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Abstract

The brain is a complex system that can be
described as a network consisting of nodes
(brain regions) and links (connections).
This network undergoes functional reor-
ganisations after a stroke and in cognitive
decline. Therefore, we assume that the
post-stroke cognitive deficit is related to
the disruption of the brain network caused
by the stroke. This thesis aims to find pos-
sible relationships between the network
and cognitive parameters in post-stroke
patients. I evaluated the resting-state
closed-eye electroencephalographic (EEG)
data and the neuropsychological tests for
45 post-stroke patients. An automatic
modular pipeline was developed to pro-
cess the EEG recordings and estimate net-
work parameters. The algorithm includes
removal of the cardiac and ocular arte-
facts based on the independent component
analysis. The functional connectivity was
estimated based on coherence, imaginary
coherence and the weighted phase lag in-
dex in three frequency bands, theta, alpha
and beta. In cooperation with a neuropsy-
chologist, we proposed a parametrisation
of the neuropsychological tests and con-
verted them into cognitive parameters. Fi-
nally, I used the Kendall rank correlation
coefficient to correlate the network and
cognitive parameters. The thesis showed
some interesting trends in the theta and
beta bands for imaginary coherence. How-
ever, statistical evidence for those trends
was rather weak when I accounted for the
repeated testing. Consequently, I cannot
state there is a relationship between the
cognitive and network parameters in post-
stroke patients.
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Abstrakt

Mozek je komplexni systém, ktery je
mozné popsat jako sit s vrcholy (ob-
lastmi mozku) a hranami (spojenimi).
Tato mozkova sit je narusena po cévni
mozkové pithodé a pii zhorSovani kogni-
tivnich funkci. Z tohoto divodu predpo-
kladame, ze kognitivni deficit po cévni
mozkové prihodé je nasledkem naruseni
mozkové sité. Cilem této prace je vyhod-
notit vztah mezi sitovymi a kognitivnimi
parametry u pacientd po cévni mozkové
prihodé. Vyhodnotil jsem klidovou elektro-
encefalografickou (EEG) aktivitu a neu-
ropsychologické testy pro 45 pacientu po
cévni mozkové prihodé. Vytvoril jsem au-
tomatizovany moduldrni algoritmus na
zpracovani EEG a odhad sifovych para-
metrt. Tento algoritmus zahrnuje odstra-
néni srde¢nich a oc¢nich artefaktti pomoci
analyzy hlavnich komponent. Funkéni ko-
nektivita byla odhadnuta na zakladé ko-
herence, imaginarni koherence a vazeného
indexu fiazového zpozdéni v théta, alfa
a beta frekvenc¢nich pasmech. Ve spolu-
praci s neuropsycholozkou jsme ptipra-
vili metodu parametrizace neuropsycho-
logickych testu a jejich prevod do kogni-
tivnich parametri. Vztah mezi sitovymi
a kognitivnimi parametry byl odhadnut
pomoci Kendallova koeficientu korelace.
Tato prace ukazala zajimavé trendy v
théta a beta pasmu pro imagindrni kohe-
renci. Nicméné po korekci vicendasobného
testovani tyto trendy nebyly dostatecné
statisticky vyznamné. Proto nemohu kon-
statovat, ze bych pozoroval zavislost mezi
sifovymi a kognitivnimi parametry u pa-
cienti po cévni mozkové prihodeé.

KliCova slova: mozek, cévni mozkova
prihoda, electroencefalografie, mozkové
sité, teorie graf

Pteklad nazvu: Funkéni reorganizace
mozkovych siti po cévni mozkové prithodé
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Chapter 1

Introduction

Stroke is a common neurological disease that can result in many post-stroke
complications, among which one of the most serious is a cognitive deficit.
The post-stroke cognitive deficit presents a great burden for the patient and
a better understanding of its underlying mechanisms would be beneficial for
future improvements in the rehabilitation and recovery of the post-stroke
patients. One way to better understand the changes that the brain undergoes
after a stroke is to study the alterations in the connections among the distant
brain regions.

In this thesis, I aim to shed some light on this problem by studying
the reorganisation of the functional brain networks in the patients after
a stroke. I will use EEG recordings to estimate network parameters and
neuropsychological tests to estimate cognitive parameters. Then, I will
compare those two to evaluate if there is any relationship between the network
reorganisation and the level of the cognitive decline in post-stroke patients.

. 1.1 Network construction

Brain networks can be structural or functional. The structural networks
describe actual anatomical connections between the brain regions. In human
subjects, anatomical connections are usually reconstructed using diffusion
tensor imaging (DTTI).

On the other hand, functional networks do not represent actual physical
connections of the brain regions but rather statistical associations between the
recorded signals. Functional connectivity networks are usually constructed
using functional magnetic resonance imaging (fMRI), in particular, blood-
oxygen-level-dependent imaging (BOLD). In those networks, the nodes are
groups of voxels of fMRI and the links between them correspond to the
correlations between the BOLD signals.

Functional networks can also be estimated from electroencephalography
(EEG) and magnetoencephalography (MEG) signals. In those cases, the
nodes are usually equal to the recording sensors, and the links are computed
based on the correlations between the time series the sensors generate.

Regardless of the chosen technology, brain networks are constructed follow-
ing four main steps (Figure |1.1)) [1]:
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1. Definition of the network nodes (e.g. brain regions, EEG electrodes,
MEG sensors, ...).

2. Estimation of the links between the nodes (e.g. correlations, white matter
tracts, ...).

3. Assembly of the links into a single graph, which includes thresholding
and binarisation of the network.

4. Parametrisation and analysis of the network parameters.

The resulting graphs can be weighted or unweighted and directed or undi-
rected [2]. The directed graphs consist of directed links that specify the
direction of the information transfer between the nodes. However, much more
common in the literature is to work with the undirected graphs that link the
nodes without additional information about causality.

The links in the weighted graphs are associated with a value that represents
their strength, meanwhile, in the unweighted (binary) graphs the connection
is simply either existing (1) or non-existing (0). The unweighted graphs are
usually prefered because they lead to much easier analysis and they still carry
enough information about the overall topology of the network.

The construction of the graphs also includes thresholding. During this
procedure, the weak links that present spurious connections and hinder the
real topology of the graph are removed. The choice of a proper threshold is
an arbitrary choice that can affect the analysis to a great extent. Different
thresholds will generate graphs of varying density and so the graphs are often
explored over a range of several thresholds [IJ.

Recently, there were proposed some algorithms that do not require a choice
of an arbitrary threshold such as the minimum spanning tree, the cluster-span
threshold and the union of shortest paths. Even though, those algorithms
present an exciting alternative to the usual approach, further research in their
correct interpretation and use is still needed [3].

B 12 Network organisation

B 1.2.1 Network parameters

The brain is a complex network that consists of multiple nodes (brain regions)
and links (connections) between them. Each node receives information from
other nodes, process it and then forward it through the links to other nodes of
the network. In this way, complex brain functions, like cognition and sensation,
emerge [4]. It is important to emphasise that those complex functions are not
located at one place in the brain, but rather proper coordination of distant
brain regions is needed to make them work correctly. The main three concepts
that are usually examined in the graph theoretical studies are functional
integration (global parameters), functional segregation (local parameters) and
centrality (Figure 1.2) [2].
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Functional integration is mainly represented by the concept of the minimum
path length, which is the minimum number of edges that must be traversed to
go from one node to another [I]. The average minimum path length between
all the pairwise combinations of the nodes is called the characteristic path
length [2].

Functional segregation describes the ability of a network to locally process
information in the groups of highly interconnected nodes. The main concept
of functional segregation is the clustering coefficient which is the number of
connections that exist between the node’s neighbours as a proportion of the
maximum number of possible connections among them [1].

Centrality identifies important nodes (hubs) that interact with many other
nodes and facilitate the majority of the information transfer in the network.
The most basic measure of centrality is a degree which is the number of links
connected to a specific node. Other measures of centrality are, for example,
betweenness centrality and closeness centrality. Betweenness centrality is the
fraction of all shortest paths in the network that pass through a given node
and closeness centrality is the inverse of the average shortest path length
from one node to all other nodes in the network [2].

B 1.2.2 Networks in health and disease

Healthy brain’s networks have a so-called small-world organisation that
manifests by high clustering coefficient and short characteristic path length
(Figure [1.3). The advantages of this organisation are an excellent global
effectivity of the information transfer with minimal wiring cost. That is
achieved by a scale-free (power law) distribution of the degrees where most
of the nodes are connected to their nearest neighbours within their module,
and only few hub nodes facilitate the information transfer on long distances
between the communities. Furthermore, those essential hub nodes are densely
interconnected into so-called rich clubs.

The brain networks were shown to change under many neurological diseases
including dementia, multiple sclerosis, traumatic brain injury and epilepsy.
The network organisation under those conditions deviate from the optimal
pattern of small-worldness. This deviation is becoming stronger with the
extension of the structural damage, the severity of the clinical symptoms and
disease duration. One of the most consistent findings in neurological diseases
was a failure of the hub nodes [3].

B 1.2.3 Post-stroke connectivity

Stroke is a common neurological disease that commonly results from ischemia
which is arterial occlusion that interrupts the blood supply to cerebral tissue
[6]. Even though stroke is a focal insult, it induces changes distant from
the affected anatomical region and changes the nature of the whole-brain
network (Figure |1.4)). Therefore, the whole-brain connectivity might be a
better predictor of the behavioural deficits than a mere location of the insult.
Multiple fMRI studies found changes of post-stroke connectivity related to

3
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Functional brain network
Sensorimotor

Figure 1.1: Construction of structural and functional brain networks consists of
four steps. First, the network nodes are defined. Second, the associations (links)
between the nodes are estimated. Third, a graph is constructed by compiling
all pairwise associations between the nodes. Four, the graph parameters are
calculated and analysed (source: Bullmore and Sporns [1]).

modules hub nodes

modular structure betweenness centrality

modularity other centralities

/.“\‘\‘\ . X
shortest path triangle motif degree
characteristic path length clustering coefficient anatomical motifs degree centrality
global efficiency transitivity functional motifs participation coefficient
degree distribution

closeness centrality

Figure 1.2: The most fundamental concepts are the shortest path, triangle,
degree and hubs. The shortest path (in green) is a measure of global efficiency,
triangles (in blue) measure local efficiency, and node degrees (in red) measure
the importance of the nodes in the network. Hubs (in black) are nodes that
facilitate most of the information transfer and are described by the centrality

parameters (source: Rubinov and Sporns [2]).
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attention, language, motor function and memory [7]. Damage of the hub
nodes leads to more severe consequences than the loss of less significant nodes
[6]. Interestingly, there were also observed changes in brain connectivity over
the time of recovery and as a response to treatment [3].

B 1.3 EEG functional connectivity

Functional connectivity in human subjects is usually recorded by noninvasive
methods such as electroencephalography (EEG), magnetoencephalography
(MEG) and functional magnetic resonance imaging (fMRI). The particular
interest of this thesis is in the EEG that measures connectivity based on the
local changes in neuronal activity. The advantages of EEG are that it has
high temporal resolution and that the connectivity can be easily measured
in distinct frequency bands. The main disadvantage, in comparison to other
techniques such as fMRI, is a low spatial resolution of the recording EEG
electrodes [§].

The low spatial resolution is mainly caused by the problem of volume
conduction (Figure |1.6)). The signals of different origins propagate through
the conductive environments of the brain, the cerebrospinal fluid, the skull
and the scalp before reaching the scalp electrodes. For this reason, the
signals generated by scalp electrodes are not necessarily produced by the
brain structures right below them [9].

Except for the volume conduction, the signals are also affected by the choice
of recording montage. Montage refers to the selection of the input signal
pairs whose difference results in the final EEG signals. The most common
montages are the common reference, average reference and bipolar montage.
The common reference is when the signal of each electrode is compared to the
signal of one selected reference electrode that is common for all the channels.
The average reference uses the average signal over all channels and subtracts it
from the signal of each electrode. Finally, bipolar montage produces channels
as differences of signals of near-by electrodes [10].

. 1.4 EEG studies

In general, the studies on the functional connectivity follow two paradigms, all-
to-all connectivity and seed-based connectivity. All-to-all connectivity refers
to the applications of the graph analysis as it was described in the previous
sections. Seed-based studies choose one region of interest and then calculate
how strong are the connections between this region and the rest of the network
(other regions). In the next two subsections, I mention some previous studies
on stroke and cognitive decline that utilised the EEG functional connectivity.
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Lo

Ordered Network Small World Network Random Network

Figure 1.3: A small-world network is an intermediate state between two extremes,
an ordered network and a random network. The ordered network has a high
clustering coeflicient and long characteristic path length, which makes the global
information transfer ineffective. The random network is connected by random
links and so has a low characteristic path length but limited local information
processing. The small-network is an optimal state with high clustering coefficient
and few long-distance connections that ensure low characteristic path length

(source: van Straaten and Stam [5]).
Iﬁ' Community

Provincial Node/Hub

A

O
O Connector Hub

[ Edge/Connection

Figure 1.4: Change in integration and segregation of a network after a focal
insult. Panel A represents a healthy network. In panel B, two hub nodes are
affected, which lower the global functional integration among the communities. In
panel C, community members are targeted which results in lower local integration
inside of the modules (source: Carrera and Tononi [g]).
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(a)

EEG
electrodes.

%

Simulated:
dipoles

Figure 1.5: In the left, the four sphere head model. The signal generated by the
neural structure is diffused by the brain, the cerebrospinal fluid (CSF), the skull
and the scalp before reaching the EEG exletrodes. In the right, a simulation
of the voltage distribution of a neural source located below the F6 electrode
(source: Peraza et al. [9]).
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Figure 1.6: Two very common measures of the functional connectivity are
coherence (R) and phase lag index (PLI). Coherence is strongly influenced by
the volume conduction which causes it looks like a regular matrix. The PLI
network has small-world properties and higher variability in the node degree
resembling the free-scale topology (source: Peraza et al. [9]).
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B 1.4.1 Stroke

Wu et al. [11] studied the relationship between EEG connectivity and motor
deficits across 28 days of intensive therapy. During those 28 days, they
recorded four resting-state EEG for 12 post-stroke patients with arm motor
deficits. The connectivity was calculated for electrodes covering the ipsilesional
primary motor cortex (M1) and ipsilesional frontal-premotor (PM) region.
They observed significant correlations between the increased connectivity and
motor gains from the therapy.

Wang et al. [12] focused on post-stroke patients with hemianopia. They
used the clustering coefficient and characteristic path length to compare
the patients with controls but did not find any significant results in the
whole-brain connectivity. However, when they focused on local changes, they
observed less activity in ipsilesional primary visual cortex and more activity
in the ipsilesional temporopolar and orbit frontal areas and the contralesional
visual cortex.

Fallani et al. [I3] studied functional connectivity in 20 patients during
hand motor imagery. They observed that the motor imagery of the affected
hand corresponded to significantly lower small-worldness and local efficiency
in comparison with the motor imagery of the unaffected hand.

In general, most of the post-stroke functional connectivity studies to this
day focus more on motor rather than cognitive deficits. EEG studies are not
as common as studies based on fMRI. Frequent observations are decreased
connectivity in the affected areas and shift from the small-world to more
random networks.

B 1.4.2 Cognitive decline

Klados et al. [14] recruited 50 seniors with mild cognitive impairment and
divided them equally into two groups. One group was control and the other
underwent a cognitive and physical training. Resting-state closed-eye EEG
connectivity based on coherence was calculated between the time series.
Significantly stronger connectivity was found in the beta band (12-30 Hz) for
the trained group.

In a similar frequency band (beta, 14-22 Hz), Stam et al. [15] found a
decrease in synchronisation likelihood (a type of coherence) in patients with
Alzheimer’s disease. Furthermore, they observed that the connectivity in this
frequency band positively correlated with the results of the Mini-mental state
examination.

Vecchio et al. [16] observed a high correlation between small-worldness in
the gamma band (30-45 Hz) and memory performance measured by the digit
span test.

Recently, Kinney-Lang et al. [I7] used imaginary coherence, phase-slope
index and weighted phase lag index to correlate connectivity parameters with
the level of cognitive impairment in preschool children with epilepsy. They
observed significant correlations in medium to high-frequency bands (9-31
Hz) but none on lower frequencies.
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Overall, the presented studies found correlations of resting-state EEG
connectivity with the cognitive decline on higher frequencies. Those studies
are usually based on the resting-state closed-eye networks and the authors
often examine multiple frequency bands.

B 15 Aimand objectives

The main aim of this thesis is to evaluate the functional reorganisation of
brain networks in patients after a stroke in relationship with the observed
cognitive impairments. Four more specific objectives were stated to achieve
this goal. The first objective is to construct a signal processing pipeline to
estimate functional connectivity from EEG recordings. The second objective
is to parametrise the functional connectivity by suitable graph measures.
Third, the results of available neuropsychological tests need to be examined
and convert into reasonable cognitive parameters. The final objective is to
correlate the obtained network and cognitive metrics and evaluate possible
relationships between them.
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Chapter 2
Methods

. 2.1 Dataset

B 2.1.1 Demographics

Patients that showed significant comorbidity with another neurological im-
pairment (Alzheimer’s, Parkinson’s, bipolar disorder) or clinically significant
depression (measured by Geriatric Depression Scale) were excluded from the
analysis. Furthermore, the patients that did not finish one or more of the
neuropsychological tests were excluded as well. The final sample of subjects
that entered the analysis consisted of 45 patients. The mean age of this
sample was 63 £+ 10 (median 65) years. 16 participants were females and 29
were males, 41 right-handed and 4 left-handed. Each of the 45 participants
underwent a neuropsychological examination and an EEG-recording session
that were administrated approximately one year after a stroke.

B 2.1.2 EEG data

The electroencephalographic (EEG) data were recorded on average 376 + 38
(median 368) days after a stroke and composed of 128 EEG channels and
1 electrocardiographic (ECG) channel. The EEG electrodes were placed
according to the 10-5 system (see Figure and their signals were referenced
to the common average during the recording. Before the analysis, the signals
were downsampled to 258 Hz and distributed as MAT-files.

For the examination, the patients were seated in a comfortable chair
and a skilful professional guided them through a standardised 20-minute
examination sequence (Table . The standardised sequence included six
periods of closed-eye EEG that, in total, resulted in 665 seconds of resting-state
EEG signals that were suitable for the estimation of functional connectivity.

B 2.1.3 Neuropsychological data

The neuropsychological tests were administrated on average 438 + 87 (median
415) days after a stroke or 62494 (median 35) days after the EEG examination.
The neuropsychological examination battery consisted of a set of tests that

11



2. Methods

were designed to measure cognitive impairments in patients after a stroke.
Their administration usually took around 30 minutes but the actual time
might vary depending on the patient’s ability to solve the presented tasks. In
the rest of this section, I will briefly describe the administrated tests.

B Mini-mental state examination

Mini-Mental State Examination (MMSE) is a cognitive screening tool that
is extensively used in clinical and research settings to measure cognitive
impairments. The test consists of a set of questions that measure performance
in various domains ranging from orientation, memory, and attention to the
ability to respond to verbal and written commands [I8]. This measure was
used to evaluate global cognitive performance.

B Free and cued selective reminding test

In the Free and cued selective reminding test (FCSRT), a subject is presented
with 16 pictures. After the initial presentation, the subject is distracted with
solving an unrelated task after which he is asked to recall as many items
as possible. Afterwards, the number of successfully recalled items is noted
(FR1). Next, the test administrator provides a verbal cue to items that were
not freely retrieved and records the number of items additionally recalled
after the cue (CR1). This procedure is repeated two more times (FR2, CR2,
FR3, CR3). Finally, 30 minutes after the initial presentation, the subject is
asked again to recall as many items as possible (delayed free recall, DFR) and
a verbal cue is provided for the items he forgot (delayed cued recall, DCR).
Based on the results of this test, four memory measures are calculated

1. Free recall = FR1 4+ FR2 + FR3
2. Total recall = FR1 + CR1 + FR2 + CR2 + FR3 + CR3
3. Delayed free recall = DFR

4. Delayed total recall = DFR 4+ DCR

B Trail making test

The Trail making test consists of two parts, A and B. In part A, the subject
is presented with a series of numbers (1, 2, 3, ...) that are randomly located
on a sheet of paper. Patient’s task is to draw a line as quickly as possible
to connect the numbers in the correct order. Part B is a variation on part
A with letters added, so the series looks like (1, A, 2, B, 3, C, ...). The
test administrator measures the time that the patient takes to connect the
numbers and letter in the correct order. The trail making test evaluates
psychomotor tempo, in part A, and also set-shifting (task switching), in part
B.

12
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B Stroop

During the Stroop test, a patient is presented with a list of colour names that
are written in a different colour than the word refers to (e.g. word red written
in blue). The patient has to name the colour in which the word is written
and so inhibit the urge just to read the word itself. The test administrator
measures the time that the patient takes to name all presented colours.

B Phonemic verbal fluency

Phonemic verbal fluency is tested by asking the patient to say as many as
possible words starting with a given letter. In this particular case, letters K,
P and S were used. The final measurement is the total number of said words
(K+P+S).

B Test on similarities

The test on similarities measures the patient’s ability to conceptualise. The
patient is presented with a sequence of word pairs and asked what the words
in each pair have in common (e.g. orange and banana — fruit).

B Digit span

Digit span is a test that measures attention and working memory. In this test,
the test administrator reads a sequence of numbers of different lengths and
patient attempts to repeat them. The test is administrated in the forward
(the patient repeats the numbers in the same order as they were presented)
and backward (patients repeats the numbers in the reverse order of the
presentation) variations. The administrator records the longest sequence the
patient can repeat.

B Boston naming test

Boston naming test consists of 15 line drawings of everyday objects that are
arranged in increasing order of difficulty. The subject is asked to correctly
name each object [19]. For each correctly named object, the patient gets one
point.

B Semantic verbal fluency

In this test, the patient is asked to name as many animals as possible. The
test administrator recorded the total number of the named animals.

B Visual object and space perception battery

The Visual object and space perception battery (VOSP) is a set of tests that
measure object perception and visual space perception [20]. In this thesis, the
result of the location test was used as the most representative of this battery.
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In this test, the patient is presented with two squares next to each other. In
one square, there are numbers at different locations and in the other square,
there is a single dot. The patient is tasked to say which number’s location in
the first square corresponds to the dot’s location in the second square. This
test aims to measure the visual perception of the space.

B 22 EEG processing pipeline

For reliable estimation of the functional networks, I developed an EEG
processing pipeline (Figure [2.2) that cleans the EEG data from artefacts
and then estimates functional networks and their parameters. The main
advantages of the proposed algorithms are that it is modular and fully
automatic. The modularity ensures that particular parts of the pipeline can
be easily changed or skip depending on the future requirements. The full
automatisation makes it very easy to process and evaluate new patients if
the study grows in the future or if there is a need to recalculate the networks
with different settings.

In the processing pipeline, the EEG signals are first filtered in the frequency
band of interest. After the initial filtration, the independent component anal-
ysis (ICA) is applied to decompose the signal into independent components
(ICs). ICs that correspond to cardiac and ocular artefacts are identified
and removed. The original EEG signals are then reconstructed from the
remaining ICs. In the next step, the signals are split into 2-second epochs.
For each epoch, signal parameters are computed and if they indicate an
artefact, the corresponding epoch is removed. Artefact-free epochs are used
to estimate functional connectivity based on the cross-spectra of the signals.
The algorithm supports different connectivity measures that can be computed
in multiple frequency bands. The final network is thresholded to remove
weak spurious links and finally, the network parameters are calculated. In
the following sections, the individual parts are described in more detail.

B 23 Signal preprocessing

B 2.3.1 Filtration

Filtering is an excellent tool in signal processing that is used to attenuate
the artefacts that do not have an overlapping frequency spectrum with the
signals of interest (e.g. muscle contractions, power line hum). Symmetric
linear-phase FIR filter of order 423 (1.65 seconds) was used to bandpass filter
the EEG signals between 4 and 30 Hz. The advantage of the linear-phase
filter is that it introduces an equal delay at all frequencies so the signal will
not change its temporal shape which is essential for the electrophysiological
data [21].
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2.3. Signal preprocessing

B 2.3.2 Independent component analysis

Cardiac and ocular artefacts (CAs and OAs) unfortunately cannot be removed
by simple filtering because their spectra overlap with spectra of genuine EEG
signals. Independent component analysis (ICA) can be used to reliably remove
those artefacts by identifying and eliminating the independent components
(ICs) that correspond to CAs and OAs.

B Cardiac artefacts

The ECG channel was used to identify and remove the ICs that corresponded
to CAs (Figure [2.3). For this purpose, I used the MNE library [22] implemen-
tation of the cross trial phase statistics (CTPS). This method first detects the
R-peaks in the ECG channel and define a 1-second window with the center
defined by the R-peak. Then, the Hilbert transform is used to calculate the
instantaneous phase of the ICs. Finally, the deviation of the cross trial distri-
bution of the instantaneous phases from the uniform distribution indicates a
CA and the corresponding ICs are marked for removal. The advantage of this
approach is that CAs are usually decomposed into multiple ICs from which
the second and third components tend to have weak peak amplitudes that
may be hardly identified by its statistical properties in the amplitude domain
[23]. A visual inspection of the resulting signals (Figure 2.4) confirmed a
successful removal of the characteristic CA peaks while the rest of the signals
remained unaltered. On average this method removed 1.94 + 0.89 (median 2)
ICs corresponding to CAs.

B Ocular artefacts

The removal of OAs was inspired by Li et al. [24] who were removing OAs
based on the template matching. The idea is that the ICs that correspond
to OAs are easily recognisable by their distinctive scalp topographies with
maxima at frontal electrodes and gradual lowering in the direction to the back
of the head (Figure 2.5). In my algorithm, the IC is classified as related to an
OA if the z-scores of the unmixing matrix corresponding to the Fpl, Fpz and
Fp2 electrodes were higher than 3 or lower than -3. The correct functionality
of the algorithm was visually inspected in several randomly chosen patients
(Figure 2.6). On average this method removed 0.86 £+ 0.50 (median 1) ICs
corresponding to OAs.

B 2.3.3 Statistical thresholding

After the CA and OA artefacts were removed, the signals were split into
2-second epochs and statistical thresholding was performed to remove the
epochs that still contained artefacts. The removal of the epochs that contained
artefacts was inspired by an article on automated statistical thresholding by
Nolan et al. [25]. The idea of the automated statistical thresholding can be
described in four steps
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1. Calculate signal parameters for each signal in each epoch
2. Calculate their average values over the channels
3. Calculate the z-scores over the epochs

4. Remove the epochs for which at least one of the parameters has a z-score
greater than 3

For the purpose of this thesis I decided to choose the following four signal
parameters

® Amplitude range
P, = max(z) — min(z) (2.1)

® Variance
Py =02 =E[z — ] (2.2)

#® Number of zero crossings

P3 = number of times signal x changes its sign (2.3)

P =E [(x ;x“xﬂ (2.4)

where z is a time series, u its mean, o, its standard deviation and E [-] denotes
the mean value of - [20].

The whole algorithm was recursively repeated until the z-scores for all
the parameters in all the remaining epochs were not higher than 3. In this
way, on average, 22 + 11 (median 19) epochs were removed which resulted
in 275 £+ 11 (median 278) artefact-free epochs per patient that were used for
connectivity estimation.

B Kurtosis

B 24 Spectral connectivity

B 2.4.1 Frequency bands

The spectral connectivity between each pair of the channels was calculated in
three different frequency bands

® 4-8 Hz (theta)
® 8-13 Hz (alpha)
® 13-30 Hz (beta)
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2.5. Network thresholding

B 2.4.2 Connectivity measures

Let F, and F, be Fourier spectra of signals x and y, respectively. Cross-
spectrum S, of signals x and y is defined as

where F is the complex conjugate of Fy, [27]. In this thesis I use three
connectivity measures based on cross-spectra, coherence, imaginary coherence
and weighted phase lag index.

Coherence is a classical measurement of the linear relationship between the
signals and is defined as

|E [Say |
E [Szz] E[Sy,]

C = (2.6)

where E[] denotes the mean value over the epochs. Even though the coherence
is easy to calculate and interpret it is also prone to creating false connections
caused by the volume conduction which is a common problem in scalp EEG.
Therefore, many studies prefer to use other measures, such as imaginary
coherence and weighted phase lag index that are more robust to volume
conduction.

Imaginary coherence is defined as

Im (E [Syy))
E [Sza] B [Syy]

ImC =

(2.7)

This measure takes advantage of the fact that the volume conduction does
not affect the imaginary part of the cross-spectrum. However, Vinck et al.
[27] pointed out some shortcomings of this measure. First, the imaginary
coherence still contains the real part of the cross-spectrum in its denominator
and, second, the phase can strongly influence this measure because it is the
most sensitive at the quarter of the cycle (7/2) at which the magnitude of
the imaginary part is the highest. To overcome those problems, they defined
the weighted phase lag index as

[E[m(Say)]]

WP = (S,

(2.8)

which is thought to be superior to the imaginary coherence regarding the
robustness to volume conduction [27]. The MNE library [22] implementation
of those three connectivity measures was used to estimate the connectivity of
the EEG recordings in this thesis.

B 25 Network thresholding

The connectivity estimators described in the previous section gives a non-zero
number for each pair of the EEG channels. Network thresholding is a process,
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2. Methods

during which the weaker links are set to 0 (i.e. removed) and the stronger
connections are set to 1 (binarization). This approach aims to eliminate weak
links that are caused by noise rather than by genuine EEG activity.

In my thesis, I use a proportional threshold that keeps a certain percentage
of the strongest links. Unfortunately, the literature is not consistent regarding
which threshold is the most appropriate. For this reason, use a range of
thresholds from 20 to 80 % with a step of 1 %. The network parameters are
calculated for each threshold separately and then the final values are averaged
over all the (Figure 2.7).

Another problem is that the resulting graphs can become disconnected for
smaller thresholds, which can affect the network measures. For this reason,
I first calculate the maximum spanning tree of the graph and then I add
further connections from strongest to weakest until the proportional threshold
is reached.

B 2.6 Network parameters

In this section, I present definitions of the used network parameters and
evaluate relationships among them. The source of the formulas (unless stated
otherwise) is Rubinov and Sporns [2]. Table 2.2| depicts a list of all the
calculated parameters and their division into domains.

B 2.6.1 Basic concepts

Let G be a binary (unweighted) graph representing a brain network, NN is the
set of all its nodes, and M is the set of all its links. The graph G has n nodes
that are connected by m links. A connection (link) a;; between nodes ¢ and
j is described as

1 if link (4, j) exist
ai; = { if link (4, j) exists (2.9)

0 otherwise

Degree of a node ¢ is the number of its neigbours, that is the number of
nodes that have a direct link to the node ¢

]ﬂ = Z aij (2.10)

JEN

Let g;; be the shortest path between nodes ¢ and j. The shortest distance
between nodes ¢ and j is the number of links in g;;

= 3 au (2.11)

Auv €Yij

For the measures of local efficiency, it is also convenient to define the
number of triangles around a node ¢

1
ti = 5 Z aijaihajh (212)
J,heN
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2.6. Network parameters

Time | Event

00:00 | start of the examination

02:00 | open eyes

02:10 | close eyes

03:00 | open eyes

03:05 | close eyes

04:00 | open eyes

04:10 | close eyes

05:00 | start of the hyperventilation through the nose
07:00 | end of the hyperventilation through the nose
07:05 | start of the hyperventilation through the mouth
09:05 | end of the hyperventilation through the mouth
11:00 | open eyes

11:10 | close eyes

16:00 | open eyes

16:10 | close eyes

19:00 | open eyes

19:10 | close eyes

20:00 | end of the examination

Table 2.1: The figure shows a standardised EEG examination sequence that was
recorded with each patient. Highlighted, the starts of the closed-eye segments that
were used for the resting-state connectivity estimation (in total 665 seconds).

Parameter domain Parameter

Functional integration

characteristic path length
global efficiency

Functional segregation

clustering coefficient
transitivity

Centrality

closeness centrality
betweenness centrality

Resilience

variance degree
assortativity

Table 2.2: A list of network parameters divided into network-measure domains.
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2. Methods

B 2.6.2 Functional integration

Functional integration (global efficiency) describes brain’s ability to rapidly
combine information from distant brain regions. Functional integration is
measured by two parameters, characteristic path length and global efficiency.

Characteristic path length is the average shortest path between all pairs of

nodes 5 p
1 jEN,j#i Gij
L == ZgENg7 Y 2.13
n Z n—1 ( )
iEN
An alternative to the characteristic path length is average global efficiency
which is a parameter based on the inverse shortest path length

o dy
E=-5 :—ZJEN’”“ i (2.14)
n n—1
iEN

B 2.6.3 Functional segregation

Functional segregation (local efficiency) refers to the network’s ability to
locally process information in densely interconnected groups of nodes. Func-
tional segregation is measured by two parameters, clustering coefficient and
transitivity.

Clustering coefficient is the fraction of triangles around an individual node
and its average value for the whole network is given by

1 1

2t
C=,20G=,2;

A (2.15)
iEN n ox kilki = 1)

An alternative measurement of functional segregation is transitivity that
indicates the portion of existing triangles in the network

ZieN 2t;

T —
>ien ki(ki —1)

(2.16)

B 2.6.4 Centrality

Centrality measures the importance of the nodes in the network and is mainly
used to identify hubs. There are many different measures of centrality from
which I chose the closeness and betweenness centralities because they are
relatively common in the literature and easy to interpret.

Closeness centrality of node ¢ is the inverse of the average shortest path
length from node i to all other nodes in the network. Its average value for
the whole network is

1 1 n—1
CcC=— CC;=— = 2.17
n ZGZN o g]:v 2 jen,ji dij ( )

Betweenness centrality of node ¢ is the fraction of all shortest paths in the

network that pass through node i. The average betweenness centrality of the
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2.6. Network parameters

whole network is defined as

1 1 1
HRE e P N e T

iEN ieEN

S ol (©) (2.18)
hjen  Phi
i#j,i#h,j#h
where pp; is the number of shortest paths between h and j, and pp;(i) is the
number of shortest paths between h and j that pass through 1.

B 2.6.5 Resilience

Network resilience refers to the brain’s ability to withstand a focal insult or
degenerative changes such as in Alzheimer’s disease. In this thesis, I measure
network resilience by variance degree and assortativity.

Variance degree [17] measures the wideness of the degree distribution and

is defined as 1

n—1

VD = > (ki —k)? (2.19)
1EN
where k is an average degree.

Assortativity is a correlation coefficient between the degrees of the nodes

on the opposite ends of the links

B kiki — [m=1>, - l(kA_FkA)Z
M= 2 G g)em Rifg — [T 7 26 j)em 3\Fi T Ry
m~ Y e 3 (kf + k’f) - [m_l > ijyem 3 (ki + k‘j)]

High assortativity indicates a presence of strongly interconnected groups of
high-degree nodes (hubs, rich clubs) that ensure better robustness of the
network.

R =

(2.20)

B 2.6.6 Parameter selection

A closer examination of the correlation matrix of the network parameters
(Figures 2.8, 2.9) showed that those are strongly intercorrelated. For this
reason, I chose the following three parameters to represent the overall quantity
of the functional networks.

1. Clustering coefficient
2. Betweenness centrality
3. Variance degree

In this selection, clustering coefficient represents functional segregation and
it is also highly positively correlated with assortativity.

Betweenness centrality is mainly a measure of centrality but it also has a
strong negative correlation with path length and strong positive correlation
with global efficiency. Therefore, the betweenness centrality also very well
reflects the functional integration of the network.

Variance degree is rather uncorrelated to all other parameters.
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B 27 Cognitive parameters

The administration of the neuropsychological tests (section 2.1.3)) resulted
in 15 relevant values for each patient and so it was desirable to reduce their
dimension. To achieve this, the neuropsychologist who administrated the
tests proposed six umbrella cognitive parameters. Additionally, one more
parameter was derived based on the principal component analysis (PCA).

B 2.7.1 Derived by neuropsychologist

A skilled neuropsychologist divided the neuropsychological test into six cogni-
tive domains (Table 2.3). The tests belonging to a particular domain were
combined into a one-number parameter by calculating a mean of their z-scores.
The proposed domains were

1. Global cognitive performance

2. Memory

3. Executive functions

4. Attention, working memory and psychomotor tempo
5. Speech

6. Visuospatial functions

B 2.7.2 Derived by PCA

Additionally, to the six cognitive parameters proposed by the neuropsychol-
ogist, a seventh parameter, global efficiency, was added. This parameter
was inspired by Hawellek el al. [28] who calculated the global efficiency as
the first principal component of the neuropsychological tests. In my case,
the PCA of the neuropsychological tests showed, that the first principal
component explained about 42 % of the total variance (Figure [2.11). This
component also strongly correlated with the cognitive parameters derived
by the neuropsychologist (Figure [2.10), suggesting it might be a reasonable
estimation of the global cognition. The tests that mostly contributed to the
first principal component were mainly related to the executive functions and
verbal fluency (Figure |2.12)). Those properties correspond to the observations
made in the original paper by Hawellek el al. [2§].

. 2.8 Statistical evaluation

Kendall’s 7 was used to estimate possible correlations between the network
and cognitive parameters. The advantage of the Kendall’s 7 is that it is a non-
parametric test and thus is robust to outliers and can also detect nonlinear
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monotonic relationships. Furthermore, Kendall’s 7 is more appropriate for
discrete data, which might be the case with some of the neuropsychological
tests. It is also easy to calculate and interpret [29]. In this thesis, T-values
and their p-values were computed using a corresponding function from the
SciPy library [30]. The p-value was calculated for the null hypothesis 7 = 0,
meaning no monotonic relationship.

The correlation coefficient and its p-value were calculated multiple times
to evaluate various possible relationships between the network and cognitive
parameters. This repeated testing might lead to many falsely rejected true
null hypothesis (some p values are small just by chance). For this reason,
there are two methods used in this thesis to minimalise the reporting of
falsely significant values and enhance the final interpretations. Firstly, the
Benjamini-Hochberg procedure was used to adjust the significance level of
the p-values. Secondly, the shapes of the resulting p-value histograms were
studied. Those histograms are roughly uniform if the null hypothesis is true
for every test. However, if there is a greater portion of hypothesis tests for
which the null hypothesis is false, those tests will produce very small p-values
(<0.05) and will cause the final histogram to be right-skewed (Figure [2.13])
[31].
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Recording montage
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Figure 2.1: The EEG recording montage consisted of 128 electrodes. 10 of those
electrodes, showed in red (AFz, AFF1, AFF2, Fz, FFC4h, FT9, T8, P7, M1,
M2), were removed from the final network analysis because their signals were
missing (flat, disconnected) in some of the recordings.
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Figure 2.2: The figure shows a diagram of the EEG processing pipeline. The
EEG signals are first filtered in the required frequency band. Then, independent
component analysis (ICA) is used to identify and remove cardiac and ocular
artefacts. Afterwards, the signals are split into 2-second epochs and statistical
thresholding is performed to remove the epochs that contain artefacts. Artefact-
free epochs are used to estimate functional connectivity based on the cross-spectra
of the signals. The final network is thresholded to remove weak spurious links.
Finally, the network parameters are calculated.
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Figure 2.3: The figure shows a 5-second window illustrating five independent
components (ICs) and an ECG channel for comparison. IC 1 and IC 4 (in
red) correspond to cardiac artefacts (CAs). Notice their similarity to the ECG
channel.
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CA removal demonstration
Before ICA
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Figure 2.4: A visual inspection of the cardiac artefact (CA) removal on the
example of 3 EEG channels. An ECG channel included for comparison. Notice
the R-peaks leaking appearing in PPO9h and POO4h channels in the upper
panel. After the artefact removal, the lower panel, those peaks disappear. The
genuine EEG signal remains unaltered.

Scalp topography of OA IC Non-OA ICs

0.35

Unmixing matrix value

-0.35

Figure 2.5: On the left-side, an example of a scalp topography of an independent
component (IC) that corresponds to an ocular artefact (OA). On the right-side,
for comparison, four ICs that do not represent an OA.
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OA removal demonstration
Before ICA

After ICA
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Figure 2.6: The figure shows an example of the ocular artefact (OA) removal.
The upper panel shows four EEG before the ICA and the lower panel shows the
same signals after the removal of OA ICs. Notice that channel Cz that does not
contain any artefacts remains unaltered.

Cognitive domain Measure

Global cognitive performance | Mini-mental state examination

Free recall

Total recall

Memory Delayed free recall

Delayed total recall

Trail making test, part B

Phonemic verbal fluency

Executive functions —
Similarities

Stroop

Trail making test, part A

Attention, working memory Digit span, forward
)

d ho-motor t
and psycho-motor tempo Digit span, backward

Boston naming test

h f i
Speech functions Semantic verbal fluency

Visuospatial functions Visual object and space perception battery

Table 2.3: A list of neuropsychological tests divided into cognitive domains.
The division was proposed by the test administrator.
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Betweenness centrality
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Figure 2.7: The figure shows the dependency of the parameter value on the
threshold for three network parameters, betweenness centrality, clustering coeffi-
cient and variance degree. The data is shown for four randomly chosen subjects
(colour lines). The dashed line shows the parameter value for a random network
that was estimated based on 1000 iterations. The final network parameter for
each subject is the mean over all the thresholds.
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Correlation matrix of network parameters

Path length 0.39 0.49 0.19 0.35
Global efficiency 0.42 0.52 OB 0.16 0.39
* Clustering coefficient [o2 5 0 . . 0.52
Transitivity JO& g . . ! 0.53
Closeness centrality ' O. 0.64 | 0.74
* Betweenness centrality 0.39 0.49
* Variance degree [o8 0 0.52 0.53

Assortativity [Ke& : 0.83 0.89

Path length

Global efficiency

* Clustering coefficient
Transitivity

Closeness centrality

* Betweenness centrality
* Variance degree
Assortativity

Figure 2.8: Network parameters are strongly intercorrelated. Parameters marked
with a star were selected for further analysis as the representatives of the
overall connectivity. The presented numbers are absolute values of the Pearson
correlation coefficient. The absolute values are presented to quickly spot the
strong correlations, for the original values see Figure
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Correlation matrix of network parameters

Path length 0:39 N0H4ON -0.86 0.19 ' 0.35
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* Betweenness centrality -1 0:39 B0MON -0.86
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Assortativity [l EEURIE 0.83 0.89 [EUNER 1)<

Path length

Global efficiency

* Clustering coefficient
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Figure 2.9: The values of the Pearson correlation coefficient for each pair-wise
combination of the network parameters. The figure is the same as Figure |2.8
but it shows also the minus signs to make the interpretation of the relationships
clearer.
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Correlation matrix of cognitive parameters

MMSE

Memory

Executive

A-WM-PMT

Speech

Visuospatial

Cognitive efficiency

W >
= g
= 9]

=

Executive
A-WM-PMT
Speech
Visuospatial

Cognitive efficiency

Figure 2.10: Correlation matrix of the cognitive parameters. Notice that the
cognitive efficiency, a parameter derived by the PCA, is strongly and positively
correlated with all the other parameters. MMSE stands for Mini-mental state
examination (global cognitive performance) and A-WM-PMT stands for attention,
working memory and psychomotor temp.
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Expalained variance by principal components
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Figure 2.11: The first principal component explains over 42 % of the total
variance.
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Figure 2.12: The first principal axis coefficients. The main contributors are trail
making tests (TMT A, TMT B), Stroop test and the test on similarities, which
mostly correspond to the executive functions.
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Figure 2.13: The figure illustrates histograms of p-values from two different
studies. Upper histogram depicts the distribution of p-values that are roughly
uniform, which indicates that the null hypothesis was true for every test. In the
lower plot, small p-values are much more probable which suggests that many of
the small p-values correctly rejected false null hypotheses and were not caused
just by a random fluctuation (source: Glickman et al. [31]).
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Chapter 3

Results

The analysis was performed on a sample of 45 post-stroke patients. For
each patient, three network parameters (clustering coefficient, betweenness
centrality, variance degree) were estimated by three connectivity estimators
(weighted phase lag index, imaginary coherence, coherence) in three frequency
bands (theta, alpha, beta) which added up to 27 parameters in total. Those
parameters were compared against 7 cognitive parameters, 6 proposed by the
neuropsychologist and 1 estimated by the PCA.

. 3.1 Overall correlations

Kendall’s 7 and its p-value were calculated for each network-cognitive param-
eter pair to test the null hypothesis that there is no relationship between the
parameters. In total, 189 null hypothesis were tested from which 19 (10 %)
were significantly rejected on the significance level of 0.05. However, none of
the tests was significant after the Benjamini-Hochberg false discovery rate
correction (Table 3.1)). Figure 3.1 shows a histogram of the produced p-values
that seems to be somehow right-skewed.

Out of the 19 significant tests 2 included global cognitive parameter; 1
memory; 3 executive functions; 4 attention, working memory and psychomotor
tempo; 3 speech; 0 visuospatial functions; and 6 cognitive efficiency. That
made the cognitive efficiency the most correlated cognitive parameter.

Regarding the significant tests and network parameters, 6 included cluster-
ing coefficient, 7 betweenness centrality, and 6 variance degree.

B 3.2 Connectivity estimators

The highest average Kendall’s 7s were observed for imaginary coherence in
theta and beta frequency bands (Figure 3.2)). The same result was indicated
also by the ratio of significant p-values (Figure 3.3|) that were 0.24 and 0.33
for imaginary coherence in theta and beta bands respectively.

In Figure 3.4, histograms of p-values for all the connectivity estimators are
shown. Histograms for weighted phase lag index and imaginary coherence in
theta and beta bands indicate a strong righ-skewness.
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3. Results
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Figure 3.1: Histogram of all 189 p-values. The values are noticebly right-skewed
suggesting there might be a relationship between the network and cognitive
parameters.

Average Kendall's t-values

wpli
0]
—
>
%]
©
Q
€
> imcoh
=
>
g
O
Q
C
C
o)
O coh

theta alpha beta
Frequency band

Figure 3.2: Average 7-value for each connectivity estimator, weighted phase lag
index (wpli), imaginary coherence (imcoh), and coherence (coh).
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3.2. Connectivity estimators

’ Band ‘ Cognitive parameter | Network parameter ‘ T ‘ P ‘ p* ‘
a-wm-pmt clustering coefficient 0.29 | 0.005 | 0.34
theta | speech clustering coefficient 0.21 | 0.041 | 0.45
cognitive efficiency clustering coefficient 0.23 | 0.027 | 0.45
beta memory betweenness centrality | 0.21 | 0.043 | 0.45
cognitive efficiency variance degree 0.22 | 0.035 | 0.45

(a) : Weighted phase lag index

’ Band ‘ Cognitive parameter ‘ Network parameter ‘ T ‘ P ‘ p* ‘
executive functions betweenness centrality | -0.22 | 0.030 | 0.45
a-wm-pmt clustering coefficient 0.29 | 0.005 | 0.34
theta | a-wm-pmt betweenness centrality | -0.21 | 0.040 | 0.45
cognitive efficiency clustering coefficient 0.22 | 0.035 | 0.45
cognitive efficiency betweenness centrality | -0.23 | 0.028 | 0.45
executive functions betweenness centrality | 0.20 | 0.048 | 0.46
executive functions variance degree 0.27 | 0.008 | 0.39
a-wm-pm variance degree 0.25 | 0.016 | 0.45
beta speech betweenness centrality | 0.21 | 0.043 | 0.45
speech variance degree 0.21 | 0.043 | 0.45
cognitive efficiency betweenness centrality | 0.22 | 0.035 | 0.45
cognitive efficiency variance degree 0.29 | 0.005 | 0.34

(b) : Imaginary coherence

’ Band ‘ Cognitive parameter ‘ Network parameter ‘ T ‘ 9] ‘ p* ‘
theta global cognition clustering coefficient -0.25 | 0.025 | 0.45
global cognition variance degree -0.26 | 0.017 | 0.45

(c) : Coherence

Table 3.1: List of cognitive-network parameter pairs that were significantly
correlated on the significance level of 0.05. The tables show the results separately

for the weighted phase lag index (a), imaginary coherence (b) and coherence (c).

The p* column depicts the p-value after the Benjamini-Hochberg correction.
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3. Results
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Figure 3.3: Ratio of significant p-values for each connectivity estimator, weighted
phase lag index (wpli), imaginary coherence (imcoh), and coherence (coh).

Histograms of p-values

Connectivity measure
imcoh wpli

coh

theta alpha beta
Frequency band
Figure 3.4: Histogram of p-values for all connectivity estimators. Notice that
the histograms for the weighted phase lag index and imaginary coherence in the

theta and beta bands are strongly right-skewed. wpli indicates weighted phase
lag index, imcoh imaginary coherence, and coh coherence.
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Chapter 4

Discussion

In this thesis, I correlated cognitive and network parameters of 45 post-stroke
patients. None of the tested relationships showed a significant relationship
after the Benjamini-Hochberg correction. However, the resulting histogram
of p-values (Figure |3.1) was considerably right-skewed, implying there might
be some correctly rejected null hypotheses worth further exploring.

I explored the data more closely by plotting the p-value histograms sepa-
rately for each pairwise combination of a connectivity measure and a frequency
band (Figure 3.4). The resulting histograms showed very high right-skewness
for the weighted phase lag index (WPLI) and imaginary coherence in theta
and beta bands. Furthermore, for the imaginary coherence in theta and beta
bands, the percentage of p-values smaller than 0.05 reached 24 and 33 %
respectively, which is far more that one would expect by pure chance. The
better results for the WPLI and imaginary coherence as in comparison with
coherence are interesting because those two measures are less affected by the
volume conduction which might be the reason why the standard coherence
showed less significant correlations.

There were no significant results in the alpha band. Findings in the beta
band are saying that the betweenness centrality and variance degree is getting
bigger along with the bigger cognitive performance. Interestingly, in the theta
band, the higher cognitive performance is reflected by lower betweenness
centrality and higher clustering coefficient. Those differences between the
changes in the beta and theta bands might suggest different nature of the
reorganisation in distinct frequency bands.

Interestingly, in some previous studies [14], (15} [I7], the authors also observed
changes in the beta band connectivity related to cognitive decline. However,
it is a little bit tricky to compare the exact results with those studies because
of the different methodology used in each of them. Nevertheless, it is clear
that the quality of the connectivity in the beta band changes in correlation
with the cognitive decline.

A lot of effort in this thesis was dedicated to the development of the whole
protocol that leads from the raw EEG and neuropsychological data to the
final statistical comparison of the network and cognitive parameters. The
independent component analysis reliably removes cardiac and ocular artefacts
and the averaging of the network parameters over multiple thresholds adds
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4. Discussion

to the final robustness of the network parameters.

In collaboration with a neuropsychologist, we derived a set of cognitive
parameters from the neuropsychological tests. The most correlated cognitive
parameter was global efficiency, which is the parameter that was calculated
based on the PCA as compared to the parameters that were proposed by
the neuropsychologist. Therefore, this parameter could present a favourable
one-number representation of the entire battery of the neuropsychological
tests.

In some studies, the authors, instead of the raw neuropsychological tests,
use their deviations from the age and education norms. That is because many
of the administrated tests are strongly influenced by age, education and also
sex, which might distort the measured values. Nevertheless, the network
parameters were also shown to be influenced by age and sex.

Volume conduction is a common problem of the EEG recordings. In this
thesis, the network parameters that were calculated based on the functional
connectivity measures less sensitive to volume conduction (WPLI, imaginary
coherence) showed stronger correlations with cognitive parameters than the
network parameters estimated from the coherence networks. As stated in the
literature [9], also in my case, coherence led to lattice-like networks similar to
Figure [1.6l In those networks were observable two main clusters in frontal
and occipital areas, possibly due to strong alpha activity. The WPLI and
imaginary coherence networks contained more connections across the whole
brain connecting nodes representing different anatomical structures. Even
though the WPLI and imaginary coherence are robust to volume conduction,
it is a question whether they do not ignore connections between neighbouring
regions that actually should be connected. We should also ponder whether
the presented EEG functional networks represent actual brain networks or are
just a quantitative description of the changes in the observable EEG activity.
For example, source reconstruction techniques might be applied to work with
the time series that are related to the actual neural sources rather than scalp
electrodes.
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Chapter 5

Conclusion

In this thesis, I developed an automatic algorithm for the estimation of the
network parameters from the EEG recordings. The algorithm is very variable
and offers evaluation of several network parameters based on various connec-
tivity measures and frequency bands. In cooperation with a neuropsychologist,
we also prepared a favourable parametrisation of the neuropsychological tests
and converted them into cognitive parameters. Finally, the network and cog-
nitive parameters were correlated with some significant values found mainly
in the theta and beta bands. However, those correlations were rather weak,
and so it is not possible to conclude that there is any significant association
between the network and cognitive parameters.

Nevertheless, this thesis presented methods and ideas that can be built
upon in future research on this topic. Mainly, the algorithm for the network
parameter estimation is easily editable and reusable and so are the methods
for the parametrisation of the neuropsychological tests. I also showed some
potentially interesting correlations in theta and beta bands that can be further
explored in the prospective research on this topic.

In the future, it would be interesting to repeat this study on a larger
group of patients. The changes in the connectivity could also be examined
from a different point of view. For example, we could study the functional
connectivity and cognitive decline in a longitudinal study and consequently
obtain a better insight into the dynamics of the changes that those parameters
undergo after a stroke. It would also be beneficial to recruit a group of healthy
controls and compare their networks to the networks of post-stroke patients.

41



42



1]

[10]

Bibliography

E. Bullmore and O. Sporns. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci.,
10:186-198, 2009.

M. Rubinov and O. Sporns. Complex network measures of brain connec-
tivity: Uses and interpretations. Neuroimage, 52:1059-1069, 2010.

C. Stam. Modern network science of neurological disorders. Nat. Rew.
Neurosci., 15:683-695, 2014.

C. Gerloff and M. Hallett. Big news from small world networks after
stroke. Brain, 133:952-955, 2010.

E. van Straaten and C. Stam. Structure out of chaos: Functional
brain network analysis with EEG, MEG, and functional MRI. FEur.
Neuropsychopharmacol., 23:7-18, 2013.

A. Rehme and C. Grefkes. Cerebral network disorders after stroke:
evidence from imaging-based connectivity analyses of active and resting
brain states in humans. J. Physiol., 591:17-31, 2013.

A. Baldassarre, L. Ramsey, J. Siegel, G. Shulman, and M. Corbetta.
Brain connectivity and neurological disorders after stroke. Curr. Opin.
Neurol., 29:706-713, 2016.

E. Carrera and G. Tononi. Diaschisis: past, present, future. Brain,
137:2408-2422, 2014.

L. Peraza, A. Asghar, G. Green, and D. Halliday. Volume conduction
effects in brain network inference from electroencephalographic recordings
using phase lag index. J. Neurosci. Methods, 207:189-199, 2012.

M. Christodoulakis, A. Hadjipapas, E. Papathanasiou, M. Anastasiadou,
S. Papacostas, and G. Mitsis. Graph-theoretic analysis of scalp EEG
brain networks in epilepsy — the influence of montage and volume con-
duction. In 18th IEEFE International Conference on Biolnformatics and
BioEngineering, IEEE BIBE 2013, 2013.

43



Bibliography

[11]

[14]

[18]

[21]

J. Wu, E. Quinlan, L. Dodakian, A. McKenzie, N. Kathuria, R. Zhou,
R. Augsburger, J. See, V. Le, R. Srinivasan, and S. Cramer. Connectivity
measures are robust biomarkers of cortical function and plasticity after
stroke. Brain, 138:2359-2369, 2015.

L. Wang, X. Guo, Z. Jin J. Sun and, and S. Tong. Cortical networks of
hemianopia stroke patients: a graph theoretical analysis of EEG signals
at resting state. In Conf. Proc. IEEE Eng. Med. Biol. Soc., 2012.

F. Fallani, F. Pichiorri, G. Morone, M. Molinari, F. Babiloni, F. Cincotti,
and D. Mattia. Multiscale topological properties of functional brain
networks during motor imagery after stroke. Neuroimage, 83:438-449,
2013.

M. Klados, C. Styliadis, C. Frantzidis, E. Paraskevopoulos, and
P. Bamidis. Beta-band functional connectivity is reorganized in mild cog-
nitive impairment after combined computerized physical and cognitive
training. Front. Neurosci., 10:1-12, 2016.

C. Stam, Y. van der Made, Y., Pijnenburg, and Ph. Scheltens. EEG
synchronization in mild cognitive impairment and Alzheimer’s disease.
Acta Neurol. Scand., 108:90-96, 2003.

F. Vecchio, F. Miraglia, D. Quaranta, G. Granata, R. Romanello,
C. Marra, P. Bramanti, and P. Rossini. Cortical connectivity and
memory performance in cognitive decline: A study via graph theory
from EEG data. Neuroscience, 316:143-150, 2016.

E. Kinney-Lang, M. Yoong, M. Hunter, K. Tallur, J. Shetty, A. McLel-
lanc, R. Chin, and J. Escudero. Analysis of EEG networks and their
correlation with cognitive impairment in preschool children with epilepsy.
Epilepsy Behav., 90:45-56, 2019.

V. Pangman, J. Sloan, and L. Guse. An examination of psychometric
properties of the mini-mental state examination and the standardized
mini-mental state examination: Implications for clinical practice. Appl.
Nurs. Res., 13:209-213, 2000.

M. Calero, L. Arnedo, E. Navarro, M. Ruiz-Pedrosa, and C. Carnero.
Usefulness of a 15-item version of the boston naming test in neuropsycho-
logical assessment of low-educational elders with dementia. J. Gerontol.
B Psychol. Sci. Soc. Sci., 57B:P187-P191, 2002.

I. Herrera-Guzman, Pena-Casanova, J. Lara, E. Gudayol-Ferre, and
P. Bohm. Influence of age, sex, and education on the visual object and
space perception battery (VOSP) in a healthy normal elderly population.
Clin. Neuropsychol., 18:385-394, 2004.

A. Widmann, E. Schroger, and Burkhard Maess. Digital filter design for
electrophysiological data — a practical approach. J. Neurosci. Methods,
250:34-46, 2015.

44



[22]

23]

[24]

[25]

[28]

[29]

[30]

[31]

Bibliography

A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier,
C. Brodbeck, L. Parkkonen, and M. Hamalainen. MNE software for
processing MEG and EEG data. Neuroimage, 86:446-460, 2014.

J. Dammers, M. Schiek, F. Boers, C. Silex, M. Zvyagintsev, U. Pietrzyk,
and K. Mathiak. Integration of amplitude and phase statistics for

complete artifact removal in independent components of neuromagnetic
recordings. IEEFE Trans. Biomed. Eng., 55:2353—-2362, 2008.

Y. Li, Z. Ma, W. Lu, and Y. Li. Automatic removal of the eye blink
artifact from EEG using an ICA-based template matching approach.
Physiol. Meas., 27:425-436, 2006.

H. Nolan, R. Whelan, and R. Reilly. FASTER: Fully automated statistical
thresholding for EEG artifact rejection. J. Neurosci. Methods., 192:152—
162, 2010.

D. Zwillinger and S. Kokoska. CRC Standard Probability and Statistics
Tables and Formulae. Chapman & Hall/CRC, 2000.

M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, and C. Pen-
nartz. An improved index of phase-synchronization for electrophysiolog-
ical data in the presence of volume-conduction, noise and sample-size
bias. Neuroimage, 55:1548-1565, 2011.

D. Hawellek, J. Hipp, C. Lewis, M. Corbetta, and A. Engela. Increased
functional connectivity indicates the severity of cognitive impairment in
multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A., 108:19066-19071, 2011.

M. Schaeffer and E. Levitt. Concerning Kendall’s tau, a nonparametric
correlation coefficient. Psychol. Bull., 53:338-346, 1956.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001-2019. Online at http://www.scipy}
org/} accessed May 22, 2019.

M. Glickman, S. Rao, and M. Schultz. False discovery rate control is
a recommended alternative to bonferroni-type adjustments in health
studies. J. Clin. Epidemiol., 67:850-857, 2014.

45


http://www.scipy.org/
http://www.scipy.org/

