URLs Upr. This means, we keep adding legitimate URLs to the resulting activity

history as long as it decreases the attacker’s optimisation criterion. The final activity

history consists of primary URLs Upr and the appropriate number of URLs from V .

The remaining request parameters are set randomly.

Algorithm 2: Good Queries Attack

Input: Dθ(M
∣∣x), Upr ⊂ U, legitimate URLs V ⊂ U

1 U ← Upr;

2 while Dθ(M
∣∣Φ(U)) decreases do

3 arbitrarily select u ∈ V ;

4 U ← U ∪ {u};
5 end

6 return CreateActivityHistory(U)

4.5 Gradient Attack

In this section, we propose the gradient attack algorithm π (in accordance to an attack

algorithm in Def. 3.7) that approximately obfuscates Upr in T iterations by descending

the criterion L0 ·Dθ(M
∣∣Φ(h)) + Ω+1(Upr, h) along its gradient (as given in Prop. 3.5).

Notice the game of a detector Dθ and an attacker operates in three layers of spaces:

internally the detector infers its decisions in a space X ⊂ RN but practically it does

so utilising a feature map Φ with a discrete space H on its input. And thirdly, the

attacker’s algorithm π obfuscates primary goals from a discrete space G. The spaces X ,

H and G (or in our running example RN , requests space and URL space U respectively)

are entirely distinct.

In the gradient attack, we want to take gradient of Dθ(M|x) with respect to inputs

and use it to optimally obfuscate the primary URLs Upr. To do so, we introduce a space

K ⊂ RL that is an attack parameter space and a mapping ϕ : 2U × K 7→ RN that,
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using primary URLs Upr ⊂ U and an attack parameterisation k ∈ K, composes a feature

vector x ∈ RN such that the intermediate corresponding activity history h meets the

constraints imposed by the set of derivable histories S(Upr). This is specifically useful

in case of the attacker’s optimisation criterion. Because if we substitute a feature map

Φ for ϕ, we arrive this way at an optimisation task with a search space now being

K ⊂ RL. Note that a particular form of ϕ is dependent on Φ.

Proposition 4.1. Let V ⊂ U be a set of URLs and let ϕ : 2U × K 7→ RN be an

attack parametrisation function that is differentiable in k = [kA, kB] ∈ K ⊂ RL. The

attacker’s separated optimisation task becomes:

minimise
k

L0 ·D(M
∣∣ϕ(Upr, k)) + Ω+1(Upr, k)

subject to
∑
j

kBj = 1

kAi ∈ N

The introduction of ϕ is inspired by Athalye et al. [26] who show that a non-

differentiable layer in a neural net can be interpolated. They substitute such a layer

for a differentiable one with similar properties and successfully compute the gradient.

4.5.1 Attack Parametrisation

Given a particular feature map Φ, it is critical to find K and ϕ that are ideally able

to construct any x ∈ X . This is understandably not always possible. With the feature

map presented above, we therefore take the following to identify K and ϕ.

We construct a rich enough set V ⊂ U which contains URLs. We associate each

ui ∈ V with a variable kAi ∈ N which denotes that the URL ui shall be used kAi times

in the activity history that obfuscates the primary URLs. This creates a mixture of

ULRs that adjusts the score histogram and the total count of requests in the feature

map.

In terms of the request time entropy in the feature map, we assume it is computed

over bins representing a time interval. Thus, we associate each bin j with a variable

kBj ∈ [0, 1] that reflects a relative request mass in this bin. Naturally, the variables kBj
are normalised:

∑
j k

B
j = 1. With such attack parametrisation we are able to compute

gradient of the criterion with respect to k and construct activity histories in S(Upr) if

we have a rich enough set V .

The attack parametrisation function then arranges requests according to

k = [kA, kB] drawing URLs from V and then computes a feature vector x as if it

was done with a feature map Φ. Notice that we constructed ϕV to account for the

derivable histories set S(Upr) (as defined in Eq. (76)).

Elements of V Ideally, we construct the set V so that it contains URLs that are

independent in terms of their influence on a feature map. As mentioned, the feature
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map Φ we use in this work constructs features based on a reputation scores histogram,

a request count and request time entropy. The selection of V influences only the

reputation scores histogram. Therefore, we construct V so that it contains URLs which

each populates one bin of the reputation scores histogram. Such V creates a rich-enough

mixture using which we are able to construct any activity history in S(Upr).

4.5.2 Gradient Attack Algorithm

Prop. 4.1 gives a non-linear optimisation with a differentiable criterion. However, the

search space is constrained by
∑

j k
B
j = 1 and kAi ∈ N. To solve this problem we use

the projected gradient descent (PGD) [17] combined with the fast gradient sign method

(FGSM) [2]. The attack algorithm π of the gradient attack is shown below (Alg. 3).

Algorithm 3: Gradient Attack Algorithm

Input: Dθ(M
∣∣x), Upr ⊂ U, V ⊂ U

1 c(k) = L0 ·Dθ(M
∣∣ϕV (Upr, k)) + Ω+1(Upr, k);

2 k(0) ← InitK();

3 for t = 1, 2, . . . T do

4 kA,(t) ← ProjA(∇kAc(k));

5 kB,(t) ← ProjB(∇kBc(k), kA,(t));

6 end

7 return MakeActivityHistory(V, k(T ))

Routine InitK() Initialisation of k(0) is critical because the gradient attack descents

along a criterion’s gradient and it turns out that setting kA,(0) = 0, i.e. starting with

solely Upr does not converge very well. Thus we initialise k
A,(0)
i uniformly randomly

from {0, 1, . . . , 2000} and set kB,(0) = 1
number of bins so that it starts with maximal

entropy in request time distribution.

Routine ProjA(z) Input of this routine z is a gradient vetoer with respect to kA.

We take a sign of the gradient as in FGSM but we do not scale the gradient anyhow.

We update kA accordingly and then crop values below zero. This projection ensures

kAi ∈ N.

kAi ← max{0, sign(zi)} (80)

Routine ProjB(z, kA) We maintain the scale of the input gradient z (i.e. the learning

rate is set to 1.0), update kB standardly, crop negative values and normalise with Z to

sum up to one.

kBi ←
max{0, kBi + zi}

Z
(81)
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Notice, we know the current number of requests from kA:

|U | = |Upr|+
∑
i

kAi (82)

As we defined it, kBi corresponds to relative frequency of requests sent in a time

interval i. Since kB is arbitrary distribution after the update, we adjust it to reflect

the number of requests |U |. First, a time bin i gets floor(kBi · |U |) requests assigned.

Flooring causes some requests were not assigned to a bin, thus we distribute the remain-

ing requests randomly across bins – δi ∈ {0, 1} denotes whether a bin i gets assigned a

remaining request. Finally, we use these assignments to compute the relative frequency

kBi .

kBi ←
floor(kBi · |U |) + δi

|U |
(83)

Routine MakeActivityHistory(k) First, we build the multi-set U by concatenating

Upr and V according to kA.

U ← Upr ∪ {v1, v1, . . .︸ ︷︷ ︸
kA1 times

, v2, v2, . . .︸ ︷︷ ︸
kA2 times

, . . . , v|V |, v|V |, . . .︸ ︷︷ ︸
kA|V | times

} (84)

Using the same procedure as in ProjB(z, kA) we assign URLs from U to time bins.

Finally, we create requests that each contains a URL u ∈ U and is sent at the time

associated with the bin that u belongs to. We return the activity history h which

comprises these requests.

4.5.3 Imperfection of Gradient Attack

Descending along gradient is tricky, especially when projection is involved, as the de-

scent may end up in a local minimum. The gradient attack algorithm solves the task of

finding an optimal activity history h ∈ Ψ∗g and thus yielding h which is a local optimum

is problematic. However, as we adopted a rather agent-driven view of the game (as in

Prop. 3.6) we think of the gradient attack algorithm πT as a feasible agent that does

its best to solve the task. In spite of these imperfections, we then train the detector to

play against such approximative adversaries.

In the following section we propose an algorithm that solves the detector’s optimi-

sation problem.

4.6 Detector

In this section, we introduce two types of a detector. The first type is an anomaly

detector based on k nearest neighbours which solves the task in Def. 3.8. The second
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type is a stochastic detector modelled with a neural network that solves the task in

Prop. 3.6.

The output of both detectors is purposely stochastic. That is, they model the

posteriori distribution p(d
∣∣x) where d ∈ C is a decision and x ∈ X is a feature vector

with a model Dθ(d
∣∣x). At test time, a realisation of a final label d is drawn from

Dθ(d
∣∣x). At train time, the values of probability Dθ(d

∣∣x) are used in the training

process.

4.6.1 Anomaly Detector

The task of detecting malicious behaviour can also be formulated as an anomaly de-

tection problem (as in Def. 3.8). We collect examples of benign behaviour and then

construct an anomaly detector whose false positive rate equals τ0. This approach omits

entirely the attacker’s model and is based on an anomaly measure dk(x). We assume

more anomalous, i.e. malicious, samples are prone to higher values of dk(x).

There are various types of anomaly detectors from which we pick one: k nearest

neighbours (k-NNs). We use average euclidian distance to k nearest samples Pk(x) ⊂
TB in the training set TB as an anomaly measure dk(x).

dk(x) =
1

k

∑
x′∈Pk(x)

||x− x′||2 (85)

To comply with a stochastic detector definition, we use the anomaly measure dk(x)

to derive the posteriori probability Dα(B
∣∣x) as follows:

Dα(B
∣∣x) = exp(−dk(x)2

α2
) (86)

The parameter α ∈ R adjusts sensitivity to x and is equivalent in terms of the

false positive rate to a threshold on the anomaly measure that is usually used with

k-NNs. Thus, redefining k-NNs to be a stochastic anomaly detector is redundant in

practice, however, we do it anyway as it is convenient for comparison purposes with a

true stochastic detector.

The constraint on the false positive rate in Def. 3.8 suggests that our task is to

find α for which the false positive rate equals τ0. We use fast gradient sign method

(FGSM) to find the optimal α by minimising the following problem on training samples

Tm = {Φ(hi)}mi = 1:

min
α

(
1

m

∑
xi∈Tm

Dα(M
∣∣xi)− τ0)2 (87)

The gradient attack in Alg. 1 requires the detector Dα(B
∣∣x) to be differentiable

in x. Dα(B
∣∣x) is differentiable up to dk(x). dk(x) is not continuous in those x for
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which Pk(x) changes its elements. We estimate the gradient of dk(x) by simply taking

derivative while keeping the set of k nearest neighbours Pk(x) fixed.

∇xdk(x) =
1

k

∑
x′∈Pk(x)

x− x′

||x− x′||2
(88)

In our experiments, we use k = 5 as this is empirically the best value.

4.6.2 Adversarial Detector

We model an adversarial stochastic detector Dθ with a neural network which takes a

feature vector x ∈ X on its input and infers a probability distribution Dθ(d|x). In

test time, an actual decision d is drawn from the distribution Dθ(d|x). The detector’s

parameters θ correspond to the weights of the neural network.

We empirically arrived at a relatively shallow network consisting of five fully con-

nected layers. Since the number of inputs N is relatively low (N 20), we assume this

is a good trade-off between network’s complexity and training time. To address the

non-linear nature of features we start with the first two layers being wide with 10 ·N
neurons. Then we narrow the net: the third layer has 5 ·N , the fourth has 5 ·N . Each

layer is activated with a SeLU unit. The final layer has 1 output which is transformed

with a logistic function (Eq. (89)) to be bounded by [0, 1].

f(z) =
1

1 + exp(−z)
(89)

The output of the final layer’s activation (i.e. logistic function) is intended to be

an estimate of the posteriori probability p(M
∣∣x).

SeLU Activations and Regularisation Instead of classical ReLU, we use the

SeLU (Eq. (11)) activation because of better properties of its gradient and its self-

normalisation effect. During the process of learning we take gradient of Dθ(d|x) with

respect to x to construct obfuscated activity histories. We found that near-optimal

Dθ tends to adjust its weights so that initial steps of the adversarial optimisation are

located in areas that are cropped but ReLU (i.e. the activations’ inputs tend to be

negative).

This is expected behaviour, however, as argued in [26], from the attacker’s point of

view this is easily bypass-able in a white-box attack. For instance, the attacker replaces

all ReLUs by SeLUs. This does not change properties of the network dramatically but

gives the attacker access to the gradient.

For that reason (and following the final advice of [26]) we assume the attacker

would gain access to gradients anyway using this trick, thus we train the net to learn

to defend even such attacks and use SeLUs already. The second reason to use a SeLU

as activation comes from the original paper [16] in which the SeLU was introduced.

The authors prove it has weights self-normalisation properties, that is, a SeLU is able
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to replace batch-norm [33] in a fully-connected feed forward neural nets and allows to

use deep architectures with many layers.

Training Sets TB and TM To identify the best parameters θ we use the detector’s

learning algorithm (Alg. 1). This algorithm estimates gradients from realisations of

primary goals and benign activity histories. We draw activity histories {hi} from a

training set TB we collected to capture the distribution of benign activity histories. In

case of the primary goals that shall be drawn from p(g), we take a different approach

because the distribution p(g) = p(Upr) is unknown. The key attributes of the feature

map Φ are based on the reputation scores of the queried URLs. We construct primary

URLs sets Upr to reflect various ratios of already known bad-score URLs and not yet

identified ones. This way we get a training set of primary urls TM:

TM = {
{known malicious URL},
{uknown URL},
{known malicious URL, uknown URL},
{known malicious URL, known malicious URL, uknown URL},
{known malicious URL, uknown URL, uknown URL},
. . .

}

Implementation of Stochastic Detector We use pytorch [34] to implement the

stochastic detector. However, due the specific requirements of the detector’s learning

algorithm (Alg 1) such as the inner attack optimisation or the outer λ double opti-

misation, we needed to implement the training process from scratch as the existing

components of the pytorch framework does not fit the need. To compute gradients, we

used the framework’s autograd library, but gradient descent and the attack optimisation

algorithm needed our custom implementation.

Handling No-Activity in Detector TM = {Upr
i } makes up a faithful mixture of

reasonable primary URLs sets. In our experiments, we use a set Upr
i that contains at

most 20 uknown URLs and 20 known malicious URLs. Since no prior preference over

individual Upr
i is assumed, we draw Upr

i uniformly from TM.

We allowed the attacker not to carry out any activity if obfuscation is too costly for

it. This is captured by the No-Activity token which the attacker’s algorithm π produces

instead of an activity history h. Despite the detector’s risk is derived assuming all

primary goals are translated to some activity history, the introduction of No-Activity
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does not cause principal problems as we can simply reformulate the equation for the

non-stationary probability ṗ(h
∣∣M):

ṗ(h
∣∣M) =

∑
Upr:π(Upr,Dθ)=h

p′(Upr) (90)

where p′(Upr) is the probability of observing the primary URL set for which π does

not yield No-Activity (i.e. p′(Upr) is p(Upr) normalised by the sum of p(Upr) that are not

No-Activity ). Consequently, during the Monte-Carlo estimation of the gradient, the

estimate γM is computed from a set of obfuscated activity histories {hobfi }. This set is

generated by π from those Upr
i ∈ TM that get obfuscated, i.e π(Upr

i , Dθ) 6= No-Activity:

γM =
1

|{hobfi }|

|{hobfi }|∑
j=1

∇θDθ(M
∣∣Φ(hobfj )) (91)

Similarity to Cross Entropy Using the Jensen’s inequality, we can transform the

criterion of θ minimisation (as in Eq. (65)) to a cross entropy loss. In Eq. (65) we

essentially minimise Eh,c 1−Dθ(c
∣∣Φ(h)). If we remove constant terms and use Jensen’s

inequality, we arrive at a problem with equivalent solutions:

min
θ
− E
h,c

log(Dθ(c
∣∣Φ(h))) (92)

If we estimate the expectation with m samples, the criterion becomes the cross

entropy loss. This suggests that we practically solve the same task that is solved when

training state-of-the-art neural classifiers. However, the key differences are: we use

the algorithm π to create samples of a malicious class M and instead of the classical

mini-batch gradient descent [35] we use Algorithm 1.

On Complexity of Stochastic Detector The similarity to cross entropy imposes

important implications. Since we practically use the same loss function but model a

mixed strategy σ instead of a single classifier f , the complexity of the detector Dθ

needs to be much higher than the complexity of a classifier f . This also means, we

shall expect training takes more time.
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5 Experiments

In previous sections, we proposed a theoretical approach to solve adversarial detection

problems. Then we introduced an industrial problem which we formally modelled in

accordance to the proposed theory. The outcome is an adversarial detector which when

properly trained is able to detect unseen malicious activity. To support the claim we

conduct experiments on real-world data (provided by Trend Micro Ltd.) and compare

the proposed adversarial detector with an anomaly detector, both being attacked by the

good queries attack and the gradient attack. The experiments evaluate: (1) capability

of a detector to meet the false positive rate constraint, (2) capability of a detector

to detect attacks (measured by the successful attacks rate), (3) performance of the

proposed attack algorithms. Further, we analyse the results and identify that: (1) the

dataset of benign data contains a few highly suspicious samples, (2) the adversarial

detector is highly robust to primary goals with more than 10 low-scored URLs and (3)

even more powerful attackers than those at train time are detected at relatively large

rates.

5.1 Dataset

The problem of detecting malicious activity in requests to a URL reputation service

was proposed by the company Trend Micro Ltd. as a real world problem that is an

instance of adversarial machine learning. Thus, we use the company’s data to evaluate

the proposed algorithms in this work. The dataset we were, gratefully, given contains

information that is, nonetheless, private and cannot be made public. Therefore, we do

not put the dataset online. However, we are able to include general information and

statistics to preview the properties of the dataset.

The dataset consists of genuine real-world activity recorded at such a URL repu-

tation service. Users are uniquely identifiable, thus we are able to make up activity

histories of each user. The users are located in the Czech Republic at the time of

recording based on the IP address location.

First, we clean data by removing requests that are broken or their information is

incomplete. These count: a queried URL is not a valid URL or it is missing. Then

we remove requests with a URL that is not a genuine accessible URL: that are, for

instance, URLs containing .arpa or .in addr. Then the activity is sorted to days

and each queried URL is given a genuine reputation score returned by the reputation

service. Then we collect these per-one-day per-user activity histories and remove those

containing less then 10 queries (i.e. 10 requests per user per day) for we assume an

activity this low is anomalous and including it would poisson the final data set.

The total number of samples after pre-processing is 54, 970 which split into a training

set of 43 thousand samples and a testing set of 11 thousand samples (we use 80-20

ratio). The reputation scores that are returned by the service are processed so that

they correspond to a probability of a particular URL being benign. We are given only
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such values of the score so that the corresponding probability values are either 0.1, 0.5

or 0.9. The dataset contains only few malicious URLs (0.05%). The unrated URLs

count 15.0% and the benign ones 84.95% of the URLs. Any future unknown (i.e. not

included in the dataset) URL is considered unrated.

The distribution of URL use has very long tails. Fig. 2d shows roughly 50% of the

URLs are used only once and 90% are used up to 10 times. On the other hand, the

dataset contains URLs that the service was queried with over 1, 000 times.

An average sample comprises an activity history of 700 requests (per day). However,

this distribution is fat-tailed. Most samples have around 1000 requests, yet there are

samples with over 10, 000 requests and, on the other hand, samples with 10 requests.

The histogram of the distribution is depicted in Fig. 2b.

In Fig. 2a, the request time distribution within a day is shown. Requests are sent

mostly between 8am and 10pm with a peek between 6pm and 9pm. Also, there is a

little drop around noon, suggesting this is a proper lunch time among recorded users.

At night time from midnight until 7am, there is a significant drop in the number of sent

requests. Ideally, to disguise as a benign user, an attacker shall follow this distribution

and adjusts its attack and obfuscation accordingly.

5.2 Setting

To evaluate the training and attack algorithms we use the dataset provided by Trend

Micro Ltd. In terms of attackers, we use the good queries attack algorithm (Sec.

4.4) and the gradient attack algorithm (Sec. 4.5). To compare various approaches to

detection, we use an anomaly detector based on k-NN (Sec. 4.6.1) and an adversarial

detector based on a neural network (Sec. 4.6.2).

Since the detector’s learning algorithm is proposed to learn against an attacking

adversary, it is reasonable to consider the detector based on a neural network shall

be trained against both attacker types. However, theoretically and empirically the

good queries attack is not as advanced as the gradient attack. Thus we only perform

experiments in which the neural net detector is trained vs. the gradient attack. On the

other hand, we evaluate attack performance for both attack types.

False Positive Rate We train the neural net detector against the gradient attack

algorithm and show results for false positive rate threshold values τ0 being 1%, 0.1%

and 0.01% (10−2, 10−3 and 10−4). FPR of 0.01% on this size of a test set (to repeat, it

counts 11 thousand samples) corresponds to 1 sample. This is already reaching limits

of statistical evaluation and results with FPR set to values below 0.1% would ideally

require bigger dataset size to reach greater significance.

Attacker’s Loss The attacker losses are set to correspond to motivations given in

Sec. 4.3.1. That is, we set the cost of being detected L0 to 100 units and the cost

of a request Lu to 0.05 units. The maximum attack cost is set to 99 (motivation is
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(a) (b)

(c) (d)

Figure 2: The histograms show distributions of activity captured in March, 2019 among users

of a URL reputation service, located in the Czech Republic. The dataset is provided by Trend

Micro Ltd. Fig. 2a depicts request day-time distribution, Fig. 2b shows the amount of requests

that is sent in one day activity of a user. Fig. 2c shows the distribution of a URL reputation

score which is associated with a URL query. Finally, Fig. 2d shows the repetitive nature of

such a reputation service.

given in Sec. 4.3.1). We set Lu to 100 and the maximum attack cost to 99 to disallow

the attacker to attack in extreme cases when its criterion closely reaches the no-attack

threshold. This happens especially when the attacker’s instance is in the area with

very high confidence of malicious activity and it becomes rational no to carry out any

obfuscation but to use only primary URLs Upr. These cases are now labelled No-Activity

.

Feature Map As already mentioned in Sec. 4.2, we use four types of features. The

first feature map is a frequency histogram of URL reputation score values contained in

an activity history. The dataset comprises only three distinct values of a score, thus

we use three bins with edges at 0, 0.33, 0.66, 1. The second feature type is URL score

density which is a normed frequency histogram. The third feature is a square root of

a total count of requests per activity history. The distribution of requests counts is

fat-tailed, thus we reduce the influence of large values by taking a square root. We also

tried logarithm but square root seems to perform better. Lastly, we add a normalised
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frequency histogram of request times to relate to time distribution of requests. We use

24 bins that each covers one hour. The full feature map counts 31 features in total.

Data are normalised so that each input has empirical mean equal to 0.0 and variance

equal to 1.0 on training data.

Performance Measures To evaluate the detector’s performance, we use two main

measures: the first is a false positive rate (FPR), the second is successful attacks rate

(SAR). The false positive rate is the rate of misclassification on benign data which shall,

for the optimal detector, equal to the threshold τ0. Any deviation from the value τ0,

negative or positive, is a failure because such a detector either does not meet the FPR

criterion or is too benevolent, suggesting there is a tighter one with better detection

rate.

The successful attack rate is the ratio of undetected attacks and the total number of

attacks. SAR corresponds, in fact, to a false negative rate and is the main criterion of

the detector’s optimisation task (Prop. 3.3). The obfuscation rate (OBR) is a subject

of optimisation during the detector’s learning (i.e. it is the false negatives rate). We

define OBF as the ratio of undetected attacks and attacks performed (that is without

No-Activity ). The lower the successful attack rate and the obfuscation rate, the better

the detector is. We also use other supporting measures: a No-Activity rate (NAR) and

mean successful attack length (MAL). NAR gives a percentage of attacker instances

that did not carry out any activity (and thus did not follow the goal). The mean

successful attack length (MAL) gives an average number of additional URLs that were

used in successful attacks (that is undetected attacks). To evaluate these measures,

we use the as-if-deployed approach—this means realisations of the probability Dθ(d
∣∣x)

are drawn to make the final decision d. This suggests that the measured numbers are

in fact realisations of random variables and thus those statistics are random variables

as well.

5.3 Detector Learning Procedure

Lambda A key difference of the detector’s learning algorithm (Alg. 1) to standard

classification learning schemes is the constraint on FPR which results in the variable

λ as a control variable. Lemma 3.7 proposes it is better to think of λ as a priori

class probability p(M) = 1
1+λ which changes during the training procedure so that the

constraint on FPR is met. We found that p(M) very quickly converges to really low

values (around ∼ 0.95) so that the FPR constraint is met. To give little influence at

least in the begging of learning to malicious data, we start training with p(M) = 0.5

(i.e. λ = 1). Once the FPR constraint is met and FPR ≤ τ0, malicious data start

again to have larger influence on gradient and p(M) increases again.

Learning Rate We use gradient ascent to find λ and gradient descent to find pa-

rameters θ. Since these are performed simultaneously but both correspond to different
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aspects of the problem, we found that their learning rates shall differ which goes along

with suggestions in [32]. We use a learning rate of magnitude 0.01 in case of θ and

a learning rate of 5.0 in case of λ. This speeds up learning procedure especially in

meeting the FPR constraint.

Batch Size In the process of gradient estimation, we generate m samples for each

class to get gradients conditioned on class. We call m the batch size, although its

meaning is different from the standard concept—usually, a batch size refers to the

number of samples drawn in total from a training set during a gradient descent step

but we actually draw m sample for each class (All introduced in Sec. 3.4.1 and Sec.

3.4.2). In terms of the value of the batch size, it turns out that the lower m the greater

the chance all of the drawn malicious instances generate No-Activity which essentially

causes zero gradient attained on a malicious class. On the other hand, our set of primary

goals (primary URLs) TM counts 360 samples which after splitting creates a train set

of 288 primary goals. Since we want to employ the mini-batch gradient descent [35],

m should be lower than the number of primary goals but reasonably large to suppress

noise. To balance the two notions, we use m = 100.

Attacker’s Optimisation The obfuscation algorithm π (Def. 3.7) takes a primary

URL set Upr and generates an obfuscated activity history hobf (or No-Activity ) in T

steps. The gradient attack algorithm (Alg. 3) does so with a mixture of projected

gradient descent (PGD) and fast gradient sign method (FGSM). As introduced in Sec.

4.5.2, we set the initial time distribution of activity kB to be uniform and the initial

number of obfuscation URLs kA randomly to any of {0, 1, . . . , 2000}. Naturally, the

optimal number of steps T balances the quality of a solution and time needed to find

it. We use T = 400 which turns out to be a reasonable balance.

5.4 Results

In this section, we show that the problem of detecting malicious behaviour is better

solved with an adversarial detector which outperforms an anomaly detector. First, we

show performance of the detectors in various settings and analyse their exploitability

against two attack types. Secondly, we analyse the attacks performed against the best

detector and show what kinds of attacks are are very likely to be detected.

5.4.1 Optimal Detector

To address the problem of detecting malicious users of a URL reputation service, we

use two models of a detector: an anomaly detector based on k-NN and an adversarial

stochastic detector based on a neural net. We show that the neural net trained against a

model of an attacker outperforms the anomaly detector. We use three FPR thresholds,
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τ0 ∈ {1%, 0.1%, 0.01%}, and perform attacks with the good queries attack and the

gradient attack.

False Positive Rate Threshold A key requirement of a detector in network security

is that the false positive rate (FPR) is below a threshold τ0 (as argued in Sec. 3.1.1).

To validate our detectors are able to meet this constraint, we fit them on train data

and measure FPR on test data. The adversarial detector is fitted against the gradient

attack. The FPR results are shown in Tab. 2. All training sessions successfully

converge below a desired threshold value. However, the anomaly detector does not

meet the FPR constraint on a test set in case of τ0 = 1% and τ0 = 0.1%, whereas the

adversarial succeeds in all settings.

Note that the training FPR is usually below the desired threshold. Take for instance

the anomaly detector that with τ0 = 1% gives a training FPR 0.85%. This is caused,

we argue, by the distribution of benign data. The distribution contains a relatively

large number of outliers that sparsely located far from the distribution. This causes a

detector with fixed limited complexity (i.e. k in k-NN) is not capable of reaching the

exact value of tau0.

FPR Threshold τ0 1% 0.1% 0.01%

k-NN AdvDet k-NN AdvDet k-NN AdvDet

FPR on Train Data 0.58% 0.96% 0.09% 0.07 % 0.01% 0.01%

FPR on Test Data 1.03% 0.96% 0.11 % 0.08% 0.01 % 0.01%

Table 2: False Positive Rates on Test Data

FPR Thresh. τ0 1% 0.1% 0.01%

k-NN AdvDet k-NN AdvDet k-NN AdvDet

NAR 52% 57% 54% 32% 45% 1 %

OBR 25% 3% 85% 39% 95% 49%

SAR 12% 1 % 39% 27% 52% 48%

Table 3: Gradient Attack Results

FPR Thresh. τ0 1% 0.1% 0.01%

k-NN AdvDet k-NN AdvDet k-NN AdvDet

NAR 88% 94% 54% 4% 0% 0%

OBR 44% 50% 78% 13% 98% 32%

SAR 5% 3% 36% 12% 98% 32%

Table 4: Good Queries Attack Results
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Exploitability by Gradient Attack We measure exploitability with a successful

attack rate (SAR). The adversarial detector gives better performance than the anomaly

detector in terms of SAR. The results of the gradient attack algorithm are shown in Tab.

3 and the trend is shown in Fig. 3a. With the FPR threshold at 1%, successful attack

rate (SAR) is at 12% for the anomaly detector (k-NN) and 4% for the adversarial

detector. But with lower thresholds, the difference narrows. At 0.1%, the anomaly

detector at 39% and the adversarial detector allows SAR at 32%. With FPR threshold

τ0 = 0.01%, the adversarial detector (SAR 48%) outperforms the anomaly detector

(SAR 52%). But both detectors reach almost 50% exploitability. To sum it up, the

adversarial detector outperforms the anomaly detector, especially at 1% threshold.

We assume that the narrowing performance margin is also given by a low number

of benign samples for this low FPR thresholds. As mentioned, for the 0.01% threshold,

the detector achieves the desired constraint by misclassifying at most only 5 benign

samples among the outliers in the train set. We conjecture that with a greater dataset,

the adversarial detector achieves lower SAR values even with τ0 = 0.01%.

(a) Successful Attack Rate (SAR) of Gra-

dient Attack

(b) Successful Attack Rate (SAR) of Good

Query Attack

Figure 3: Successful attack rate (SAR) as a function of the false positive rate (FPR). Note

that, as the FPR threshold is increased, both detectors become more robust. At all FPR levels

and with both attack types, the adversarial detector outperforms the anomaly detector.

Exploitability by Good Queries Attack The good queries attacks algorithm adds

legitimate obfuscating requests to the final activity history as long as the cost of an

attack decreases. In comparison to the gradient attack, it is weaker but more realistic

to capture behaviour of a malicious user that rather intuitively obfuscates its primary

goal. In Tab. 4 we show the results of the good queries attack against anomaly and

adversarial detectors at various levels of FPR. The overall trend is depicted in Fig. 3b.

It is clear that, same as with the gradient attack, the adversarial detector allows fewer

attacks in at all FPR levels.

The difference is best seen at τ0 = 0.1% where the anomaly detector achieves a

successful attack rate (SAR) of 36%, whereas the adversarial detector achieves 12%.
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Note that, with τ0 = 0.01% and the anomaly detector, the good query attack (SAR

98%) performs surprisingly better than the gradient attack (SAR 52%). This is caused

by the large NAR of 45% in the gradient attack while it is 0% with the good query

attack – this means a large portion of attacks was not carried out due to, probably,

too few iterations. However, if we consider the obfuscation rate (OBR) which is the

percentage of successful undetected obfuscations out of actually performed attacks,

both attacks are nearly similar with this detector.

To conclude, both detectors are robust against the good queries attack but the

adversarial detector allows lower attack success rates at all FPR levels.

Suspicious Outliers in Dataset The set of benign activity TB comprises data of

real users of the company Trend Micro Ltd. During the training process of our detector,

some benign samples tended to be classified as malicious with relatively high confidence

(over 90%). A closer inspection revealed these samples truly contain requests with

URLs that are suspicious. In fact, a single user was repeatedly labelled malicious in

two of its sample (i.e. two independent days of activity). For instance, this user queried

the service with a URL of a domain which, when visited, redirects to google.com if no

URI path is given. But once a specific and long URI path is appended to the domain,

it instead redirects several times to various other domains and gives an empty site in

the end. Of course, this is far from identifying this particular user is a true malicious

actor - it very well may have been an infected computer - but it shows that the detector

correctly labels samples that contain suspicious activity and considers them outliers.

5.4.2 Attack Analysis

Primary Goal - No-Attack Dependency As argued, the problem of malicious

activity detection is difficult in that only benign data are available at the time of

training. In this work, we proposed a model of an attacker and, consequently, created

a feasible set of primary goals. The training set of malicious data TM contains primary

URLs sets Upr
i that we crafted purposely to represent various attackers. We generated

Upr
i to comprise URLs with a malicious reputation score and URLs with a yet unrated

reputation score. (All introduced in Sec. 4.6.2)

We trained an adversarial detector and then performed attacks with the gradient

attack algorithm. We found that there is a pattern in what primary goals tend to get

obfuscated and what are turned into No-Activity . The relation is depicted in Fig. 4

where we plot each test set primary goal as a single point parametrised by the contents

of the primary goal (i.e. the primary URL set Upr
i ). Primary goals that are turned to

No-Activity are coloured in red and primary goals that are obfuscated and reassemble

an attack are coloured blue. To outline the pattern, we estimate probability density

for each group: No-Activity and attacks. The figure shows that primary URLs sets

containing more than roughly 10 truly malicious URLs are more likely to become No-

Activity . Whereas primary URLs sets with less than 10 truly malicious URLs are prone
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Figure 4: Primary Goals – No-Activity Dependency. We found that there is an emerging

pattern in the obfuscation ability against the adversarial detector. Some primary goals tend to

be too costly to be obfuscated so the algorithm turns them to No-Activity . This figure shows

the pattern: we draw primary goals (primary URL sets) that are modified to No-Activity in

red and primary goals that are turned into an activity history in blue. The axes correspond

to parameters of the primary goals we generated: the x-axis shows a number of URLs with a

malicious reputation score in a primary goal Upr; the y-axis shows the number of unrated URLs.

The figure depicts individual primary goals as dots and an estimated density distributions with

contours. Clearly, primary goals with more 10 malicious URLs tend to become No-Activity

whereas primary goals with fewer than 10 malicious URLs tend to be conversed to an obfuscated

activity history and a corresponding attack is carried out. All data are from a test set of

primary goals and the results are taken from an attack against the adversarial detector with

FPR = 0.1%.
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(a) Attack with T = 400 and Lu = 0.05 (b) Attack with T = 800 and Lu = 0.05

(c) Attack with T = 800 and Lu = 0.005 (d) Attack with T = 1600 and Lu = 0.0005

Figure 5: The figures plot single activity histories as points in a feature space. All images are

PCA-transformations of the feature space with identical principal components. Black points are

No-Activity , red points are obfuscation activity of individual attacker instances, blue points are

benign activity histories. The contours correspond to the class posteriori probability modelled

with the detector. All pictures show the results of the adversarial detector. Upper left, the

results of the gradient attack with 400 iterations – NAR is 57.33%. Upper right, attack with

800 iterations - NAR is 29.33%. Bottom left, attack with 800 iterations but less expensive per-

request cost, Lu = 0.005. Bottom right, attack with 1600 iterations but extremely inexpensive

per-request cost, Lu = 0.0005. Note that attacks are located in different areas as we change

attacker’s costs. In the extreme case (bottom right), nearly all attacks are located beyond the

detector’s contours.
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Lu Iterations NAR SAR OBR MAL

Train Time Attack 0.05% 400 57% 1% 3% 20

More Iterations 0.05% 800 29% 1% 1% 19

Cheaper Requests 0.005% 800 5% 29% 30% 146

The Cheapest Requests 0.0005% 1, 600 0% 94% 94% 2003

Table 5: Attack Cost Analysis

to become an obfuscated activity history.

This means that the optimal detector is more exploitable by attacker instances that

have fewer truly malicious URLs in their primary goals whereas an attacker instance

with a lot of truly malicious URLs tends to be detected. This implies that, after

deploying this detector, an attacker which has full knowledge of the setting deals with a

fact that employing more than ten malicious URLs a day leads to too costly obfuscation

and it is rational not to attack.

No-Activity Rates The attacks performed in our experiments tend to have large No-

Activity rates (usually NAR is between 50% and 80%). A No-Activity occurs if, given a

primary goal, the attack algorithm fails to create an obfuscation activity history because

carrying out the attack is too costly. However, it seems this happens too often due to

imperfections of the attack algorithm: it for example gets stuck in a local optimum or

convergence takes too many iterations. We argue relatively high NAR is mainly caused

by the number of iterations of the attack algorithm which, despite already being high

(400), is sometimes insufficient for finding a less costly activity history. This can be

seen when we attack a fitted detector with a gradient attack that runs in 800 iterations.

By doubling the number of iterations, NAR drops from 57.33% to 29.33%. Interestingly

enough, these attacks, nonetheless, maintain comparable OBR and SCR, i.e. detector’s

exploitability remains unchanged even though the attacker uses more iterations to craft

the attack. Fig. 5a shows attacks of a 400-iterations attacker and Fig. 5b shows a 800-

iterations attacker. The figures depict a PCA-transformed feature space with test data

of both benign and malicious classes. The red points are final malicious attacks, while

the black points are primary goals turned to No-Activity . The contours show a class

posteriori probability modelled by the detector, but projected to a hyperplane attained

by PCA. Note that the original problem has over 30 dimensions, thus this view skews

distances and causes some relations are misleading. However, the main point can be

illustrated: when attacking with 800 iterations the attacker converts more primary

goals to an activity history than with 400 iterations.

Attack Cost Analysis The attacker’s loss has two constants: a cost for being de-

tected L0 and a cost for sending one request Lu. As presented in Sec 4.3.1, we use

L0 = 100 and Lu = 0.05. To repeat, per-request cost Lu = 0.05 can be interpreted as
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follows: an activity history that is labelled as 0% malicious costs exactly L0 when it

contains 2, 000 additional obfuscation URLs. Or to put it differently, an obfuscation

activity may contain at most 2, 000 additional requests. However, as we pointed out in

the dataset analysis above, the median of the number of requests per activity history is

actually ∼ 1, 000 and the distribution contains well-represented activity histories even

with ∼ 5, 000 requests. Thus by this choice, we limit the attacker to create activity his-

tories with fewer than 2000 requests which, however, we argue is a reasonable amount

for an attacker.

To check whether attacks with lower per-request cost Lu are able to circumvent the

detector, we perform attacks with cheaper costs. In addition: during attack generation,

we use 400 iterations in the attack’s gradient algorithm which in each iteration changes

the number of requests by little (usually the change is 2 or 3 requests). Thus, a

smaller Lu, which implies higher maximal number of requests, necessarily requires

more iteration steps – which is costly and causes significant increase in training time.

From the reasons above, we attack the adversarial detector with the gradient attack

with: 400 iterations and Lu = 0.05 (train time attack), 800 iterations and Lu = 0.05

(more iterations), 800 iterations and Lu = 0.005 (cheaper requests) and 1,600 iterations

and Lu = 0.0005 (the cheapest requests). The attacks’ results can be seen in Tab. 5.

The attacks are depicted in Fig. 5.

As discussed above, doubling the iterations number from 400 to 800 maintains

the adversarial detector’s exploitability. However, if we lower the per-request cost to

Lu = 0.005 which changes the maximum number of requests to 20,000, the detector’s

exploitability suffers. The successful attack rate (SAR) increases to 30% from 1%.

Following the lower cost of requests, the mean attack length increases as well from 20

to 146. OBR rises to 30.99% with NAR at 5.33%. This also shows that attacks that

were carried out previously at higher costs are now turned into an activity history with

greater chance of a successful obfuscation. However, the values are not critical and are

comparable to the values attained on an anomaly detector with a train time attack

(Lu = 0.05 and 400 iterations.).

The resulting attacks of this setting can also be seen in Fig. 5c. Note that points

representing the attacks moved towards the detector’s contours but they remained in

the malicious-labeled area. We assuem the shift in attack placements reflects the lower

per-request cost as the attacker is able to mix in more obfuscation URLs and move

closer to legitimate benign samples with occasional low-score URL appearances.

Finally, an attack with Lu = 0.0005 (equivalent to 200, 000 max-requests number)

and the number of iterations 1, 600 increases OBR rapidly to 94.67% while entirely

erasing NAR (0.0%). Accordingly, MAL increases to 2, 000. The detector is largely

exploitable by this attack. Same is seen in Fig. 5d which depicts attacks with the

cheapest per-requests cost. Most of the attacks are now moved pass the detector’s

contours to the area of the feature space with high benign posteriori probability. Note

that compared to the previous attacks, the cheapest cost attack instances are placed in
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a different area - higher along the y-axis. This corresponds to the fact that obfuscation

may occur with more requests creating an activity history with mean attack length

around 2,000. These activity histories were not generated during training as the train

time attacker was limited to at most 2,000 additional requests. Therefore, we may

expect that this is a blind spot of the detector because it was not trained to detect such

attacks.

It is important point out that the last attack (the cheapest cost) is off scale com-

pared to the attack used at train time. In addition, we conjecture that a detector

becomes robust even to this attack if it is trained against it using the detector’s learn-

ing algorithm (that is following the same procedure but with much lower attacker costs

and more iterations during the attack). This, however, will increase computational

requirements and training time.

Anomaly Detector - Adversarial Detector Comparison As argued, an anomaly

detector does not incorporate a model of an attacker which means it defends attacks

”from all directions”. Whereas, an adversarial detector takes advantage from the at-

tacker model and defends only ”directions which are susceptible to lure attacks”. This

is better seen in Fig. 6 which depicts a view of the feature space transformed with

PCA. The figure shows contours of detectors’ posterior class probability Dθ(M|x). In

case of the adversarial detector, we see that the detector’s contours are shaped to re-

flect areas in which an attack is likely and entirely omit areas in which attacks are not

found. Whereas, in case of the anomaly detector, contours only reflect the benign data

distribution. This is the main advantage given to an adversarial detector - it models

its posterior probability so that it reflects possible attacks.
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(a) Adversarial Detector (b) Anomaly Detector

Figure 6: The figures plot single activity histories as points in a feature space. All images are

PCA-transformations of the feature space with identical principal components. Black points are

No-Activity , red points are obfuscation activity of individual attacker instances, blue points are

benign activity histories. The contours correspond to the class posteriori probability modelled

with the detector. The pictures compare the shape of detector’s posterior class probability

that is depicted wtih contours. On left, the adversarial detector shapes its contours to reflect

possible attacks, whereas, on right, the anomaly detector omits the attacker’s model and thus

adjusts its contours to face all possible anomalies. This gives the adversarial detector advantage

in that it reflect the attck distribution.
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Conclusions

This work examined adversarial machine learning in network security. We focused on

a problem of detecting malicious activity while, ideally, not affecting benign users. We

started with the assumptions that a detection false positive rate is constrained by a

threshold; and that malicious activity cannot be recorded faithfully and, in addition,

changes in response to the parameters of a detector. (Sec. 3.1)

To model the setting, we modified the empirical risk minimisation framework to

correspond to the Neyman-Pearson task (Sec. 3.1.1). Using the notion of statisti-

cal learning, we defined a game in which a detector identifies the best parameters of

its stochastic detection classifier and an attacker searches for the optimal obfuscation

method of its primary goals (Sec. 3.1.3). Such a model of an attacker builds on the

assumption that malicious actors aim to act rationally by minimising their risk (Sec.

3.1.4). In terms of the detector, we argued that it necessarily must be a stochastic

detector which means that instead of finding a classifier we solve a task of modelling

the posterior class probability and draw the final label from it. (Sec. 3.1.6)

Then, assuming the players play a strong Stackelberg equilibrium, we arrived at

a bilevel optimisation problem whose solution is a robust detector that minimises ex-

ploitability by an attacker and keeps its false positive rate below a given threshold (Sec.

3.1.5). We then proposed a detector’s learning algorithm that approximates the solu-

tion of the optimisation problem and outputs a detector which despite being trained

solely on legitimate benign data is able to detect unseen malicious activity. The de-

tector’s learning algorithm follows a scheme of adjusting parameters according to the

attacker’s best responses (Sec. 3.4).

In Sec. 3.5, we proposed that the task of detecting malicious activity can be also

solved with an anomaly detector. This approach comes with a critical disadvantage – a

model of an attacker is omitted entirely and the anomaly detector can be trained only

on benign data.

As a running example, we used attacks to a URL reputation system and proposed

a formal model of those attacks (Sec. 4.1). We proposed a good query attack (Sec.

4.4) and a gradient attack (Sec. 4.5). The gradient attack, given a primary goal (a

set of target URLs), identifies a local-optimum activity that obfuscates this primary

goal. The attack is novel in that it is able to create obfuscating activity even in domain

that is highly discrete. This is achieved because we conveniently parametrised attacks

and used projected gradient descent and a fast gradient sign method to find the local-

optimum set of requests (Sec. 4.5.1).

Then we adjusted the proposed detector’s learning algorithm to the domain of

reputation score requests. We proposed a neural network architecture with five layers

that models a posterior class probability (Sec. 4.6.2).

Using real-word data provided by Trend Micro Ltd., we show that an adversarial

detector outperforms an anomaly detector in all false positive ratio scenarios (1%, 0.1%
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and 0.01%). In terms of meeting the false positive rate constraint, an adversarial detec-

tor meets it in all three scenarios, whereas the anomaly detector meets the constraint

only on training data. In terms of exploitability (which we measure in successful attack

rates), an adversarial detector detects more attacks than an anomaly detector. (Sec.

5.4.1)

Concerning real-time benign data, we found that it contains outliers which our

detector confidently labels malicious. On closer manual inspection, those outliers seem

to carry out suspicious activity and are, thus, correctly labeled malicious (Sec. 5.4.2).

In future work, a detector’s learning algorithm convergence proof may be delivered.

Also, our feature map omits sequential nature of activity histories based on sent request-

a more complex feature map that takes raw request sequences may be researched.

In conclusion, this work proposed a theoretical background and a practical algorithm

to a problem of detecting malicious activity in network security. We like to think of it

as a proof-of-concept for real-world adversarial detection problems.
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Appendix A - Contents of Attached CD

The attached CD contains implementations of the developed algorithms. All code

is written in python and the main library which is used throughout the project is

pytorch [34].

The folder sources contains all source codes of the project. It contains several

files and subfolders but the main subfolders are: models, threat model, diagnostics.

The folder models contains implementation of all proposed detector models and their

training mechanism. The folder threat model contains implementation of all propose

attackers. And finally, the folder diagnostics contains scripts that run the experiments.

Given the data are at their expected location (see the script for more details), the

training scheme of the adversarial detector is executed by running experiment.py. To

run a k-NN anomaly detector, execute experiment knn.py

Since the data provided by Trend Micro Ltd. contain private information of the

company’s users, we are not allowed to attach them to this work.
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List of Figures
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line is a decision line of a deterministic detector. The arrow shows the

obfuscation path from a primary sample to the obfuscated one. Fig.

1c depicts contours of a stochastic detector where blue-shaded lines out-

line areas of high benign-ness probability and red-shaded lines conversely

high maliciousness probability. The shadow line is a 50% boundary. The

stochastic detector gives more optimal solution to the detector’s optimi-

sation problem (Prop. 3.3) . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 The histograms show distributions of activity captured in March, 2019

among users of a URL reputation service, located in the Czech Republic.

The dataset is provided by Trend Micro Ltd. Fig. 2a depicts request

day-time distribution, Fig. 2b shows the amount of requests that is sent

in one day activity of a user. Fig. 2c shows the distribution of a URL

reputation score which is associated with a URL query. Finally, Fig. 2d

shows the repetitive nature of such a reputation service. . . . . . . . . . 47

3 Successful attack rate (SAR) as a function of the false positive rate

(FPR). Note that, as the FPR threshold is increased, both detectors
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adversarial detector outperforms the anomaly detector. . . . . . . . . . . 51
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density distributions with contours. Clearly, primary goals with more 10
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activity history and a corresponding attack is carried out. All data are

from a test set of primary goals and the results are taken from an attack

against the adversarial detector with FPR = 0.1%. . . . . . . . . . . . . 53
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5 The figures plot single activity histories as points in a feature space.

All images are PCA-transformations of the feature space with identi-

cal principal components. Black points are No-Activity , red points are

obfuscation activity of individual attacker instances, blue points are be-

nign activity histories. The contours correspond to the class posteriori

probability modelled with the detector. All pictures show the results of

the adversarial detector. Upper left, the results of the gradient attack

with 400 iterations – NAR is 57.33%. Upper right, attack with 800 it-

erations - NAR is 29.33%. Bottom left, attack with 800 iterations but

less expensive per-request cost, Lu = 0.005. Bottom right, attack with

1600 iterations but extremely inexpensive per-request cost, Lu = 0.0005.

Note that attacks are located in different areas as we change attacker’s

costs. In the extreme case (bottom right), nearly all attacks are located

beyond the detector’s contours. . . . . . . . . . . . . . . . . . . . . . . . 54
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principal components. Black points are No-Activity , red points are ob-

fuscation activity of individual attacker instances, blue points are benign

activity histories. The contours correspond to the class posteriori prob-

ability modelled with the detector. The pictures compare the shape of

detector’s posterior class probability that is depicted wtih contours. On

left, the adversarial detector shapes its contours to reflect possible at-

tacks, whereas, on right, the anomaly detector omits the attacker’s model

and thus adjusts its contours to face all possible anomalies. This gives

the adversarial detector advantage in that it reflect the attck distribution. 58
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