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Abstract

This thesis explores possibilities of run-
ning deep neural networks on embedded
systems for traffic monitoring. The main
goal is to design, implement and test a
prototype of the system for vehicle and
people detection from video records and
camera streams using neural networks. In
this work, three different CNN architec-
tures are compared, namely RetinaNet,
YOLO and SqueezeDet. Software proto-
type is designed so that it can be deployed
on commercial off-the-shelf devices, e.g.
Jetson Xavier module from NVIDIA.

Keywords: neural networks, embedded
systems, machine learning, edge
computing, jetson, retinanet, yolo,
squeezedet

Supervisor: Ing. Lukas Hruby
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Abstrakt

Tato prace prozkouméava moznosti vyuziti
hlubokych neuronovych siti ve vestaveé-
nych systémech pro tcely monitorovani
dopravy. Hlavnim cilem je navrhnout, im-
plementovat a otestovat prototyp systému
vyuzivajiciho neuronové sité pro detekci
dopravnich prostredku a lidi z kamero-
vych zaznamu a streami. V praci jsou
porovnany tii architektury neuronovych
siti: RetinaNet, YOLO a SqueezeDet. Pro-
totyp software je navrzen tak, aby mohl
byt nasazen na komeréné dostupna zari-
zeni, napt. Jetson Xavier od NVIDIA.

Klicova slova: neuronové sité,
vestavéné systémy, strojové uceni, edge
computing, jetson, retinanet, yolo,
squeezedet

Preklad nazvu: Hluboké neuronové sité
ve vestavénych systémech
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Chapter 1

Introduction

Internet of Things (IoT) and artificial intelligence (AI) is becoming part
of out lives making everything smart and intelligent. Integration of IoT and
AT in smart cities is one of the promising application[I9]. Machine learning
has given the ability to process various tasks without human intervention
such as recognizing objects, playing games, diagnosis diseases. Deep learning
is one of the major branches in machine learning, and one of the most
trending application of deep learning is traffic object detection, which is
the core component of traffic control in smart cities. It makes the urban life
convenient and also safer.

. 1.1 Problem overview

Traffic monitoring is widely used by state and local transportation officials
in the planning of load improvements and monitoring of traffic conditions [20].
In private sector traffic monitoring and management can be used for several
reasons like identifying the best location for business, analysing how traffic
may impact a potential site, scheduling staff hours to peak periods of traffic
ete [21].

Traffic data can be collected in many ways, as we will see in following
Section [1.2. Some of these methods can be either resource-intensive or time
consuming, which leads to infrequent analysis or analysis based on small
sample sizes or outdated data. It is possible to predict trends in traffic flow
with only small amount of data using different statistic approaches, but it
may not be as accurate as sometimes required. When selecting the method
for traffic survey, we should take into account different factors:

1. Accuracy — we must be sure that data we collect are sufficiently accurate
for our needs. If we want to predict percentage of sales depending on walk-
ins, we may need less precise data about pedestrian flow comparing
to data that will be used for urban highway planning.

2. Price — some methods are more suitable for a one-time survey, while
repeated or continuous survey may require another approach. Therefore,
right choice of the method can reduce the cost of the research.
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3. Location — in some location, e.g. high-traffic roads or highways, it
is almost impossible to use invasive sensors or manual data collecting
methods, and cameras and other non-invasive sensors are preferable.

B 1.2 Overview of technologies for traffic survey

B 1.2.1 Manual counts

Manual traffic counting are defined as in-person traffic counts, where the counter
is physically present at the location of data collection[22] or counts objects
from recorded videos of the road. A person usually uses either an electronic
held counter or records data using a tally sheet (Fig. . Manual counts are
quite precise with only 1% counting errors and classification errors between
4-5%[23]. Only a small sample of data is taken, and results are extrapolated
for the rest of the year or season.

Figure 1.1: Manual traffic count[I]

B 1.2.2 Pneumatic tube detector

This method uses one or more rubber hoses that are stretched across the road
and connected at one end to a data logger, while the other end of the tube
is sealed, as shown in Fig. 1.2l When a vehicle tire passes over the tube,
sensors send a burst of air pressure along the tube and data are logged. This
method can be used to record data from several lanes of traffic and vehicle
direction can be determined by recording which tube was crossed first, but
if two vehicles cross the tubes at the same time, the direction cannot be
determined correctly. One of the advantages of pneumatic tube detector is
its low cost and easy deployment. However, its durability is low, it is not
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suitable for high flow or high-speed roads, and it is harder to classify some
types of vehicles[24].

Figure 1.2: Pneumatic tubes detector[2]

B 1.2.3 Sensors for traffic data collection

The different sensors can be used for traffic data collection. For example,
piezoelectric sensors mounted in a groove cut into road’s surface collect data
by converting mechanical energy into electrical energy[25]. Basically, it works
on the same principle as a pneumatic tube detector.

Another example of sensor used for traffic monitoring is magnetic sensors
that detect vehicle by measuring the change in the earth’s magnetic field as
the vehicle passes over the detector buried in the road[25].

Other sensors as passive or active infrared devices, acoustic detectors,
inductive loops are also quite popular in traffic surveys, but their usage is
limited.

B 1.2.4 Video object detection

While manual object counting is labour intensive and pneumatic tube detec-
tors and other sensors do not provide sufficient classification results, systems
that can automatically analyse videos of roads become more popular for traf-
fic counting and analysing. Limited computation power used to be one

3
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of the biggest limitation of using video analyses for traffic data management.
However, today’s technology allows to run advanced Al algorithms for image
classification in real-time[26].

Applying algorithm for object detection and classification for object count-
ing has proved to be extremely accurate with accuracy exceeding 99%[27].
These systems are cost-effective as they can provide more complex data,
like precise vehicle and pedestrians trajectories, vehicle type etc., comparing
to other technologies used in traffic monitoring systems. However, most
of the available solutions work only with recorded videos and are not suitable
for online traffic count and monitoring, or uses expensive and high energy-
consuming servers for calculations, as we will further discuss these systems
in Chapter 2.3.

B 1.3 Solution design

In this section, we will briefly discuss what our goal and use case are, what
edge computing means and what hardware we will use.

B 1.3.1 The goal of the thesis

In this thesis, we would like to explore both commercial and non-commercial
solution for object detection and classification using deep neural networks
and implement and test a software prototype for real-time traffic count and
monitoring utilizing edge computing.

We want to focus on detection of objects that are described in the Standard
UK vehicle classification scheme called COBA [28], [29]. That document
defines categories for traffic count systems:

1. Car - passengers vehicle with less than 16 seats,
2. Light Goods Vehicle (LGV) - car type delivery vans,

3. Ordinary Goods Vehicle 1 (OGV1) - a rigid vehicle with two or three

axles,

4. Ordinary Goods Vehicle 2 (OGV2) - a rigid vehicle with four or more
axles,

5. Public Service Vehicle (PSV) - all public service vehicle,
6. Motorcycle (MC) - all types of motorcycles including those with sidecars,

7. Pedal Cycle (PC) - all types of pedal cycles.

For this thesis purposes, we will simplify these classes and we will unite
OGV1 and OGV2 into one category “Truck”, instead of all PSV we will use
buses only, and we will also add another class “Person”.

4



1.3. Solution design

B 1.3.2 Edge computing

Edge computing is a computing paradigm when data are processed at the edge
of the network. Figure [1.3) shows the two-way computing stream in edge
computing. We can see that things are not only data consumer, but they
also work as data producers here. They can both request service and content
from the cloud and perform the computing tasks.

Data
——8

f f Data Producer
Data Resultl IRequest
[ | Computing offload
T Data caching/storage
Data processing
Edge A Request distribution
i l Service delivery
I l loT management
11 Privacy protection
vy
@ O e
® o R
o "\ e
& @ v &
Data Producer/Consumer

Figure 1.3: Edge computing paradigm|[3]

Edge computing is beneficial for many real-time applications such as traffic
object detection because it can provide a timely solution without no need
to send big amount of visual data to remote server, and allows to process them
where they are being collected. Some researches [30] show that platforms
built for face recognition application have reduced response time from 900
to 169 ms when computations are moved from cloud to the edge.

B 1.3.3 Hardware

While edge computing can drastically reduce response time, we should keep
in mind that hardware used for edge computing may not be as powerful as
one we can use in cloud computing. Some works have proved [31] that such
machine learning algorithm as random forests or support vector machine can
be run on widely available devices like Raspberry Pi. Another research[32],
however, shows that Raspberry Pi does not have enough computation power
for deep convolutional neural networks. Because of it, we should find suitable
hardware, if we want to use CNN for traffic object detection and recognition.

One of the possible solution for DNN acceleration can be Neural Compute
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Stick (NCS) from Intel'. This type of hardware in the form of USB drive is
designed specifically for DNN application and can be used with any other
hardware with Ubuntu or Raspbian OS. It supports Caffe and TensorFlow
frameworks and contains some pre-trained CNN models, which are already
converted into supported format. Experiments [33] show up to 8x speedup
on Raspberry Pi 3 with NCS. However, using of NCS is limiting as it is
only accelerating unit and cannot be fully tailored to our needs. Converting
trained neural networks into right format requires a lot of workarounds, and
it is impossible to use architectures not supported by Caffe or TensorFlow.

Nvidia offers a series of embedded modules for edge computing called Nvidia
Jetson. These modules are specifically designed for accelerating machine
learning applications. First board, Jetson TK1, was presented in 2014[34].
Jetson TK2 was announced in 2017 [35] and was designed for low power
systems like smaller camera drones. The next module called Jetson Xavier
introduced in 2018 [36] brings up to 20x acceleration compared to predecessor
devises with power efficiency being improved 10x. The newest Nvidia Nano
was announced in 2019 [37] and is focused on hobbyist robotics thanks to its
low price. Comparison between Jetson modules and Inter Neural Compute
Stick [38] shows that even the least powerful module, Jetson Nano, three
times outperforms NCS. Jetson modules are compared in Table [1.1..

Jetson TX2 8GB Jetson AGX Xavier™ Jetson Nano™
N’ ™
aPU NVIDIA Pascal™ S 3;/11311: é’%& cores NVIDIA Maxwell™
256 NVIDIA CUDA cores e R 126 NVIDIA CUDA cores
64 Tensor cores
cPU Dual-core Denver 2 64-bit CPU 8-core ARM v8.2 64-bit Quad-core ARM Cortex-A57
Quad-core ARM A57 complex 8MB L2 + 4MB L3 MPCore processor
Memory 8GB 128-bit LPDDR4 16GB 128-bit LPDDR4x 4GB 64-bit LPDDR4
Storage 32GB eMMC 5.1 32GB eMMC 5.1 16GB eMMC 5.1
Fvl:f;gc 2x 4K @ 30 (HEVC) 8x 4K @ 60 (HEVC) 4K @ 30 (H.264/H.265)
Video 2x 4K @ 30 12x 4K @ 30 4K @ 60
Decode 12-bit support 12-bit support (H.264/H.265)
. Wi-Fi onboard Wi-Fi requires external chip ‘Wi-Fi requires external chip
Connectivity ———
X Gigabit Ethernet
400-pi 599-pi 50-pi
Mechanical 400-pin 699-pin 260-pin
connector connector edge connector
12 lanes MIPI CSI-2, 16 lanes MIPI CSI-2, I y . o
Camera D-PHY 8 SLVS-EC D-PHY (40 Gbps), C-PHY | 12 ““;P%‘;’? O 4(’;22 gépi)CbI’Q’
1.2 (30 Gbps) (109 Ghps) (10 ThpS
Size 87 mm x 50 mm 100 mm x87 mm 69.6 mm x 45 mm

Table 1.1: NVIDIA Jetson comparison [I§]

As we can see, unlike other boards Jetson Xavier is built around NVIDIA
Volta™GPU with tensor cores which we will describe later in paragraph|1.3.3.1.
Jetson Xavier also uses two engines designed for AT acceleration, namely
Nvidia Deep Learning Accelerator ° and Vision Accelerator engines. Both
of them are described in the paragraph |1.3.3.2

"https://software.intel.com/en-us/neural-compute-stick
*http://nvdla.org/
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FP16 or FP32 FP16 FP16 FP16 or FP32

Figure 1.4: Tensor core operation [4]

B 1.3.3.1 Tensor cores

Tensor cores are capable of performing one matrix-multiply-and accumulate
operation in a 4x4 matrix in one GPU clock cycle [39]. Tensor cores in mixed-
precision mode takes input data in half floating-point precision, perform
matrix multiplication in half precision and the accumulation in single or half
precision, as we can see in Fig. [1.4.

This operation is crucial for most of machine learning applications, espe-
cially in deep learning, because, as we will discuss in further chapters, output
of each neuron in neural networks are calculated in a similar way.

B 1.3.3.2 Deep learning and vision accelerators

DLA

Configuration and Control Block

Iln pult .
Activations Convolution Post-
I Processing

Filter tire
Weights

T l

Memory Interface

Internal RAM

Figure 1.5: Deep Learning accelerator architecture [5]

Deep Learning Accelerator, shown in Fig. [1.5] improves energy efficiency
and free up the GPU to run more complex networks and dynamic tasks.
The DLA has up to 5 TOPS with INT8 precision or 2.5 TFLOP per second
with FP16 precision [40]. It also supports the acceleration of most common
CNN layers that are described in Chapter [3]

Another engine used in Jetson Xavier is Vision Accelerator, shown in Fig.
This engine is responsible for the acceleration of algorithm such as optical

7
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flow, point cloud processing, morphological operations, histogramming etc.

Vision Accelerator

Cortex-R5

Instruction Fetch & Dec

Vector | Vector | Scalar | Scalar Memory |Memory | Memory

VPU-1 Memory

VPU-0 Memory

Transfer Engines

Figure 1.6: Vision Accelerator [0]



Chapter 2

Related works

Application of machine learning in traffic monitoring and management is
a trending branch in smart cities development. This topic is broadly discussed
in the commercial field and academic communities. Some researches focus
on transferring compute-intensive algorithm to the edge, while others explore
how to improve existing cloud-based systems.

In this chapter, we will go through related research around deep neural
networks on the edge and discuss existing commercial and non-commercial
solutions for traffic monitoring.

B 21 Deep neural networks on the edge

It is widely recognized that video processing and object detection is computing
intensive to be handled by recourse-limited edge devices. Many studies try
to solve the problem of migration well-known machine learning algorithms
to the edge.

For example, in [4I] authors introduce a lightweight Convolutional Neural
Network (L-CNN). They implemented a prototype of the L-CNN on a Rasp-
berry Pi 3 and compared it with other algorithms, like Haar Cascades [42],
HOG + SVM [43] and SSD GoogleNet [44]. They achieved 1.79 FPS rate
with their algorithm, which was slower comparing to Haar classifier. However,
it had a smaller false positive rate (6.6% against 26.3%).

This research [45] shows how the careful design of CNN for object detection
can lead to real-time performance on embedded devices. They tested DroNet
[46] architecture, which was proposed as an efficient neural network for UAV
applications, changing the structure of the network to achieve the highest pos-
sible performance. Tests showed that on embedded devices like OdroidXU4
it is possible to achieve up to 10 FPS rate with 80% accuracy if the network
architecture is properly changed.

Other researches [47], [48] demonstrate how DNN can be used on older
Jetson platforms and how they can be optimized to ensure the highest
performance with little or no accuracy loss.

9



2. Related works

B 2.2 Commercial traffic monitoring and vehicle
recognition systems

There are many commercial solutions for traffic count available on the market.

For example, Miovision, the company from Canada devoted to smart cities,
offers semi-automatic system for traffic data processing', They ensure 95%
accuracy on all traffic data collection studies using Al and manual review,
with a minimum of 12% of every hour of provided video being manually
reviewed. Despite being accurate, this solution does not produce results
in real-time and requires addition system for video data collection. Czech
company DataFromSky[’| offers similar tool: video must be recorded separately,
sent to them and output results are manually reviewed.

GoodVision® offers cloud software platform for fully automated traffic data
collection from videos. GoodVision Video Insight provides data from up-
loaded video within an hour with no human interaction in data collection
process. Unlike Miovision or DataFromSky, GoodVision software allows users
to analyse their data interactively by drawing lines and zones after video was
fully processed. However, this solution again requires video to be recorded
in advance and is not able to process videos directly from cameras.

Another company from the Czech Republic, Eyedea Recognition*, focuses
on developing object detection and object recognition systems based on ma-
chine learning and artificial intelligence methods. Their software for make and
model recognition analyses vehicle appearance and recognizes its category,
make, model and colour. However, this solution has a lot of limitations. First
of all, it does not provide vehicle detections, which means another algorithm
should be used to do object detections. Accordingly to Eyedea’s manual [49],
each vehicle must be captured from top frontal or top back view, and its
cropped image must be aligned in the way the license plate is horizontally
aligned. This solution also lacks recognition of bicycles and pedestrians, which
is essential for any traffic management.

Companies like Nationwide Data Collection®|or The Traffic Group, Inc.°
provide a solution for traffic count using technology we described in Sec-
tion [1.2, namely manual counting, pneumatic tubes and various sensors.
Regardless of being reliable, these systems have lots of disadvantages compar-
ing to systems that utilize machine learning algorithm.

https://miovision.com/datalink/traffic-data-processing/
http://datafromsky.com/

3https://goodvisionlive.com/

“http://www.eyedea.cz/

®https:/ /nationwidedatacollection.co.uk/
Shttps://trafficgroup.com/

10
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. 2.3 Non-commercial traffic count and vehicle
recognition systems

Traffic count, management and forecast is widely studied by a lot of universities
and non-commercial organization around the globe.

In 2005 scientists from the Bruno Kressler Foundation proposed SCOCA
— System for Counting and Classifying Automatically vehicles [50]. In their
system data are collected from the camera to the local units that are con-
nected through an optical fibre to a central processor. In this application,
user can define a region of interest, from where data should be collected.
Images are processed as soon as they are received by TRAFFIC DATA EX-
TRACTOR. The extractor contains two submodules: the first one, called
Detectorandtracker, analyses the frames in order to locate objects passing
through the region of interest; the second one, Object Parameter Extractor,
is responsible for object classification and estimation its real-world path. For
object detection they use background subtraction, and object tracking is
done by tracking the moving map. Classification module runs in parallel
to the detector. Authors use model-based classification which relies on a set
of three-dimensional models that describes the shape of different groups
of vehicles. The 3D model is projected into the 2D scene, and the convex hull
of the object is matched against each projection, and the best score is stored.
The final classification is done when every object detection is classified. This
system has 88.3% classification accuracy, but model-based classification can
be time-consuming and requires accurate camera setting, and unlike CNNs
it is less adaptable to changes in classification classes. Also, since the final
classification result is available after the object leaves the scene, the user does
not get all the information about traffic immediately.

Another research [51] proposes a solution for real-time vehicle detection
using advanced AdaBoost algorithm. Researchers claims detection rate is
98.41% for day scenes and 95.68% for evening scenes and detector runs at 19
FPS. However, their research is focused on general vehicle detection without
classification and for efficient functionality, the algorithm requires a camera
to be placed in such a way that vehicle frontal view can be captured. This
approach limits the usability of the system for traffic count systems.

Several other studies [52], [53], [54] propose systems for vehicle detection
and classification using neural networks. Researchers state the proposed
solutions have high classification accuracy. However, they are not suitable
for real-time traffic count.

11
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Chapter 3

Neural networks

Artificial neural networks are systems inspired by the human brain [55].
The basic computation unit in the brain is a neuron (see Fig. [3.1)), which
has input and output. The input is a dendritic tree connected to the out-
puts of other neurons called axons. Neurons operate in a single direction
from the input to the output and their output is binary. Neurons are also
basic computation elements of artificial neural networks. Similarly to biologi-
cal neural networks, it can have several inputs and outputs. Every neuron
can be described by function f (w-x + b), where x is the input, w denotes
weights, b is a bias and f is the activation function. There are several types
of artificial neural networks that are commonly used in machine learning.
The most popular type used in object detection is a convolutional neural
network (CNN), which will be described in the following section.

Neuron

_Dendrites

Axon terminals

Figure 3.1: Neuron cell [6]
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3. Neural networks

. 3.1 Architecture

All CNN models have a similar architecture shown in Fig. The input
of such neural network is an image. CNN consists of a series of convolution
and pooling operations followed by fully connected layers. These operations
are described in the next paragraphs.

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

cat (0.04)
boat (0.94)
bird (0.02)

-

0

[ L

Figure 3.2: Convolutional neural network [7]

B 3.1.1 Convolutional layer

Convolutional layers consist of neurons placed in a grid of size N x M x
C', where N, M denotes width and height of convolutional filter and C' is
number of channels in the previous layer (see Fig. . The filter moves
from the left to the right with a certain stride until it completes processing
width, then it moves down by the same stride to the beginning of the image
and repeats the process until the whole image is traversed. The process
computes convolution as shown in Fig. Calculated feature map is usually
smaller than the input, but it is possible to preserve the same dimensionality
by using padding to surround the input with zeros.

depth
height

OOOOOY width

Figure 3.3: Convolutional layer [§]

B 3.1.2 Non-linearity layer

A non-linearity layer consists of an activation function that takes calculated
feature map and creates the activation map as its output. The most common
non-linearities used in CNN are sigmoid and ReLu [3.5

14
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Figure 3.4: Convolution computation [§]

B 3.1.3 Pooling layer

After convolution, pooling layer is used to reduce the dimensionality which
enables to reduce the number of parameters. Two most common pooling
operations are max and min pooling. It simply slides the input with particular
stride and chooses maximal or minimal value in the predefined window
(see Fig. . Pooling may reduce overfitting of the CNN and can reduce
the training time [56].

B 3.1.4 Fully connected layer

In fully connected layers, each neuron is connected to every neuron in the pre-
vious layer just like in feedforward neural networks.

B 32 Training of CNN

Before we can use any neural network, it must be trained to understand
how objects we want it to recognize should look like. The weights of filters
are randomized, and the filters in lower layers of CNN don’t know to look
for edges or curves, the filters in higher layers don’t know to look for more
concrete shapes like wheels, legs, faces. As any supervised learning, CNNs
are given a training set of thousands of images with labels to learn features
of objects. The learning algorithm is called backpropagation.
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Figure 3.5: Comparation of ReLu and sigmoid non-linearities

B 3.2.1 Backpropagation

Backpropagation was firstly introduced in [57] in 1986. This process can be
separated into four steps: the forward pass, the calculation of loss function,
the backward pass and the weight update. During the forward pass, we take
a batch of training images and pass it through the network. After the first
training forward pass output of the network would probably be randomized,
because the network isn’t able to look for any type of features, and isn’t
able to make any reasonable conclusion about training example. This goes
to the next step of backpropagation, the calculation of loss function. Each
neural network can have its own loss function depending on what its output
is, but the most common loss function used for backpropagation is mean
squared error

L= o3 () —a(@)P, (31)
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3.2. Training of CNN
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Figure 3.6: Pooling layer [8]

where n denotes the number of training inputs z, y(x) label corresponding
to the input = and a is the network’s output. By training process, we want
to achieve such a result where the predicted label is the same as the training
label. To get this, we want to minimize the amount of loss we have, hence
we want to find out which weights most directly contribute to the loss
of the networks. This leads to the third step, backward pass, where we
calculate partial derivations g—ﬁ, %—%. Once we compute the derivation, we
can update weights and biases by changing them in the opposite direction

of the gradient using learning rate 7:

w=w-— ngi, (3.2)
oL
b=b—n%. (3.3)

n is the parameter that defines how big steps learning process will take
to update the weights, thus how fast we want the model to converge. However,
the learning rate that is too big could result in jumps that are too large and
not precise enough to reach the optimal point.

B 3.2.2 Overfitting

Overfitting is one of the biggest problems in machine learning. Overfitting
means that a model learns the detail and noise in the training data to the ex-
tent that it negatively impacts the performance of the model on new data.
To solve this problem in neural networks, we can use so-called dropout. Dur-
ing each training step, an individual neuron can be dropped out of the net
with probability 1 — p or kept with probability p, so that only a reduced
network is trained. The removed neurons are then reinserted into the network
with unchanged weights. This methods not only decreases overfitting but
also improves training speed [58].

Il 3.2.3 Batch normalization

Assume we have a training set of images with cars that has a particular colour.
If we try to use the network that was trained on that dataset, it probably

17



3. Neural networks

will not work well on cars with another colour. In that case, we might need
to retrain the network by trying to align the distribution of cars in different
colours. Batch normalization helps with this problem by reducing the amount
of covariance shift in hidden layers [59]. It simply normalizes the output
of each layer by subtracting the batch mean and dividing by the batch
standard deviation. After this change of activation output, the weights
in the next layer are no longer optimal. Therefore, batch normalization
adds two trainable parameters to each layer and lets gradient descent do
the denormalization by changing only these parameters during each activation.
Batch normalization also helps with overfitting, because it adds some noise
to each layer’s activations. It also allows using higher learning rate, because
it makes sure no activation goes high or low.
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Chapter 4

Network architectures used in the thesis

In previous chapters, we already mentioned some network architectures that
are used for object detection in traffic systems. Here we will describe in detail
four CNN architectures we used during experiments described in Chapter

. 4.1 ResNet

Residual networks described in [9] are classification networks with an image as
the input and object class and confidence score as the output. In this paper,
they introduced shortcut connections that are widely used in modern neural
networks. One of the biggest problems with training deep neural networks is
vanishing and exploding gradient. During backpropagation, a lot of small or
large numbers are multiplied to compute gradients. When the network is deep,
multiplying of small numbers will become zero (vanished) and multiplying
of large numbers will explode. Normally we expect deeper neural network will
have more accurate predictions, but the opposite is true, and this degradation
problem is caused by the vanishing gradient. This problem can be solved
by adding shortcut connection which adds the input to the output after few
weight layers; hence the output is H(z) = F(z) 4+ z (see Fig. [4.1). There are
two types of residual connections. The identity shortcuts can be directly used
when both input and output have the same dimension, or extra zero padding
can be used when dimensions change. In both cases, no extra parameters are
needed. Comparing plain and residual network with 34 layers (see Fig.
Top-1 error drops from 28.54% to 25.03%. On the other hand, if we compare
a smaller network with 18 layers, Top-1 error changes from 27.94% to 27.88%,
which means shortcut connections perform better in deeper networks.
ResNets with a different number of layers are often used as classification
networks (backbone) in detectors such as RetinaNet.

. 4.2 RetinaNet

RetinaNet was proposed by Facebook Al Researchm and its features are
described in [I0] and [60]. They proposed using anchor boxes instead of pre-

Thttps://research.fb.com/category /facebook-ai-research /
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4. Network architectures used in the thesis

34-layer residual

Figure 4.2: ResNet architecture [J

dicting bounding boxes. Sizes of the anchor boxes are predefined and used
in further predictions. Thus, the network does not predict the final size
of the object, but instead, it only adjusts the size of the nearest anchor
to the size of the object. Also, they suggested a solution for object detection
in different scales. Originally a pyramid of the same image at different scales
was used to detect the object. However, this solution is time-consuming and
has a high memory demand. Instead, a pyramid of features can be used. Al-
though it is not such efficient for accurate object detection as image pyramids,
it provides result faster and with less memory consumption. In [I0] authors
propose Feature Pyramid Network (FPN) which is fast like the described
pyramid of features, but more accurate. Its architecture is shown in Fig.
The other solution, focal loss, solves the class imbalance. Instead of normal
cross entropy calculated by

Clp.y) = =3 vilnp;, (4.1)

scaled entropy is used using the following equation:

Clp,y) == vi(l—p;)*Inp;. (4.2)

i
Here we can see focusing parameter A > 0 which smoothly adjusts the rate
at which easy examples are down-weighted, and thus training is focused

on hard negatives. In this thesis, we used Keras implementation of RetinaNet
[61] implemented in TensorFlow with ResNet50 as a backbone.

B a3 SqueezeDet

SqueezeDet [12] is a single stage detection pipeline inspired by YOLO, which
will be covered later in section [4.4l The main difference between two archi-
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Figure 4.3: Feature Pyramid Network [10]

tectures is that SqueezeDet uses SqueezeNet [I1] for feature extraction.

Figure 4.4: Fire module in SqueezeNet [11]

The building brick of SqueezeNet is called fire module 3| Each fire module
contains a squeeze layer and an expand layer. Squeeze layers replace 3x3
filters by 1x1 filters to reduce computation complexity 9 times. Following
expand layers contain a number of 1x1 and 3x3 kernels. Squeeze layers
reduce depth of calculated feature map, which means the following 3 x3 filters
in expand layers have to do less computation. Thanks to its architecture,
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4. Network architectures used in the thesis

SqueezeDet can be faster and smaller compared to other state-of-art solutions
(see Fig. , and so can be efficiently used on embedded system.

Activation
Model Memory Average Inference Energy
Size FLOPs  Footprint  GPU Power Speed Efficiency —mAP*
model (MB) x109 (MB) (W) (FPS) (J/rame) (%)
SqueezeDet 1.9 9.7 117.0 80.9 57.2 1.4 76.7
SqueezeDet: scale-up 7.9 225 263.3 89.9 313 29 724
SqueezeDet: scale-down 7.9 5.3 65.8 71.8 92.5 0.84 732
SqueezeDet: 16 anchors 9.4 11.0 1174 82.9 51.4 1.6 66.9
SqueezeDet+ 26.8 772 2527 128.3 32.1 4.0 80.4
VGG16+ConvDet 574 288.4 5404 153.9 16.6 9.3 79.1
ResNet50+ConvDet 35.1 61.3 369.0 95.4 22.5 4.2 76.1
Faster-RCNN + VGGl6[ 1] 485 - - 200.1 1.7 117.7
Faster-RCNN + AlexNet [1] 240 - - 143.1 29 49.3
YOLO*~ 753 - - 187.3 258 7.3

Figure 4.5: SqueezeDet comparison with other state-of-art solutions [12]

The loss function of SqueezeDet is defined as

W H K

?53” )IPIPIRAT [(Mz‘jk - mg‘k)Q + (o = P

bj =1 j=1k=1

2

2 2
+ (Bwige = Buy)” + (Bhik — Bhy) ]
L& E Ny G \2 Aconf _
+ Z Z > Ny Liji (%‘jk - 7¢jk> + W/I_IK—_]VObinjk%‘jk

where the first part is the bounding box regression and (8x;jk, BYijk, BWijk, Bhijk)
corresponds to the relative coordinate of anchor-k located at grid center-(3, j).
Second part denotes confidence score regression with output 7;;;. The last
part is a cross-entropy loss for classification.

We used a tensorflow implementation of SqueezeDet available to download
from GitHub [59].

B 24 voLo

B 4.4.1 YOLOvl

Another approach for object detection, YOLO architecture, was presented
in [I3]. A single neural network is used to predict both bounding boxes and
class probabilities, hence an image is evaluated only once. The described
system divides the input into an .S x S grid, and if the center of an object
falls into a grid cell, this cell is responsible for detecting that object. Each cell
also predicts B bounding boxes and confidence score for them. Confidence is
defined as

score = Pr(Object) - ToU"vh (4.4)

pred >
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4.4. YOLO

where Pr(Object) is a probability of an object being inside that bounding
box and I OU;;gflh denotes intersection over union between ground truth and
prediction. Each bounding box consists of (z,y,w, h, score), where (z,y)
represents the center of the box and (w,h) denotes its width and height.
Each grid cells also predicts conditional probability C' = Pr(Class;|Object).
The model consists of 24 convolutional layers followed by two fully connected

layers as it is shows in 4.6}
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Maxpool Layer  Maxpool Layer
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Figure 4.6: YOLOv1 architecture [13]

Training process optimizes the loss function

S2 B '
)\coord Z Z 1?;')] [(xz - -fz)Z + (yz + @1)2]
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+ )\noobj Z Z 1%‘)0 J (CZ — Cz)
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SQ
bj N2
+3°1%7 S (pile) = pile)®, (4.5)
=0 cEclasses
where
obj _ 1, if there is an object. (4.6)
" 0, otherwise,
1;;.‘)Obj is inverse function to lfjl?j s Acoord and Apoopj are constant to increase

the loss from bounding box coordinate prediction and decrease the loss
from confidence prediction for boxes that do not contain objects. While
YOLOv1 was faster than most of the existing approaches for object detec-
tion, it had relatively low 57.9% mAP on the VOC 2012 test set compared
to the existing state of the art.
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4. Network architectures used in the thesis

B 442 YOLOW

The improved model YOLOv2 was introduced in [I4]. Authors of this state
of the art detector refers to it as a better, faster and stronger version of YOLO.
For better performance, they added batch normalization and used images with
a bigger resolution to train the network. They also removed fully connected
layers and used anchor boxes to predict bounding boxes, which lead to a small
decrease in mAP from 69.5% to 69.2%, but it also increased a recall from 81%
to 88%. We can see how applied changes improved network performance
in 4.7

YOLO YOLOv2
batch norm? v v

hi-res classifier? v
convolutional?
anchor boxes?

new network?
dimension priors?
location prediction?
passthrough?
multi-scale?

hi-res detector?
VOC2007 mAP | 63.4 | 65.8 69.5 0692 69.6 744 754 768

ASRNENEN
N NN

N N N
NN N NN
RN N N ENENEN
S SN NENENEEENENEN

~1

Figure 4.7: YOLOv2 improvement [14]

They also proposed a new classification network called Darknet-19 (see
Appendix D)) to make YOLO even faster. We can see that Darknet-19 has
many 1 x 1 convolutions to reduce the number of parameters.

B 4.43 YOLOv3

The newest version of YOLO was presented in [I5]. Similar to YOLOv2 it
predicts bounding boxes using dimension clusters as anchor boxes. The net-
work predicts four coordinates for each bounding box and for training they
use a sum of squared error loss. Objectness score for each bounding box
is predicted using logistic regression, which should be one if the bounding
box prior overlaps a ground truth object by more than any other bounding
box prior. They also use three different scales for prediction, which is sim-
ilar to feature pyramid networks. Deeper extractor called Darknet-53 (see
Appendix [E) with shortcut connections is used for feature extraction.
Comparing to another state of art solutions, YOLOv3 has similar per-
formance, but it is much faster as shown in Fig. 4.8, Unlike RetinaNet

and SqueezeDet, YOLO uses another neural network framework, Darknet|'|
written in C and CUDA.

"https://pjreddie.com/darknet/
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Figure 4.8: YOLOv3 comparation [I5]
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Chapter 5

Experiments

For experiments, we chose YOLOv3, SqueezeDet and RetinaNet (both with
ResNet as a backbone). We trained all three networks on KITTIE| and internal
GoodVision dataset called “GV-2018” that was specifically prepared for our
use case. Thanks to the ability of RetinaNet and YOLOv3 to adapt to the size
of the input image, we were able to test different image size ratios with no
need to retrain these networks. YOLOv3 was evaluated with two different
input image resolutions: 608x608 and 418x418; for evaluation of RetinaNet,
we used three different largest side sizes, 1024, 608 and 418, which means input
image will be resized so that its largest side has given size. Unfortunately,
SqueezeDet does not adapt its layers to an input image, so we used a network
with input image resolution 1242x375 defined by the pre-trained model.

. 5.1 Datasets

B 5.1.1 KITTI dataset

KITTTI dataset consists of 7481 training images and 7518 test images with
a total of 80256 labeled objects. Original dataset has nine different type
of objects:

1. “Car”
2. “Van”
3. “Truck”

4. “Pedestrian”

5. “Person_ sitting”

6. “Cyclist”
7. “Tram”
8. “Misc”

"http://www.cvlibs.net/datasets /kitti/
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5. Experiments
9. “DontCare”.

We used only 5 of them for training: “Car”, “Van”, “Truck”, “Pedestrian”,
“Person__sitting”, though we merged “Person_ sitting” and “Pedestrian” classes
into a single “Person” object type. Regardless of the lack of common classes
like “Bus”, “Bicycle”, “Motorcycle”, it fits our needs, because all data were
gathered by driving around cities, in country areas, and on highways, and
so out networks would be trained on real-life traffic data with no redundant
information

Figure 5.1: Image samples from KITTI dataset

B 512 “GV-2018"

“GV-2018” was specifically created for object detection and recognition in traf-
fic. It consists of 4917 images with more than 130000 labeled objects. Unlike
in KITTI dataset, such classes as “Bicycle”, “Bus”, “Motorcycle” are pre-
sented here, which means neural networks trained on this dataset will be
more comprehensive and more adequate for our use case. Images for this
dataset were gathered from cameras placed at different heights and angles
to roads and highways. Samples from the dataset are presented in

Both datasets are divided into train dataset (data used for training),
validation dataset (data used to estimate validation loss during training) and
test dataset (data used for evaluation of trained network).
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5.2. Performance evaluation

Figure 5.2: Image samples from “GV-2018”

. 5.2 Performance evaluation

For our evaluation, we calculated average precision for every class in the test
set. We had to calculate precision and recall, which are defined as

. TP
Precision = TP+ FP’ (5.1)
TP
Recall = m—m, (52)

where TP is true positives, FP is false positives, and FN is false negatives. It
means precision measures how accurate predictions are, while recall refers
to the percentage of total relevant results correctly classified by our network.
To determine if the prediction is a true positive or a false positive, intersection
over union (IoU) has to be measured. As Figure shows, IoU is simply
the ratio between the area of overlap between the ground truth bounding box
and predicted bounding box, and the area encompassed by both ground truth
bounding box and predicted bounding box. If IoU is over some predefined
threshold, the prediction is considered to be true. Otherwise, it is a false
positive. For evaluation, we chose this threshold to be 0.5.
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5. Experiments

Then we calculate precision/recall curve [62], and average precision is
the area under that curve and is calculated for every class independently.
Mean average precision is simply average value of average precisions across

all classes. Results of the evaluation are presented in table YOLOv3

Area of Overlap

Area of Union

Figure 5.3: Intersection over Union [I6]

performs better than both SqueezeDet and RetinaNet at both resolution.
Although YOLOv3 trained on KITTT dataset indicates bigger mAP on KITTI
test set, it has worse performance on GoodVision test dataset, while YOLOv3
trained on “GV-2018” has almost 10% better mAP. We can notice this trend
for all 3 CNNs: while KITTI-trained model has better performance on KITTI
test dataset, it fails on GoodVision dataset. If we compare models trained
on KITTI and GoodVision datasets using AP of classes presented in KITTI
dataset only, the difference will be even bigger.

. 5.3 Inference time evaluation

For computing on the edge, we should ensure that time delay between
receiving input data (stream frame) and providing output data to a user
is as small as possible. Time of object detection and classification can be
the biggest bottleneck in such systems. Therefore it is necessary to choose
such architecture that provides the best result with the least possible inference
time. Videos for this evaluation were taken from video databases with free
access such as YouTubd!l or Pexels?l All videos have different camera view
with various object count, video resolution and FPS, as shown in table 5.1}
This can affect neural network detector performance. Hence we should
also compare various input resolutions of neural networks. Video samples
presented in Appendix shows noticeable difference between videos scenes.
Those scenes represent the typical use case for our system.

We compared the time necessary to process one image frame by CNN using
Jetson Xavier and other two different PCs with CPU and GPU specifications
presented in tables 5.2 and

As we can see from table PC1 performs best for all three CNNs. On
the other hand, PC2 has worse inference time comparing to Jetson Xavier

"https://www.youtube.com/
“https:/ /www.pexels.com/videos/
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5.3. Inference time evaluation

Video file FPS | Video Resolution

5.4 4K Camera Road in Thailand.mp4 30 1280x720
Cars Driving On Street.mp4 30 1920x1080
Cars On Highway.mp4 25 1920x1080

Cars On The Road.mp4 50 1280x720
City Traffic.mp4 30 1920x1088

Day Traffic Sample Video Dataset.mp4 30 432x240
Pedestrian and Traffic, Human Activity Recognition Video ,DataSet By UET Peshawar.mp4 | 30 1280x720
Pexels Videos 1601538.mp4 25 1920x1080
Pexels Videos 2577.mp4 30 1920x1088
Pexels Videos 2670.mp4 25 1920x1088
Pexels Videos 3047.mp4 30 1920x1088
Pexels Videos 948404.mp4 24 3840x2178
moderate_traffic.mp4 30 1280x720

Table 5.1: Characteristics of video for inference time evaluation

CPU Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz
GPU | 3584-core 11Gb GeForce GTX 1080 Ti @ 1582MHz

Table 5.2: PC1 technical specification

using YOLOv3 and RetinaNet and almost the same while using SqueezeDet.
It is worth mentioning that YOLOv3 has similar inference time for both
tested resolutions and SqueezeDet has the best inference time among all
tested CNNs.

Bl 5.3.1 Mixed precision calculation

We have discussed in section [1.3.3| that Nvidia Jetson has tensor cores to ac-
celerate matrix calculation using mixed precision matrix multiplication and
accumulation. Darknet framework used for YOLOv3 can activate tensor cores
directly, because it is written in CUDA. To utilize tensor core using TensorFlow
we should use TensorRT platform!, TensorRT is able to convert TensorFlow
CNN graph into the supported format and use it for inference with mixed
precision calculation. We achieved a significant decrease in the YOLOv3
inference time, but in RetinaNet the difference between measured inference
time using plain TensorFlow and inference time using TensorRT was small,
which is also described in table [5.5. Insignificant improvement in inference
FPS is caused by the fact that TensorRT supports only some layers defined
in TensorFlow. We used RetinaNet implemented in Keras and some of its
layers are custom and not supported in TensorRT. This problem can be solved
by reimplementing RetinaNet in TensorFlow or add support for these layers
into TensorRT. However, we have already achieved sufficiently good results
with YOLOv3 in both detector precision and its inference time, and we came
to a decision that any future work on RetinaNet and its improvement using
TensorRT is unnecessary.

Thttps://developer.nvidia.com/tensorrt
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CPU

Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz

GPU | 640-core 4Gb GeForce GTX 1050 @ 1404MHz
Table 5.3: PC2 technical specification
Model Machine Inference time [ms]

Jetson Xavier 123

YOLOv3 416x416 PC1 35

PC2 175

Jetson Xavier 139

YOLOv3 608x608 PC1 39

PC2 208

Jetson Xavier 25

SqueezeDet PC1 24
PC2 8

Jetson Xavier 210

RetinaNet 1024 PC1 52

PC2 228

Jetson Xavier 107

RetinaNet 608 PC1 28

PC2 100

Jetson Xavier 74

RetinaNet 416 PC1 19
PC2 65

Table 5.4: Inference time evaluation

Model . Origiflal . Mixed-pr.ecision
inference time [ms] | inference time [ms]
YOLOv3 416x416 123 49
YOLOv3 608x608 139 91
RetinaNet 1024 210 186
RetinaNet 608 107 95
RetinaNet 416 74 67

Table 5.5: Inference time using mixed precision calculation
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Chapter 0

Implementation

Experiments proved YOLOv3 trained on “GV-2018" dataset to be the most
suitable network architecture among all tested CNNs. In this chapter, we
will describe how detector with YOLOv3 CNN is implemented and how it
communicates with the user. We will also describe what prerequisites are
needed for Darknet framework and which environment is used to run our
system.

. 6.1 Docker

Docker'| containers are used for encapsulation of an application with its
dependencies. Like virtual machines, a container holds an isolated instance
of an operation system that can be used to run applications. Figure 6.1| shows
the architecture differences between VMs and containers. Containers are more
lightweight, as they include only the executables and its dependencies and
share the same operation system as a host machine [I7]. Additionally, several
containers can share the same image, while each VM has its own image file
[63]. The portability of containers also help with software distribution: once
the container is created, it can be used on different machines with no additional
settings. They also provide isolation of our application from settings on our
machine, which is extremely useful during developing.

NVIDIA offers “nvidia-docker” [64] plugin to enable GPUs inside docker
containers. However, this solution does not support Tegra platforms [65]
as Jetson Xavier. Fortunately, JetPack, which is discussed in Section [6.2]
has Docker support built into the kernel since version 3.2 [66]. However, it
still does not support GPU mapping into docker containers, which should
be done manually when starting the container. Also some libraries, such
as CUDA, can only be installed on Jetson Xavier via JetPack. Hence it is
not possible to install them inside a docker container and they should be
mapped as well when the container is started. To make this process easier,
we use the bash script from Technica Corporation [67] that overwrite process
of starting docker container. Since CUDA is available only inside running
container, it is not possible to build a docker image with installed prerequisites

Thttps://www.docker.com/
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Figure 6.1: Architecture comparison virtual machine vs. container [L7]

in a standard way using Dockerfile. Instead, we can install it inside empty
running docker container that will be used to create a new docker image.

After the docker image is created, it can be pushed to docker repository
and used on any other Jetson Xavier.

B 6.2 Prerequisites installation

Before we can use Jetson Xavier, we should flash (install base firmware) it first.
NVIDIA offers J etPackE], which is used to flash Jetson with the latest available
OS image, which is, in our case Ubuntu 18.04, and installs the libraries needed
for building AI applications. JetPack includes the following libraries [68]:

1. TensorRT and cuDNN for increasing performance of deep learning appli-
cations,

2. CUDA for GPU calculations,
3. VisionWorks and OpenCV for visual computing.

Since we use docker environment, we do not need to install OpenCV on
Jetson directly. It is available online [69] and can be easily installed without
JetPack [70] inside docker container.

On the other hand, CUDA 10.0 for Jetson modules is not available for down-
load and can be installed on Jetson via JetPack only, which is also the reason
why we have to map CUDA folders into the docker container, as mentioned
in Section [6.11

After Jetson is flashed, we can prepare the docker container. As a base
image we used arm64v8/ubuntu:18.04 [7I]. We run the container with
GPU mapping and CUDA folders mapping using bash script “jetson-docker”

"https://developer.nvidia.com/embedded /jetpack
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6.3. API

Path Operation Description
GET Return detector status
/detector POST Start detector
DELETE Stop running detector
/detector /detection__image GET Return grabbed frame with detections
/detector /detection_ stream GET Stream frames with drawn detections

Table 6.1: API definition

available on attached CD (see Appendix |C). Inside the container, we installed
OpenCV 3.2, which is necessary for working with images and video streams,
and Protocol Buffer 3.5 [72], a library for serializing structured data, which
is used for saving and loading CNN models.

We have said in Chapter |5/ that YOLOv3 has proved to be efficient for our
use case, hence we have to install Darknet framework to work with YOLO.
Darknet is available on GitHub [73]. For our application, we built Darknet
with GPU and CUDNN__HALF flags to accelerate inference by using Tensor
Cores in Jetson Xavier GPU and with OPENCYV flag to enable detecting
on videos and video streams.

After all prerequisites were installed, we were able to implement the detector
with YOLO architecture.

B 63 APl

We implemented a service for communication with Jetson Xavier module and
detector in Python3 using Flask framework'. Endpoints of the service are
defined in table[6.1] and their documentation can be found in the Appendix [B|.
Documentation of the API endpoints was created using Swagger. The API
runs directly on Jetson Xavier.

The detector can be started via API by sending a POST request to “/detec-
tor” endpoint with stream URL and configuration json file attached in form
data. The configuration file should contain mandatory parameters for detector
and can content optional parameters, which are described in section 6.4. After
detector is started, it is possible to get an image with drawn detections by
sending GET to request to either “/detector/detection_image” or “/detec-
tor/detection_stream” endpoint. The first one returns a single last processed
frame, the second one continuously receives frames from the detector and
streams them to user with 1 FPS frame rate. Communication between API
and detector is ensured via named-pipes, which are a special type of FIFO file
that is stored in the local file system. When API needs data from the detector,
it sends a request to detector through one pipe, and detector sends encoded
data back to API through another pipe. API decrypts received data and
sends them to user. Named-pipes content resides in memory rather than
being written to disc, which makes this type of communication fast enough

"http://fask.pocoo.org/

37



6. Implementation

even for transmitting big blocks of data, as images can be.

We also wanted to be sure only authorised users would be able to use API,
so we secured communication with API with HTTP access authentication.
Flask has several standard authentication methods:

1. Basic authentication access

This method requires user to provide a user name and password when
making a request. Credentials are encoded in the base64 encoding,
which is a process of converting binary data to an ASCII string format
by converting that binary data into a 6-bit character representation.
Encoded credentials are sent to the server, where they are compared
with data stored hashed in database.

2. Digest authentication access

This method is similar to the previous one, but a hash function to the user-
name and password is applied before sending them over the network,
which makes this method more secure.

3. Token authentication access

This method generates a unique token for logged-in users. The token
is then used to access protected pages instead of the credentials, which
makes application more secure, because users do not enter their creden-
tials for every page access. Token authentication should be combined
with other authentication method to verify that the login information is
correct.

For the purpose of our prototype, we used HTTP basic authentication,
which can be replaced with another authentication method in future work.

. 6.4 YOLOv3 detector

Our detector application is divided into three parts: data provider, which
grabs images from stream, detector itself, which does inference, and the main
application, which handles communication between detector and data provider
and sends data to API described in section [6.3. Implementation summary is
presented in Fig. 6.2

B 6.4.1 Data provider

This part of the application is responsible for providing data from the video
stream. Using OpneCV VideoCapture class, it captures frames from video
stream, which can be a video file, RT'SP stream or stream from a camera
connected directly to Jetson Xavier via USB or NVCSI port.

Data provider runs asynchronously, and stores captured frame into class
variable. If the connection is lost, the data provider tries to reconnect, and if
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6.4. YOLOv3 detector
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Figure 6.2: Application implementation

even after the predefined number of attempts connection is not restored, it
stops.

Mutual exclusion (mutex) is used to avoid race condition when an image is
stored to class variable and accessed from other threads.

B 6.4.2 Detector

The detector class is responsible for inference using YOLOv3 architecture.

The detector should be initialized using method DarknetInit, which loads
the network’s weights, its configuration parameters and label map. After that
detector can be started and it will be running asynchronously. Detector thread
gets data from detector queue, builds tensor and does inference. Outputs
of the inference are bounding boxes with corresponding label and prediction
score. Results are pushed into the result queue, which has limited size, and if
the result queue is full, the earliest result is overwritten. If detector queue is
empty, thread waits for data, and it can be stopped by user only.

The inference is done by functions from Darknet library that are wrapped
in Detector class for easier use.

Again mutexes are used to prevent race condition when detector or result
queue is accessed by detector thread and main application.

B 6.4.3 Main application

The main application does two things: it provides communication between
data provider and detector and sends data to API when required.
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6. Implementation

First thread simply gets an image from the data provider and adds it
to the detector queue. When the queue is full, the thread waits, and it stops
if the data provider finishes getting data from the video stream.

The second thread waits until APT asks for an image with detections. When
the signal is received via the named pipe, this thread gets the first available
result from the detector’s result queue, encrypts it to base64 and sends it
back to API.

The user starts application from API. The user sends configuration file
with optional parameters “frame_ skip”, “batch_size” and “output_ path”.
The frame skip parameter defines how many frames will be skipped before
grabbed frame is stored in data provider, default value is 0. The batch size
specifies how many frames are used for single detector run, default value is
1. The output path sets the name of FIFO pipe used for communication
between API and detector, default value is “/tmp/output”.
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Chapter 7

Conclusions

In this work, we compared different methods for traffic count and management.
Also, we explored available both commercial and non-commercial solutions
for traffic monitoring system and found out how machine learning algorithms,
and more precisely deep neural network, can be used in such tools and how
edge computing can improve the usability of these systems.

In Chapter [3| we described how deep convolutional neural networks works
and we discussed popular CNN architecture like ResNet, RetinaNet, YOLO,
and SqueezeDet in Chapter 4.

Then, in Chapter |5, we made a comparison between described networks.
We trained RetinaNet, YOLO and SqueezeDet using two datasets, publicly
available KITTI and GoodVision internal “GV-2018". Experiments proved
YOLO to be the most suitable network architecture for us. We achieved
81.2% mAP with KITTI dataset and 76.2% mAP with “GV-2018” dataset
with 608x608 input resolution, and 70.5% mAP with KITTI and 67.3%
mAP with “GV-2018" using 416x416 input resolution. YOLO also proved
to be the second fastest tested architecture with SqueezeDet being the fastest.
However, SqueezeDet showed poor results during performance evaluation.
We tried inference speedup utilizing Tensor Cores in Jetson Xavier GPU
and achieved a 20 FPS rate with YOLO, which we consider to be sufficient
for real-time traffic monitoring.

Finally, in Chapter [6| we proposed a prototype of a traffic monitoring
application. This prototype consists of two parts: detector and API. Detector
wraps Darknet framework used for YOLO and provides detections and classi-
fications, while API is used to communicate with Jetson Xavier. Through
API user can start or stop detector and obtain results from it. The whole ap-
plication runs in the docker container, which is specifically prepared for using
on Jetson Xavier.

As a result, we have a fully functional end-to-end solution for people and
vehicles detection using YOLOv3 CNN architecture that runs on Jetson
Xavier, embedded system specifically designed for Al inference on the edge.
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7. Conclusions

. 7.1 Feature work

In future work, we want to add tracking capabilities to make line and zone
crossing counts possible. We would also like to extend interaction with users.
They should be able to define lines and zones they want to monitor on the fly
with no need to restart application. In future releases, we will enable access
to data gathered in the past, so users will be able to study the difference
between previous and actual traffic situation in the monitored area. For this
purposes, we will design database to store information.

In the future, proposed system can be used for various traffic monitoring
tasks, as well as for vehicle-to-everything communication and city traffic
management, because it will be able to evaluate complex traffic situation in
real-time.
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Appendix A

Acronyms
AP Average Precision
API Application Programming Interface
ASCII American Standard Code for Information Interchange
FIFO First In First Out
FPS Frames Per Second
GPU Graphics Processing Unit
HOG Histogram of Oriented Gradients
HTTP Hypertext Transfer Protocol
mAP Mean Average Precision
RTSP Real Time Streaming Protocol
SSD Single-Shot detector
SVM Support Vector Machine
TFLOP Trillion Floating-Loint Operations Per Second
TOPS Trillion Operations Per Second
UAV Unmanned Aerial Vehicle
URL Uniform Resource Locator
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Appendix B
API definition

swagger: ’2.0’

info:

version: 1.0.0

title: Jetson Xavier Object Detector API
contact:
email: zelenmyk@fel.cvut.cz

paths:
/detector:
get:
description: Return detector status.
produces:
- application/json
responses:
200:
description: Detector status.
post:
consumes:
- multipart/form-data
parameters:
- name: StreamURL
in: formData
type: string
description: URL of~RTSP stream
- name: ConfigurationFile
in: formData
type: file
description: Configuration file in~JSON format
description: Starts detector.
responses:
200:
description: Detector successfully started.
400:
description: Detector already running.
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B. API definition

delete:
description: Stops running detector.
responses:
200:
description: Detector stopped.
400:
description: Detector not running.

/detector/detection\_image:
get:
description: Return latest image with predictions
— from~detector
produces:
- image/png
- image/jpg
responses:
200:
description: Image returned.
400:
description: Detector not running.
/detector/detection\_stream:
get:
description: Stream latest image with predictions
— from~detector with 1FPS rate
produces:
- image/png
- image/jpg
responses:
200:
description: Stream started.
400:
description: Detector not running.
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Appendix C
CD

root folder
Dapplication

Dpython

Dflask—server

L lcpp

| |data-provider
Ddetector

__Imain-application

[jdocker

jetson-docker

MYKHAYLO_ZELENSKYY_DP_052019.pdf
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Appendix D

Figure D.1: Darknet-19 [I4]

49

Darknet-19
Type Filters | Size/Stride Output
Convolutional 32 3 x3 224 x 224
Maxpool 2 x2/2 112 x 112
Convolutional 64 3 x3 112 x 112
Maxpool 2 x2/2 56 x 56
Convolutional 128 3 x3 56 x 56
Convolutional 64 1x1 56 x 56
Convolutional 128 3 x3 56 x 56
Maxpool 2 x2/2 28 x 28
Convolutional 256 3 x3 28 x 28
Convolutional 128 1x1 28 x 28
Convolutional 256 3x3 28 x 28
Maxpool 2% 2/2 14 x 14
Convolutional 512 3 x3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3 x3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3x3 14 x 14
Maxpool 2 x2/2 TxT
Convolutional 1024 3 x3 TxT
Convolutional 512 1x1 TxT
Convolutional 1024 3 x3 TxT
Convolutional 512 1x1 TxT
Convolutional 1024 3 x3 TxT
Convolutional 1000 1 x1 TxT
Avgpool Global 1000
Softmax
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Appendix E

Darknet-53
Type Filters Size Output
Convolutional 32 3x3 256 x 256

1x

2%

8x

8x

4x

Convolutional 64 3 x3/2 128 x 128

Convolutional 32 1 x1

Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1 x1
Convolutional 128 3 x3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x 1
Convolutional 256 3 x 3

Residual 32 x 32
Convolutional 512 3x3/2 16x16
Convolutional 256 1 x 1
Convolutional 512 3x3

Residual 16 x 16
Convolutional 1024 3 x3/2 8 x8
Convolutional 512 1 x 1
Convolutional 1024 3 x 3

Residual 8 x8

Avgpool Global
Connected 1000
Softmax

Figure E.1: Darknet-53 [I5]
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Appendix F

Sample from videos used for evaluation

e
e B

(a) : 5.4 4K Camera Road in Thailand.mp4 (b) : Cars Driving On Street.mp4

(e) : City Traffic.mp4 (f) : Day Traffic Sample Video Dataset.mp4
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F. Sample from videos used for evaluation

(g) : Pedestrian and Traffic, Human Activity (h) : Pexels Videos 1601538.mp4
Recognition Video ,DataSet By UET
Peshawar.mp4

(k) : Pexels Videos 3047.mp4 (

) : Pexels Videos 948404.mp4

(m) : moderate_ traffic.mp4

Figure F.1: Samples from used videos
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