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Abstrakt / Abstract

Optimalizace spotřeby energií je dů-
ležitým problémem dneška. Zejména
v průmyslu, kde jsou často využívány
robotické buňky. Tato práce se zaměřuje
na optimalizaci spotřeby robotických
buněk. Práce definuje problém jako smí-
šené celočíselné lineární programování
(MILP). Problém je definován s ohledem
na možnosti, které poskytuje program
Process Simulate od firmy Siemens. V
práci je popsán algoritmus řešící tento
problém. Algoritmus potřebuje infor-
mace o spotřebě energií, proto práce
přináší dva způsoby jejího získávání.
První je založen na získání informace
z ovladače Kuka-Krc. Druhý je zalo-
žený na datech využívající informace
ze standardního ovladače. Experimenty
ukázaly, že je možné ušetřit až 8 % spo-
třebované energie pro časově optimální
trajektorie jen úpravami jejich parame-
trů. Ještě větší úspory lze dosáhnout
relaxací doby cyklu.

Klíčová slova: optimalizace spotřeby
energií, smíšené celočíselné lineární pro-
gramování, robotické buňky.

Překlad titulu: Modely pro minimali-
zaci spotřeby robotických buněk

Energy optimisation is becoming an
important problem nowadays. Espe-
cially in the industry where robotic
cells are often used. This thesis focuses
on energy optimisation for the robotic
cells. Namely, it provides a definition
of the problem as mixed integer linear
programming (MILP). The problem is
defined with regards to options that are
provided by the software tool Process
Simulate by Siemens. An algorithm
solving the problem is described. Since
the algorithm needs information about
energy consumption, two ways of ob-
taining it are provided. One is based on
getting the information from Kuka-Krc
controller. The other is data-driven
based on the information from the
default controller. The experiments
showed that it is possible to save up to
8 % of energy consumption for time-
optimal trajectories just by adjusting
their parameters. By relaxing the cycle
time, we can provide even bigger saving.

Keywords: energy optimisation,
mixed integer linear programming
(MILP), robotic cells.
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Chapter 1
Introduction

The energy consumption is continuously growing. In the United States, energy con-
sumption almost tripled since the 1950s [1]. One of the most significant contributors to
this growth is the industrial sector. According to the US Energy Information Adminis-
tration, in 2017, the industry energy consumption accounted for about a third of total
energy consumption in the US [1]. In the Czech Republic, in 2018, it was almost 30 %
whereas in the European Union it was 25 % [2].

Naturally, there is a growing interest in energy efficiency in the industry sector. Two
main reasons motivate this interest. The first one is economical: for example, plants
producing 1000 vehicles a day can consume several hundred GWh of electricity per
year [3]. Even saving 1 % of the energy consumed (i.e. thousands of MWh per year)
could save hundreds of thousands of Euros a year. The other is environmental. Many
international organisations, such as the EU, try to implement environment-friendly
policies.

For example, the European Union in 2009 passed legislation (sometimes called the
2020 climate & energy package) that sets several targets including 20 % improvement
in energy efficiency [4]. One of the EU projects aiming at the energy efficiency improve-
ment was the now-completed AREUS project (Automation and Robotics for European
Sustainable Manufacturing). In the project, several partners from industry and research
facilities teamed up to devise new technologies capable of reducing energy consumption
and environmental impact of robotic cells and industrial robotics in general. Some of
the goals were “[t]he development of new Eco-efficient simulation tools for the design
and development of robotic processes, evaluating and also optimizing energy consump-
tion” or “[t]he development of new Eco-efficient optimization tools for the optimization
of the overall energy consumption without affecting final productivity” [5].

1.1 Motivation
Industrial robots play an important and ever-growing role in many industry sectors
thanks to the possibilities they offer, such as increasing speed, precision, or repeatabil-
ity of production processes. The downside of the use of industrial robots is increased
electricity consumption and consequently, the increased cost of production. For exam-
ple, in the automotive industry, about 8 % of electricity consumption in production is
attributed to industrial robots [6]. The biggest contributors to this consumption are
the robotic cells themselves. It has been shown on robotic cells with six robots in the
welding shop of Škoda Auto that robot drive consumes 51 % of all consumed energy [7].

Generally, the companies focus more on cycle time optimisation rather than on energy
optimisation. However, these two things are not necessarily mutually exclusive; often
the energy consumption can be decreased without increasing the cycle time. During
the production cycle, there can be many operations that use a maximal speed for a
robot, even if it is not necessary for keeping the desired cycle time. Such operations
have then very high consumption and may not even have the optimal trajectories with
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Figure 1.1. A typical robotic cell [8].

respect to energy consumption. That is because the robotic cells are complex systems
where one cannot simply optimise all individual trajectories and operations separately
to achieve optimal results. The designer of the robotic cells has to take into account
also possible collisions between different parts of the cells.

If a collision only occurs when using a particular, high speed of the robot, there
are two possible solutions. One is to keep the speed and change the trajectory which
can be longer or more complicated and therefore more energy consuming. The other
possibility is to follow the original trajectory and lower the speed by bounding the
maximum speed. This approach can lead to smaller energy consumption if the speed
is not too low. If the robot moves too slowly, energy consumption can, paradoxically,
increase because the robot has to deal with the effect of gravity.

Finding which operations should decrease its speed and how to achieve the optimisa-
tion is not an easy task, especially for a human designer. The relation between velocity
and energy consumption of a single trajectory is not linear. Therefore, optimising even
one operation is not trivial. The real robotic cells usually contain many robots that
can interact or collide with each other. As can be seen, the optimisation of robotic cells
is not a problem that can be solved by hand. It is a problem that requires advanced
optimisation algorithms and software capable of precise simulations.

As a consequence of increasing demand for energy efficiency and the need for sophis-
ticated tools which could solve the problem, the field of study of optimisation of robotic
cells is getting more attention nowadays.

1.2 Related work
Optimisation of robotic cells is an important field of study. Most papers tackling opti-
misation of robotic cells deal with time optimisation, or more precisely with increasing
throughput, which is the inverse cycle time. For example, Dawande [9] provides a sur-
vey about available results about cyclic production. The field of energy optimisation is
not as deep.

Carabin et al. [10] summarised state of the art of existing techniques in energy optimi-
sation. The authors focused both on hardware and software aspect of energy optimisa-
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tion. As for the software aspect, they emphasised trajectory optimisation and operation
scheduling. Meike [6], similarly, provided an overview of energy saving methods which
focuses on hardware changes.

Riazi et al. [11] presented the energy optimisation of a multi-robot system by opti-
mising the way the robot moves along the existing path. It is achieved by optimisation
of the non-linear model with respect to physical and time constraints. The optimisation
criterion is a minimisation of “a weighted sum of the squared joints’ accelerations for
the trajectories”. The authors claim that the presented algorithms can save up to 45 %
of total energy consumption.

Riazi et al. [12] in the follow-up paper discussed suitable cost functions, including
pseudo power or mechanical jerk minimisation. This procedure, which again preserves
cycle time and path, reduces up to 30 % of energy consumption, and moreover, it
reduces peak-power by up to 60 %. Both [11] and [12] were a result of the already
mentioned AREUS project.

As shown, it is possible to decrease energy consumption without increasing the cycle
time; nevertheless, in some cases, it might be more advantageous to allow for relaxation
of the cycle time to save more energy. Especially in cases where the robot can execute an
operation more slowly, e.g. because it has to wait for the completion of other robotic
operations. Meike et al. [13] claim that if an operation can be done in 50 % extra
time, it can save up to 20 % of energy per cycle time by moving slower. Pellicciari
et al. [14] presented a method of decreasing energy consumption by “time-scaling”
that is by slowing down the operations and by reducing idle time. They achieved a
12.1 % reduction of energy loss on a single robot reference trajectory. Meike et al. [15]
tested an approach where they time-scaled the last movement. They noticed that
energy consumption is not inversely proportional to the speed of the last operation
(i.e. duration time). At the lowest speeds (below 30 % of maximum speed) the energy
consumption rises due to factors such as the growing consumption of mechanical brakes.
The function describing energy consumption of robot at different time-scaling ratios is
called Energy Signature (or Energy Profile in [8]).

Gadaleta et al. [16] expanded the Energy Signature concept and replace time-scaling
with a method of scaling maximum velocity and acceleration parameters. The authors
tested their approach on real robots, and they found out a decrease in consumption of
up to 30 %. Also, the results show that velocity and acceleration scaling can provide
better results than simple time-scaling.

The above-mentioned trajectory optimisation is an example of so-called local optimi-
sation. The local optimisation focuses only on trajectory optimisation with respect to
the physical limits of the robots and obstacle avoidance. This approach is more com-
mon in literature. In contrast to that stands the global optimisation that considers the
whole robotic cell. This approach is needed to reach the full potential of optimisation.

Such optimisation appears in the pioneering work of Wigström et al. [17]. The
authors formulated the nonlinear mathematical model. The model includes constraints
ensuring a prespecified event sequence within a task, the maximum cycle time, and
that activities acting in the same resource cannot happen at the same time. However,
this model does not consider alternative positions of robots or energy saving modes.
Moreover, it is limited to cases where the cell works only on one workpiece during the
cycle time.

Bukata et al. [8] expanded [17]; they came up with an extended mathematical model
which considers various robot speeds, positions, power-saving modes, and alternative
orders of operations, and it allows to consider multiple workpieces in the robotic cell at
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
once. This model can be turned to a MILP. Since such a model is suitable only for small
instances, the authors provided a heuristic algorithm capable of solving larger instances.
They showed on a real robotic cell from Škoda Auto that the energy consumption could
be possibly reduced by about 20 %, the biggest influence on the decrease being speed
optimisation.

The authors returned to this problem in another work [18] where they used the same
model but solved the problem with a more efficient branch and bound algorithm, which
finds similar or better solutions.

1.3 Contribution
The problem of energy optimisation is described in detail with specific emphasis on its
connection to Process Simulate framework. The models from works of Bukata et al. [8]
and [18] were analysed. Based on these works, a new model for energy optimisation
was proposed. Furthermore, two types of energy optimisation were implemented. One
is based on measuring energy consumption with Kuka-Krc controller, and the other
is based on estimating the energy consumption from data obtained by the default
controller. Both of the optimisation types were tested on several robotic cells, including
a real robotic cell provided by Blumenbecker Prag s.r.o.

The experimental results showed that it is possible to decrease the energy consump-
tion for the time-optimal cycle time. The decrease was about 8 %. It also showed that
relaxation of cycle time could provide even better results. For one cell, relaxation of
cycle time allowed to save more than 16 % of energy consumption in comparison with
consumption of time-optimal solution.

1.4 Outline
This work could be divided into three parts. The first part that provides a general
introduction could be found in this chapter.

Then, there is a theoretical part. In Chapter 2, the problem is formally defined with
regards to the options provided by Process Simulate. Based on the problem statement,
linear programs describing time and energy optimisation are defined in Chapter 3.

Afterwards, there is a practical part. Chapter 4 discusses possible data-driven ap-
proaches to estimating energy consumption. In Chapter 5, there are shown experiments
with energy optimisation.

The thesis is finally concluded in Chapter 6, where we also provide some suggestions
on how the things mentioned in this thesis could be further improved upon.
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Chapter 2
Problem statement

This chapter presents the optimisation problem for robotic cells tailored to the frame-
work Process Simulate provides. At the end of the chapter, there are examples of
how the problem defined in Process Simulate corresponds to the theoretical problem
formalisation as defined in this chapter.

2.1 Problem Statement
The optimisation problem for robotic cells can be defined as follows. We define a set
of robots R = {r1, . . . , rn} and a graph G = (V,E,CR), E = E ∪ L, describing the
production process, where V is a set of vertices, and E is a set of oriented graph edges,
defined as the union of edges E and links L, and CR is a collision set.

Each vertex represents a non-empty ordered set of Process Simulate operations as-
sociated with exactly one robot. The Process Simulate operations, hereafter in this
chapter called just operations, are defined by points (3D coordinates) the robot should
approach. These points can be grouped into a compound operation. The simulator
decides the trajectory the robot undertakes between the points. In addition to this, the
robot can perform certain actions such as welding upon reaching the point. Note that
Process Simulate distinguishes between points by their zone. The zone says how the
robot should approach the point, e.g. for the coarse zone the robot needs to pass in
some distance from the points whereas fine zone dictates that the robot moves precisely
to the point. The last operation of all vertex sets is always fine. Then for each vertex,
we have a minimum and maximum duration, dmi, dmi. The only exceptions to this
are so-called dummy vertices. These vertices have no real operation attached and are
used to ensure that a cycle of each robot starts at 0 s regardless of when the first real
operation starts. Each robot has exactly one dummy vertex. Also, all vertices with the
possible exception of dummy vertices have a minimum mandatory wait after the final
operation, dwi. This type of wait will be called a post-wait from now on.

Certain vertices can also have a wait before the first movement, dni, for simplicity
we shall call it prior wait. This prior wait is introduced mostly to help with collision
resolutions. In Figure 2.1, we can see an illustration of the use of prior wait. The
pictured Gantt diagram represents a robotic cell with three robots, Robot A, Robot
B and Robot C. The first robot has one vertex A1, that is five seconds long. The
second one has a vertex B1 with duration one second and a vertex B2 which has a
two-second duration, a one-second post-wait and two-second prior wait. Robot C has
two vertices: the first one that lasts five seconds and then waits two seconds and the
second one that lasts three seconds. There is a dependency between vertices A1 and
B2 that says that vertex B2 can start after the vertex A1 finished. The length of the
link (i.e. time-lag between vertices of two different robots) in the picture (that is to say
an offset or time lag between two vertices) has a length of two seconds. Generally, it
can take any non-negative real value.

5
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Figure 2.1. An illustration of the use of prior wait.

Let us also assume that all depicted vertices represent a compound operation. Please
note that in general, it does not have to be true. One compound operation in Process
Simulate can correspond to multiple vertices.

In Figure 2.1, vertex B2 has to wait two seconds after vertex A1 is finished before
it can start (this is the prior wait). The wait can be induced either by setting the link
length to two seconds or by adding a two-second wait on the compound operation B1.
Now let us imagine that there is a collision between robots B and C happening at time
7.5 s. Now the collision can be resolved in two ways. The first one is to try to delay
vertex C2 by adding a wait time after the vertex C1. The other possibility is to start
the vertex B2 at an earlier time. That can be done by decreasing the prior wait to zero.

Figure 2.1 can also be used for explanation of a different concept. We can see that
after vertex B1 finishes the robot B must idly wait at least four seconds until Robot A
finishes vertex A1. Similarly, the robot A stays idle after it finishes its vertex until the
end of the operation cycle. We call this wait, which is not induced by any commands,
a complementary wait dci. It is especially important in energy optimisation because a
robot consumes energy even if it seemingly does nothing.

As for the oriented graph edges E, they can either be edges E, that is an ordered
pair of vertices of one robot defining their order. Alternatively, they can be links L, i.e.
ordered pairs of vertices of two different robots which define time-lag between them.
Henceforth the word “edge” shall refer only to the edges from set E. Each edge (i, j)
has constant hij associated with it which denotes whether the edge starts a new cycle
or not. Each robot can only have one such an edge. Each link (i, j) has a constant
oij which is an offset defining how much time after completion of vertex i, the vertex j
must wait before it can start executing.

We also consider a collision resolution set CR, which contains a quadruple
(vi, vj , opi, opj), where vi and vj are vertices which are in the collision and thus
cannot be executed at the same time, and opi, opj are their respective operation
phases. We differ between three operation phases: wait before a vertex (prior wait)
N , movement M , wait after a vertex (post-wait, complementary wait) W . The first
phase can occur for example when a robot waits for the execution of its first vertex,
the second one occurs when a robot executes a vertex, and the last one happens for
example when a robot finishes a vertex and waits for a start of the next one. There
can be nine types of collisions based on the operation phases of the colliding vertices,
opi × opj = {N,M,W} × {N,M,W}. In general, collision resolution set can be empty.

The notion of the collision resolution was briefly touched above during explanation
of prior wait. Here it will be defined more formally. Figure 2.2 shows an example of
a collision between robots A and B. As can be seen in the picture, the time interval
of the collision in seconds is (1.0, 2.0), the vertices in the collision are A1 and B1;

6
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Figure 2.2. An illustration of a collision between two vertices.

for both vertices, the collision happens in their movement phase. We want to avoid
such collisions, i.e. execution of the colliding operation phases at the same time. Let
(sa1, sa1+da1) be the time interval of the movement phase of vertex A1 and (sb1, sb1+db1)
be the time interval of the movement phase of vertex B1, where s denotes start time of
respective operation phase, and d denotes duration of respective operation phase. To
avoid this collision, we need to make one operation phase start after the other or vice
versa. The collision avoidance can be expressed by the following inequalities.

sa1 + da1 ≤ sb1 + xM, (2.1)
sb1 + db1 ≤ sa1 + (1− x)M. (2.2)

These constraints use the well-known trick of using binary variable x and sufficiently
high number M to keep only one constraint active. The other will be virtually un-
bounded. The meaning of the variable x is the following:

x =
{ 1 if the second constraint in the collision constraint is active

0 if the first constraint in the collision constraint is active.
Figure 2.3 shows two possible resolutions of the collision. In the upper diagram,

x = 1, and therefore, the movement phase of vertex A1 comes after the movement
phase of vertex B1. In the bottom diagram, x = 0, and the order of the movement
phases is therefore different.

Figure 2.3. An illustration of a collision resolution.

Every optimisation problem needs an optimisation criterion, and this case is no dif-
ferent. As mentioned in Chapter 1, the criteria of interest for robotic cell optimisation
are cycle time minimisation and energy consumption minimisation. Formally, we can
write the first criterion as

minω. (2.3)

7



2. Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The cycle time ω is the time in which all vertex operations complete. In the case of

Figure 2.6, it would be the time when a robot reaches the point called final. In general,
we would be interested in cases when one robot can immediately restart its cycle (an
example of this problem can be found in the work of Šůcha et al. [19]). However, this
cannot be easily implemented in Process Simulate. For that reason, we define a cycle
time as the time between the start of the first vertex operation and end of the last
vertex operation.

Before we can formally define the energy consumption criterion, we need to have a
look at the Energy Profile [8].

2.1.1 Energy Profile
Energy Profile is a function of time, and its value is consumed energy. The time
represents how much time the robot needed to complete the movement of a vertex.
Since each vertex has its own Energy Profile, we will denote Energy Profile of vertex
vi as EM

i , where M denotes the fact that function represents energy consumed during
the movement phase of vertex vi.

EM
i (t) =

b∑
k=a

qkt
k, qk ∈ <,∀vi ∈ V (2.4)

The function is a Laurent polynomial in a field of real numbers which differs from
regular polynomials by allowing negative degrees. For simplicity, a Laurent polynomial
will be called just a polynomial in this thesis. The function is a sum of products of
coefficients qk and indeterminants t raised to the k-th power. The number a denotes
the lowest degree of the polynomial, whereas the number b denotes the highest degree.

In some cases, the function can be a constant or a linear function, but usually, it
is a polynomial where the lowest degree is negative. The function can be constant if
the limit of the joint speed has a zero effect on vertex duration, i.e. when the robot
accelerates only to small speed. The function could be linear, e.g. for some lower limits
of the joint speed. Using this function, we can describe the total energy consumed
during robot movements as follows.

EM
total( ~dm) =

∑
vi∈V

EM
i (dmi) (2.5)

In this equation, vector ~dm represents durations of all vertices; the function value
EM

i (dmi) is a value of Energy Profile of vertex vi when the argument of the function
dmi is the vertex duration.

It is important to realise that robots consume energy even when they are not moving.
Moreover, wait consumption depends on the robot position. Therefore we must differ
between wait consumption during prior waiting and post-waiting or complementary
waiting. Also, we assume that functions describing wait consumption are linear. These
consumptions of vertex vi can be described as

EN
i (dni) = PNidni,∀vi ∈ V (2.6)

EW
i (dwi + dci) = PWi(dwi + dci),∀vi ∈ V. (2.7)

The constants PWi and PNi are power coefficients. The first equation covers the
consumption during the prior wait. The other one shows consumption during wait

8
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after a vertex completed its movement. To get the total wait consumption of one
vertex, we need to sum up these two consumptions. Let W denote all waits associated
with a vertex.

EW
i = EN

i (dni) + EW
i (dwi + dci),∀vi ∈ V (2.8)

For obtaining total wait consumption, it is necessary to sum up wait consumptions
of all vertices.

EW
total =

∑
vi∈V

EW
i (2.9)

Finally, we can devise the optimisation criterion as a minimisation of a sum of (2.5)
and (2.9).

min
~dn, ~dm, ~dw, ~dc

EM
total( ~dm) + EW

total (2.10)

In Figure 2.4, we can see the Energy Profile of ‘via0,via1,via2,via3,final” vertex from
Figure 2.5. The x-axis shows vertex duration in seconds; the y-axis shows energy
consumption in Joules. The yellow dots show measured vertex duration and energy
consumption. It was measured using joint speed (or more precisely the limit of thereof)
set to 100 %, 77.5 %, 55 %, 32.5 % and 10 %. Finally, in the green, there is the
interpolated polynomial curve.

Figure 2.4. Energy profile of the “via0,via1,via2,via3,final” vertex from the Figure 2.5.

One of the goals of this thesis is to find an estimator of this Energy Profile; more
about this can be found in Chapter 4.
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2.2 Examples
In Figure 2.5, we can see the Path Editor tool in Process Simulate. This tool serves for
creating a path a robot should undergo. The corresponding trajectory, i.e. when and
how the robot approaches the points, is generated by Process Simulate. Our point of
interest in this tool is mainly the zone column, which specifies how the robot should
attain the space point given by the X, Y and Z columns. And then the joint speed
column which limits the speed the robot can achieve. The units for the speed are
percents of the maximum speed.

Figure 2.5. A screenshot of Process Simulate Path Editor tool.

In Figure 2.6, there is a graph representation of the path shown in Figure 2.5. We
can see the initial dummy node, which leads to the home node. The following node
groups the rest of operations since only the last one has a fine zone. The red arrow
denotes the start of a new cycle.

Figure 2.6. The graph representation
of the compund operation defined in

Figure 2.5.

Figure 2.7. The graph representation
of the compund operation defined in

Figure 2.8.

There is also the Sequence Editor tool in Process Simulate. This tool allows setting
time lags between compound operations of different robots as shown in Figure 2.8 (see
the black arrow between the two compound operations). Figure 2.7 shows the graph
representation of the compound operations defined in Figure 2.8 (the time lag constraint
is denoted by the blue edge). Both editors can be used together, e.g. one can first define
a path for all robots in the path editor and then specify time-lags between the robots.

10
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Figure 2.8. A screenshot of Process Simulate Sequence Editor tool.
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Chapter 3
MILP

In this chapter, we shall construct two mixed integer linear programs. The first one is
the time optimisation MILP; then we devise the energy optimisation MILP.

3.1 Time Optimisation
In this section, we derive the MILP for time optimisation. As the name suggests, we
try to minimise the cycle time ω of the given robotic cell. However, if we tried to
create a MILP with cycle time minimisation criterion, we would end up with non-linear
constraints. For this reason, the model will not be constructed in the time domain
but directly in the transformed domain. Therefore the optimisation criterion will be as
follows:

max τ = max 1
ω

(≡ minω) (3.1)

The variable τ shall be called inverse time cycle, i.e. production rate.

3.1.1 Constants

There are five constants in the model. The constants dmi, dmi, have values obtained
from the initial simulation and represent the minimal and maximal duration of vertex
vi. These durations are measured using the maximal and the minimal upper bound on
the speed of vertices, that is on the Process Simulate operations encapsulated by these
vertices. The constant dwi is a lower bound on post-wait. Its value is based on OLP
wait commands. The constant ε ensures a minimum time gap between two colliding
vertices. All these constants except for dwi are positive real numbers whereas dwi is
a non-negative real number. The binary constant hij denotes, whether the edge (i, j)
starts a new cycle or not.

hij =
{ 1 if the edge (vi, vj) starts a new cycle

0 otherwise

3.1.2 Variables

There is one binary variable: auxiliary variable xi. It has the same meaning as variable
x in Chapter 2.

The other variables Dni, Dwi, Dci, Si, Dmi, τ are non-negative real numbers. As al-
ready mentioned, τ is the inverse cycle time. The following variables are associated
with a vertex vi. Three variables Dni, Dwi, Dci describe the transformed prior wait,
transformed post-wait and transformed complementary wait. The remaining two de-
scribe transformed start time Si and transformed vertex duration Di. In the rest of
this section, the descriptor “transformed”, which refer to the fact the model is not in
the time domain, will be omitted for simplicity.

12
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3.1.3 Constraints
Each robot has associated vertices, and we must ensure their precedence. In other
words, for all edges eij containing consecutive vertices vi, vj it must be true that the
vertex vj starts after the vertex vi finished. For different vertices finishing means a
slightly different thing. All vertices but the dummy ones finish when their movement,
post-wait and complementary wait finish. The dummy vertices do not have any move-
ment time, but they can have a post-wait.

Si +Dmi +Dwi +Dci = Sj −Dnj + hij , ∀(vi, vj) ∈ E (3.2)
Si = Sj −Dnj ,∀(vi, vj) ∈ E, vi ∈ Vdummy (3.3)

Si +Dwi = Sj −Dnj ,∀(vi, vj) ∈ E, vi ∈ Vdummy (3.4)

Then, all vertices have lower and upper bounds on their duration, and also lower
bounds on wait time. In the transformed domain, it looks as follows.

τdmi ≤ Dmi ≤ τdmi, ∀vi ∈ V (3.5)

τdwi ≤ Dwi,∀vi ∈ V (3.6)

The vertices which cannot have the prior wait, V \ Vpriorwait, (conversely, the set
Vpriorwait contains vertices which do have the prior wait) have the variable associated
with it set to zero. For more details about the prior wait, refer to Chapter 2.

Dni = 0,∀vi ∈ V \ Vpriorwait (3.7)

All dummy vertices, Vdummy, start at zero. Since we are in the transformed domain,
the zero has no units.

Si = 0,∀vi ∈ Vdummy (3.8)

The precedence between vertices of different robots or entities must be ensured. This
precedence is defined by link lij = (vi, vj), where vi and vj are vertices of the different
robots or entities. An example of the entity would be a working table, and an example of
a so-called non-robotic vertex associated with this entity would be a turn of the table.
The difference between non-robotic and robotic vertices is that non-robotic vertices
cannot have post-wait after they finished their movements. The vertex vj can start
only after the preceding vertex finished. In the case of non-robotic vertices, it means
that the vertex finished its movement, in case of robotic vertex, there can be post-wait
that needs to be finished. In addition to this, there can be an offset set on the link
which shows the time which the following vertex has to wait before it can start.

Si +Dmi +Dwi ≤ Sj −Dnj − τoij ,∀(vi, vj) ∈ L (3.9)
Si +Dmi ≤ Sj −Dnj − τoij ,∀(vi, vj) ∈ L (3.10)

In case a collision of two vertices vi and vj appeared, it needs to be resolved. The
collision resolution was described in Chapter 2 in detail. Here will be just a brief
reminder. The collision occurred during operation phase op1 of vertex v1 and operation
phase op2 of vertex v2. To avoid this collision, we want to make sure that these operation
phases are not executing at the same time; in other words, one phase must end before

13
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the other one starts. The collision avoidance is done with the help of two inequalities
shown below (they are the same as the inequalities (2.1) and (2.2) from the previous
chapter).

ti2 ≤ t
j
1 + xkM, (3.11)

tj2 ≤ ti1 + (1− xk)M. (3.12)

In the case of our model, the constant M will be set to the cycle time ω [19]. Before
we proceed to look at these equations in the transformed domain, let us have a look at
one of the constraint pairs in the time domain and explain the need for linearisation of
the model.

si + dmi ≤ sj + xkω − ε
sj + dmj ≤ si + (1− xk)ω − ε, ∀(vi, vj) ∈ CRM×M (3.13)

Here the problem lies in the multiplication of two variables xkω. The problem can
be solved by multiplying all constraints with a new variable τ = 1

ω . This approach will,
however, bring new multiplications of constraints so we must do a substitution for all
such pairs. An example of the substitution would be the Si = siτ, Sj = sjτ,Dmi =
dmiτ,Dmj = dmjτ . Now the model becomes linear.

Below there are nine pairs of constraints corresponding to each combination of op-
eration phases (N,M,W )2 in which the collision can occur. Since the set of collision
resolutions can be empty, these constraints need not appear in every model.

Si +Dmi ≤ Sj + xk − ετ
Sj +Dmj ≤ Si + (1− xk)− ετ,

∀(vi, vj) ∈ CRM×M (3.14)
Si +Dmi ≤ Sj +Dmj + xk − ετ

Sj +Dmj +Dwj +Dcj ≤ Si + (1− xk)− ετ,
∀(vi, vj) ∈ CRM×W (3.15)

Sj +Dmj ≤ Si +Dmi + xk − ετ
Si +Dmi +Dwi +Dci ≤ Sj + (1− xk)− ετ,

∀(vi, vj) ∈ CRW×M (3.16)
Si +Dmi +Dwi +Dci ≤ Sj +Dmj + xk − ετ
Sj +Dmj +Dwj +Dcj ≤ Si +Dmi + (1− xk)− ετ,

∀(vi, vj) ∈ CRW×W (3.17)
Si ≤ Sj −Dnj + xk − ετ
Sj ≤ Si −Dni + (1− xk)− ετ,

∀(vi, vj) ∈ CRN×N (3.18)
Si ≤ Sj + xk − ετ

Sj +Dj ≤ Si −Dni + (1− xk)− ετ,
∀(vi, vj) ∈ CRN×M (3.19)

Si ≤ Sj +Dmj + xk − ετ
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Sj +Dmj +Dwj +Dcj ≤ Si −Dni + (1− xk)− ετ,
∀(vi, vj) ∈ CRN×W (3.20)

Sj ≤ Si + xk − ετ
Si +Dmi ≤ Sj −Dnj + (1− xk)− ετ,

∀(vi, vj) ∈ CRM×N (3.21)
Sj ≤ Si +Di + xk − ετ

Si +Dmi +Dwi +Dci ≤ Sj −Dnj + (1− xk)− ετ,
∀(vi, vj) ∈ CRW×N (3.22)

The set CRopi×opj ⊆ CR is a subset of the set of the collision resolutions which
contains only collisions occurring in operation phase opi of vertex vi and operation
phase opj of vertex vj .

3.1.4 Model
This subsection shows the complete model for time optimisation as devised above.

max τ (3.1)

s.t.

Si +Dmi +Dwi +Dci = Sj −Dnj + hij ,∀(vi, vj) ∈ E (3.2)
Si = Sj −Dnj ,∀(vi, vj) ∈ E, vi ∈ Vdummy (3.3)

Si +Dwi = Sj −Dnj ,∀(vi, vj) ∈ E, vi ∈ Vdummy (3.4)

τdmi ≤ Dmi ≤ τdmi,∀vi ∈ V (3.5)

τdwi ≤ Dwi,∀vi ∈ V (3.6)

Dni = 0,∀vi ∈ V \ Vpriorwait (3.7)

Si = 0,∀vi ∈ Vdummy (3.8)

Si +Dmi +Dwi ≤ Sj −Dnj − τoij ,∀(vi, vj) ∈ L (3.9)
Si +Dmi ≤ Sj −Dnj − τoij ,∀(vi, vj) ∈ L (3.10)

Si +Dmi ≤ Sj + xk − ετ
Sj +Dmj ≤ Si + (1− xk)− ετ,

∀(vi, vj) ∈ CRM×M (3.14)
Si +Dmi ≤ Sj +Dmj + xk − ετ

Sj +Dmj +Dwj +Dcj ≤ Si + (1− xk)− ετ,
∀(vi, vj) ∈ CRM×W (3.15)

Sj +Dmj ≤ Si +Dmi + xk − ετ
Si +Dmi +Dwi +Dci ≤ Sj + (1− xk)− ετ,

∀(vi, vj) ∈ CRW×M (3.16)
Si +Dmi +Dwi +Dci ≤ Sj +Dmj + xk − ετ
Sj +Dmj +Dwj +Dcj ≤ Si +Dmi + (1− xk)− ετ,
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∀(vi, vj) ∈ CRW×W (3.17)

Si ≤ Sj −Dnj + xk − ετ
Sj ≤ Si −Dni + (1− xk)− ετ,

∀(vi, vj) ∈ CRN×N (3.18)
Si ≤ Sj + xk − ετ

Sj +Dj ≤ Si −Dni + (1− xk)− ετ,
∀(vi, vj) ∈ CRN×M (3.19)

Si ≤ Sj +Dmj + xk − ετ
Sj +Dmj +Dwj +Dcj ≤ Si −Dni + (1− xk)− ετ,

∀(vi, vj) ∈ CRN×W (3.20)
Sj ≤ Si + xk − ετ

Si +Dmi ≤ Sj −Dnj + (1− xk)− ετ,
∀(vi, vj) ∈ CRM×N (3.21)

Sj ≤ Si +Di + xk − ετ
Si +Dmi +Dwi +Dci ≤ Sj −Dnj + (1− xk)− ετ,

∀(vi, vj) ∈ CRW×N (3.22)

Dni, Dwi, Dci, Si, Dmi, τ ∈ <+
0 ,∀i ∈ V (3.23)

xi ∈ {0, 1} (3.24)

dmi, dmi, dwi, ε, hij ∈ const. (3.25)

3.2 Energy Optimisation
This section deals with the derivation of the MILP for energy optimisation. It is derived
similarly as in the previous section with a few small differences. The biggest one is a
different optimisation criterion. Another difference is that we do not need to linearise
the original model, because, in the model, there is no variable multiplication. In the
time optimisation, there was a problem with a multiplication of xkω, but here ω will
be constant.

The optimisation criterion as described in Chapter 2 has the following form:

min
~dn, ~dm, ~dw, ~dc

∑
vi∈V

PNidni + PWi(dwi + dci) + EM
i (dmi). (3.26)

Since we cannot have a non-linear element in the optimisation criterion of a MILP,
we have to replace the non-linear part EM

i (dmi) with a new variable Ei. The criterion
will then take the following form:

min
~dn, ~dm, ~dw, ~dc

∑
vi∈V

PNidni + PWi(dwi + dci) + Ei. (3.27)

It is the minimisation of total energy consumption by all robots. The energy con-
sumption is computed as a sum of total energy consumed during movements of all
vertices and total energy consumed during all idle periods.
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3.2.1 Constants

We can differentiate three types of constants based on the way they are obtained.
Firstly, ω, the cycle time which we try to achieve is input to the algorithm. It can be
either defined by the user or set to the result of the time optimisation. Then there
are constants obtained during initial simulations. The constants dmi and dmi are the
minimal and the maximal duration of the operations associated with vertex vi; these two
values are measured with the speed upper bound of the vertex vi set to the minimum
and maximal value respectively. The minimal and maximal value of the speed upper
bound is input to the algorithm. Similarly, dwi is the minimal post-wait associated
with vertex vi; it is obtained by reading OLP wait commands.

The constants PNi and PWi are obtained during simulation in the following way.
For the former one, we take energy consumed during the first time interval of the
corresponding vertex vi and divide it with the length of the interval. The latter constant
is obtained similarly, but not from the first time interval but the last one. This time
interval can be set in Process Simulate, and it can be seen as a sampling interval
at which we measure the energy consumed. The value of these constants could be
measured during extra simulation with artificial waits added. However, the simulation
is usually computationally expensive. For that reason, we prefer the first option. One
may ask why it is a valid approach. The reason for this is that for small speeds (e.g.
during initial acceleration or final deceleration), the curve of consumption is similar to
a linear function as can be seen in Figure 2.4. Another way to look at is that during
small speeds, most power is used to keep the robot in position and less power is used
to move the robot.

Then there is a constant denoting whether the edge (vi, vj) starts a new cycle.

hij =
{ 1 if the edge (vi, vj) starts a new cycle

0 otherwise
The constant ε ensures a minimum time gap between two colliding vertices.
Finally, there are also constants associated with the energy profile, namely, slope

slopeit and offset offsetit (not to be confused with link offset oij). These two constants
are parameters of the lower bound line approximating the energy profile, and they are
obtained during initial computation.

3.2.2 Variables

There is a binary variable xi with the same meaning as in the time optimisation. Then
there are non-negative real variables Ei, dni, dwi, dci, si, dmi. In all these variables the
index i refers to the vertex vi. The variable Ei denotes approximated energy consump-
tion. The waiting variables dni, dwi, dci denote prior wait, post-wait and complementary
wait respectively. The start time of the vertex is si, and its duration is dmi

3.2.3 Constraints

Firstly, we need to describe the constraints that ensure the order of the vertices of one
robot. For all consecutive vertices of one robot represented by the edge eij = (vi, vj)
except for those where vi is a dummy vertex, it must hold that vertex vj starts only
after the vertex vi finished, i.e. after it completed its movement and did its mandatory
post-wait dwi. The role of the variables dc and dn was explained in Chapter 2. If the
edge eij starts a new cycle, then hij = 1 and it adds the cycle time ω to the start time
of vertex vj . This condition can be written as follows:
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si + dmi + dwi + dci = sj − dnj + hijω,∀(vi, vj) ∈ E (3.28)

If vi is a dummy vertex, the condition is quite similar. The difference is that a dummy
vertex has zero duration and never has a complementary wait. However, it can have a
post-wait dwi. Therefore there can be two different constraints.

si = sj − dnj ,∀(vi, vj) ∈ E, vi ∈ Vdummy (3.29)
si + dwi = sj − dnj ,∀(vi, vj) ∈ E, vi ∈ Vdummy (3.30)

All vertices have lower and upper bound on their durations.

dmi ≤ dmi ≤ dmi, ∀vi ∈ V (3.31)

Post-wait for all vertices has also a lower bound.

dwi ≤ dwi,∀vi ∈ V (3.32)

The vertices, V \ Vpriorwait, that cannot have a prior wait have this variable set to
zero. (For more details refer to Chapter 2.)

dni = 0,∀vi ∈ V \ Vpriorwait (3.33)

All dummy vertices, Vdummy, have to start at 0 s.

si = 0,∀vi ∈ Vdummy (3.34)

The precedence between vertices of different robots or entities must be ensured. This
precedence is derived analogously to the previous section.

si + dmi + dwi ≤ sj − dnj − oij ,∀(vi, vj) ∈ L (3.35)
si + dmi ≤ sj − dnj − oij ,∀(vi, vj) ∈ L (3.36)

Since we replaced the energy profile EM
i (dmi) in the criterion with a variable Ei, we

need to introduce a new constraint that will tie these two things together. Once again,
we cannot use the energy profile directly because we are creating a MILP. We need to
make an approximation of the energy profile.

The energy profile is approximated by linear functions which create its lower bound
as shown in Figure 3.1. We will assume that the energy profile is always convex. Each
linear function is defined by its offset offsetit and slope slopeit, and it is found as a
tangent to the polynomial curve in certain points. A tangent t from the set of tangents
T can be described as t : y = slopeitx+ offsetit.

offsetit ≤ Ei + slopeitdmi,∀vi ∈ V,∀t ∈ T (3.37)

The collision of two vertices was already explained in Chapter 2 and Section 3.1.3.
Here again, there will be nine pairs of constraints corresponding to each possible pair
of operation phases (N,M,W )2 in which the collision can occur. The constant M will
be again set to the value of the desired cycle time ω.
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Figure 3.1. Energy profile of the “via0,via1,via2,via3,final” vertex from Figure 2.5 approx-
imated with linear functions.

si + dmi ≤ sj + xkω − ε
sj + dmj ≤ si + (1− xk)ω − ε,∀(vi, vj) ∈ CRM×M (3.38)
si + dmi ≤ sj + dmj + xkω − ε

sj + dmj + dwj + dcj ≤ si + (1− xk)ω − ε,∀(vi, vj) ∈ CRM×W (3.39)
sj + dmj ≤ si + dmi + xkω − ε

si + dmi + dwi + dci ≤ sj + (1− xk)ω − ε,∀(vi, vj) ∈ CRW×M (3.40)
si + dmi + dwi + dci ≤ sj + dmj + xkω − ε
sj + dmj + dwj + dcj ≤ si + dmi + (1− xk)ω − ε,

∀(vi, vj) ∈ CRW×W (3.41)
si ≤ sj − dnj + xkω − ε
sj ≤ si − dni + (1− xk)ω − ε,

∀(vi, vj) ∈ CRN×N (3.42)
si ≤ sj + xkω − ε

sj + dj ≤ si − dni + (1− xk)ω − ε,
∀(vi, vj) ∈ CRN×M (3.43)

si ≤ sj + dmj + xkω − ε
sj + dmj + dwj + dcj ≤ si − dni + (1− xk)ω − ε,

∀(vi, vj) ∈ CRN×W (3.44)
sj ≤ si + xkω − ε

si + dmi ≤ sj − dnj + (1− xk)ω − ε,
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∀(vi, vj) ∈ CRM×N (3.45)

sj ≤ si + di + xkω − ε
si + dmi + dwi + dci ≤ sj − dnj + (1− xk)ω − ε,

∀(vi, vj) ∈ CRW×N (3.46)

The set CRopi×opj ⊆ CR is a subset of the set of the collision resolutions which
contains only collisions occurring in operation phase opi of vertex vi and operation
phase opj of vertex vj .

3.2.4 Model
This subsection shows the complete model for energy optimisation as devised above.

min
~dn, ~dm, ~dw, ~dc

∑
vi∈V

PNidni + PWi(dwi + dci) + Ei. (3.27)

s.t.

si + dmi + dwi + dci = sj − dnj + hijω,∀(vi, vj) ∈ E (3.28)
si = sj − dnj ,∀(vi, vj) ∈ E, vi ∈ Vdummy (3.29)

si + dwi = sj − dnj ,∀(vi, vj) ∈ E, vi ∈ Vdummy (3.30)

dmi ≤ dmi ≤ dmi,∀vi ∈ V (3.31)

dwi ≤ dwi,∀vi ∈ V (3.32)

dni = 0,∀vi ∈ V \ Vpriorwait (3.33)
si = 0,∀vi ∈ Vdummy (3.34)

si + dmi + dwi ≤ sj − dnj − oij ,∀(vi, vj) ∈ L (3.35)
si + dmi ≤ sj − dnj − oij ,∀(vi, vj) ∈ L (3.36)

offsetit ≤ Ei + slopeitdmi,∀vi ∈ V,∀t ∈ T (3.37)

si + dmi ≤ sj + xkω − ε
sj + dmj ≤ si + (1− xk)ω − ε,∀(vi, vj) ∈ CRM×M (3.38)
si + dmi ≤ sj + dmj + xkω − ε

sj + dmj + dwj + dcj ≤ si + (1− xk)ω − ε,∀(vi, vj) ∈ CRM×W (3.39)
sj + dmj ≤ si + dmi + xkω − ε

si + dmi + dwi + dci ≤ sj + (1− xk)ω − ε,∀(vi, vj) ∈ CRW×M (3.40)
si + dmi + dwi + dci ≤ sj + dmj + xkω − ε
sj + dmj + dwj + dcj ≤ si + dmi + (1− xk)ω − ε,

∀(vi, vj) ∈ CRW×W (3.41)
si ≤ sj − dnj + xkω − ε
sj ≤ si − dni + (1− xk)ω − ε,

∀(vi, vj) ∈ CRN×N (3.42)
si ≤ sj + xkω − ε
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sj + dj ≤ si − dni + (1− xk)ω − ε,
∀(vi, vj) ∈ CRN×M (3.43)

si ≤ sj + dmj + xkω − ε
sj + dmj + dwj + dcj ≤ si − dni + (1− xk)ω − ε,

∀(vi, vj) ∈ CRN×W (3.44)
sj ≤ si + xkω − ε

si + dmi ≤ sj − dnj + (1− xk)ω − ε,
∀(vi, vj) ∈ CRM×N (3.45)

sj ≤ si + di + xkω − ε
si + dmi + dwi + dci ≤ sj − dnj + (1− xk)ω − ε,

∀(vi, vj) ∈ CRW×N (3.46)

Ei, dni, dwi, dci, si, dmi ∈ <+
0 ,∀vi ∈ V (3.47)

xi ∈ {0, 1} (3.48)

Econst
i , dmi, dmi, dwi, ω, ε, slopeit, offsetit, hij , PNi , PWi ∈ const. (3.49)
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Chapter 4
Energy profile approximation

One of the goals of this thesis is to come up with an approximation of the energy profile
(defined in Chapter 2).

In Chapter 2, we defined the energy profile as a function describing the dependence
between a vertex duration and its energy consumption. The function was obtained
by interpolating the measured data. In Chapter 3, we used this function or more
precisely its piecewise linear approximation as one of the inputs to the MILP for energy
consumption minimisation.

This chapter discusses possible data-driven approaches to energy profile approxima-
tion.

4.1 Initial measurements
Initial measurements were done on three types of manually created trajectories called
“straight”, “updown” and “downup”. The straight trajectory was a movement defined
by the movement of the first robotic joint j1. The movement started with the joint j1
set to −90◦, then the robot moved to position where j1 = 0◦, and finally to the position
j1 = 90◦. In other words, the robot moved horizontally due to the changes in the first
joint position. Illustration of this movement can be seen in Figure 4.1. On the left is
the start position, and on the right is the final position, whereas in the middle is the
coarse point around which the robot moves. The discontinuous line shows the path
that the end point of the robot undergoes.

The updown and downup movements are vertical movements (one from up to down,
the other going the opposite way) without the midpoint, where the robot moves the
second joint j2. Since the position limits in the second joint differ in each used robot,
the movement was going from the upper limit to bottom limit or vice versa of each
robot. Both movements are illustrated in Figure 4.2, where the downup movement is
robot movement from the left position to the right one, and the updown movement is
the opposite one (from right position to the left one). These trajectories can be seen as
vertices of graph G mentioned in the previous chapters.

Figure 4.1. Illustration of the “straight” movement with Kuka KR 90 R3700 prime.
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Figure 4.2. Illustration of the “downup” and “updown” movements with Kuka KR 300
R2500 ultra.

For these types of trajectories, the energy consumption was measured using Kuka-
Krc controller on three Kuka robots: KR 90 R3700 prime, KR 210 R2700 extra, and
KR 300 R2500 ultra. The first number in the robot name is its payload in kg; the
second one is its reach in mm.

Figure 4.3. Energy profile of the “straight” vertex of Kuka KR 210 R2700 extra.

In Figures 4.3, 4.4 and 4.5, there are shown energy profiles for three different trajec-
tories of two robots. The energy profiles were obtained by interpolating five samples
representing duration and energy consumption. We can see that the minimum lies be-
tween the third and fourth sample points, which correspond to the limit of the joint
speed 55 % and 32.5 %. Where exactly the minimum lies depends on the type of the
function which we use to interpolate the measured data points. However, the trend
is clear: going from the highest speed to the lowest the energy consumption decreases
until some point and then it starts to increase again. A further illustration of this trend

23



4. Energy profile approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.4. Energy profile of the “downup”
vertex of Kuka KR 90 R3700 prime.

Figure 4.5. Energy profile of the “up-
down” vertex of Kuka KR 90 R3700

prime.

can be seen in Figure 4.9, where we explicitly plot the joint speed limits along with
energy consumption. All this complies with findings of Meike et al. [15].

Since the three basic trajectories consist only of a movement in one joint, additional
“complex” trajectory was made that involves a movement of all six joints. The move-
ment is illustrated in Figure 4.7. The robot moved from the initial position shown on
the left to the position on the right. Even then, the measured data shown in Figure 4.8
complies to what we would expect.

Finally, let us have a look at Figure 4.9. There are plotted measured data samples for
the straight trajectory of Kuka KR 300 R2500 ultra. However, this time on the x-axis,
there is the limit of the joint speed instead of duration. Please note that the imaginary
curve that would interpolate the data points mirrors the curve that would interpolate
the points in Figure 4.6 because the lowest speed limit corresponds to the highest
duration. It is interesting to see that for some neighbourhood around the minimum
increasing or decreasing the speed by the same amount produce a similar increase in
energy consumption.

Figure 4.6. Dependence between duration and energy consumption on the straight trajec-
tory of Kuka KR 300 R2500 ultra.

24



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Initial measurements

Figure 4.7. Illustration of the “complex” movement with Kuka KR 210 R2700 extra.

Figure 4.8. Energy consumption of the “complex” vertex of Kuka KR 210 R2700 extra.

Figure 4.9. Dependence between the joint speed limit and energy consumption on the
straight trajectory of Kuka KR 300 R2500 ultra.
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4.2 Initial feature selection
To simplify things, what we try to achieve in this chapter is to find some input features
(that could be measured via Process Simulate API with the standard controller), output
features describing the estimated energy profile and the relationship between those two
sets of features.

Firstly, we need to ask what interests us about the energy profile. In Chapter 3,
we described how we use the approximation of the energy profile as a lower bound
constraint for variables that go into the optimisation criterion. We can infer two things
from that. One is that we need to have information about the height of the profile;
hence, we could use the optimal energy E∗ as one of the output parameters. The other
thing is that we have to approximate any energy profile by linear functions since we
cannot use non-linear constraints in the MILP. For that reason, we can directly estimate
the piecewise linear approximation of the energy profile. For that, we will need some
points which will serve as endpoints of the line segments. We could use the minimum
and maximum duration (in this chapter it will be the duration of vertex with the joint
speed limit set to 100 % and 10 % respectively) and their respective energy consumption
as two points (dmin, Edmin) and (dmax, Edmax). The third point could be the duration
needed to achieve the lowest consumption, (d∗, E∗). And also estimating the joint speed
limit, v∗ which is needed to get the duration of the least energy consuming trajectory.
Let us call this triplet d∗, E∗, v∗ optimal duration, optimal energy and optimal speed
for simplicity. We can measure the minimum and maximum duration, so this leaves us
with five features we will want to estimate, (d∗, E∗, v∗, Edmin , Edmax). Let the quintuple
(d̂, Ê, v̂, Êdmin , Êdmax) represent the estimated values of the output features.

Secondly, it is necessary to identify which parameters may influence the energy con-
sumption, as well as which parameters can be obtained via Process Simulate API with
the standard controller only. It is important to note that we only had one controller
(that is a Process Simulate addon which allows measure energy consumption) available.
This controller was Kuka-Krc; as the name suggests, it only allowed energy consump-
tion measurements for Kuka robots, namely the robots from Quantec Series (robot
series in the high payload category). The Kuka robots differed mainly in the maximum
payload (varying from 90 to 300 kg) and its maximum reach (2500 to 3700 mm).

As we already saw in this chapter, the energy consumption of a vertex is influenced by
its duration, so it makes sense to measure the duration with various joint speed limits
set. The duration is influenced by the length of the path the robot undergo. The length
could mean many things in this context; simple Euclidean distance between the points
the robot should approach, angle distance made by the robot joints or even distance
travelled by the Tool Centre Point Frame (TCPF). As the name suggests, the point
could be at the point where a tool is attached to the robot, or at the tool itself. From the
angle distance travelled by a joint, we can compute angle speed, acceleration and jerk.
Jerk is the rate of change of acceleration. It is easy to imagine that fast acceleration to
high speed would require more power than simple movement at constant low speed.

4.3 Data acquisition
Now that we have some notion about what features could be important, let us talk
about how the features were obtained.

Because the simulations are very slow, we decided to save way more features than
we planned to use as it is always easier to remove existing data than obtaining a new

26



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Data acquisition

one. The saved features were payload, reach and type of the robot, and speed and
acceleration limits for all of its joints. We also saved the sum of Euclidean distance
between given via points. These features could be obtained without the simulation.
Then for five different joint speed limits (10 %, 32.5 %, 55 %, 77.5 %, 100 %) we
measured the following data: duration, path length travelled by the end point of robot
and for all joints we measured absolute displacement in radians, then maximum and
average speed, acceleration, and jerk in rads−1, rads−2 and rads−3 respectively. In
total, there were more than two hundred features saved.

There are two main reasons why we chose the lower bound of speed limit set to 10 %.
One is that the longer the duration is, the longer the already slow simulation lasts. One
can see in the provided figures that lowering the speed limit to 10 % can increase the
duration of vertex approximately tenfold. The other, more important reason is that
for lower speed the curve resembles a linear function. So making other simulations at
lower speeds would not give any useful information.

Data were obtained in two phases. In the first phase, the trajectories were generated,
and in the other, the data were measured for those trajectories. The data generation was
a rather complicated task since one cannot easily verify that the generated trajectory
is viable. While it is possible to check that every single via-point is reachable by the
robot, it is not possible to verify in advance if the robot can move along these points.
For that reason, we chose to generate only the simplest paths. Those paths were just
two fine points, where the first one was the robot default position, and the other was
randomly generated by moving robotic joints into a feasible position.

The second phase was as if not more complicated as the first one. To obtain all the
wanted data, we needed to make fourteen simulations at various speeds. Firstly, we did
five basic simulations with the speed limits set to 10 %, 32.5 %, 55 %, 77.5 % and 100 %
to obtain data samples with energy consumption. An example of these data samples
can be seen in Figure 4.3. The yellow dots denote duration and energy consumption
during the five simulations. Then we ran nine additional simulations to find the optimal
energy consumption.

We assume that the curve approximating measured data changes from decreasing
to increasing at some point. So we find the interval in which it happens and run the
additional simulations to find the minimum energy consumption as well as the optimal
duration and joint speed, E∗, d∗, v∗. The simulations were distributed evenly along the
interval. Therefore, the optimal joint speed limit need not be the absolute best one.
(The word “optimal” is a reference to the fact that this value is the one we will try
to estimate rather than it would mean the absolute argument minimum of the energy
profile.) Given the fact we do not have much data available, the fact the additional
simulations are evenly distributed is useful.

The minimum was found in the following way. Assuming all energy profiles can be
split into two continuous intervals the first one decreasing and the other increasing, and
given five sample points we know there will be three consecutive data samples where
the middle one will have lower energy consumption than the other two. Since the space
between all samples has a size of 22.5 percentage points, the whole interval on which
we will find the minimum will have a size of 45 p.p. Then we will make nine additional
simulations with the speed limit evenly distributed within the interval. The difference
in speed limit between consecutive simulations will be 4.5 p.p.

In theory, we could measure energy consumption for every possible speed limit (its
precision in Process Simulate is two decimals) and thus get the absolute best. However,
this is not a viable approach, as the simulation is the slowest part of the whole process.
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Indeed, this phase was already very time-consuming as it was; getting the data for just
one trajectory took minutes. So it was unfeasible to get a huge amount of data.

All of the things mentioned so far lead to the estimation of the energy consumed
during the movement of the vertex. As we saw in the previous chapters, we also need
the estimation of the energy consumed during the waits. We could try some similar
approach to estimate the wait coefficient, but that would be unnecessarily complicated.
Now let us imagine a situation in which a robot moves between two points extremely
slowly, so slowly that within one second it makes no noticeable move. In that case,
there would be effectively no difference between one second of waiting and one second
of the movement. Therefore we can equal this movement energy consumption with
wait energy consumption. We are going to exploit this observation later in this chapter
when we talk about the implementation of the estimator.

This concept is illustrated in Figures 4.10 and 4.11. Both images show the robot
viewer tool from Process Simulate, which allows displaying power consumption and total
energy consumed. Both images show the power consumption for the Kuka KR 300 R
2500 ultra and the straight movement. The first picture shows the power consumption
for the case when speed was set to 100 % and ten-second long wait was added at the end.
The power consumption during the wait was around 0.56 kW. The second picture shows
the case when speed was set to only 1 % with no wait added. The power consumption
during the movement was around 0.55 kW.

Figure 4.10. Power consumption of
straight movement with speed limit set to

100 % and with 10 s wait at the end.

Figure 4.11. Power consumption of
straight movement with speed limit set to

1 %.

4.4 Regression
Now that we have input and output features, we have to find out a relationship between
them. For that, we will use regression analysis, i.e. a process of estimating the relation-
ship between variables. In general, regression models involves three sets of elements.
The first one is a set of observed inputs (predictors, input features) X; then there is a
set of dependent variables (output features) Y and also the set of unknown parameters
β which we will try to find. We can imagine that as some function of the input features
and unknown parameters which produces the output features.

Y ≈ f(X,β) (4.1)
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To be able to do the regression, we need to specify function f . In our case, we
choose a linear function. Therefore the output Y will be a linear combination of input
features. The linearity means that the function is linear in the unknown parameters.
The function can be non-linear in the output features (e.g. it could contain elements
such as x2

1 or x1x2). We, however, make the output features linear as well. Since we will
try to predict more than one output feature given more than one input features, the
regression will be called multiple multivariate linear regression. Below is an example of
predicting an output feature yj given one observation X.

yj = β0,j +
n∑

i=1
βi,jxi (4.2)

The constant β0,j is also called an intercept. It is often defined as the mean of the
output when all of the inputs are set to zero. If we add a dummy input feature x0 = 1
for all observations, we can simplify the equation (4.2) in the following way.

yj =
n∑

i=0
βi,jxi (4.3)

The complete model could be written in the matrix form in the following way:

XB = Y,X ∈ <o×(n+1),B ∈ <(n+1)×j , Y ∈ <o×j , (4.4)

or in a more detailed way


1 x1,1 x1,2 . . . x1,n

1 x2,1 x2,2 . . . x2,n

...
...

...
...

...
1 xo,1 xo,2 . . . xo,n


 β0,1 β0,2 . . . β0,5

...
...

...
...

βn,1 βn,2 . . . βn,5

 =

 y0,1 y0,2 . . . y0,5
...

...
...

...
yo,1 yo,2 . . . yo,5

 .

(4.5)
The first matrix represents o observations in rows with an intercept and n input

features in columns. The second matrix consists of coefficients of linear combinations
of input features in the columns. In the rows, the coefficients correspond to j output
features. Finally, in the third matrix, there are j output features in every row for each
of o measured output features.

The regression model was written in Python with the help of machine learning library
scikit-learn [20]. The input to the file was a .csv (comma-separated values) file with
measured data. The data were then read and separated into inputs and outputs.

With the help of scikit-learn library, we decided to limit the number of features to
thirty. All of them are shown in Table 4.1. In the upper bottom part of the table,
the columns represent features associated with joints: maximal speed vmax, maximal
acceleration amax, maximal jerk jmax, average speed vavg, average acceleration aavg and
average jerk javg. The rows represent the joints of the robot. If a cell is empty, the
feature was not selected for the particular joint and any speed. If there is a number or
numbers in the cell, it means a feature corresponding to the given joint, and the speed
limit was selected. The following features were selected: Euclidean distance between
the points the robot should approach; path length for speed limit set to 10 %; for the
first joint: amax for speed limits of 55 %, 77.5 % and 100 %, jmax for the same speed
limits, and aavg and javg, both for the speed limit of 77.5 %; for the second joint: amax

for the speed limit of 77.5 %, jmax for the speed limits of 32.5 %, 55 % and 77.5 %, and
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aavg for the speed limit of 55 %; for the third joint: amax for the speed limit of 55 %
and javg for the speed limit of 77.5%; for the fourth joint: amax and jmax for the speed
limit of 32.5 % and javg for the speed limit of 55 %; for the fifth joint: vmax and amax

for the speed limit of 100 % and jmax for the speed limit of 32.5 %; for the sixth joints
vmax for the speed limits of 77.5 % and 100 %, amax, jmax, vavg and aavg for the speed
limit of 100 % and javg for the speed limit of 10 %.

vmax amax jmax vavg aavg javg

joint 1 {55, 77.5, 100} {55, 77.5, 100} {77.5} {77.5}
joint 2 {77.5} {32.5, 55, 77.5} {55}
joint 3 {55} {77.5}
joint 4 {32.5} {32.5} {55}
joint 5 {100} {100} {32.5}
joint 6 {77.5, 100} {100} {100} {100} {100} {10}
Other
features:

euclid
distance

path length
(v = 10 %)

Table 4.1. Selected input features.

For a comparison, another model was made where we selected only four features,
that is Euclidean distance le, path length l10 and duration d10 for speed of 10 % and
duration d100 for speed of 100 %. The reasoning behind a selection of these features is
simple. The durations are chosen because we want to estimate the energy consumption
for them. And the Euclidean distance and path length influence movement, speed and
acceleration of the joints and therefore also influence energy consumption.

Linear Regression in scikit-learn uses ordinary least squares linear regression that
“minimize the residual sum of squares between the observed responses in the dataset,
and the responses predicted by the linear approximation.”[21] Mathematically, it could
be written in the following way:

min
B
||XB − Y ||22. (4.6)

For the second model we can rewrite XB − Y in more detail in the following way:


1 l1e l110 d1

10 d1
100

1 l2e l210 d2
10 d2

100
...

...
...

...
...

1 loe lo10 do
10 do

100


β0,1 . . . β0,5

...
...

...
β4,1 . . . β4,5

−
E1

dmin
E1

dmax
E∗1 t∗1 v∗1

...
...

...
...

...
Eo

dmin
Eo

dmax
E∗o t∗o v∗o

 .

(4.7)

4.5 Results and estimator implementation
Linear regression produced coefficients and intercepts for the given features which are
used to get the estimated values of energy consumed during the minimal and maximal
duration Êdmin , Êdmax , the minimal energy consumption Ê, the optimal duration d̂, and
the optimal joint speed v̂.

We decided to approximate the energy profile fEP in the following way. The en-
ergy profile will be approximated by one constant segment representing the optimal
estimated energy consumption, and two linear segments representing the growth of the
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energy consumption to the duration extremes. The constant function will be y1 = Ê.
To account for possible imprecisions caused by lower sample set, we chose to add a delta
neighbourhood around the optimal duration with the size of ∆ = ±2.5 p.p., where the
size of one percentage point was set as δ = (dmax−dmin)

100 . Thus the line segment of this
constant function will go from d1 = d̂− 2.5δ to d2 = d̂+ 2.5δ. These two points d1 and
d2 and the value Ê will be then used as end points for the linear segments y1 and y2.
The other end points will be [dmin, Êdmin ] for y1 and [dmax, Êdmax ] for y2. So we can
write the estimated energy profile f̂EP in the following way.

f̂EP (d) =


(Ê−Êdmin

)
(d1−dmin) (d− dmin) + Êdmin d ∈ (dmin, d1)
Ê d ∈ (d1, d2)
(Ê−Êdmax )
(d2−dmax) (d− dmax) + Êdmax d ∈ (d2,∞)

(4.8)

The reason why the third segment goes to ∞ is that the user could choose to run
the optimisation with smaller speeds than we measured. And while there is an upper
bound on the duration, its value does not provide any valuable information so we need
not try to find it using a simulation.

Please note that in the MILP we use whole functions for simplicity, but only the
segments on a given interval will be of interest to us.

In Figure 4.12, we can see an example of the energy profile estimator on the previously
mentioned updown trajectory. As for the wait time energy consumption estimation, we
shall use the slope of the rightmost segment of the movement energy profile. We can
view the segment as a change of energy consumed over time. The value of the slope
is the derivation of the segment, i.e. the power consumed. To get the wait energy
consumption, it is sufficient to multiply its length with the power consumed.

Figure 4.12. An example of the energy profile estimator.
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Figure 4.13. Diagram comparing energy optimisation processes.
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In Figure 4.13, we can see a comparison of the two possible approaches to energy
consumption optimisation on a state diagram. The first represents the case when we
have a robotic controller which allows measuring energy consumption; the other rep-
resents the case where we have no controller available and have to use the estimator
function.

In the state diagram, the cells in the blue-white gradient denote the parts of the
algorithm, which is the same for both types of approaches. Let us described the opti-
misation with the controller available. Firstly, the user has to input the desired cycle
time (or it can be chosen automatically as a result of time optimisation) and the min-
imum and maximum joint speed (please recall that this is limit of the joint speed).
Then the initial simulations are done; the first two with minimum and maximum joint
speed serves not only for energy consumption measurement but also for duration mea-
surement (see the inequalities (3.31)). If the minimum and maximum joint speed are
equal, no more simulations are done. If not, then additional three simulations with
speeds proportionally spread between the minimum and maximum speed are done to
receive more energy measurement samples.

The following phase is the MILP as defined in Section 3.2. Then we try to tie
the optimisation results with simulation in the so-called interpolation phase. Finally,
collision simulation is run to see if there are any collisions. If so, the collision resolution
is added to the MILP, and the whole procedure repeats until a collision-free solution is
found or if no feasible solution could be found.

As can be seen in the diagram, the optimisation where we have no controller available
differs in two parts. First one is the section of initial simulations where we need to run
five simulations with the same speeds which were used to obtain the estimator and
possibly another two with the speeds set by the user to obtain duration limits for the
vertices. The other part is the MILP; here, the difference lies in the way of getting the
energy profile approximation. We also use the slope of the rightmost segment in the
energy profile of a vertex as a coefficient of energy consumed during the waiting for a
given vertex.

It was rather easy to implement the estimator within the existing framework. Firstly,
functions measuring the features needed to be added. To allow possible future updates,
all mentioned input features were measured, however those of them not among the
thirty selected ones were given zero weight.

Then the MILP needed to be updated. For the energy consumed during waitings, it
was sufficient to replace the measured values in the optimisation criterion (3.27) with
the estimated ones. For the energy consumed during movements, it was necessary to
only change the lower bound function (see Section 3.1.3 for details) with the estimated
function. The following chapter will discuss the quality of this estimator function.

33



Chapter 5
Experimental results

This chapter describes the results of experiments where we tested the quality of the
energy optimisation processes.

5.1 Experiment setup
All the energy consumption measurements were done in Process Simulate [22] with
Kuka-Krc controller with the help of a Robot Viewer tool. It is important to note
that Process Simulate measures the power consumption and consequently the energy
consumption only when a robot is active, i.e. when it moves or when it waits due
to some command, which is not realistic. In comparison, the MILP for both types of
energy approximation considers the robots active for the whole cycle time. So to be able
to produce comparable results, the artificial wait time was added to the last vertices
of the inactive robots. In the following text when two values of consumption will be
shown the first one will show the consumption when the artificial waits were added and
the second one in the parenthesis will be the consumption of the original trajectory, i.e.
provided by Process Simulate.

To get some base case, we firstly measured the energy consumption at 100 % ignoring
all possible collision. Then we run time optimisation to get the lowest possible cycle
time. Then we run both cycle time and energy optimisation to compare the improve-
ment. Finally, we run only energy optimisation with some relaxed cycle time. All the
tests were run with the interval of joint speed limits set from 10 % to 100 %.

All the energy optimisations were run once with consumed energy obtained from the
controller and once with energy obtained from the estimator.

5.2 Results
It turned out that the regression model with thirty features, described in Section 4.4,
does not provide useful results at all. The estimated energy profile was often way off
from what we could reasonably expect. There might be many reasons for this behaviour.
First, the features may not have been well selected in the first place. Or there were too
many of them and too few input data.

On the other hand, the model with manually selected features provided much better
results, as will be shown on the following pages. An example is shown in Figure 5.1.
The blue curve shows the energy profile interpolating given data points (the data points
can be seen along the same curve in Figure 4.3). The three segments, displayed in black
as a piecewise linear function, are on the contrary obtained by the estimator function.
We can see that the estimator overestimates the energy consumption for this particular
example. If the estimator were to be found consistently overestimating the energy
consumption, it would be good because then it would be sufficient to tune the values of
the intercepts to get the correct results. However, that would require further research
that would prove whether this proposition holds.
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Figure 5.1. A comparison of two energy profiles for the straight vertex, defined in Sec-
tion 4.1, of Kuka KR 210 R2700 extra.

Figure 5.2. Real robotic cell provided by Blumenbecker Prag s.r.o.
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5.2.1 Blumenbecker cell

One of the experiments was run on real robotic cell provided by Blumenbecker Prag
s.r.o. (shown in Figure 5.2). The company is a partner of Czech Technical University in
the eRobot project. The graph representing the simulation had 45 vertices. When we
ran the simulation with the speed limit set to 100 %, the overall energy consumption
was 200892 J (195231 J). Then we ran time optimisation. Since there were no collisions,
the fastest solution was equal to the run with maximum speed. The cycle time was
60.75 s.

The energy consumption achieved by the MILP for energy optimisation was
193323.79 J. The real consumption, obtained in Process Simulate, was 184432 J. For
the relaxed cycle time 70 s, the result was 182341.16 J. The real consumption was
169948 J.

The results with the estimator were the following: for the optimal cycle time, the
optimised energy consumption was 211544.76 J. The real consumption was 190225 J.
For the relaxed cycle time, the MILP returned 186669.1 J. The real consumption was
195747 J.

Figure 5.3. Power and energy consumption for time-optimal trajectory.

5.2.2 3 robots cell

This experiment was also run on another cell provided by Blumenbecker. In this cell,
there are three robots Kuka KR 240 R 2900 ultra set up in such a way that many
collisions need to be avoided (the cell is shown in Figure 5.4). The graph representing
the simulation had 27 vertices.

Simulating at 100 % speed limit resulted in energy consumption of 109571 J, and
cycle time 22.14 s. Collision-free, time-optimal solution resulted in cycle time of 30.58 s
and consumption of 127067 J (113227 J). Since there were many collisions, another
experiment was run. All vertices had a fixed speed limit of 100 % and a collision could
be thus avoided only by adding wait time. The MILP for time optimisation provided a
cycle time of 29.58 s and the consumption measured in Process Simulate was 132741 J
(119565 J).

Then energy optimisation with energy profiles from the controller was run. The op-
timisation for the optimal cycle time provided a result with consumption 106358.88 J,
while consumption in Process Simulate was 121652 J (107800 J). Then an optimisa-
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Figure 5.4. Robotic cell with three Kuka KR 240 R 2900 ultra robots.

tion was run with cycle time relaxed to 35 s. The MILP achieved consumption of
100800.77 J. The real consumption was 105955 J (90148 J).

The same experiments were also run with the estimator. The optimisation for the
optimal cycle time provided consumption of 151556.35 J, and real consumption was
120809 J (107299 J). Then the optimisation was run with cycle time relaxed to 35 s.
The MILP returned consumption of 145058.67 J. The real consumption was 121681 J
(105741 J).

5.2.3 2 robots cell

The last experiment was done on a cell consisting of two Kuka KR 240 R 2900 ultra
robots (shown in Figure 5.5), also provided by Blumenbecker. As in the previous case,
the cell was set up in such a way that many collisions need to be avoided. The graph
representing the simulation had 66 vertices. Initial consumption for the unlimited speed
was 141153 J with a cycle time of 30.32 s. The time-optimal solution had a duration
of 35.59 s and the energy consumption measured in Process Simulate was 138087 J.
We made an additional experiment, the same as in the previous subsection. When the
vertices had a fixed speed limit of 100 %, the MILP for time optimisation provided
a cycle time 34.67 s, and the energy consumption was 151817 J (141103 J). That is
an increase of energy consumption of almost 10 % in comparison with the base case,
i.e. the case where vertices can have speed limit from interval 10 % to 100 %. It is
another confirmation of the fact that the speed limit plays an important role in energy
consumption. The reason the optimal cycle time for fixed speed limit is lower in this
case and that of 3 robots cell than for the case when a vertex can have any speed limit
from the interval from 10 % to 100 % is that the constraints in the initial MILP are
different. The MILPs can then schedule all the vertices in a different way, which can
result in different collisions and collision resolutions.

When the energy optimisation was run for the optimal cycle time, the MILP produced
an output of 126355.96 J while the real consumption was 131607 J. The relaxed cycle
time was 41 s and the MILP provided a solution consuming 122184.09 J. The real
consumption in Process Simulate was 121378 J.
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Figure 5.5. Robotic cell with two Kuka KR 240 R 2900 ultra robots.

Running the algorithm with the energy profile from the estimator, we got the fol-
lowing results. For the optimal cycle time, the MILP returned 320606.61 J. The real
consumption was 141209 J (139196 J). With the cycle time relaxed to 41 s the result
of optimisation was 291099.44 J. And the real consumption was 130125 J (127073 J).

5.3 Summary
This section provides a recap of the results obtained in the previous section. The results
are shown in several tables. Table 5.1 shows a comparison between consumed energy
for time optimisation T , for energy optimisation with optimal cycle time with energy
measuring controller T +E1 and for energy optimisation with optimal cycle time with
estimator T + E2. The last two columns show the decrease in energy consumption for
the energy optimisation algorithm. Table 5.2 and Table 5.3 show the quality of energy
optimisation, i.e. how far off is the optimal solution of the MILP from the real energy
consumption measure in Process Simulate. The former table shows the optimisation
with the energy profile generated using controller; the latter shows the optimisation with
the energy profile generated from the estimator. Finally, Table 5.4 shows the results
for relaxed cycle times. The first two columns contain the cell name and the type of
optimisation, then there the increase of cycle time in per cent. The last two columns
show the real energy consumption for the cycle time and energy decrease compared to
time and energy optimal solution.

Cell ω
[s]

T
[kJ]

T + E1
[kJ]

T + E2
[kJ]

Energy Con-
sumption
Decrease
(E1) [%]

Energy Con-
sumption
Decrease
(E2) [%]

Blumenbecker 60.75 200.9 184.4 190.4 8.19 % 5.24 %
3 robots 30.58 127.0 121.7 120.8 4.26 % 4.92 %
2 robots 35.59 138.0 131.6 141.2 4.69 % -2.26 %

Table 5.1. Energy optimisation results for time-optimal trajectories.
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In Table 5.1, we can see in the column T + E1 and the penultimate column that we
can save a significant amount of energy even for the optimal cycle time. For the cases
when the energy profile was based on interpolation of measured energy, we consistently
got an improved solution. Whereas when we based the energy profile on the estimator
it provided a better result in one case and worse results in the others, and in one case it
even increased energy consumption in comparison with the result of the time-optimal
solution.

Cell ω
[s]

MILP
output
[kJ]

Real
energy
consump-
tion
[kJ]

Difference
[%]

Blumenbecker 60.75 193.3 184.4 8.44 %
Blumenbecker 70 182.3 169.9 7.29 %

3 robots 30.58 106.4 121.7 -12.57 %
3 robots 35 100.8 106.0 -4.86 %
2 robots 35.59 126.4 131.6 -3.99 %
2 robots 41 122.2 121.4 0.66 %

Table 5.2. Quality of the energy optimisation with the controller.

Cell ω
[s]

MILP
output
[kJ]

Real
energy
consump-
tion
[kJ]

Difference
[%]

Blumenbecker 60.75 211.5 190.2 11.2%
Blumenbecker 70 186.7 195.7 -4.64 %

3 robots 30.58 151.6 120.8 25.45 %
3 robots 35 145.1 121.7 21.67 %
2 robots 35.59 320.6 141.2 127 %
2 robots 41 291.1 130.1 124 %

Table 5.3. Quality of the energy optimisation with the estimator.

Table 5.2 and Table 5.3 show how much the MILP overestimated (the positive values)
or underestimated (the negative values) the real solution. Even though this is not the
most important criterion of the quality of the algorithm, it is good to see that results
are rather reasonable. For the optimisation with data from the controller, we can see
that the biggest error was about 12.5 %. The optimisation with the estimator provided
less accurate results, especially for the 2 robots cell. That could be caused by specific
properties of the cell. All the trajectories used to train the linear regression model
were of the robot just following some points. However, this cell features many weld
operations where the robot is required to undergo a long path in terms of Euclidean
distance before doing the actual welding which causes an inaccuracy in energy profile
estimation for vertices containing the weld operation.

In Table 5.4, we see how much energy we saved by relaxing cycle time in comparison
with the optimal energy solution for the optimal cycle time. In Chapter 1, we mentioned
the work of Meike et al. [13] which claimed that adding 50 % of extra time to an
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Cell Type Time

relaxation
[%]

Energy
Consumption
[J]

Energy
Consumption
Decrease [%]

Blumenbecker controller 15.2 % 169948 7.85 %
Blumenbecker estimator 15.2 % 195774 -2.91 %

3 robots controller 14.5 % 105955 12.90 %
3 robots estimator 14.5 % 121681 -0.72 %
2 robots controller 15.2 % 121378 7.77 %
2 robots estimator 15.2 % 130125 7.85 %

Table 5.4. Energy optimisation results for relaxed cycle time.

operation can lead to energy savings of up to 20 %. Here, we added extra time to all
operations, and we showed that even small cycle time addition could provide significant
savings.

If we compare the results of energy optimisation with the result of time optimisation,
then the decrease in energy consumption is up to 16.6 % for the 3 robots cell with
energy profile based on controller data.
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Chapter 6
Conclusion

This thesis focused on energy consumption optimisation. The main goal was to come
up with a mathematical model that would describe this problem, then to come up
with data-driven estimator of energy profiles, and finally to implement both in Process
Simulate.

To be able to produce a model, it was necessary to get familiar with Process Simulate
and its API. After exploring the options Process Simulate offers, it was possible to
define the problem formally. Based on the problem statement, two mixed integer linear
optimisation models were devised — one for time optimisation and another one for
energy optimisation. The most important part of the MILP model was the so-called
energy profile, a function approximating energy consumption for given vertex duration.

To get the energy profile, we need to have some information about energy consump-
tion. Therefore we provided two ways of energy consumption information acquisition.
One way was to use Kuka-Krc controller to obtain energy consumption samples and
then interpolate them with a polynomial function. The other way covers the occa-
sion when we have only the default controller available. For this case, we discussed
a data-driven approach for approximation of the energy profile. We analysed features
that could play an important role in energy estimation and provided a linear regression
model. Based on this model, an estimator of energy profiles was implemented.

During the analysis, we also experimentally verified claims of Meike et al. [15] about
the shape of the energy profile. Energy profile is indeed not a monotonous function.

An algorithm minimising energy consumption was described and implemented. Users
can choose between two variants of the algorithm. In the first variant, the energy profile
is created from controller data. In the other variant, the energy profile is generated from
simulation data.

The implemented algorithm was tested on several robotic cells, including one real
robotic cell provided by Blumenbecker. When we use the data from Kuka controller
to produce energy profile, the tests showed that it is possible to decrease the energy
consumption by up to 8 % for optimal cycle time and up to 16 % for relaxed cycle
time. The MILP using energy profile estimated from simulation data was shown to
overestimate the real energy consumption in most cases. Nevertheless, it was able to
provide an improved solution in some cases.

6.1 Future work
There are many possible ways of improvement of this work. One could focus on better
data acquisition either by finding a way how to generate better trajectories automati-
cally or simply by measuring more of them. Using vertices from real robotic cells could
also be a possibility.

Another possible approach could be the use of a different controller. In this work, we
could not improve nor test the quality of the algorithm and the estimator with other
robots than Kuka robots.

41



6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
One could also focus on better analysis of the quality of the estimator and try to find

whether it could be improved just by tweaking the intercepts.
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Appendix A
Abbreviations

API Application Programming Interface
AREUS Automation and Robotics for European Sustainable Manufacturing.

MILP Mixed Integer Linear Programming.
OLP Off-line programming.

TCPF Tool Centre Point Frame.
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Appendix B
Attachements

src/data csv.csv Measured data from trajectories in .csv format.
src/regression.py A script loading the data from the .csv file and making

the linear regression model.
src/MovementGenerator.cs A class used to generate trajectories.

src/Features.cs A class with a method for estimating features.
src/FeatureConstants.cs A class storing the coefficients for the estimator.

source text/ A folder with source files for this document.
Models for This document.

Energy Optimization of
Robotic Cells.pdf
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