Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Telecommunication Engineering

Allocation of Computing and
Communication Resources for Mobile Edge
Computing with Parallel Processing

Bc. Martina Matéjkova

Supervisor: doc. Ing. Zdenék Becvar, Ph.D.
Field of study: Communication Systems and Networks
May 2019



ii



cTu MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4 )
Student's name: Matéjkova Martina Personal ID number: 409978

Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Telecommunications Engineering

Study program: Electronics and Communications
L Branch of study: Communication Systems and Networks
J
Il. Master’s thesis details
e N

Master’s thesis title in English:

Allocation of Computing and Communication Resources for Mobile Edge Computing with Parallel
Processing

Master’s thesis title in Czech:

Alokace vypocetnich a komunikaénich prostredki pro Mobile Edge Computing s paralelnim
zpracovanim

Guidelines:

Study principles of communication and computing resource allocation for processing of users’ applications at the edge of
mobile network. Develop an algorithm allocating communication and computing resources to multiple users considering

their requirements on an overall latency. Assume possibility of a parallel processing of the users’ applications at multiple
edge servers. Also, consider a possibility to deliver the offloaded application via any available communication path. Test
a performance of the proposed solution by means of simulations.

Bibliography / sources:

[11J. Cao, L. Yang, and J. Cao, “Revisiting Computation Partitioning in Future 5G based Edge Computing Environments,”
IEEE Internet of Things journal, July 2018.

[2] J. Liu, Q. Zhang, “Offloading Schemes in Mobile Edge Computing for Ultra-Reliable Low Latency Communications,”
IEEE Access, February 2018.

[3] X. Chen, L.J Pu, L. Gao, W. Wu, D. Wu, “Exploiting massive D2D collaboration for energy-efficient mobile edge
computing,” IEEE Wireless Communications, August 2017.

[4] J. Plachy, Z. Becvar, P. Mach, “Path selection enabling user mobility and efficient distribution of data for computation
at the edge of mobile network,” Computer Networks, 2016.

Name and workplace of master’s thesis supervisor:

doc. Ing. Zdenék Beévar, Ph.D., Department of Telecommunications Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 04.02.2019 Deadline for master's thesis submission: 24.05.2019

Assignment valid until: 20.09.2020

doc. Ing. Zdenék Beévaf, Ph.D. Head of department’s signature prof. Ing. Pavel Ripka, CSc.
Supervisor’s signature Dean’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC



lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC



Acknowledgements

I would like to thank my supervisor doc.
Ing. Zdenék Becvar, Ph.D. for his guid-
ance and encouragement. My thanks also
belong to Ing. Janu Plachy for his helpful
suggestions.

I am also deeply grateful to my family
and to Michal Skhut for their support and
patience.

Declaration

I hereby declare that I have completed
this thesis on my own and that I have
only used the cited sources.

I have no objection to use of this work
in compliance with the act "§60 Zikon ¢.
121/2000 Sb." (copyright law), and with
the rights connected with the copyright
act including the changes in the act.

Prague, 24. May 2019



Abstract

In the fifth generation (5G) mobile
networks, new use cases and applica-
tions with strict requirements for latency
emerge. Mobile Edge Computing (MEC)
is a novel concept, which supports the
offloading of computationally demanding
tasks to the edge of the mobile network,
and is considered a promising solution to
reduce the latencies. The parallel process-
ing of the task in the MEC system aims
to further minimize the task’s completion
delay. Although the problem of parallel
processing in the MEC has received atten-
tion among researchers, the existing works
either assume a single-user scenarios, or fo-
cus on partitioning of the computation re-
sources at the edge. In this thesis, a multi-
user scenario is considered, with users of-
floading the partitioned tasks sequentially
to the selected clusters of computing eNBs.
An algorithm is proposed for the optimal
task partitioning and resource allocation.
The efficiency of the proposed algorithm
is then simulated and compared to other
existing approaches. The proposed algo-
rithm decreases the task completion delay
by up to 48% when compared to another
method exploiting parallel processing and
by up to 78% in comparison with a non-
partitioning methods.

Keywords: Mobile Edge Computing,
task partitioning, parallel processing,
resource allocation
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Abstrakt

Mobilni sité paté generace (5G) prinasi
mnozstvi novych uziti a aplikaci s
prisnymi pozadavky na latence. "Mobile
Edge Computing" (MEC) jakozto novy
koncept, ktery podporuje prenos vypo-
cetné narocnych uloh na okraj mobilni
sité, je povazovan za TeSeni pro snizeni
latenci. Paralelni zpracovani tloh v
MEC systému méa za tkol dale snizit
celkovy Cas vypoctu. Prestoze problému
paralelniho zpracovani v MEC systémech
se dostalo mezi védci mnoho pozornosti,
existujici Teseni se zaméruji na scénére
s jednim uzivatelem, piipadné na déleni
vypocetnich prostiedkii na samotném
okraji mobilni sité. Tato diplomova prace
predpoklada systém s vice uzivateli, kteii
sekvencné odesilaji rozdélené tlohy primo
na klastr vybranych zakladnovych stanic
s vypocetnimi prostredky. Je navrzen
algoritmus pro optiméalni déleni loh a
alokaci prostredkt. Efektivita navrzeného
algoritmu je pomoci simulaci porovana s
existujicimi Tesenimi. Navrzeny algorit-
mus snizuje celkovy ¢as vypoctu az o 48%
pri porovnéni s dalsi metodou vyuzivajici
paralelniho zpracovani a az o 78% ve
srovnani s metodou bez paralelniho
zpracovani.

Kli¢ova slova: "Mobile Edge
Computing", déleni tloh, paralelni
zpracovani, pridélovani prostredku

Pteklad nazvu: Alokace vypocetnich a
komunikacnich prostredkii pro Mobile
Edge Computing s paralelnim
zpracovanim
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Chapter 1

Introduction

In the recent years, the number of mobile devices has grown rapidly, increasing
the number of connections and overall mobile data traffic, as well as new
use cases and applications. Many real-time applications such as virtual
reality, augmented reality, video streaming, or gaming have emerged, creating
additional demands on both the computing capabilities and battery lifetime
of mobile devices. However, given the restrained size of the mobile devices,
limited computation resources and high battery consumption still pose an
obstacle. By offloading computationally demanding applications from the
user equipment (UE) to the cloud, i.e. Mobile Cloud Computing (MCC) [1I,
battery lifetime can be prolonged significantly. The offloaded applications
are usually composed of a front-end component running on the device and a
back-end component that runs on the cloud, with a Virtual Machine (VM)
created over the allocated resources [2]. However, this architecture introduces
additional network overhead and backhaul load. Moreover, long distances in
between the cloud and the device can result in a high latency and an error
probability.

To enable superior user experience, 5G aims at improving operational per-
formance, i.e. low latency, high bandwidth, and increased spectral efficiency
[3]. One of the fundamental technologies to be deployed in 5G is Multi-Access
Edge Computing (MEC) [4], also known as Mobile Edge Computing [5], a new
paradigm, which supports the offloading of computationally demanding tasks
to the edge of the mobile network, i.e. to base stations (eNBs), small cell
eNBs (SCeNB), remote radio heads, etc. Moving computation resources closer
to the user (in a sense of network topology) leads to lower communication
delays between the UE and its allocated computing resources, as well as to
a decrease in the eNB’ backhaul load, thus further evolving the concept of
MCC [6].

The computation offloading follows two possible models: i) the full offload-
ing model, when the device offloads the whole task to the MEC, and ii) partial
offloading, which is conditioned by the application’s capability to be split into
two or more parts. Depending on its ability to be partitioned, the application
can be either offloaded to a single node, or to several nodes. Partitioning
of a computationally intensive tasks and their parallel processing has been
receiving much attention from reseachers from all over the world in the recent
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1. Introduction

years, optimizing the whole process of task offloading from the decision on
task offloading to user movement enhanced by mobility prediction. Liu et al.
propose a sequential offloading of partitioned subtasks to a selected cluster of
eNBs in order to minimize delay while meeting reliability constraints in [7].
Oueis et al. analyze latency and power consumption dependency on the size
and topology of the computing cluster in [8]. In [9], the authors propose a
method for parallelizing the computations at the MEC servers in order to
fully utilize the computational resources.

Along with optimizing network performance and/or improving Quality
of Experience (QoE) in order to meet the strict requirements of 5G [10],
MEC introduces plenty of new use cases. These are not only the services for
consumers and operators, but also third parties applications with possible
MEC implementation in Internet of Things (IoT), Intelligent Transport
Systems (ITS), mobile big data analytics, software-defined networks (SDNs),
ete. [11] [12].

This master’s thesis focuses on finding an effective solution for partitioning
of the task and allocating the resources for the computation of individual
subtasks in MEC in multi-user environment. The main objective is to
minimize delay of task completion. A heuristic algorithm is developed, which
iteratively allocates available resources, namely bandwidth to the edge and
the computation power of the edge servers. The algorithm performs initial
partitioning of generated tasks and adjusts it continuously until finding a
suitable allocation for all the tasks. The proposed algorithm is compared to
other state of the art approaches, improving the performance by reducing the
completion delay of the tasks.

The rest of this work is organized as follows. Firstly, related work on
task partitioning and offloading, and resource allocation in MEC systems is
presented. Chapter [3| introduces the system model. Chapter [4]is dedicated to
the problem formulation. In chapter |5, the algorithm for the joint computation
partitioning and resource allocation is proposed and explained. Then, in
chapter |6, the environment and simulation models are presented, followed by
simulation results and discussion. Finally, chapter |7| concludes the thesis and
outlines the future work.



Chapter 2
Related Works

This chapter focuses on related work in the area of computation offloading,
communication and resource allocation for processing of user’s applications
at the edge of mobile network, as well as task partitioning.

MEC is a new paradigm with the purpose of enabling user to exploit the
computation capabilities at the network edge. It is currently being developed
by European Telecommunications Standards Institute (ETSI) Industry Speci-
fication Group (ISG) and is perceived as one of the key technologies for 5G
networks and Software-Defined Networking (SDN) [5].

The research in MEC can be divided into several areas [I1]. First, a decision
on the computation offloading to the MEC based on the determined profit
for the UE in terms of execution delay and/or energy consumption. Second,
in case the computation is offloaded, an efficient allocation of the computing
resources. And finally, mobility management to guarantee service continuity
during the UE’s movement.

B 2.1 Decision on computation offloading

The decision on computation offloading is based on the determined profit for
the UE in terms of execution delay and/or energy consumption, or trade-off
between both. Possible outcomes of this decision are:

® Jocal execution on the UE,
® full offloading to the MEC considered in [13], [14], [15],

® and partial offloading, where the task is split into a set of subtasks that
are either offloaded to the edge server or computed locally, such as in [9],

[16], [17], [18].

Local execution is profitable in case of poor channel quality between the
user and its serving base station as in these conditions the energy used for
transmission exceeds the energy saved on offloading. It is for this reason
the application requiring the offload of a larger amount of data should be
computed locally. Moreover, the UE computes its task locally in case of
unavailable computing resources at the MEC server.

3



2. Related Works

Figure 2.1: An example of computing resource allocation in the MEC system

Full offloading on the contrary is beneficial in case of a good channel quality
between the UE and the eNB. The offloading is the most efficient in case of
computationally demanding application with only a small amount of data to
transfer, thanks to the gain between the energy spent on transmission and
energy saved on computation [11].

Partial offloading is conditioned by the application’s capability to be
parallelized. Such applications can be divided into two types: i) app that can
split into multiple parts that are all offloadable, ii) app that comprises both
offloadable and non-offloadable (e.g. user input, camera, and result display
[16]) parts. Depending on its ability to be partitioned, the application can be
either offloaded to a single node, or to multiple nodes.

It is important to state that the offloadable parts of a program and their
dependencies need to be identified before the offloading decision is made [19].

. 2.2 Allocation of resources

Once the decision on either full or partial ofloading is done, communication
and computation resources are allocated in the form of VMs. In case the
offloaded application enables partitioning, the task can be offloaded to several
nodes and processed in parallel (see Figure 2.1, where the UE; offloads an
application that is partitioned and computed at all three eNBs). On the
contrary, if the application does not allow parallelization, only one eNB can
be used for computing its task (as can be seen in Figure 2.1, where the UE;
offloads only to the eNBy).

For the purpose of offloading to MEC in real-time applications, VM assigned
to an UE should be started and prepared for computing when the task is
being offloaded, otherwise the delay from establishing and starting the VM
would render the application unusable.

In order to design an energy-efficient MEC system, communication and
computation resources have to be allocated jointly as proven in [13].

The joint allocation of resources is adopted in [I7], where a system is
presented with one computing eNB and multiple users generating identical
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2.2. Allocation of resources

tasks. The authors connect weighted sum energy consumption minimization
problem to a three stage flow-shop scheduling problem and Johnson’s algo-
rithm [20]. The objective is to obtain a sub-optimal task operation sequence
for processing all tasks on each machine with the minimum total completion
time.

Authors in [21] introduce task partitioning in a multi-user system, where
the UEs offload their tasks via one eNB to multiple servers in the MEC. They
develop a heuristic method, which divides the network bandwidth into several
virtual channels. For each user, the algorithm generates an initial partitioning
and execution schedule, and then iteratively searches for the first occurence
of constraint violation, either during transmission or computation. In order
to avoid this violation, the algorithm adjusts the user’s original partitioning
accordingly.

All the above-mentioned works focus on offloading to one eNB only. Parti-
tioning a task and offloading it to multiple nodes can lead to further decrease
in execution delay, and possibly energy and power consumption of computing
eNBs. In such a scenario, the selection of computing nodes is vital.

Authors in [§] analyze latency behavior and power consumption in relation
to the size and topology of computing cluster. The cluster for particular
UE’s task is formed from servers deployed at eNBs in the UEs vicinity. The
optimal number of computing nodes in the cluster is closely related to the
computing data load. In case the offloaded application is computationally
demanding, inclusion of more eNBs in the cluster will lead to a decrease in
overall delay. On the contrary, with low computation demands of a task,
adding extra computing nodes will have little or no affect on the latency,
since the computation delay is already low and the main component in this
case is the transfer delay.

In [7], authors present a situation, where one UE transmits a partitioned
task to multiple nodes in sequence using the full channel bandwidth. In order
to balance latency and reliability, algorithms using heuristic search, or linear
programming are proposed. However, given the fact that the problem is set
in a system with optimal conditions (such as no interference, mobility and
therefore handover, sharing of resources with other UEs, etc.), the resulting
optimal number of computing eNBs goes to infinity and therefore is condi-
tioned by choice of such number.

In the previouly mentioned papers, the optimal number of computing eNBs
is only considered for a single user. Multiple-user system introduces a more
difficult optimization problem, as the decision on partitioning of one user
affects performance of others. In such a system, UEs compete for either for
the network bandwidth to the MEC, computation resources, or the physical
layer communication resources.

In [22], authors assume a multi-user system, where the users offload their
computation tasks to corresponding serving eNBs. The serving eNBs then
form computing clusters of nodes simultaneously for each offloading request.



2. Related Works

The clusters are characterized by resource management and adaptive size
based on the computation requests’ requirements. The optimization method
is proposed, with the objective to distribute the computation load between
all eNBs for all the requests in such a way that would lead to the minimal
power consumption of the clusters while satisfying latency contraints. The
proposed solution effectively makes use of computation power of less busy, or
idle nodes, however, it puts additional load on the backhaul, which in case of
SCeNBs, depending on their connection, could lead to increased latencies.

B 23 users mobility

None of the previously mentioned articles takes into consideration the mobility
of the users. The issue of mobility in MEC system is vital, but it makes the
overall solution much more complex. As the UE changes its location, measures
need to be taken in order to ensure the service continuity and Quality of
Service (QoS). Generally, there exist two approaches to the movement of UEs.

Firstly, the possibility of VM migration in case the gain (lower latencies
and less allocated resources on transmitting the results back to the UE)
exceeds the cost (time and resources spent on VM migration). Authors in [2]
formulate a sequential decision making problem for dynamic service migration.
Cost models for transmission and migration are presented, with objective to
design a policy that would minimize the expected overall costs long-term. As
the cost functions in the defined model depend on distance only, the state
space of the Markov Decision Process (MDP) is approximated by the distance
between the user and the VM (distance-based MDP) to simplify the search
for optimal policy. The solution is obtained by mapping the optimal policy
for the approximated distance-based MDP to a policy for two-dimensional
MDP.

Secondly, once the offloaded task secures allocated resources in the form
of VM at its serving eNB, the VM stays at this particular eNB, even when
the UE has already changed location and performed handover to another
base station. The computed task then needs to be transferred either via
radio or backhaul using alternative communication path to evade degraded
performance. This is a better option in case the VM migration would require
transmission of a large amount of data that would not only put a load on the
backhaul, but would also result in large delay.

For this reason, authors in [23] propose an algorithm that exploits reward
function from MDP with the objective of minimizing transmission delay.
Proposed algorithm searches for possible paths and forces the UE to perform
handover to a new eNB in case it is profitable by means of overall transmission
delay. The path-selection algorithm is enhanced in [24] by considering the
reception of computation results in downlink, evaluation of its impact on the
load of backhaul network, and further decrease in the algorithm’s complexity.
The authors improve the algorithm by considering mobility prediction and
proposing dynamic VM placement in [25]. The partitioning of a task into
subtasks and parallel processing is not considered.



Chapter 3
System Model

The system model comprises the set U = {ui,ug,...,uy} of U moving UEs
and the set N’ = {n1,ng,...,ny} of N eNBs, or SCeNBs. Each device is
connected to the mobile network by the means of a serving eNB, which is
selected based on the highest received signal strength (RSS). RSS can be
obtained as the difference between an eNB’s transmission power P; and path
loss between n-th eNB and u-th UE, as follows:

RSSpy, = P, — PLy,. (3.1)

The RSS value changes with the mobility of the user and therefore needs
to be carefully monitored in order to ensure quality of communication and
meet the QoS requirements. As the RSS degrades, the UE inquires after
possible serving eNB candidates (target eNB) in its surroundings, resulting
in handover procedure when the RSS from target eNB continues to exceed
RSS from the serving eNB raised by a handover hysteresis Agps for a period
of TTT (Time-To-Trigger),

RSStarget > RSSserm'ng + AHM- (3'2)

Given the requirement that 5G system should support seamless handover,
handover delay throughout this paper is considered equal to zero. The
handover procedure is addressed in detail in [26].

. 3.1 Task model

The mobile devices u € U randomly generate computationally intensive tasks
Ju, which are offloaded to and processed in the MEC (further on denoted as
offloaded task). Let m, be a binary indicator, which equals 1 if a device has
generated such a task, or 0 otherwise.

m, € {0,1}. (3.3)
These indicators are grouped into a tuple:
T = (71,72, ..., TU ). (3.4)

7



3. System Model

In order to simplify the problem, the UE cannot generate a task while waiting
for an already generated task to be allocated, or for an allocated task to finish
computing. This condition can be achieved by defining a binary parameter
ou, 1 <u < U, for determining the state of the UE:

ou € {0,1}. (3.5)

In case the UE is waiting for a task to be allocated or computed, and therefore
cannot generate a new task, ¢, equals 0. The state of all the UEs is written
into a tuple ¢:

QS: (¢1?¢2,"'7¢U)' (36)

The time when the UE waits for the task to be computed is described by a
tuple tYF, which works as a timer, counting down the remaining time t,, of
the task completion:

tVE = (tVE JE | VE), (3.7)

The offloaded task is characterized by a size of input (offloaded) data LP%t,
output (collected) data L°“P“! and the number of instructions necessary to
execute the task, denoted as L¢P,

As mentioned previously, the tasks consist of both offloadable and unof-
floadable parts that need to be identified prior to the offloading itself. The
partitioning of tasks depends on several factors, primarily the type of appli-
cation, but also delay and reliability demands, etc. [7]. For the purpose of
reducing the complexity, the task is considered to be offloadable as a whole
and individual subtasks are independent after the partitioning.

. 3.2 Parallelization

In order to achieve the minimum delay, partitioning of tasks and parallel
processing at the eNBs is employed, allowing the UE to communicate with
multiple eNBs. For simplicity, a server with uniform processing capabilities
is employed at each eNB in the set A/. The quantity of available computing
resources of the n-th eNB is denoted as C)* in Millions of Instructions Per
Second (MIPS). Additionally, each UE possesses its own computing resources
CYM "“however, for the purpose of this work, it is considered that all generated
tasks are offloaded to the MEC.

The tasks are partitioned into several subtasks in correspondence with
the number of eNB candidates, i.e. the set M, C N of M eNBs that are
chosen by the u-th UE for communication and offloading (1 < M, < N).
The individual subtasks s,, represent ratios of the task itself. This can be
summarized as:

Su= Y Sm=1, (3.8)

where 1l <m < Mand 1 <u<U.



3.3. Delay

The UE then transmits the individual subtasks in sequence to these chosen
eNB candidates for computation, as illustrated in Figure 3.1

Figure 3.1: The system model

B 33 Delay

The overall delay of a subtask is defined as:

Dy, = Dy + DYF + D™ + DDF, (3.9)

where D¥% is the waiting period of the subtask caused by sequential
offloading, D™ is the computing delay, DY* and DD are the transmission
delays. The individual delays are explained in the following sections.

B 3.3.1 Transmission delays

The u-th UE communicates with n-th eNB via radio channel with capacity
defined by Shannon-Hartley theorem [27]:

Cnu =B- 10g2(1 + 7nu)7 (3‘10)

where B is the channel bandwidth and ~,,, is the Signal to Interference plus
Noise Ratio (SINR) calculated from:

_h
Pnoise + r

where I is the sum of interference from all but the serving eNBs. P, ise is
the power of thermal noise that is obtained from:

Prgise = 10 - log(kT,B), (3.12)

Tnu = (3.11)

9



3. System Model

k being the Boltzmann’s constant and T the effective system noise tempera-
ture.

Transmission delays of the m-th subtask are computed as the ratio of
the transferred data, i.e. the portion s,, from the total size of the task in
uplink L"P%* or downlink L°“P¥ and capacity of the channel. Based on
the previous statement, it can be assumed that minimum transmission delay
can be achieved with communication over channel with maximum data rate

(capacity):

. Linput
mu

DL Sm Loutput
mu

B 3.3.2 Waiting delay

Because parallel offloading would require e.g. a multiple-input and multiple-
output (MIMO) system integrated in each UE, it is assumed that UEs offload
the individual subtasks in sequence. This leads to a waiting period defined
as a sum of offloading delays of all the previous subtasks:

m—1
Dyt = N~ DUk, (3.15)
=1

B 3.3.3 Computing delay
Computing delay is dependent on available computing capacity (CVM) of
MEC servers situated at computing eNBs:

Sy - LCOMP

peomp —
m VM
Cm

(3.16)

10



Chapter 4

Problem Formulation

The objective of this work is to find a strategy for allocation of computing
and communication resources that minimizes the overall delay of a task for
the u-th UE, denoted as D,,. The total offloading delay needs to take into
account the delay of individual subtasks, as well as possible waiting of the
task for the allocation of resources.

The optimal solution to the partitioning of a task is one, where all the
subtasks are sequentially offloaded to the edge servers, computed and sent
back to the UE, all reaching it at the same time, i.e. when the delays of all
the subtasks D,, are equal. Then the delay of the first subtask is also the
delay of the entire task’s completion and can be calculated using the equation
For the first subtask to be uploaded to the MEC, there is no waiting for
the offload of previous subtasks, therefore D% = 0.

As each UE with a task to offload competes for the resource allocation with
other UEs, it is possible that the UE’s request is not satisfied immediately,
as shows the figure 4.1

CNB2

Figure 4.1: Exemplary situation with multiple UEs that generated tasks - tasks
by UE; and UEj3 are allocated, UE5’ task waits for allocation.
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4. Problem Formulation

In this case, the overall completion time of the task grows by the time it
spends waiting. Once the task gets chosen for offloading, the final accumulated
value of Da¢~wait jg added to the delay of the first subtask, i.e. transmission
and computing delays of the whole task, as can be seen in figure 4.2

D DY D pPt

UE,
D,V D,comp D,PL
—
UE,
Dot D, D, p,Pt
[ | — I
UE;

Figure 4.2: Timeline for offloaded tasks from situation in Figure

The resulting total completion delay of the task is:
D,, = Diec~wait L pUL 4 peomp 4 pbL. (4.1)

Another problem poses the determination of the VMs placement for the
u-th UE, denoted as n}. Joining both together, the optimization problem

can be formulated as:
n,, = argmin{ D, }. (4.2)

As the partitioning of the task assumes transmission at the maximum data
rate and an immediate start of the task computation at the selected eNBs, the
optimization problem is subject to the availability of both the communication
and computation resources at the eNBs. The compliance with the constraint
is necessary for optimal task partitioning.

12



Chapter 5
Proposed Algorithm

This chapter is focused on the explanation of the proposed algorithm. Its
intent is to find an allocation strategy minimizing the average completion of
the offloaded task, i.e. the offloading delay, and the optimal way to partition
an allocated task.

B 51 Task partitioning algorithm

In this section, the algorithm for optimal task partitioning is proposed.

I 5.1.1 Selection of eNB candidates

Each UE randomly generates computationally intensive task J, that is parti-
tioned into subtasks and offloaded to appropriate eNBs. Given the waiting
time defined in [3.15, the order in which the subtasks are offloaded, plays an
important role. Each subtask but the first is delayed by the sum of DY
of the previous subtasks. In order to minimize the accumulation of waiting
times and achieve the optimal solution, subtasks are primarily transmitted to
the eNBs with better performance (channel quality). In optimal conditions,
the more eNBs the UE would offload to, the lower the overall latency of the
task would get. However, as the large number of computing eNBs would
result either in collisions or queuing, and, additionally, worse reliability, it
is necessary to select appropriate eNB candidates and eliminate those with
worse channel quality.

Choice of appropriate eNB candidates for offloading can be conditioned
using values of SINR. In order for the n-th eNB to participate in the u-th
UE’s task offloading decision, 7,, must be higher than the minimum level
Ymin required for communication:

The eNBs in compliance with this condition are selected for offloading and form
subset M,, = {m1,ma,...,mp}, My, C N of M eNB candidates (1 < M < N)
for each u-th UE that has generated a task (lines 1 to 3).

Once the initial condition for eNB candidates is met, the quality of both
data rate and computing capabilities of each eNB from set M, are combined

13



5. Proposed Algorithm

DlUL chomp D]D[
[ — [ | %

eNB2
UEI D3UL D}comp D3DL %
[ I R
eNB3
Figure 5.1: Optimal task partitioning
into the weighing parameter (line 4):
Linput [comp Loutput
(5.2)

Wmu = ~~UT OV M + CDL
mu m mu

which represents the overall delay in case the entire task of u-th UE is
offloaded to the m-th eNB, and it is composed of delay of UL transmission
DYL computation delay D™, and delay of DL transmission DPZ.

Given the waiting period caused by the sequential ofHoading, the trans-
mission order of the individual subtasks has a large impact on the task’s
total completion delay. The waiting time, as a sum of UL delays of all the
previous subtasks, is dependent on the data rate to the eNBs and therefore
the parameter w;,,. In order to prevent the accumulation of waiting delay,
the eNB with the highest data rate to the given UE, or the least value of wi,,,
should be the first the UE offloads its subtask to. All the eNBs in set M,
are then sorted by the weighing parameter w,,, in ascending order, which
also sets the order for the offload of individual subtasks (line 5).

B 5.1.2 Partitioning of tasks

The solution for task partitioning is optimal when the completion times of all
subtasks are equal, as pictured in Figure Unlike in [7], where the authors
assume the same condition, the delay of DL is taken into consideration and
the problem of resource allocation is further solved for multiple users. The
simultaneous completion of all subtasks can be expressed using the following
equation:

s1(DYE + D™ + DPE) = 51 DPE + s5(DYE + D™ + DPE) =

RS UL UL com DL (53)
=...= Y ;D" +syu(Dyf + Dy + D),
=1
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5.2. Task allocation algorithm

When elaborated (see Appendiz), the following equation is acquired:
mol o comp DL
I (D; + D7)
PR — , (5.4)
(DF + D™ + DPE)

femt

(2

where s1 is the portion of the task that is offloaded first and can be expressed
from [3.8k

i—1

comp + D]DL) 1

v LD -
31—<1+Z —— ) . (5.5)

1
=2 H (D]UL—i—D;(Jmp—l—DJDL)
j=2

The values s,, are calculated using |5.4] and [5.5| for each of the generated
tasks to determine the tasks’ initial partitioning (line 6). As s; represents the
first offloaded subtask, its corresponding delay is also the delay of processing
the whole task. Using the formula [3.9, the overall latency of each of the
generated tasks from 7 is calculated by the corresponding UE and then send
to the MEC for comparison, causing only a very small additional overhead
(line 7).

The algorithm for task partitioning is summarized below:

Algorithm 1: Task partitioning

Input Yu € L{, U, n e Na Tmin, Ynus Linput’ Lcomp’ LoutPUt7 07257 Cgfmpy
CYL

mu

Output: Ratios of subtasks s,,, task overall delay D, set M,
for u =1to U do

if m, =1

determine set M,, of M eNBs based on condition [5.1
calculate parameter w,,, for each eNB m € M using 5.2

—_

sort eNBs in M, in ascending order based on wi,,,
calculate s,, for Vm € M from [5.5 and |5.4
calculate the overall delay D, using (3.9

end

end

. 5.2 Task allocation algorithm

In order to guarantee the optimal partitioning of the task and the values of
total delay, the UE, whose task is chosen for offloading, gets all the resources
it has used for the previous calculations, i.e. all the bandwidth in both
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5. Proposed Algorithm

UL and DL, and the computing power of the allocated VM. Outside of the
optimal conditions assumed in this work (in the real-world application), fast
fading and interference may alter the results and should be taken into account
during the task partitioning.

For the sake of simplicity, this reservation of the resources will last for
the whole duration of the task completion - interlocking more generated and
partitioned tasks that are offloaded to and computed at multiple eNBs at the
same time would pose an optimization problem with very complex solution.
In order to justify this decision, the following example is set.

Let there be a situation with several UEs in the vicinity of one particular
eNB, which is also their serving eNB, as displayed in Figure |5.2l

Cys

Figure 5.2: Exemplary situation with multiple UEs sharing the serving eNB

All of these UEs generate a task at the same moment and demand resources.
All the UEs calculated the weighing parameter w,,, to decide the order
in which the individual subtasks should be offloaded to the selected eNB
candidates. Depending on the order and the delays of UL, computing and
DL to the individual eNB candidates, the tasks are partitioned into subtasks
using |5.4] and 5.5l This partitioning guarantees that all the subtasks are
completed simultaneously, despite the sequential offloading, supposing the
variables in the equations remain unchanged.

Since the computing capabilities of all the eNBs are the same, the best
SINR and therefore the best data rate result in the lowest weight w,,,, for
the serving eNB. Because of that, the serving eNB is the first one all the
UEs send their first and largest subtask to. In conventional mobile cellular
networks, the UEs communicate with its serving eNB via different channels,
sharing the bandwidth. However, sharing the bandwidth would result in
lower data rates for the UEs, and in case of simulataneous offload to the same
eNB queueing for available computation resources. For the partitioning of
a task to be optimal, all the individual subtasks must be completed at the
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5.2. Task allocation algorithm

same time. Fot this reason, sharing the communication and computation
resources of the eNB is dismissed.

In order to prevent collisions, as shows the example in Figure 5.3} it is
necessary to reserve all the communication and computation resources of
the eNB for the duration of task completion. The following competition for
resources is proposed.

B 7 Legend:
........... : vz UEy

F R R s
R B R R I R R IR KNI

=z

eNB; s DL

[ 1 comp
UL

Collisions:
[——1 DL/UL
[ comp

Figure 5.3: The collisions in the system from the situation in

After the task partitioning, the task with the minimum value D, is selected
by the centralized system for the VM allocation (line 1), and denoted as J;:

J* =min{Dy, Dy, ..., Dy }. (5.6)

Once the task gets chosen for ofloading, the binary coeffient m, of the
corresponding u-th UE changes its value to 0 (line 2). As the UE cannot
generate another task while waiting for the results , the value of binary
parameter ¢, is set to 0 (line 3). The duration of this state is monitored by
means of tJF (line 4).

The chosen UE offloads its task to the eNBs from its set M,, making them
unavailable to other UEs for offloading. As each UE with a task to offload
selects its own set M, of appropriate eNB candidates, possible overlaps occur.
The eNBs computing the task of the chosen UE are dropped from the set
M, of the rest of the UEs.

Since the reserved resources of the eNB candidates computing the chosen
tasks render these eNBs unavailable for the whole duration of the task
completion, it is necessary to maintain a timer for the eNBs’ unavailability
and keep track of its state. Therefore 1 is defined as a tuple composed of
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5. Proposed Algorithm

binary parameters ¥,, 1 < n < N, for whether the n-th eNB is available
(equal to 1), or whether is has been assigned a task (equal to 0):

Yn € {0,1}, (5.7)
Y = (Y1, %2, ., ¥N). (5.8)

The parameter 1, for eNBs’ state is closely connected to the parameter for
eNBs availability t*N?Z that counts down the time during which the eNB busy
with the task processing remains unavailable:

N = (NP M), (5.9)

where thN B , 1 <n < N is the remaining time of the task completion. The
eNBs that have not been allocated a task have this variable set to 0.

When the task with minimum D, is chosen for offloading, the values 1,
of the corresponding computing eNBs (set M, of the chosen task) are set
to 0 (line 5) and values of t¢VB are set to D, (line 6) to keep track of the
remaining time of the task completion.

The algorithm for task allocation is summarized below:

Algorithm 2: Task allocation

Input: My, Dy, w1, ¢, tNB tVE:

Output: Tasks allocation at eNBs, ¢, 1, VB UF

1. select task J;; with the minimum D,, for the VM allocation
2:  set value m, of selected UE’s task to 0

3:  set value ¢, of selected UE’s task to 0

4. set value tYE of chosen UE to D,
5
6

set values v, of corresponding computing eNBs to 0
set values t*VB of corresponding computing eNBs to D,

N 53 Algorithm

This section summarizes the proposed algorithm.

The system comprises the set U of U UEs, which randomly generate tasks
in compliance with the assumption 3.6 (line 2). The binary indicator m,
shows whether the UE has generated a task for offload (m, = 1), or not
(my = 0). The UEs are connected to the cellular network via their serving
eNB, but they can also communicate wirelessly with any other eNB from
the N eNBs in the set N, as long as the condition [5.1] for the SINR above
the minimum is met. Each UE first obtains values of SINR for the eNBs
in its vicinity through standard measurements [28] without introducing any
additional overhead (line 3). The state of the eNBs is tracked by the binary
indicator 1, which either equals 1 if the n-th eNB is available, or 0 when it
is has been assigned a task.

18



5.3. Algorithm

While there are UEs with generated tasks and appropriate eNB candidates
available for computing, the following cycle starts (lines 4 to 6).

In algorithm 1 (line 5), each UE compares the measured values of 7y,
with the minimum ~,,;,, based on which it selects its own subset M,. The
weighing parameter w,,, is calculated for each of the selected eNB candidates
using 5.2l The eNB candidates are sorted in the ascending order based on
the weighing parameter, i.e. the eNBs with the least values of wy,, are the
first the UE offloads to. The UE then partitions its task among all the M
eNBs from the set M, using 5.4/ and |5.5. The overall completion times of all
the generated and partitioned tasks are calculated from [3.9.

In algorithm 2 (line 6), the task J; with the least delay is selected for the
VM allocation and the corresponding value of 7, is set to 0. The time it will
take to complete the task is D,. During this period, the eNB candidates
from the chosen UE’s set M, are unavailable for task allocation and their
corresponding value of 1, = 0. Given the assumption |3.6, the UE needs to
wait for the results of the offloaded tasks before it can generate a new task,
so its value of ¢, = 0. The value of D, is tracked by the variables t*¥¥ and
tUF  which work as timers for determining the remaining time of the task
completion, and therefore the unavailability of eNBs and UEs respectively.

With passing time, the values of t*V5 and tYF diminish. Once they reach

zero, the task is completed and the values of ¢, = 1 and ¥, = 1, meaning
the UE can generate tasks and the eNBs are available for offloading (lines 8
to 9).

The UEs, whose tasks have not been chosen for offloading, wait until the
resources become available again. The time the UEs spend waiting for the
VM allocation accumulates in the tuple (line 10):

Daccfwait — (D(lzcc—wait7 Dgcc—wait’ m?Dla]cc—wait)_ (510)

The remaining tasks still have their value m, = 1 and participate in the
competition for resources until they are selected for the VM allocation. The
value of D3¢~wat 5 added to the overall task completion delay once it is
chosen for offload, but does not play part in the competition for resources.
Considering this delay as a metric favouring the UEs that had spent a long
time waiting for the VM allocation is a possible topic for future enhancements
of this work.

The proposed algorithm is summarized below.
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5. Proposed Algorithm

Algorithm 3: Offloading to Multiple Nodes with Optimal
task partitioning (MNO)

Input: Vu € U,U,n € N, Ymin, LP, Leomp Loviput oDL ceomp CUL,
b, 0
Output: Offloading tasks for execution
1:  loop (continuously repeated in time)
UEs generate tasks for offload 7, based on ¢ values
calculate values of 7y, from [3.11
while 7, =1 and ¥, = 1 do
partition the tasks using Algorithm 1
allocate task and computing eNBs using Algorithm 2
end
update t°NB = ¢¢NB _ tloop and ¢
update tVE = tVE _ tloor and ¢
update Dgcc—wait — Dgcc—wait —I—thOp

end loop

© 2 X > T kW

—
@

—
—
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Chapter 6

Simulations

In this section, models for simulations carried out in MATLAB are presented
for performance evaluation and compared with several other existing solutions.

. 6.1 Simulation scenarios and models

The main simulation parameters are presented in Tab

Parameter Value
Simulation time 60 s
Simulation step 10 ms
Number of simulation drops 5
Simulation area 650 m x 370 m
Bandwidth of uplink/downlink 10/10 MHz
Minimum SINR value Ypmin -10 dB
Carrier Frequency 2 GHz
Number of eNBs/SCeNBs 4/30
Tx power of eNB/SCeNB 27/15 dBm
eNB/SCeNB computing power CYM 30 or 300 or 1000 or 3000 MIPS
Number of UEs 30 or 60
UE computing power 40 MIPS
Maximum speed of users (Vpaz) 2 m/s
Values of Poisson coefficient A 0.05 or 0.10 or 0.15 or 0.20 or 0.25
Input/output data size 200/200 kB
Offloaded task number of instructions 10e6 instructions

Table 6.1: Simulation parameters

The parameters of the network are in line with recommendations defined by
3GPP in [29]. The size of tasks, both offloaded and collected, is considered 200
kB, based on [30], where the authors assume similar task sizes for real-time
applications.

The UEs generate tasks arriving according to the Poisson distribution, a
common assumption on the arrival of tasks in MEC systems [31]. The Poisson
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Figure 6.1: Initial positions of UEs within the simulation area for one simulation
drop

distribution is defined as follows:

where A is the Poisson coefficient stating the average number of generated
tasks in one step of the simulation, k is the number of generated tasks in a
simulation step. The simulations are run for different values of Poisson A
coefficient, observing the impact it has on the performance.

The simulation area contains 4 eNBs, 30 SCeNBs and either 30 or 60 UEs.
Initially, each UE and eNB are assigned a position, which for eNBs is fixed,
whereas for UEs it changes as they move. The initial location of the UEs and
the eNBs in simulation area for one drop can be seen in Figure 6.1

The UEs move at constant speeds that are chosen randomly from (0, vy4q)
following the two-dimensional (2D) probabilistic random walk [32] mobility
model, where the movement is described by means of Markov chain. The
chain has a finite number of states for both the x and y coordinates. For each
pair of states x; and x; a transition probability p;; is defined for going from
x; to x;. In its initial position (state), each UE chooses a random direction
of their movement and follows it. In a randomly chosen simulation step, if
the UE is the state x;, it selects the following state x; with probability p;;.
The y-coordinate follows the same principle. The Markov chain is defined by
the transition probability matrix containing the values of p;;.
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Figure 6.2: Example of UE’s movement following the random walk mobility
model

The signal propagation over the radio channel follows the free-space atten-
uation [33]. The path loss between the u-th UE and the n-th eNB can be
calculated as follows:

PLpy = 32.4 4 20log, f + 2000g10dna, (6.2)

where f is the carrier frequency and d,,, is the distance in between them and
can be obtained using difference between the coordinates of both:

dnu = \/(xu - xn)Q + (yu - yn)2 =+ (ZU - ZN)Z‘ (63)

B 6.2 Performance analysis of the proposed
algorithm

The performance of the proposed algorithm offloading to Multiple Nodes
with Optimal task partitioning (further on denoted as MNO) is evaluated
and analyzed in this subsection. The primary metric observed is the task
completion latency. In order to observe the efficiency of the algorithm for
different loads, the simulations are run for 30 and 60 UEs in the system, for
multiple values of Poisson A coefficient, as well as several values of eNBs’
computation power.

In order to confirm the efficiency of the task partitioning, dependency of
the overall task completion on the number of computing eNBs is observed.
The minimum value of delay helps the discovery of the optimal size of the set
M.

Figures and show the average delay based on the number of com-
puting eNBs for different values of the eNBs’ computation power. The value
of Poisson coefficient is fixed at A = 0.1. The average overall delay shows
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steep decreasing tendency for a low computation power of 30 MIPS. For
simulations with higher values of computing power, the overall delay shows
minimum for certain numbers of computing eNBs. This is due to the fact
that for low computation power, the computing delay presents the largest
component in the overall task completion delay. Therefore, the more eNBs
participate in the computation of a task, the lower the total task completion
delay gets. On the contrary, with higher computation power, computing
delays become insignificant compared to transmission delays and adding more
eNBs eventually leads to higher overall delays. The simulation for 30 UEs in
Figure 6.3| shows lower average delay compared to the one with 60 UEs in
Figure however, the overall characteristics of both are similar.
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Figure 6.3: Average delay based on the number of computing eNBs for different
values of CYM for in a system with UEs, A = 0.1

700q '
@ VM = 30 MIPS
. -8 cM = 300 MIPS
'a‘ --%--cY™ = 1000 MIPS
E, 500 —+— Y™ = 3000 MIPS | ]|
]
: \
> 4007
o
q) 300 » O ................
Swof e
e I ..
S e
|
100 |
0 ‘
1 . 3 | 5

Number of computing eNBs, M [-]

Figure 6.4: Average delay based on the number of computing eNBs for different
values of CYM in a system with 60 UEs, A = 0.1

24



6.2. Performance analysis of the proposed algorithm

The minimum delay is more obvious when shown individually. Figure
6.5 shows the average delay based on the number of computing eNBs with
computing power CVM™ = 300 MIPS for 30 UEs (a) and for 60 UEs (b).
In order to better show the behavior of the algorithm for higher values of
eNBs’ computing power, 6.6/ follows with caption of the same dependency
for CYM = 3000 MIPS, again for 30 UEs (a) and for 60 UEs (b). From
both Figures 6.5 and 6.6, it is obvious that for 30 UEs in the system the
average latency is lower than for 60. The optimal sizes of computing cluster
differ, for system with 30 UEs and 60 UEs reaching 3 eNBs and 4 eNBs,
respectively. Adding more than the optimal number of computing eNBs
results in increasing delay. In both figures, the system with less UEs shows
steeper growth of average delay than the system with 60 UEs. This is caused
by the parameter for minimum SINR 7,4, which was chosen with regard
to the formation of larger computing clusters. With smaller competition
for resources, these clusters are formed more often, resulting in more links
with worse channel quality and therefore higher delays and different optimal
numbers of computing eNBs.
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Figure 6.5: Average delay based on the number of computing eNBs for CV'M =
300 MIPS, A = 0.1, subplots for Figure |6.3| and Figure [6.4
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Figure 6.6: Average delay based on the number of computing eNBs for CVM =

3000 MIPS, X\ = 0.1, subplots for Figure and Figure

The efficiency of the proposed algorithm also depends on the algorithm’s
capability to handle heavier load on the system. For this reason, the sim-
ulations were run for different sizes of Poisson A coefficient. Figures 6.7
and show the dependency of average delay on the size of A. The figures
display clear increasing tendency of average delay with growing task arrival
for all simulated cases. For computing power of eNBs CVM = 30 MIPS, the
increase in delay is more evident, rising by 22% and 31.5% for 30 UEs and
60 UEs, respectively. For computing powers of 300 MIPS and higher, the
delays are significantly lower, the increase in delay when comparing A = 0.05
and A = 0.25 is from 15% to 19%. Though the delay is generally higher for
more UEs in the system, it is not very different for smaller values of A. This
is due to the low amount of tasks generated by the UEs resulting in lesser
competition for the resources.
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Figure 6.7: Average delay based on the Poisson A coefficient for different values
of CVM in a system with 30 UEs
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Figure 6.8: Average delay based on the Poisson A coefficient for different values
of CVM in a system with 60 UEs

The overall delay comprises partial delays of the accumulated waiting
period D%¢~%ait " delays of transmission DYY and DPL and computation
delay D¢™P. The average values of these individual components are shown
in Figures 6.9/ and |6.10. For low computation power of eNBs, the computing
delay is by far the most significant. Given the long period during which
the eNBs compute their subtasks and therefore are unavailable to other
UEs, the average waiting delay D¢~ %% grows as well. The average overall
delay is therefore composed mainly of waiting and computing, making the
offload inefficient. On the contrary, the computing delay for eNBs with
high computation power becomes almost insignificant, since the major part
of the overall delay is the transmission. In this case, the overall latency
is conditioned by the quality of transmission and the parallel processing,
though it decreases the overall delay, is not very efficient. The proposed
algorithm achieves the optimal performance for computationally demanding
applications with a small amount of data to transfer, or when the transmission
and computing delays of the tasks are comparable.

With more UEs in the system and more generated tasks, the system gets
flooded with more requests for offloading. While some of there requests are
satisfied and tasks offloaded, others need to wait until the resources (network
bandwidth to the MEC, computing resources) become available. Thus, their
overall task completion delay and correspondingly, the average delay in the
whole system, is increased. The increase in D°¢~%% ig the most apparent in
the figures. When comparing the values of accumulated waiting period of 30
and 60 UEs in the system, the latter shows up to 35% higher D3ac¢~%ait for
different values of CV'M.
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Figure 6.9: Average delay based on the computing power of eNBs for different
values of CYM in a system with 30 UEs, A = 0.25
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Figure 6.10: Average delay based on the computing power of eNBs for different
values of CYM in a system with 60 UEs, A = 0.25

In order to compare the behavior of the overall task completion delay for
different values of Poisson A coefficient and eNBs’ computing power CVM
the cumulative distribution function (CDF) is used in Figures and
Both the figures show the increasing tendencies of average delay with growing
X and smaller computing power. The dash-dot lines represent CVM = 30
MIPS. Given the low computing power and therefore long period of waiting
for computation, the overall delays increase significantly, as display both
figures. The full and dashed lines representing the C¥™ = 3000 MIPS and
CYM = 300 MIPS, respectively, show that increasing computating power
improves the overall delay (compared to CV™ = 30 MIPS). However, once
the transmission delay outweighs the computing delay, increasing computing
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6.3. Comparison with other approaches

power shows little impact on the average delay. In both figures, the blue
lines representing the values of A = 0.1 are always to the right of the red
lines representing A = 0.25, showing the average delay grows with Poisson
coefficient. Comparing the results for the system with 30 and 60 UEs, the
steepness and the ends of the lines indicate the higher values of the average

delay for the latter.
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Figure 6.11: The CDF of the average delay based on different values of Poisson
X coefficient and eNBs’ computing power CVM in a system with 30 UEs
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Figure 6.12: The CDF of the average delay based on different values of Poisson
X coefficient and eNBs’ computing power CVM in a system with 60 UEs

B 63 Comparison with other approaches

The performance of the proposed algorithm (MNO) is compared with several

other approaches.
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6. Simulations

® Serving Only (SO) [34], where the UE only offloads to the eNB with the
highest RSS (its serving eNB).

® Heuristic Algorithm by Liu and Zhang (LZ) proposed in [7]. The task
allocation for one UE is independent on the others. When the UEs task
is allocated and eNBs within its computing cluster become unavailable
to other UEs for offloading, collisions occur. The UEs do not adapt the
size of their computing clusters, but instead wait for the eNBs to become
available again.

® Local Computation (LC), where the UE computes the generated tasks
locally. In order to properly compare both these algorithms, the exact
same tasks offloaded by MNO algorithm are computed locally, leading
to a waiting period when a new task is generated while another is still
being computed at the UE.

Additionally, the MNO algorithm is compared to the proposed algorithm
without the optimal subtask sequence, denoted as Multiple Nodes (MN). While
the selection of computing clusters M,, and the task allocation stays the
same as in MNO, the task partitioning algorithm is omitted. The sequential
offloading is not optimized, the tasks are partitioned in equal parts between
the computing eNBs.

Figures |6.13| and |6.14] show the average delay based on the computing
power of eNBs, with fixed Poisson coefficient A = 0.25. Both reflect the
redundancy of increasing the computation power after a certain point. While
the values of average delay show a steep decreasing tendency for higher values
of computation power at first, there is not a significant difference after reaching
1000 MIPS for any of the compared algorithms. The proposed algorithm
shows a decrease in average delay up to 68% and 48% compared to SO
and LZ, respectively. The influence of the optimal partitioning and subtask
sequencing on the proposed algorithm is indicated by its comparison with MN
and reaches up to 22%. For the system with more UEs, and therefore more
generated tasks to offload, the communication and computation resources
become more scarce, resulting in higher average delays. The LC algorithm is
not dependent on the eNBs’ computing power, but it is shown for comparison
of the offloading efficiency. In both figures, its value of average delay is
lower for CVM = 30 MIPS, indicating that for low computing power of
eNBs, offloading to the MEC gets worse results in terms of delay than local
computation.
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Figure 6.13: Average delay based on the computing power of eNBs for different
algorithms in a system with 30 UEs, A = 0.25
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Figure 6.14: Average delay based on the computing power of eNBs for different
algorithms in a system with 60 UEs, A = 0.25

To compare the efficiency of the algorithms for different task generation
values, figures and display the dependency of the average delay on
the Poisson coefficient. Given the comparison of algorithms with fixed value
of CVM = 3000 MIPS, all algorithms based on partitioning (i.e. MNO, MN
and LZ) show better performance than SO and LC algorithms. However, the
MNO and MN demonstrate slower rise of average delay towards larger values
of A than LZ algorithm. Comparing the results numerically, the proposed
algorithm shows improved performance over SO, LZ and LC by up to 78%,
40% and 61%, respectively. The task partitioning and sequencing improves
the efficiency by 19%, as shows the algorithm’s comparison with MN. The
system with more UEs once again shows larger average delay.
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Figure 6.15: Average delay based on the Poisson A coefficient for different
algorithms in a system with 30 UEs, CV'M = 3000 MIPS
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Figure 6.16: Average delay based on the Poisson A coefficient for different
algorithms in a system with 60 UEs, CVM = 3000 MIPS

Finally, the CDF of the average delay is used to compare the algorithms.
Figure shows the CDF for A = 0.1 and CV'M = 300 MIPS. The proposed
algorithm shows the best performance for both the simulations with 30 and
60 UEs, closely followed by MN and LZ algorithms. The LC algorithm shows
constant values of delay for most part, signifying that in the system with 30
and 60 UEs, for around 96% and 84% of tasks, respectively, computation
starts without further delay, while the rest of generated tasks need to wait
for them to finish.
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Figure [6.18| shows CDF with similar shapes, this time for the values of
A = 0.25 and CYM = 3000 MIPS. The algorithms show slightly better
performance than in because of larger A and the higher computing power
of eNBs. Since the higher computing power has no effect on LC algorithm,
the delay of locally computed tasks increases as the task arrival grows. With
more UEs in the system, more users need to wait for the resources. For both
the simulations with 30 and 60 UEs in the system, the ratio of tasks that can
start computing right away drops down to around 76%. This similarity is
caused by more tasks being held while the one is being computed.

Probability

Probability

o
®

o
o

o
IS

0.2

400 600 800 1000

Average delay Du [ms]

400 600 800 1000 0 200

Average delay, Du [ms]

200

(a) : System with 30 UEs (b) : System with 60 UEs

Figure 6.18: The CDF of the average delay for different algorithms, A = 0.25,
CVM = 3000 MIPS

33



34



Chapter 7

Conclusion and future work

In this thesis, the concept of computation offloading, together with allocation
of computing and communication resources in the MEC has been introduced.
The scenario with multiple users sequentially offloading their partitioned tasks
to multiple eNBs. In order to achieve minimum latency of the offloaded tasks,
the algorithm offloading to Multiple Nodes with Optimal task partitioning
(MNO) is proposed. The algorithm determines the possible candidates for
computing each of the generated tasks and performs the initial partitioning
correspodingly. The algorithm then iteratively allocates available resources
while continuously adjusting the partitioning.

Comparing to state of the art approaches exploiting parallel processing,
the proposed algorithm reduces the average task completion delay by up to
48%. When comparing to non-partitioning method, the proposed algorithm
reduces the delay up to 78%. The algorithm achieves the best performance
for computationally demanding applications with a small amount of data to
transfer, or generally, when the computing delay of the task is comparable to
the task’s transmission delay. The algorithm performs well when increasing
the computing load, with the value of average delay increasing by up to 19%
for simulated scenarios.

Future work should consider further optimization of the task allocation
process by introducing an element of fairness to the competition for resources.
Other possible enhancement is integrating device-to-device (D2D) communi-
cation, allowing the users to offload their task via nearby devices.
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Appendix

This section elaborates the equation 5.3 to obtain ratios of individal subtasks
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