
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Portable Application-Specific Web Server
for Devices with OPC UA

Bc. Jiří Kalousek, MSc.

Supervisor: Ing. Pavel Burget, Ph.D.
Field of study: Cybernetics and Robotics
May 2019

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420196Personal ID number:Kalousek JiříStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Portable application-specific web server for devices with OPC UA

Master’s thesis title in Czech:

Přenositelný webový server pro specifické aplikace na zařízeních s OPC UA

Guidelines:
In the previous series of safety-critical railway devices developed at Siemens CT Prague a web server and a web client
were used which provided view of system diagnostics. In the next version of devices the web server is replaced by an
OPC UA Server.
1. Study the topic of diagnostics of distributed industrial systems.
2. Explore the origitnal solution of the web server and client providing view on the system diagnostics of the FM platform
(safety-critical embedded platform)
3. Explore the way how diagnostics is solved using OPC UA.
4. Design and implement the connection of the original user interface with the OPC UA. Implement the server and a
corresponding application-specific client.

Bibliography / sources:
[1] A. Braune, S. Hennig, and S. Hegler, ‘Evaluation of OPC UA secure communication in web browser applications’, in
2008 6th IEEE International Conference on Industrial Informatics, Daejeon, South Korea, 2008, pp. 1660–1665.
[2] S. X. Ding, Model-based fault diagnosis techniques: design schemes, algorithms and tools, 2nd ed. New York: Springer,
2013.
[3] S.-H. Leitner andW.Mahnke, ‘OPCUA - Service-oriented Architecture for Industrial Applications’, Softwaretechnik-Trends,
vol. 26, no. 4, 2006.
[4] OPC Foundation, ‘OPC Unified Architecture Specification’, Unified Architecture. [Online].

Name and workplace of master’s thesis supervisor:

Ing. Pavel Burget, Ph.D., Testbed, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2019Date of master’s thesis assignment: 14.02.2019

Assignment valid until:
by the end of summer semester 2019/2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Pavel Burget, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

I would first like to thank the experts
from Siemens who enabled me to work on
a real project which has a further utiliza-
tion. In particular, I am grateful to Ing.
Charles Bajeux for his humor, patience,
and support in Javascript.

I would also like to thank my friend
Alain Perkaz, MSc. for his valuable com-
ments on this work. Our cooperation on
related semestral projects in Sweden gave
me a great lesson.

Next, I want to thank my supervisor,
Ing. Pavel Burget, Ph.D. who took charge
of guiding my thesis and helped me with
organization matters.

Finally, I must express my gratitude
to my parents for providing me with un-
failing support and continuous encourage-
ment throughout my years of study.

Declaration

I hereby declare that I worked on the pre-
sented thesis independently and I cited all
references in accordance with the Method-
ical Instruction no. 1/2009 about ethical
principles for academic thesis writing.

In Prague, 24th May 2019

v

Abstract

Communication plays a vital role in the
nowadays technological world, and infor-
mation poses a considerable value. The
automation in industry is increasingly
widespread. From sensors and actua-
tors up to workstations with enterprise
and diagnostic applications, all devices
have to be connected to the network,
and they have to communicate among
themselves. The interconnection can be
achieved thanks to the standardization
effort which resulted, among others, in
the OPC UA protocol. This thesis is con-
cerned about modern ways of industrial
communication, especially about retriev-
ing diagnostics data. It is aimed to de-
sign an interconnection between an exist-
ing web-based Human-Machine Interface
and an OPC UA server introduced into a
new version of safety-critical railway con-
trollers developed by Siemens Mobility,
s.r.o. in Prague. The result is a soft-
ware solution which can obtain data from
an OPC UA server, perform mapping of
semantics, convert data formats, and pro-
vide the data to the original web-based
interface. The proposed concept can be
applied when interconnection between cus-
tomized user interfaces and unified diag-
nostic servers needs to be achieved.

Keywords: OPC UA standard, OPC
UA client, web server, diagnostics,
industrial communication,
Human-Machine Interface

Supervisor: Ing. Pavel Burget, Ph.D.

Abstrakt

Komunikace hraje v dnešním světě plném
technologií klíčovou roli a informace před-
stavují nemalou hodnotu. Do průmyslo-
vého prostředí je na všech úrovních čím
dál více zaváděna automatizace. Zařízení
od senzorů a akčních členů až po pracovní
stanice poskytující přístup k plánování a
diagnostice systémů musí být připojená k
síti a vzájemně si vyměňovat data. K tomu
významně dopomohla standardizace ko-
munikační platformy v podobě OPC UA
protokolu. Tato práce se zabývá moder-
ními způsoby komunikace v průmyslových
sítích, zejména pak získáváním diagnos-
tických dat. Cílem práce je návrh propo-
jení existujícího webového rozhraní mezi
člověkem a strojem s OPC UA serverem
zavedeným do nové řady bezpečnostně-
kritických kontrolérů pro železniční za-
bezpečovací zařízení vyvíjené v Siemens
Mobility, s.r.o. v Praze. Výsledkem je soft-
warové řešení, které získává data z OPC
UA serveru, provádí mapování odlišných
sémantik, převádí data do požadovaného
formátu a poskytuje je původní webové
aplikaci. Navržený koncept může být vy-
užit při propojování specifických uživatel-
ských rozhraní s unifikovanými diagnos-
tickými servery.

Klíčová slova: OPC UA standard,
OPC UA klient, webový server,
diagnostika, průmyslová komunikace,
rozhraní mezi člověkem a strojem

Překlad názvu: Přenositelný webový
server pro specifické aplikace na
zařízeních s OPC UA

vi

Contents

1 Introduction 1

1.1 Problem Outline 2

1.2 Thesis Structure 3

2 Background 5

2.1 Evolution of Fieldbus Standards . 5

2.2 Architectures of Industrial
Networks . 8

2.3 Railway Signaling Systems 11

2.4 The OPC UA Standard 15

3 Existing OPC UA Tools and
Implementations 25

3.1 OPC UA Testing Servers 25

3.2 OPC UA Web-based Clients . . . 27

3.3 OPC UA Software Libraries and
Tools . 28

4 The Legacy Software
Architecture 33

4.1 User Interface 34

4.2 Metadata . 36

5 Design and Implementation 37

5.1 Motivations and Design Decisions 37

5.2 Requirements Analysis 39

5.3 OPC UA Test Server 41

5.4 Metadata Mapping 42

5.5 Software Design 45

5.6 Implementation 48

5.7 Library fix 49

5.8 Deployment 50

5.9 Validation 51

6 Conclusion 53

A Bibliography 55

B Example of the Web Server
REST API 59

C Example JSON Object for
Metadata Mapping (Lookup Table) 61

D UML Deployment Diagram 63

E UML Class Diagram 65

vii

Figures

2.1 Milestones of fieldbus evolution
[1]. 6

2.2 Example of Fieldbus integration in
PROFInet (Industrial Ethernet) [2]. 7

2.3 Software architecture of a SCADA
system [3]. 8

2.4 Three-tier architecture pattern [4]. 9

2.5 State-of-the-art distributed control
system [3]. 10

2.6 Comparison of centralized and
decentralized signaling control
architecture in railway [5]. 12

2.7 Demonstration of the Siemens
project which employs decentralized
signaling control architecture. The
colored squares represent controllers
of various field elements along the
railroads [6]. 13

2.8 The state-of-the-art reference
architecture for railway signaling
systems designed by Eulynx
initiative[7]. 15

2.9 OPC UA Node Model [8]. 16

2.10 OPC UA Object Model [8]. . . 19

2.11 The data model of a DataVariable
with history [8]. 20

2.12 The OPC UA stack overview
[8]. 22

3.1 Graphical user interface of Prosys
OPC UA Simulation Server. 26

3.2 Graphical user interface of OPC
UA Server Simulator from
Integration Objects. 26

3.3 Architecture of Prosys OPC UA
Web Client [9]. 28

3.4 OPC UA Web Based Client
developed by One-Way
Automation. 28

3.5 Illustration of the Free OPC UA
Modeler tool [10]. 31

4.1 Block diagram of the legacy
architecture. 34

4.2 The user interface of Signal
Control Module (SCM) as an
example of a Web Client Application
that was supposed to use the OWA
for interconnection with a target
OPC UA server. 35

4.3 Meta model of the Client Schema
(structure of XML content). Capital
letters are used in literal names of
XML elements. 36

5.1 Prospective deployment of the
OPC UA Website Adapter. 39

viii

5.2 Example of how the test server is
modeled according to the original
metadata structure. Note that only
HasComponent and Organizes
relationships are displayed. In reality,
there are many other relationships
among the nodes. For example, the
node DiagnosticRoot has a
relationship HasTypeDefinition with
the node CSFolderType. 42

5.3 Mapping diagram showing the
metadata mapping problem. 44

5.4 UML Use Case diagram for the
OWA application. 45

5.5 UML Component Diagram for the
OWA application. 46

5.6 UML Sequence Diagram for the
OWA application. 47

5.7 Visualization of the queue that
stores changed property values in
time. Each set of property values at
a given point in time is referred to as
objects. 49

Tables

2.1 Overview of the Communication
Profile Families according to IEC
61784. [11] [1] 6

2.2 General protocol stack for safe
railway communication [12]. 13

2.3 Attributes of the Base NodeClass.
Each node has these essential
attributes. Derived NodeClasses add
more class specific attributes.[8]. . . 17

2.4 NodeClasses derived from the Base
NodeClass in OPC UA. [8]. 18

2.5 Overview of Service Sets. 21

3.1 Open source OPC UA client and
server implementations [13] available
for commercial use. 29

4.1 Initial objects requested by the
web page. 35

5.1 Functional requirements 40

5.2 Non-functional requirements . . . 41

5.3 Mapping of data types between
OPC UA and the proprietary Client
Schema format. 43

5.4 Validation of functional
requirements 52

ix

Chapter 1

Introduction

From the invention of the steam engine and machine manufacturing at
the end of 18th century, through the rise of mass production in the late
19th century, and the introduction of automation in the 1970s, our civilization
is getting closer to the next revolution, so-called 4th Industrial Revolution. It
combines technologies from many areas and builds upon the 3rd Industrial
Revolution that enabled automation thanks to electronics and the information
technology. It blurs the boundaries between the physical and digital world
in so-called cyber-physical systems. Advancements in areas like robotics,
artificial intelligence, autonomous vehicles, or biotechnology will influence
billions of people around the globe [14]. The trend in the interconnection of
people, data, things, and processes is going towards the future Internet of
Everything (IoE) - "a network of networks where billions or even trillions of
connections create unprecedented opportunities as well as new risks" [15].

In industry, the traditional production systems are getting transformed
into networked manufacturing systems that are networked in the so-called
Industrial Internet of Things (IIoT). Such manufacturing systems are formed
by autonomous robotic machines equipped with many sensors. Manufac-
tured products are composed of smart parts that contain information about
themselves. Thanks to this, nearly every product can be customized [16].
Communication technology and interoperability play a vital role since ev-
ery participant is strongly dependent on the interconnection with others.
Very important is also the process of standardization and unification be-
cause all the interconnected technology needs a common platform for mutual
communication.

1

1. Introduction ...
Various Ethernet-based protocols were supposed to unify the communica-

tion in the first decade of the new century, but the effort was only partially
successful [2]. There are protocols like Profibus, Interbus, CANopen, etc. that
needed a common platform for data exchange. Other protocols like Profinet
or PowerLink have been developed to integrate the existing ones. Finally,
companies have signed cooperation agreements with the OPC Foundation [17]
which resulted in the establishment of the OPC UA protocol. The original
field level communication space was preserved. It was unified in vertical
and horizontal levels from sensors and actuators to enterprise management
systems by the OPC UA protocol. Information can now be shared between
previously incompatible systems, and industrial communication can further
expand [2]. The evolution also implies the importance of service-oriented
architectures which allow easier development and deployment of decentralized
and interoperable systems.

1.1 Problem Outline

In this thesis, the OPC UA protocol is further elaborated regarding a practical
application in diagnostics of a new version of safety-critical railway controllers
developed at Siemens Mobility, s.r.o in Prague. The functional objective of
this work was to create a software adapter that would link up an original
existing web-based user interface with an OPC UA server introduced into a
new version of the controllers. The provisional title for this project was OPC
UA Website Adapter (hereinafter OWA). The software developed within this
thesis is also referred to as the OWA application.

The existing user interface is a frontend application implemented in HTML,
CSS, and Javascript. The web page is written as a single-page application
[18] that is composed of a few functional modules. The modular architecture
is similar to projects designed with Vue.js framework [19] for developing
user interfaces. One of the modules is responsible for communication with a
corresponding web server using HTTP requests and WebSockets. For this
thesis, the interface between a web client and the original web server needed
to be clearly described in preparation for the ensuing software design.

The OPC UA server, which was supposed to reside at the other end of
the OWA, had not been designed yet by the time of working on this thesis.
Thus, an appropriate OPC UA test server had to be prepared. The OWA
interconnecting the frontend application with the OPC UA server had to be
designed in a way so that it could be easily adjusted to a different target
server structure. It also had to be capable of metadata mapping between an

2

....................................... 1.2. Thesis Structure

arbitrary target OPC UA server and the existing user interface connected as
a web client. The mapping had to be designed in a scalable way since the
details about potential target OPC UA servers were not known. The server
part of the OWA had to provide the same API as the original server in the
previous version of the diagnostic system.

1.2 Thesis Structure

This thesis is organized as follows. Chapter 2 elaborates the theoretical
knowledge at a high level. Therefore, the theory is not explained in too much
detail since this chapter should serve as an introduction to the technology
related to the solved problem. It includes industrial communication networks,
platform architectures, railway signaling systems, and details about the
OPC UA protocol. Chapter 3 discusses some of the existing tools and
implementations regarding the OPC UA technology. Chapter 4 analyzes the
current solution which was supposed to be reused. Based on the reviewed
theory and existing solutions, Chapter 5 presents motivations for the intended
work as well as the consequent design and implementation of the developed
software solution. Finally, Chapter 6 concludes the project, summarizes
contributions and mentions future work.

3

4

Chapter 2

Background

2.1 Evolution of Fieldbus Standards

Since the early 1970s, many industrial computer network protocols have been
developed to help with control of distributed industrial automated systems.
Such a computer network interconnects Programmable Logic Controllers
(PLC) with sensors and actuators that do the actual work in manufacturing.
This kind of low-level network is generally referred to as Fieldbus network.
MIL-STD-1553 Fieldbus protocol is regarded as the first real Fieldbus. It has
a serial transmission of control and data information, master-slave structure,
the possibility to cover longer distances, and it has integrated controllers
[1]. The Figure 2.1 shows the main milestones in the evolution of Fieldbus
protocols. Some of them extended already existing ones.

In the mid-1980s, the standardization of Fieldbus protocols started, but
it was taking place mainly on a national level. The international standard-
ization was not successful until the end of the 1990s when several national
standards were accepted as European (EN) standards. These standards
were then grouped in an international standard IEC 61158. Unfortunately,
the interoperability between particular Fieldbus protocols was not ensured
because different protocols were suitable for various applications. The IEC
61158 grouped eight different Fieldbus protocols (Type 1 to Type 8), and
a guideline was provided to show how different parts can be compiled in a
functioning system [20]. Later in 2008, many additional Fieldbus protocols
were added, and all of them were reorganized into Communication Profile
Families (CPF) in a new IEC 61784 standard (Table 2.1).

5

2. Background ...

1-8 Field Area and Control Networks

protocol layers, and no or nearly no application layer definitions. With time, these definitions were
added to make the system applicable to other areas as well. Controller area network (CAN) is a good
example of this evolution: For the originally targeted automotive market, the definition of the low-
est two OSI layers was sufficient. Even today, automotive applications of CAN typically use only these
low-level communication features because they are easy to use and the in-vehicle networks are usually
closed. For applications in industrial automation, however, where extensibility and interoperability is
an important issue, higher-level functions are important. So, when CAN was found to be interesting
also for other application domains, a special application layer was added. The lack of such a layer in the
original definition is the reason why there are many different fieldbus systems (like CANopen, Smart
Distributed System (SDS), and DeviceNet) using CAN as a low-level interface.

From today’s point of view, it can be stated that all fieldbuses that still have some relevance were
developed using the top-down or computer science–driven approach, that is, a proper protocol design
with abstract high-level programming interfaces to facilitate usage and integration in complex systems.
The fieldbuses that followed the bottom-up or electrical engineering–driven approach, that is, that were
understood as low-level computer interface, did not survive due to their inflexibility and incompatibility
with modern software engineering, unless some application layer functions were included in the course
of the evolution.

From the early 1980s on, when automation made a great leap forward with PLCs and more intelli-
gent sensors and actuators, something like a gold rush set in. The increasing number of devices used in
many application areas called for a reduced cabling, and microelectronics had grown mature enough
to support the development of elaborated communication protocols. This was also the birth date for the
fieldbus as an individual term. Different application requirements generated different solutions, and
from today’s point of view, it seems that creating new fieldbus systems was a trendy and fashionable
occupation for many companies in the automation business. Those mostly proprietary concepts never
had a real future, because the number of produced nodes could never justify the development and main-
tenance costs. Figure 1.3 depicts the evolution timeline of fieldbus systems and their environment [27].
The list of examples is of course not comprehensive; only systems that still have some significance have
been selected. Details about the individual solutions are summarized in the tables in the appendix.

As the development of fieldbus systems was a typical technology push activity driven by the device ven-
dors, the users first had to be convinced of the new concepts. Even though the benefits were quite obvious,

Ethernet

WWW

1970 1980 1990

Predecessors

2000 2010

RS485
IEEE488

MIL 1553

FIP
Profibus

EN50170
Interbus EN50254

LON
EIB

Interfaces,
Instrumentation,

PCB buses

Computer science

CAN

Industrial and
process

PROWAY FF

International standards

Hart

Meas. Bus

Batibus
Building and home

automation

Automotive and
avionics

SwiftNet

Microprocessors

M-Bus
CAMAC

GPIB
HP-IL

ARINC

PDV-Bus Bitbus

P-NET
Modbus

ARCNET

C8086 C4004 C8080

ARPANET
Ethernet

MAP MMS

80386 80486 Pentium

WLAN SOAP
ZigBee

UWB

6loWPAN

Multicore

KNX

Modbus/TCP

Wirel. HART

ISA 100.11a

IEC61784-2

CEbus

ISA SP50

DeviceNet

EtherCAT

BacNet

X10

ISO/OSI
Bluetooth

IEC61784

Proprietary and open systems

Internet

LIN
FlexRayTTP

Powerlink

IEC61158

EN50325

PROFINET

I²C

Sercos
ASi

ControlNet
SDS

FIGURE 1.3  Milestones of fieldbus evolution and related fields.

www.engbookspdf.com
Figure 2.1: Milestones of fieldbus evolution [1].

Profile Brand Name

CPF-1 Foundation Fieldbus (H1, HSE, H2)

CPF-2 ControlNet, EtherNet/IP

CPF-3 Profibus-DP, Profibus-PA, PROFInet

CPF-4 P-Net RS-485, P-Net RS-232

CPF-5 WorldFIP (MPS, MCS, SubMMS)

CPF-6 Interbus, Interbus TCP/IP, Interbus subset

CPF-7 Swiftnet transport, Swiftnet full stack

CPF-8 CC-Link

CPF-9 HART

CPF-10 Vnet/IP

CPF-11 TCnet

CPF-12 EtherCat

CPF-13 Ethernet Powerlink

CPF-14 EPA

CPF-15 MODBUS-RTPS, MODBUS TCP

CPF-16 SERCOS

Table 2.1: Overview of the Communication Profile Families according to IEC
61784. [11] [1]

The evolution of Fieldbus protocols continued towards the Industrial Eth-
ernet. Fieldbus protocols from different families were still not compatible,
but with proxy devices, they could achieve some intercommunication. For

6

................................ 2.1. Evolution of Fieldbus Standards

example, PROFInet has integrated several Fieldbus protocols as shown in
Figure 2.2. The term Industrial Ethernet is used for protocols like PROFInet
which use the Ethernet standard at the physical and data link layer. They
usually also use IP protocol at the network layer and TCP/UDP at the
transport layer of the ISO/OSI model.

Ethernet used to be considered inappropriate because of its lack of de-
terminism and real-time capabilities. It was mainly implemented in Local
Area Networks (LANs) at the office level. However, when switched Ethernet
is used, and certain modifications are introduced, it can be utilized in the
real-time domain instead of a traditional Fieldbus network. Modern Fieldbus
protocols are still referred to as Fieldbuses, but they mostly make use of
Ethernet on the lower levels. Therefore, nowadays, the boundary between
LANs and Fieldbus networks is faded.

Figure 2.2: Example of Fieldbus integration in PROFInet (Industrial Ethernet)
[2].

The modern Fieldbus protocols from the category of Industrial Ethernet
use proprietary mechanisms on higher layers to meet specific needs. In this
respect, they differ in a similar way like the old Fieldbus protocols did. Direct
interoperability between industrial Ethernet solutions on lower levels is still
not possible. Communication must be established on higher levels like it is
done in PROFInet, or with the use of middleware layers like OPC [1].

In the future, the evolution of Fieldbus protocols will face the challenges of
moving to the wireless domain. It may require even a complete redefinition
of the lower Fieldbus protocol layers. The evolution also continues in safety-
relevant systems. Various Fieldbus protocols add additional layers that aim
to fulfill demanding safety requirements [1].

7

2. Background ...
2.2 Architectures of Industrial Networks

The primary purpose of networks that are present at all levels of the manu-
facturing hierarchy is Supervisory Control and Data Acquisition (SCADA)
systems. The issue is a software solution which coordinates diagnostics of
machines and processes and allows their control from higher hierarchy levels.
Diagnostics refers to monitoring the health and state of a tool, process, or
system. Diagnostics data is transferred to the management layer and Human-
Machine Interface (HMI). Control data is headed in the opposite direction as
shown in Figure 2.3.

Figure 2.3: Software architecture of a SCADA system [3].

However, monitoring and control happen also at lower levels which interact
with a manufacturing process where sensors and actuators are used. It is clear
that diagnostics and control domains have diverse needs. Diagnostics require
to transfer large amounts of data, and it usually needs to deal with data
compression. Whereas control communicates lower volumes of data in shorter
distances, but response time and determinism are critical. The authors in [21]
divide computer networks in manufacturing into three domains - diagnostics,
control, and safety. The safety domain has even more strict requirements for
reliability and timing which implies that the realization of such a network
can be quite challenging.

8

.............................. 2.2. Architectures of Industrial Networks

The continuing trend is to use the Ethernet protocol at all levels of manu-
facturing and to move towards consolidation of network standards. Here the
traditional Ethernet-based network is advantageous for the collection of diag-
nostics data. However, standard Ethernet (IEEE 802.3) is not deterministic
protocol, and it cannot guarantee network Quality of Service (QoS) that is
crucial for low-level control. It has to be modified in terms of Media Access
Control (MAC), packet encoding, and bandwidth optimization [21]. That is
typical for Ethernet-based Fieldbus protocols.

Regarding the IIoT, there is a good comparison between IoT and IIoT in
[22]. IoT specializes more on the design of new communication standards for
new devices to be connected to the network. On the contrary, IIoT focuses
on integration and interconnection of existing technology used in plants.
"IIoT can be considered more an evolution rather than a revolution."[22] IIoT
is a subset of IoT with specific requirements and applications. It aims at
getting knowledge about the physical system, and it is not related to control
applications at the field level. IIoT applications are usually concerned about
supervision, optimization, and prediction. To do so, they have to collect a lot
of diagnostic data.

29

Today’s IoT

Figure 2-7 | Three-tier architecture pattern

2.3.1	 Three-tier architecture

The three-tier architecture consists of edge,

platform, and enterprise tiers connected by

proximity, access, and service networks. The

networks in this as well as in the other architectures

that follow all typically use a combination of

enabling wireless and/or wired technologies such

as RFID, Bluetooth, Cellular, ZigBee, Z-Wave,

Thread, and Ethernet. As shown in Figure 2-7, the

edge tier uses the proximity network to collect

data from edge nodes (at the device or “thing”

level). This data is forwarded over the access

network to the platform tier, which processes data

from the edge tier for forwarding to the enterprise

tier, as well as processing and relaying control

commands from the enterprise tier back down

to the edge tier (again, over the access network).

The platform tier uses the service network to

communicate with the enterprise tier, which

provides end user interfaces, control commands

and domain-specific applications [13].

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 4Internal

Edge
Gateway

Edge Tier Platform Tier Enterprise Tier

Service Platform

Data
Transform Analytics

Operations

Domain
Applications

Device Management

Control
Flow

Data
Flow

Control
Flow

Data
Flow

Proximity
Network

Access
Network

Service
Network

Data Aggregation

…

Rules & Controls

Figure 2.4: Three-tier architecture pattern [4].

There exist several reference architectures for IIoT as higher level abstrac-
tions that help with the design of different applications. It is usually a
multilayer description of services provided at each level according to a partic-
ular application needs. Some architectures are reviewed in [4] by the IoT 2020
project team in the IEC Market Strategy Board. For example, the Reference
Architecture Model Industrie 4.0 (RAMI 4.0) specializes in industrial man-
ufacturing systems of the next generation. Currently, the widely accepted
architectural pattern has three tiers - edge, platform, and enterprise. These
tiers are connected by proximity, access, and service networks. Figure 2.4

9

2. Background ...
shows the arrangements for this pattern. The edge tier consists of sensors,
actuators, and controllers interconnected by, so-called, proximity networks,
which usually make use of Fieldbus protocols. The edge tier is connected
to the platform tier via access networks and edge gateways. The platform
tier is responsible for data processing and forwarding to the enterprise tier as
well as relaying control commands down to the edge tier. The enterprise tier
provides user interfaces and domain-specific applications.

The present state-of-the-art model of a distributed control system according
to [3] and essentially also according to [4][22] is shown in Figure 2.4 and
2.5. The model in Figure 2.5 loosely follows the Three-tier architecture
pattern. It consists of nodes placed in particular tiers interconnected with
different networks. At the lowest-level, field devices, controllers, and gateways
are interconnected via Fieldbus networks that can be redundant and they
guarantee the deterministic behavior. Diagnostics data is usually transferred
in free time slots and has lower priority than control data. The higher
level uses Ethernet in a redundant configuration which exploits proprietary
protocols that can take care of the network utilization. This level mediates
the communication, handles data transformation, aggregation, etc. between
controllers, gateways, servers, engineering tools, and user interfaces (HMI)
from the enterprise level. Servers and HMIs can also be redundant. Behind
the firewall, more domain applications may reside.

Figure 2.5: State-of-the-art distributed control system [3].

10

...................................2.3. Railway Signaling Systems

The interfaces between servers, engineering tools, user interfaces, and other
nodes are usually implemented using the old OPC standard or the new OPC
UA standard. The latter improves the interoperability among devices from
different vendors and introduces platform independence.

2.3 Railway Signaling Systems

Although the evolution of Fieldbus systems has come a long way, the recent
state-of-the-art network topology in the railway was still based on star for-
mation of field elements and the control was done centrally from controllers
placed indoor (Figure 2.6a). Finally, during the last years, decentralized con-
trol of elements has been introduced (Figure 2.6b). In the new organization,
power and communication buses are separated. The Element Controllers (EC)
that control level crossing systems, railroad switches, axle counters, etc. are
placed outdoor, and delivery of the control data must be ensured in real-time
via a communication bus. Ethernet protocol and optical fiber cables are used
for longer distances. SHDSL1 field rings and standard copper telephone lines
maintain local connections within a station [5]. Siemens launched the first
project which uses this model by the end of 2013. Figure 2.7 demonstrates
the network organization in a real-life scenario. The communication in such
a network is IP-based, but additional protocols must be implemented on top
of the existing ones to assure safety.

Like there are different Fieldbus networks deployed in manufacturing,
there are also different signaling systems used in the railway industry which
are not interoperable. Deployment of different standards usually depends
on countries or technology suppliers. The evolution in railway signaling
standards loosely follows the evolution of Fieldbus protocols. Many different
and incompatible signaling systems have been developed and deployed in
European countries. In 2005, the European Commission and representatives
from the rail industry signed a memorandum on the deployment of the
European Rail Traffic Management System (ERTMS). Since then, the signaling
systems in Europe are getting unified which brings interoperability on the
European level. It should also reduce costs and improve efficiency and safety
[23]. Currently, there exist several European initiatives like SmartRail 4.0 or
Eulynx that strive to standardize the system architecture and interfaces of
railway signaling equipment.

1Single-pair high-speed digital subscriber line is a communication technology standard
for symmetric data transfer over copper telephone lines.

11

2. Background ...

In addition to the modernisation
of the architecture, infrastructure
operators can also expect savings
in investment costs and life cycle
costs (LCC).

The following aspects stand out
particularly in this regard:
■ �Secure communication using

standardised procedures and in-
terfaces

■ �Modularisation of signalling con-
trol systems

■ �Unifying of interfaces to the mod-
ule level

Central signalling con-
trol architecture today

The control devices (for example, a
control component for signals) are
located together with the signalling
control computers mostly inside the
indoor compartment. Each field ele-
ment is connected with a separate
point-to-point connection to the sig-
nalling control indoor compartment.
This connection carries both control
information and power. To this day,

the connection of field elements in
star formation corresponds with the
proven state of the art and has the
following properties:

■ �Limited cable path/signalling dis-
tance between the signalling con-
trol indoor compartment and the
field element (maximum 6.5 km)

■ �Largely proprietary interfaces to
the field elements

■ �Extensive cabling required for
the separate links of the field
elements

Decentralised signal-
ling control architec-
ture tomorrow

Each item of outdoor equipment is
connected via a communications
bus and a power bus. The Element
Controller (EC) placed near the
corresponding field elements will
be flexibly connected to both bus
systems on site. This architecture
enables the control and monitoring
of the various field elements.

 Control
devices

Field element
(e.g. signal)

Interlocking
Computer

Electrical
supply

Operations
Control
System

Diagnosis

Other control devicesOther control devices

Indoor

Outdoor

E
n

e
rg

y
an

d
C

o
m

m
u

n
ic

at
io

n

Simplified representation of the current struc-
ture of an electronic signalling control system
with focus on the integration of the field ele-
ments and field wiring in star formation.

 Power bus

Communication bus (operating and diagnostics)

Element
controller

To additional element
controllers and field
elements

Indoor

Outdoor

Interlocking
Computer

Electrical
supply

Operations
Control
System

Diagnosis

Field element
(e.g. signal)

Our concept for an integrated, decentralised
signalling control architecture by Sinet and
Sigrid

Level crossing system
Signal

Redundant fibre optic backbone

Power bus

Axle counter

In the future, signalling control architectures can
be designed to be significantly more flexible and
cost-effective. This is made possible by the use of
new technologies in the area of communications
and power supply.

(a) : The old structure of an electronic signaling control system (star
formation).

In addition to the modernisation
of the architecture, infrastructure
operators can also expect savings
in investment costs and life cycle
costs (LCC).

The following aspects stand out
particularly in this regard:
■ �Secure communication using

standardised procedures and in-
terfaces

■ �Modularisation of signalling con-
trol systems

■ �Unifying of interfaces to the mod-
ule level

Central signalling con-
trol architecture today

The control devices (for example, a
control component for signals) are
located together with the signalling
control computers mostly inside the
indoor compartment. Each field ele-
ment is connected with a separate
point-to-point connection to the sig-
nalling control indoor compartment.
This connection carries both control
information and power. To this day,

the connection of field elements in
star formation corresponds with the
proven state of the art and has the
following properties:

■ �Limited cable path/signalling dis-
tance between the signalling con-
trol indoor compartment and the
field element (maximum 6.5 km)

■ �Largely proprietary interfaces to
the field elements

■ �Extensive cabling required for
the separate links of the field
elements

Decentralised signal-
ling control architec-
ture tomorrow

Each item of outdoor equipment is
connected via a communications
bus and a power bus. The Element
Controller (EC) placed near the
corresponding field elements will
be flexibly connected to both bus
systems on site. This architecture
enables the control and monitoring
of the various field elements.

 Control
devices

Field element
(e.g. signal)

Interlocking
Computer

Electrical
supply

Operations
Control
System

Diagnosis

Other control devicesOther control devices

Indoor

Outdoor

E
n

e
rg

y
an

d
C

o
m

m
u

n
ic

at
io

n

Simplified representation of the current struc-
ture of an electronic signalling control system
with focus on the integration of the field ele-
ments and field wiring in star formation.

 Power bus

Communication bus (operating and diagnostics)

Element
controller

To additional element
controllers and field
elements

Indoor

Outdoor

Interlocking
Computer

Electrical
supply

Operations
Control
System

Diagnosis

Field element
(e.g. signal)

Our concept for an integrated, decentralised
signalling control architecture by Sinet and
Sigrid

Level crossing system
Signal

Redundant fibre optic backbone

Power bus

Axle counter

In the future, signalling control architectures can
be designed to be significantly more flexible and
cost-effective. This is made possible by the use of
new technologies in the area of communications
and power supply.

(b) : The new structure of an integrated, decentralized signaling control
architecture from Siemens.

Figure 2.6: Comparison of centralized and decentralized signaling control archi-
tecture in railway [5].

Generally, the communication protocol stack for railway applications can
be designed as proposed by SmartRail 4.0 collaboration. It is shown in
Table 2.2. It follows existing international standards including those related
to safety-critical systems.

12

...................................2.3. Railway Signaling Systems

Scope of piloting project
• Set-up of the extended network capability of
 interlocking elements
• Decentralized element controllers, e.g. for signals
• Removal of the physical interconnections between the
 indoor and outdoor equipment of interlockings and
 thus removal of conventional control distances
• Provision of highly available, real-time-capable
 communication architectures (Ethernet basis;
 IP-based communications) for fail-safe applications in
 decentralized interlocking architectures
• Network-capable control, monitoring and diagnostics
 of the system
• Demonstration and approval of the connection of
 safety-related applications via conventional network
 infrastructures (telecommunication networks)
• Demonstration of the migratability of the installed
 interlocking technology and its combinability with new
 architectures (investment security)

The information in this document contains general
descriptions of the technical options available. The
required features should therefore be specified in each
individual case at the time of closing the contract. For
the secure operation of Siemens products and solutions,
it is necessary to take suitable preventive action and
integrate each component into a holistic, state-of-the-
art security concept. Third-party products that may be in
use should also be considered.

Trackguard® is a registered
trademark of Siemens AG.

Siemens AG
Mobility Division
Nonnendammallee 101
13629 Berlin
Germany

www.siemens.com

© Siemens AG 2014

Printed in Germany
312256 PA 08142.0
Dispo 01000
Order No. A19100-V010-B125-X-7600 /
HTS: 9089/314

Project timescale
• September 2012
 Order award by German Railways during the
 InnoTrans fair
• November 2012
 Presentation of the technical solution
• July 2013
 Functional demonstration on site (Annaberg-Buchholz
 Süd electronic interlocking)
• November 2013
 Approval and commissioning of the IP network and
 decentralized element controllers

Project scope
• Decentralization of element controllers
• Set-up of a fiber-optic cable communication backbone
• Implementation of network field rings in the outdoor
 equipment

Communication architecture in the Annaberg-Buchholz Süd electronic interlocking project

Redundant fiber-optic cable backbone

Field ring 2

Field ring 1

Decentralized element controllers and points of service

Figure 2.7: Demonstration of the Siemens project which employs decentralized
signaling control architecture. The colored squares represent controllers of various
field elements along the railroads [6].

Layer Description

Transfer Contract This layer creates transfer contracts which are data and
protocol specifications. An application can define which
protocols have to be used.

Transfer This layer realizes a simple message-based protocol. It
supports redundant application instances - message authen-
tication code and addressing are supported.

Safety and Retrans-
mission

This layer shall ensure a correct and safe end to end data
exchange under SIL classification. Examples are RaSTA,
EuroRadio, or RBC-RBC. It can be disabled in some cases.

Redundancy This layer maintains sending data over redundant network
interfaces and subsequent networks (e.g., Ethernet and GSM-
R). It can be disabled in some cases.

Security The communication has to be protected against unautho-
rized access (e.g., TLS).

Transport Data transfer between endpoints is maintained by standard
UDP/TCP protocol.

Network Routing and addressing are maintained by the standard IP
protocol.

Physical/Data Link Physical and logical communication are maintained by pro-
tocols like Ethernet or GSM-R.

Table 2.2: General protocol stack for safe railway communication [12].

13

2. Background ...
Like the Fieldbus protocols that are referred to as Industrial Ethernet

protocols, the railway industry has its protocol based on Ethernet - Rail
Safe Transport Application (RaSTA). The issue is a safety-critical network
protocol which is an important step in the transformation of railway interlock-
ing systems from proprietary blocks towards standardized and modularized
systems. Its main goal is to ensure a fast and reliable connection between
two communication endpoints in the safety-critical network. It is compliant
with requirements for railway applications according to EN 50159 standard.
RaSTA comprises of the Safety and Retransmission Layer and the Redun-
dancy Layer. The Safety and Tetransmission Layer takes care of requesting
retransmission for lost or altered packets. It also assures authenticity and
integrity. The Redundancy Layer handles the correct sequencing of messages
that are sent redundantly over distinct channels. It assures timeliness and
availability. RaSTA uses 8 B checksum called Safety Code to ensure integrity.
Data header and payload are hashed taking into account an initialization
vector (so-called Network Key). The resulting Safety Code can be created
only by verified entities within the network [24].

The endeavor to unify the railway signaling world is empowered, among
others, by Eulynx. It is a European initiative linking interlocking subsystems
that consists of 12 members - infrastructure managers of European countries.
This initiative works on standardization of the technical architecture and
the design methods in railway signaling. The job is divided into several
Cluster Projects that focus on certain problems and domains. For example,
the Modelling and Testing Cluster form rules for the system engineering
process which has to be applied by each Cluster Project. Overall, the project
management standardization is an important part of Eulynx activities. The
Eulynx Cluster Projects are Reference Architecture, Assurance, Modeling
and Testing, Data Preparation, Interface Interlocking - Radio Block Center,
Interface Interlocking - Control System, Interface Interlocking - Train Detec-
tion System, Interface Interlocking - Light Signal, and Interface Interlocking -
Level Crossing [7].

The Reference Architecture project forms a concept that is based on modern
communication architectures and system design processes used in automa-
tion and telecommunication industry. It exploits IP-based communication
using safe and secured closed and open networks [7]. Figure 2.8 visually
demonstrates the architecture.

14

.................................... 2.4. The OPC UA Standard

European Initiative
Linking Interlocking Subsystems

Example:
Reference Architecture (2/3)

10 EULYNX

Version 2.9 – 21.10.2015

SCI-RBC

SCI-CC
SCI-ILS

SCI-CC
SCI-ILS

SCI-TSS

SCI-TSS

10

Direct
command
over SCI-CC

Legend:
SCI: Standard Communication Interface;
ILS: Interlocking System;
RBC: Radio Block Centre;
LX: Level Crossing;
LS: Light Signal;
TDS: Train Detection System
PM: Point Machine;
CC: Command and Control;
IO: Generic I/O Module;
LEU: Lineside Electronic Unit;
I/O: Input/ Output
TSS: Trackworker Safety System

PM LS

Train command & control System

SCI-CC

Adjacent
Electr.
Interlocking

RBC
Core system

Equipment
diagnostics &
Event logger

LEU

Diagnostic System

Electronic Interlocking

Juridical
Recorder

Closed Network EN 50159 (redundant)

Communication & Security

Time
stamp

I/O controller

Balise

Adjacent
Relay
Interlocking

Control
adapter

P
ro

pr
ie

ta
ry

in

te
rfa

ce

SCI-CC
SCI-ILS

Interlocking
Logic and
Safety Module

C
om

m
un

ic
at

io
n

&
 S

ec
ur

ity

Diagnosis Network

Controller
(standardised in EULYNX)

Field elements

(not standardised in EULYNX)

C
om

m
un

ic
at

io
n

&
 S

ec
ur

ity

Communication &
Security

Communication &
Security

Communication & Security

O
PC

-U
A

O
PC

-U
A

SCI-(X)

Interlocking Diagnostics
& Technician’s Controls

Communication &
Security

OPC-UA OPC-UA

Remote Maintenance
control

Trackworker
Safety
System

Communication &
Security

Power Supply

SCI-LX SCI-PM SCI-LS SCI-TDS SCI-LEU SCI-IO

OPC-UA
Open Network EN 50159 (redundant)

SCI-CC

Power
supply

KISA Encryption Box

Train
Detection
System

Communication &
Security

Level
Crossing
System

Communication &
Security

Trackworker
Safety
System

Communication &
Security

Figure 2.8: The state-of-the-art reference architecture for railway signaling
systems designed by Eulynx initiative[7].

2.4 The OPC UA Standard

Before the specification of the OPC Unified Architecture (hereinafter OPC
UA) was created, the industrial automation had been mostly using Microsoft’s
Component Object Model standard to ensure communication between par-
ticular object-oriented software components. The distributed version of this
standard brought the system of Distributed Computing Environment and
Remote Procedure Calls (RPC). Several automation vendors formed a new
standard for data access called Object Linking and Embedding (OLE) for
Process Control (OPC). Later, the OPC Foundation was established and
defined standards for open connectivity of industrial automation devices [17]
- specifications for Data Access, Alarm and Events, Historical Data Access,
etc.

The OPC UA standard is the next step in the evolution of industrial
standards. It is based on the original OPC, but it is platform independent,
service-oriented, and it has improved security and scalability [17]. OPC UA
was originally focused on industry, but it has appeared to be an appropriate
solution for interoperability and data exchange in other fields as well [2].

15

2. Background ...
For information exchange, two approaches can be used - client-server and

publisher-subscriber. The communication is technology independent (manu-
facturer, operating system, programming language) and data can be shared
among various devices from small sensors, over PLCs, to cloud servers and any
other connected devices. Moreover, OPC UA together with Time-Sensitive
Networking (TSN) standard enables real-time Machine-To-Machine (M2M)
communication, and it can even be used in safety-critical applications [2].

The OPC UA specification [8] consists of several parts (Part 1 to Part 13)
which describe the information model structure, semantics, and interactions
between particular applications and endpoints. Each OPC UA server has
its address space constituted by various nodes that can be accessed from a
client or a different server. Data stored in the structure can have different
formats defined either by OPC, other standard organizations, or arbitrary
vendors. The format description is called metadata. It needs to be accessed
by clients in advance to know which data can be requested and what is its
correct representation. Almost any node can have a reference to any other
node anywhere in the address space or in the network. It means that even
nodes from different servers in different networks can be interrelated.

Data Model

Every piece of information is a node with attributes (fundamental characteris-
tics) that has references to other nodes. Only attributes can keep data values.
Nodes can have the meaning of classes or data types as well as particular
instances like objects, variables, methods, events, relationships, etc. The
Figure 2.9 shows a node element. Every node has an attribute NodeClass
which classifies nodes into respective classes. These classes define additional
attributes and references according to a certain purpose of a corresponding
node.

OPC Unified Architecture, Part 3 5 Release 1.03

normative Annex C defines the OPC Binary Types Description System as a format to specify
data type structures and the normative Annex D defines a graphical notation for OPC UA data.

4.2 Object Model

The primary objective of the OPC UA AddressSpace is to provide a standard way for Servers
to represent Objects to Clients. The OPC UA Object Model has been designed to meet this
objective. It defines Objects in terms of Variables and Methods. It also allows relationships to
other Objects to be expressed. Figure 2 illustrates the model.

Object

Variables

Methods
_____()
_____()
_____()

Event
Notifications

Data change
Notifications

References to
other Objects

Invoke

Read/Write

Figure 2 – OPC UA Object Model

The elements of this model are represented in the AddressSpace as Nodes. Each Node is
assigned to a NodeClass and each NodeClass represents a different element of the Object
Model. Clause 5 defines the NodeClasses used to represent this model.

4.3 Node Model

4.3.1 General

The set of Objects and related information that the OPC UA Server makes available to Clients
is referred to as its AddressSpace. The model for Objects is defined by the OPC UA Object
Model (see 4.2).

Objects and their components are represented in the AddressSpace as a set of Nodes
described by Attributes and interconnected by References. Figure 3 illustrates the model of a
Node and the remainder of 4.3 discusses the details of the Node Model.

Node

Node
 References

 Attributes

 _____ References define relationships

to other nodes

Attributes describe a node

Figure 3 – AddressSpace Node Model

4.3.2 NodeClasses

NodeClasses are defined in terms of the Attributes and References that shall be instantiated
(given values) when a Node is defined in the AddressSpace. Attributes are discussed in 4.3.3
and References in 4.3.4.

Figure 2.9: OPC UA Node Model [8].

16

.................................... 2.4. The OPC UA Standard

Attribute Description

NodeId Unique identifier of a node. It must remain the same after
rebooting of a server.

NodeClass Identifies the NodeClass of a node.

BrowseName This attribute consists of a namespace id and non-localized
human-readable name of a node which should be used to
browse a server in software (e.g., to get a specific child). It
should not be displayed to a user.

DisplayName This attribute should be used by clients to display the actual
name of a node. It is localized which means the language of
the name can be found out.

Description Optional attribute explaining the meaning of a node.

WriteMask This attribute states which attributes can be accessed by a
client for write operations.

UserWriteMask The same as WriteMask but it takes user access right into
account.

Table 2.3: Attributes of the Base NodeClass. Each node has these essential
attributes. Derived NodeClasses add more class specific attributes.[8].

The top parent NodeClass is called Base NodeClass. This class defines the
basic attributes that each node must have (Table 2.3). It is the parent class
for all other derived NodeClasses. Table 2.4 gives an overview of what kinds
of nodes can be found in the OPC UA node structure, so-called AddressSpace.

Interconnected nodes physically constitute the AddressSpace and form the
tree topology. All data is stored in leaves of this tree. It is in the attribute
Value of nodes that are classified in Variable NodeClass. The difference
between Properties and DataVariables is described in Table 2.4. OPC UA
defines several built-in data types. Detailed explanation can be found in Part
6 of the OPC UA specification [8]. Additional data types can be defined as
DataType NodeClass nodes with the use of built-in data types.

Object Model

The data structure is logically modeled by objects with variables and meth-
ods. Objects are nodes of Object NodeClass that behave like instances of
object types (nodes of ObjectType NodeClass). An instance is linked with its
definition by HasTypeDefinition Reference. The same states for a variable as
an instance and its type. Variables are linked with objects using HasProp-
erty Reference in case of Property and HasComponent Reference in case of

17

2. Background ...
NodeClass Description

ReferenceType A node of this class defines a type of reference (e.g., HasProp-
erty, HasComponent). A reference is then an instance of a
specific ReferenceType. A reference is a part of a node and
has no NodeClass.

View A node of this class acts as the root for a group of nodes.
The entire address space can be divided into specific groups
(views).

Object Class of a node which is an object - a real-world object
or system component. Objects have properties, variables,
methods, type definitions, etc. All of these are linked with
an object by references.

ObjectType This class defines how a subsequent instance (object) should
look like - attributes, references, properties. Objects are
always based on ObjectTypes.

Variable There are two kinds of variables - Properties and DataVari-
ables. Properties characterize nodes. DataVariables form
the content of objects. DataVariables can have Properties,
but Properties cannot have any DataVariables nor Proper-
ties.

VariableType Nodes of this class provide type definitions for variables.

Method Class of nodes that define callable functions.

DataType Nodes of this class describe the syntax of a variable value.

Table 2.4: NodeClasses derived from the Base NodeClass in OPC UA. [8].

DataVariable. OPC UA defines a lot of various object types, variable types,
and reference types. Custom types can also be defined if needed. Figure 2.10
visually represents an object in the OPC UA object model.

Methods are nodes defined by Method NodeClass which specify callable
functions. Methods can have properties like InputArguments and OutputAr-
guments. They get invoked using Call Service.

When a new empty OPC UA server is started, it is already populated
with standardized nodes according to the OPC UA specification [8](details
in Part 5 - Information Model). These nodes should be used by any custom
architecture as much as it is possible and applicable.

18

.................................... 2.4. The OPC UA Standard

OPC Unified Architecture, Part 3 5 Release 1.03

normative Annex C defines the OPC Binary Types Description System as a format to specify
data type structures and the normative Annex D defines a graphical notation for OPC UA data.

4.2 Object Model

The primary objective of the OPC UA AddressSpace is to provide a standard way for Servers
to represent Objects to Clients. The OPC UA Object Model has been designed to meet this
objective. It defines Objects in terms of Variables and Methods. It also allows relationships to
other Objects to be expressed. Figure 2 illustrates the model.

Object

Variables

Methods
_____()
_____()
_____()

Event
Notifications

Data change
Notifications

References to
other Objects

Invoke

Read/Write

Figure 2 – OPC UA Object Model

The elements of this model are represented in the AddressSpace as Nodes. Each Node is
assigned to a NodeClass and each NodeClass represents a different element of the Object
Model. Clause 5 defines the NodeClasses used to represent this model.

4.3 Node Model

4.3.1 General

The set of Objects and related information that the OPC UA Server makes available to Clients
is referred to as its AddressSpace. The model for Objects is defined by the OPC UA Object
Model (see 4.2).

Objects and their components are represented in the AddressSpace as a set of Nodes
described by Attributes and interconnected by References. Figure 3 illustrates the model of a
Node and the remainder of 4.3 discusses the details of the Node Model.

Node

Node
 References

 Attributes

 _____ References define relationships

to other nodes

Attributes describe a node

Figure 3 – AddressSpace Node Model

4.3.2 NodeClasses

NodeClasses are defined in terms of the Attributes and References that shall be instantiated
(given values) when a Node is defined in the AddressSpace. Attributes are discussed in 4.3.3
and References in 4.3.4.

Figure 2.10: OPC UA Object Model [8].

Historical Data Access

For the access of historical data, there are special nodes (HistoricalNode, His-
toricalDataNode, and HistoricalEventNode) where a client can request data
from the past. Each variable has the attribute Historizing which indicates
whether the server is collecting data for the history. A variable which history
is backed up has an Annotation property and a reference HasHistoricalCon-
figuration to its HistoricalAccessConfiguration object. Figure 2.11 shows an
example of how the history model can look like for a variable.

The Annotation property is metadata related to an item at a given instance
in time. The actual data values are called BoundingValues and they are
associated with a starting and ending time. They can be stored in a database
like SQLite. The OPC UA also allows to set up AggregateConfiguration
objects and AggregateFunctions. These are used to aggregate data values
and reduce the data load. It can be, for example, an average temperature
aggregated from several sensors. Another functionality allows to set up
data filtering, monitoring of changes, modification of history, etc. The
HistoricalAccessConfiguration object contains general information about the
historical data including the functionality that was used.

19

2. Background ...

Release 1.03 10 OPC Unified Architecture, Part 11

 HistoricalDataNodes Address Space Model

HistoricalDataNodes are always a part of other Nodes in the AddressSpace. They are never
defined by themselves. A simple example of a container for HistoricalDataNodes would be a
“Folder Object”.

Figure 3 illustrates the basic AddressSpace Model of a DataVariable that includes History.

Boiler_01 (Object)

Pressure (Variable)

Attribute
Value
DataType
AccessLevel
Historizing

Instance

Type
Definitons

Definition

AggregateConfigurationType

MaxTimeInterval

MinTimeInterval

ExceptionDeviation

ExceptionDeviationFormat

Annotations

HA Configuration

HasHistorical
Configuration

HistoricalDataConfigurationType

AggregateConfiguration

Figure 3 – Historical Variable with Historical Data Configuration and Annotations

Each HistoricalDataNode with history shall have the Historizing Attribute (see Part 3) defined
and may reference a HistoricalAccessConfiguration Object. In the case where the
HistoricalDataNode is itself a Property then the HistoricalDataNode inherits the values from
the Parent of the Property.

Not every Variable in the AddressSpace might contain history data. To see if history data is
available, a Client will look for the HistoryRead/Write states in the AccessLevel Attribute (see
Part 3 for details on use of this Attribute).

Figure 3 only shows a subset of Attributes and Properties. Other Attributes that are defined
for Variables in Part 3, may also be available.

 Attributes

This part lists the Attributes of Variables that have particular importance for historical data.
They are specified in detail in Part 3.

 AccessLevel

 Historizing

5.3 HistoricalEventNodes

 General

The Historical Event model defines additional Properties. These descriptions also include
required use cases for HistoricalEventNodes.

Figure 2.11: The data model of a DataVariable with history [8].

Services, Communication, and Security

OPC UA provides a Service-Oriented Architecture (SOA) for industrial ap-
plications [25]. It means that a complex application is composed of a set of
independent components that offer functionalities as services. These services
are accessible for other software components via a standard interface. Com-
munication between particular applications in OPC UA is based on services
accessible in a unified address space. This solution is advantageous because
of its platform independence, universality and scalability.

The OPC UA specification defines a communication stack for either a
client or a server implementation. Such implementation accesses the stack
via the OPC UA API. It is not standardized, and therefore it may vary for
different programming languages or operating systems. The OPC Foundation
only standardized the way of communication. A client/server creates request
messages based on the service definitions. A server then realizes a service
and returns an appropriate response message. There is a technology mapping
provided by OPC UA which says what mechanisms should be used on different
communication layers. See the Figure 2.12 for the overview. The Part 6
of the specification [8] defines two technology mappings - UA Native and

20

.................................... 2.4. The OPC UA Standard

UA Web Services. The first one supports only binary encoding, integrates
TLS-like security mechanisms and it typically runs directly on TCP/IP.
The second mapping allows both XML and binary encoding. When XML
is used, the transmission speed is slower, but generic clients and various
data interpretations are possible using SOAP2 messages. The used network
protocol is SOAP/HTTP(S). Other protocols can also be used but at the
expense of interoperability [25].

The services in OPC UA are grouped into Service Sets. Table 2.5 shows
an overview of these Service Sets. Brief descriptions are provided in the
table no further elaboration is necessary for the purpose of this work. The
important point is that services from these sets are used by client/server
implementations.

Service Set Description

Discovery Services used to discover endpoints implemented by servers.

SecureChannel Services that guarantee secure communication.

Session Services for the connection and user access management.

NodeManagement Services which manage to add and delete nodes.

View Services that allow browsing the address space according to
different views.

Query Services for querying the address space.

Attribute Services that enable reading and writing attributes.

Method Services for calling methods.

MonitoredItem Services that manage returning data for a subscription.

Subscription Services used to manage subscriptions and data receptions.

Table 2.5: Overview of Service Sets.

Whenever a new software system is planned to be developed, a security
assessment has to be performed and taken into account at the design stage.
Part 2 of the OPC UA specification serves as a guideline for software designers
and developers to ensure secure communication in developed systems. Since
OPC UA interconnects the plant floor networks with higher level enterprise
networks and standard HTTP ports are used in SOA implementations, the
system can get vulnerable to some potential attacks from outside. An attacker
can potentially get across several proxy servers. The following goals should
be addressed.

2Simple Object Access Protocol is based on message exchanges in XML format mainly
via HTTP. It is a base layer for the communication between web services.

21

2. Background ...
. Authentication - Clients, servers, and users have to prove their identities

(digital certificates or user credentials).. Authorization - Access permissions can only be given to entities that
truly need them. Actions they can perform should be limited.. Confidentiality - Data encryption algorithms have to be used.. Integrity - Receivers must get the same information that was sent.. Auditability - All actions happening in a system must be recorded
(tracking user activity).. Availability - Systems have to be prevented from being overwhelmed.Release 1.03 5 OPC Unified Architecture, Part 6

Serialization Layer

UA Application

API

Secure Channel Layer

Encoded Message

Transport Layer

Secured Message

Development Platforms
.NET 3.0

ANSI C
JRE 5.0

Data Encodings
UA Binary
UA XML

Security Protocols
WS Secure Conversation
UA Secure Conversation

Transport Protocols
UA TCP
SOAP/HTTP

Security Transforms
Signing

Encryption

WSDL and XML Schema
UA Binary Schema

Client
Server

Mappings

Stack

Wire Protocol

Figure 1 – The OPC UA Stack Overview

The layers described in this specification do not correspond to layers in the OSI 7 layer model
[X200]. Each OPC UA StackProfile should be treated as a single Layer 7 (Application) protocol
that is built on an existing Layer 5, 6 or 7 protocol such as TCP/IP, TLS or HTTP.The
SecureChannel layer is always present even if the SecurityMode is None. In this situation, no
security is applied but the SecurityProtocol implementation shall maintain a logical channel with
a unique identifier. Users and administrators are expected to understand that a SecureChannel
with SecurityMode set to None cannot be trusted unless the Application is operating on a
physically secure network or a low level protocol such as IPSec is being used.

5 Data encoding

5.1 General

 Overview

This standard defines two data encodings: OPC UA Binary and OPC UA XML. It describes how
to construct Messages using each of these encodings.

 Built-in Types

All OPC UA DataEncodings are based on rules that are defined for a standard set of built -in
types. These built-in types are then used to construct structures, arrays and Messages. The
built-in types are described in Table 1.

Figure 2.12: The OPC UA stack overview [8].

The security mechanism proposed by OPC UA is based on Public Key
Infrastructure (PKI). A secure connection is established using Asymmetric
Cryptography that uses a private and public key (standard X.509). Each
application has a list of trusted public keys that represent trusted applications.
Those keys are used to validate that the signature on a received message was
generated by a corresponding private key. The certificates (keys) are issued
by a Certificate Authority, or self-signed certificates can be used.

22

.................................... 2.4. The OPC UA Standard

Another proposed option to secure the communication is to use WS Secure
Conversation3 which reduces the overhead of key establishment. This method
uses Symmetric Cryptography and it is also recommended for OPC UA Web
Services in [27] where authors elaborate the speed of encryption/decryption
in a web browser.

3Web Services Secure Conversation enables the establishment of a secured session for
long-running message exchanges. It uses a symmetric cryptographic algorithm which has
better performance than the asymmetric one.[26]

23

24

Chapter 3

Existing OPC UA Tools and
Implementations

This chapter reviews some of the existing tools and implementations that
were taken into account for the development of the OWA. They were tried
out, and some of them were also used during the development. Since OPC
UA is nothing new, a lot of effort has already been given to the development
of various applications.

3.1 OPC UA Testing Servers

Prosys OPC Ltd. company offers several OPC UA products [28]. There are
applications like Modbus Server, Historian, Gateway, or developer tools like
SDK for Java, SDK for Delphi, C/C++ SDKs, .NET SDK, and Modeler.
Apart from these commercial products, this company also offers free test tools.
More specifically, the tools are Prosys OPC UA Simulation Server, Prosys
OPC UA Client, Prosys OPC UA Client for Android, and Prosys OPC UA
Client Pro Beta.

The Prosys OPC UA Simulation Server tool was tried out. The tool is
written in Java and has an intuitive user interface (Figure 3.1). When the tool
is started on a computer, it automatically starts an OPC UA server which can
be accessed via UA TCP or HTTPS. In the address space, there is a folder
called Simulation in which a user can create new variables. Data values for

25

3. Existing OPC UA Tools and Implementations...........................
these variables are simulated by the server according to a user configuration.
Unfortunately, that is all a user can do. It is not possible to create a custom
structure of nodes with user-defined properties and relationships [29].

Figure 3.1: Graphical user interface of Prosys OPC UA Simulation Server.

Figure 3.2: Graphical user interface of OPC UA Server Simulator from Integra-
tion Objects.

Another promising tool which was found is from Integration Objects
companyv[30]. This company focuses on various OPC products like servers,
clients, toolkits, and free tools. They provide OPC UA Server Simulator for
free. It is a lightweight application that starts an OPC UA server and builds
its address space from simple CSV files. These files define variables, their

26

..................................3.2. OPC UA Web-based Clients

types, values, and historical values. Access to the server can be observed from
a graphical user interface (Figure 3.2). Unfortunately, like in the previous
example, only variables can be defined and no other nodes in the address
space.

Other companies like Unified Automation GmbH, Microsoft, or MathWorks
also provide some OPC UA tools. Nevertheless, they are mostly not free, or
their functionality is minimal.

3.2 OPC UA Web-based Clients

Besides the simulation server, Prosys OPC Ltd. company also offers OPC UA
Web Client for accessing an OPC UA server and its data. The architecture of
this tool can be divided into three layers as shown in Figure 3.3. The user
interface in a web browser is a single-page application that uses AngularJS
Javascript framework. It is designed in the form of a general browser of
the tree structure on an OPC UA server. There is a service layer based on
Node.js API and OPC UA Java SDK. The user interface communicates with
the service layer via a REST API. REST stands for Representational State
Transfer and it is an interface architecture style which is data-oriented and
allows to create, read, edit, and delete data on a server using simple HTTP
requests (GET, PUT, POST, DELETE). The service layer implements OPC
UA client functionality which manages connections with OPC UA servers.
[9].

One-Way Automation company has developed OPC UA Web-Based Client
(Figure 3.4). It is a cross-platform web application that allows discovering
OPC UA servers using Local Discovery Server (LDS), connect to them, browse
their address space, monitor data values, and subscribe for data changes.
This tool is developed in C++ using OPC UA C++ SDK from One-Way
Automation and some third-party C++ libraries. The demo version can be
tried out online [31], but otherwise, this product has to be purchased. The
architecture model is similar to the previous example. Again, there is a web
server that ensures the interconnection between the website and OPC UA
servers. The company also mentions on its website that other future products
are under consideration. One of them is called REST adapter for OPC UA
Servers. It would allow having a specific user interface connected via a REST
API to a middleware that would be responsible for further connection to
OPC UA servers.

27

3. Existing OPC UA Tools and Implementations...........................

Figure 3.3: Architecture of Prosys OPC UA Web Client [9].

Figure 3.4: OPC UA Web Based Client developed by One-Way Automation.

3.3 OPC UA Software Libraries and Tools

There exist several software development kits (SDKs) for rapid development
of OPC UA client and server applications. They are provided as software
components to be reused in component-based software engineering (CBSE)
process. Some of them are commercial, and some are open source. The
commercial ones, which are called commercial off-the-shelf (COTS) compo-
nents, are offered by companies like Integration Objects, Unified Automation,

28

............................. 3.3. OPC UA Software Libraries and Tools

National Instruments, or MathWorks. The commercial software components
usually come with additional documentation and professional support.

Open source OPC UA implementations for both client and server in var-
ious programming languages are listed in Table 3.1. They usually differ in
the implemented functionality, ease of use, and quality of documentation.
Unfortunately, based on the research that was carried out, the majority of
these software components are weakly documented, and they do not provide
all features as proposed in the OPC UA specification. For example, most of
them do not support XML protocol in terms of HTTP/SOAP.

Name Language License

open62541 C MPL-2.0

UA.NET Standard C# GPL

node-opcua JavaScript MIT

FreeOpcUa C++, Python LGPL

ASNeG C++ Apache

Eclipse Milo Java Eclipse Public License

S2OPC C Apache

opcua Rust MPL-2.0

Table 3.1: Open source OPC UA client and server implementations [13] available
for commercial use.

Regarding the ease of use and implemented functionality, the FreeOpcUa
project [10] seemed to be promising. This project consists of a few independent
parts (libraries). The library freeopcua is written in C++ whereas python-
opcua and opcua-asyncio are written in Python. The latter one is based on
asyncio library and brings support for asynchronous behavior. Asynchronous
programming makes code simpler, safer (lower chance for bugs), and has
potentially better performance. Other parts within this project implement a
client graphic user interface or a modeler tool.

It is worth mentioning that the Free OPC UA Modeler tool (Figure 3.5) of
the FreeOpcUa project allows creating specific node structures that can be
exported to an XML file. Such file can then be imported by a simple OPC
UA server implementation that can run a customized OPC UA server. As an
example, Listing 3.1 shows two exported nodes in the XML format. The first
node is an object and the second node is a variable of the object.

29

3. Existing OPC UA Tools and Implementations...........................

<UAObject BrowseName="1:ledStates" NodeId="ns=1;i=14301"
↪→ ParentNodeId="ns=1;i=14300">
<DisplayName>ledStates</DisplayName>
<Description>LED states of the controller</Description>
<References>

<Reference ReferenceType="HasTypeDefinition">ns=1;i=8009</
↪→ Reference>

<Reference ReferenceType="HasProperty">ns=1;i=8242</
↪→ Reference>

<Reference ReferenceType="HasComponent">ns=1;i=14302</
↪→ Reference>
</References>

</UAObject>
<UAVariable BrowseName="1:LED1" DataType="Byte" NodeId="ns=1;i

↪→ =14302" ParentNodeId="ns=1;i=14301">
<DisplayName>LED1</DisplayName>
<Description>LED1</Description>
<References>

<Reference IsForward="false" ReferenceType="HasComponent">ns
↪→ =1;i=14301</Reference>

<Reference ReferenceType="HasTypeDefinition">i=63</Reference
↪→ >
</References>
<Value>

<uax:Byte>1</uax:Byte>
</Value>

</UAVariable>

Listing 3.1: Example of how the exported OPC UA server structure may look.

Further OPC UA related tools and implementations for various use cases
can be found over the Internet. For example, the company Software Toolbox,
Inc. offers many innovative products. This company published a real-world
case study [32] which resulted in implementation and deployment of an OPC
Server for consuming RESTful JSON web services.

30

............................. 3.3. OPC UA Software Libraries and Tools

Figure 3.5: Illustration of the Free OPC UA Modeler tool [10].

31

32

Chapter 4

The Legacy Software Architecture

This chapter is concerned about the architecture of the legacy software
solution as well as its components and data structures that were supposed to
be used together with the OWA application. It serves as an analysis of the
existing solution, especially the user interface and metadata model.

The former architecture of the diagnostics system consists of the following
main components: Web Client Application, BaseWeb, Web Server Application,
HistoryDB Service, and Diagnostic Service. The Web Client Application
is a user interface tailored for an operator to view the system diagnostics.
The BaseWeb component is responsible for authentication, it provides static
content like HTML, CSS, and Javascript files, it forwards requests to the Web
Server Application, it provides an interface for HTTP/WebSocket communi-
cation, and it handles socket events. The Web Server Application handles
specific diagnostic functions.

The Web Server Application provides metadata which describes the seman-
tics of the diagnostic data that are being obtained from controller modules.
Both data and metadata can be accessed via a REST API which also allows
the Web Client Application to request a call of remote procedures. The
diagnosed controller modules can be, for example, a computer that controls a
level crossing, railroad switch, or signal light. The HistoryDB service allows to
store and read historical diagnostic objects. The Diagnostic Service maintains
the communication with Diagnostic Router which tracks any data changes.

33

4. The Legacy Software Architecture................................

Communication Module

Web Client

Web Server

BaseWeb

Web Client App

Web Server App

Diagnostic Service

Core

Static Files

HistoryDB
Service

Diagnostic
Router

HTTP/Websocket

CommandsData

Controller Modules

Figure 4.1: Block diagram of the legacy architecture.

4.1 User Interface

The existing user interface is a single-page [33] modular Javascript application
which communicates with a corresponding web server via a REST API. The
API documentation was reviewed and summarized to a well-arranged table
of endpoints with expected HTTP requests and responses (see the example
in Appendix B).

After the web page is loaded, it firstly asks for metadata in XML files.
These files describe the data model of the diagnosed system. Then it attempts
to retrieve several objects from the web server to initialize the user interface.
If those objects are not provided, the web page does not finish loading. Details
about those objects are listed in Table 4.1.

34

.. 4.1. User Interface

ID Name Description

1 AllDiagnosis Root element of all diagnosis objects.

13012 LedStatus LED states of the controller

14002 SwCode Software version

10544 MAC0 MAC address of eth0

10545 MAC1 MAC address of eth1

21663 NICAddrIPv4 IPv4 address of the network interface

21664 NICAddrIPv6 IPv6 address of the network interface

Table 4.1: Initial objects requested by the web page.

Figure 4.2: The user interface of Signal Control Module (SCM) as an example of
a Web Client Application that was supposed to use the OWA for interconnection
with a target OPC UA server.

The application also tries to establish a WebSocket connection. Communi-
cation via the WebSocket connection is crucial for the majority of transferred
data which is asynchronously received from the web server.

An example of how the user interface can look like is shown in Figure 4.2.
The issue is a user interface of so-called Signal Control Module (SCM) which

35

4. The Legacy Software Architecture................................
controls light signals on a railroad. The Front Panel follows the physical
arrangement of the target device.

4.2 Metadata

The data model used on the client side which is described by metadata called
Client Schema had been designed in a previous product version and needed
to be retained as far as possible. Any changes in the existing metamodel
would result in changes in the Web Client Application. Real names of the
Client Schema instances as XML elements are written in capital letters in
this document. The metamodel is composed of OBJECTs with properties
(attributes) and object components. In the Client Schema, the components
are called PROPERTIES. Each OBJECT can have other OBJECT and
PROPERTY elements nested in the PROPERTIES element. Both OBJECT
and PROPERTY elements can have various properties. In the XML file, they
can be encoded either as XML attributes of XML elements or as other XML
elements nested in their parent XML elements. Those properties which are
encoded as XML elements can have their properties as XML attributes. An
example is a property DESCRIPTION which has an attribute LANGUAGE.
The metadata model is better described in Figure 4.3.

«abstract»

Client Schema
Component

«abstract»

Client Schema
Component

+ attributes
+ properties

«XML Attribute»

Client Schema
Property

«XML Attribute»

Client Schema
Property

+ name
+ value

1

*

hasSubElement

1

*

hasSubElement

1*
hasAttribute

1*
hasAttribute

«XML Element»

OBJECT
«XML Element»

OBJECT
«XML Element»

PROPERTY
«XML Element»

PROPERTY

«XML Element»

Client Schema
Property

«XML Element»

Client Schema
Property

+ name
+ value
+ attributes

1

*

hasAttribute

1

*

hasAttribute

«XML Element»

PROPERTIES
«XML Element»

PROPERTIES1 1

hasSubElement

1 1

hasSubElement

1*

hasSubElement

1*

hasSubElement

1* hasSubElement 1* hasSubElement

Figure 4.3: Meta model of the Client Schema (structure of XML content).
Capital letters are used in literal names of XML elements.

36

Chapter 5

Design and Implementation

The main goal for this thesis was to design and develop a software solution,
called the OPC UA Website Adapter (OWA), that would interconnect the
existing web-based user interface with the OPC UA server introduced into a
new version of a safety-critical railway controller. Before the development was
started, the review of the literature and various resources had been performed.
Previous chapters were concerned about it. This chapter is focused on how
the assigned problem was solved with the aid of the literature review findings.

5.1 Motivations and Design Decisions

Chapter 2 reviewed generally the communication architectures in industry
and more specifically in the railway industry. It was shown that the state-
of-the-art reference architecture for railway signaling systems employs the
OPC UA as a protocol for the diagnosis network (see Figure 2.8 for more
details). It is one of the reasons why the existing software solution regarding
the diagnostics needed to be upgraded. The new version of railway controllers
that was being developed was supposed to follow this reference architecture.

Although there exist many different OPC UA tools, none of them pro-
vided such flexibility, that it could be adjusted to work with the existing
user interface. The most promising project that was discovered was the
intended REST adapter for OPC UA Servers from One-Way Automation.
Unfortunately, it had not been developed yet by the time of working on this

37

5. Design and Implementation
thesis. It follows that a special tool needed to be developed to solve the
problem - to interconnect the existing web-based user interface with the OPC
UA server introduced in the new safety-critical railway controller. Chapter 3
introduced some existing OPC UA tools that could be utilized during software
development. The Free OPC UA Modeler was found most useful since it could
be used for modeling of a proofing OPC UA server. Also, the FreeOpcUa
library in Python was chosen as the most appropriate software development
kit because of the required application portability and simplicity.

Chapter 4 introduced how the diagnostic software architecture looked like in
the obsolete version. The software components used on the backend side of the
old system were found useless because of its inner complexity and estimated
difficulty of adjusting to the new requirements. Also, the architecture needed
to be simplified and adjusted to modern standards. These facts spoke for
replacement of the existing backend solution which meant to design and
implement a new one.

No general OPC UA client could replace the existing web-based user
interface. The user interface needed to be customized to ensure a user-friendly
interface for an employee as a system operator. The existing web-based user
interface could be altered so that the connection to the OPC UA server could
be established directly via HTTP/SOAP. However, this option would mean
a significant data load since all data is sent in XML format when SOAP is
used. Also, securing the connection is more challenging as discussed in [27].

The authors in [34] proposed an extension of the OPC UA with RESTful
services. The REST architectural style has many advantages and is appro-
priate for decentralized applications. It proposes the use of a fixed service
interface to transfer diverse resource representations. This approach improves
universality, independence, and reusability. Thanks to the use of the REST
API in the old diagnostics system, the user interface could be preserved. The
OWA application had to follow this architectural style. As a result, it could
be envisioned as a RESTful gateway to diagnostics of the subsequent system.
One instance of the OWA application could potentially be connected to more
OPC UA servers to collect more complex diagnostics data. Also, another
decentralized OPC UA server could store a load of historical values as was
recommended in the OPC UA specification [8].

Figure 5.1 shows a potential deployment of the OWA. Each Element
Controller contains an OPC UA server, and the OPC UA adapter incorporates
an OPC UA client. The Human-Machine Interface is an application that calls
particular endpoints of the REST API of the web server within the OWA.

38

.................................... 5.2. Requirements Analysis

Figure 5.1: Prospective deployment of the OPC UA Website Adapter.

5.2 Requirements Analysis

This section summarizes the basic requirements for software development. The
requirements were developed according to the Master’s Thesis Assignment,
discussions with involved experts from Siemens Mobility, s.r.o, and personal
expert judgment. The requirements in Table 5.1 and Table 5.2 already expect
that the OWA application must consist of an OPC UA client and a web
server. The key roles of the OWA application are:..1. connection with the target OPC UA server,..2. semantic translation (different data model of the OPC UA server and

the Web Client Application),..3. data acquisition from the OPC UA server, and..4. API provision to the Web Client Application including provision of the
data obtained from the OPC UA server.

39

5. Design and Implementation
Code Description

FR1 The OWA shall include a web server component that shall pro-
vide the following API endpoints for HTTP requests as the old
diagnostic system:. GET /metadata (description of the metamodel). GET /objects (historical values of variables). GET /objects/properties (actual values of variables). GET /files (engineering files). GET,POST /commands (remote procedures)

FR2 The web server shall enable the data to be sent in the following
formats: binary, XML, and JSON. The desired format shall be
decoded from each HTTP request (from the extension of a required
resource).

FR3 The web server shall provide an endpoint (GET /objects/) for
negotiation of a WebSocket connection.

FR4 The WebSocket connection shall serve a web client with actual
data values that were changed on the target OPC UA server. Only
the binary format shall be used for this purpose.

FR5 The OWA shall include a component of OPC UA client that shall
be responsible for connection with an OPC UA server according
to a given configuration loaded from a file.

FR6 The OPC UA client shall use a certificate and a private key for
authentication and data encryption when communicating with the
OPC UA server.

FR7 After a successful connection, the OPC UA client shall browse the
target server and export its metamodel to an XML file.

FR8 After a successful connection, the OPC UA client shall subscribe
for any data changes on the target OPC UA server.

FR9 After a successful connection, the OPC UA client shall perform
a metadata mapping to convert the metamodel of the OPC UA
server to the metamodel understandable for a connected web client.

FR10 The metadata mapping process shall follow a set of rules loaded
from an external file. It shall facilitate any later changes and
extensions.

FR11 The OWA shall store the history of all data received from the
OPC UA server within a current application run and up to a limit
defined in an external configuration file.

FR12 The OPC UA client shall be capable of calling remote procedures
on the OPC UA server when requested from a web client.

Table 5.1: Functional requirements

40

..................................... 5.3. OPC UA Test Server

Code Description

NFR1 The existing user interface from the old diagnostic system shall be
reused with no or minimal changes.

NFR2 The REST API defined in FR1 which specifies the communication
between a web client and the OWA shall be clearly described
within this project.

NFR3 The web server shall be responsive, and requests should be handled
asynchronously.

NFR4 The design of the OWA shall retain a component-based approach
with event-driven architecture.

NFR5 To ensure fast historical data access, data shall be held in hashed
collections.

NFR6 The metadata mapping shall be designed in a way so that it can
be easily changed or extended.

NFR7 The OWA shall be well documented by UML diagrams.

NFR8 The developed source code shall be well commented.

NFR9 A sample OPC UA server data model shall be designed, and
a simple test OPC UA server shall be implemented for testing
purposes.

NFR10 Git version-control system shall be used for tracking of changes in
the source code.

NFR11 The OWA as a standalone application shall be portable for both
Linux and Windows operating systems.

Table 5.2: Non-functional requirements

5.3 OPC UA Test Server

Since no OPC UA server had been designed by the time of working on this
thesis, a test server had to be created for testing purposes. It was designed
according to the provided metadata from the legacy software. The test server
data model was created in the Free OPC UA Modeler which was reviewed in
Chapter 3. An example of the structure is demonstrated in Figure 5.2. Then
a simple OPC UA server implementation was created in Python using the
FreeOpcUa library.

41

5. Design and Implementation
0:Root

0:Types

0:ObjectTypes

0:BaseObjectType

1:CSBaseObjectType 0:FolderType

1:CSFolderType

0:Views 0:Objects

0:Server

1:DiagnosticRoot1:CSLedStates

1:CSDynamicBase

1:CSStaticDiagnosis
ObjectsBase

1:LedStates

1:ClientSchemaRoot

1:LED1

1:LED2

1:LED3

1:CSManifest

...

1:Stamp

1:SwCode

1:Version

1:CSVersionsObjects

...

HasComponent
HasComponent

(intermediate nodes skipped)

Organizes

...
LEGEND

1:Name
0:NameDefault namespace

Client Schema namespace

1:CommandsRoot

Figure 5.2: Example of how the test server is modeled according to the original
metadata structure. Note that only HasComponent and Organizes relationships
are displayed. In reality, there are many other relationships among the nodes.
For example, the node DiagnosticRoot has a relationship HasTypeDefinition with
the node CSFolderType.

5.4 Metadata Mapping

There exist two different data models. The first one is unified and describes
the data structure on an OPC UA server. The second one is proprietary and
describes the data that can be sent to the Web Client Application. It was
discussed in Section 4.2. The problem was that to interconnect the OPC
UA server with the Web Client Application, these two data models needed
to be mapped so that the data representations would be compatible. The
advantage was that both data models are object-based. The problem of data
models mapping can be separated into data mapping and metadata mapping.

The data mapping is a process of creating links between data elements
that may need to be aggregated, separated, or converted to different formats.
In this case, the actual data elements did not need to be aggregated nor
separated. The data formats in both data models are identical except for
DateTime and ByteString OPC UA data types. Data values of these data
types have to be converted in the OWA application. Table 5.3 shows all data
type mappings.

42

......................................5.4. Metadata Mapping

OPC UA Data Type Size
[B]

Client Schema Data
Type

Size
[B]

Boolean 1 BOOL 1

SByte 1 INT8 1

Byte 1 UINT8 1

Int16 2 INT16 2

UInt16 2 UINT16 2

Int32 4 INT32 4

UInt32 4 UINT32 4

Int64 8 INT64 8

UInt64 8 UINT64 8

Float (IEEE 754) 4 -

Double (IEEE 754) 8 -

String (UTF-8) 1/char STRING (UTF-8) 1/char

DateTime (LDAP/FILETIME) 8 UINT32 4

ByteString (binary) 1/byte ARRAY (Base64) 1/byte

Table 5.3: Mapping of data types between OPC UA and the proprietary Client
Schema format.

The two data models have different metadata and a mapping needed to
be developed. It started with an analysis of the relationships between nodes
in the OPC UA tree structure and between XML elements in the web client
metadata. A systematic approach was applied to link OPC UA nodes to XML
elements of the web client metadata. Each OPC UA node has attributes that
can be directly converted to attributes of an XML element. Then it has a
set of references to other nodes. These references have to be sorted by their
names, directions, and information about the referenced nodes. The problem
of this mapping can be seen as a linking of tuples (SourceNodeClass, Refer-
enceName, ReferenceDirection, TargetNodeClass, TargetNodeDisplayName)
to XML elements or XML attributes of these elements. A lookup table had
to be created to define the links. It was realized by a JSON object that is
self-describing, easy to understand, and can be loaded from an external file.
An example of the developed JSON object structure is shown in Appendix C.

To visually demonstrate the metadata mapping in diagrams, the approach
from [35] (an extension of UML language) was loosely adapted. The picture in
Figure 5.3 shows the mapping on the table level. A more detailed description
of the mapping algorithm is provided in Listing 5.1.

43

5. Design and Implementation

UA NodeUA Node

+ node_attrs
+ references

UA ReferenceUA Reference

+ name
+ direction
+ ref_node

1

*

1

*

UA AttributeUA Attribute

+ name
+ value

1

*

1

*

Client Schema
Component
Client Schema
Component

+ attrs
+ properties

Client Schema PropertyClient Schema Property

+ name
+ value
+ type

1 *1 *

1

*

1

*

«input»«input»

«input»«input»

Mapping ConfigurationMapping Configuration

+ lookup_table

«input»«input»

«input»«input»

«output»«output»

UA ObjectUA Object

UA VariableUA Variable

+ variable_attrs

«output»«output»

OBJECTOBJECT PROPERTYPROPERTY

1

1

1

1

1* 1*

Figure 5.3: Mapping diagram showing the metadata mapping problem.

config := load_config()
opcua_tree := load_opcua_tree()
xml_tree.root = map_node(opcua_tree.root)

FUNCTION map_node(node)
// mapping of attributes
xml_elem := new()
map_attrs(node, xml_elem)

// mapping of references
FOR ref_type, ref_node IN node.get_references()

mapping = config.get_mapping(node,ref_type,ref_node)
IF mapping != null THEN

IF mapping.is_expandable() THEN
xml_elem.add_sub_elem(map_node(ref_node))

ELSE
map_attrs(ref_node,xml_elem)

END
END

END
return xml_elem

END

44

....................................... 5.5. Software Design

FUNCTION map_attrs(node, xml_elem)
FOR attr IN node.get_attributes()

mapping = config.get_mapping(node,attr)
IF mapping != null THEN

xml_elem.add_attribute(mapping.name, attr.value)
END

END
END

Listing 5.1: Pseudocode of the mapping algorithm.

5.5 Software Design

To summarize the critical functions of the OWA application, Figure 5.4
presents the use case diagram. The main actors are the Web Client and the
OPC UA Server. The OWA application provides API for the Web Client
and ensures metadata mapping, secure communication, data collection, and
handling of remote procedure calls.

Web Client

OPC UA Server

Get Objects

Get
Changed Data

Get Properties

Get Metadata

<<include>>

<<include>>

Map Metadata
<<extend>>

Secure
Communication

<<include>>

<<include>>

Call Remote
Procedure

<<include>>

Figure 5.4: UML Use Case diagram for the OWA application.

45

5. Design and Implementation
The OWA application was designed to consist of two main components -

OPC UA Client and Web Server. The Web Server component was supposed
to provide the same REST API as the web server in the legacy software
described in Chapter 4. The OPC UA Client component, on the other hand,
uses OPC UA Services provided by an OPC UA Server to get diagnostic data.
Finally, the components are interconnected via the bidirectional Data Service
API. Within this interface, the Web Server can ask the OPC UA Client for
data or metadata. It can also require a remote procedure call. The OPC UA
Client notifies the Web Server about new data values whenever they change
on the OPC UA Server to which the client is subscribed. The relationships
are shown in Figure 5.5.

<<system>>

OPC UA Website Adapter

<<system>>

OPC UA Website Adapter

REST APIREST API

<<system>>

OPC UA Server

<<system>>

OPC UA Server

 OPC UA Services OPC UA Services

<<system>>

Web Client

<<system>>

Web Client

HTTP/WebsocketHTTP/Websocket

<<component>>

OPC UA Client

<<component>>

OPC UA Client

<<component>>

Web Server

<<component>>

Web Server

Data
Service

API

Figure 5.5: UML Component Diagram for the OWA application.

The Web Client and the OWA were supposed to be deployed on the
same computer as shown in the UML Deployment Diagram in Appendix D.
The design presented in Figure 5.5 allows the system to be easily deployed
differently. However, since no other deployment model was required, the

46

....................................... 5.5. Software Design

channel between the Web Client and the Web Server did not have to be
secured. However, the communication between the OPC UA Client and
the OPC UA Server was required to be secured. The OPC UA protocol
has its services for Secure Channel establishment which exploit Asymmetric
Encryption. Each computer with the OWA and the Web Client has to have a
certificate which implies subsequent user access rights.

Afterward, the behavior between particular components and systems was
designed. The OPC UA Client component starts as first, loads its configura-
tion from a file, establishes a secured connection with the OPC UA Server,
and performs metadata mapping. Finally, it subscribes for any changes in all
data variables on the server. Then it initializes the Web Server Component
which also loads its configuration and starts listening for incoming requests.
When the Web Client is connected, it may ask the Web Server for metadata,
objects, or properties. It can also request a WebSocket connection or ask for
calling a remote procedure. To have actual data to be sent via the WebSocket,
the Web Server must observe the OPC UA Client component. Therefore,
the Web Server with the OPC UA Client was supposed to implement the
observer pattern. Figure 5.6 shows the UML Sequence Diagram.

Web ServerWeb Server
OPC UA
Client

OPC UA
Client

subscribe for all

notify change

notify change

notify change

metadata

init

browse

load cfg

GET metadata get metadata
metadata

response

metadata mapping

GET object/property get object/property

dataresponse

ws init

result
add observer

update
ws send data

Web ClientWeb Client
OPC UA
Server

OPC UA
Server

open secure channel

security token

load cfg

Figure 5.6: UML Sequence Diagram for the OWA application.

47

5. Design and Implementation
5.6 Implementation

The OWA application was implemented in Python as a console application.
The software architecture follows the design which was described in the
previous section. The OPC UA Client component is based on the FreeOpcUa
library (python-opcua version), and the AIOHTTP framework was used to
develop the Web Server. The UML Class Diagram in Appendix E gives an
overview of the details of the implementation.

The class OWA_OPCUAClient wraps the general OPC UA client imple-
mentation from the library. This class initializes the Client object and calls
its methods for connection, target server browsing, and data acquisition.

Regarding the server browsing, the OPC UA client firstly analyzes the target
server structure. All node identifiers are grouped in a hashmap collection
which tracks the parent-child relationships. Each key represents a parent node
ID, and a corresponding list of values represents children of the node. This
servers as a fast look-up table, when all data values belonging to a certain
node and its children in the tree structure are required.

Secondly, the OPC UA client instigates the process of building XML
metadata from the target server structure using the ClientSchemaBuilder
class. This class performs metadata mapping. Each OPC UA node has
attributes and references which are evaluated according to the mapping
configuration file. The file records say which attributes (or references with
attributes of corresponding referenced nodes) should be translated to which
XML elements. For details, see Appendix C. Each record contains a template
that is accompanied by attribute values from a respective OPC UA node. The
resulting string is parsed to one or more XML elements which then compose
the final XML tree that is serialized to a file.

Another important part of the OWA_OPCUAClient class is DataHandler.
There are functions like datachange_notification() or event_notification()
that are configured as callback functions for the FreeOpcUa library. They
are called as a result of data changes on the server. The DataHandler takes
care of aggregating the changed data, inserting them into a history queue
(Figure 5.7) and notifying all registered observers. The queue aggregates data
values of properties (referenced by identifiers) to points in time (referenced
by indexes). The properties in history can be accessed via indexes. When the
queue size reaches a configured limit, the least recent values are popped and
discarded. The most recent properties can be accessed in a hashmap which
keeps the latest values for all available properties.

48

..5.7. Library fix

Time [index]

Pr
op

er
ty

 [i
de

nt
ifi

er
]

VALUE VALUE VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

1 n

ID, VALUE

ID, VALUE

ID, VALUE

ID, VALUE

ID, VALUE

ID, VALUE

H
AS

H
M

AP
 W

IT
H

 L
AT

ES
T

VA
LU

ES

OBJECT

OBJECT

OBJECT

OBJECT

OBJECT

QUEUE

PU
SH

PO
P

Figure 5.7: Visualization of the queue that stores changed property values in
time. Each set of property values at a given point in time is referred to as objects.

The Web Server is formed by the Application class of the AIOHTTP library
and its UrlDispatcher. The EndpointsHandler consists of functions that are
linked with the UrlDispatcher, and they handle incoming HTTP requests.
The EndpointsHandler is responsible for preparation of a corresponding
HTTP response which carries the data obtained from the DataHandler. It
includes transformation of data to a desired format - binary, XML, or JSON.
When a WebSocket connection is required from a client, the data values
are forwarded after the DataHandler notifies the EndpointsHandler as its
observer. The connected client can also require properties from history via
the WebSocket. This kind of live connection demands a well-synchronized
access to the constantly shifting history queue. Binary semaphores are used
in this case.

5.7 Library fix

The FreeOpcUa library [10] did not support LocalizedText which was crucial
for correct working of multilingual names and descriptions in the metadata.
Therefore, the functionality was added to the library. Changes were made in
the files listed below.

49

5. Design and Implementation
. /opcua/ua/uatypes.py

. /opcua/common/manage_nodes.py

. /opcua/common/xmlimporter.py

. /opcua/common/xmlparser.py

The paths are relative from the installation folder of Python packages. The
corrected files are part of the thesis attachments. The original files in the
opcua Python package need to be substituted with the corrected ones for the
OWA to work properly.

5.8 Deployment

The OWA application was implemented in Python (version 3.7.2) which
implies that it can be deployed on any computer with Python environment.
The programming constructs used in the implementation are supported in
Python 3.6 and higher. As was mentioned in the previous sections, the
OWA application is based on several Python libraries which need to be
installed before running the application. It can be achieved by running pip
install -r requirements.txt. All required dependencies are listed
in requirements.txt file which is distributed with the application.

Note that pip3 has to be used on Linux and likewise the python3 or
python3.6 command. After installing the dependencies, the corrected files
of the FreeOpcUa library have to be copied into a subsequent installation
folder as mentioned in Section 5.7.

The developed source code files were packed into a zip archive which is
executable in Python. It can be run as shown in Listing 5.2. The app needs
a configuration file in .json format. This file with default configurations is
distributed together with the executable archive. Other necessary folders
and files are created when the application is started. If a secured connection
is required, subsequent certificate and private key have to be placed in
/files/security subfolder.

50

..5.9. Validation

C:\projects>python opcua-website-adapter-0.1.zip
INFO - __main__ - OPC UA Website Adapter started.
INFO - owa_opcuaclient - Analyzing target OPC UA server...
INFO - owa_schema_builder - Mapping metadata...
INFO - owa_web - Running web server on http://localhost:8081 ...
INFO - owa_web - Keyboard interrupt.
INFO - owa_web - Web server closed.
INFO - owa_opcuaclient - OPC UA client terminated.
INFO - __main__ - OPC UA Website Adapter terminated.

C:\projects>

Listing 5.2: Example of running the OWA application

5.9 Validation

The software was tested as a whole system, and it was done manually. Creation
of automated tests was not in the scope of this thesis. The Table 5.4 briefly
describes how the particular functional requirements were validated.

Finally, the original user interface was tested with the OWA application
and the connected OPC UA test server with modeled data. The deployment
was tested on Windows 10 with Python 3.7 and Ubuntu 18.04 with Python
3.6.

51

5. Design and Implementation

Code Description of the test approach

FR1, FR2 The API endpoints were tested using Postman software for API
development. The software supports all formats used in the OWA
application (.json, .xml, .bin) for sending/receiving body of re-
quests/responses.

FR3, FR4 The WebSocket connection was tested from the console of Google
Chrome web browser using the Javascript web application from
the old diagnostic system.

FR5 The OPC UA client firstly loads a configuration file and then
initiates the connection to a server with addresses given in the file.
If the configuration file cannot be loaded or the server is not found,
a corresponding error message is logged. This behavior was tested,
and the log file was inspected.

FR6 The connection was tested with encryption that used an example
certificate and private key provided by the FreeOpcUa library. The
communication failed when the used certificate or key was not
valid.

FR7 The XML file with exported nodes by the OPC UA client was
compared with the XML file that is loaded by the test OPC UA
server to build its structure.

FR8 The test OPC UA server contained a routine that was continuously
changing the value of one data variable in the predefined value
range and period. A WebSocket connection with the OWA was
established, and incoming messages were observed to validate a
correct behavior.

FR9, FR10 The test OPC UA server was modeled according to the original
metadata used by the Web Client Application. The algorithm that
performs the metadata mapping takes nodes and references as its
input and produces an XML file with Client Schema metadata.
The output file was compared with the original metadata.

FR11 The component of the OPC UA client contains a queue as described
in Section 5.6. The queue size is configured from the configura-
tion file. Using the Postman software, requests for objects were
generated for indexes in the range from 0 to the configured value.

FR12 The test OPC UA server contained a test method which was run
as a result of a request from the Postman software.

Table 5.4: Validation of functional requirements

52

Chapter 6

Conclusion

Within this work, communication in distributed industrial systems was studied
with a focus on diagnostics. The evolution of Fieldbus protocols prefaced
the OPC UA standard that was theoretically examined in more detail. It
introduced how diagnostic data is organized and accessed uniformly. Also, the
present state-of-the-art reference architecture for distributed control systems
was reviewed. It was found out that railway signaling systems follow the
same direction as industry regarding the decentralization of controllers along
railroads. The latest reference architecture designed by the Eulynx initiative
showed that the OPC UA protocol is an inherent part of modern railway
signaling systems.

The original solution of system diagnostics was analyzed and documented
as part of the preparation for a new solution. The original web server serving
data for the client application was found incapable of adaptation to new
standards and requirements. However, the initial Web Client Application was
retained in its original form.

The main contribution of this work is the design and implementation of the
OPC UA Website Adapter. It was proposed as a portable software tool which
can be envisioned as a RESTful gateway to diagnostics of underlying systems
like controllers of semaphores, level crossings, etc. The developed solution
provides the same API as the old diagnostic system allowing the former user
interface to be used. In the new diagnostic system which utilizes the OPC
UA standard, the diagnostic data is stored in a different data model. The
OWA application analyzes the data structure on a target OPC UA server
and performs metadata mapping. The server structure is mapped onto the

53

6. Conclusion..
data model used by the original Web Client Application. The application
interacting with a system operator can then ask for diagnostic data or send
commands to respective control systems.

For testing and demonstration purposes, Human-Machine Interface of the
Point Control Module (PCM) was chosen because it required the least amount
of test data to be modeled on the test server. Nevertheless, more than 300
nodes in the OPC UA address space had to be created for the Web Client
Application to load and work in limited mode.

The implementation exploits the FreeOpcUa library in Python program-
ming language. Unfortunately, the library does not fully support some
functionality defined by the OPC UA specification. The problem was espe-
cially with the LocalizedText data type and the ListOfLocalizedText that is
crucial for labels in multiple languages. An incidental contribution of this
thesis is a proposal on how this functionality could be easily added.

The concept of implementing a middle (service) layer between a web client
and OPC UA server is not novel as showed the review of existing solutions.
However, all other projects were too general and were found incapable of
integration with the current user interface of this project.

By the time of submitting this thesis, the OWA application had been already
employed in development of other diagnostic components in Siemens Mobility
in Prague. As the future work, improvements of the FreeOpcUa library should
be proposed to the library maintainers. Also, automated tests should be
developed to ensure the correct working of the OPC UA Website Adapter.
The application will most likely have to be extended with a mechanism of
retrieving historical diagnostic data from another OPC UA server dedicated
for this purpose. Alternatively, the queue that keeps diagnostic data up to
its size limit could be extended with a database solution.

54

Appendix A

Bibliography

[1] R. Zurawski, Ed., Industrial communication technology handbook, second
edition ed., ser. Industrial information technology series. Boca Raton:
CRC Press, Taylor & Francis Group, 2015.

[2] P. Drahos, E. Kucera, O. Haffner, and I. Klimo, “Trends in industrial
communication and OPC UA,” in 2018 Cybernetics & Informatics
(K&I). Lazy pod Makytou: IEEE, Jan. 2018, pp. 1–5. [Online].
Available: https://ieeexplore.ieee.org/document/8337560/

[3] T. Bangemann, S. Karnouskos, R. Camp, O. Carlsson, M. Riedl,
S. McLeod, R. Harrison, A. W. Colombo, and P. Stluka, “State of the
Art in Industrial Automation,” in Industrial Cloud-Based Cyber-Physical
Systems, A. W. Colombo, T. Bangemann, S. Karnouskos, J. Delsing,
P. Stluka, R. Harrison, F. Jammes, and J. L. Lastra, Eds. Cham:
Springer International Publishing, 2014, pp. 23–47. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-05624-1_2

[4] IoT 2020: smart and secure IoT platform: white paper. Geneva,
Switzerland: International Electrotechnical Commission, 2016, oCLC:
973571117.

[5] Mobility Division, “Innovations Trackguard Sinet and Sigrid,” Siemens
Switzerland Ltd., Wallisellen, Switzerland, Tech. Rep., Aug. 2014.

[6] ——, “Trackguard Sinet Annaberg-Buchholz Süd Pilot Project,” Siemens
AG, Berlin, Germany, Tech. Rep., 2014.

[7] Maarten van der Werff, Frans Heijnen, and Mirko Blazic, “EULYNX:
The Next Generation Signalling Strategy,” in Aspect 2015. London:
Institution of Railway Signal Engineers, Sep. 2015, pp. 1–10.

55

https://ieeexplore.ieee.org/document/8337560/
http://link.springer.com/10.1007/978-3-319-05624-1_2

A. Bibliography...
[8] OPC Foundation, Inc., “OPC Unified Architecture Specification,”

Tech. Rep., Jul. 2012. [Online]. Available: https://opcfoundation.org/
developer-tools/specifications-unified-architecture

[9] Tatu Paronen, “Prosys OPC UA Web Client released,”
Aug. 2014. [Online]. Available: https://www.prosysopc.com/blog/
prosys-opc-ua-web-client-released/

[10] Alexander Rykovanov and Oroulet, “Free OPC-UA Library.” [Online].
Available: https://github.com/FreeOpcUa

[11] Fieldbus Inc., “IEC61158 Technology Comparison,” Austin, Texas, USA,
Oct. 2011. [Online]. Available: http://www.fieldbusinc.com/downloads/
fieldbus_comparison.pdf

[12] “SmartRail 4.0 Subconcept Transfer System,” SmartRail 4.0
collaboration, Bern, Switzerland, Tech. Rep., Jul. 2018. [Online].
Available: https://smartrail40.ch/

[13] “Open source implementation of OPC UA (OPC Unified Architecture)
aka IEC 62541 licensed under Mozilla Public License v2.0:
open62541/open62541,” Apr. 2019, original-date: 2013-12-20T08:45:05Z.
[Online]. Available: https://github.com/open62541/open62541

[14] K. Schwab, The fourth industrial revolution, first u.s. edition ed. New
York: Crown Business, 2016.

[15] Dave Evans, “The Internet of Everything: How More Relevant and
Valuable Connections Will Change the World,” Cisco Systems, Inc., San
Jose, CA, USA, Tech. Rep., 2012. [Online]. Available: https://www.
cisco.com/c/dam/global/en_my/assets/ciscoinnovate/pdfs/IoE.pdf

[16] P. Ryznar, “The Future Of Factories,” Forbes, 2018. [Online].
Available: https://www.forbes.com/sites/forbestechcouncil/2018/06/19/
the-future-of-factories/

[17] OPC Foundation, “OPC Foundation - The Industrial Interoperability
Standard.” [Online]. Available: https://opcfoundation.org

[18] Mike Wasson, “ASP.NET - Single-Page Applications: Build Modern,
Responsive Web Apps with ASP.NET,” Nov. 2019. [Online]. Available:
https://msdn.microsoft.com/en-us/magazine/dn463786.aspx

[19] Evan You, “Vue.js.” [Online]. Available: https://vuejs.org/

[20] Max Felser, “The fieldbus standards: History and structures.” University
of Applied Science Berne, 2002.

[21] J. R. Moyne and D. M. Tilbury, “The Emergence of Industrial Control
Networks for Manufacturing Control, Diagnostics, and Safety Data,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 29–47, Jan. 2007. [Online].
Available: http://ieeexplore.ieee.org/document/4118467/

56

https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://www.prosysopc.com/blog/prosys-opc-ua-web-client-released/
https://www.prosysopc.com/blog/prosys-opc-ua-web-client-released/
https://github.com/FreeOpcUa
http://www.fieldbusinc.com/downloads/fieldbus_comparison.pdf
http://www.fieldbusinc.com/downloads/fieldbus_comparison.pdf
https://smartrail40.ch/
https://github.com/open62541/open62541
https://www.cisco.com/c/dam/global/en_my/assets/ciscoinnovate/pdfs/IoE.pdf
https://www.cisco.com/c/dam/global/en_my/assets/ciscoinnovate/pdfs/IoE.pdf
https://www.forbes.com/sites/forbestechcouncil/2018/06/19/the-future-of-factories/
https://www.forbes.com/sites/forbestechcouncil/2018/06/19/the-future-of-factories/
https://opcfoundation.org
https://msdn.microsoft.com/en-us/magazine/dn463786.aspx
https://vuejs.org/
http://ieeexplore.ieee.org/document/4118467/

... A. Bibliography

[22] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund,
“Industrial Internet of Things: Challenges, Opportunities, and
Directions,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 11, pp. 4724–4734, Nov. 2018. [Online]. Available: https:
//ieeexplore.ieee.org/document/8401919/

[23] J. Smith, “ERTMS - European Rail Traffic Management System,” Sep.
2016. [Online]. Available: https://ec.europa.eu/transport/modes/rail/
ertms_en

[24] M. Heinrich, J. Vieten, T. Arul, and S. Katzenbeisser, “Security
Analysis of the RaSTA Safety Protocol,” in 2018 IEEE International
Conference on Intelligence and Security Informatics (ISI). Miami,
FL: IEEE, Nov. 2018, pp. 199–204. [Online]. Available: https:
//ieeexplore.ieee.org/document/8587371/

[25] S.-H. Leitner and W. Mahnke, “OPC UA - Service-oriented Architecture
for Industrial Applications,” Softwaretechnik-Trends, vol. 26, no. 4, 2006.
[Online]. Available: http://pi.informatik.uni-siegen.de/stt/26_4/01_
Fachgruppenberichte/ORA2006/07_leitner-final.pdf

[26] IBM Knowledge Center, “Web Services Secure Con-
versation,” Oct. 2014. [Online]. Available: https:
//www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.
ibm.websphere.nd.multiplatform.doc/ae/cwbs_wssecureconv.html

[27] A. Braune, S. Hennig, and S. Hegler, “Evaluation of OPC UA
secure communication in web browser applications,” in 2008 6th
IEEE International Conference on Industrial Informatics. Daejeon,
South Korea: IEEE, Jul. 2008, pp. 1660–1665. [Online]. Available:
http://ieeexplore.ieee.org/document/4618370/

[28] Prosys OPC, “Prosys OPC - Software Products.” [Online]. Available:
https://www.prosysopc.com/

[29] ——, “OPC UA Simulation Server User Manual,” Prosys OPC Ltd.,
Espoo, Finland, Tech. Rep. Version 3.1.6, Sep. 2018. [Online]. Avail-
able: https://downloads.prosysopc.com/opcua/apps/JavaServer/dist/
2.2.2-109/Prosys_OPC_UA_Simulation_Server_UserManual.pdf

[30] I. Objects, “OPC UA Server Simulator Quick User Guide,” Integration
Objects, Houston, Texas, Tech. Rep. Version 1.0 Rev.0, May 2018.

[31] One-Way Automation, “1wa OPC UA Web Client,” Jun. 2018. [Online].
Available: https://www.uaclient.com/

[32] Software Toolbox, Inc., “Innovative OPC Solution for
Web Services Minimizes Customer Infrastructure Costs
while Maximizing Data Access.” [Online]. Available: https:
//support.softwaretoolbox.com/ci/fattach/get/87525/1441896808/
redirect/1/filename/SWTB_ConneXSoft_JSON_Avtech.pdf

57

https://ieeexplore.ieee.org/document/8401919/
https://ieeexplore.ieee.org/document/8401919/
https://ec.europa.eu/transport/modes/rail/ertms_en
https://ec.europa.eu/transport/modes/rail/ertms_en
https://ieeexplore.ieee.org/document/8587371/
https://ieeexplore.ieee.org/document/8587371/
http://pi.informatik.uni-siegen.de/stt/26_4/01_Fachgruppenberichte/ORA2006/07_leitner-final.pdf
http://pi.informatik.uni-siegen.de/stt/26_4/01_Fachgruppenberichte/ORA2006/07_leitner-final.pdf
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cwbs_wssecureconv.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cwbs_wssecureconv.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cwbs_wssecureconv.html
http://ieeexplore.ieee.org/document/4618370/
https://www.prosysopc.com/
https://downloads.prosysopc.com/opcua/apps/JavaServer/dist/2.2.2-109/Prosys_OPC_UA_Simulation_Server_UserManual.pdf
https://downloads.prosysopc.com/opcua/apps/JavaServer/dist/2.2.2-109/Prosys_OPC_UA_Simulation_Server_UserManual.pdf
https://www.uaclient.com/
https://support.softwaretoolbox.com/ci/fattach/get/87525/1441896808/redirect/1/filename/SWTB_ConneXSoft_JSON_Avtech.pdf
https://support.softwaretoolbox.com/ci/fattach/get/87525/1441896808/redirect/1/filename/SWTB_ConneXSoft_JSON_Avtech.pdf
https://support.softwaretoolbox.com/ci/fattach/get/87525/1441896808/redirect/1/filename/SWTB_ConneXSoft_JSON_Avtech.pdf

A. Bibliography...
[33] “Single-page application,” Feb. 2019, page Version ID: 884239800.

[Online]. Available: https://en.wikipedia.org/w/index.php?title=
Single-page_application&oldid=884239800

[34] S. Gruner, J. Pfrommer, and F. Palm, “RESTful Industrial
Communication With OPC UA,” IEEE Transactions on Industrial
Informatics, vol. 12, no. 5, pp. 1832–1841, Oct. 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7407396/

[35] S. Luján-Mora, P. Vassiliadis, and J. Trujillo, “Data Mapping Diagrams
for Data Warehouse Design with UML,” in Conceptual Modeling – ER
2004, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, P. Atzeni,
W. Chu, H. Lu, S. Zhou, and T.-W. Ling, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, vol. 3288, pp. 191–204. [Online].
Available: http://link.springer.com/10.1007/978-3-540-30464-7_16

58

https://en.wikipedia.org/w/index.php?title=Single-page_application&oldid=884239800
https://en.wikipedia.org/w/index.php?title=Single-page_application&oldid=884239800
http://ieeexplore.ieee.org/document/7407396/
http://link.springer.com/10.1007/978-3-540-30464-7_16

Appendix B

Example of the Web Server REST API

GET /metadata.extension
--

REQUEST: HTTP/1.1
Content-Length: 0

RESPONSE: HTTP/1.1 200 OK
Content-type: application/extension
Content-length: number

(list of files in XML or JSON)

GET /metadata
--

REQUEST: HTTP/1.1
Content-Length: 0

RESPONSE: HTTP/1.1 400 Bad Request
Content-Length: 0

GET /metadata/filename.extension
--

REQUEST: HTTP/1.1
Content-Length: 0

RESPONSE: HTTP/1.1 200 OK
Content-type: application/extension
Content-Length: number

(file content)

GET /objects/count
--

REQUEST: HTTP/1.1

59

B. Example of the Web Server REST API
Content-Length: 0

RESPONSE: HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: 8

uint64

GET /objects/count.extension
--

REQUEST: HTTP/1.1
Content-Length: 0

RESPONSE: HTTP/1.1 200 OK
Content-Type: application/extension
Content-Length: number

<count value="count_value"/>
or
{"count": count_value}

GET /objects/index
--

REQUEST: HTTP/1.1
Content-Length: 0

RESPONSE1: HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: number

raw_object

RESPONSE2: HTTP/1.1 410 Gone
Cache-Control: no-cache
Content-Length: 0

(The object is not available and the index is less than or
↪→ equal to the objects count.)

RESPONSE3: HTTP/1.1 404 Not Found
Content-Length: 0

(The object is not available and the index is greater than the
↪→ objects count.)

RESPONSE4: HTTP/1.1 400 Bad Request
Content-Length: 0

(The index is equal to 0.)

GET /objects/
--

REQUEST: HTTP/1.1
Content-Length: 0
Connection: Upgrade
Upgrade: websocket

RESPONSE: HTTP/1.1 WebSocket Protocol Handshake
Connection: Upgrade
Upgrade: WebSocket

index raw_object raw_object index ...

60

Appendix C

Example JSON Object for Metadata
Mapping (Lookup Table)

{
"SrcNodeClass": {
"Object": {
"AttributeMappings": [
{
"AttributeId": 1,
"ValueCount": 1,
"SrcRegEx": ";i=(.*)\\)$",
"DstType": "attr",
"DstTemplate": "id=\"{}\""

},
{
"AttributeId": 4,
"ValueCount": 1,
"SrcRegEx": ", Text:(.*)\\)$",
"DstType": "elem",
"DstTemplate": "<techname>{}</techname>"

}
],
"References": [
{
"Direction": "Forward",
"ReferenceName": "HasProperty",
"ReferenceId": 46,
"DstNodeDisplayName": {
"constant": {
AttributeMappings": [
{
"AttributeId": 13,
"ValueCount": 1,
"SrcRegEx": "(.*)",

61

C. Example JSON Object for Metadata Mapping (Lookup Table)
"DstType": "attr",
"DstTemplate": "constant=\"{}\""
}

]
},
"description": {
"AttributeMappings": [
{
"AttributeId": 13,
"ValueCount": 2,
"SrcRegEx": "^LocalizedText\\(Encoding:3, Locale:(.*),

↪→ Text:(.*)\\)$",
"DstType": "elem",
"DstTemplate": "<description language=\"{}\">{{}}</

↪→ description>"
}

]
}

}
},
{
"Direction": "Inverse",
"ReferenceName": "Organizes",
"ReferenceId": 35,
"DstNodeDisplayName": {
"*": {
"AttributeMappings": [
{
"AttributeId": 1,
"ValueCount": 0,
"SrcRegEx": ";i=(.*)\\)$",
"DstType": "elem",
"DstTemplate": "<parents></parents>",
"HasChildElem": "reference"
},
{
"AttributeId": 1,
"ValueCount": 1,
"SrcRegEx": ";i=(.*)\\)$",
"DstType": "elem",
"DstTemplate": "<reference parentid=\"{}\"/>",
"HasParentElem": "parents"
}

]
}

}
}
]

},
"Variable": {
...

}
}

}

62

Appendix D

UML Deployment Diagram

63

deployment OPC UA Website Adapterdeployment OPC UA Website Adapter

«device»

Diagnostics Computer

«device»

Diagnostics Computer

«web browser»

User Interface

«web browser»

User Interface

«application»

OPC UA Website Adapter

«application»

OPC UA Website Adapter

«protocol»
HTTP/Websocket

«protocol»
HTTP/Websocket

«device»

Railway Controller

«device»

Railway Controller

«application»

OPC UA Server

«application»

OPC UA Server

<<component>>

OPC UA Client

<<component>>

OPC UA Client

<<component>>

Web Server

<<component>>

Web Server

<<artifact>>

config.txt

<<artifact>>

config.txt

<<artifact>>

owa_logger.log

<<artifact>>

owa_logger.log

<<artifact>>

metadata.xml

<<artifact>>

metadata.xml

<<artifact>>

data_files/

<<artifact>>

data_files/

«protocol»
OPC UA

D. UML Deployment Diagram

64

Appendix E

UML Class Diagram

65

D
at

aH
an

d
le

r
D

at
aH

an
d

le
r

+
Q

U
EU

E_
SI

ZE
 :

in
t

+
TS

TA
M

P_
FO

R
M

A
T

 :
st

ri
n

g
+

in
de

x_
co

u
n

te
r

: i
n

t
+

d
at

a_
qu

eu
e

 :
Q

ue
u

e
+

fr
es

h
_p

ro
p

_h
as

hm
ap

 :
 d

ic
t

-
o

b
se

rv
er

s
: s

et

+
ge

t_
d

at
a(

)

En
d

po
in

ts
H

an
d

le
r

En
d

po
in

ts
H

an
d

le
r

+
o

p
cu

a_
cl

ie
nt

 :
O

W
A

_O
PC

U
A

C
lie

nt
+

w
s_

p
oo

l :
 s

e
t

+
h

an
dl

e_
m

et
ad

at
a(

)
+

h
an

dl
e_

lo
gi

n
()

+
h

an
dl

e_
co

un
t(

)
+

h
an

dl
e_

o
bj

e
ct

()
+

h
an

dl
e_

pr
o

p
er

ty
()

+
w

eb
so

ck
et

_h
an

dl
e

r(
)

O
W

A
_O

PC
U

A
C

lie
n

t
O

W
A

_O
PC

U
A

C
lie

n
t

+
cl

ie
n

t
: C

lie
n

t
+

co
n

fi
g

: d
ic

t
+

o
b

j_
n

od
e_

h
as

h
m

ap
 :

d
ic

t
+

p
ro

p
_n

o
d

e_
h

as
hm

ap
 :

 d
ic

t
+

n
o

de
_i

d
_h

as
h

m
ap

 :
d

ic
t

+
d

at
a_

ha
n

d
le

r
: D

at
aH

an
d

le
r

+
ex

po
rt

_r
em

o
te

_x
m

l(
)

+
b

u
ild

_c
u

st
o

m
_

m
et

ad
at

a(
)

+
ge

t_
cu

st
o

m
_m

et
ad

at
a(

)
+

lo
ad

_
pr

o
p

er
ty

_i
d

s(
)

+
fi

n
d_

n
od

e(
)

O
W

A
_

A
p

p
O

W
A

_
A

p
p

+
w

eb
_s

er
ve

r
:

A
p

p
lic

at
io

n
+

o
p

cu
a_

cl
ie

nt
 :

O
W

A
_O

PC
U

A
C

lie
nt

+
lo

gg
e

r
: L

o
gg

er

+
m

ai
n

()

<<
In

te
rf

ac
e

>>

O
b

se
rv

er

<<
In

te
rf

ac
e

>>

O
b

se
rv

er

+
u

p
da

te
()

«
im

p
le
m
e
n
t»

«
im

p
le
m
e
n
t»

<<
In

te
rf

ac
e

>>

O
b

se
rv

ab
le

<<
In

te
rf

ac
e

>>

O
b

se
rv

ab
le

+
ad

d
_o

bs
er

ve
r(

)
+

re
m

o
ve

_o
b

se
rv

er
()

-
n

o
ti

fy
_o

bs
er

ve
rs

()

Q
u

eu
eI

te
m

Q
u

eu
eI

te
m

+
in

de
x

: i
nt

+
ti

m
es

ta
m

p
 :

st
ri

n
g

+
p

ro
p

er
ti

es
: d

ic
t

+
ad

d
_p

ro
p

er
ty

()
+

ge
t_

p
ro

p
er

ty
()

+
ge

t_
p

ro
p

er
ti

es
()

<<
In

te
rf

ac
e

>>

Su
bH

an
dl

er

<<
In

te
rf

ac
e

>>

Su
bH

an
dl

er

+
d

at
ac

h
an

ge
_n

o
ti

fi
ca

ti
on

()
+

ev
en

_n
o

ti
fi

ca
ti

on
()

+
st

at
us

_c
h

an
ge

_n
o

ti
fi

ca
ti

on
()

«
im

p
le
m
e
n
t»

«
im

p
le
m
e
n
t»

«
im

p
le
m
e
n
t»

«
im

p
le
m
e
n
t»

0.
.*

0.
.*

C
lie

nt
C

lie
nt

«
o
b
se
rv
e
»

«
o
b
se
rv
e
»

11

11

A
pp

lic
at

io
n

A
pp

lic
at

io
n

+
ro

ut
er

 :
U

rl
D

is
p

at
ch

er

+
ad

d
_r

ou
te

s(
)

+
ru

n_
ap

p
()

11

11

11

U
rl

D
is

p
at

ch
er

U
rl

D
is

p
at

ch
er

+
re

so
u

rc
es

 :
lis

t

+
ad

d
_r

es
o

u
rs

e
()

+
ad

d
_g

et
()

+
ad

d
_p

os
t(

)

11

11

11

C
lie

n
tS

ch
em

a
B

ui
ld

er
C

lie
n

tS
ch

em
a

B
ui

ld
er

-
m

ap
p

in
g_

cf
g_

fi
le

+
b

u
ild

_m
et

ad
at

a(
)

+
sa

ve
_

to
_x

m
l_

fi
le

()

11

E. UML Class Diagram......................................

66

	Introduction
	Problem Outline
	Thesis Structure

	Background
	Evolution of Fieldbus Standards
	Architectures of Industrial Networks
	Railway Signaling Systems
	The OPC UA Standard

	Existing OPC UA Tools and Implementations
	OPC UA Testing Servers
	OPC UA Web-based Clients
	OPC UA Software Libraries and Tools

	The Legacy Software Architecture
	User Interface
	Metadata

	Design and Implementation
	Motivations and Design Decisions
	Requirements Analysis
	OPC UA Test Server
	Metadata Mapping
	Software Design
	Implementation
	Library fix
	Deployment
	Validation

	Conclusion
	Bibliography
	Example of the Web Server REST API
	Example JSON Object for Metadata Mapping (Lookup Table)
	UML Deployment Diagram
	UML Class Diagram

