Czech Technical University
Faculty of Transportation Sciences

Department of Mechanics and Materials

Study field: Transportation Systems and Technology

Modular Multi-process Control

Software for Experimental Devices

MASTER’S THESIS

Author: Be. Véclav Rada
Supervisors: Ing. Petr Zlamal, PhD., Ing. Tomas Fila
Year: 2019

CESKE VYSOKE UCENI TECHNICKE V PRAZE
Fakulta dopravni

dékan

Konviktska 20, 110 00 Praha 1

KOLS ...t eeee e eeeeeeeee e e eeeeee s Ustav mechaniky a material

ZADANI DIPLOMOVE PRACE
(PROJEKTU, UMELECKEHO DILA, UMELECKEHO VYKONU)

Jméno a pfijmeni studenta (vcetné titull):
Bc. Vaclav Rada

Kad studijniho programu a studijni obor studenta:
N 3710 — DS — Dopravni systémy a technika

Nazev tématu (Cesky): Modularni multiprocesova aplikace pro Cislicové

rizeni experimentalnich zarizeni

Nazev tématu (anglicky): Modular Multi-process Control Software for Experimental

Devices

Zasady pro vypracovani

PFi zpracovani diplomové prace se fidte osnovou uvedenou v nasledujicich bodech:

e V ramci Ustavu jsou vyvijena a provozovana experimentalni zafizeni obsahujici
spole¢né funkéni komponenty (krokové motory, polohovaci osy, snimace fyzikalnich
veli¢in atd.), avsak mohou se podstatné lisit v jejich poctu, ucelu i povaze fizeni. V
praci dojde k rozvoji softwaru, vyvinutym studentem v ramci bc. prace tak, aby
umoznil uZivatelsky snadnou a rychlou adaptovatelnost Fidiciho sw. na funkéné
rozdilna experimentalni zarizeni.

e Cilem prace je vytvorit softwarové freSeni zaloZené na jazyku Python a platformé
LinuxCNC umozriujici pomoci zasuvnych modulé a konfiguraénich souborl snadnou
adaptaci na konkrétni experimentdini zafizeni bez nutnosti znalosti programovaciho
jazyka. ReSeni bude koncipovano jako multiprocesové, tj. budou navrzeny a
realizovany jednotlivé funkéni celky (jadro, GUI atd.) s definovanym rozhranim, ¢ehoz
mdZe byt s vyhodou vyuZito napf. pfi fizeni po siti.

e Funkcnost realizovaného feseni bude ovérena na redlném experimentalnim zafizeni.

Rozsah grafickych praci: nebyl stanoven

Rozsah prlivodni zpravy: minimalné 55 stran textu (véetné obrazkd, graft
a tabulek, které jsou soucasti priivodni zpravy)

Seznam odborné literatury: G. Zaccone: Python Parallel Programming Cookbook,
ISBN 978-1-78528-958-3

LinuxCNC Documentation (http://linuxcnc.org/docs/)

M. Summerfield: Rapid GUI Programming with Python
and Qt, ISBN 978-0134393333

Vedouci diplomové prace: Ing. Petr Zlamal, PhD.
Ing. Tomas Fila

Datum zadani diplomové prace: 28. ¢ervna 2018
(datum prvniho zadani této prace, které musi byt nejpozdéji 10 mésicd pfed datem prvniho
predpokiadaného odevzdani této prace vyplyvajiciho ze standardni doby studia)

Datum odevzdani diplomové prace: 28. kvétna 2019
a) datum prvniho predpokladaného odevzdani prace vyplyvajici ze standardni doby studia

a z doporuceného Casového planu studia
b) v pripadé odkladu odevzdani prace nasledujici datum odevzdani préace vyplyvajici z doporué¢eného

Casového planu studia

prof. Ing. Ondrej Jirousek, Ph.D. 7 doc. Ing. Pavel Hrubes, Ph.D.

) vedouci dékan fakulty
Ustavu mechaniky a materialC

Potvrzuji prevzeti zadani diplomové prace. /2
(Lada.

Bc. Vaclav Rada
jméno a podpis studenta

V Praze dn€.......oovvuvnenen. U S —

Declaration

I hereby submit, for the evaluation and defence, the master’s thesis elaborated at the

CTU in Prague, Faculty of Transportation Sciences.

I have no relevant reason against using this work in the sense of §60 of Act No. 121/2000
Coll. on the Copyright and Rights Related to Copyright and on the Amendment to Certain
Acts (the Copyright Act).

I declare T have accomplished my final thesis by myself and I have named all the sources

used in accordance with the Guideline on the ethical preparation of university final theses.

In Prague, May 25, 2019
Be. Vaclav Rada

Acknowledgements

The thesis has been supported by the Operational Programme Research, Development
and Education in project Engineering applications of microworld physics (CZ.02.1.01/
0.0/0.0/16_019/0000766) and by the Grant Agency of the Czech Technical University in
Prague (grant no. SGS15/225/OHK2/3T/16).

All the support is gratefully acknowledged.

Be. Vaclav Rada

Title:

Author:

Study programme:

Study field:
Degree:

Year:

Supervisors:

Abstract:

Keywords:

Modular Multi-process Control Software for Experimental

Devices
Be. Vaclav Rada

Technology in Transportation and Telecommunications
Transportation Systems and Technology

Master’s Thesis

2019

Ing. Petr Zlamal, PhD., Ing. Tomas Fila
Department of Mechanics and Materials, Faculty of Transportation
Sciences, Czech Technical University; Institute of Theoretical and

Applied Mechanics of the Czech Academy of Sciences

The proposed thesis enhances the functionality of the previous-
generation control software developed in the Department of Me-
chanics and Materials and adds specific controls essential for the
proper operation with newly developed experimental devices, such
as the support for multiple sensors (load cells, temperature sen-
sors, etc.), temperature control, force control, etc. The control soft-
ware is a multi-process application based on a multi-process core
which results in a rapid performance increase over the previous-
generation. Modular architecture of the user interface enables the
very effective adaptation to various experimental devices. Cur-
rently, the control software is fully utilised in controlling the experi-
mental devices in the department, numerous scientific and engineer-
ing experiments have been performed and many valuable studies

have been published.

LinuxCNC, Python Interface, Python, control software,

multiprocessing

Nazev:

Autor:

Studijni program:

Obor:
Druh prdce:
Rok vydani:

Vedouct price:

Abstrakt:

Klicovd slova:

Modularni multiprocesova aplikace pro ¢islicové fizeni ex-

perimentalnich zafizeni

Be. Vaclav Rada

Technika a technologie v dopravé a spojich
Dopravni systémy a technika

Diplomové prace

2019

Ing. Petr Zlamal, PhD., Ing. Tomas Fila
Ustav mechaniky a materialii, Fakulta dopravni, Ceské vysoké
uceni technické v Praze; Ustav teoretické a aplikované mechaniky

Akademie véd Ceské republiky

Predlozend prace zdokonaluje funkcionalitu piedchozi generace
fidiciho software vyvinutého na Ustavu mechaniky a materiali
a rozSifuje jej o ovladaci prvky nutné pro fizeni nové vzniklych
experimentalnich zafizeni, jako je napf. podpora méfeni pii pouziti
dvou a vice siloméru, pouziti teplotnich ¢idel, teplotni a silové
fizeni apod. Nové vyvinuty software je multiprocesova aplikace,
kterd se opird o robustni multiprocesové jadro, coz znacné pfris-
pivd k vysokému vykonu aplikace. Modularni a dynamicky gen-
erované ovladaci prvky uzivatelského rozhrani umoznuji velmi
rychlou a efektivni adaptaci pro pouziti riznych experimentéilnich
zafizen. Ridici software je v soucasné dobé plné vyuzivan, byla diky
nému provedena tada védeckych i inzenyrskych méfeni a vznikla

fada hodnotnych publikaci.

LinuxCNC, Python Interface, Python, fidici software,

multiprocessing

Contents

1 Introduction 14
2 Theoretical background 16
2.1 Stepper motor 16
2.1.1 Controlling stepper motors 17
2.1.1.1 Open-loop control system 19

2.1.1.2 Closed-loop control system 19

2.2 Encoders 20
2.2.1 Optical encoders 20
2.2.2 Magnetic encoders 21
2.2.3 Incremental and absolute encoders 21
2.2.3.1 Absolute encoders Lo 21

2.2.3.2 Incremental encoders 21

2.3 LinuxCNC0 22
2.3.1 Hardware abstraction layer 22
2.3.2 PIDcontroller 22
2.3.2.1 Proportional term oL 23

2.3.2.2 Integral term 23

2.3.2.3 Derivative termo 24

2.3.3 Hostmot2 driver. L 24
2.3.4 Userinterfaces o 24
2.3.5 PyVCP . . . 24
23.6 GladeVCP 25
2.3.7 Python Interface 25
2.3.8 Python HAL component 25

2.4 Python e 25

2.4.1 Global interpreter lock L. 26
2.4.2 Threading module oo 26
2.4.3 Multiprocessing module 0oL 26
2.4.3.1 Multiprocessing pipes 27

2.4.3.2 Multiprocessing queues 27

244 PyQto 28
2441 Qt Creator 28

2442 Qt Designero 28

2.4.4.3 User Interface Compiler 29

245 PyQwt . . .o 29
2.4.6 Matplotlib 29
247 PyGnuplot 29

3 Initial state 30
3.1 Straightforward adaptation to various experimental devices 31
3.2 Sensor SUPPOTt 32
3.3 Displacement-driven experiments 32
3.4 Obtaining and logging data L. 32
3.5 Real-time plotting and static plotting 33
3.6 OVerview 33
4 Developed software 35
4.1 Introduction 35
4.2 Performance gain oL 35
4.2.1 Control software core Lo 36
4.2.1.1 Stat Poller 36

4.2.1.2 DataLogger. o 38

4.2.1.3 Data Keeper oo 38

4.2.1.4 Command Executor 40

4.2.1.5 T/O Manager 40

4.2.2 User Interface o 40
4.2.2.1 Plotting performance benchmark 40

4.3 Custom Python script execution

4.3.1 Unix domain socket

4.3.2 Serialising moduleso oo

4.3.2.1
4.3.2.2
4.3.2.3
4.3.2.4
4.3.2.5

Pickle and cPickle modules
JSON module oo
List serialisation benchmark
Dictionary serialisation benchmark

Recapitulation

4.4 Enhanced Functionality

4.4.1 Introduction

4.4.2 Sensor SUPPOTE v o v o e

4.4.3 Axes position baro o

4.4.3.1
4.4.3.2
4.4.3.3
4.4.34

Encoder support
G92offset
Positioning error Lo

Homed status

4.44 Plot plugin

4.4.5 TForce control

4.4.5.1
4.4.5.2
4.4.5.3
4.4.5.4
4.4.5.5
4.4.5.6
4.4.5.7

Common controls
Constant force command tab
Linear force command tab
Sine wave force command tab
Square wave force command tab
Triangle wave force command tab

Sawtooth wave force command tab

4.4.6 Temperature control Lo

447 Rapolibrary o

Case Studies

5.1 Compression of a spongious sample in simulated physiological conditions

5.2 Fracture analysis of sandstone,

Work in Progress

71
71
74

77

6.1 Remote control 77

6.1.1 TCPsocket 78
6.1.2 Server Manager 78
6.1.3 Client Manager 78
6.1.4 Remote user interface L. 81
6.1.5 Remote script execution L. 81
7 Conclusion 84
Appendices 89
A Prime fatorisation script 89
B Communication schemes description 94
C Plot comparison script 99
D Serialising modules comparison script 102

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Stepper motor feed with and without microstepping 17
STEP and DIR control signals scheme 18
STEP/DIR generated by a PC (CPU) 18
STEP/DIR generated by a motion controller 18
Closed-loop control system scheme 19
Optical encoder scheme, taken and edited from [1] 20
PID controller feedback loop oo o 23
Multithreaded execution within a single process 27
Axes position barso oL 31
Plot plugin of the user interface 33
Results of the prime factorisation benchmark 37
The developed control software scheme 38
The control software core inter-process communication scheme 39
The control software user interface scheme 41
Matplotlib and PythonQwt plot comparison results 42
The API provider and rapo library connection scheme 43
Python list serialisation performance comparison. 47
Python list deserialisation performance comparison 47

10

4.9

4.10

4.11

4.12

4.13

4.14

4.16

4.15

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

5.1

5.2

serialised Python list size comparison 48

Python dictionary serialisation performance comparison 49
Python dictionary deserialisation performance comparison 50
serialised Python dictionary size comparison 50
Experimental device for the 4-point bending 52
Load cell sensor initialising file content 52
The plugin for handling the sensors 23
Thermometer sensor initialising file content 53
The axes position plugin of the user interface 55
The axes position plugin of the user interface with G92 offset active 56
The plot plugin of the user interface o7
Force control flowchart 60
Force control plugin overall view 61
Force control plugin common controls 62
Constant force command tab 000000 63
Linear force command tab oo 64
Sine wave force command tab o000 65
Square wave force command tab L0 oL 66
Triangle wave force command tabo 67
Sawtooth wave force command tabo 0000000 68
Temperature control flowchart 69
Temperature control plugin of the user interface 70
Human bone specimen and loading device 72
Loading device exploded view in detail 72

11

5.3

5.4

)

5.6

5.7

6.1

6.2

6.3

6.4

6.5

Loading device exploded view in detail 73

Overall view of the control software 74
Experimental device for the 4-point bending mechanical test 74
Principle of the 4-point bending and on-the-ly CT 75
Results of the sandstone analysis 76
Scheme of the control software remote control 7
Control software core with connection to the Server Manager included . . . 79
Server Manager and Client Manager inter-process communication scheme . 80

Remote user interface architecture 82

Remote API provider and rapo library connection scheme 83

12

Acronyms

CNC Computer Numerical Control.
CPU Central Processing Unit.

CT Computed Tomography.
DVC Digital Volume Correlation.

FIFO First in, first out.

FPS Frames per second.

GIL Global Interpreter Lock.

GUI Graphical User Interface.
HAL Hardware Abstraction Layer.

IDE Integrated Development Environment.

IPC Inter-process Communication.
JSON Javascript Object Notation.
QML Qt Modeling language.
UIC User Interface Compiler.

WYSIWYG what you see is what you get.

13

Chapter 1

Introduction

In recent years, Computer Numerical Control (CNC) systems have made an enormous
strides. CNC machines have found utilisation in a wide range of applications (industry,
medicine, etc.). Industrial CNC machines are typically aimed at the very effective and
precise manufacturing of parts with complex shapes and have many other advantageous
applications in various industrial fields. There are many CNC software solutions, which
vary in price, performance or closed-source commercial (Siemens, FANUC, LabVIEW)

and open-source solutions (LinuxCNC, Arduino - primarily for hobby operation).

Our research group, in the Department of Mechanics and Materials in the Faculty of
Transportation Sciences at the Czech Technical University and at the Institute of Theo-
retical and Applied Mechanics of the Czech Academy of Sciences, tends to use open-source
solutions, because the needs are different from conventional industrial CNC applications.
Custom experimental devices used for advanced mechanical testing of materials are de-
veloped in the department. Therefore, some properties of the CNC software have to be
operationally modified according to our requirements. For this purpose, closed-source
commercial CNC software is not suitable for use with the devices. The purpose of the

designs can be divided into three groups:

e mechanical loading machines (e. g., in-situ loading devices for X-ray computed to-

mography)
e positioning machines (e. g., optics and sample positioning)
e sample preparation devices (e. g., automatic grinders)

14

The devices are designed to be compact and portable. The devices are equipped with
axes for the precise positioning in cooperation with high resolution encoders. Most of
the devices feature various sensors, such as load cells and thermometers etc., used for

measuring physical quantities, such as force or temperature.

For controlling the experimental devices, an open-source system LinuxCNC is used in the
department. The open-source system is free to use and its functionality may be customised
and extended to fit our requirements with use of the Python programming language
through the LinuxCNC Python Interface. The Python Interface enables one to control

the experimental devices directly using Python.

The performance of the control software is one of the key aspects in terms of reliablility
and precise measurement and data acquisition. Modern CPUs contain numerous process-
ing cores which provide great computing power when utilised properly in parallel. Another
requirement on the control software is a modular design which provides a very straight-
forward adaptation for use with various experimental devices operated in the department

including devices developed in the future.

The control software proposed in the thesis is a multi-process application with modular
features and controls developed in Python programming language. Currently, the control
software is fully used for performing various types of mechanical tests with great success

and, thanks to this, many studies have been published.

15

Chapter 2

Theoretical background

Experimantal devices operated at our department use various types of actuators. The
largest portion of them is equipped with stepper motors, due to their simplicity and low
cost. The devices are equipped with optical or magnetic encoders which provide position

feedback. For controlling the devices an open-source system LinuxCNC is used.

2.1 Stepper motor

A stepper motor is a brushless electric motor, which rotates in a number of equal steps.
A stepper motor primarily consists of two parts: a stator and a rotor. The rotor is a
permanent magnet! of a gear shape with a given number of teeth. The stator consist of
coils, which can be magnetised in a certain order by an electric current and make the

rotor turn to the closest stable position.

Magnetising the coils in a certain order is achieved by a stepper motor driver. The stepper
motor driver takes low-level voltage impulses (commonly 5 V) on the input and produces
a high-current signal which is delivered to the coils in the motor. The impulses on the
driver input are usually in the form of STEP and DIR signals. A STEP signal is a square
shaped signal and each STEP signal impulse? makes the rotor revolve to a fixed angle. This

angle is called a step. Stepper motor drivers usually support a microstepping functionality

!Besides permanent magnet (PM) stepper motors, other types such as variable reluctance (VR) and

hybrid synchronous stepper motors exist
20r rather each rising or sinking edge of the STEP control signal

16

feed
-

— feed without microstepping

— feed with microsteping

time

Figure 2.1: Stepper motor feed with and without microstepping

which provides a smoother motion of the stepper motor. In theory, the microstepping may
increase the motion precision in case a load driven by the motor is well within its maximum

capacity, see Figure 2.1

The DIR signal determines the direction of the stepper motor rotation. For instance, if the
DIR signal is equal to 0 V, the motor rotates clockwise and if the DIR signal is equal to

5V, the motor rotates the other direction - in this case counter-clockwise, see Figure 2.2.

2.1.1 Controlling stepper motors

Controlling stepper motors involve the precise generation of the STEP and DIR signals

for the stepper motor driver.

The simplest approach is to generate the signals by the Central Processing Unit (CPU) of
a PC and deliver it to the driver using an output port (e.g., parallel port), see Figure 2.3.
However, this approach has a massive drawback. In this case, the signal generation is CPU-
bound, therefore, it is very dependent on the CPU workload and can exhibit significant
latency. If the CPU is stressed high, the STEP and DIR signals might not be generated
by the CPU precisely in time, hence the system is affected by excessive latency.

Another approach is to generate STEP and DIR signals on a dedicated motion controller

or another form of the real-time hardware layer. The motion controller enables decreasing

17

= STEP signal

= DIR signal
voltage, 7T feed direction change
]
:
SV - -- -- -- R -- -- --
'
oV E
' time
voltage '
]
i
5V 4+
ov
time
Figure 2.2: STEP and DIR control signals scheme
STEP/DIR Driver position
PC > .y > Motor
(amplifier) (output)

Figure 2.3: Stepper motor controlling scheme, the STEP/DIR generator is a PC (CPU)

command Motion STEP/DIR Driver position
I 3
> > s Motor
(input) Controller (amplifier) (output)

Y

pPC

Figure 2.4: Stepper motor controlling scheme, the STEP/DIR generator is a motion con-

troller

18

command | Motion STEP/DIR_ Driver Mot position
(input) "1 controller "1 (amplifier) otor (output)

Y

PC

Feedback

Feedback loop

Figure 2.5: Closed-loop control system scheme

the system latency as the STEP and DIR signals are generated by the motion controller
independently on a CPU workload. The scheme of this approach is shown in Figure 2.4

2.1.1.1 Open-loop control system

Stepper motors have an inherent ability to control the position, as the position can be
determined by the number of steps to rotate. This makes them very easy to use without
any feedback encoder, but the lack of an encoder limits its performance. In an open-
loop control system, the stepper motor can drive a load which is well within its capacity,
otherwise using a stepper motor beyond the limits may lead into positioning errors due

to missed steps. An open-loop control system scheme is shown in Figures 2.3 and 2.4

2.1.1.2 Closed-loop control system

On the other hand, a closed-loop control system is based on an open-loop control system
concept, but has one or more feedback loops. Closed loop systems are designed to auto-
matically produce and maintain the intended position (command) by comparing it with
the actual position (feedback). The difference between the command and the feedback de-
termines the error which the control system must compensate for. A closed-loop control

system scheme is shown in Figure 2.5

19

Analog Digital
detector o] - 1)
sign Squaring signal Maotion
. circuit controller
N
P g AW’ mn
-~

Degrees per pulse

P
e A\

~
\ul/‘/
Light source g
(LED, light bulb, neon)

Incremental

3w pulses [counts) per revolution

encoder wheel

Figure 2.6: Optical encoder scheme, taken and edited from [1]

2.2 Encoders

An encoder is a sensor or transducer that encodes a position to an analog signal, which
can then be decoded by a motion controller back into position. Encoders may work on

various physical principles.

2.2.1 Optical encoders

Optical encoders are one of the most commonly used encoders in automation applications.
Optical encoders are based on light detection as the light passes through an encoder wheel.
A source of light (mostly LED) shines through an encoder wheel which has a series of
slots in it. As the wheel rotates, the detector detects light passing though the slots. Each
detection of the light exhibits the rotation of the encoder wheel by a defined angle. Optical
encoders can achieve very high precision and are suitable for high feed rates. However,
optical encoders are sensitive to contaminants such as dust, liquid and grease, also to

shocks and vibrations, which makes them inconvenient for use in industrial environments.

20

2.2.2 Magnetic encoders

Magnetic encoders employ a magnetised scale and a read head. The read head can use ei-
ther a Hall effect or a magnetoresistive sensor to detect signals generated by the magnetic
code of the scale to provide position information. Unlike optical encoders, magnetic en-
coders are more resistant to environmental impacts, which makes them more suitable for
use in dirty environments. However, the precision of magnetic encoders is lower compared

to optical encoders.

2.2.3 Incremental and absolute encoders

Positioning tasks require precise position values to monitor or control the motion. In
many applications, position sensing is undertaken using rotary encoders, also called shaft
encoders or simply encoders. These sensors transform the mechanical angular position of

a shaft or axle into an electronic signal that can be processed by a control system.

2.2.3.1 Absolute encoders

Absolute rotary encoders are capable of providing unique position feedback from the
moment they are switched on. This is accomplished by scanning the position of a coded
element. All positions in these systems correspond to a unique code. Even motion that
occurs while the system is without power is translated into accurate position feedback

once the encoder is powered up again.

2.2.3.2 Incremental encoders

Incremental rotary encoders generate an output signal each time the shaft rotates a defined
angle. (The number of signals per turn defines the resolution of the device.) Each time
the incremental encoder is powered on it begins counting from zero, regardless of where
the shaft is. The initial homing procedure to a reference point is, therefore, necessary in
all positioning tasks, both upon start up of the control system and whenever power to the

encoder has been interrupted.

21

Experimental devices in the Department of Mechanics and Materials are controlled by an

open-source system LinuxCNC.

2.3 LinuxCNC

LinuxCNC [2] is an open-source software system for the numerical control of CNC ma-
chines such as lathes, milling machines, cutting machines, robots, etc. Due to the precise
control of the CNC machines, LinuxCNC requires real-time computing capabilities which

are provided by real-time extensions of the operating system.

LinuxCNC uses a Hardware Abstraction Layer (HAL) to configure the control system

hardware.

2.3.1 Hardware abstraction layer

The hardware abstraction layer [3| is a software subsystem which provides hardware ab-
straction. It allows applications to use the hardware of the system through a simple
and abstract interface. For instance, the Hostmot2 driver is a package for the Hardware
Abstraction Layer which provides abstraction of Mesa Electronics Anything I/O FPGA
cards, which are used in our department. It features many other abstraction components
such as a PID controller, etc. and also includes various tools, such as a virtual oscilloscope

to examine real-time signals.

2.3.2 PID controller

A PID (proportional-integral-derivative) controller [4] is a control loop based on a feed-
back mechanism widely used in industrial control systems and various other applications
requiring continuous control. A PID controller continuously calculates an error value e(t)
as the difference between the measured process variable y(¢) and the desired setpoint
r(t), see Formula 2.1. It applies a correction based on proportional (P), integral (/), and

derivative (D) terms which constitute the manipulated variable u(t), see Formula 2.2 and

22

—H P K,el®)

¢ t (t)
() @ o(t) I K f e (MdT u(t) Process J >
0
o D

Figure 2.7: PID controller feedback loop

Figure 2.7.

e(t) =r(t) —y(t) (2.1)

de(t)
dt

u(t) = K,-e(t) + K; - /t e(r)dr + Ky - (2.2)

2.3.2.1 Proportional term

The proportional term P = K, -e(t) is proportional to the current value of e(t). The
coefficient K, is a proportional gain. The proportional term is the fundemantal term
of the PID controller. The value of the proportional gain K, is critical to the response
rate and system stability. The proportional term alone cannot achieve a stable deviation

between the command and feedback, so other terms are used.

2.3.2.2 Integral term

The integral term [= K - fot e(7)dr records the past values of e(t) and intergrates them
gradually to calculate the I term. Using this term allows one to reach a stable deviation

between the command and feedback, often in exchange for a longer settling time.

23

2.3.2.3 Derivative term

de(t)

The derivative term D = Ky~ =

estimates the future trend of e(¢). The derivative term
represents the prediction element of the controller and allows the settling time to be

shortened and the system response smoothened.

2.3.3 Hostmot2 driver

Hostomot2 [5] is an open-source driver developed by Mesa Electronics for FPGA Anything
I/O motion control cards. It provides modules such as STEP/DIR generators, PWM
generators, encoders (quadrature counters), etc. which can be loaded into HAL to connect

these module instances to the I/O headers.

2.3.4 User interfaces

LinuxCNC comes natively preinstalled with various Graphical User Interfaces (GUIs),
such as Axis - default user interface 6], T'ouchy - user interface used with touchscreens 7],
etc. Preinstalled user interfaces are primarily designed for industrial CNC applications,
therefore, they are not suitable for use with the custom experimental devices developed in
our department because extended fuctionality is needed. User interfaces with additional
functionality can be developed using LinuxCNC components such as PyVCP or Glade-
VCP or it can be developed in the Python programming language based on the LinuxCNC
Python Interface.

2.3.5 PyVCP

PyVCP (Python Virtual Control Panel) [8] is a package which provides additional func-
tionality to native LinuxCNC GUIs. It is based on the same GUI toolkit (Tkinter) as the
Axis user interface. PyVCP enables adding a custom panel on the right side of the Azis
user interface. However, PyVCP is limited to setting and displaying HAL internals only.

24

2.3.6 GladeVCP

GladeVCP (Glade Virtual Control Panel) [9] is a LinuxCNC component which also extends
functionality to native LinuxCNC GUIs. It uses Glade which is a WYSIWYG graphical
user interface designer. GladeVCP is based on the GTK user interface toolkit. Unlike
PyVCP, GladeVCP is not limited to interacting with HAL only, as an arbitary Python

code can be executed.

2.3.7 Python Interface

LinuxCNC Python Interface [10] enables one to control devices directly using Python
programming language by providing the linuxcnc module for Python. The module is
compatible with Python version 2.x and module usage is very straightforward. It provides
observing status variables of HAL such as axes position, axes velocity, analog/digital
inputs/outputs and sending commands to it through Python. It uses three operating

channels: a status channel, a command channel and an error channel.

2.3.8 Python HAL component

Custom variables of HAL such as encoder position can be observed using the custom HAL
component [11] compatible with Python. For this purpose, the hal module for Python can
be used. It provides connection which can be linked with HAL and share variables using

the connection.

2.4 Python

Python [12] is an interpreted programming language supporting multiple programming
paradigms such as object-oriented, functional, procedural and imperative. Python is a
high-level programming language, it provides dynamic typing and automatic memory

management by using garbage collector.

In 2019, Python features two incompatible versions, Python 2.x and Python 3.x. Python
3.x was first introduced in 2008 and is planned to replace Python 2.x in 2020 when Python

25

2.x will no longer be maintained by the developers. However, some Python modules are
not forward compatible yet, such as the linuxcnc module, see subchapter 2.3.7 which

might be an obstacle in upgrading from Python 2.x to Python 3.x.

Python has multiple implementations such as CPython, Jython, IronPython, etc. CPython
is the default and most commonly used implementation of Python. CPython implemen-

tation is written in the C programming language and Python.

2.4.1 Global interpreter lock

Python default implementation CPython has a significant performance limitation due
to the use of the Global Interpreter Lock (GIL) [13] which is a thread-safe mechanism
to prevent parallel excution by threads within an interpreter process. It means that the
Python threads cannot bring a performance gain by parallel execution, because the thread
needs to acquire the lock in order to execute any instruction, so a multi-threaded execution
cannot be faster than a single-threaded?, see Figure 2.8. When the thread executes a
certain number of Python virtual instructions or a specific time period elapses, the GIL

is released and acquired by another thread.

2.4.2 Threading module

The threading module provides a high-level threading interface. Python threads are some-
times called light-weight processes as they do not require much memory overhead. Multiple
threads within the same process share the same data space. It enables Python threads to
share variables so they comunicate with each other much more easily than if they were

separate processes. However, Python threads are limited by the GIL, see subchapter 2.4.1.

2.4.3 Multiprocessing module

The multiprocessing library provides the ability to spawn separate Python processes using

an interface similar to the threading module. The module enables the true parallel execu-

3Certain computational performance-oriented libraries such as NumPy, SciPy might overcome this

limitation in particular cases

26

. releasing

Thread 1 o TIPSR

Thread 2)

A, :
: : run

Thread 3 : I)

5 5 >

S ; : time
acquiring i ' .
GIL < >

Figure 2.8: Multithreaded execution within a single process

tion of a Python code and may utilise multiple CPU cores. However, Python processes have
distributed memory (does not share data space) which makes the interaction and com-
munication between Python processes (Inter-process Communication (IPC)) challenging.
The multiprocessing library provides various types of Inter-process communication mech-

anisms such as Queues, Pipes and synchronisation primitives such as locks.

2.4.3.1 Multiprocessing pipes

A multiprocessing pipe is one of the simplest types of IPC. It only connects two processes
with each other. The pipe is bidirectional by default. It may also be unidirectional, thus
it only allows sending messages by one process (producer) and only allows receiving the

messages by the other process (consumer).

2.4.3.2 Multiprocessing queues

A multiprocessing queue is a multi-producer, multi-consumer First in, first out (FIFO)

queue, i.e., unlike multiprocessing pipes, it enables the connection between multiple pro-

27

cesses. It is implemented using multiprocessing pipes and locks/semaphores and a feeder
thread. When data is put to the queue by a process, the data first comes to queue buffer
and then the feeder thread distributes the data to the multiprocessing pipe leading to the

appropriate process.

2.4.4 PyQt

PyQt [14] is a binding* of a Qt framework for Python. The Qt framework is a robust
toolkit used for GUI development as well as multi-platform applications. Qt framework
includes various development tools, such as the Qt Creator, the Qt Designer and the User

Interface Compiler.

2.4.4.1 Qt Creator

Qt Creator is a C+-+ Integrated Development Environment (IDE) which is part of the
Qt framework. Qt Creator provides features such as syntax highlighting, autocompletion,
a visual debugger and integrates the Qt Designer for designing and building GUIs from
Qt widgets®.

2.4.4.2 Qt Designer

Qt Designer is a tool included in the Qt framework [15] which is used for designing and
building GUIs in a WYSIWYG fashion. The GUI design can be saved in a platform-
independent, XML-formatted (or rather QML?) file with *.ui extension. The file contains
the whole user interface definition, which can be compiled into a source code using the

User Interface Compiler.

4Binding is a wrapper library that bridges two programming languages. For instance it enables one to

use a library developed in C/C++ programming language with Python.
SWidget is the foundation of all objects of the GUI.
6Qt Modeling language (QML) is a markup language used by the Qt framework for GUI declaration

28

2.4.4.3 User Interface Compiler

The User Interface Compiler (UIC) is a tool for compiling GUIs designed by the Qt De-
signer into a source code. The UIC natively compiles the *.ui file into a header file for use
with the C++ programming language. In order to compile the *.ui file into the Python
source code, PyQt provides a tool PyUIC which operates the UIC likewise.

2.4.5 PyQwt

PyQwt [16] is a Python binding for the Qwt (Qt Widgets for Technical Applications) [17]
library. Qwt extends the Qt framework with widgets aimed at engineering and scientific
applications, such as a widget to plot 2-dimensoinal data. It also features dials, compasses,

thermometers, sliders, wheels or knobs to control or display values, etc.

2.4.6 Matplotlib

Matplotlib [18] is a plotting library for Python which produces publication quality figures
in various formats, such as *.svg, *.eps, *.pdf, etc. It includes backends for use with various

widget toolkits, such as Qt and GTK.

2.4.7 PyGnuplot

PyGnuplot [19] is a Python wrapper for Gnuplot [20]. Gnuplot is a multi-platform plotting
library. It enables the generation of two-dimensional and three-dimensional figures and
displays them directly on screen or saves them in various high quality image formats such

as *.svg, *.eps, etc.

29

Chapter 3

Initial state

In 2017, a first-generation control software for experimental devices operated in the De-
partment of Mechanics and Materials in the Faculty of Transportation Sciences at the
Czech Technical University and at the Institute of Theoretical and Applied Mechanics
of the Czech Academy of Sciences was developed as part of my Bachelor’s thesis [21].
The control software was based on the Python Interface of the open-source system Lin-
uxCNC [2]. The control software was developed using the Python programming language
version 2.7. For user interface development, the Qt framework version 4.8, in cooperation

with Python binding PyQt was used.

The main features of the first-generation control software are:

e straightforward adaptation to various experimental devices
® sensor support

e obtaining and logging data

e real-time plotting and static plotting

e displacement-driven experiment procedures

30

-0.001 X = 31.803 mm 138.0

| ' 23%
-0.001 Y = 138.000 mm 138.0
| 100% _!
-0.001 Z= 62855 mm 138.0
[46%

Figure 3.1: Axes position bars

3.1 Straightforward adaptation to various experimen-

tal devices

The devices operated in our department are equipped with common parts such as an
actuator, an encoder, limit switches and with application specific equipment such as a
load cell, etc. Each experimental device comes with its own LinuxCNC initialising file.
The initialising file satisfies the device specifics, therefore, it is essential for the proper
control software operation. The file includes various parameters specifying, for instance,

the number of axes, which type of hardware is used for the data acquisition, etc.

The control software was designed as a set of separate plugins. There are plugins for com-
mon features of all devices such as an emergency-stop (E-STOP) button, a power button,
a home position button, axes position display bars, force display bar, etc. On the other
hand, there are plugins for specific applications such as a plugin for a displacement-driven
experiment, etc. The user interface and the plugins inside of it are generated dynami-
cally based on the machine initialising file. For instance, the parameters AXES_ACTIVE
and AXES_UNITS correspond with the axes position diplay bars.

31

3.2 Sensor support

The control software has been used to control the laboratory devices in order to observe
the mechanical properties of materials by obtaining data samples of physical quantities
such as the force, position, etc. In our department, load cells based on strain gauges are

used for force measurement.

For proper sensor use, each sensor is characterised by a set of constants (sensitivity, range,
overload factor, etc.) and the control software must take them into account. In case of load
cells, these contants refer to the tensometric bridge properties inside the load cell. The
control software features an interface for one force sensor only which became a significant
limitation (e.g., one of the newly developed experimental devices in our department,
the four-point bending device [22] operates with two loading units and each of them is

equipped with a force sensor).

3.3 Displacement-driven experiments

The control software enables one to perform displacement-driven experiments only. The
displacement-driven experiment is a fundamental type of mechanical testing. The defor-
mation of an experimental sample during the experiment is controlled by a crosshead
movement. The displacement-driven experiment is very simple to perform, however it

cannot be adjusted based on the sample response during the experiment.

3.4 Obtaining and logging data

The control software includes a discrete thread to obtain data, such as the force, the axes
position, etc. Each data sample includes a unique timestamp to provide a time reference.
The data samples are obtained in a loop with typicaly 0.02 seconds period within the
loop which results in a sampling rate of 50Hz. The data samples are periodically saved to

a text-based output file.

32

Samples: 1000| o | X-axis time [s] -
Refresh Timeout [s]: | 0,50 - | Y-axis displacement Z [mm] -

Start Plot ' Show All

Figure 3.2: Plot plugin of the user interface

3.5 Real-time plotting and static plotting

In order to visualise the data, the control software features a plotting functionality. It
enables the real-time plotting (replotting the data periodically) and static plotting, see
Figure 3.2. The user can configure the plotting parameters, such as the real-time plot

refresh timeout, data series, etc.

It is based on the matplotlib library which produces high quality figures, however mat-
plotlib has significantly limited performance which has become a drawback especially for

real-time plotting.

3.6 Overview

The first-generation control software has been used in the Department of Mechanics and
Materials in the Faculty of Transportation Sciences at the Czech Technical University and
at the Institute of Theoretical and Applied Mechanics of the Czech Academy of Sci-

ences for two years in full operation.

The most significant limitation of the control software is the sampling rate performance
and the real-time plot performance due to the Python threads. It features two discrete
threads within a single Python process. The first thread obtains and saves the data,
the other thread is used for the real-time plotting. Referring to the GIL, the Python
threads cannot bring any performance gain by the parallel execution in this scenario, see
subchapter 2.4.1. Furthermore, the plotting library matplotlib is not very suitable for

performance-oriented real-time plotting.

The control software does not feature displaying encoder feedback within the axes position

bars, see Figure 3.1. In order to display the encoder feedback, an external GladeVCP panel

33

is necessary to be used. The control software features support for a single force sensor and
the plotting of a single data series which has become a limitation with a wider portfolio

of experimental devices operated in the department.

Some of the newly developed experimental devices require support for multiple force sen-
sors or support of various types of sensors apart from force sensors, such as thermometers.
Moreover, these devices require more sophisticated and modular experimental procedures

such as force-driven experiments, etc. for proper utilisation.

34

Chapter 4

Developed software

The new-generation control software developed as part of this Master’s thesis is the suc-

cessor to the first-generation control software described in the previous chapter.

4.1 Introduction

The main objective of the control software development was to improve performance,
primarily the sampling rate and the real-time plot refresh rate capabilities. This required
overcoming the Python threads limitations occuring in the first-generation control soft-
ware by using separate Python processes instead of the threads. Furthermore, with a
wider portfolio of experimental devices operated in the department, new demands for

functionality came up.

4.2 Performance gain

Python processes enable the parallel execution of the Python code which may result
in a rapid performance inrease. To demostrate the performance difference between the
Python threads and the Python processes, a simple script for a benchmark was created,
see Appendix A. The benchmark is based on a prime factorisation of a range of numbers
utilising multiple threads or multiple processes and comparing the execution time. The

prime factorisation benchmark was performed on a range of 1 million integers and run on

35

the Intel Xeon W-2145 @4.5 Ghz (8-core, 16-thread) CPU. The result of the benchmark

is shown in Figure 4.1.

The results confirm, that the Python threads do not bring any performance increase. In
fact, the Python threads have a negative impact on the performance due to the switching
between the threads (releasing and acquiring the GIL, see subchapter 2.4.1). The results
also prove that the performance may be increased by the parallel execution of the code

using separate Python processes.

The developed control software is based on a multi-process core consisting of processes
with various funtionality and a single-process user interface. Besides the multi-process
core and the user interface, the control software includes two more processes. The Server
Manager process which is described in detail in subchapter 6.1 and the API Provider
process which is described in subchapter 4.3. The control software architecture is shown

in Figure 4.2.

4.2.1 Control software core

The control software core consists of five processes: a Stat Poller, a Command Executor,
a Data Logger, a Data Keeper and an I/O Manager. Each process has a dedicated queue
for receiving and processing messages from other processes. Therefore, the multi-process
core is able to utilise multiple CPU cores, which led into a sampling rate increase from
50Hz up to 500Hz compared with the first-generation control software. A detailed scheme
of the control software core is shown in Figure 4.3. A further description of the scheme

can be found in Appendix B.

4.2.1.1 Stat Poller

The Stat Poller process is one of the crucial processes of the control software. It is based on
the status channel and the error channel of the LinuxCNC Python Interface. The status
channel provides access to all status variables of the device, the error channel checks if
any error occurred. The Stat Poller extends the status channel functionality by including
an interface for reading sensors the output signal, etc. It supports sensors operating on

an electrical signal which is proportional to the applied excitation voltage (millivolts per

36

single thread
thread x2
thread x4
thread x6
thread x8
thread x10
thread x12
thread x16
process x2
process x4
process x6
process x8
process x10
process x12

process x16

Execution time of prime factorisation of 1M integers

22.419

31.319

52.859

63.318

15.543

B s
B 5046
B 4501
2215
3784
42

10 20 30 40 50 60 70

o

execution time [s]

Figure 4.1: Results of the prime factorisation benchmark

37

71.512

75.629

76.911

80

81.545

90

Control Software Core Graphical User Interface

i 1
1 ! !
1 ! !
1 ! !
1 ! !

1 GUI plugin 1 1
1

Command

1 1

: Stat Poller Executor . o i .
plugin

I < > - .
1 1 1 GUI Core 1
1 ! 1 !

1 1
1 Data Data 1/0 . ! GUT plugin n-1 |
: Logger Keeper Manager 1 : 1
1 ! 1 GUI plugin n 1
1 ! 1 !

1 1

Server Manager API Provider

TCP Socket Unix Domain Socket

Figure 4.2: The developed control software scheme

volts output signal).

The process periodically calls the poll method of the LinuxCNC Python interface status
channel and the error channel to obtain the status variables of the device, the eventual
errors and reads out the sensors output signal. The process then sends the obtained
variables to other processes of the control software core, such as the Data Logger and

Data Keeper and to the user interface.

4.2.1.2 Data Logger

The Stat Poller process sends the obtained data to a queue leading to the Data Logger
process. The Data Logger receives the data and saves is periodically to a plain-text-based

output file.

4.2.1.3 Data Keeper

The Data Keeper receives the data from the Stat Poller and keeps it in an array. It provides
a simple post-processing functionality, such as a floating average. The Data Keeper then

sends the data, for instance, to the user interface in order to show the data in a graph.

38

Figure 4.3: The control software core inter-process communication scheme

I

Stat Poller Command !

Executor 1

I

YVVY VYVVYN\ !

N !

<<

1

1

I

IEE

7

I

I

I

I

\ 4 |

I

I

I

I

Data Data I/0 1
Logger Keeper Manager

YV VYV VA

39

4.2.1.4 Command Executor

The Command Executor is a process based on the command channel of the LinuxCNC
Python Interface. It provides the execution of the dynamically generated Python string

commands using the exec statement.

4.2.1.5 I/O Manager

The 1/O Manager provides the communication with the real-time HAL using the Python
HAL component (see subchapter 2.3.1) or using analog and digital inputs/outputs. The
Python HAL component is, for instance, used for experiments driven by non-linear dis-

placement or force-driven experiments, see subchapter 4.4.5.

4.2.2 User Interface

The user interface of the control software runs separatedly from the control software core
which results in a performance increase on the side of user interface as well. It is a single-
process object connected with the control software core using various queues. The user
interface is built ontop of user interface core, which provides all necessary functionality

for communication with the control software core, see Figure 4.4 and Appendix B.

The user interface is designed as a set of separate plugins, which gives it an ability to be
modular and makes it very effectively adjustable for particular applications. One of the
plugins is a plotting plugin which has been a significant limitation of the first-generation
control software, as it was developed on top of the matplotlib backend for the Qt frame-
work. The plotting plugin of the new-generation control software is built on top of the

PythonQwt library which provides more plotting performance over the matplotlib.

4.2.2.1 Plotting performance benchmark

To demostrate the plotting performance difference of PythonQwt and matplotlib, a simple
benchmark was performed. It was run on the Intel Xeon W-2145 @4.5 Ghz (8-core, 16-
thread) CPU. The benchmark is based on plotting a single period of a sinus function
f(z) = sin(x). The script used for the benchmark is shown in Appendix C.

40

\/

\V/

GUI core

@

11
12

GUI plugin 1

—> GUI plugin 2

——»(GUI plugin n-1

—> GUI plugin n

Figure 4.4: The control software user interface scheme

41

] B Matplotlib
Plot performance comparison m PythonQut

90 84.7

49.3
39.6
30.1
26.4 24.9 28.4
9.4

100 1000 10000 50000 100000 250000 500000 1000000

80
70
60
50
40 36.7

Plot time [ms]

30

20

10 38

Number of data samples [-]

Figure 4.5: Matplotlib and PythonQwt plot comparison results

Unlike matplotlib which is written entirely in Python, PythonQwt is a Python wrapper (or
binding) for the Qwt library which is written in C++, so it can deliver more performance

over the matplotlib library.

The performance increase also enabled the new-generation plot plugin to plot multiple

data series in real-time.

4.3 Custom Python script execution

The control software also allows sending commands to the control software core through
an external Python script. The external Python script execution can be used for the

automated measurement, etc.

The communication of the external Python script with the core was implemented by an
APT Provider process which is connected with the control software core using queues, see

Figure 4.2 and Figure 4.6 and Appendix B.

The external Python script is connected with the API Provider process using the custom

42

4(__
4(____

APT Provider

Unix Domain Socket

00

Python commands
Unix Domain

import rapo library Socket

import rapo

create status and command channels

s = rapo.pstat (remote=False) rapo llbrary

c = rapo.command ()

update status variables
s.poll()

get list of equipped sensors
s.sensors_actual ()

equip sensor named "loadcell"

c.lock sensors(["loadcell"], [1])

Figure 4.6: The API provider and rapo library connection scheme

43

rapo library (see subchapter 4.4.7) which features a Unix domain socket.

4.3.1 Unix domain socket

The Unix domain socket (or inter-process communication socket) is a communication
endpoint for sending messages between processes running on the same host system. Unix
domain sockets share the same semantics as network sockets, but Unix domain sockets do
not connect via a hostname and port. They connect using a file system, thus, the whole

communication occurs entirely within the operating system.

In order to send Python data objects such as a list, dictionary, etc. through the Unix
domain socket, the data object must be firstly serialised into a stream of bytes format

which can be pushed through the socket.

4.3.2 Serialising modules

Python features various serialising modules such as pickle, cPickle, json, etc. which

provide protocols for serialising and deserialising Python data objects.

4.3.2.1 Pickle and cPickle modules

The pickle module is part of the Python standard library and is widely used for seriali-
sation in Python. However, it is written entirely in Python which limits its performance
and the data format used by pickle is Python-specific, therefore, it is not suitable for

applications with interoperability requirements.

The Python standard library also features a cPickle module which provides the same
fuctionality as the pickle module. Unlike pickle, cPickle is written in the C programming
language, so cPickle gives more performance than pickle which makes it more suitable for

performance-oriented applications. Pickle and cPickle feature various serialising protocols:

e Protocol 0 is the original ASCII protocol which is human-readable and is backwards

compatible with other versions of Python.

44

e Protocol 1 is an obsolete binary format which is also backwards compatible. It has

been substituted by protocol 2.

e Protocol 2 was introduced with Python version 2.3 and is the highest protocol of

Python 2.x. It provides much more efficient serialisation of the new-style classes.!

e Protocol 3 was introduced in Python 3.0. It has explicit support for bytes objects
and cannot be unpickled by Python 2.x.

e Protocol 4 was added in Python 3.4. It is the highest protocol of Python 3. It
adds support for very large objects, pickling more kinds of objects, and data format

optimisations.

4.3.2.2 JSON module

Javascript Object Notation (JSON) is a standardized format used for serialising data ob-
jects to a human-readable format. Unlike pickle and cPickle, JSON is a language inde-

pendent data format derived from JavaScript.

It uses conventions that are compatible with programming languages including C, C-++,
C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an
ideal serialising format for applications with data-interchange and interoperability require-

ments.

The proposed control software is entirely developed in Python programming language,
thus, any data-interchange capability is not required. The only requirement for the seri-
alising module used within the developed software is to provide as much performance as
possible. For that reason a benchmark comparing the serialising performance and memory

consumption of the serialised object was performed.

The benchmark is based on serialising and deserialising Python list and dictionary objects.
These objects were chosen purposefully as they are the data objects transfered through

the Unix domain socket.

LA new-style class inherits from the object class and is a recommended option for creating a class in

modern Python.

45

The list used for the serialisation benchmark was a range of one million integer numbers
and the dictionary consisted of one million (key, value) pairs. In case of the pickle and
cPickle modules, the performance of the different serialising protocols was also bench-
marked. In addition to the performance benchmark, the size of the serialised data object
is also a significant factor in terms of the memory consumption and data transfer per-
formance, so the size of the serialised object was also compared. The whole script used

for the benchmark is included in Appendix D. The benchmark was run on the Intel Xeon

W-2145 @4.5 Ghz (8-core, 16-thread) CPU.

4.3.2.3 List serialisation benchmark

List serialisation performance is shown in Figure 4.7. The benchmark results show that
the serialisation of the Python list using the pickle module is significantly slower regard-
less of the used serialising protocol compared to the JSON module or even the cPickle
module. The cPickle module was able to provide the best performance out of the tested
modules. Unlike pickle, the cPickle performance differed depending on the serialising pro-
tocol used. CPickle protocol 0, which is the default protocol is the slowest out of the
protocols tested but it gives a comparable performance with JSON. cPickle protocols 1

and 2 have significantly better performance than cPickle protocol 0 and JSON.

In the case of the deserialisation performance, cPickle shows the best performance, the
same as during the serialisation task. JSON performance is slightly lower, whereas the per-
formance of the pickle module is incomparably worse. The list deserialisation performance

is shown in Figure 4.8.

An additional aspect of the serialising module comparison was the serialised object size.
The size of the object affects the data transfer performance and memory consumption.
Pickle and cPickle protocols 1 and 2 serialise the data to a binary format which is the
least memory-intensive compared to protocol 0 or JSON. Protocol 0 and JSON produce
a human-readable ASCII-based format which consumes more memory compared to the

binary format. The results of the serialised object size comparison is shown in Figure 4.9.

46

Execution time [ms]

Execution time [ms]

1600
1400
1200
1000
800
600
400
200

700

600

500

400

300

200

100

Serialisation performance comparison

1437.4
1238.5

1431.8

H |ist

serialisation
190 105.9
:]
1V S

Figure 4.7: Python list serialisation performance comparison

Deserialisation performance comparison

590.5

pickle

24.0

cPickle

M [ist
deserialisation

82.7

JSON

Figure 4.8: Python list deserialisation performance comparison

47

Serialised data object size [bytes]

10000000
9000000
8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

o

Serialised list size comparison W size

8888896 8888896

I I 4870676 4870676 4870678 4870678 I
O O > > N Vv >

7888890

Figure 4.9: serialised Python list size comparison

48

M dictionary

Serialisation performance comparison serialisation
3000 2683.7 2681.5
2500 2331.8
2000
g 1500
£ 1000
=
2 500 241.2 286.6
S 42.5 43.2
2, - -
X
(i 0\0 O\Q N N 0\'1/ O\ﬂ/ o
& & & & & & 3%
& & & & & &
QJQ Q;Q @Q QzQ Q/Q @Q
h N N N N AN
Q\ (,Q\ Q\ (,Q\ Q\ (,Q\

Figure 4.10: Python dictionary serialisation performance comparison

4.3.2.4 Dictionary serialisation benchmark

Besides the list serialisation perfomance comparison, a dictionary serialisation was also
benchmarked. The results are very similar to the list serialisation. When it comes to
the dictionary serialisation, the pickle module exhibits significantly worse results during
the dictionary serialisation when compared to the cPickle and JSON modules. CPickle
protocol 0 is slightly faster than JSON and in general the cPickle protocols are the fastest.

The performance difference between cPickle protocols 1 and 2 is marginal, see Figure 4.10.

The cPickle module delivers the best dictionary deserialisation performance likewise in the
list deserialisation task. JSON is second with a large gap, the worst results were achieved

by the pickle module, see Figure 4.11.

In relation to the memory consumption, the JSON module has the lowest demands, the
demands of cPickle protocols 1 and 2 are slightly higher. The serialised dictionary by the

pickle module is approximately twice as large in size, see Figure 4.12.

49

Execution time [ms]

Serialised data object size [bytes]

H dictionary

Deserialisation performance comparison deserialisation
1400 1304.4
1200
1000
800
600 533.5
400
200
72.1
0]
pickle cPickle JSON

Figure 4.11: Python dictionary deserialisation performance comparison

Serialised dictionary size comparison W size

18000000 16777786 16777786

16000000
14000000
12000000
10000000
8000000
6000000
4000000
2000000
\0

Figure 4.12: serialised Python dictionary size comparison

9739348 9739350 9739350 9739352

I I I I 1
N v v o

A\

Q

<) @
O B
S

o

50

4.3.2.5 Recapitulation

The list and dictionary serialisation/deserialisation benchmarks pointed out that cPickle
is the most suitable module for performance-oriented applications. Especially cPickle pro-

tocols 1 and 2 deliver much more performance compared to the pickle and JSON modules.

The developed control software does not require any interoperability capabilities as it is
developed using the Python programming language only. The aim of the control software
is to provide as much performance as possible which makes cPickle a perfect candidate
for the serialising module. The benchmarks showed that cPickle is the most performance-
oriented serialising module out of the benchmarked modules. In particular, the cPickle
protocol 2 fulfils the performance requirements the best so it was chosen as the serialising

module for the developed control software.

4.4 Enhanced Functionality

4.4.1 Introduction

The need to develop the proposed control system was not motivated by the performance
limitations only, but also by progress in the device’s construction and the use of advanced

experimental procedures.

Since the first-generation software has been developed, various new experimental devices
have been constructed which also involved developing a new set of functionality features,
such as the support for multiple and various types of sensors or advanced experimental

procedures, etc.

4.4.2 Sensor support

One of the newly developed experimental devices was a loading device intended to perform
4-point bending experiments [22]. This involves the usage of two load cells which the first-

generation control software did not support, see Figure 4.13.

51

slip ring

docking ring adapter

inner supports

motorized docking ring
rotary table loading unit
adapter

motorized

loading unit
outer support
with loadcell

high-strength
aluminium alloy
frame

specimen

carbon-composite
high-strength frame
aluminium alloy (low X-ray attenuation)

outer support
frame

with loadcell

Figure 4.13: Experimental device for the 4-point bending

The new-generation control software supports a theoretically unlimited number? of sen-
sors. Moreover, another experimental device [23] involves the support for different types
of sensors (load cells and thermometers) in terms of measuring the physical quantities,

due to simultaneous force measurement and circulating fluid temperature measurement.

Each sensor is identified and initialised by the control software using its own initialising
file with a specific header and parameters. The header (the first line of the initialising
file starting with a # sign) determines the type of the sensor (load cell, thermometer,
etc.), the parameters inside the file describe the important sensor parameters necessary
for the realiable and precise measurement, such as sensitivity, etc. The load cell initialising
file content is shown in Figure 4.14, the thermometer initialising file content is shown in

Figure 4.15.

#force sensor inifile
NAME = futek 5001b
SENSITIVITY = 2.2773
RANGE = 2224.1108
CONTACT = 5

OVERLOAD = 1.1

Figure 4.14: Load cell sensor initialising file content

2For the sensor signal readout a LabJack T7 Pro (Labjack Corporation, USA) is used which features
up to 14 analog input channels. With this data acquisition setup, the control system is able to handle up

to 14 sensors, which is the hardware limitation.

52

AIN 0: futek 500lb v N/A N
Smooth: | 1 : Contact: | | Overload:
AIN 2 bioselmostroj_thermometer v NfA °C
R
Smooth: = 100 v
I Lock Sensors I
|Rate: 2000 Hz Time: 0.0 s Samples: 0 Data: 0.0 ME |

Figure 4.16: The plugin for handling the sensors

#thermometer sensor inifile

NAME = bloselmostroj thermometer
RESISTANCE = 1001.805714
SENSITIVITY = 2.82165714.28

Figure 4.15: Thermometer sensor initialising file content

These initialising files are loaded into a control software sensor database during the control
software startup. The sensors plugin of the control software user interface provides the

functionality for operating the sensors, see Figure 4.16.

The plugin for handling the sensors includes comboboxes® used to select actual sensors
from the list of the loaded sensor initialising files. Underneath these fields are spinboxes?
to specify a floating average window width, see the red boxes in Figure 4.16. The floating
average is used to eliminate noise which may occur in the data. Based on initialising file
contents of the chosen sensors, the display bars of the sensors are dynamically generated,

see the blue boxes in Figure 4.16.

The display bar of the load cell (the upper blue box in Figure 4.16) consists of a label® for
displaying the actual force with [N] units. The display bar of the load cell also features

3QCombobox is a selection widget that displays the current item and can pop up a list of selectable

items.
4QSpinBox allows the user to choose a value by clicking the up/down buttons or pressing up/down

on the keyboard to increase/decrease the value currently displayed. The user can also type in the value

manually.
5QLabel is a widget used for displaying the text or an image.

53

various signalisation mechanisms. For instance, it provides a diode® signaling whether the
load cell is in contact with the tested sample. If the actual force is greater than the value
of the CONTACT parameter in the load cell initialising file, the diode changes from grey
to orange. The other diode is used for the load cell overload signalisation. If the actual
force is below the value of the RANGE parameter, the diode remains grey. When the
force exceeds the RANGE limit, the diode becomes orange. If the force even exceeds
the RANGE « OVERLOAD value, the diode becomes red to signal the eventual load
cell damage if the load continues to increase further. The control software automatically
triggers the E-STOP (emergergency-stop) procedure and stops the machine to prevent the
load cell damage whenever the load cell could be in danger due to a high load. The display
bar includes a tare button” which tares the load cell based on the last data samples. The
number of samples used for determining the tare value depends on the data acquisition

rate and on the signal noise.

Unlike the load cell display bar, the display bar of the thermometer (the bottom blue box
in Figure 4.16) includes a label for displaying the actual temperature with [°C] units. Any

other functionality is not needed.

The sensors plugin also includes two buttons to lock and unlock the sensors, see the green
box of in Figure 4.16. The lock button is used to set the chosen sensors and start reading
values from them. Until the sensors are not set/locked, all the controls of the user interface
except the E-STOP and POWER buttons remain disabled, unable to send any commands
to the control software core for safety reasons. The button for unlocking the sensors has
inverse functionality. It unlocks the sensors which have been locked previously in order to

stop reading sensor values or lock other sensors.

At the bottom of the sensors plugin a measured data status bar is located. The status bar
provides simple information about the measurement, such as the data aquisition rate, the
time elapsed by the measurement, the number of data samples obtained and the memory

consumed by the data, see the purple box in Figure 4.16.

6A diode image put in the QLabel
"The QPushButton is perhaps the most commonly used widget in any graphical user interface. Pushing

it (click) makes the button command the computer to perform some action.

54

4.4.3 Axes position bar

The axes position bar is a plugin of the user interface to show the actual position of the
axes. [t provides further information, such as the axis coordinate and axis units, see the
purple box in Figure 4.17. The plugin also features labels to show the actual position stated
by the LinuxCNC motion interpreter, see the value in bold in the red box in Figure 4.17.
The plugin also indicates the actual position percentagewise using a progress bar®, i.e., if
the actual position reaches the minimum axis limit, the progress bar indicates 0 %. If the
actual position reaches the maximum limit, the progress bar indicates 100 %. The axis
minimum and maximum limits are shown within the plugin as well, see the orange boxes

in Figure 4.17.

Max: 8.000]

Position: 0.000 / 0.000

Encoder; 0.000 / 0.000

0%

X Jwin: -0.010}

[urn

Figure 4.17: The axes position plugin of the user interface

The first-generation control software did not feature any functionality for showing the en-
coders position directly in the axes position bar. It was done using an external GladeVCP

component, see subchapter 2.3.6.

4.4.3.1 Encoder support

The newly developed experimental devices are mostly equipped with multiple encoders.
An encoder is a device which provides the position feedback, see subchapter 2.2 and

subchapter 2.1.1.2.

The new-generation control software enables one to show encoders’s position within the
axes position bars (see the value in bold in the blue box in Figure 4.17) instead of using the

external GladeVCP component. This required accessing the real-time HAL from Python

8QProgressBar is used to give the user an indication of the progress. The progress bar uses the concept
of steps. It is set up by specifying the minimum and maximum possible step values, and it will display

the percentage of the steps that have been completed.

%)

in order to obtain the encoder position. It was achieved by linking the encoder position in
HAL to the analog input of the LinuxCNC Python interface which can be accessed from
Python directly.

4.4.3.2 G92 offset

The G92 command of the G-code® is used to set the start position (origin) offset for one
or more axes. The first-generation did not support this functionality at all. The offset
functinality is useful for the measurement to set the origin of the coordinate system when
the experimental device reaches contact with the sample. Thus the experimental procedure

begins with the position equal to zero.

The actual position and encoder position display areas (see the red and blue boxes in
Figure 4.17) consist of two values each. The values are separated by a slash. The value to
the left of the slash is the absolute actual position of the axis. The value to the right of the
slash is the G92 position which is relative to the shifted origin of the axis. In Figure 4.17,
the actual and the G92 positions are equal which means that the G92 offset is zero. If the
G92 offset is present (i.e., the G92 offset is a non-zero value), the G92 position becomes

bold to signal that the axis origin has changed.

im: -0. ositiom: 2. ! dax: 8.

I 0.010 P 2,000 / 0.000 It 8.000

[um] HOMED Encoder: 2.000 / 0.000 Error: 0.000
25%

Figure 4.18: The axes position plugin of the user interface with G92 offset active

In Figure 4.18, the G92 offset is shown. The absolute axis position equals 2.000 um, the
G92 position (the position relative to the new axis origin) equals 0.000 um. In this case,

the G92 offset equals 2000 um, see Figure 4.18.

9G-code is a common name for the most widely used numerical control (NC) programming language.

It is mainly used in computer-aided manufacturing to control automated machine tools.

56

4.4.3.3 Positioning error

If an axis is equipped with an encoder, the positioning error can be determined. The
positioning error is defined as the difference of the position given by the LinuxCNC motion
interpreter and the position given by the feedback encoder. It is displayed within the axes
position bar as well, see the brown box in Figure 4.17. The smaller the positioning error,

the more precise the positioning is.

4.4.3.4 Homed status

The axes position bar of the new-generation control software also provides additional
information, such as whether the axis is homed (i.e., a reference point has been found).
Each axis should be homed properly in order to provide precise positioning. The axes
position plugin displays the HOM E D text if the axis is homed, otherwise it displays the
UNHOMED text, see the cyan box in Figure 4.17.

4.4.4 Plot plugin

One of the main disadvantages of the first-generation control software was its limited
real-time plot performance. The plot performance of the new-generation control software
has been significantly improved thanks to the control software architecture described in

subchapter 4.2.

Besides the performance improvement, the plot plugin of the user interface has been

extended with new functionality.

Width [s] Resolution [samples/s] | 20

v IIY: encoder X

smootn: | 1

Start Plot

Figure 4.19: The plot plugin of the user interface

57

One of the configuring parameters of the plot is the plot time window w, see the red box in
Figure 4.19. The plot time window defines the time period of the past data samples shown
within the plot. Another parameter is the plot resolution r. The resolution defines the
number of data samples to plot within a single second of the plot time window. The higher
the plot resolution, the more demanding the plotting is in terms of hardware resources
due to larger number of data samples, see the blue box in Figure 4.19. Total number of

the data samples n within the plot can be determined as:
n=uw-r, (4.1)

where w is the plot time window and r is the plot resolution. The total number of the

samples is used for the real-time plot performance prediction in formula 4.2.

The plot enables plotting of a multiple data series. The data series of the plot can be
dynamically added with a plus sign button or removed with cross sign button, see the
purple box in Figure 4.19. The data series share the same X-coordinate, the Y-coordinate

is specific to the data series, see the green and orange boxes in Figure 4.19.

The plot plugin also features simple real-time processing functionality, such as a floating
average. The smooth input field parameter defines the floating average window. If the
smooth parameter equals 1, the floating average does not take effect due to the floating
average window size. When using the floating average real-time processing, it is important
to take the increased computational demands into consideration. Therefore, the floating

average window size is limited up to 1000.

For the real-time plotting performance prediction, the plot plugin provides a simple indi-
cator showing the possible Frames per second (FPS), see the yellow box in Figure 4.19.
The FPS prediction is based on the plotting performance of the PythonQwt library. The
results of the PythonQwt plotting benchmark (see subchapter 4.2) have been used to find

a linear function:

T(n)=K-C-(A-n+B), (4.2)

where the function T" describes the time period needed to plot n data samples. Coefficients
A and B are given by linear regression based on the plotting benchmark. Coefficient

C defines the number of data series in the figure and coefficient K is a safety factor.

58

The safety factor is primarily used to balance the user interface overall performance and
fluency. In most of the applications, the safety factor K = 3, which reserves one third of the
hardware resources to the real-time plotting functionality. Once the plotting parameters
are configured, the real-time plot starts by using the start plot button, see the brown box

in Figure 4.19.

Besides the real-time plotting functionality, the plot plugin also provides static plotting.
The static plotting is realised separately from the user interface using the external plotting

tootkit Gnuplot in cooperation with the Python wrapper PyGnuplot, see subchapter 2.4.7.

4.4.5 Force control

Another enhancement of the new-generation control software over the first-generation is
the support for force-driven experiments. An experiment can be driven by a constant
force command or by a force function. The control software uses the load cell feedback
to calculate the axis velocity to copy the control command. The force control enables
the controlling of the loading force independently to the displacement, thus, adapting the

loading to a particular sample.

The force control is realised using the PID controller featured by HAL, see subchapter 2.3.2
and Figure 4.20. The setpoint r(¢) of the PID controller may be various time-dependent
force functions, such as a linear function, periodic waves or a constant value. The error
e(t) is defined as the difference of the setpoint r(¢) and the actual force y(t) measured by
the load cell. Based on the proportional, intergral and derivarive terms, the manipulated
variable u(t) is determined. The manipulated variable w(t) is the velocity command for
the LinuxCNC motion interpreter. Based on the motion velocity u(t), the measured force

(output variable) is affected.

59

SETPOINT: r (
PTD CONTROLLER: KP, Kr, Kp

FORCE CONTROL YES

PID CONTROLLER

u(t) =P + I + D

|

MANITIPULATED VARIABLE
(MOTION VELOCITY COMMAND)
u(t)

Figure 4.20: Force control flowchart

The force command plugin consists of controls common to all force command functions,
such as sine, square, triangle and sawtooth waves (see the red box in Figure 4.21) and
multiple tabs, each tab is dedicated to a specific force command function (see the blue

box in Figure 4.21).

60

Manual Control Measurement Force Control

Y) Velocity limit: 1000.0000 = um /min

Faicoeuntno] Max velocity: 10000.0 um /min

Constant Linear Sine Square Triangle Sawtooth

f(t) = Asin(2nft+@)+B

A | 1.0000 ~/- B | o000
-
f | 1.0000 * Hz @ | 0.0000

M cycles: 100 : Plot periods | 5

Figure 4.21: Force control plugin overall view

4.4.5.1 Common controls

Some controls of the force control plugin are common to all the force command tabs, see

Figure 4.22.

61

velocity limit: 1000.0000 >| um /min

F trol ; /
Force Control Wyiax velocity: 10000.0 um /min

Figure 4.22: Force control plugin common controls

These controls consist of a button!® to start or stop the force control measurement, see the
red box in Figure 4.22. The button includes a diode to signal the force control status. If the
force control is disabled, the diode remains grey. When the force control is activated, the
diode becomes green. The force control features a PID controller which outputs a velocity
command. The maximum motion velocity is an attribute of the axis which cannot be
exceeded. The value of the maximum motion velocity is signalled in the common controls
area, see the green box in Figure 4.22. The PID controller maximum output velocity might
be adjusted by setting the custom velocity limit to the PID controller, see the blue box
in Figure 4.22.

4.4.5.2 Constant force command tab

The force control plugin features a constant force command tab. The constant command is
configured by putting the force value in a double spinbox!!, see the red box in Figure 4.23.
The second parameter of the constant command is the command duration. When the force
control is enabled a timer is trigerred. When the duration time expires, the force command

is set back to zero and the procedure automatically stops.

10QToolButton is a special button that provides quick-access to specific commands or options. As
opposed to a normal command button, a tool button usually does not show a text label, but shows an

icon instead.
11 QDoubleSpinBox allows the user to choose a value by clicking the up and down buttons or by pressing

Up or Down on the keyboard to increase or decrease the value currently displayed. The user can also

type in the value manually.

62

Constant = Linear Sine Sguare Triangle Sawtooth

Force command 0.0000 : M
. o
Duration (.00 v | |5BC ¥

Figure 4.23: Constant force command tab

4.4.5.3 Linear force command tab

Loading according to the linear function is another force command function F'(t) = A-t+
B implemented in the force command plugin. The linear function is defined by slope A
in [N/s] units, see the red box in Figure 4.24 and by offset B in [N] units, see the blue

box in Figure 4.24.

In order to visualise the force command as a function of time, a simple plot window is
included, see the orange box in Figure 4.24. The plot window may be adjusted by the plot
width parameter, see the purple box in Figure 4.24. As the force control is started, the
force given by the force control function starts to grow. The user may define a duration
parameter which automatically stops the force control when a certain ammount of time

elapses, see the geen box in Figure 4.24.

63

Constant Linear Sine Sguare Triangle Sawtooth

| |
Slope 1.0000 . Nrgffjoffset 0.0000 oUN
Plotwidth | 10000 . s [buration | 0.00 O sec v

- W o oo
L N T T P e

0 12,5 25 37.5 50 62,5 75 87.5 100

Figure 4.24: Linear force command tab

4.4.5.4 Sine wave force command tab

The force control plugin includes various periodic force command functions. The most

commonly used periodic force command is the sine wave function.

The sine wave force command function is defined as:
F(t)=A-sin(2-7m-f-t+¢)+ B, (4.3)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequency (the

number of cycles per second), ¢ is the phase shift and B is the offset.

These parameters may be adjusted using spinboxes within the sine force command tab,
see the red, blue, purple and green boxes in Figure 4.25. The force control function is
visualised using a simple plot window, see the orange box in Figure 4.25. The number
of periods shown within the plot window may be adjusted as well, see the grey box in

Figure 4.25.

64

In order to start the force control, the number of cycles (periods) must be quantified. As

soon as the number of cycles is reached, the force control automatically stops, see the

brown box in Figure 4.25.

Constant Linear 5ine Square Triangle Sawtooth

f(t) = Asin (2nft+@)+B

A 1.0000 - E 0.0000 N

Figure 4.25: Sine wave force command tab

4.4.5.5 Square wave force command tab

Another periodic force command function is the square wave function. The square wave

force command function is defined as:

F(t)=A-sgnsin(2-7-f-t+¢)+ B, (4.4)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequency (the

number of cycles per second), ¢ is the phase shift and B is the offset.

The square wave parameters may be adjusted similarly to the previously introduced pe-

riodic function and the input fields of the user interface for the parameters have the same

65

layout as well, see subchapter 4.4.5.4 and Figure 4.26.

Constant Linear Sine Square Triangle Sawtooth

f(t) = Asgn(sin(2nft+g))+B

A | 1.0000 - B | 0.0000 ~N

o o

. o
f 1.0000 9 Hz{ | v 0.0000 . rad
A A
W W

M cycles: | 100 Plot periods | 5

"| —

Figure 4.26: Square wave force command tab

4.4.5.6 Triangle wave force command tab

The triangle wave force command function is defined as:

2.4

F(t) — arcsin [sin (2-7- f -t + ¢)] + B, (4.5)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequency (the

number of cycles per second), ¢ is the phase shift and B is the offset.

The triangle wave parameters may be adjusted similarly to the previously introduced
periodic function and the input fields of the user interface for the parameters have the

same layout as well, see subchapter 4.4.5.4 and Figure 4.27.

66

Constant Linear Sine Square Triangle Sawtooth

f(t) = (2a/n)arcsin(sin(2nfc+g))+B

A | 1.0000 o 0.0000 Al

Figure 4.27: Triangle wave force command tab

4.4.5.7 Sawtooth wave force command tab

The sawtooth wave force command function is defined as:

1
tan (7 f -t +)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequency (the

<A

F(t) = ——— - arctan [} + B, (4.6)
T

number of cycles per second), ¢ is the phase shift and B is the offset.

Adjusting the sawtooth wave parameters is the same as in the cases of the other periodic

functions, see subchapter 4.4.5.4 and Figure 4.28.

67

Constant Linear Sine Sguare Triangle Sawtooth

f(t) = -(2Aa/m)arctan(l/tan(nft+g))+B

A | 1.0000 “ - e o0.0000 ~N

f | 1.0000

Figure 4.28: Sawtooth wave force command tab

4.4.6 Temperature control

The newly developed experimental devices also allow one to perform an experiment with
the sample put in a controlled enviroment, because the mechanical properties of a material
may vary dramatically based on enviromental conditions. To simulate these conditions, an
observed sample can be submerged in a circulating liquid, such as a simulated body-fluid,

artificial blood, water, degradation solutions - acids etc., with controlled temperature.

To control the temperature, the newly developed device is equipped with a heating plate.
When the heating plate is under voltage, it heats the fluid to increase the temperature. As
soon as the measured temperature y(t) reaches the temperature setpoint r(t), the heating
plate is cut off from the voltage. Then the fluid starts to cool down to the ambient
temperature. When the fluid temperature comes down to the setpoint minus hysteresis

value r(t) — h(t), the heating plate is put under voltage to increase the fluid temperature

68

back again, see the temperature control flowchart in Figure 4.29.

SETPOINT: r(t) = 37.0 °C
HYSTERESIS: h(t) = 0.5 °C

&
<

Y

TEMP CONTROL YES
ENABLED

HEATING
ENABLED

STOP HEATING

HEATING HEATING
ENABLED ENABLED
<
START HEATING STOP HEATING
A A
) Y
Y
END
Y

Figure 4.29: Temperature control flowchart

In order to keep the temperature within the whole loop (the so-called Bioreactor) uniform,
the device is also equipped with a pump which circulates the fluid. These new features

required developing a plugin for the user interface with a specific set of controls.

The plugin of the user interface features a button to switch on and switch off the pump,
see the red box in Figure 4.30. The button includes a diode to signal whether the pump

is switch on. Until the pump is switched, the diode remains grey. When the pump is

69

switched on, the diode becomes green.

Another button included in the plugin is used to switch on and switch off the temperature
control functionality. The button also includes a diode signalling whether the temperature
control is active. When the temperature control is activated, the diode becomes green,

otherwise it remains grey, see the blue box in Figure 4.30.

The plugin features another diode, signalling whether the heating plate is under voltage to
heat the fluid. When the heating plate starts heating, the diode becomes orange, otherwise

it remains grey, see the green box in Figure 4.30.

The temperature setpoint needed for the temperature control may be adjusted using a

spinbox within the temperature control plugin, see the purple box in Figure 4.30.

Manual Control Measurement Force Control Bloreactor

Heating Active

Pump Temp Control - Bremp Command 37.00 2

Figure 4.30: Temperature control plugin of the user interface

4.4.7 Rapo library

The control software comes with custom developed Python library which allows one to
send commands to the control software core from an external Python script, see Figure 4.6.

The library features the Unix domain socket connected with the API provider process.

The rapo library architecture is inspired by the LinuxCNC Python Interface. It includes
various status channels and a command channel. The status channels provide status vari-
ables of the device, variables related with the measurement, such as the measured data,
etc. The command channel allows one to send commands to the experimental device from

the Python script in order to automate the experimental procedure.

70

Chapter 5

Case Studies

The newly developed control software found utilisation in controlling various experimental
devices at the department and numerous experiments were successfully performed. Some

of the experiments are presented in this chapter.

5.1 Compression of a spongious sample in simulated

physiological conditions

In this study [23], an in-house designed table top loading device equipped with a bioreac-
tor! is used for the in-situ compression of a human-bone sample in simulated physiological

conditions, see Figures 5.1 and 5.2.

Fast on-the-fly 4D Computed Tomography (CT) together with a fast readout semiconduc-
tor detector are used as the tools for the advanced volumetric analysis of the deforming
microstructure of the specimen, see Figure 5.3. Digital Volume Correlation (DVC) is em-

ployed as the method for the 3D strain analysis of the bone structure under loading.

The loading device with the bioreactor was placed onto the rotary stage of the CT scanner.
The geometry of the CT scanner was adjusted to a focus-object distance of 60 mm and

a focus-detector distance of 300 mm. Thus, the nominal magnification was 5x with the

!The bioreactor is part of the loading device which can simulate the physiological conditions (temper-
ature and flow) and it can be either used as an autonomous device or as an optional modular part of the

loading device.

71

corresponding pixel size of 15 pum.

The displacement-driven compression of the specimen was conducted at a constant loading
velocity of 0.25 um/s. After the initial compression, three loading/unloading cycles were
performed in the force range of 200 N — 400 N. At the end of the experiment, the structure
was compressed to the nominal engineering strain of 2 %. The overall duration of the

experiment was 3200 s.

I5 mm
(a) Tested human bone spec- (b) Specimen submerged (c) Cutaway view of the in-situ
imen in the simulated body loading device with bioreactor

fluid

Figure 5.1: Human bone specimen and loading device

bioreactor
frame

bioreactor main body

assembly cover - clamp ;
carbon-composite

rame
(low X-ray attenuation)

specimen
rotary table (7]
adapter . X motor assembly . .
Ioadlfng device with harmonic linear thJ)llde loadcell fluid
rame assem oadce ui
gearbox Y container

Figure 5.2: Loading device exploded view in detail

72

X-ray tube
flat panel detector
carbon tube
sample container
loadcell
fluid hoses
bioreactor

loading device

Figure 5.3: Loading device exploded view in detail

The newly developed features of the control software used to perform the experiment
involve the simultaneous force and temperature measuring functionality described in detail
in subchapter 4.4.2 and the temperature control with the controlled flow of the simulated

body fluid, see subchapter 4.4.6.

During the experiment all of the features including the real-time plotting worked as it was
supposed to. The data samples obtained by the control software were successfully logged
and exported to the plain-text file. The control software proved that it is capable of con-
trolling the experimental devices reliably, without any issues and the results showed that
the measured data is correct. Overall view of the control software during the experiment

is shown in Figure 5.4.

73

= RaPoSoft - % X

About Help
.
ESTOP
Manual Control | Measurement | Force Control | Bioreactor
velacity limit: 0.0001 “| um /min
A Min: -0.001 Position: 14411.968 / 2458.222 Max: 26000.000
Force Control

um] HOMED Encoder; 14424.059 [2470.012 Error: =11.789 Max velocity: 2000.0 um J/min
TEy

Constant Linear | Sine | Sguare Triangle = Sawtooth

£(t) = Asin(2Nft+)+B

A ‘1‘0000 e ‘n‘onoo [o] n
iie e A 7.090 N f | 1.0000 [:[Hz @ 00000 ;] rad
- Cycles count Plot periods

Smeoth: |Sﬂ Contact: @™ Overload:) Tare

o7 3
AIM 2 | biosa oj_tharme 25.047 °C obzg
smooth: | 1000 _ -9.025

0,75

-1

Unlock Sensors I | Lock Sensors |

Rate: 20000 Hz Time: 2739 s Samples: 54774 Data: 3.8 MB

Figure 5.4: Overall view of the control software

5.2 Fracture analysis of sandstone

In this study, an in-house designed experimental device is used for the 4-point bending of
weathered sandstone samples. The experimental device features two loading units, each
of which is motorised by a stepper motor and equipped with a load cell. The frame of the

device is made of high-strength aluminium alloy and carbon composite, see Figure 5.5.

slip ring
adapter

docking ring

inner supports

motorized docking ring
rotary table loading unit
adapter

motorized
loading unit
outer support
with loadcell

specimen
. high-strength
_ carbon-composite aluminium alloy
high-strength frame frame
aluminium alloy (low X-ray attenuation)

outer support
with loadcell frame

Figure 5.5: Experimental device for the 4-point bending mechanical test

74

The device is intended to be used for the 4-point bending mechanical test paired with
a CT scanner to perform on-the-fly 4D CT during the bending, see Figure 5.6. The CT

scans may be used for the 3D strain analysis using the DVC.

=—=T1T—— (T scanning
In-situ four-point —

bending device tor 4D CT actuator
\ Translation
X-ray tube Force

X-ray beam

specimen

Force

Translation detector

actuator

Figure 5.6: Principle of the 4-point bending and on-the-fly CT

The sandstone samples were very fragile, therefore a precise positioning was required,
especially when approaching a contact force. The contact force was set to 5 N as the con-
stant force control function. Maximum velocity (maximum output of the PID controller)
was set to 10 wm/s. As the loading units reached the contact force, a displacement-driven
experiment started. The loading velocity was 1 um/s and the experiment stopped when

the sandstone sample was broken in half.

Numerous series of sandstone samples were observed. Some of the samples were weathered
by water, some of them were weathered by ice, some of the samples were observed intact.

Results of the experiments are shown in Figures 5.7.

I6)

Force [N]

50

45

Force-displacement 4-point bending, 16057 Msene - averaged

T
16057/4 - intact, Telc, jun 2018
16057/2 - intact, Telc, jun 2018
16057/12 - intact, Ostrava, nov 2017

16057/11 - intact, Ostrava, nov 2017 -

16057/17 - intact, Ostrava, nov 2017
16057/33 - water, Telc, nov 2018
16057125 - frozen, Telc, nov 2018
16057/32 - water, Telc, nov 2018

100 200 300 400
Displacement [um]

Figure 5.7: Results of the sandstone analysis

76

500

Chapter 6

Work in Progress

Currently, the control software is still being developed. New features are being imple-

mented, such as a remote control.

6.1 Remote control

The remote control capabilities of the control software allow the user to control the ex-

perimental devices over the network in a client-server fashion, see Figure 6.1.

Remote (______________T_C_Ei/_%l? _____________ > Control <> Experimental
PC unit device
(client) (server)

Figure 6.1: Scheme of the control software remote control

The control unit physically controlling the experimental device acts like a server. The
control software core, including all the real-time demands and security procedures, such
as limit switch supervision or load cell overload inspection, run within the control unit.
The remote PC is used to send commands or requests for variables' to the control unit

using the TCP stream socket.

Variables, such as status variables, error status, measured data, etc.

77

6.1.1 TCP socket

A socket programming interface provides the routines required for interprocess commu-
nication between the applications, either on the local system (Unix domain socket, see
subchapter 4.3.1) or spread in the TCP/IP based network environment. The TCP/IP

connection is defined as an internet address (IPv4 or IPv6) and a port numerical value.

TCP sockets provide a reliable, nearly error-free data pipe between two endpoints. Both
of the devices can send and receive streams of bytes so a serialising module must be used

when sending the data structure, such as a Python list or dictionary, see subchapter 4.3.2.

One device, known as the client, creates a socket, connects to the server, and then begins
sending and receiving data. On the other side, the server creates a socket and listens for
the incoming connection from the client. Once a connection is initiated, the server accepts

the connection, and then starts to send and receive data to and from the incoming client.

The control software includes a process of the so-called Server Manager. The Server man-
ager is connected with other processes within the control software core which makes the
control software architecture more complex than described in Figure 4.3, see Figure 6.2

and Appendix B.

6.1.2 Server Manager

The Server Manager process is part of the control software running within the control
unit. It provides remote access over the network to the control software core using the
TCP socket, see Figure 6.3 and Appendix B. The TCP socket of the Server Manager can
be accessed by the remote PC through the so-called Client Manager process.

6.1.3 Client Manager

The Client Manager process runs within a client application on the remote PC and pro-
vides all functionality needed for communication with the Server Manager process running
inside the control unit. The client application includes the Client Manager process which

is connected with the remote user interface and with the remote API provider process.

78

Stat Poller

Command
Executor

I

Data

Data K
Logger ata Keeper

I/0

Manager

v

éé“é_é" S &S

Figure 6.2: Control software core with connection to the Server Manager included

79

22

©

24

25

Server Manager

TCP socket

A A A A

277

28

29

30

31)«

C
NN

TCP socket

Client Manager

i 11T

32)«€

33)«

34)<€

35)«€

Y YYVYY

16
17

®

19
20

36
37
38
39

40
41
42
43
44

Figure 6.3: Server Manager and Client Manager inter-process communication scheme

80

6.1.4 Remote user interface

The remote user interface is connected with the Client Manager using multiprocessing
queues. Once a command is sent from the remote user interface, it reaches the Client
Manager which adds an identification stamp to the command and sends it through the
TCP socket to the Server Manager running within the control unit. The Server Manager
receives the command and reads the identification stamp. Based on the identification
stamp, the Server Manager puts the command to an appropriate queue leading into a

process suitable for executing the command.

Due to this identification stamp mechanism, the developed user interface may be con-
nected either with the control software core directly within the control unit, or paired
with the Client Manager within the client application. All the specific functionality re-
quired for sending commands remotely is included in Client Manager and Server Manager
processes, which create a transfer layer for the remote commands. Notice, that the remote
user interface architecture remains the same, it only connects to queues of the Client

Manager, see Figure 6.4 and Appendix B.

6.1.5 Remote script execution

The remote application also includes the API provider process connected with the Client
Manager. The APT provider allows one to send commands from the remote Python script
using the rapo library. The API provider and the rapo library are based on the same
architecture shown in Figure 4.6 and described in subchapter 4.3 which makes them
suitable for remote use as well. All the functionality needed for transfering commands
from the remote API provider to the control software core is included in Client Manager

and Server Manager processes, see Figure 6.5 and Appendix B.

81

Y/

\/

33

@

GUI core

GUI plugin 1

GUI plugin 2

GUI plugin n-1

GUI plugin n

1
I
1
34 i YYVYY AAA
I
35]
I
1
I
I —
(2 e
(29—
]
(29— >
G
1
:
I
I

Figure 6.4: Remote user interface architecture

82

[N [N 1SN
N R A O

:

IS IS
D 8]

API Provider

Unix Domain Socket

GP90

Python commands
Unix Domain

import rapo library Socket

import rapo

create status and command channels
rapo library

s = rapo.pstat (remote=True)

c = rapo.command ()

update status variables
s.poll()

get list of equipped sensors
s.sensors_actual ()

equip sensor named "loadcell"

c.lock sensors(["loadcell"], [1])

Figure 6.5: Remote API provider and rapo library connection scheme

83

Chapter 7

Conclusion

Within the proposed thesis, a modular multi-process control software for experimental
devices operated in the Department of Mechanics and Materials in the Faculty of Trans-
portation Sciences at the Czech Technical University and at the Institute of Theoretical

and Applied Mechanics of the Czech Academy of Sciences was developed.

The newly developed control software replaced the first-generation control software pub-
lished previously as part of my Bachelor’s thesis. The new-generation control software gives
much more performance than the first-generation control software as the new-generation
is based on a multi-process architecture with a robust multi-process core and the control
software functionality was also enahanced with new features to satisfy needs of the re-
cently developed experimental devices, such as the support for various types of sensors
(load cells, thermometers, etc.), encoders support, temperature control functionality or

the support for performing force-driven experiments.

Furthermore, the control software features a scripting functionality which enables the
execution of custom external Python scripts. These scripts can operate with the experi-
mental device through the developed rapo library. The library allows one to monitor the
status variables of the experimental device, send various commands to the device, etc.
Therefore, the library may be used for creating various types of automated procedures,

such as advanced experimental procedures, etc.

Currently, the control software has been utilised with a great success in controlling experi-

mental devices in the department. Thanks to the control software, numerous experiments

84

have been performed and many studies have been published. The control software has
proved its long-term stability and reliability as several experimental procedures last for
many hours and certain procedures took even more than one day of uninterrupted mea-

surement.

The control software also participated at the LinuxCNC community meeting in Stuttgart,
Germany in July 2018. Alhough the control software was still being developed during
that time, the majority of the features had been implemented already. The software drew
the attention of the community as it combines conventional precise CNC positioning

capabilities with high-performance and high-precision data acquisition.

Still, the control software is being developed and new features are being added. The most
recent feature in the development is the remote control which enables one to control the
experimental devices remotely over a local network or even over the internet. Another
feature that has come into consideration for future development is the real-time image
processing functionality of the imaging data obtained during an experimental procedure,

such as digital planar image correlation or digital volumetric image correlation.

85

Bibliography

[1] Eml 2023 — motor control lecture 3 — feedback sensor optical encoder. https://
slideplayer.com/slide/6003777/. Accessed: 2019-03-03.

[2] T. LinuxCNC Team. LinuzCNC Getting Started Guide. Samurai Media Limited,
2016.

[3] Hal Introduction. http://linuxcnc.org/docs/html/hal/intro.html. Accessed:
2019-05-11.

[4] PID Controller. http://linuxcnc.org/docs/html/motion/pid-theory.html. Ac-
cessed: 2019-05-11.

[5] Mesa HostMot2 Driver. http://www.linuxcnc.org/docs/html/drivers/hostmot?2.
html. Accessed: 2019-05-11.

[6] AXIS GUI. http://linuxcnc.org/docs/html/gui/axis.html. Accessed: 2019-05-
11.

[7] Touchy GUI. http://linuxcnc.org/docs/html/gui/touchy.html. Accessed: 2019-
05-11.

[8] Python Virtual Control Panel. http://www.linuxcnc.org/docs/2.4/html/hal_
pyvcp.html. Accessed: 2019-05-11.

[9] Glade Virtual Control Panel. http://linuxcnc.org/docs/html/gui/gladevcp.
html. Accessed: 2019-05-11.

[10] LinuxCNC Python Interface Documantation. http://linuxcnc.org/docs/2.6/
html/common/python-interface.html. Accessed: 2019-05-11.

86

https://slideplayer.com/slide/6003777/
https://slideplayer.com/slide/6003777/
http://linuxcnc.org/docs/html/hal/intro.html
http://linuxcnc.org/docs/html/motion/pid-theory.html
http://www.linuxcnc.org/docs/html/drivers/hostmot2.html
http://www.linuxcnc.org/docs/html/drivers/hostmot2.html
http://linuxcnc.org/docs/html/gui/axis.html
http://linuxcnc.org/docs/html/gui/touchy.html
http://www.linuxcnc.org/docs/2.4/html/hal_pyvcp.html
http://www.linuxcnc.org/docs/2.4/html/hal_pyvcp.html
http://linuxcnc.org/docs/html/gui/gladevcp.html
http://linuxcnc.org/docs/html/gui/gladevcp.html
http://linuxcnc.org/docs/2.6/html/common/python-interface.html
http://linuxcnc.org/docs/2.6/html/common/python-interface.html

[11] Creating Userspace Python Components. http://linuxcnc.org/docs/html/hal/
halmodule.html. Accessed: 2019-05-11.

[12] What is Python? Executive Summary. https://www.python.org/doc/essays/
blurb/. Accessed: 2019-05-11.

[13] G. Zaccone. Python Parallel Programming Cookbook. Packt Publishing Ltd., 35
Livery Street, Birmingham B3 2PB, UK, 2015.

[14] PyQt Documentation. https://wiki.python.org/moin/PyQt. Accessed: 2019-05-11.
[15] Qt Documentation. http://doc.qt.i0/qt-5.9/index.html. Accessed: 2019-05-11.

[16] PythonQwt Manual. https://pythonhosted.org/PythonQut/. Accessed: 2019-05-
11.

[17] Qwt - Qt Widgets for Technical Applications. http://qut.sourceforge.net/. Ac-
cessed: 2019-05-11.

[18] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing In Science €
Engineering 9(3):90-95, 2007. DOI1:10.1109/MCSE.2007.55.

[19] B. Schneider. PyGnuplot: Python wrapper for Gnuplot. https://pypi.org/
project/PyGnuplot/. Accessed: 2019-05-11.

[20] T. Williams, C. Kelley, many others. Gnuplot 5.2: an interactive plotting program.
http://gnuplot.sourceforge.net/, 2019.

[21] V. Rada. Software pro fizeni stroji a experimentalnich zafizeni. https://
dspace.cvut.cz/handle/10467/7318071ocale-attribute=en, Bachelor’s Thesis,
Czech Technical University in Prague, Faculty of Transportation Sciences, Depart-

ment of Mechanics and Materials, 2017.

[22] P. Koudelka, T. Fila, D. Kyty¥, et al. Novel device for 4-point flexural testing of
quasi-brittle materials during 4d computed tomography. In Structural Integrity, pp.
27-32. Springer International Publishing, 2018. pO1:10.1007/978-3-319-91989-8 5.

[23] T. Fila, J. Sleichrt, D. Kyty¥, et al. Deformation analysis of the spongious sample

in simulated physiological conditions based on in-situ compression, 4d computed

87

http://linuxcnc.org/docs/html/hal/halmodule.html
http://linuxcnc.org/docs/html/hal/halmodule.html
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://wiki.python.org/moin/PyQt
http://doc.qt.io/qt-5.9/index.html
https://pythonhosted.org/PythonQwt/
http://qwt.sourceforge.net/
http://dx.doi.org/10.1109/MCSE.2007.55
https://pypi.org/project/PyGnuplot/
https://pypi.org/project/PyGnuplot/
http://gnuplot.sourceforge.net/
https://dspace.cvut.cz/handle/10467/73180?locale-attribute=en
https://dspace.cvut.cz/handle/10467/73180?locale-attribute=en
http://dx.doi.org/10.1007/978-3-319-91989-8_5

tomography and fast readout detector. Journal of Instrumentation 13(11):C11021-
C11021, 2018. DOI:10.1088/1748-0221/13/11/¢11021.

88

http://dx.doi.org/10.1088/1748-0221/13/11/c11021

Appendix A

Prime fatorisation script

Listing A.1: Prime fatorisation script

mnmnn

how many numbers? 1000000

single thread: 22.4188029766 seconds
2 threads: 31.318999052 seconds

4 threads: 52.8587779999 seconds

6 threads: 63.3178188801 seconds

8 threads: 71.512188911) seconds
10 threads: 75.6294119358 seconds
12 threads: 76.9113698006 seconds
16 threads: 81.545334816 seconds

2 processes: 15.542855978 seconds

4 processes: 8.67697715759 seconds
6 processes: 5.94609308243 seconds
8 processes: 4.5012760162] seconds
10 processes: 4.2152929306 seconds
12 processes: 3.7843940258 seconds
16 processes: 3.41232895851 seconds

nnn

import time, math
from multiprocessing import Process, Queue

import threading

89

def factorize(n):

nin

A factorization method. Take integer ’n’, return list of factors.
nin
ifn < 2:
return ||
factors = []

p=2

while True:
ifn ==

return factors

r=n%p

ifr==20:
factors.append(p)
n=n/p

elifp xp >=n:
factors.append(n)
return factors

elif p > 2:

Advance in steps of 2 over odd numbers

p+=2

else:
If p == 2, get to 3
p+=1

def plain_factorizer(nums):

nin

Single threaded method factorizing list of numbers
:param nums: list of numbers to factor

creturn: dict, key is a factorized integer, value is list of factors

nin

return {n: factorize(n) for n in nums}

def thread worker(nums, outdict):

mmimn

90

The worker function, invoked in a thread.
:param nums: list of numbers to factor
:param outdict: results are placed in outdict
nmnn

for n in nums:

outdict[n] = factorize(n)

def threaded factorizer(nums, nthreads):
nin
Method factorizing list of numbers using n threads.
:param nums: list of numbers to factor
:param nthreads: number of threads to utilize
rreturn: dict, key is a factorized integer, value is list of factors
i
Fach thread will get ’chunksize’ nums and its own output dict
chunksize = int(math.ceil(len(nums) / float(nthreads)))
threads = ||

outs — [{} for _ in range(nthreads)]

for i in range(nthreads):
Create each thread, passing it its chunk of numbers to factor and output dict.
t = threading. Thread(target—thread worker, args—(nums|[chunksize * i:chunksize % (i + 1)],
— outsli]))
threads.append(t)
t.start()

Wait for all threads to finish
for t in threads:

t.join()

Merge all partial output dicts into a single dict and return it

return {k: v for out_d in outs for k, v in out_ d.iteritems()}

def process _worker(nums, out q):

nin

The worker function, invoked in a process.

:param nums: :param nums: list of numbers to factor

91

:param out_ q: results are pushed to the queue
nmnn
outdict = {}
for n in nums:
outdict[n] = factorize(n)

out_g.put(outdict)

def multiprocess factorizer(nums, nprocs):

miiin

Method factorizing list of numbers using n processes.
:param nums: list of numbers to factor

:param nprocs: number of processes to utilize

rreturn: dict, key is a factorized integer, value is list of factors

nin

Fach process will get ’chunksize’ nums and a queue to put his out dict into

out _q = Queue()

chunksize = int(math.ceil(len(nums) / float(nprocs)))

procs = ||

for i in range(nprocs):
p — Process(
target—=process__ worker,
args=(nums|chunksize * i:chunksize * (i + 1)],
out_q))
procs.append(p)
p.start()

Collect all results into a single result dict. We know how many dicts with results to expect.

resultdict = {}
for i in range(nprocs):

resultdict.update(out_q.get())
Wait for all worker processes to finish
for p in procs:

p-join()

return resultdict

92

def main():
mimin
Main method of the script, performs benchmark
‘return: exit code 0
mimin
test performance for n threads and processes from the lists
N_THREADS = [2, 4, 6, 8, 10, 12, 16]
N_PROCESSES = [2, 4, 6, 8, 10, 12, 16]

get the numbers to factorize as user input
N = input("how_many_numbers?_")

nums = range(N)

benchmark factorizing by single thread
t0 = time.time()

plain_ factorizer(nums)

t1 = time.time()

print("single_thread:_{}_seconds".format(t1 — t0))

benchmark factorizing by threads

for nthreads in N THREADS:
t0 = time.time()
threaded _factorizer(nums, nthreads)
t1 = time.time()

print("{}_threads:_{}_seconds" .format(nthreads, t1 — t0))

benchmark factorizing by processes

for nprocs in N PROCESSES:
t0 = time.time()
multiprocess _factorizer(nums, nprocs)
t1 = time.time()

print("{}_processes:_{ }_seconds".format(nprocs, t1 — t0))

return 0

if name ==’ main

main()

93

Appendix B

Communication schemes description

@ Connection to a queue leading to the Stat Poller, used for sending commands to the

Stat Poller

@ Connection to a queue leading to the Command Executor, used for sending com-

mands to the Command Executor

@ Connection to a queue leading to the I/O Manager, used for sending commands to

the I/O Manager

@ Connection to a queue leading to the Data Keeper, used for sending commands to

the Data Keeper

@ Connection to a queue leading to the GUI core, used for sending machine status

variables from the Stat Poller to the GUI

@ Connection to a queue leading to the GUI core, used for sending eventual error

messages from the Stat Poller to the GUI

@ Connection to a queue leading to the API Provider, used for sending machine status

variables from the Stat Poller to the API Provider

Connection to a queue leading to the API Provider, used for sending eventual error
messages from the Stat Poller to the API Provider

@ Connection to a queue leading to the GUI core, used for sending I/O status variables
from the I/O Manager to the GUI

94

Connection to a queue leading to the API Provider, used for sending I/O status
variables from the I/O Manager to the API Provider

@ Connection to a queue leading to the GUI core, used for sending measured data
variables from the Data Keeper to the GUI

@ Connection to a queue leading to the GUI core, used for sending data to plot from
the Data Keeper to the GUI

@ Connection to a queue leading to the API Provider, used for sending measured data
variables from the Data Keeper to the API Provider

@ Connection to a queue leading to the API Provider, used for sending data to plot
from the Data Keeper to the API Provider

@ Connection of the API Provider and rapo library through the Unix domain socket

@ Connection to a queue leading to the Server Manager, used for sending machine sta-
tus variables from the Stat Poller through the Server Manager and Client Manager
to the remote GUI

@ Connection to a queue leading to the Server Manager, used for sending eventual error
messages from the Stat Poller through the Server Manager and Client Manager to

the remote GUI

@ Connection to a queue leading to the Server Manager, used for sending machine sta-
tus variables from the Stat Poller through the Server Manager and Client Manager
to the remote API Provider

@ Connection to a queue leading to the Server Manager, used for sending eventual error
messages from the Stat Poller through the Server Manager and Client Manager to

the remote API Provider

Connection to a queue leading to the Server Manager, used for sending I/O status
variables from the I/O Manager through the Server Manager and Client Manager
to the remote GUI

95

@ Connection to a queue leading to the Server Manager, used for sending /0O status
variables from the I/O Manager through the Server Manager and Client Manager
to the remote API Provider

@ Connection to a queue leading to the Server Manager, used for sending measured
data variables from the Data Keeper through the Server Manager and Client Man-
ager to the remote GUI

@ Connection to a queue leading to the Server Manager, used for sending data to
plot from the Data Keeper through the Server Manager and Client Manager to the
remote GUI

@ Connection to a queue leading to the Server Manager, used for sending measured
data variables from the Data Keeper through the Server Manager and Client Man-
ager to the remote API Provider

@ Connection to a queue leading to the Server Manager, used for sending data to
plot from the Data Keeper through the Server Manager and Client Manager to the

remote API Provider
@ Connection of the Server Manager and Client Manager through the TCP socket

@ Connection to a queue leading to the Client Manager, used for sending commands
from the remote GUI to the Stat Poller through the Client Manager and Server

Manager

@ Connection to a queue leading to the Client Manager, used for sending commands
from the remote GUI to the Command Executor through the Client Manager and

Server Manager

@ Connection to a queue leading to the Client Manager, used for sending commands
from the remote GUI to the I/O Manager through the Client Manager and Server

Manager

@ Connection to a queue leading to the Client Manager, used for sending commands
from the remote GUI to the Data Keeper through the Client Manager and Server

Manager

96

@ Connection to a queue leading to the remote GUI core, used for sending machine

status variables from the Stat Poller to the remote GUI

@ Connection to a queue leading to the remote GUI core, used for sending eventual

error messages from the Stat Poller to the remote GUI

@ Connection to a queue leading to the remote GUI core, used for sending I/0O status
variables from the I/O Manager to the remote GUI

@ Connection to a queue leading to the remote GUI core, used for sending measured

data variables from the Data Keeper to the remote GUI

@ Connection to a queue leading to the remote GUI core, used for sending data to
plot from the Data Keeper to the remote GUI

@ Connection to a queue leading to the Client Manager, used for sending commands
from the remote API Provider to the Stat Poller through the Client Manager and

Server Manager

@ Connection to a queue leading to the Client Manager, used for sending commands
from the remote API Provider to the Command Executor through the Client Man-

ager and Server Manager

@ Connection to a queue leading to the Client Manager, used for sending commands
from the remote API Provider to the I/O Manager through the Client Manager and

Server Manager

@ Connection to a queue leading to the Client Manager, used for sending commands
from the remote API Provider to the Data Keeper through the Client Manager and

Server Manager

@ Connection to a queue leading to the remote API Provider, used for sending machine

status variables from the Stat Poller to the remote API Provider

@ Connection to a queue leading to the remote API Provider, used for sending eventual

error messages from the Stat Poller to the remote API Provider

Connection to a queue leading to the remote API Provider, used for sending I/O
status variables from the I/O Manager to the remote API Provider

97

@ Connection to a queue leading to the remote API Provider, used for sending mea-

sured data variables from the Data Keeper to the remote API Provider

@ Connection to a queue leading to the remote API Provider, used for sending data
to plot from the Data Keeper to the remote API Provider

@ Connection of the remote API Provider and rapo library on the remote device

through the Unix domain socket

98

Appendix C

Plot comparison script

Listing C.1: Plot comparison script

mnmnn

PythonQut: plotting 100 data samples took 0.00383186340332 seconds
Matplotlib: plotting 100 data samples took 0.0366899967194 seconds
PythonQut: plotting 1000 data samples took 0.00518195991516 seconds
Matplotlib: plotting 1000 data samples took 0.0264139175415 seconds
PythonQut: plotting 10000 data samples took 0.00405383110046 seconds
Matplotlib: plotting 10000 data samples took 0.0248889923096 seconds
PythonQut: plotting 50000 data samples took 0.00433802604675 seconds
Matplotlib: plotting 50000 data samples took 0.0284330844879 seconds
PythonQut: plotting 100000 data samples took 0.00466799736023 seconds
Matplotlib: plotting 100000 data samples took 0.0300550460815 seconds
PythonQut: plotting 250000 data samples took 0.00639510154724 seconds
Matplotlib: plotting 250000 data samples took 0.0396320819855 seconds
PythonQut: plotting 500000 data samples took 0.00936698913574 seconds
Matplotlib: plotting 500000 data samples took 0.0492820739746 seconds
PythonQut: plotting 1000000 data samples took 0.0142869949341 seconds
Matplotlib: plotting 1000000 data samples took 0.0847151279449 seconds

nnn

from PyQt5.QtWidgets import QApplication
from qwt import QwtPlot, QwtPlotCurve

from matplotlib.backends.backend _qt5agg import FigureCanvasQTAgg as FigureCanvas

from matplotlib.figure import Figure

99

import numpy as np

import time

import sys

def plot_qwt(n_samples):
nin
Plot n data samples using PythonQuwt
:param n_samples: number of samples
‘return: exit code
i
create QApplication and Qut plot widget
app — QApplication(sys.argv)
gui = QwtPlot()
prepare data samples
x = np.arange(0.0, 2+np.pi, 2*np.pi/n_samples)
y — np.sin(x)
start measuring plot time
t0 = time.time()
curve = QwtPlotCurve()
curve.setData(x, y)
curve.attach(gui)
t1 = time.time()
print results
print "PythonQwt:_plotting_{}_data_samples_took_{}_seconds".format(n_samples, t1—t0)

qui.show() # uncomment to show user interface

return sys.exit(app.exec_()) # uncomment to start QApplication event loop

def plot_matplotlib(n_samples):
mmn
Plot n data samples using matplotlib
:param n_samples: number of samples

sreturn: exit code

mmimn

create QApplication and matplotlib widget

100

app — QApplication(sys.argv)

figure — Figure()

subplot = figure.add subplot(111)

gui = FigureCanvas(figure)

prepare data samples

x = np.arange(0.0, 2+np.pi, 2*np.pi/n_samples)

y = np.sin(x)

start measuring plot time

t0 = time.time()

subplot.plot(x, y)

gui.draw()

t1 = time.time()

qui.show() # uncomment to show user interface
print results

print "Matplotlib:_plotting_{ }_data_samples_took_{}_seconds".format(n_samples, t1—t0)

return sys.exit(app.exec_()) # uncomment to start QApplication event loop

def main():

mimn

Main method of the script

sreturn: exit code 0

mimin

for n in [100, 1000, 10000, 50000, 100000, 250000, 500000, 1000000]:
plot _qwt(n)
plot_matplotlib(n)

return 0

)

if name ==’ main

main()

101

Appendix D

Serialising modules comparison script

Listing D.1: Serialising modules comparison script

mnmnn

pickle.dumps — protocol 0: type <type ’list’> took 1.23852205276 seconds, size 8888896 B
cPickle.dumps — protocol 0: type <type ’list’> took 0.118358135223 seconds, size 8888896 B
pickle.dumps — protocol 1: type <type ’list’> took 1.43744206429 seconds, size 4870676 B
cPickle.dumps — protocol 1: type <type ’‘list’> took 0.0186970233917 seconds, size 4870676 B
pickle.dumps — protocol 2: type <type ’list’> took 1.43182492256 seconds, size 4870678 B
cPickle.dumps — protocol 2: type <type ’list’> took 0.0189759731293 seconds, size 4870678 B
pickle.loads: type <type ’list’> took 0.590484857559 seconds

cPickle.loads: type <type ’list’> took 0.0240499973297 seconds

json.dumps: type <type ’list’> took 0.105890989304 seconds, size 7888890 B

json.loads: type <type ’list’> took 0.0827050209045 seconds

pickle.dumps — protocol 0: type <type ’dict’> took 2.38178496361 seconds, size 16777786 B
cPickle.dumps — protocol 0: type <type ’dict’> took 0.241229057312 seconds, size 16777786 B
pickle.dumps — protocol 1: type <type ’dict’> took 2.68368887901 seconds, size 9739348 B
cPickle.dumps — protocol 1: type <type ’dict’> took 0.0424699783325 seconds, size 9739350 B
pickle.dumps — protocol 2: type <type ’dict’> took 2.68153905869 seconds, size 9739350 B
cPickle.dumps — protocol 2: type <type ’dict’> took 0.0431780815125 seconds, size 9739352 B
pickle.loads: type <type ’dict’> took 1.30437397957 seconds

cPickle.loads: type <type ’dict’> took 0.0720989704132 seconds

json.dumps: type <type ‘dict’> took 0.286577939987 seconds, size 17777780 B

json.loads: type <type ’dict’> took 0.533478021622 seconds

mmnn

102

import pickle
import cPickle

import json

import time

import sys

def dumps_pickle(data, protocol):
nin
Pickle/serialize data with pickle module using a protocol
:param data: data to pickle/serialize
:param protocol: protocol used for pickling/serialization
creturn: pickled/serialized data

nmn

return pickle.dumps(data, protocol=protocol)

def loads pickle(data):
nmnn
Unpickle/deserialize data with pickle module
:param data: data to unpickle/deserialize
return: unpickled/deserialized data

mmimn

return pickle.loads(data)

def dumps_ cPickle(data, protocol):
nin
Pickle/serialize data with cPickle module using a protocol
:param data: data to pickle/serialize
:param protocol: protocol used for pickling/serialization
return: pickled/serialized data

nin

return cPickle.dumps(data, protocol=protocol)

def loads_cPickle(data):

mmimn

103

Unpickle/deserialize data with cPickle module
:param data: data to unpickle/deserialize
:return: unpickled/deserialized data

nin

return cPickle.loads(data)

def dumps_ json(data):

nin

Pickle/serialize data with json module
:param data: data to pickle/serialize
return: pickled/serialized data

mnimn

return json.dumps(data)

def loads_json(data):

nin
Unpickle/deserialize data with json module
:param data: data to unpickle/deserialize
:return: unpickled/deserialized data

nn

return json.loads(data)

def main():

nin

Main method of the script

sreturn: exit code 0

nn

PROTOCOLS = [0, 1, 2]
DATA = [list(range(1000000)), dict(zip(range(1000000), range(1000000)))]

for data in DATA:

benchmark various pickle and cPickle protocols
for protocol in PROTOCOLS:

benchmark pickle.dumps

t0 = time.time()

pickled = dumps_ pickle(data, protocol)

104

t1 = time.time()
print "pickle.dumps_—_protocol_{}:_type_{ }_took_{}_seconds,_size_{}_B".format(
— protocol, type(data), t1—t0, len(pickled))
benchmark cPickle.dumps
t0 = time.time()
pickled = dumps_ cPickle(data, protocol)
t1 = time.time()
print "cPickle.dumps_—_protocol_{}:_type_{}_took_{}_seconds,_size_{}_B".format(
— protocol, type(data), t1—t0, len(pickled))
benchmark pickle.loads
t0 = time.time()
unpickled = loads pickle(pickled)
t1 = time.time()
print "pickle.loads:_type_{}_took_{}_seconds".format(type(data), t1 — t0)
benchmark cPickle.loads
t0 = time.time()
unpickled = loads cPickle(pickled)
t1 = time.time()
print "cPickle.loads:_type_{}_took_{}_seconds".format(type(data), t1—t0)
benchmark json.dumps
t0 = time.time()
pickled = dumps_ json(data)
t1 = time.time()
print "json.dumps:_type_{}_took_{}_seconds,_size_{}_B".format(type(data), t1—t0, len(
— pickled))
benchmark json.loads
t0 = time.time()
unpickled = loads_json(pickled)
t1 = time.time()

print "json.loads:_type_{}_took_{}_seconds" .format(type(data), t1—t0)

return 0

)

if name ==’ main

main()

105

	Introduction
	Theoretical background
	Stepper motor
	Controlling stepper motors
	Open-loop control system
	Closed-loop control system

	Encoders
	Optical encoders
	Magnetic encoders
	Incremental and absolute encoders
	Absolute encoders
	Incremental encoders

	LinuxCNC
	Hardware abstraction layer
	PID controller
	Proportional term
	Integral term
	Derivative term

	Hostmot2 driver
	User interfaces
	PyVCP
	GladeVCP
	Python Interface
	Python HAL component

	Python
	Global interpreter lock
	Threading module
	Multiprocessing module
	Multiprocessing pipes
	Multiprocessing queues

	PyQt
	Qt Creator
	Qt Designer
	User Interface Compiler

	PyQwt
	Matplotlib
	PyGnuplot

	Initial state
	Straightforward adaptation to various experimental devices
	Sensor support
	Displacement-driven experiments
	Obtaining and logging data
	Real-time plotting and static plotting
	Overview

	Developed software
	Introduction
	Performance gain
	Control software core
	Stat Poller
	Data Logger
	Data Keeper
	Command Executor
	I/O Manager

	User Interface
	Plotting performance benchmark

	Custom Python script execution
	Unix domain socket
	Serialising modules
	Pickle and cPickle modules
	JSON module
	List serialisation benchmark
	Dictionary serialisation benchmark
	Recapitulation

	Enhanced Functionality
	Introduction
	Sensor support
	Axes position bar
	Encoder support
	G92 offset
	Positioning error
	Homed status

	Plot plugin
	Force control
	Common controls
	Constant force command tab
	Linear force command tab
	Sine wave force command tab
	Square wave force command tab
	Triangle wave force command tab
	Sawtooth wave force command tab

	Temperature control
	Rapo library

	Case Studies
	Compression of a spongious sample in simulated physiological conditions
	Fracture analysis of sandstone

	Work in Progress
	Remote control
	TCP socket
	Server Manager
	Client Manager
	Remote user interface
	Remote script execution

	Conclusion
	Appendices
	Prime fatorisation script
	Communication schemes description
	Plot comparison script
	Serialising modules comparison script

