
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Measurement Camera for Teaching
Labs

Bc. Jakub Vodseďálek
Cybernetics and Robotics
Sensors and Instrumentation

2019
Supervisor: doc. Ing. Jan Fischer, CSc.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

434677Personal ID number:Vodseďálek JakubStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Cybernetics and RoboticsStudy program:

Sensors and InstrumentationBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Measurement Camera for Teaching Labs

Master’s thesis title in Czech:

Měřicí kamera pro výukové laboratoře

Guidelines:
Design and realize a measurement camera for educational laboratories. The camera will serve for calculations verification
experiments associated with the choice of the optical system. Also, it will serve for contactless dimension measurement
experiments and evaluation of lenses geometry flaws.
The camera will use area CMOS image sensor and microcontroller series STM32H7xx (or other from the series STM32xxx).
The microcontroller will be used to set the sensor and transfer image data via the USB interface to the PC. The camera
allows both linear and area operation modes so it can replace existing cameras in currently used modules.
Create the necessary software for the microcontroller as well as the parent PC concerning the use of the camera in the
laboratory tasks.

Bibliography / sources:
[1] STMicroelectronics: DS12117 STM32H753VI Data
[2] STMicroelectronics: AN5020 Application note Digital camera interface (DCMI) for STM32 MCUs
[3] STMicroelectronics: RM0433 Reference manual STM32H7x3 advanced ARM-based 32-bit MCUs

Name and workplace of master’s thesis supervisor:

doc. Ing. Jan Fischer, CSc., Department of Measurement, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2019Date of master’s thesis assignment: 12.02.2019

Assignment valid until:
by the end of summer semester 2019/2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
Head of department’s signaturedoc. Ing. Jan Fischer, CSc.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Declaration
I declare that the presented work was developed independently and that I have listed

all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

This thesis was created in the laboratory of videometry, Department of Measurement
CTU FEE in Prague under the supervision of doc. Ing. Jan Fischer, CSc.

Prague, May 22, 2019 .

v

Acknowledgement
I would like to thank all the people that helped me not only in my studies but also

in my whole life. Special thanks go to my supervisor doc. Ing. Jan Fischer, CSc., who
guided me and provided valuable advice during my academic studies. My parents deserve
absolutely the biggest thanks and my dearest gratitude for all the support I received along
my life journey. I would also like to appraise the patience of my girlfriend Maruška and
thank her for enduring all the hardships with me. Last but not least, I would like to thank
all my family and friends because without all of them I would not be where I am now.

vi

Abstrakt
Tato diplomová práce se zabývá návrhem a realizací měřící kamery pro výukové labo-

ratoře. Kamera podporuje několik CMOS obrazových senzorů řízených mikrořadičem z
řady STM32. Snímky jsou přenášeny do PC s běžící vytvořenou aplikací pomocí USB.
Podpora high speed USB je přidáná pomocí externího USB PHY na navržené propojovací
desce. Kamera je schopna přenosu snímku v reálném čase, takže rozlišení podporovaných
CMOS senzorů není omezeno. PC aplikace s multi platformní podporou umožňuje plnou
kontrol CMOS senzoru. Přítomen je také simulovaný mód řádkového senzoru se základ-
ními nástroji pro analýzu řádku. V rámci práce je vytvořena propojovací deska mezi desku
CMOS senzoru a desku mikrořadiče a také programy pro mikrořadič a PC.

Klíčová slova: CMOS obrazový sensor, kamera, STM32, STM32H743, USB, externí
USB phy, libusb, platforma pro laboratorní výuku, videomterie, embedded programování,
Qt, C++, C

Abstract
This master’s thesis deals with the design and realization of a measurement camera for

educational laboratories. The camera supports multiple CMOS image sensors controlled
by STM32 series microcontroller. Images are transferred to PC running the developed
application using USB. High speed USB support is added by external USB PHY on de-
signed interfacing board. The camera is capable of real-time image data transfer, hence
the resolution of supported CMOS sensors is unlimited. PC application with multiplat-
form support allows full CMOS sensor control. Simulated linear image sensor mode with
simple line analysis tools is also included. Interfacing board between CMOS sensor board
and microcontroller board and programs for microcontroller and PC are created within
the work.

Keywords: CMOS image sensor, camera, STM32, STM32H743, USB, external USB
phy, libusb, labs teaching platform, videometry, embedded programming, Qt, C++, C

vii

Contents

1 Introduction . 1
2 Analysis . 2
2.1 Requirements. 2

2.1.1 Reliability . 2
2.1.2 Replaceability . 2
2.1.3 Expandability . 3
2.1.4 Complementing PC application . 3

2.2 Image sensors . 3
2.2.1 CCD image sensors . 3
2.2.2 CMOS image sensors . 5
2.2.3 Shutter control . 6

2.3 Controlling the sensor . 7
2.4 Communication . 7

2.4.1 Image sensor control . 7
2.4.2 Image data transfer . 11
2.4.3 Camera and PC communication . 14

2.5 Development tools . 15
2.5.1 Firmware development . 15
2.5.2 PC application development . 16

3 Camera realization . 17
3.1 Development workflow . 17

3.1.1 The first stage of development . 18
3.1.2 The second stage of development . 19
3.1.3 The final stage of development . 21

3.2 Interfacing board. 21
3.3 Supported Image sensors . 23

3.3.1 Image sensor MT9V034 . 25
3.3.2 Image sensor MT9M001 . 25
3.3.3 Image sensor MT9T001 . 26

4 Camera Firmware . 27
4.1 Memory usage. 27
4.2 CMOS sensor representation . 28
4.3 Image representation . 31
4.4 Firmware functionality . 33

4.4.1 Initialization . 34
4.4.2 Main loop . 35
4.4.3 Image capture and sending . 36
4.4.4 CMOS parameters setting and sending . 37

4.5 Adding support for another CMOS sensor . 37
5 USB communication in detail . 39
5.1 Firmware side implementation . 39
5.2 PC application side implementation . 40

5.2.1 Serial port implementation . 40
5.2.2 libUSB implementation . 41

5.3 Usage limitations . 43
5.4 Camera communication protocol . 43

ix

5.4.1 Camera to PC communication . 43
5.4.2 PC application to camera communication . 45

5.5 Communication speed measurements . 46
5.5.1 Maximal data rates . 46
5.5.2 Data rates measurements . 47
5.5.3 High speed USB real data rate comparison with theory . 48

6 PC application . 49
6.1 Application structure . 49

6.1.1 Bayer filter interpolation . 50
6.2 GUI layout . 52

6.2.1 Main control area . 52
6.2.2 Area mode . 54
6.2.3 Linear mode. 57

7 Conclusion . 59
References . 60

A Abbreviations . 63
B Interfacing board documentation . 65
C Photo documentation. 69
D Content of attached CD . 73

x

Figures

2.1. 3 phase CDD charge shift register function . 4
2.2. Photodiode in MOS transistor . 5
2.3. Principle of CMOS image sensor . 6
2.4. Rolling shutter exposure control . 6
2.5. Rolling shutter spatial distortion . 7
2.6. SPI modes tiiming . 9
2.7. Typical SPI configuration. 9
2.8. I2C communication timing. 10
2.9. Typical I2C configuration . 10

2.10. DCMI data transfer timing . 11
2.11. DCMI snapshot mode timing . 12
2.12. DCMI continuous grab mode timing . 12
2.13. DCMI data register with monochrome data . 12
2.14. DCMI pixel scan order . 13
2.15. Supported STM32 IDEs . 16
3.1. Design of pseudo PCB for interfacing board . 20
3.2. Artifacts while higher px clocks and prototype interfacing board 20
3.3. Power circuits on Nucleo board . 22
3.4. Jumpers configuration for power supply selection . 22
3.6. CMOS interfacing board pinout . 23
3.5. Pinout of interfacing board . 24
4.1. Internal FW CMOS sensor representation . 29
4.2. Basic representation of a linked list . 31
4.3. Internal image area representation . 31
4.4. Flowchart of setting imageArea . 32
4.5. Schematics of FW modules and their interactions. 33
4.6. CMOS identification and initialization process . 34
4.7. Image capture and send to PC application . 36
5.1. Messages emitted by camera . 44
5.2. CMOS parameters code table . 44
5.3. Messages emitted by PC application . 45
6.1. PC application structure diagram . 49
6.2. Bayer filter structue . 51
6.3. PC application main controls . 53
6.4. PC application registers control window . 54
6.5. PC application area mode . 55
6.6. PC application ROI setting window . 56
6.7. PC application linear mode. 57
B.1. Schematics of the interfacing board . 66
B.2. Assembly drawing for interfacing board . 67
B.3. Top copper drawing for interfacing board . 68
B.4. Bottom copper drawing for interfacing board . 68
C.5. Early development - wired connection . 69
C.6. Prototype of interfacing board . 70
C.7. Camera setup with prototype interfacing board . 70
C.8. Final interfacing board . 71

xi

C.9. Camera setup with final interfacing board . 71
C.10. 3D model of interfacing board PCB. 72
C.11. Finished interfacing board PCB . 72

xii

Tables
2.1. SPI modes . 8
2.2. SPI and I2C comparison . 10
2.3. Standard USB pinout . 14
2.4. USB standard maximal data rates . 15
3.1. Nucleo board external power options overview . 22
3.2. MT9V034 parameters . 25
3.3. MT9M001 parameters . 25
3.4. MT9T001 parameters . 26
4.1. System SRAM block in H743. 27
5.1. CMOS sensors maximal data output . 46
5.2. Maximal data rates for communication chain parts . 47
5.3. Measured data rates for different USB implementations . 47
B.1. Bill of material for the final interfacing board . 65

xiii

Chapter 1
Introduction

Contactless measurement employing image sensors is an integral part of modern mea-
surement systems. Thus it is also necessary to educate students in this particular field.
Appropriate equipment is then necessary for educational laboratories. It is possible to use
commercially available measurement cameras. However, their high price and not fulfilling
all requirements does not make them an ideal solution.

This thesis deals with the design and realization of custom made measurement camera
using a CMOS image sensor for educational laboratories. Unlike commercially available
cameras, it can give us access to all sensors modes and settings while maintaining all
the core functionalities. Using non-standard settings can help with the explanation of
CMOS sensors properties and function, resulting in students better understanding of
given problematic. The camera will have a construction similar to commercially available
solutions and will use similar tools, thus it can help with understanding its operation as
a whole (e.g., the process of capturing an image and sending to another system). The
methodology of camera development is also described in this thesis and can help in the
future with resolving problems encountered during the development.

Historically it was proven that single board camera might be the most elegant solu-
tion, however, it is not the most suitable one. Assembly of a single board containing
a microcontroller, image sensor, and all other necessary components proves to be quite
a challenging task. Hence it is problematic to replace the camera in case of hardware
failure. For this reason, a modular solution using existing microcontroller development
board is presented. This approach allows for more simple camera replacement. Multiple
supported CMOS sensors also make it usable for comparing different CMOS sensor types
or using it for different tasks.

1

Chapter 2
Analysis

The goal of this thesis is to create a camera for videometry teaching laboratories. The
camera should be appropriate for calculations verification experiments associated with
the choice of the optical system. Also, it should provide tools for contactless dimension
measurement experiments and evaluation of lenses geometry flaws. A brief analysis of
requirements and possible solutions is performed in this chapter.

2.1 Requirements
All of the entry requirements go around usability for teachings labs. That comes from
the goal to replace more than one outdated system currently in use for Videometry and
contactless measurement course. The current state is that every single laboratory mea-
surement uses a different system. Some of them are, as of today, irreplaceable, and this
particular problem should be addressed. The main requirements for the camera can be
summed into the following points:.Reliability.Replaceability.Usage in both area and line mode.Changeable image sensors.Expandability.Complementing PC application

Now when the main requirements are defined, we can break down each one of them in
more detail.

2.1.1 Reliability
Reliability is listed as the first for a good reason. It is one of the essential attributes
for all systems. In this case, we have minimal tools to affect the reliability of used
hardware. So the goal should be to at least not make it worse. What can be affected is
software reliability, as firmware and PC application will be developed. In our hands is
the choice of correct tools, including IDEs, libraries, compilers and the last but not least
implementation itself. Developed software and firmware does not have to be completely
bulletproof, because it will not be in commercial use. However, it should work reliably in
correct use cases.

Communication between PC application and camera has always been problematic in
the past. Possible problems and their solutions will be described in this thesis, as it will
be the most focused part of reliability.

2.1.2 Replaceability
In the case of hardware failure, it might be crucial to have the ability to replace damaged
parts quickly. This case is especially true for industrial application, but it also applies to
teach purposes. So when designing the system for our cause, it is vital to keep it in mind.

2

. 2.2 Image sensors

Replaceability concerns are the main reason for not developing a single board camera
solution. From the past, it was proven that these boards are hard to assemble; thus, the
replacement is problematic.

2.1.3 Expandability
This point sums up three of mentioned requirements. In this case, expandability means
specifically easy addition of another supported image sensor. The most important precon-
dition for this is having the same physical interface on used image sensors. That goes in
hand with changeable sensors, as accomplishing one will get us closer to other condition.
It also relates to usage in both area and line mode. Using both modes with a single sensor
would not be as practical as having the ability to change sensor depending on the use
case.

All of this relates to our goal to create a camera for teaching labs. As mentioned, it
should replace more than one system, and for that, we need some flexibility in configu-
ration. This flexibility can be achieved by a changeable image sensor. Easy addition of
another supported sensor is the primary concern for the future because the system can
then be used even for new tasks.

2.1.4 Complementing PC application
To complete the whole system, the PC application needs to be developed to complement
the camera itself. It should serve as an interface for the user to control the camera. Image
data will also be streamed to PC. The application needs to include GUI because cam-
era settings might be complicated, and visual representation of image data is required.
Alongside camera control application should also include tools for laboratory measure-
ments needed in teaching labs. Support for multiple operating systems would also be
wanted addition for system adaptability.

2.2 Image sensors
Image sensors can be divided into two categories based on the used technology. The
first technology is known under abbreviation CCD and the other one under abbreviation
CMOS, which is also well known from different use cases. As the primary source of
information for this section is used [1].

2.2.1 CCD image sensors
CCD stands for Charge-Coupled Devices, and it is historically older technology of the two
mentioned. However, it still proves to have its advantages. Generally, they can have higher
light sensitivity and dynamic range than CMOS sensors. Their noise characteristics are
also usually better. From the disadvantages of CCD sensors must be named their price and
also power consumption. They are also prone to effect called “blooming”, which can occur
in case of oversaturation. What happens is that charge is “spilling” to neighborhood pixels,
creating image distortion. This effect can be prevented by creating an anti-blooming gate
between pixels (basically bigger insulation barrier). It is, unfortunately, increasing space
between pixel results in lower pixel density.

Principle of CCD image sensors lies in MOS capacitor. Under electrode with a positive
charge is created space charge (potential well). The positive charge on the electrode is then
compensated by the accumulation of free charge carriers released by incident radiation.

3

2. Analysis .
Amount of accumulated charge can be expressed by formula:

Q = etηES

hv
(2.1)

Where e is electron charge, t is time of accumulation, η is quantum efficiency, E is
irradiance, S is pixel area, h is Planck constant and v is frequency of photon. From
this relationship, we see that accumulated charge is linear dependant on the irradiation,
meaning CCD image sensor response is linear before oversaturation.

To transfer charges form the structure are used charge shift registers. Different types
of charge shift registers with 2,3 or more phase transfer exists. The charge is transferred
by moving potential well created by a row of electrodes. Example of 3 phase transfer is
shown in figure 2.1.

- -
-

-
-

- -

- -

+V0V 0V 0V

- - - -
-

- -
-

-

0V +V +V 0V

- -
-

-
-

- -

- -

0V 0V 0V+V

Figure 2.1. 3 phase CDD charge shift register functions

The efficiency of such a transfer is not 100 %, so some part of the charge is lost during
the transfer. Transfer efficiency can be expressed as CTE (Charge Transport efficiency),
which is a ratio between transferred charge Q′ and charge before transfer Q.

CTE = Q′

Q
(2.2)

In conclusion, CCD image sensors are these days mostly used in specialized fields or
high-end cameras. They still have some advantages thanks to their superb parameters.
However, CMOS image sensors have been gradually improving in the past and are now
the by far more used option.

4

. 2.2 Image sensors

2.2.2 CMOS image sensors
CMOS technology is very widely used also in other fields. Memories, processor or other
integrated circuits often uses CMOS technology, hence the manufacturing process is
widespread. Thus it lowers manufacturing cost and creates probably the most signifi-
cant advantage of CMOS sensors - their price. Usability in mobile devices is also greatly
improved, as power consumption can be up to ten times lower than for CCD sensors. Used
CMOS technology allows simple integration of other circuits directly on the same chip
(ADC, communication circuits, JPEG encoder, etc.). For CMOS image sensors, it is eas-
ier to achieve higher resolutions, as it is possible to have higher pixel density and thanks
to the more tuned manufacturing process. From other advantages can be named faster
readout speed, resulting in higher frame rates or a simple implementation of windowing,
thanks to directly accessible individual pixels.

As a disadvantage can be counted lower sensitivity, caused by a smaller photosensitive
area of a single pixel compared to its size. CMOS image sensor pixel area also includes a
few transistors, reducing the photosensitive area. Noise characteristics of CMOS sensors
are generally worse than of CCD sensors, making them less suitable for precise applica-
tions. However, during the latest years, CMOS sensors have improved, and more expensive
ones can match CCD sensors.

CMOS image sensor function is based on a photodiode. From the function of photodiode
comes sensors nonlinear dependence of output on irradiance. The photodiode can be
embedded in the MOS transistor, which then serves as an integrated switch. Schematic
drawing of such a transistor is shown in figure 2.2.

G

S D

SUBSTRATE

Figure 2.2. Photodiode in MOS transistor

The photodiode is working in the 3rd quadrant, and the principle schematic of CMOS
image sensor work is shown in figure 2.3. The whole process can be simplified to a few
steps:.Charging of the capacitor in structure (reset).Exposition - discharging of the capacitor by the current generated by the photodiode.Recharge of capacitor - the amount of delivered charge is proportional to irradiance.Exposition.Recharge. etc.

In this case, the reading of values is destructive, and the structure is called a passive.
However passive structures are these days used only in photodiode rows. CMOS image
sensors use active structures were phase of reading and reset is divided. Thus the reading
is nondestructive. Connection of individual elements to array is similar to DRAM or flash
technologies. Individual elements are accessible with row and column selection.

5

2. Analysis .

V UDuCC

iphoto
V UDuCC

Icharge

Figure 2.3. Principle of CMOS image sensor

These days CMOS image sensors have a dominant position on the market. First, they
started to get popular thanks to their price. However, over the years, their parameters
improved and are now very close to CCD sensors.

2.2.3 Shutter control
The image sensor can also be divided by used shutter control. Two options are well known
- global and rolling shutter. Both CCD and CMOS image sensors can fundamentally use
both of them. As sensors technology, shutter control types bring their advantages and
disadvantages..Global shutter

While using global shutter control, exposure of all photosensitive cells of the sensor
is done at once. It means the whole shutter always has the same state - open or close.
We can expect only movement distortion (blur) in case of moving object and too long
exposure time. Thanks to the exposure of all cells at once, a global shutter sensor is
suitable for capturing moving objects or other high-speed applications.

Global shutter is usually used on CCD type sensor. However, it is also introduced in
CMOS image sensors. While still maintaining its advantages mentioned above, it brings
some disadvantages to CMOS sensors. First of all, the additional storage component
for each cell is needed, as the whole image needs to be read at once. Image is then read
sequentially line by line, as usual for CMOS image sensors. The delay between storage
and read out may, unfortunately, lead to an increase of noise elements. Before starting
the next exposure, the sensor needs to be cleaned from previously accumulated charges.
All the additional steps mentioned above can lead to reducing the effective speed of
sensor up to half compared to rolling shutter..Rolling shutter

This type of shutter is mostly used in CMOS image sensors. Faster speed of the
sensor is achieved by progressive exposure of individual lines. Before the exposure and
readout of one image are finished, another can be already started. Process of rolling
shutter exposure control is shown in figure 2.4

frame1 frame2 frame3

exposure start
of frame2

exposure start
of frame3

t

y

exposure start
of frame1

readout period

exposure time

Figure 2.4. Rolling shutter exposure control

6

. 2.3 Controlling the sensor

Readout time is not negligible and causes a delay between the exposure of individual
lines. It can lead to image overlap, as seen in fig 2.4. Capturing a moving object can
then result in distortion special for rolling shutter sensors (sometimes called spatial
distortion). As the lines are captured at different times, a captured image of moving
object can look as shown in figure 2.5.

vconst aconstv=0

a.) c.)b.)

Figure 2.5. Rolling shutter spatial distortiion
a.) static object b.) constant speed c.) constant acceleration

However, the spatial distortion of a rolling shutter can also be used as an advantage.
While detecting movements, we focus on finding distortion artifacts caused by a rolling
shutter. Using this method cheaper and slower rolling shutter sensor can in some cases
do the same job as more expensive fast global shutter sensor.

2.3 Controlling the sensor
A mean of controlling the sensor and also driving the communication with PC is needed.
One of the possible choices would be microcontroller based on ARM® core. Two solutions
are at hand for MCU usage. Custom MCU board could be designed, or already exist-
ing development board can be used. Custom PCB would probably be smaller, contain
only necessary components also resulting in lower price. A physical interface for CMOS
sensors could be integrated directly to this PCB so that no interfacing board would be
necessary. On the other hand, using existing development board has its huge advantages
as well. Most notably it preserves easy replaceability, as the damaged board could be
easily swapped for new without a need of assembly. Not negligible is also a time-saving
factor. Development of quite complex board would take a considerable amount of time,
that can be invested in other areas of work. In the end, it was decided to go the easier
path and use existing development board, as the replaceability factor is also important.

2.4 Communication
Camera system complemented with PC application needs various communication types.
Two types of communication protocols are usually needed just between the image sensor
and the controller. Another different communication protocol is then typically used for
communication with the PC application. Regarding sensor communications, we are lim-
ited by sensors capabilities. There are not that many choices for communication with PC
either, but there at least two meaningful possibilities.

2.4.1 Image sensor control
Image sensors commonly support only two types of communication protocols. One is SPI,
sometimes called four-wire serial bus. The second one is then I2C, so-called two-wire serial
bus. Just from that, we can say, that they share many similarities and are used in similar

7

2. Analysis .
applications. Following is brief description of these buses, with focus on latter one (as it
is used in our case).

1. SPI
SPI is a synchronous serial communication bus. As already said, SPI is sometimes

called a four-wire serial bus. That comes from the definition of four signals. SPI protocol
is using master-slave architecture, typically supporting only a single master on a bus
(unlike I2C). Multiple slave devices can be connected to a single master. Another huge
difference from I2C is that SPI supports full duplex mode, which can not be achieved
using only a two-wire interface. The following naming for defined signals is usually
used:.SCLK - Serial Clock.MOSI - Master Output Slave Input.MISO - Master Input Slave Output.SS - Slave Select

Single defined master node on bus controls SCLK signal frequency, which must be
set to value supported by slave devices. Communication is initiated by master setting
SS signal low to select a single slave node on bus. Following is always full duplex data
on MOSI, MISO lines even when single direction data transfer is intended.

Additionally, SPI supports configuration of SCLK polarity and phase by the master
node. The most common names for these options are CPOL for clock polarity and
CPHA for clock phase. CPOL 0 means SCLK is idle at 0 and cycles with pulses to 1.
That also means the rising edge is the leading one. On the other hand, CPOL 1 means
SCLK is idle at 1 and cycles with a pulse to 0. The leading edge is then the falling one.
When setting CPHA to 0 one data cycle consists of first clock idle, and clock asserted.
In opposite CPHA 1 means one data cycle consists of first clock asserted and then clock
idle. Combinations of these options are referred to as modes. Established convention
for mode numbering is captured in the following table 2.1.

SPI Mode CPOL CPHA
0 0 0
1 0 1
2 1 0
3 1 1

Table 2.1. Possible SPI modes

Difference between SPI modes can be seen on figure 2.6.
The most common SPI configuration with a single master and two slaves is shown

in figure 2.7

8

. 2.4 Communication

Figure 2.6. SPI modes timing

Master

SCLK

MISO

SS1

MOSI
Slave1

SS2

SCLK
MOSI
MISO

SS1

Slave2

SCLK
MOSI
MISO

SS2

Figure 2.7. Typical SPI configuration with two slave devices

2. I2C
I2C bus uses only two wires. Same as SPI it is also synchronous serial communication

bus. Its communication protocol is based on master-slave architecture too. With using
only two wires, full duplex communication is not possible for synchronous transfer. So
unlike SPI I2C is using bidirectional lines in half-duplex mode. It is possible to have
multiple masters and multiple slaves on single I2C bus. Master selects different slaves
by unique 7-bit (or 10-bit in some cases) address. Communication is limited to only
8-bit data packets. Another essential thing to note is that both buses lines needs to be
connected to a pull-up resistor. I2C defines the following signals:.SCL - Serial Clock.SDA - Serial Data

Both SCL and SDA are high in idle state. A master node initiates communication
by setting SDA to low and starts clock signal SCL. Follows 7-bit slave address with

9

2. Analysis .
8th bit choosing between writing to slave and reading. If the 8th bit is 1, it means
read, and 0 means write. Then slave sends acknowledge bit by setting SDA to low.
Following are 8 bits of data itself and acknowledge bit again. Communication can then
continue by repeating the start condition or ended by stop condition - set SDA to high
and stop clock signal. A clock signal is always controlled by the master. Typical clock
frequencies are up to 100 kHz or in fast mode up to 400 kHz. The communication
timing diagram for master reading data from a slave is shown in figure 2.8. Typical bus
configuration with a single master and two slaves is shown in figure 2.9.

Figure 2.8. I2C communication timing

Master

Slave2Slave1

R

VDD

SDASCLSDA

SDA

SCL

SCL

R

Figure 2.9. Typical I2C configuration with single master and two slaves

Both of those two have their advantages and disadvantages. The most notable ones can
be summed into the following table 2.2.

SPI I2C
Full duplex communication Only half duplex capability
No pull-up resistors needed Requires pull-up resistor

Potentially higher speed Limited maximum clock speed
Transfer data length flexibility Transfer data limited to 8-bit packets

Requires at least 3 wires Requires always only 2 wires
No slave acknowledge Acknowledge embedded in protocol

Only single master node Supports multiple master nodes

Table 2.2. SPI and I2C comparison

As already mentioned, the choice of image sensor control bus is limited by hardware
capabilities. If we omitted this limitation, the better choice would be I2C. There is
no need for high data throughput, as all used transmits consist of few bytes. High data

10

. 2.4 Communication

throughput is needed only for image transfer, for which different interface is used. Needed
is a connection of only a single slave to a single master with at least as possible wires.
Connection of one slave to one master can be done of both SPI and I2C. For I2C speaks
use of 2 wires, which can save us free pins on microcontroller package. Slave acknowledge
embedded in communication protocol is just another point why choose I2C over SPI in
this particular project.

2.4.2 Image data transfer
For transfer of image data itself, another interface is used. CMOS sensors usually use a
parallel interface with three synchronization signals. Parallel interface is used, because
high data throughput is required (up to around 40 MB/s). Some microcontrollers from
ST Microelectronics provides DCMI for this purpose. Focus in this chapter is on DCMI
(for more detail see [2]), but other similar interfaces will have many similarities, as sensors
interface is still the same.

Image data are transferred using DCMI by 8, 10, 12, or 14-bit data channels. More
parallel data channels mean higher data throughput. Generally, the data throughput of
DCMI can be changed by two factors. The first is already mentioned (number of parallel
data channels) and the second is the frequency of PX clock signal. With that we get to
data synchronization. For DCMI there are two possibilities.

1. Hardware synchronization
Alongside PX clock signal, two other signals are used for hardware synchronization.

PX clock signal serves as pixel data valid signal. The second synchronization signal is
horizontal synchronization (HS). Its purpose is to distinguish horizontal blanking from
valid pixel data. The last signal used signal is vertical synchronization (VS). This signal
works similarly as HS, but for vertical blanking. Simplified it can be said that PX clock
marks individual pixels, HS marks image lines, and VS marks whole images. How these
signals might look like in reality is shown in figure 2.10. Polarities of all these three
signals are programmable on the side of DCMI and also on the side of some CMOS
sensors.

Horizontal blanking Horizontal blanking
Vertical
Blanking

Vertical
blanking

Figure 2.10. DCMI data transfer timing

2. Embedded synchronization
Another option for data synchronization is to use only one dedicated synchronization

signal PX clock. Frame and line synchronization are then coded directly into the data
stream. By using embedded synchronization, we eliminate two additional connections,
but it brings a few disadvantages. First of all, it is supported only in 8-bit parallel
data mode. We also limit the number of possible data values from 256 to 254, as 0x00
and 0xFF are used for identification purposes. Synchronization code always consists
of 4-byte value sequence starting with 0xFF 00 00. The last byte then codes the
corresponding event.

11

2. Analysis .
DCMI supports two different capture modes. In snapshot, mode capture is controlled

by setting capture bit. After setting capture bit of DCMI control register to 1, interface
waits for the next start of the frame. When the frame capture is finished capture bit is
automatically set to 0. The timing diagram for snapshot mode is shown in figure 2.11.

Figure 2.11. DCMI snapshot mode timing

In continuous grab mode user enables capture by setting capture bit and DCMI interface
then continuously grabs following frames. For disabling capture, the user must manually
set capture bit to 0. DCMI then continues to grab data until the current frame is finished.
The timing diagram for a continuous grab mode is shown in figure 2.12. Additionally,
setting for continuous grab mode is possible in the form of not capturing all available
frames. Captured can be each frame, every 2nd or every 4th frame, effectively reducing
bandwidth to 50% respectively 75%.

Figure 2.12. DCMI continuous grab mode timing

Multiple data formats are supported by DCMI:.8-bit monochrome or raw Bayer.YCbCr 4:2:2.RGB565.JPEG

The most notable format for this application is 8-bit monochrome or raw Bayer, as
it is the only one used. In this data format, every pixel is represented by 8-bit value.
The same format can be applied for both monochrome and raw Bayer data, as RGB
image is obtained from raw Bayer data by post-processing (described in section 6.1.1).
Data register of DCMI is 32-bit and uses little-endian format (the least significant byte is
stored at the smallest address). It means 4-pixel data can fit the DCMI data register at
a time. Structure of the data register is shown in figure 2.13.

Sheet1

Page 1

DCMI_DR

24 16 8 0

Dn+3 Dn+2 Dn+1 Dn

Figure 2.13. DCMI data register structure with monochrome data

The following formats represent directly full RGB image, unlike raw Bayer data. YCbCr
format divides image data to three components. The most important being Y representing
luminance (luma). Importance of luminance is represented by twice as dense raster than

12

. 2.4 Communication

for color differences (for one Cr and Cb sample two Y samples). Other two components
are color differences (chromas), where Cb stands for the blue difference and Cr for the
red difference. By simply omitting chromas monochrome image can be obtained directly
from the luma component. Conversions between RGB and YCbCr formats can be simply
expressed by two matrix equations: Y

Cb
Cr

 =

 0
128
128

+

 0.299 0.587 0.114
−0.168 −0.3313 0.5

0.5 −0.4187 −0.0813

 ∗
RG
B

 (2.3)

RG
B

 =

 1 0 1.402
1 −0.3441 −0.7141
1 1.772 0

 ∗
 Y

Cb
Cr

−
 0

128
128

 (2.4)

RGB565 uses a standard RGB format for representing color data. Each pixel is repre-
sented by 16 bits, where the first 5 bits encode blue component, next 6 bits encode green
component, and last 5 bits encodes red component. The difference from raw Bayer data
is that each pixel already has all three components. In the raw Bayer data format, each
pixel has just one of these components.

Scan order of pixel raster for monochrome, YCbCr, and RBG format is shown in figure
2.14. Each word is 32-bit value in little-endian format (from DCMI data register format).

Sheet1

Page 1

Row 0
Word 0 Word 1 Word m-1 Word m

Row 1

Row n-1

Row n
Word n*m

Figure 2.14. DCMI pixel scan order

The last supported data format by DCMI is compressed format JPEG. While using
JPEG data format, we are limited to use only hardware synchronization, and DCMI crop
feature is not available.

Other DCMI features as crop and Image resizing can substitute these functions if they
are missing on CMOS sensor side. Crop feature allows as to select only part of the image
to transfer (rectangular window). With that, we can effectively substitute the CMOS
sensors windowing feature. Naturally, the frame rate of the sensor will not be increased,
as in the case of windowing in the sensor. We choose relevant data from the whole frame
on the DCMI side.

Skip and even binning feature can be substituted with image resizing capability of
DCMI. It allows capture of all, only even or only odd lines. While capturing only one line
out of two vertical resolution is reduced twice. For reducing horizontal resolution similar
setting for individual bytes is available. All received data, every odd or even byte, two
bytes out of four or one byte out of four can be captured. Using this setting, horizontal

13

2. Analysis .
resolution can be reduced twice or four times. Reducing horizontal resolution using DCMI
might be tricky while using different data formats than monochrome.

Data transfer from DCMI data register is then usually done using DMA. Using DMA
can save a lot of processor time, as much data needs to be transferred. After initializa-
tion DMA controller works independently on the processor core, saving processor time.
However, DMA access to DCMI is limited to 32-bit alignment and can transfer maximally
0xFFFF 32-bit words on single configurations. To transfer the whole image, more DMA
configurations usually needs to perform.

2.4.3 Camera and PC communication
Wireless communication (Wi-Fi or BlueTooth) has its advantages. However, as we would
still need a power cable, it would make no sense to use wireless and deal with all of
its disadvantages. Wired connections are always more reliable and usually also more
comfortable to implement. From wired connections, the choice between Ethernet and
USB must be made. Both of these have fast enough variants for image data transfers (at
least few MB/s). We can also found both of these on most PCs.

In the end, it was chosen to use USB. It is the more versatile option, and a huge
advantage is its availability. Ethernet connector is usually also present on most PC, but
most of the time only once and is used for network connections. On the other hand,
multiple USB ports are available. Different supported physical connectors also make it a
more widely used option.

Many different options for USB speed or connectors are available at this point. Max-
imum data rates ranges from 1.5 MBit/s for Low Speed USB 1.0 up to 20 Gbit/s for
SuperSpeed+ USB 3.2. With such a range of data rates and also different physical con-
nectors it is a very versatile communication bus, that can be used in many applications.

From the first version USB 1.0, at least four pins are used in the USB connector. For
backwards compatibility these 4 original connections are still employed 2.3.

1 2 3 4
+5V D- D+ GND

Table 2.3. Standard USB pinout

USB uses differential pair D- and D+ for data transfer. Two other pins, +5V and GND,
can be used for supplying slave device and common ground connection. Only these four
necessary pins are employed on USB A and B connectors. Micro and Mini versions of
connector introduce the fifth pin called ID. It moved GND to the fifth position and is on
the 4th pin. It these days it is only seldom used and serves for host/slave negotiation for
USB OTG.

While using only one differential pair for communication, USB works in half-duplex
mode. That changed with the introduction of USB 3.0. This standard introduces five
additional pins, in summary having nine pins. It includes two more differential pairs, one
for transmitting and second for receive. So from USB 3.0 standard USB can work in full
duplex mode. The last added pin in the middle is ground.

In 2014 USB-C connector was standardized and is the latest addition to the USB
connectors family. Total count of pins for USB-C is 24. USB-C connector can be unlike
its predecessor connected independently on its orientation. So it has two sides, each
containing the same 12 pins. One pin on each side is dedicated for mode negotiation.
Two of them are dedicated to power delivery and two for ground. Thanks to that, USB-C
can have a higher power rating than its predecessor. Two high-speed differential pair are

14

. 2.5 Development tools

present on each side and also one additional low-speed link. The last two pins are then
old differential pair for backward compatibility. USB-C connector can support the highest
data rates thanks to 4 high-speed differential pair.

USB can also be divided using different standard versions, where each has a different
maximal data rate. These version with respective data rates are shown in table 2.4. From
the table we can see, that USB has come a long way from its beginnings to the current
form, as it is more than 1500 times faster.

USB 1.0 USB 2.0 USB 3.0 USB 3.1 USB 3.2
1.5 MB/s 60 MB/s 625 MB/s 1250 MB/s 2500 MB/sr

Table 2.4. USB standard maximal data rates

2.5 Development tools
Proper choice of development tools is one of the crucial parts of every project. This
work can be divided into two independent parts from development tools point of view.
It is not only possible but instead expected to choose different tools for FW and PC
application development. On both sides, few important things need to be chosen, including
programming language, IDE, and compiler.

2.5.1 Firmware development
Possibilities for FW development would be nearly infinite, but our choices are already
limited to a single platform. 32-bit ARM® processor from Cortex®-Mx lineup will be
used as a controller. More specifically it will be a processor from STM32xxx series by ST
Microelectronics.

Choice of hardware already substantially limits our choice of programming language.
In the case of microcontrollers, the first choice might be assembly language. However, as-
sembly is suitable only for small and simple project (or for parts of the code, when the best
possible optimization is desired). For a project with scale such as this, it would make no
sense to try implementing all of the necessary code in assembly. Discarding assembly, we
are left with the choice between C and C++ programming language. As C is most widely
used for programming microcontrollers, it has better support in libraries, development
tools, etc. The objective approach of C++ is also not necessarily needed for this project.
It might make a few things easier, but in more cases, it would bring only problems in the
form of C to C++ binding. Another possibility may be the usage of FreeRTOS. As its
name suggests, it is free RTOS, which can be used on ARM® microcontrollers. One of the
main reasons to use FreeRTOS is the implementation of threading. However, FreeRTOS
is more suitable for faster microprocessors such as ARM® higher series processors. Fortu-
nately, we do not need to use threads, and it is possible to implement everything without
the use of FreeRTOS. In conclusion, the best approach will be to use the C programming
language for firmware implementation.

There are quite a few supported IDEs (or better said whole toolchains including IDE,
compiler, linker, programmer, etc.) for STM32 family of ARM Cortex-M based micro-
controllers 2.15. Paid IDEs such as IAR-EWARM or Keil provides better debuggers and
run-time analysis tools. However, their free versions are always limited in some ways.
The most common limitation is limit to maximum program size. Some of them also does
not support other operating systems than Windows. So rather than to run into program
size limit, it might be better to use some of the free, supported IDEs. We can not be

15

2. Analysis .
wrong with the choice of SW4STM32 (System Workbench for STM32). It is a free IDE
developed by ac6 with direct support from ST Microelectronics. Thanks to being on
based Eclipse IDE it also supports all Eclipse plugins. Support for all most widely used
operating systems (Windows, Linux, OS X) is a nice additional feature. As it is developed
with support directly from ST Microelectronics comprehensive support for STM32 based
microcontrollers is present. Support for ST-Link debugging is just another critical feature
(for code debug). For compilation is used GCC C/C++ compiler. The used compiler can
be of course changed, but there is no need for that.

Figure 2.15. Supported IDEs for STM32 based microcontrollers development 1

From other development tools, one handy tool must be mentioned, when working with
STM32 based microcontrollers. CubeMX is configuration tool developed by ST Micro-
electronics. Clocks, peripherals, and GPIOs can be configured in an obvious manner using
this tool. It also provides simple power consumption computation. The most useful fea-
ture is then the generation of code to project of the most used IDEs. Desired libraries
(HAL or LL) are also automatically linked to the generated project. So this tool can be
used for generating all the necessary configuration code, which can save a lot of time.

2.5.2 PC application development
For PC application development, programming language and framework needs to be cho-
sen. The most constraining requirement is multi-platform support and tools for GUI de-
velopment. Existing library for low-level work with USB devices would also be a preferred
option. All commonly used programming languages provides multi-platform support to
some extent.

These days very popular option for GUI multi-platform applications is Qt. It is a free
widget toolkit using C++ as its main programming language. Free IDE Qt Creator is
distributed with Qt toolkit an also has multi-platform support. Python can be used for
Qt development too, as there are existing python bindings (PySide2). However for this
particular problematics is better to use standard C++, because of low level operations
will be commonly needed. For compilation under Linux GCC compiler distributed with
OS can be used. The same way can be used MinGW (substitute for GCC) for Windows
compilation (other compilers such as MSVC are also supported). Only disadvantages can
be the need to do separate executables for each supported operating system. However, as
it has a very wide user base and also meets all the requirements, it was decided to use Qt
with C++ for PC application development.
1 https://www.st.com/en/development-tools/stm32-ides.html

16

https://www.st.com/en/development-tools/stm32-ides.html

Chapter 3
Camera realization

This chapter describes camera realization in detail. Hardware parameters and develop-
ment workflow are mentioned to help reproduce the final product. One of the main goals
of camera realization is to make parts of the product easily replaceable, as it might be
needed in case of HW failure.

For the sake of replaceability development board from ST Microelectronics is used
rather than a custom board. Development board STM32H743 from Nucleo-144 lineup
was chosen. From the main parameters, we can name the following:.ARM® Cortex®-M7 core at 400 MHz.2 MB of Flash memory.1 MB of SRAM.Ethernet and USB connectivity

Another critical property is standard support for I2C and DCMI interfaces. It also
features fast enough processor for all of our needs (even for possible onboard image pro-
cessing). The only concern comes from a combination of 1 MB internal SRAM and the
presence of only full speed USB physical layer on board. Internal SRAM consists of dif-
ferent parts with different purposes (described in section 4.1). So it might be better to
use just the largest part of SRAM (512 kB) for image storage. However, that is not
enough space for a single image from bigger sensors (which are used in this work). This
problem can be resolved with fast enough data transfer to PC (real-time image transfer).
Unfortunately, full speed USB has a maximum theoretical speed of 1.5 MB/s. For the
real-world application, we have to count with speed maximally around 1 MB/s. Such a
speed is usable but is far from the ideal case for image data transfer. A possible solution
for slow communication exists in the form of external high speed USB PHY. Connection
of external USB PHY is supported using the ULPI interface. As we have a microprocessor
in 144 pin package, there are enough pins for I2C, DCMI and ULPI connection. While
using high speed USB maximum theoretical speed is 60 MB/s. Reachable speed will be
probably more around a few MB/s, but that should be sufficient for this application.

3.1 Development workflow
In this chapter development workflow of the whole project is described. Crucial break-
points are defined to understand the sequence of development steps better. This chapter
contains useful tips and hints usable for development of a similar project. Other parts of
the thesis are focused on describing the final product.

At first, it is important to analyze the problem and define requirements. With defined
requirements, suitable tools, technologies, or hardware can be chosen, and development
started. The analysis itself deserves its dedicated chapter and can be found at the begging
of this thesis in chapter 2.

17

3. Camera realization .
3.1.1 The first stage of development

At the first stages of development, CMOS sensor board was connected to the Nucleo
board just with wires (Appendix C.5). Fortunately, even this type of connection was
sufficient for sensor control and image data transfer. It made the early development a
bit faster as no additional interfacing board was not needed. The camera is uses USB
CDC implementation so communication can work through emulated serial ports. Basic
functionalities were validated using simple Matlab scripts for communication with PC. It
proves as one of the best options for early development, as it provides a simple interface
for a serial port. A free alternative that might be suited as well is using python. For more
simple data, it might be better to use some terminal application (e.g. PuTTY). However,
using Matlab scripts, we can easily visualize or save image data for validation. At this
point, the camera could only capture an image, transfer it using DMA to internal RAM,
and then send it using full speed USB. Simple Matlab script for connecting to VCP and
capturing one image can be written as:

clc
clear all

width = 752; %image width
height = 480; %image height

delete(instrfindall); %removes all serial port objects from memory
instrfind; %finds all non hidden serial devices

s = serial(’/dev/ttyACM1’); %get reference to serial port on /dev/ttyACM1
set(s,’BaudRate’,115200); %set ports baud rate

len = width*height; %set expected receive data length
s.Timeout = 3; %set ports timeout
s.InputBufferSize = len; %set ports input buffer size
fopen(s); %open port

%evoke image transfer

RAW=fread(s, [width,height]); %receive data
imshow(RAW’./256); %show received image

With the addition of more settings capabilities to FW, it was more convenient to start
developing a base of PC application. Application using Qt framework gives us better
debugging options than Matlab scripts. Also, it can be a lot more versatile, which is
crucial for following the development of sensors functions. The serial port implementation
in Qt was still used as a communication interface. The camera should support multiple
CMOS sensors in its final form, and it would be inconvenient always to flash different FW
to MCU with sensor change. Universal programming interface 4.2 for CMOS sensors was
designed and developed at this stage. However, it was only tested with MT9V034 sensor.
To successfully capture and send an image, it had to fit in internal RAM. Sending offline
data (first capture then send the whole image) is not limited by communication speed.
Continuous online image data transfer in its full meaning is not possible with FS USB.

18

. 3.1 Development workflow

In conclusion, at the end of the first stage of development following was finished:.Working MT9V034 connected with wires.Main core of FW.Basic skeleton of PC application.Offline image data transfer.Communication with PC using FS USB (VCP)

3.1.2 The second stage of development
The capability of using multiple CMOS sensors enforces the development of interfacing
board between Nucleo kit and CMOS sensor board. It can be useful even to save time.
Connecting sensor with wires is a faster option if it is needed to connect the sensor just
once. However for numerous sensor swaps (which are needed in development), it is more
time efficient to spend more time of interfacing board, that saves precious time every
connection/disconnection. The second thing forcing development of interfacing board is
the need for faster communication. To capture and send images with other presumably
supported sensors at full resolution online data transfer to PC is needed. Moreover, that
is simply because full resolution images from these sensors will not fit internal RAM. To
use faster communication in form HS USB external USB PHY is needed. As interfacing
board is already required, the PHY can be placed here.

For the prototype of the interfing board was used 90x70 mm solder breadboard. As HS
USB PHY was used USB3320 from Microchip. Unfortunately, this PHY is manufactured
only in a QFN32 package. It is not possible to solder QFN32 directly on solder breadboard
with 2.5 mm raster. So QFN32 adaptor was used and then soldered to breadboard.
Additionally was needed just 1.8 V voltage regulator, USB connector and few capacitors
and resistors (full documentation is provided for final interfacing board 3.2). No external
power supply was used for the prototype of the interfacing board. Both CMOS sensor and
USB PHY were powered from Nucleos 3.3 and 5 V outputs. If we count pins just from
CMOS sensor header and USB PHY, we get to number 62. As the majority of these pins is
used, it means quite a lot of connections needs to be routed. To do so without beforehand
plan might not end well. Avoiding unnecessary crossing of wires is crucial as some of the
signals are running at frequencies about few hundreds MHz. Pseudo PCB was designed
3.1 and used as a pattern for routing. It must be noted that it is not real PCB design
and it served just as a pattern for routing. That might explain a few things, just as the
USB3220 represented by headers of QFN32 adaptor. Also three 100 nF capacitors are not
visible on this design, as they are soldered directly on the adaptor (from below). Photo
documentation for finished prototype of interfacing board can be found in Appendix B
C.6 C.7. Please refer to 3.2 for final PCB design.

Even with pseudo PCB design used as a pattern for routing and no crossing wires, there
is still one issue that was probably caused by not optimal routing. While using faster px
clocks (more than 25 MHz), image data sometimes contained artifacts. Example of such
artifacts is shown in figure 3.2. This problem could be easily countered by lowering px
clocks to 20 MHz. Nearly no performance was lost, as the system was mostly bottlenecked
by USB communication at this point.

From the FW side, most of the work was done in this part of development. Support for
two more CMOS sensor was added. Interface using queues for CMOS parameters setting
and parameters sending was created as well (more in section 4.4.4). However, the most
important update was the introduction of HS USB support, that was enabled by external
HS USB PHY on the interfacing board. The capability of using onboard FS USB was

19

3. Camera realization .

30.04.19	10:15		f=2.00		/home/vocet/EAGLE/projects/CONN_BOARD/schem.brd

1

20

1

20

1

10

1

16

1

20

1

20

1

10

1

14

*
*

SV3_1

SV1_1SV1_2SV2

SV4

SV
5_

2
SV

5_
1

SV3_2

JP1

JP2

JP
3

R
1

C
1

X1

C
2

R2

C
3

CR1

C4

C5

C6

C7

8K
062.
2u

MINI-USB-32005-201

10
u

10k

10
u

10u

100n100n

10u

Figure 3.1. Design of handwired pseudo PCB for interfacing board

Figure 3.2. Image acquired from the camera: artifacts showing with higher px clock using
the prototype of interfacing board

preserved. HS USB can be used by connecting via a mini USB port on interfacing board
and FS USB using a micro USB port on Nucleo kit. New representation enabling working
with images bigger than internal RAM was needed because faster USB communication
enabled online image data transfer to PC. A form of linked list implementation was chosen
for this task 4.4.3.

All of the core functionalities were implemented in PC application in this part of devel-
opment. As core functionalities finished in this development part can be counted following:.Dynamic loading of connected sensor data.Sensor setting through GUI.Support for both monochrome and RGB image.Support for images that do not fit in internal RAM.Registers read/write. Image saving

20

. 3.2 Interfacing board

With the introduction of HS USB support, current implementation utilizing serial port
started to limit performance. As there were also issues with a serial port on Windows, it
was decided to use a different approach. New implementation of communication classes
using libusb was developed. With this new implementation, communication performance
noticeably improved. The whole chapter is dedicated to USB communication implemen-
tation 5, as much effort was put in this part of work.

In summary, the following was finished at the end of the second stage of development:.Prototype of interfacing board with HS USB PHY.Support for 3 CMOS sensors.Majority of FW finished.Core functionalities of PC application.Working HS USB communication using libusb

3.1.3 The final stage of development
Design of PCB for interfacing board can mark the final stage of development. PCB was
designed, sent for manufacturing and after arrival, it was assembled and finally proven
functional. The performance was better than with prototype, as we got rid off the artifacts
with faster px clocks. For detailed design informations see following section 3.2.

On the FW and PC application side mostly optimizations and other improvements
were implemented. Most notably, USB communication was furthermore optimized for
better performance. To PC application was added linear mode usage of CMOS sensor
and sensors settings saving.

3.2 Interfacing board
A connection is done through ST Zio connectors (female headers on Nucleo board). An-
other possibility would be to use ST morpho connectors. These allow full access to all
STM32 I/O, unlike ST Zio connectors with limited access. Unfortunately, no headers
are soldered on Nucleo-144 boards on ST morpho connectors places. However, St Zio
connectors still provide enough connections to the microprocessor. Moreover, while using
St Zio connectors, no need Nucleo board modification is present. Connection pinout for
both prototype and final interfacing board is shown in figure 3.5.

Just a few changes from prototype were made in the final design of interfacing board.
Most changes were made in power delivery. On prototype of interfacing board, the whole
camera was powered from ST-Link on Nucleo board. Board then provides 3.3 and 5 V
voltages, so just one 1.8 V regulator was needed for supplying USB PHY. This option was
preserved even in final interfacing board design. However, another option in the form of
an external DC power supply was added. DC power supply is connected using a standard
2 mm barrel jack connector, and voltage ranges are 5-7 V. In case of using the DC power
supply option, both USB PHY and CMOS sensor are powered from this source and not
through Nucleo kit. Meaning an additional 3.3 V voltage regulator is needed (alongside
1.8 V regulator). In both cases, linear low-drop voltage regulators[3] are used. CMOS
sensor is powered by 3.3 V, and USB PHY needs both 3.3 and 1.8 V for proper function.

For powering Nucleo board, there are four options, including power through St-link.
So 3 options for externally powering Nucleo board are available, as seen in table 3.1. The
best option would be to use E5V input with 5 V power supply. Unfortunately, this input
is only on ST morpho connector and is not available on used ST zio connectors. The +3.3
V input is not ideal either, as we would like to use the same power delivery circuit while

21

3. Camera realization .
using both external power supply and ST-link power. With 3.3 V as input to the LF33
voltage regulator, the output does not always have to be 3.3 V as dropout voltage is rated
up to 0.7 V. In the end, only one option is left in the form of VIN input with a declared
range of 7-12 V. However, using more than 7 V as input to LF33 might not be ideal either.
Schematics 3.3 shows how power delivery circuits look on used Nucleo boards.

Input name Voltage range
VIN 7-12 V
E5V 4.75-5.25 V

+3.3V 3-3.6 V

Table 3.1. Nucleo board external power options overview[4]

+3V3

C20
1uF_X5R_0603

C22
100nF C19

100nF

VIN

+5V

VDDJP5
R29
1K

C17
10uF(25V) C18

10uF

Vin
3

Vout
2

1

Tab
4

U5
LD1117S50TR

EN
1

G
N

D
2

VO
4

NC
5

G
N

D
0

VI
6

PG
3

U6 LD39050PU33R

Note1: Text in italic placed on a wire does not correspond to net name. It j
helps to identify rapidly Arduino's signal related to this wire.
2. Add C58 4.7uF ceramic capacitor on VDD from A-01 to B-01
3. R33's value changed to 200Kohm from A-01 to B-01
4. Add pull-up & pull-down resistors on PB2 for BOOT1 (F4 series) from A

C23
1uF_X5R_0603

E5VC16
4.7uF

IN
1

IN
2

ON
3

GND
4

SET
5

OUT
6

OUT
7

FAULT
8

U4

ST890CDR

R27
10K

R28
2K7

C11
100nF

1 2 LD5
Red

R21
1K

SB1 Open
U5V

SB3 Closed

6 5
4 3
2 1

JP3

Header 3X2

VIN_5V

SB2 Closed

+3V3_PER

1
2

LD6
Green

Figure 3.3. Power circuits on Nucleo board (taken from[4])

From this schematics and datasheet of used regulator LD1117 [5] we see why VIN input
lower range is rated at 7 V. LD1117 has dropout voltage rated up to over 1 V, so at least
over 6 V should be on the input. To make sure there is always 5 V on the output of
LD1117, 7 V rating was used as minimal VIN input. However these 5 V are used just as
output to boards connectors and are not actually not needed for the proper function of
the board. Necessary is just 3.3 V output from the following voltage regulator. For that
to be true, 5 V is not necessarily required on the input of the 3.3 V regulator. With that,
we can conclude, that Nucleo board will just fine (while not using 5 V output) with 6 V
(or even 5 V) on VIN input.

To ensure correct polarity of input voltage, a diode is placed directly after the DC
connector. There is also LED indicating power on. Selecting power source (ST-link or
external) is done by a jumper with instruction printed on the interfacing board. It is
essential to change the jumper position on the Nucleo board as well when changing the
power supply. Jumpers configuration can be seen in figure 3.4.

Sheet1

Page 1

VIN – external power supply U5V – ST-link power supply
Nucleo board – JP3 Interface board – JP1 Nucleo board – JP3 Interface board – JP1

VIN VIN VIN VIN

U5V OUT U5V OUT

E5V U5V E5V U5V

Figure 3.4. Jumpers configuration for power supply selection

22

. 3.3 Supported Image sensors

Additionally, four user programmable LEDs were added. They are connected on GPIOs
PF15, PG14, PE8, PE7 (printed on interfacing board as well). These are all the relevant
changes from the prototype. The PCB was designed using KiCad software. Detailed
documentation for final version can be found in appendix B and photos C.8, C.9, C.10,
C.11 or attached CD.

3.3 Supported Image sensors
The flexibility of the developed camera is created by interchangeable CMOS image sensors.
For some teaching labs, it would be better to use a small global shutter image sensor. On
the contrary for simulation of a linear image sensor is more suitable bigger sensor without
concerns with rolling shutter. Camera firmware is implemented with the thought of adding
more support image sensors in the future. Adding an image sensor requires only writing
a few necessary functions and recompiling the project (more in chapter 4.5). That is the
case if the sensor is interfaced using a standardized board used in CTU FEE laboratory
of videometry 3.6.

On figure 3.6 top view of connector (female headers facing down to interfacing board)
is presented. Power delivery is marked in red (3V) and black (GND). In yellow color
we can see signals from sensor to DCMI interface (for detailed description see chapter
2.4.2). Signals D0-7 are for parallel image data transfer. Three other signals then serve
for synchronization:.VS - vertical synchronization.HS - horizontal synchronization.PX - pixel clock

In blue color are marked other CMOS sensor signals. Their active levels may vary for
different sensors, but their utilization is generally the same..CLK - Clock - master clock signal for sensor (supported ranges may vary).STB - Standby - shutting sensor down for power saving.EX - Exposure (or Trigger) - stars exposure in snapshot or slave mode (or similar

manual modes).RE - Reset - asynchronous hard reset of a sensor to default settings.LD - Led out (or Strobe) - indicates ongoing exposure or end of exposure (may widely
vary for different modes and sensors)

Lastly, in green color are marked I2C signals SDA and SCL used for sensor setting.
Sheet1

Page 1

3.3V D6 D4 D2 D0 GND GND GND GND VS STB EX SDA LD

3.3V D7 D5 D3 D1 GND GND CLK GND PX HS RE SCL OE

Figure 3.6. CMOS interfacing board pinout (Top view)

23

3. Camera realization .
Sheet2

Page 1

TOP View

CN7/J3 DCMI_D0 ULPI pins DCMI pins

I2C_SDA ULPI_D0 PA3 DCMI_D0 PC6

ULPI_D6 ULPI_D1 PB0 DCMI_D1 PC7

ULPI_D5 GND ULPI_D2 PB1 DCMI_D2 PC8

CN8/JP1 DCMI_D2 ULPI_CLK ULPI_D3 PB10 DCMI_D3 PC9

DCMI_D3 DCMI_D1 DCMI_PX ULPI_D4 PB11 DCMI_D4 PE4

ULPI_D7 ULPI_D5 PB12 DCMI_D5 PD3

ULPI_D6 PB13 DCMI_D6 PE5

+5V OUT DCMI_HS ULPI_D7 PB5 DCMI_D7 PE6

GND ULPI_CLK PA5 DCMI_HS PA4

GND ULPI_DIR PC2 DCMI_VS PG9

VIN CN10/J4 CMOS_RE ULPI_NXT PC3 DCMI_PX PA6

CMOS_EX ULPI_REFCLK PE14

CN9/J2 ULPI_D0 GND ULPI_RST PB2 User LEDs pins

ULPI_STP ULPI_D2 CMOS_OE ULPI_STP PC0 LED1 PF15

ULPI_NXT ULPI_DIR CMOS_LD LED2 PG14

LED1 CMOS pins LED3 PE8

DCMI_D5 I2C_SCL LED2 CMOS_CLK PA0 LED4 PE7

GND ULPI_RST DCMI_VS CMOS_EX PE9

GND LED3 CMOS_LD PE13 ULPI

DCMI_D4 LED4 CMOS_OE PF14

DCMI_D6 GND CMOS_RE PF13 DCMI

DCMI_D7 CMOS_STB PE11 CMOS

GND GND I2C pins Power

I2C_SCL PB6 GND

ULPI_D1 ULPI_D3 I2C_SDA PB9

ULPI_D4

CMOS_ST
B

I2C for
CMOS

User
LEDs

ULPI_REF
CLK

CMOS_CL
K

Figure 3.5. Pinout of interfacing board

24

. 3.3 Supported Image sensors

3.3.1 Image sensor MT9V034
The smallest supported CMOS sensor. Also, it is the only one with a global shutter. At
least one sensor with global shutter was required to be able to show differences between
shutter types in laboratories. From standard features windowing, a setting of exposure
time and gain settings are supported. It also features pixel binning and I2C communication
interface. Apart from standard features, this sensor also supports additional features
as AEC (automatic exposure control), AGC (automatic gain control) and HDR (high
dynamic range), that other supported sensors do not. Main sensor features are presented
in table 3.2.

Optical format 1/3-inch
Active imager size 4.51 mm (H) x 2.88 mm (V)

Active pixels 752 (H) x 480 (V)
Pixel size 6.0 x 6.0 µm

Color filter array Monochrome
Shutter type Global shutter

ADC resolution 10-bit
Responsivity 4.8V/lux-sec

Dynamic range >55 dB linear
>100 dB in HDR mode

Features AEC, AGC, HDR
Px binning, Row/Column flip, ROI

Table 3.2. MT9V034 parameters [6]

3.3.2 Image sensor MT9M001
MT9M001 is a bigger sensor with fewer features than MT9V034. It was mainly chosen
to be used for simulated linear mode, due to its bigger size. From additional features
windowing, a setting of exposure time and gain and pixel skip are present. For sensor
setting required I2C interface is present. Interfacing board used for MT9M001 had a
small problem with missing pull-down resistor on the standby signal. That resulted in
the undefined state for that pin, which caused occasional sensors power downs with low
illumination. Main sensor features are presented in table 3.3.

Optical format 1/2-inch
Active imager size 6.66 mm (H) x 5.32 mm (V)

Active pixels 1280 (H) x 1024 (V)
Pixel size 5.2 x 5.2 µm

Color filter array Monochrome
Shutter type Rolling shutter

ADC resolution 10-bit
Responsivity 2.1V/lux-sec

Dynamic range 68.2 dB
Features Px skip, Row/Column flip, ROI

Table 3.3. MT9M001 parameters [7]

25

3. Camera realization .
3.3.3 Image sensor MT9T001

The latest supported sensor is very similar to previous MT9M001. It has just higher
resolution and Bayer RGB mask. This 3-megapixel sensor has the same capabilities as
MT9M001 (windowing, exposure time, and gain setting, pixel skip, I2C). Additionally,
it features pixel binning as the second option to image size reduction. As a specialty, it
also features GRR (Global reset release). When combined with a controllable mechanical
shutter, it can then simulate global shutter. Main sensor features are presented in table
3.4.

Optical format 1/2-inch
Active imager size 6.55 mm (H) x 4.92 mm (V)

Active pixels 2048 (H) x 1536 (V)
Pixel size 3.2 x 3.2 µm

Color filter array RGB Bayer mask
Shutter type Rolling shutter

ADC resolution 10-bit
Responsivity >1V/lux-sec

Dynamic range 61 dB
Features GRR, Px skip, Px binning, ROI

Table 3.4. MT9T001 parameters [8]

26

Chapter 4
Camera Firmware

Developed camera FW is one of the crucial parts of this thesis. It was designed to
be easily expanded for support of another sensor. In this chapter, design choices and
implementation details of FW are discussed.

4.1 Memory usage
Correct use of available memory is an essential part of any FW design. It gets more
complicated with high-performance microcontroller featuring different parts of RAM with
different functionality. Used microcontroller H743 features 2MB of flash memory used for
storing an executable program (FW). More interestingly four types of embedded SRAM
dedicated for a different purpose are featured:.864 kB of system SRAM.128 kB of DTCM RAM.64 kB of ITCM RAM.4 kB of backup RAM

System SRAM is further divided to 3 different power domains and 5 blocks as seen in
table 4.1.

Domain block start end
D1 SRAM 0x24000000 0x2407FFFF
D2 SRAM1 0x30000000 0x3001FFFF
D2 SRAM2 0x30020000 0x3003FFFF
D2 SRAM3 0x30040000 0x3004FFFF
D4 SRAM4 0x38000000 0x3800FFFF

Table 4.1. System SRAM block in H743

Division to more power domains might be useful, as not all of them needs to be powered
at the same time. In some cases, we might want to turn on standby mode on D1 and use,
for example, D3 to retain some smaller amount of data. However, this is not necessary
for this particular application. In fact, only SRAM in D1 is used. Whole block SRAM
is dedicated for image data, transferred using DCMI through DMA. It might be possible
to use other parts for the same purpose, but it would be a bit more complicated for
implementation and would not bring that much of an advantage. Even with just using
SRAM block with size 512 kB, more than half of system SRAM is utilized for image data.

More interesting might be the use of the two following parts of SRAM. DTCM and
ITCM stand for data/instruction tightly coupled memory. It means that the core can
access these memories with minimal delay times. DTCM with a size of 128 kB is big
enough to fit all non-static program data, including stack and heap. So there is no reason
to use other SRAM parts for data, except for image data stored in SRAM. On the other

27

4. Camera Firmware .
hand, ITCM can be used for time-critical routines. In this case, it is used for DCMI and
DMA manipulation for image capture. As not all functions are stored in ITCM, separate
ITCM section needs to be declared in the linker script. This section then also has to be
copied from flash to ITCM in the startup script. Functions to store in ITCM must also
be declared with specific identifiers. According to [9] using ITCM and DTC part of RAM
leads to optimal performance. Declaration of ITCM section in a linker script can look
like the following:

_siitcm = LOADADDR(._itcm);
._itcm :
{

. = ALIGN(4);
_sitcm = .;
*(._itcm)
(._itcm)
. = ALIGN(4);
_eitcm = .;

} >ITCMRAM AT> FLASH

Part of start up scrip to copy form flash to ITCM can than be written in assembly as:

movs r1, #0
b LoopCopyDataInitItcm

/* load data to itcm */
CopyDataInitItcm:

ldr r3, =_siitcm
ldr r3, [r3, r1]
str r3, [r0, r1]
adds r1, r1, #4

LoopCopyDataInitItcm:
ldr r0, =_sitcm
ldr r3, =_eitcm
adds r2, r0, r1
cmp r2, r3
bcc CopyDataInitItcm

And the last step is to declare the function with section attribute as following:

void fuctionName(void) __attribute__((section ("_itcm")));

The last backup part of RAM is most of the time used while using batteries as power
supply. It is possible to use this part of RAM to retain data during low power modes.
That is not necessary for this application. Thus backup RAM is not used.

4.2 CMOS sensor representation
Internal CMOS sensor representation is what enables multiple sensors support and simple
expandability of another sensor. It is represented by one data structure, containing all
information about sensor alongside functions for sensor control. With this design object-
oriented programming is simulated. Entire structure is shown in figure 4.1.

28

. 4.2 CMOS sensor representation

Sheet1

Page 1

CMOS_STRUCT

CMOS_BlankingStructure CMOS_PixelBinning CMOS_PixelSkip CMOS_Flip

uint8_t Row uint8_t Row uint8_t Row

uint8_t Column uint8_t Column uint8_t Column

CMOS_Res CMOS_Limits CMOS_Capabilities CMOS_Functions

uint16_t img_width_x uint16_t img_min_width bool rgb fpointer write

uint16_t img_height_y uint16_t img_min_height bool aec fpointer read

uint32_t CMOS_area_size uint16_t img_max_width bool agc fpointer SwReset

bool rgb uint16_t img_max_height bool hdr fpointer set_Exposure_us

binning bool roi fpointer set_Binning

CMOS_Name uint8_t binLength bool bin fpointer set_Skip

uint8_t * name skip bool skp fpointer set_Flip

uint8_t length uint8_t skipLength bool flip fpointer set_SnapshotMode

uint8_t minGain bool test fpointer set_ContinuosMode

CMOS_testMode uint8_t maxGain fpointer set_ROI

bool enabled gainSteps CMOS_ROI fpointer set_AGC

uint16_t test uint8_t gainStepLength uint16_t startX fpointer set_AEC

uint8_t minBright uint16_t startY fpointer set_Analog_Gain

uint32_t manual_exposure_us uint8_t maxBright uint16_t widthX fpointer set_Brightness

uint16_t heightY fpointer set_HDR

uint8_t manual_gain bool AEC_enable bool enabled fpointer set_TestMode

fpointer set_FastClock

uint8_t brightness bool AGC_enable uint8_t shutterType fpointer set_SlowClock

fpointer set_Default

bool fastClock bool HDR_enable fpointer captureImage

uint32_t timer_handler_pointer uint32_t timer_channel uint32_t i2c_handler_pointer uint32_t DCMI_handler_pointer

uint16_t HorizontalBlank

uint16_t VerticalBlank

uint8_t*

uint8_t*

uint16_t*

Figure 4.1. Internal FW CMOS sensor representation

Individual structures and parameters included in CMOS structure and their purpose
are the following:

1. CMOS BlankingStructure
The internal representation of the current blanking parameters of the connected

CMOS sensor. These parameters are never sent to a PC application, as a direct setting
through PC application is not supported.

2. CMOS PixelBinning
A structure representing the current state of pixel binning. It is not relevant when

the sensor does not support pixel binning.
3. CMOS PixelSkip

A structure representing the current state of pixel skip. It is not relevant when the
sensor does not support pixel skip.

4. CMOS flip
A structure representing the current state of image flip. It is not relevant when the

sensor does not support image flip.
5. CMOS Res

Includes the current image resolution produced by the sensor. That means it includes
image reduction done by ROI, binning, or skip. It includes the size of the image and
information if the image is monochrome or RGB.

6. CMOS Name
A simple structure containing the sensors name with its length. Internally it has no

meaning - sensors name is just sent to PC application.
7. CMOS testMode A structure representing the current state of test mode. It is not

relevant when the sensor does not support test mode.

29

4. Camera Firmware .
8. CMOS ROI

Contains information about the current state of windowing - meaning image start
and its width and height. The difference from CMOS Res is that it contains raw image
sizes without pixel binning or skip.

9. CMOS Limits
A structure containing the limits for available settings. It is mainly used for sending

limit parameters to a PC application, so values out of bounds are not even presented.
Most of them are pretty straightforward, and no explanation is need. However, few
parameters use an array with array length variable. More simple ones are binning and
skip, that contains a list of available settings. The most complex is the gain limits.
Individually saved are minimal and maximal gain values. An array then represents
steps between these values. However, to reduce the amount of unnecessary data, it is
not simple lists of available values. The array has structure, where there are always
three values for a single gain area (gain interval where gain increment is the same). The
first from these three values is gain increment in its real form (usually floating point,
so it is this value·10000), the second is an increment in internal sensors register settings
and the last is the maximal limit for this particular interval. All the available values
are computed on the PC application side using this single array.

10. CMOS Capabilities
A structure containing the information about sensors capabilities. It is vital, as it

says, which function are mandatory to implement for a given sensor.
11. CMOS Functions

Contains pointers to the given sensors implementations of CMOS control functions.
Always mandatory functions are:

.write - I2C write. read - I2C read. set Exposure us - sets exposure time. set Analog Gain - sets analog gain. set FastClock - sets px clock or other setting for fast image capture. set SlowClock - sets px clock or other settings to enable online image data transfer
while capturing. set Default - sets CMOS sensor to its default settings. captureImage - captures Image and transfers it to internal RAM

If it is mandatory to implement other function is determined by CMOS Capabilities
structure. If the given capability is set to true, it is mandatory to implement the
relevant function. By using pointers to function, it is possible to mimic polymorphism
capability of object-oriented programming to some extent.

12. Other non-structure parameters
Most of the parameters not included in any structure are quite simple. They

just represent the current state of sensor (e.g. manual exposure us, manual gain,
etc.). ShutterType then says what shutter is current sensor using (global or rolling).
Remaining parameters are mandatory for correct sensor function. Two of them -
timer handler pointer and timer channel defines controls for the timer, that is used
for generating px clocks with adjustable frequencies on the go. For I2C commu-
nication handler for given peripheral is needed and a pointer to it referenced by
i2c handler pointer. The last parameter, DCMI handler pointer, is necessary for image
capturing.

30

. 4.3 Image representation

4.3 Image representation
Suitable image representation is crucial, especially when working with images that will
not fit internal RAM. In this case, online data transfer to a PC is required. However, it
would still be convenient to have a representation of the whole image in a single structure.
Passing just one structure pointer is the cleanest way of handling image passing between
different parts of the program (functions).

It was determined that using a type of linked list implementation might be a suitable
solution. Mainly because it is quite a simple data structure (meaning faster append and
delete operations than over more complex data structures) moreover, in case of an image,
it will always be iterated over the whole structure. Just from these two reasons, it seems
linked list implementation might be the ideal solution for this particular problem. Basic
linked list representation can be seen in figure 4.2. In its most simple form linked list
structure can include just pointer to head node. Every node then contains some data
and pointer to the following node (linking nodes together - linked list). Other additional
variables, such as tail (pointer to the last node) or a number of nodes, can be added to
list structure if necessary.

Sheet1

Page 1

HEAD

Data Pointer Data Pointer Data Pointer NULL

Figure 4.2. Basic representation of a linked list

Every node contains the address where part of the image begins, size of the part,
information if the part is ready to send and of course pointer to the next node. ImageArea
structure itself contains a pointer to the first node (head), the total number of nodes and
pointer to the current node indicating currently processed node by DCMI/DMA. Both
used structures for linked list are shown in figure 4.3.

Sheet1

Page 1

ImagePart ImageArea

partBegin 4 bytes begin * 4 bytes

part_Size 4 bytes current * 4 bytes

readyToSend 1 byte numOfParts 1 byte

next * 4 bytes

Figure 4.3. Internal image area representation

At the beginning of the program and every time image size changes, imageArea needs
to be defined again. It also expects that image size is already aligned to 4 bytes, as DCMI
and DMA work only with 4-byte alignment. Process of setting imageArea is shown using
flowchart in figure 4.4.

At first, it is decided if will the image fit to a dedicated part of internal RAM. If it
does not fit, online transfer of data will be needed. For that CMOS sensor is slowed,
so image transfer to RAM is not faster than image sending. Follows free of currently
allocated imageArea list, as it is dynamically allocated. Next new lists parameters are
computed. As DCMI/DMA works with 4-byte alignment, image size is first divided by 4
and set as partSize. Also, maximal size for single DMA transfer is 0xffff times 4 bytes, so
partSize is halved until it is less than this value. At the same time, the number of parts is

31

4. Camera Firmware .

imageSize>RAMslow CMOS clock fast CMOS clock
TRUE FALSE

free current
imageArea

partSize=imageSize/4 parts=1 align=0

partSize>0xffff

align+=partSize%2 partSize=partSize/2 parts=parts*2

TRUE

imageArea.parts=partsadd=beginOfImageSpaceadd
HEAD(add,partSize+align)

FALSE

i<parts

i=1

add=add+4*partSize

TRUE

next part fits in RAM

add
NODE(add,partSize)

TRUE

i=i+1

connect last NODE to
the 2nd NODE

FALSE

FALSE

Compute list parametrs

Create list

Figure 4.4. Flowchart of setting imageArea

32

. 4.4 Firmware functionality

counted by multiplying by 2. When rounding is needed after division by 2, align variable
is incremented, so no bytes are lost in the process. With list parameters computed, it
can be created. At first head of the list is added with computed part size + align from
division, starting at the begging of dedicated part internal RAM. If all parts fit dedicated
part of internal RAM, they are all just added with incremented address and computed
part size. If the next part will not fit RAM, the last added part next pointer is pointed to
the 2nd item in the list. The 2nd is selected simply because the head can have different
size (alignment) and all other parts share the same size. With pointing to a node already
in the list, the cycle is created (meaning infinity length in linked list point of view).
However, the number of parts are saved as one of the parameters of the list and are used
as limit while iterating over the list. By cycling the list this way unnecessary operation
and waste of RAM is prevented because there is no need for creating new nodes with
duplicate parameters.

4.4 Firmware functionality
In this chapter, firmware functionalities are described. Whole can FW can be seen as
individual modules that interact with the main loop. A simplified model of modules and
their interactions is shown in figure 4.5.

Main loop

CMOS

Image sender

Decoder

CMOS parameter
controller

CMOS parameters
sender

Firmware PC application

Figure 4.5. Schematics of FW modules and their interactions

.Main loop
The main loop runs in endless cycles and calls all other modules except decoder. Its

states and more are described in detail in section 4.4.2..Decoder
Decoder module is called whenever new data from PC application are received. After

it decodes received data, it can change the main loop state. The second thing it can
do is forward parameters to CMOS parameters controller, which will be set next time
controller is called from the main loop..CMOS

CMOS sensor module is called from the main loop to capture images. CMOS param-
eter controller can then can also call CMOS sensor module to change sensor settings.

33

4. Camera Firmware .
.CMOS parameter controller

As already said, the CMOS parameter controller gets information about what to set
directly from the decoder. However, the setting is executed only after the call from the
main loop.. Image sender

This module sends provided image using USB peripheral after the call from the main
loop..CMOS parameters sender

Purpose of this module is to inform PC application about the current state of CMOS
sensor parameters and their changes. CMOS parameter controller can modify what pa-
rameters will be sent because after the change of CMOS parameter, the new parameter
is sent to the PC application.

Available commands for decoder module and also format of other used messages is
described in section 5.4.

4.4.1 Initialization
Before going to programs main loop, initialization of necessary parts is performed. The
first thing to initialize is system clocks, following by used peripherals. Everything is going
in the usual fashion, except for USB peripheral initialization. A timer is used for generat-
ing 24 MHz clocks for used external PHY, so this particular timer needs to be initialized
and started before USB initialization. With all the necessary microcontroller parts ini-
tialized, CMOS sensor initialization can be performed. Whole CMOS identification and
initialization process is shown in figure 4.6 using flowchart.

initialize CMOS
structure start CMOS clock set RESET signal of

CMOS

CMOS connected using
defined i2c address

read CMOS id

finish CMOS
structure initialization

support CMOS

set DCMI px clock
polarity set CMOS OE signal

FALSE

TRUE

TRUE

FALSE

DONE

Identification

Common CMOS initialization

Sensor specific initialization

Figure 4.6. CMOS identification and initialization process flowchart

34

. 4.4 Firmware functionality

The first part of CMOS initialization is the same for all supported sensors. To CMOS
structure are passed pointers to handlers for required peripherals (timer, DMI, I2C). Next
timer generating clocks for the sensor is started so the sensor can start communicating. For
that, it is also necessary to set RESET pin of the sensor, so CMOS is not in standby/reset
state. If there is a CMOS sensor connected, it should be able to communicate with
microcontroller using I2C. FW includes saved list of possible I2C address to search on. In
the identification phase, these addresses are searched by trying to read sensors ID register
(most of the time 0x0). If the read is successful, it means the sensor is conned. When
no sensor is found on available addresses initialization, begin anew. With acquired sensor
ID, it is determined if the sensor is supported. For supported sensor is then initialization
finalized. CMOS structure is filled with sensor-specific information, DCMI initialization
is finalized, and last is setting OE pin of sensor. At this point, the CMOS sensor should
be ready for usage. If no sensor or unsupported sensor is found user LED4 is turned on
to let, the user know of the given issue.

4.4.2 Main loop
The main loop works as a state machine. To get into another state than do nothing, the
camera needs to be conned to PC application first. In a default state is then still done
nothing. Only after decoder decodes incoming data from PC application, the state is
changed. Following state are possible:.Default

Nothing is done in this state, only awaiting the change of state..Single image
In this state single image is captured and sent to PC application. After the send is

finished, the state is changed to default..Continuous capture
Images are continuously captured and sent to PC application until the state is

changed. After the state change, the currently processed image is always finished before
moving to the new state.. Info

If the send parameters buffer contains any items, they are sent to PC application.
The state machine is returned to the previous state after going through the whole
buffer. That is mainly because when we need to set and then send parameters while
continuously capturing images..Set

Work similarly to info state, with the difference, set parameters buffer is read. It
contains parameters to set for CMOS sensor. Parameters that are set are also imme-
diately sent back to PC application to confirm their new value. After finishing this
agenda, the state machine is returned to the previous state..Registers

The state somewhere between info and set state. It can read CMOS sensors register
and send its value to a PC application, or it can set register value. So both send and
set operations can be performed, but not over CMOS structure like info and set states.
Return to the previous state is also done after finishing send or write operation.

35

4. Camera Firmware .
4.4.3 Image capture and sending

As already mentioned capture of the image is done using DCMI peripheral 2.4.2. Transfer
of data from DCMI peripheral to SRAM is then done through DMA. By using DMA pro-
cessor time is saved as data are after DMA peripheral set up transferred without processor
assistance. That enables us to send parts of image data, while the image is still captured.
It not only makes continuous image capture faster but also enables processing of an image
that would not normally fit internal SRAM. DCMI is used with hardware synchronization
mode as all supported CMOS sensors provide all necessary synchronization signals. Only
monochrome/raw Bayer data format is used for DCMI, as all supported sensors use it.
The whole process of image capture and send is shown in figure 4.7.

configure DCMI tranfers =
image.parts

doneTranfers++

image.current =
image.head

configure DMA
on image.current start capture

DMA interrupt -
transfer complete

image.current.readyToSend = true

doneTranfers=0

transfers !=
doneTransfers

image.current =
image.current.next

configure DMA
on image.current

TRUE

FALSE
capture done

send image
header

sendPart.readyTosend

i < image.parts

sendPart =
image.head

send sendPart to
PC application

sendPart =
sendPart.next

waitwaited too long FALSE

TRUE

FALSE

TRUE

sendPart.readyToSend =
false

i = 0

TRUE

i++

send align and
image ender

send done FALSE

image capture setup

image send

image capture interrupt

Figure 4.7. Image capture and send to PC application flowchart

The process of capturing an image starts with the setup of the DCMI peripheral.
Noteworthy is also setting of image linked list head as currently processed part of the
image to the image structure. Afterward, DMA can be configured according to the current
part of the image. Capture is started by setting DCMI capture bit. DCMI then wait for
VS marking new image start to begin capture.

Immediately after capture start, sending of the image to PC application is also started.
Without delay, the image header can be sent. After the header, it is iterate over the image
linked list using a saved number of parts. Every image part is marked if it is ready to be
sent. If the current part is not ready to be sent, a certain amount of time is waited before
forcing the sent of the current part.

36

. 4.5 Adding support for another CMOS sensor

Set up of DMA for another part of the image is done in interrupt after the previous part
transfer is finished. Transfer of data for the next part can be done simultaneously with
sending previous part, thanks to DMA working independently. Transferred image part is
also marked as ready to be sent in the interrupt. By using the concept of simultaneously
sending to PC application and capturing the image (transferring data to internal SRAM)
arbitrary sized images can be processed.

To do simultaneous transfer it is usually needed to slow down the CMOS sensor, so
DMA does not overwrite section not yet sent. Slowing down can be done in two different
way, and it depends on the sensor, which way is more suitable. One way is to slow down
px clocks controlled from FW, which slows down readout of every single pixel (every pixel
is valid for an extended period of time). The second way is to increase horizontal blanking
time on sensors side. By increasing horizontal blanking, the delay between individual lines
readout is increased, effectively slowing down whole image readout.

4.4.4 CMOS parameters setting and sending
Both settings of CMOS parameters and their sending to PC application works similarly.
Actions are first added to buffer and then executed at an appropriate time, meaning
currently not capturing or sending an image. Buffer for parameter setting is filled from
the decoder after incoming data are received. It includes a list of parameters to set and
also parameters itself, as they are not stored anywhere else. The maximum length of the
buffer is 50 and that should more than enough, as it is about four times more than the
number of settable parameters. All the actions from the buffer are then executed after a
call from the main loop. Parameters sender need only the buffer of demanded actions, as
it reads values directly from CMOS structure. Its maximal length is the same as the one
of parameters setter buffer, meaning 50 items. Format of used messages is described in
section 5.4.

4.5 Adding support for another CMOS sensor
With the assumption that the CMOS sensor uses the same physical interface as described
in section 3.3, adding its support should be quite straightforward. It requires a small
modification to only two files and of course adding new files for a given sensor. Library
for a given sensor can be created similarly as for three already supported sensor. That
means header file defining sensor capabilities, limits, and registers. Source files then
contain the implementation of functions for CMOS control. The most important would
be initialization function filling CMOS structure with sensors parameters and functions.
All always mandatory function to implement would be:. initialize CMOS structure. set to default state. functions for I2C communication. image capture. set exposure time. set analog gain

If the CMOS sensor maximal resolution image will not fit internal SRAM, it is also
mandatory to implement functions for slowing down the sensor to perform online data
transfer. Function for faster readout when the image will fit SRAM is then also mandatory.
Other functions implementation need depend on defined capabilities. In the case of defined
capability, a respective function needs to be implemented as well.

37

4. Camera Firmware .
Few modifications need to be done in CMOS header and source file. In header I2C

address of new sensor needs to be added to address list to search sensor on if it is not
already present. If it is added, the length of this list needs to be incremented. Modification
in CMOS source file is only in CMOS identify function. New case with sensor ID finalizing
initialization needs to add (using the same pattern as already supported sensors). No
modifications should be necessary to a PC application, and new CMOS sensor should be
supported with just these few changes.

38

Chapter 5
USB communication in detail

For communication between the camera and the PC application was chosen USB. It is still
probably the most common option for data transfer from MCU powered device to PC.
Every computer has at least a few USB ports, and USB cables are also very commonly
available. However, focus in this chapter is mostly on used implementations of USB,
rather than USB itself. Communication protocol specific for the developed camera is also
described.

5.1 Firmware side implementation
Before implementation, it must be decided what functionality is expected from the camera,
to choose USB role and class. In USB communication host can communicate with the
device (slave), while the host always has to initialize the data transfer in both directions.
The unit can usually act only as a host or as a device. There is one exception of UBS
OTG that allows both roles, depending on the connected device (it is mainly used in
phones or tablets, that acts as a device while connected to PC, but acts as host while
connected to for example keyboard). However, in this particular case, the camera will
always need a connection to the PC. PC will act as host, and thus camera needs to be
defined as a device only. USB OTG functionality could be theoretically implemented but
is not needed.

With the decision, that the camera will be defined as a USB device, the correct USB
device class needs to be chosen. In total, 20 device classes are defined, alongside class for
unspecified device class. Defining device class allows the host to load appropriate drivers
to use the device automatically. In some specific cases, it might be necessary to use 0xFF
vendor-specific device class. It indicates that no standard driver can be used and the
vendor-specific driver is needed. However, it is better to avoid own driver development,
as driver signing might be a bit unnecessary issue. If the device can be written using
existing device class, drivers development can be skipped entirely.

Only two of the defined UBS device classes would make sense for our purpose. The first
to come in mind might be 0x0E video class. However this class is primarily designed just
for video streaming and is single purposely defined, hence it is not exactly suitable for
out camera specific communication protocol. USB communication device class (CDC) is
ideal precisely for this purpose. It uses bulk transfers, so high data rates can be achieved.
Common USB CDC host drivers act as virtual com port and device can then be easily
accessed as a serial port. It leads to the fact that USB CDC defined device acts as a serial
device to outside and is expected to have a pipe like connection opened after connection
to host (it is up to host to initialize transfers to be ready for receptions). When using
USB CDC drivers and connecting to the device using serial port implementation, an
application can act to the device as it would to a real serial device (USB routines are
performed by the driver). Thanks to this development of host-side communication for
USB CDC defined device is very simple. On top of that ST Microelectronics provides
USB CDC stack implementation for their products, so device side implementation is not
problematic as well.

39

5. USB communication in detail .
The final camera device includes implementation of both full speed and high speed

USB. If the camera is connected to PC by the micro USB port on Nucleo board, it uses
internal PHY that has only full speed capabilities. However mini USB connector on the
interfacing board can also be used. In this case, external high speed PHY is used, and
the camera is then capable of high speed USB utilization. Type of used USB connection
is determined after connecting to the host. This connection is utilized for the rest of the
session. Both implementations use the same USB CDC definition with a slight change in
descriptors. Descriptors parts used for device identification are defined as:.FS descriptor.PID = 0x1.VID = 0x1.Manufacturer string = “Vodsedalek FEE CTU”.Product string = “Meassure Cam FS”.Serial number string = “00000000001A”.HS descriptor.PID = 0x1.VID = 0x1.Manufacturer string = “Vodsedalek FEE CTU”.Product string = “Meassure Cam HS”.Serial number string = “00000000001A”

Bulk transfer with maximal respective bulk size packets is used for data transmit to
maximize data rate. For full speed USB, maximal bulk size is 64 bytes, and for high
speed USB, it is 512 bytes. Also, only a single interface can be used at a time, so it is not
possible to connect to the camera from two sources (e.g. two camera PC applications).
Used endpoints from camera view in default mode are:.0x01 - read endpoint.0x81 - write endpoint

5.2 PC application side implementation
For PC application side implementation controller - worker scheme is used. This scheme
and other PC application designs are described in chapter 6. In this section, the focus is
on port implementation and its problems. Available devices shown in the PC application
are filtered using both PID and VID, so other devices will not show in connection menu.
Two versions of Port class were created and are described in the following sections.

5.2.1 Serial port implementation
The most straightforward solution is to use a serial port class (if it is implemented in
the used framework). In this case, Qt toolkit is used, which includes implementation of
a serial port. As Qt is multiplatform, its serial port implementation can also be used on
multiple operating systems. The most significant advantage of this option is its simplicity.
Qt serial port class is very easy to use. No modification in the form of a manual install
of driver or others is necessary. The connection between the camera and PC application
using this implementation should work out of the box.

Unfortunately, this approach has its downfalls as well. For full speed USB, its per-
formance is sufficient, but it seems to limit high speed USB data rate 5.5. The second

40

. 5.2 PC application side implementation

problem that is faced applies only to Windows USB CDC drivers. While sending a larger
amount of data (such as images), certain parts of data are lost. Because of these prob-
lems, another solution was searched and is described in the following section. Serial port
implementation was preserved in PC application and can be switched to by defines in the
portController class header file. However, it is not recommended to use this option, as it
might not be reliably functional.

After investigation, it was determined, that it happens on driver level. Later possible
reason was discovered in UBS 2.0 specification [10]. The specification says the following:

“A bulk transfer is complete when the endpoint does one of the following:.Has transferred exactly the amount of data expected.Transfers a packet with a payload size less than wMaxPacketSize or transfers a zero-
length packet”

For USB CDC, it would most likely mean that the second condition needs to be met to
end bulk transfer. Until the transfer is ended, the driver holds the data and will not emit
them further. So when a larger amount of data of full bulk packets is sent, some internal
driver buffer overflows and data gets lost. There might also be some internal timeout to
release the data, which would explain why this problem disappears with the slower data
rate. This problem could be resolved by periodically sending zero-length bulk packets.
For Linux USB CDC drivers it appears not to be the case. It seems that Linux UBS CDC
driver takes NAK when the device has nothing to send, as the end of bulk transfer as
well.

Small issue was also found on Linux systems. Some Linux distributions still include
modemmanager service, that was historically used for dial-up internet access. This service
periodically accesses newly connected serial ports for 15 s. During this period the serial
port is nearly not usable. So after connecting the camera, it must be waited for these few
seconds or simply uninstall this service, as it is nearly useless these days (sudo apt-get
remove modemmanager).

5.2.2 libUSB implementation
It was desired not to change camera USB configuration, so there were not many options to
work with USB CDC class device under Qt without developing driver. Fortunately exist
widely used cross-platform library for USB device access called libusb[11]. This library
allows accessing a USB device on driver level, without a need to develop the driver. It
can disconnect currently used the driver a connect directly to the device itself. Basic
initialization and connection to device can be done as following:

libusb_init(nullptr); // initialize libusb library
// open device and get device handle
libusb_open(libusb_device *, libusb_device_handle **);
// check if kernel driver connected
if(libusb_kernel_driver_active(libusb_device_handle **, INTERFACE)==1){

// detach kernel driver
libusb_detach_kernel_driver(libusb_device_handle **, INTERFACE);

}
// claim interface
status = libusb_claim_interface(libusb_device_handle **, INTERFACE);

41

5. USB communication in detail .
After claiming the interface, both synchronous and asynchronous transfers are available.

According to documentation asynchronous transfer interface is a bit more complicated, but
more powerful, so it was decided to take this route. To create and submit an asynchronous
transfer, it needs to be allocated, filled, and submitted. Exemplary it can be done as:

// allocate transfer
libusb_transfer * readTransfer = libusb_alloc_transfer(0);
// fill transfer
libusb_fill_bulk_transfer(

readTransfer, this->dev_handle, READ_ENDPOINT,
&this->inBuff[BUFFER_LEN - this->bufferLenAvailable],
this->bufferLenAvailable, readDone, this, READ_TIMEOUT);

libusb_submit_transfer(readTransfer); // submit transfer

To make asynchronous transfers function correctly, somewhere in the code must be
called libusb handle events() function to process libusb events. On this purpose sepa-
rate thread is running and executing only libusb event handling. Without event handling
in this way, transfer callback would never be called. Another important thing is that
transfer does not have to be allocated over and over again. They can be allocated after
connection and then being reused by just calling fill and submit. For detailed function
description see official libusb documentation[11].

To mimic serial port implementation, two control transfers need to sent after con-
necting and before disconnecting the camera. These control commands are used in
camera FW for connection and disconnection detection, so they are essential. On
connection SET CONTROL LINE STATE and then SET LINE CODING control commands are
sent. On disconnection, it is the other way, and first is sent SET LINE CODING and then
SET CONTROL LINE STATE command..Enabling libusb usage on linux

To allow libusb both read and write access to USB, permissions for that particu-
lar device needs to be changed. It can be done simply by adding new rule file to
/etc/udev/rules.d. File needs to have name in format [0-99]-NAME.rules. In the
rule file devices to apply rules to can be filtered through numerous attributes. Following
example of the rule file sets read and write access for all users on devices with PID=1
and VID=1 (to make sure both USB and serial subclasses are searched).

file: /etc/udev/rules.d/90-usbpermission.rules

SUBSYSTEM=="serial", ATTRS{idVendor}=="0001",
ATTRS{idProduct}=="0001", MODE:="0666"

SUBSYSTEM=="usb", ATTRS{idVendor}=="0001",
ATTRS{idProduct}=="0001", MODE:="0666".Enabling libusb usage on Windows
To enable operation under Windows, a supported driver must be installed for the

device. Currently three different drivers are supported - WinUSB, libusb-win32 and
libusbK. The most straightforward way to install one of these drivers is to use Zadig
1 utility, that can detect all connected USB devices and install the selected driver for
them. It is recommended to use WinUSB driver, as it was tested. One simple trick
to avoid additional driver installation can be done. Device descriptor can be modified
to correspond to WinUSB descriptor. The device would be than plug and play on

1 https://zadig.akeo.ie

42

https://zadig.akeo.ie

. 5.3 Usage limitations

Windows system, as WinUSB driver would be automatically loaded for such a device
(WinUSB driver is available in Windows from Windows XP times). However, as this
project was started with the USB CDC class device and main development platform
was Linux, it was not implemented.

5.3 Usage limitations
The limitation of camera use is present only while using just full speed USB connection.
Because the data rate is too low for online data transfer to a PC application, it is not
possible to process images bigger than the size of SRAM in the D1 domain (0x7FFFF
bytes). Other functionalities should work as expected.

The second limitation is more general, but it is happening only with high speed USB,
due to its nature. It is tied to PC application capability of current image redraw speed.
Showing the image in its received form (100% scale and no interpolation) should lead
to no problems. However, scaling the image in combination with high fps can lead to
image stuttering and worsened GUI responsiveness. Same can happen with turned on
interpolation for RGB image. To resolve this image shuttering simply turn off scaling and
interpolation.

5.4 Camera communication protocol
This section focus on the communication protocol between the camera and PC application.
Communication can be divided into two parts by the direction of data flow. Data emitted
by the camera makes the camera to the PC application part. On the other hand, messages
from PC application to the camera can also be seen as commands supported by the camera.
It should be possible to use a different application to communicate with the camera if it
complies to the described communication protocol.

5.4.1 Camera to PC communication
Data send from camera to PC application needs to be always aligned to 8 bytes, because
the port implemented in the application reads data with this alignment. Data sent by
camera can be divide to 3 simple categories. It can send image data, CMOS parameters
and registers data. All possible messages emitted by the camera are shown in figure 5.1.
The first two bytes of command always serves for command type identification.

Sending of the image is divided into three parts. Image header containing information
about the image is sent first. It contains image width and height and also information
about image format - RGB or monochrome. After the header comes image data itself,
always in a format where one byte represents one-pixel data. Sending of the image is
then ended by packet marked as image end, which contains the same information about
the transferred image as the header. Only after image end packet is received by PC
application, processing of the image is started.

CMOS parameters sending uses the same basic pattern for all parameters. After the
two command type bytes comes the respective parameter code, followed by its data length
and data itself. Available parameters codes and their data formats are shown in figure
5.2. Parameters 0-1 are only for informing PC application about connected CMOS sensor
type. CMOS sensor capabilities are packed in single parameter with number 2. Numbers
3-8 mark sensors parameters limits. These parameters are needed for the PC application
to not show unavailable values. Rest of the parameters 9-23 are for sending the current
state of CMOS sensor.

43

5. USB communication in detail .
CAM->PC

Page 1

image header
0 1 2 3 4 5 6

‘s’ ‘I’ 'c’/’g’ uint16 uint16 align to 8 bytes

send image color/grayscale image width image height

image payload
image data length

uint8[data length] align to 8 bytes

image data

image end
0 1 2 3 4 5 6

‘s’ 'e’ 'c’/’g’ uint16 uint16 align to 8 bytes

send end color/gray image width image height

sensor data
0 1 2 3 3+data length

‘s’ ‘s’ uint8 uint8 data align to 8 bytes

send sensor param code data length param data

register data

0 1 2 3 4

‘s’ 'r’ uint8 uint16 align to 8 bytes

send register add data

Figure 5.1. Messages possibly emitted by camerasensor parameters

Page 3

param code param name data length data
0 sensor name nameLen char * name
1 shutter type 1 uint8 type
2 capabilities 9 uint8 cap [9] = {rgb, aec, agc, hdr, roi, bin, skp, flip, test}
3 width limits 4 uint16 min uint16 max
4 height limits 4 uint16 min uint16 max
5 binning steps stepsLen uint8 * steps
6 skip steps stepsLen uint8 * steps
7 gain limits 2+stepsLen uint8 min uint8 max uint16 * steps
8 brightness limits 2 uint16 min uint16 max
9 image width 2 uint16 width
10 image heigth 2 uint16 height
11 image color 1 uint8 color
12 ROI enabled 1 uint8 roiEn
13 ROI params 8 uint16 beginX uint16 beginY uint16 width uint16 height
14 AEC 1 uint8 aec
15 AGC 1 uint8 agc
16 HDR 1 uint8 hdr
17 brightness 1 uint8 bright
18 gain 1 uint8 gain
19 exposure time 4 uint32 exp
20 binning 2 uint8 row uint8 column
21 skip 2 uint8 row uint8 column
22 flip 2 uint8 row uint8 column
23 test mode 1 uint8 test

Figure 5.2. CMOS parameters code table

The last type of data coming from camera to PC application is registers data. Using
these messages PC application can acquire raw CMOS sensor registers data. A message
consists only from two command type bytes, one byte of sent register address and read
register value with a size of 2 bytes.

44

. 5.4 Camera communication protocol

5.4.2 PC application to camera communication
For communication from PC application to the camera, no alignment of data is required.
Compared to communication in the other direction only a fraction amount of data is sent,
as only control commands are used. The camera control protocol is very simple, and all
available commands are shown in figure 5.3.

PC->CAM

Page 2

single image
0 1 2

'r’ 'I’ 'o’

receive image one

continuous capture begin continuous capture end
0 1 2 0 1 2

'r’ 'I’ 'b’ 'r’ 'I’ 's’

receive image begin receive image stop

sensor data
0 1 2 2+data length

‘r’ ‘s’ uint8 data

receive sensor param code param data

write register
0 1 2 3 4 5

'r’ 'r’ 'w’ uint8 uint16

receive register write address data

read register
0 1 2 3

'r’ 'r’ 'r’ uint8

receive register read address

set to default
0 1

'r’ 'd’

receive set default

Figure 5.3. Messages emitted by PC application

Messages can be again divided into three categories - image capture control, sensor
parameters setting, and register control. Three different commands are available for
image capture control. The first is for a request of a single image, triggering single
image capture and sent to PC application. Other two are for continuous capture control.
Continuous image capture and send are started by one of them, and the second one stops
the continuous transfer. After the stop is received by the camera, processing of the current
image is finished, and then the capture is stopped.

Commands for sensor parameters setting contains parameter code and data itself be-
side two command identification bytes. Same parameters table as for the camera to PC
communication 5.2 is used, although only parameters with numbers 13-23 are available.
All the other parameters are defined only in the other direction communication as they
are only informing about sensor parameters. In this category of commands can also be
counted set to default command, as it resets CMOS sensor to its default settings. It uses

45

5. USB communication in detail .
its format different from parameters set commands. Only two command identification
bytes are needed for this command because it is otherwise unique.

Independently are then defined commands for CMOS registers control. One serves
for register setting and consists of write flag byte, register address byte and two bytes
containing value to set. The second is used for register read and contains only read flag
byte and register address to read.

5.5 Communication speed measurements
During the development of the camera, both full speed and high speed USB were employed.
Both of them were preserved to the final solution, and each is usable through the different
connector and is using different PHY. Two different implementations were also created for
the host side (PC application). One using internal QT serial port library using USB CDC
drivers and second using the libusb library to substitute driver level implementation. The
PC application is also supported by two different operating system - Linux and Windows.
Counting all of them we have eight different combinations for measurement. Comparing all
eight options might lead to some interesting conclusion on different USB implementations
performance.

5.5.1 Maximal data rates
Before the measurements itself, we might want to define absolute limits for our communi-
cation chain. The first part would be the maximal data output of supported sensors. The
maximal data output of the CMOS sensor is usually with maximal supported resolution.
One look on maximal data output of the sensor might be from the resolution to fps ratio.
That can be expressed using the formula:

DataRateCMOS = ActiveP ixels · FPS (5.1)

On the other hand, the data rate is limited by the px clock signal, as it defines how
fast are individual pixels read. If 8-bit DCMI interface is used, every px clock period 1
byte of data is transferred. The total data rate is also lowered by HS and VS, but for
simplification can be omitted (just noted that actual maximal data rates would be lower).
If we look to datasheets of supported sensors and compute both maximal data rates, the
latter one should be always higher, as it does not account HS and VS times. However
maximal px clock frequencies are not used. Because of need for 24 MHz for external
PHY, clock to timers peripherals has been lowered from 200 MHz to 192 MHz. Clocks
for CMOS sensor are then also generated by timer, so we are limited to frequencies:

f = 192
2 · (n+ 1) n ∈ N

Maximal data rates for supported sensors are shown in table 5.1. As relevant maximal
data output of sensor will be furthermore used the values computed from real used px
clocks.

ActivePx · FPS px clock (max) px clock (used)
MT9V034 21.66 MB/s 27 MB/s 24 MB/s
MT9M001 39.32 MB/s 48 MB/s 32 MB/s
MT9T001 37.75 MB/s 48 MB/s 32 MB/s

Table 5.1. CMOS sensors maximal data output

46

. 5.5 Communication speed measurements

The second limiting factor can be the transfer of data from DCMI peripheral to SRAM
using DMA. Unfortunately, no new documentation like [12] is provided by the manufac-
turer, so we will have to assume that DMA controller works the same way on H7 series as
on F2, F4, and F7. It is the only document, where DMA timing are described in detail.
For AHB peripheral access time for DMA is 4 AHB cycles. Similar access to memory is
also 4 AHB cycles. Working with 32-bit values, one transfer from DCMI to memory takes
8 AHB cycles. With AHB clock being 192 MHz, maximal data rate can be expressed as:

DataRateDMA = 4 · 192
8 = 96 MB/s (5.2)

USB itself has different maximal data rates for different releases. Two of them were
implemented, and their maximal data rates are 1.5 MB/s for full speed USB 1.0 respec-
tively 60 MB/s for high speed USB 2.0 (actual theoretical maximum data rate is lower
because of protocol overhead, etc.). Other limiting factors might be processing times on
both FW and application side. These will affect final maximal measured speeds. Maximal
data rate limitations for communication chain parts are shown in table 5.2. For CMOS
maximal data rate is chosen maximal reachable data rate of supported sensors.

CMOS DMA USB 1.0 USB 2.0
32 MB/s 96 MB/s 1.5 MB/s 60 MB/s

Table 5.2. Maximal data rates for communication chain parts

From table 5.2 can be easily seen that using full speed USB would marginally limit whole
communication chain. On the other hand, it should be possible to match the maximal
data rate of CMOS sensors using high speed USB. With fast enough USB communication,
it is possible to process images, that does not fit to internal RAM.

5.5.2 Data rates measurements
Special function for measuring communication speed between the camera and PC appli-
cation was build to both FW and application. The camera first informs the application
of the amount of data to be sent. The application then starts timer and measures time
until the expected amount of data is received. HS USB is tested by sending 512 MB of
dummy data and FS USB by sending 51.2 MB of data. For both system testing was done
on the same PC running Intel® Core i5-5200U and using operating systems:.Ubuntu 18.04.1 64 bit.Windows 10 v. 1903

FS USB HS USB
serialPort libusb serialPort libusb

Linux 1100-1200 kB/s 1000-1100 kB/s 4.1-4.5 MB/s 30-39 MB/s
Windows N/A 750-850 kB/s N/A 29-31 MB/s

Table 5.3. Measured data rates for different USB implementations

Serial port implementation in Qt seems to yield better results for full speed USB.
However, things drastically change with high speed USB, where libusb implementation
reaches nearly ten times higher data rates. Reliably measuring communication speed using
CDC drivers (serial port implementation) under Windows was not possible (described in

47

5. USB communication in detail .
section 5.2.1). The best results were achieved using libusb under Linux OS. Similar data
rates were also reached under Windows. But few timing tweaks were performed to reach
these speeds (with Linux setup speed were closer to 10 MB/s). Also, it must be noted,
that especially HS USB data rates are influenced by PC workload.

5.5.3 High speed USB real data rate comparison with theory
If we would like to get to actual maximal high speed USB data rate using bulk transfers, a
few variables need to be accounted for. As already mentioned, the absolute maximal USB
2.0 throughput is 60 MB/s. If we count just USB protocol overhead according to [10], we
get to roughly 53.25 MB/s. That is, of course, using the maximum size of bulk transfer
- 512 bytes. Single microframe has 7500 bytes of useful data, and protocol overhead for
bulk transfer is defined as 55 bytes. Number of bulk transfers bt in one microframe can
be computed as:

bt = 7500
(512 + 55) = 13.23 (5.3)

A number of bulk transfers needs to be integer number and having 8000 microframes
per second we get the data rate:

DataRate = 13 · 512 · 8000 = 53.248 MB/s (5.4)

However, a few other things are reducing the actual bandwidth. USB protocol is also
using bit stuffing. If a sequence of six 1 is sent, it is followed by stuffed 0, which is
discarded by the receiver. Host scheduling the transfers must account with the worst case
scenario resulting in the increase of bulk packet transmitted size:

7 · int
(

512
6

)
= 595 (5.5)

That leads us to the new number of bulk transfers per microframe:

bt = 7500
(595 + 55) = 11.54 (5.6)

But not all the USB bandwidth is reserved for bulk transfers. The host is required to
reserve about 10 % of the bandwidth for control transfers, thus further reducing the bulk
transfer data rate to roughly bt = 10.4 bulk transfers per microframe. That translates to
maximal data rate using bulk transfers of:

DataRatemax = 10 · 512 · 8000 = 40.96 MB/s (5.7)

From these computations we can see, that with high speed USB on Linux reaching up
40 MB/s actual limits are touched and high speed USB is used in its full potential.

48

Chapter 6
PC application

PC application was developed using Qt widget toolkit (v 5.11.2) with C++ programming
language. The application supports Linux and Windows operating systems. All the func-
tionalities are available on both platforms in full scale. However, especially performance of
USB communication is significantly limited under the Windows operating system (details
in chapter 5). For this reason, it is recommended to use Linux variant, if possible.

The application enables full CMOS sensor control, including registers access. Featured
is also separate linear sensor mode with tools for basic analysis. User can also save
currently shown image or save CMOS sensor setting for later usage. The camera can
communicate with application using high speed USB (mini USB connector on interfac-
ing board) or full speed UBS (micro USB connector on Nucleo board). Details about
communication between the camera and PC application are described in chapter 5.

6.1 Application structure
The application can be divided into several modules by their functions. Also, it is con-
venient to move some parts of the application (e.g. communication) to separate thread.
Thread-safe communication can be realized under Qt using it’s SIGNAL and SLOT nota-
tions (it can also serve for communication between Qt objects). The goal of this section is
not to go in detail about development under Qt, but rather to describe basic application
structure. Simplified high-level application structure is shown in figure 6.1.

GUI PortDecoder

libusb
EventHandlerCMOS

ImageWorker

Graph

PortController

PC application
Camera

port thread

event threadmain thread

User input

Figure 6.1. PC application structure diagram

49

6. PC application .
.GUI

Graphical user interface part of the application serves for informing the user about
camera state and also for interaction between user and application. It visualize in-
formations from CMOS, ImageWorker and Graph modules. Alongside visualization of
the user interface are in the GUI module included submodules, taking care of correctly
marking pending data or widgets pertinency depending on CMOS sensor settings..CMOS

CMOS module is a representation of the sensor inside the application. It can take
incoming parameters messages from Decoder and change its internal parameters while
also informing GUI about parameters change. Saving and loading CMOS sensors setting
feature is also provided by this module..Decoder

The crucial module deciding what will happen with data received by the Port. It
decodes the incoming data and after whole CMOS parameter or image is received, it
forwards the data to the CMOS or ImageWorker.. ImageWorker

ImageWorker module takes care of all the work on the image data. Image scaling,
line selection for linear mode, cursors or drawing pending selections over the image
are all operations performed by ImageWorker. Interpolation of RGB images (details in
section 6.1.1) is another big part of this module. After the image data are processed,
it forwards the image to GUI for redraw..Graph

Separate module for graph of linear mode data using QCustomPlot library[13]. After
receiving data from the ImageWorker it performs all the work around the shown graph,
including cursor control..PortController

PortController acts for the rest of the application as the port itself. However, it
is only a mean for communications between the main thread and Port. Inside this
module, Port is created and then moved to its separate thread. It takes all commands
expected from a port - connect, disconnect, or send data. Reading of data is done
continuously by the Port and does not have to be started by the user..Port

Actual Port module is running in a separate thread, as already mentioned. New
read transfer is created as soon as the previous one is ended, so the port is always
ready to receive data from the camera. All data are forwarded to the Decoder module
to decide their purpose. Data are forwarded with 8 bytes alignment (the rest remain
in the buffer and is forwarded with next data), so from Decoder point of few it reads
with this 8-byte alignment. Write transfers are submitted as soon as data to send are
received. More details about implementation is chapter 5. In place of the default libusb
implementation can also be used older serial port implementation.. libusb EventHandler

This module is present only when libusb implementation of Port module is used. It
is created by Port and serves only for servicing libusb asynchronous events. Handling
of the events is done in Port itself.

6.1.1 Bayer filter interpolation
The only supported RGB CMOS sensor is using a Bayer mask to produce RGB images.
Bayer mask is a pattern of filters that allows only red, green, or blue light to pass to a single
photosensitive element of sensor representing a pixel. Different patterns are sometimes

50

. 6.1 Application structure
Sheet1

Page 1

R11 G12 R13 G14 R15 G16

G21 B22 G23 B24 G25 B26

R31 G32 R33 G34 R35 G36

G41 B42 G43 B44 G45 B46

R51 G52 R53 G54 R55 G56

G61 B62 G63 B64 G65 B66

Figure 6.2. Bayer filter structue

used as well, but Bayer mask is still the most used one. Its structure is shown in figure
6.2.

It contains 50% green, 25% blue, and 25% red pixels. By having twice more, green
pixels function of the human eye is simulated (the human eye is most sensitive to green
light). To obtain a full RGB image interpolation of color channels, data needs to be
done. This interpolation is usually called demosaicing or debayering. Algorithms used for
interpolation can be divided into two categories:.Non-adaptive

These type of algorithms are usually simple to implement, and most of the time using
just linear operations. They often yield worse results producing some kind of artifacts.
But as they are less complex, they tend to be less computationally intensive, thus being
faster. From the most used ones can be named Nearest Neighbor, Bilinear interpolation
or Cubic convolution..Adaptive

Adaptive algorithms are called adaptive because they can, to some extent, adapt
to features in the image (e.g. edges). They often use nonlinear operations and thus
being more computationally intensive. But that is just a drawback for the better final
result. From the many existing algorithms can be named, for example, Edge sensing
interpolation or Patterned pixel grouping.

Two demosaicing algorithms are implemented in the PC application. The first one is
used when continuous RGB image transfer is on (video). In this case, the main concern
is a speed of given algorithms, as interpolation needs to be done in real-time. The least
computationally intensive algorithm should be Nearest Neighbor (NN). Missing values
are in this case set to value of the nearest value from a given color channel. If we have a
look on pixels 22, 23, 32, 33 from figure 6.2 it would to translate to given equations:

R22 = R11; G22 = G21; B22 = B22 (6.1)

R23 = R13; G23 = G23; B23 = B22 (6.2)

R32 = R31; G32 = G32; B32 = B22 (6.3)

R33 = R33; B33 = B22; G33 = G32 (6.4)

51

6. PC application .
The second algorithm is used for single images, where a bit longer processing does not

an issue. To yield a bit better results, Bilinear interpolation is used. This algorithm
interpolates missing values from the neighborhood of original values form given color
channel. Equations for pixels 22, 23, 32, 33 looks following:

R22 = R11 +R13 +R31 +R33
4 ; G22 = G12 +G21 +G23 +G32

4 ; B22 = B22
(6.5)

R23 = R13 +R33
2 ; G23 = G23; B23 = B22 +B24

2 (6.6)

R32 = R31 +R33
2 ; G32 = G32; B32 = B22 +B42

2 (6.7)

R33 = R33; G33 = G23 +G32 +G34 +G43
4 ; B33 = B22 +B24 +B42 +B44

4
(6.8)

6.2 GUI layout
This section of the thesis is focused on the description of the PC application GUI and its
functions. It can also serve as a manual to the application. The GUI can be divided into
three parts - Main control area, Area Mode, Linear Mode. Following subsections focus on
individual parts and describes their functionalities.

Pending values are marked through the entire application by red color. By pending
values are meant, change parameters, that have not been set yet. Examples of pending
values can be seen for example in figure 6.5 - both Exposure and Row skip contains
currently pending values. Same can be seen in figure 6.7 - Selected line value is also
pending.

6.2.1 Main control area
The main control area is always visible to the user and contains basic application controls.
Things like file saving, connection control, capture control, or image view control are in-
cluded in this area. All present functanddd shown in figure 6.3. Follows their descriptions
using numbering from figure:

1. Action menus
The action menu is located in the left top corner of the application. The first menu

is called File and includes options for image or data saving. Following options are
present in File menu:.Save image - to save currently displayed image in png, jpg or bmp format.Save line - to save currently selected image line in png, jpg or bmp format.Save line data - to save currently selected image line data in csv format.Save CMOS settings - to save current CMOS settings to file.Load CMOS settings - to load CMOS settings from file

The second menu Test for controlling test modes of connected CMOS sensor. Test
mode can be turned on/off, and if more test patterns are available, they can be selected.
Help menu contains just one item, that evokes window with information about the
application.

52

. 6.2 GUI layout

Figure 6.3. PC application main controls

2. Camera connection control
Camera connection control area contains form left to right following items:.Refresh devices button - to refresh list of connected USB devices (filtered using
PID and VID).List of connected device - to select connected device to work with.Connect button - to establish connection with selected USB device.Disconnect button - to close connection with currently connected USB device.Connected sensor - shows type of connected CMOS sensor

3. Capture control
Three buttons included in this section serves as image capture control. Buttons

icons should be self-explanatory, but to makes things clear, it will not hurt to mention
buttons functions. From left to right, the first button starts continuous image transfer,
next to it is stop continuous transfer button. On the right side is then the snapshot
button, that induces single image capture and its transfer to the application.

4. Image display control
To change current image scale controls in this section can be used. The main select

box contains present scale - 20%, 50%, 100%, 200%. There is also Arbitrary option
that enables spin box next to the select box. Scale can be then changed continuously
between 1-999%. One possibility for scale change is to use spin box directly or to move
the mouse over the image and use ctrl + mouse wheel. Two options that change
image scale dynamically with application window size are also present. Fit Window
scales the image to fit the image area and Fit Width scales to fit just width of the

53

6. PC application .
image to the image area. On the right side of this section is also checkbox, that turns
on/off interpolation for RGB images (it is not pertinent for monochrome images).

5. Registers control
An only single button is present in this area, but it evokes a dedicated window for

registers control shown in figure 6.4. There are Read and Write buttons operating
with respective fields above them. Address fields allow only 2 characters and the
values are in hexadecimal number format. Fields named Value shows 4 characters with
space between because sensors registers have 16 bits format. The values are again in
hexadecimal format, and the first two characters represent the most significant byte.

Figure 6.4. PC application registers control window

6. Current image status
User cannot directly interact with current image status as it only serves only for

showing image parameters. It contains information about the used type of shutter,
image format (monochrome/RGB) and actual transferred image size. The last item
included in this area is fps counter, showing a number of frames per second if the
continuous transfer is on.

7. Default setting button
Button resetting CMOS sensor on connected camera to default settings.

8. Mode selection
Selection for changing shown user interface between Area Mode (contains general

sensor settings) and Linear Mode (simulates linear sensor and also contains basic tools
for line data analysis).

6.2.2 Area mode
Area mode section of application includes controls for changing available CMOS sensor
settings. It also includes an area for displaying the latest received image. Screenshot with
highlighted parts is presented in figure 6.5. Following the description of individual parts
uses the same order as on the presented screenshot. If the currently used sensor does not
support one of the functionalities, it is not available (controls for given functionality are
not pertinent).

Small buttons with two green arrows as glyph appears many times on in this area. All
of them are located on the left side of the application. Their serve for loading currently
set value to their respective parameter. After the user changes parameters values, it is
marked as pending (red color). Using this button currently set value of the parameter
can be reloaded, so the user does not have to search it manually.

Similar, we can notice a button with a single green arrow as glyph being more than
once on the right side of the parameters panel. Its purpose is to a simple set respective
parameter to the camera. After the camera tries to set the value, it sends back the real
parameter value for GUI to show. If the value user just tried to change remain the same,
the setting was successful.

54

. 6.2 GUI layout

Figure 6.5. PC application area mode

1. AEC control
Control elements for automatic exposure control that can be turned on or off. In-

cludes refresh button, checkbox, and set button. AEC is functionality, which allows the
sensor to change exposure time, depending on the image brightness dynamically.

2. AGC control
Control elements for automatic gain control that can be turned on or off. Includes

refresh button, checkbox, and set button. AGC is functionality, which allows the sensor
to dynamically analog gain, depending on the image brightness.

3. HDR control
Control elements for high dynamic range that can be turned on or off. Includes

refresh button, checkbox, and set button. HDR can increase the dynamic range of the
sensor by a significant margin.

4. Brightness control
Control elements for image brightness. Includes refresh button, spin box, and set

button. Brightness parameter is pertinent only when AEC or AGC is turned on. It
can be set to a discrete value representing the overall brightness of the image, that is
to be maintained by the sensor (using exposure and gain control).

5. Exposure time control
Control elements for exposure time. Includes refresh button, spin box, and set button.

The value presented in the spin box is in µs. Exposure time is the amount of time
photosensitive elements of the sensor are exposed to light.

55

6. PC application .
6. Analog gain control

Control elements for analog gain. Includes refresh button, spin box, and set button.
Analog gain parameter represents gain of sensors internal amplifiers.

7. Pixel skip/binning control
Control elements for pixel skip and binning. Includes refresh button, select box for

a skip or binning selection, set button, and also individual select boxes for row and
column. Values for row and column says how many times will be the height and width
of the image reduced. Different values can be set for row and column. Select box for a
skip or binning selection contains only values supported by used CMOS sensor.

Pixel skip just skips rows or columns in the image and so only reduced image is read.
If the skip is 2, it means only every second row/column is read. For pixel binning things
are a bit more complicated. The equivalent value of pixel skip and binning will produce
an image of the same size, but the size is reduced by different means. Instead of just
skipping the data, binning averages the data from that area resulting in reduction. So
when both row and column binning are set to 2, every pixel is the average of signal
from 4 photosensitive elements. Binning can reduce aliasing impact on the image in
case of the image reduction, so if possible, it is the preferred option.

8. Image flip control
Control elements for image flipping. Includes refresh button, set button, and check-

boxes for row and column flip separately. By setting row/column flip order in which
rows/columns are read is flipped. So row flip mirrors the image over the horizontal axis
and column flip over the vertical axes.

9. ROI control
ROI control elements are located in a dedicated window shown in figure 6.6

Figure 6.6. PC application ROI setting window

To set ROI (or sometimes called windowing) there are 4 values to adjust - StartX is
number of the first column , StartY is number of the first row, Width is image width
(number of columns) and Height is image height (number of rows). It is also possible
to show the pending ROI area to the current image by enabling Preview checkbox.
The button with a short green arrow is the set button for ROI.

10. Set all button
Button with longer green arrow serving for setting all sensor parameters above. Can

be used instead of individual parameters set buttons.
11. Image area

Area of the application displaying the latest received image. The image can be scaled,
show ROI pending window, or be interpolated (only RGB). If the image is bigger the
current size of the image area, scroll bars appears on the right side and bottom of the
area. Using scroll bars user can view the whole image that will not fit the image area.

56

. 6.2 GUI layout

6.2.3 Linear mode
By switching to the Linear Mode tab, we get access to some basic tools for line analysis.
This mode is to be mainly used as a simulation of a linear image sensor, that can be sim-
ulated on application or camera level. For basic line data analysis, there are implemented
cursors. Highlighted parts of linear mode screen are shown in figure 6.7. Description of
individual parts follows numbering from the figure.

Figure 6.7. PC application linear mode

1. Line select mode
By changing Line select mode level on witch linear mode is simulated can be

changed. When App option is set, the whole image is transferred to the application
and line is selected on the application level. By setting the MCU option, the line is
selected on camera level, and only the selected line is captured and transferred to the
application. Option are selected using select box and value is then set by pressing
the set button (with short green arrow glyph). MCU option for line select mode is not
available for RGB sensors, as it is not possible to select only a single line. However,
the selection on the application level is fully functionally.

2. Line select
Serves for selecting a line from image to work with. Set button (with short green

arrow glyph) is present again at the right side of the marked area. If the Line select
mode is set to App currently selected line and pending select are marked in the image
shown in Image area. Currently selected line is marked by red color and pending line
by orange color.

57

6. PC application .
3. Cursors control

Cursors serve as a tool for basic analysis of selected line data. There two cursors
available, that can be turned on/off when needed. Adjustable is their X position that
represents moving through individual pixels of line. The brightness of pixel on that
position is then shown in Y1 or Y2 field. Differences between cursors X1-X2 and Y1-Y2
are also shown is individual fields. When enabled cursors are shown in both Line view
and Line graph.

4. Image area
Shows latest received image, if the Line select mode is set to App. In this case,

both the currently selected line and pending line are highlighted. Using scroll bars user
can view the whole image that will not fit the image area. Image display controls also
applies to the image shown in this area.

5. Home graph button
By pressing this button currently shown line graph Y axis is scaled, so all the pixel

values are visible. Meaning minimal value on the Y axis is the minimum brightness
value from the line and maximal value on the Y axis is maximal brightness value from
the line.

6. Line view
Shows magnified selected line. Scale cannot be changed by the user, but scroll bar

common with a graph can be used to view the whole line. If the cursors are enabled,
they are also drawn on displayed line in red colors (slightly different shades for each
cursor).

7. Line graph
Graph representation of selected line data is shown in this area. On Y axis is bright-

ness of given pixel, hence range is 0-255. On X axis is the position of the pixel in image
and range depends on image width. When working with RGB image, three plots are
shown, each representing one color channel. Cursors are also visualized to the graph if
they are enabled (black and gray colors).

58

Chapter 7
Conclusion

All the goals from the specification were satisfied within the thesis. The main goal was to
design and realize measurement camera with CMOS sensor for educational laboratories.
It would be possible to use a commercially available camera. However, custom made
camera will allow full access to all CMOS sensor settings, which can help with explaining
sensors properties. Alongside the camera realization programs for both camera and PC
were created. The camera is complemented by PC application providing camera control
and other functionalities.

In the design phase, it was decided to use modular construction for the camera. The
camera is made from three parts. Control of CMOS sensor and communication with PC
is carried out by the microcontroller STM32H743 on Nucleo development board. Used
CMOS sensors have their own board developed in the previous thesis in the laboratory
of Videometry (with standardized physical interface). For the connection between Nucleo
and CMOS board interfacing board was designed. This modular solution allows simple
replacement in the case of hardware failure. Only interfacing board needs to be assembled,
which is much more straightforward than a single board solution containing all components
on one board. The modular solution also enables support for multiple CMOS sensors, as
they can be swapped.

The camera supports three different CMOS sensors. The number of supported sensors
can be easily increased thanks to FW design. For communication with PC is used USB.
To enable real-time image data transfer high speed USB support is added by external
PHY placed on interfacing board. Real-time image data transfer enabled processing of
images, that do not fit microcontrollers internal RAM. The functionality of internal full
speed USB PHY is preserved and can be used through micro USB connector on Nucleo
board.

PC application complementing the camera is developed under Qt widget tooling. Ver-
sion for Linux and Windows operating systems was created. The application allows the
user to control the camera on sensor level. The user even has direct access to sensors
registers. Included is also a linear mode simulating linear image sensor. Basic tools for
line analysis are present in linear mode. Naturally, features for image saving and CMOS
sensor setting saving are present.

Possible improvements of the realized solution still come in mind. The number of
supported CMOS sensors could be increased. Continuous image grab mode can also
be improved, as sensors are generally running continuous mode and frames are dropped
during sending. PC application could be more stable with nonstandard inputs. More
analysis tools may be added to the application. It would also be desired to improve image
redraw speed in the application, but it is maybe limited by Qt toolkit.

59

References

[1] Fischer, Jan. Optoelektronické senzory a videometrie. Prague: Skripta ČVUT FEL,
2002. ISBN 80-01-02525-1.

[2] STMicroelectronics. AN5020, Application note - Digital camera interface
(DCMI) for STM32 MCUs, Rev. 1 .
http://www.st.com.

[3] STMicroelectronics. LFXX Datasheet, Rev. 31 .
http://www.st.com.

[4] STMicroelectronics. UM1974, User manual - STM32 Nucleo-144 boards, Rev.
7 .
http://www.st.com.

[5] STMicroelectronics. LD1117 Datasheet, Rev. 33 .
http://www.st.com.

[6] Semiconductor Components Industries, LLC. MT9V034 Datasheet, Rev. G.
https://www.onsemi.com.

[7] Micron Technology, Inc. MT9M001 Datasheet, Rev. F .
https://www.micron.com.

[8] Micron Technology, Inc. MT9T001 Datasheet, Rev. D.
https://www.micron.com.

[9] STMicroelectronics. AN4891, Application note - STM32H74x and STM32H75x
system architecture andperformance software expansion for STM32Cube, Rev. 2 .
http://www.st.com.

[10] USB Implementers Forum, Inc. Universal Serial Bus Specification, Rev. 2.0 .
https://www.usb.org.

[11] libusb. A cross-platform user library to access USB devices .
https://libusb.info/. (cit. 2019-05-11).

[12] STMicroelectronics. AN4891, Using the STM32F2, STM32F4 and STM32F7
Series DMA controller, Rev. 3 .
http://www.st.com.

[13] Eichhammer, Emanuel. QCustomPlot - Qt C++ widget for plotting and data visu-
alization.
https://www.qcustomplot.com/. (cit. 2019-05-14).

[14] Vodseďálek, Jakub. Camera Based Vibration Sensing System. Prague: CTU FEE,
Department of Measurement, 2017. Bachelor thesis.

[15] Řípa, Radek. Synchronized Image Sensors. Praha: CTU FEE, Department of Mea-
surement, 2012. Master’s thesis.

[16] Davies, E.R. Computer and Machine Visions: Theory, Algorithms, Practicalities.
4. ed. Oxford: Academic Press, 2012. ISBN 978-0-12-386908-1.

60

http://www.st.com
http://www.st.com
http://www.st.com
http://www.st.com
https://www.onsemi.com
https://www.micron.com
https://www.micron.com
http://www.st.com
https://www.usb.org
https://libusb.info/
http://www.st.com
https://www.qcustomplot.com/

. .
[17] Yiu, Joseph. The Definitive Guide to ARM® Cortex®–M3 and Cortex®–M4 Proces-

sors. 3. ed. Oxford: Newnes, 2013. ISBN 978-0-12-408082-9.
[18] STMicroelectronics. AN4296, Application note - Overview and tips for using

STM32F303/328/334/358xx CCM RAM with IAR EWARM, Keil MDK-ARM and
GNU-based toolchains, Rev. 3 .
http://www.st.com.

[19] STMicroelectronics. RM0433, Reference manual - STM32H743/753 and
STM32H750 advanced ARM®-based 32-bit MCUs, Rev. 5 .
http://www.st.com.

[20] STMicroelectronics. DS12110, STM32H743xI Datasheet, Rev. 5 .
http://www.st.com.

[21] Microchip Technology, Inc. DS00001792E - USB3320 Datasheet, Rev. E .
https://www.microchip.com.

[22] USB Implementers Forum, Inc. Universal Serial Bus Class Definitions for Com-
munications Devices, Rev. 1.2 .
https://www.usb.org.

[23] USB Implementers Forum, Inc. Universal Serial Bus Communications Class Sub-
class Specification for PSTN Devices, Rev. 1.2 .
https://www.usb.org.

61

http://www.st.com
http://www.st.com
http://www.st.com
https://www.microchip.com
https://www.usb.org
https://www.usb.org

Appendix A
Abbreviations

AEC . Automatic Exposure Control. Image sensor feature to automatically adjust
exposure time to reach desired image brightness.

AGC . Automatic Gain Control. Image sensor feature to automatically adjust
gain to reach desired image brightness.

AHB . Advance High-performance Bus. Full duplex parallel bus used for
connecting functional block (peripherals) in system-on-a-chip designs.

ARM® . Advanced RISC Machine. Type of computers architecture.
CCD . Charge-coupled device. In this thesis used as “CCD image sensor”, which

is a type of image sensor.
CMOS . Complementary Metal–Oxide–Semiconductor. The technology used in

integrated circuits. In this thesis used as “CMOS image sensor”, which
is a type of image sensor.

CPHA . Clock PHAse. Type of setting of SPI SCKL signal.
CPOL . Clock POLarity. Type of setting of SPI SCKL signal.
CTE . Charge Tranfer Efficiency. Parameter of charge shift register in CCD image

sensor specifying efficiency of charge transfer.
CTU . Czech Technical University. Meaning Czech Technical University in

Prague.
DCMI . Digital CaMera Interface. Parallel interface for digital image sensors.
DMA . Direct Memory Access. Type of direct data transfer between memory

and peripheral (or memory). Data are transferred using DMA peripheral,
which saves processor time.

DTCM . Data Tightly Coupled Memory. Type RAM to witch core has fast access.
Used time-critical data.

FEE . Faculty of ELectrical Engineering. Meaning faculty on Czech Technical
University in Prague.

fps . frames per second
FW . FirmWare. Software for device specific hardware.
GCC . GNU Compiler Collection. Compiler system by the GNU project for

multiple programming languages.
GND . Ground.
GPIO . General Purpose Input Output. Signal pin of integrated circuit that can

work in general manner in input or output mode.
GUI . Graphical User Interface. Graphical interface that allows the user to

interact with software.
HAL . Hardware Abstraction Layer. Layer of software abstracts hardware

parameters for higher level layers.
HDR . High Dynamic Range. In context of CMOS sensor mode increasing sensors

dynamic range.
HS . Horizontal Synchronization. Signal indicating star/end of line.
HW . HardWare. Physical part of device.

63

A Abbreviations .
I2C . Inter-Integrated Circuit. Two-wire synchronous serial communication bus

commonly used in embedded systems.
IDE . Integrated Development Environment. A software application that

provides tools and environment to programmers for software development.
ITCM . Instruction Tightly Coupled Memory. Type RAM to witch core has fast

access. Used time-critical instructions.
JPEG . Joint Photographic Experts Group. Lossy compression used for digital

images.
LED . Light Emitting Diode. Semiconductor part emitting light when powered.
LL . Low Level. Used for STM32 libraries for direct hardware access (no

abstraction in difference to HAL).
MISO . Master Input Slave Output. Name of one of the defined SPI signals. The

signal used for transmitting data from slave to master.
MOSI . Master Output Slave Input. Name of one of the defined SPI signals. The

signal used for transmitting data from master to slave.
OS . Operating System.
PC . Personal Computer.
PCB . Printed Circuit Board.
PHY . PHYsical layer.
PX . PiXel clock. Synchronization signal indicating individual pixel data valid.
RAM . Random Access Memory. Type of memory with direct access allowing

write and read operation.
RGB . Red Green Blue. Additive color model using reg, green and blue colors.
ROI . Region Of Interest. Chosen samples from data indentified for particular

purpose.
RTOS . Real-Time Operating System. Operating system specializated for real-

time applications.
SCL . Serial CLock. Name of one of the defined I2C signals. The clock signal

from master serving for serial synchronization.
SCLK . Serial CLocK. Name of one of the defined SPI signals. The clock signal

from master serving for serial synchronization.
SDA . Serial DAta. Name of one of the defined I2C signals. Signal for data

transfer.
SPI . Serial Peripheral Interface. Four-wire synchronous communication bus

commonly used in embedded systems.
SRAM . Synchronous Random Access Memory. Type of RAM with synchronous

data transfer.
SS . Slave Select. Name of one of the defined SPI signals. Signal use for slave

selection in case of multiple slaves are present on bus.
ULPI . UTMI Low Pin Interface. Standardized 12-pin interface for connection

USB core logic with transceiver.
USB . Universal Serial Bus. Universal bus used mostly for connection computer

peripherals.
USB OTG . USB On The Go. USB standard enabling to switch between device and

host role depending on connection.
UTMI . USB Transceiver Macrocell Interface. Standardized interface for

connection USB core logic with transceiver.
VCP . Virtual COM Port. Virtualized connection behaving as COM/Serial port.
VS . Vertical Synchronization. Signal indicating star/end of frame.

64

Appendix B
Interfacing board documentation

Part Reference Package Quantity
cap 100 nF C2, C3, C4, C6, C7, SMD0805 12
ceramics C11, C12, C13, C14,

C15, C16, C19
cap 10 µF C1, C5, C8, C9 SMD1206 7

tantal C10, C17, C18
res 1 kΩ R2, R4, R5, R6, R7 SMD0805 5
res 10 kΩ R1 SMD0805 1

res 8.06 kΩ ±1% R3 SMD0805 1
USB3320 U1 QFN32 1

LF33CDT-TR CR1 DPAK 1
LF18CDT-TR CR2 DPAK 1

LED PWR LED1, LED1, LED2 SMD1206 5
LED2, LED4

diode SUF4007 D2 MELF 1
USB mini connector J6 SMD 1

DC connector J5 thru-hole 1
3x1 header JP1 thru-hole 2.5 mm 1
8x2 header J1 thru-hole 2.5 mm 1
10x2 header J3 thru-hole 2.5 mm 1
15x2 header J2, J7 thru-hole 2.5 mm 2
17x2 header J4 thru-hole 2.5 mm 1

Table B.1. Bill of material for the final interfacing board

65

B Interfacing board documentation .

Figure B.1. Schematics of the final interfacing board

66

. .

Figure B.2. Assembly drawing for the final interfacing board

67

B Interfacing board documentation .

Figure B.3. Top copper drawing for the final interfacing board

Figure B.4. Bottom copper drawing for the final interfacing board

68

Appendix C
Photo documentation

Figure C.5. Early stages of development - CMOS board connect to Nucleo board with wires

69

C Photo documentation .

Figure C.6. Prototype of interfacing board

Figure C.7. Whole camera with prototype of interfacing board

70

. .

Figure C.8. Final interfacing board

Figure C.9. Whole camera with final interfacing board

71

C Photo documentation .

Figure C.10. 3D model of designed interfacing board PCB

Figure C.11. Finished interfacing board PCB

72

Appendix D
Content of attached CD

Camera . camera FW files
sources . source files of camera FW
documentation . FW code documentation
deploy . final compiled binaries of camera FW

PCapp .PC application files
sources . source files of PC application

windows . for Windows version
linux . for Linux version

deploy .final compiled binaries of PC application
windows . for Windows version
linux . for Linux version

Thesis .Thesis files
sources .source files of thesis in plainTEX format

figs . figures used in thesis
DP Vodsedalek Jakub 2019.pdf . text of thesis in PDF format

Docs .used datasheets and other freely available documentation
InterfaceBoard .KiCad documentation for the interfacing board
readme.txt .description of CD content

73

	TITLE
	Specification
	Declaration
	Acknowledgement
	Abstrakt
	Abstract
	Contents
	Figures
	Tables
	Introduction
	Analysis
	Requirements
	Reliability
	Replaceability
	Expandability
	Complementing PC application

	Image sensors
	CCD image sensors
	CMOS image sensors
	Shutter control

	Controlling the sensor
	Communication
	Image sensor control
	Image data transfer
	Camera and PC communication

	Development tools
	Firmware development
	PC application development

	Camera realization
	Development workflow
	The first stage of development
	The second stage of development
	The final stage of development

	Interfacing board
	Supported Image sensors
	Image sensor MT9V034
	Image sensor MT9M001
	Image sensor MT9T001

	Camera Firmware
	Memory usage
	CMOS sensor representation
	Image representation
	Firmware functionality
	Initialization
	Main loop
	Image capture and sending
	CMOS parameters setting and sending

	Adding support for another CMOS sensor

	USB communication in detail
	Firmware side implementation
	PC application side implementation
	Serial port implementation
	libUSB implementation

	Usage limitations
	Camera communication protocol
	Camera to PC communication
	PC application to camera communication

	Communication speed measurements
	Maximal data rates
	Data rates measurements
	High speed USB real data rate comparison with theory

	PC application
	Application structure
	Bayer filter interpolation

	GUI layout
	Main control area
	Area mode
	Linear mode

	Conclusion
	References
	Abbreviations
	Interfacing board documentation
	Photo documentation
	Content of attached CD

