
Cze
h Te
hni
al University

Fa
ulty of Transportation S
ien
es

Department of Me
hani
s and Materials

Study �eld: Transportation Systems and Te
hnology

Modular Multi-pro
ess Control

Software for Experimental Devi
es

MASTER'S THESIS

Author: B
. Vá
lav Rada

Supervisors: Ing. Petr Zlámal, PhD., Ing. Tomá² Fíla

Year: 2019

De
laration

I hereby submit, for the evaluation and defen
e, the master's thesis elaborated at the

CTU in Prague, Fa
ulty of Transportation S
ien
es.

I have no relevant reason against using this work in the sense of �60 of A
t No. 121/2000

Coll. on the Copyright and Rights Related to Copyright and on the Amendment to Certain

A
ts (the Copyright A
t).

I de
lare I have a

omplished my �nal thesis by myself and I have named all the sour
es

used in a

ordan
e with the Guideline on the ethi
al preparation of university �nal theses.

In Prague, May 25, 2019 ..

B
. Vá
lav Rada

2

A
knowledgements

The thesis has been supported by the Operational Programme Resear
h, Development

and Edu
ation in proje
t Engineering appli
ations of mi
roworld physi
s (CZ.02.1.01/

0.0/0.0/16_019/0000766) and by the Grant Agen
y of the Cze
h Te
hni
al University in

Prague (grant no. SGS15/225/OHK2/3T/16).

All the support is gratefully a
knowledged.

B
. Vá
lav Rada

3

Title: Modular Multi-pro
ess Control Software for Experimental

Devi
es

Author: B
. Vá
lav Rada

Study programme: Te
hnology in Transportation and Tele
ommuni
ations

Study �eld: Transportation Systems and Te
hnology

Degree: Master's Thesis

Year: 2019

Supervisors: Ing. Petr Zlámal, PhD., Ing. Tomá² Fíla

Department of Me
hani
s and Materials, Fa
ulty of Transportation

S
ien
es, Cze
h Te
hni
al University; Institute of Theoreti
al and

Applied Me
hani
s of the Cze
h A
ademy of S
ien
es

Abstra
t: The proposed thesis enhan
es the fun
tionality of the previous-

generation
ontrol software developed in the Department of Me-

hani
s and Materials and adds spe
i�

ontrols essential for the

proper operation with newly developed experimental devi
es, su
h

as the support for multiple sensors (load
ells, temperature sen-

sors, et
.), temperature
ontrol, for
e
ontrol, et
. The
ontrol soft-

ware is a multi-pro
ess appli
ation based on a multi-pro
ess
ore

whi
h results in a rapid performan
e in
rease over the previous-

generation. Modular ar
hite
ture of the user interfa
e enables the

very e�e
tive adaptation to various experimental devi
es. Cur-

rently, the
ontrol software is fully utilised in
ontrolling the experi-

mental devi
es in the department, numerous s
ienti�
 and engineer-

ing experiments have been performed and many valuable studies

have been published.

Keywords: LinuxCNC, Python Interfa
e, Python,
ontrol software,

multipro
essing

4

Název: Modulární multipro
esová aplika
e pro £ísli
ové °ízení ex-

perimentální
h za°ízení

Autor: B
. Vá
lav Rada

Studijní program: Te
hnika a te
hnologie v doprav¥ a spojí
h

Obor: Dopravní systémy a te
hnika

Druh prá
e: Diplomová prá
e

Rok vydání: 2019

Vedou
í prá
e: Ing. Petr Zlámal, PhD., Ing. Tomá² Fíla

Ústav me
haniky a materiál·, Fakulta dopravní, �eské vysoké

u£ení te
hni
ké v Praze; Ústav teoreti
ké a aplikované me
haniky

Akademie v¥d �eské republiky

Abstrakt: P°edloºená prá
e zdokonaluje funk
ionalitu p°ed
hozí genera
e

°ídi
ího software vyvinutého na Ústavu me
haniky a materiál·

a roz²i°uje jej o ovláda
í prvky nutné pro °ízení nov¥ vzniklý
h

experimentální
h za°ízení, jako je nap°. podpora m¥°ení p°i pouºití

dvou a ví
e silom¥r·, pouºití teplotní
h £idel, teplotní a silové

°ízení apod. Nov¥ vyvinutý software je multipro
esová aplika
e,

která se opírá o robustní multipro
esové jádro,
oº zna£n¥ p°is-

pívá k vysokému výkonu aplika
e. Modulární a dynami
ky gen-

erované ovláda
í prvky uºivatelského rozhraní umoº¬ují velmi

ry
hlou a efektivní adapta
i pro pouºití r·zný
h experimentální
h

za°ízení. �ídi
í software je v sou£asné dob¥ pln¥ vyuºíván, byla díky

n¥mu provedena °ada v¥de
ký
h i inºenýrský
h m¥°ení a vznikla

°ada hodnotný
h publika
í.

Klí£ová slova: LinuxCNC, Python Interfa
e, Python, °ídi
í software,

multipro
essing

5

Contents

1 Introdu
tion 14

2 Theoreti
al ba
kground 16

2.1 Stepper motor . 16

2.1.1 Controlling stepper motors . 17

2.1.1.1 Open-loop
ontrol system 19

2.1.1.2 Closed-loop
ontrol system 19

2.2 En
oders . 20

2.2.1 Opti
al en
oders . 20

2.2.2 Magneti
 en
oders . 21

2.2.3 In
remental and absolute en
oders 21

2.2.3.1 Absolute en
oders . 21

2.2.3.2 In
remental en
oders . 21

2.3 LinuxCNC . 22

2.3.1 Hardware abstra
tion layer . 22

2.3.2 PID
ontroller . 22

2.3.2.1 Proportional term . 23

2.3.2.2 Integral term . 23

2.3.2.3 Derivative term . 24

2.3.3 Hostmot2 driver . 24

2.3.4 User interfa
es . 24

2.3.5 PyVCP . 24

2.3.6 GladeVCP . 25

2.3.7 Python Interfa
e . 25

2.3.8 Python HAL
omponent . 25

6

2.4 Python . 25

2.4.1 Global interpreter lo
k . 26

2.4.2 Threading module . 26

2.4.3 Multipro
essing module . 26

2.4.3.1 Multipro
essing pipes . 27

2.4.3.2 Multipro
essing queues . 27

2.4.4 PyQt . 28

2.4.4.1 Qt Creator . 28

2.4.4.2 Qt Designer . 28

2.4.4.3 User Interfa
e Compiler 29

2.4.5 PyQwt . 29

2.4.6 Matplotlib . 29

2.4.7 PyGnuplot . 29

3 Initial state 30

3.1 Straightforward adaptation to various experimental devi
es 31

3.2 Sensor support . 32

3.3 Displa
ement-driven experiments . 32

3.4 Obtaining and logging data . 32

3.5 Real-time plotting and stati
 plotting . 33

3.6 Overview . 33

4 Developed software 35

4.1 Introdu
tion . 35

4.2 Performan
e gain . 35

4.2.1 Control software
ore . 36

4.2.1.1 Stat Poller . 36

4.2.1.2 Data Logger . 38

4.2.1.3 Data Keeper . 38

4.2.1.4 Command Exe
utor . 40

4.2.1.5 I/O Manager . 40

4.2.2 User Interfa
e . 40

4.2.2.1 Plotting performan
e ben
hmark 40

7

4.3 Custom Python s
ript exe
ution . 42

4.3.1 Unix domain so
ket . 44

4.3.2 Serialising modules . 44

4.3.2.1 Pi
kle and
Pi
kle modules 44

4.3.2.2 JSON module . 45

4.3.2.3 List serialisation ben
hmark 46

4.3.2.4 Di
tionary serialisation ben
hmark 49

4.3.2.5 Re
apitulation . 51

4.4 Enhan
ed Fun
tionality . 51

4.4.1 Introdu
tion . 51

4.4.2 Sensor support . 51

4.4.3 Axes position bar . 55

4.4.3.1 En
oder support . 55

4.4.3.2 G92 o�set . 56

4.4.3.3 Positioning error . 57

4.4.3.4 Homed status . 57

4.4.4 Plot plugin . 57

4.4.5 For
e
ontrol . 59

4.4.5.1 Common
ontrols . 61

4.4.5.2 Constant for
e
ommand tab 62

4.4.5.3 Linear for
e
ommand tab 63

4.4.5.4 Sine wave for
e
ommand tab 64

4.4.5.5 Square wave for
e
ommand tab 65

4.4.5.6 Triangle wave for
e
ommand tab 66

4.4.5.7 Sawtooth wave for
e
ommand tab 67

4.4.6 Temperature
ontrol . 68

4.4.7 Rapo library . 70

5 Case Studies 71

5.1 Compression of a spongious sample in simulated physiologi
al
onditions . 71

5.2 Fra
ture analysis of sandstone . 74

6 Work in Progress 77

8

6.1 Remote
ontrol . 77

6.1.1 TCP so
ket . 78

6.1.2 Server Manager . 78

6.1.3 Client Manager . 78

6.1.4 Remote user interfa
e . 81

6.1.5 Remote s
ript exe
ution . 81

7 Con
lusion 84

Appendi
es 89

A Prime fatorisation s
ript 89

B Communi
ation s
hemes des
ription 94

C Plot
omparison s
ript 99

D Serialising modules
omparison s
ript 102

9

List of Figures

2.1 Stepper motor feed with and without mi
rostepping 17

2.2 STEP and DIR
ontrol signals s
heme . 18

2.3 STEP/DIR generated by a PC (CPU) . 18

2.4 STEP/DIR generated by a motion
ontroller 18

2.5 Closed-loop
ontrol system s
heme . 19

2.6 Opti
al en
oder s
heme, taken and edited from [1℄ 20

2.7 PID
ontroller feedba
k loop . 23

2.8 Multithreaded exe
ution within a single pro
ess 27

3.1 Axes position bars . 31

3.2 Plot plugin of the user interfa
e . 33

4.1 Results of the prime fa
torisation ben
hmark 37

4.2 The developed
ontrol software s
heme . 38

4.3 The
ontrol software
ore inter-pro
ess
ommuni
ation s
heme 39

4.4 The
ontrol software user interfa
e s
heme 41

4.5 Matplotlib and PythonQwt plot
omparison results 42

4.6 The API provider and rapo library
onne
tion s
heme 43

4.7 Python list serialisation performan
e
omparison 47

4.8 Python list deserialisation performan
e
omparison 47

10

4.9 serialised Python list size
omparison . 48

4.10 Python di
tionary serialisation performan
e
omparison 49

4.11 Python di
tionary deserialisation performan
e
omparison 50

4.12 serialised Python di
tionary size
omparison 50

4.13 Experimental devi
e for the 4-point bending 52

4.14 Load
ell sensor initialising �le
ontent . 52

4.16 The plugin for handling the sensors . 53

4.15 Thermometer sensor initialising �le
ontent 53

4.17 The axes position plugin of the user interfa
e 55

4.18 The axes position plugin of the user interfa
e with G92 o�set a
tive 56

4.19 The plot plugin of the user interfa
e . 57

4.20 For
e
ontrol �ow
hart . 60

4.21 For
e
ontrol plugin overall view . 61

4.22 For
e
ontrol plugin
ommon
ontrols . 62

4.23 Constant for
e
ommand tab . 63

4.24 Linear for
e
ommand tab . 64

4.25 Sine wave for
e
ommand tab . 65

4.26 Square wave for
e
ommand tab . 66

4.27 Triangle wave for
e
ommand tab . 67

4.28 Sawtooth wave for
e
ommand tab . 68

4.29 Temperature
ontrol �ow
hart . 69

4.30 Temperature
ontrol plugin of the user interfa
e 70

5.1 Human bone spe
imen and loading devi
e 72

5.2 Loading devi
e exploded view in detail . 72

11

5.3 Loading devi
e exploded view in detail . 73

5.4 Overall view of the
ontrol software . 74

5.5 Experimental devi
e for the 4-point bending me
hani
al test 74

5.6 Prin
iple of the 4-point bending and on-the-�y CT 75

5.7 Results of the sandstone analysis . 76

6.1 S
heme of the
ontrol software remote
ontrol 77

6.2 Control software
ore with
onne
tion to the Server Manager in
luded . . . 79

6.3 Server Manager and Client Manager inter-pro
ess
ommuni
ation s
heme . 80

6.4 Remote user interfa
e ar
hite
ture . 82

6.5 Remote API provider and rapo library
onne
tion s
heme 83

12

A
ronyms

CNC Computer Numeri
al Control.

CPU Central Pro
essing Unit.

CT Computed Tomography.

DVC Digital Volume Correlation.

FIFO First in, �rst out.

FPS Frames per se
ond.

GIL Global Interpreter Lo
k.

GUI Graphi
al User Interfa
e.

HAL Hardware Abstra
tion Layer.

IDE Integrated Development Environment.

IPC Inter-pro
ess Communi
ation.

JSON Javas
ript Obje
t Notation.

QML Qt Modeling language.

UIC User Interfa
e Compiler.

WYSIWYG what you see is what you get.

13

Chapter 1

Introdu
tion

In re
ent years, Computer Numeri
al Control (CNC) systems have made an enormous

strides. CNC ma
hines have found utilisation in a wide range of appli
ations (industry,

medi
ine, et
.). Industrial CNC ma
hines are typi
ally aimed at the very e�e
tive and

pre
ise manufa
turing of parts with
omplex shapes and have many other advantageous

appli
ations in various industrial �elds. There are many CNC software solutions, whi
h

vary in pri
e, performan
e or
losed-sour
e
ommer
ial (Siemens, FANUC, LabVIEW)

and open-sour
e solutions (LinuxCNC, Arduino - primarily for hobby operation).

Our resear
h group, in the Department of Me
hani
s and Materials in the Fa
ulty of

Transportation S
ien
es at the Cze
h Te
hni
al University and at the Institute of Theo-

reti
al and Applied Me
hani
s of the Cze
h A
ademy of S
ien
es, tends to use open-sour
e

solutions, be
ause the needs are di�erent from
onventional industrial CNC appli
ations.

Custom experimental devi
es used for advan
ed me
hani
al testing of materials are de-

veloped in the department. Therefore, some properties of the CNC software have to be

operationally modi�ed a

ording to our requirements. For this purpose,
losed-sour
e

ommer
ial CNC software is not suitable for use with the devi
es. The purpose of the

designs
an be divided into three groups:

• me
hani
al loading ma
hines (e. g., in-situ loading devi
es for X-ray
omputed to-

mography)

• positioning ma
hines (e. g., opti
s and sample positioning)

• sample preparation devi
es (e. g., automati
 grinders)

14

The devi
es are designed to be
ompa
t and portable. The devi
es are equipped with

axes for the pre
ise positioning in
ooperation with high resolution en
oders. Most of

the devi
es feature various sensors, su
h as load
ells and thermometers et
., used for

measuring physi
al quantities, su
h as for
e or temperature.

For
ontrolling the experimental devi
es, an open-sour
e system LinuxCNC is used in the

department. The open-sour
e system is free to use and its fun
tionality may be
ustomised

and extended to �t our requirements with use of the Python programming language

through the LinuxCNC Python Interfa
e. The Python Interfa
e enables one to
ontrol

the experimental devi
es dire
tly using Python.

The performan
e of the
ontrol software is one of the key aspe
ts in terms of reliablility

and pre
ise measurement and data a
quisition. Modern CPUs
ontain numerous pro
ess-

ing
ores whi
h provide great
omputing power when utilised properly in parallel. Another

requirement on the
ontrol software is a modular design whi
h provides a very straight-

forward adaptation for use with various experimental devi
es operated in the department

in
luding devi
es developed in the future.

The
ontrol software proposed in the thesis is a multi-pro
ess appli
ation with modular

features and
ontrols developed in Python programming language. Currently, the
ontrol

software is fully used for performing various types of me
hani
al tests with great su

ess

and, thanks to this, many studies have been published.

15

Chapter 2

Theoreti
al ba
kground

Experimantal devi
es operated at our department use various types of a
tuators. The

largest portion of them is equipped with stepper motors, due to their simpli
ity and low

ost. The devi
es are equipped with opti
al or magneti
 en
oders whi
h provide position

feedba
k. For
ontrolling the devi
es an open-sour
e system LinuxCNC is used.

2.1 Stepper motor

A stepper motor is a brushless ele
tri
 motor, whi
h rotates in a number of equal steps.

A stepper motor primarily
onsists of two parts: a stator and a rotor. The rotor is a

permanent magnet

1

of a gear shape with a given number of teeth. The stator
onsist of

oils, whi
h
an be magnetised in a
ertain order by an ele
tri

urrent and make the

rotor turn to the
losest stable position.

Magnetising the
oils in a
ertain order is a
hieved by a stepper motor driver. The stepper

motor driver takes low-level voltage impulses (
ommonly 5 V) on the input and produ
es

a high-
urrent signal whi
h is delivered to the
oils in the motor. The impulses on the

driver input are usually in the form of STEP and DIR signals. A STEP signal is a square

shaped signal and ea
h STEP signal impulse

2

makes the rotor revolve to a �xed angle. This

angle is
alled a step. Stepper motor drivers usually support a mi
rostepping fun
tionality

1

Besides permanent magnet (PM) stepper motors, other types su
h as variable relu
tan
e (VR) and

hybrid syn
hronous stepper motors exist

2

Or rather ea
h rising or sinking edge of the STEP
ontrol signal

16

time

fe
e

d

feed without microstepping

feed with microsteping

Figure 2.1: Stepper motor feed with and without mi
rostepping

whi
h provides a smoother motion of the stepper motor. In theory, the mi
rostepping may

in
rease the motion pre
ision in
ase a load driven by the motor is well within its maximum

apa
ity, see Figure 2.1

The DIR signal determines the dire
tion of the stepper motor rotation. For instan
e, if the

DIR signal is equal to 0 V, the motor rotates
lo
kwise and if the DIR signal is equal to

5 V, the motor rotates the other dire
tion - in this
ase
ounter-
lo
kwise, see Figure 2.2.

2.1.1 Controlling stepper motors

Controlling stepper motors involve the pre
ise generation of the STEP and DIR signals

for the stepper motor driver.

The simplest approa
h is to generate the signals by the Central Pro
essing Unit (CPU) of

a PC and deliver it to the driver using an output port (e.g., parallel port), see Figure 2.3.

However, this approa
h has a massive drawba
k. In this
ase, the signal generation is CPU-

bound, therefore, it is very dependent on the CPU workload and
an exhibit signi�
ant

laten
y. If the CPU is stressed high, the STEP and DIR signals might not be generated

by the CPU pre
isely in time, hen
e the system is a�e
ted by ex
essive laten
y.

Another approa
h is to generate STEP and DIR signals on a dedi
ated motion
ontroller

or another form of the real-time hardware layer. The motion
ontroller enables de
reasing

17

5V

5V

time

time

voltage

voltage

STEP signal

DIR signal

feed direction change

0V

0V

Figure 2.2: STEP and DIR
ontrol signals s
heme

PC
Driver

(amplifier)
Motor

 STEP/DIR position

(output)

Figure 2.3: Stepper motor
ontrolling s
heme, the STEP/DIR generator is a PC (CPU)

Motion

Controller
PC

Driver

(amplifier)
Motor

 STEP/DIRcommand

(input)

position

(output)

Figure 2.4: Stepper motor
ontrolling s
heme, the STEP/DIR generator is a motion
on-

troller

18

Motion

Controller
PC

Driver

(amplifier)
Motor

 STEP/DIRcommand

(input)

Feedback

position

(output)

Feedback loop

Figure 2.5: Closed-loop
ontrol system s
heme

the system laten
y as the STEP and DIR signals are generated by the motion
ontroller

independently on a CPU workload. The s
heme of this approa
h is shown in Figure 2.4

2.1.1.1 Open-loop
ontrol system

Stepper motors have an inherent ability to
ontrol the position, as the position
an be

determined by the number of steps to rotate. This makes them very easy to use without

any feedba
k en
oder, but the la
k of an en
oder limits its performan
e. In an open-

loop
ontrol system, the stepper motor
an drive a load whi
h is well within its
apa
ity,

otherwise using a stepper motor beyond the limits may lead into positioning errors due

to missed steps. An open-loop
ontrol system s
heme is shown in Figures 2.3 and 2.4

2.1.1.2 Closed-loop
ontrol system

On the other hand, a
losed-loop
ontrol system is based on an open-loop
ontrol system

on
ept, but has one or more feedba
k loops. Closed loop systems are designed to auto-

mati
ally produ
e and maintain the intended position (
ommand) by
omparing it with

the a
tual position (feedba
k). The di�eren
e between the
ommand and the feedba
k de-

termines the error whi
h the
ontrol system must
ompensate for. A
losed-loop
ontrol

system s
heme is shown in Figure 2.5

19

Figure 2.6: Opti
al en
oder s
heme, taken and edited from [1℄

2.2 En
oders

An en
oder is a sensor or transdu
er that en
odes a position to an analog signal, whi
h

an then be de
oded by a motion
ontroller ba
k into position. En
oders may work on

various physi
al prin
iples.

2.2.1 Opti
al en
oders

Opti
al en
oders are one of the most
ommonly used en
oders in automation appli
ations.

Opti
al en
oders are based on light dete
tion as the light passes through an en
oder wheel.

A sour
e of light (mostly LED) shines through an en
oder wheel whi
h has a series of

slots in it. As the wheel rotates, the dete
tor dete
ts light passing though the slots. Ea
h

dete
tion of the light exhibits the rotation of the en
oder wheel by a de�ned angle. Opti
al

en
oders
an a
hieve very high pre
ision and are suitable for high feed rates. However,

opti
al en
oders are sensitive to
ontaminants su
h as dust, liquid and grease, also to

sho
ks and vibrations, whi
h makes them in
onvenient for use in industrial environments.

20

2.2.2 Magneti
 en
oders

Magneti
 en
oders employ a magnetised s
ale and a read head. The read head
an use ei-

ther a Hall e�e
t or a magnetoresistive sensor to dete
t signals generated by the magneti

ode of the s
ale to provide position information. Unlike opti
al en
oders, magneti
 en-

oders are more resistant to environmental impa
ts, whi
h makes them more suitable for

use in dirty environments. However, the pre
ision of magneti
 en
oders is lower
ompared

to opti
al en
oders.

2.2.3 In
remental and absolute en
oders

Positioning tasks require pre
ise position values to monitor or
ontrol the motion. In

many appli
ations, position sensing is undertaken using rotary en
oders, also
alled shaft

en
oders or simply en
oders. These sensors transform the me
hani
al angular position of

a shaft or axle into an ele
troni
 signal that
an be pro
essed by a
ontrol system.

2.2.3.1 Absolute en
oders

Absolute rotary en
oders are
apable of providing unique position feedba
k from the

moment they are swit
hed on. This is a

omplished by s
anning the position of a
oded

element. All positions in these systems
orrespond to a unique
ode. Even motion that

o

urs while the system is without power is translated into a

urate position feedba
k

on
e the en
oder is powered up again.

2.2.3.2 In
remental en
oders

In
remental rotary en
oders generate an output signal ea
h time the shaft rotates a de�ned

angle. (The number of signals per turn de�nes the resolution of the devi
e.) Ea
h time

the in
remental en
oder is powered on it begins
ounting from zero, regardless of where

the shaft is. The initial homing pro
edure to a referen
e point is, therefore, ne
essary in

all positioning tasks, both upon start up of the
ontrol system and whenever power to the

en
oder has been interrupted.

21

Experimental devi
es in the Department of Me
hani
s and Materials are
ontrolled by an

open-sour
e system LinuxCNC.

2.3 LinuxCNC

LinuxCNC [2℄ is an open-sour
e software system for the numeri
al
ontrol of CNC ma-

hines su
h as lathes, milling ma
hines,
utting ma
hines, robots, et
. Due to the pre
ise

ontrol of the CNC ma
hines, LinuxCNC requires real-time
omputing
apabilities whi
h

are provided by real-time extensions of the operating system.

LinuxCNC uses a Hardware Abstra
tion Layer (HAL) to
on�gure the
ontrol system

hardware.

2.3.1 Hardware abstra
tion layer

The hardware abstra
tion layer [3℄ is a software subsystem whi
h provides hardware ab-

stra
tion. It allows appli
ations to use the hardware of the system through a simple

and abstra
t interfa
e. For instan
e, the Hostmot2 driver is a pa
kage for the Hardware

Abstra
tion Layer whi
h provides abstra
tion of Mesa Ele
troni
s Anything I/O FPGA

ards, whi
h are used in our department. It features many other abstra
tion
omponents

su
h as a PID
ontroller, et
. and also in
ludes various tools, su
h as a virtual os
illos
ope

to examine real-time signals.

2.3.2 PID
ontroller

A PID (proportional�integral�derivative)
ontroller [4℄ is a
ontrol loop based on a feed-

ba
k me
hanism widely used in industrial
ontrol systems and various other appli
ations

requiring
ontinuous
ontrol. A PID
ontroller
ontinuously
al
ulates an error value e(t)

as the di�eren
e between the measured pro
ess variable y(t) and the desired setpoint

r(t), see Formula 2.1. It applies a
orre
tion based on proportional (P), integral (I), and

derivative (D) terms whi
h
onstitute the manipulated variable u(t), see Formula 2.2 and

22

Figure 2.7: PID
ontroller feedba
k loop

Figure 2.7.

e(t) = r(t)− y(t) (2.1)

u(t) = Kp · e(t) +Ki ·

∫ t

0

e(τ)dτ +Kd ·
de(t)

dt
(2.2)

2.3.2.1 Proportional term

The proportional term P = Kp · e(t) is proportional to the
urrent value of e(t). The

oe�
ient Kp is a proportional gain. The proportional term is the fundemantal term

of the PID
ontroller. The value of the proportional gain Kp is
riti
al to the response

rate and system stability. The proportional term alone
annot a
hieve a stable deviation

between the
ommand and feedba
k, so other terms are used.

2.3.2.2 Integral term

The integral term I = Ki ·

∫ t

0
e(τ)dτ re
ords the past values of e(t) and intergrates them

gradually to
al
ulate the I term. Using this term allows one to rea
h a stable deviation

between the
ommand and feedba
k, often in ex
hange for a longer settling time.

23

2.3.2.3 Derivative term

The derivative term D = Kd ·
de(t)
dt

estimates the future trend of e(t). The derivative term

represents the predi
tion element of the
ontroller and allows the settling time to be

shortened and the system response smoothened.

2.3.3 Hostmot2 driver

Hostomot2 [5℄ is an open-sour
e driver developed by Mesa Ele
troni
s for FPGA Anything

I/O motion
ontrol
ards. It provides modules su
h as STEP/DIR generators, PWM

generators, en
oders (quadrature
ounters), et
. whi
h
an be loaded into HAL to
onne
t

these module instan
es to the I/O headers.

2.3.4 User interfa
es

LinuxCNC
omes natively preinstalled with various Graphi
al User Interfa
es (GUIs),

su
h as Axis - default user interfa
e [6℄, Touchy - user interfa
e used with tou
hs
reens [7℄,

et
. Preinstalled user interfa
es are primarily designed for industrial CNC appli
ations,

therefore, they are not suitable for use with the
ustom experimental devi
es developed in

our department be
ause extended fu
tionality is needed. User interfa
es with additional

fun
tionality
an be developed using LinuxCNC
omponents su
h as PyVCP or Glade-

VCP or it
an be developed in the Python programming language based on the LinuxCNC

Python Interfa
e.

2.3.5 PyVCP

PyVCP (Python Virtual Control Panel) [8℄ is a pa
kage whi
h provides additional fun
-

tionality to native LinuxCNC GUIs. It is based on the same GUI toolkit (Tkinter) as the

Axis user interfa
e. PyVCP enables adding a
ustom panel on the right side of the Axis

user interfa
e. However, PyVCP is limited to setting and displaying HAL internals only.

24

2.3.6 GladeVCP

GladeVCP (Glade Virtual Control Panel) [9℄ is a LinuxCNC
omponent whi
h also extends

fun
tionality to native LinuxCNC GUIs. It uses Glade whi
h is a WYSIWYG graphi
al

user interfa
e designer. GladeVCP is based on the GTK user interfa
e toolkit. Unlike

PyVCP, GladeVCP is not limited to intera
ting with HAL only, as an arbitary Python

ode
an be exe
uted.

2.3.7 Python Interfa
e

LinuxCNC Python Interfa
e [10℄ enables one to
ontrol devi
es dire
tly using Python

programming language by providing the linux
n
 module for Python. The module is

ompatible with Python version 2.x and module usage is very straightforward. It provides

observing status variables of HAL su
h as axes position, axes velo
ity, analog/digital

inputs/outputs and sending
ommands to it through Python. It uses three operating

hannels: a status
hannel, a
ommand
hannel and an error
hannel.

2.3.8 Python HAL
omponent

Custom variables of HAL su
h as en
oder position
an be observed using the
ustom HAL

omponent [11℄
ompatible with Python. For this purpose, the hal module for Python
an

be used. It provides
onne
tion whi
h
an be linked with HAL and share variables using

the
onne
tion.

2.4 Python

Python [12℄ is an interpreted programming language supporting multiple programming

paradigms su
h as obje
t-oriented, fun
tional, pro
edural and imperative. Python is a

high-level programming language, it provides dynami
 typing and automati
 memory

management by using garbage
olle
tor.

In 2019, Python features two in
ompatible versions, Python 2.x and Python 3.x. Python

3.x was �rst introdu
ed in 2008 and is planned to repla
e Python 2.x in 2020 when Python

25

2.x will no longer be maintained by the developers. However, some Python modules are

not forward
ompatible yet, su
h as the linux
n
 module, see sub
hapter 2.3.7 whi
h

might be an obsta
le in upgrading from Python 2.x to Python 3.x.

Python has multiple implementations su
h as CPython, Jython, IronPython, et
. CPython

is the default and most
ommonly used implementation of Python. CPython implemen-

tation is written in the C programming language and Python.

2.4.1 Global interpreter lo
k

Python default implementation CPython has a signi�
ant performan
e limitation due

to the use of the Global Interpreter Lo
k (GIL) [13℄ whi
h is a thread-safe me
hanism

to prevent parallel ex
ution by threads within an interpreter pro
ess. It means that the

Python threads
annot bring a performan
e gain by parallel exe
ution, be
ause the thread

needs to a
quire the lo
k in order to exe
ute any instru
tion, so a multi-threaded exe
ution

annot be faster than a single-threaded

3

, see Figure 2.8. When the thread exe
utes a

ertain number of Python virtual instru
tions or a spe
i�
 time period elapses, the GIL

is released and a
quired by another thread.

2.4.2 Threading module

The threading module provides a high-level threading interfa
e. Python threads are some-

times
alled light-weight pro
esses as they do not require mu
h memory overhead. Multiple

threads within the same pro
ess share the same data spa
e. It enables Python threads to

share variables so they
omuni
ate with ea
h other mu
h more easily than if they were

separate pro
esses. However, Python threads are limited by the GIL, see sub
hapter 2.4.1.

2.4.3 Multipro
essing module

The multipro
essing library provides the ability to spawn separate Python pro
esses using

an interfa
e similar to the threading module. The module enables the true parallel exe
u-

3

Certain
omputational performan
e-oriented libraries su
h as NumPy, S
iPy might over
ome this

limitation in parti
ular
ases

26

Thread 1

Thread 2

Thread 3

run

run

run

time
I

releasing
GIL

acquiring
GIL

Figure 2.8: Multithreaded exe
ution within a single pro
ess

tion of a Python
ode and may utilise multiple CPU
ores. However, Python pro
esses have

distributed memory (does not share data spa
e) whi
h makes the intera
tion and
om-

muni
ation between Python pro
esses (Inter-pro
ess Communi
ation (IPC))
hallenging.

The multipro
essing library provides various types of Inter-pro
ess
ommuni
ation me
h-

anisms su
h as Queues, Pipes and syn
hronisation primitives su
h as lo
ks.

2.4.3.1 Multipro
essing pipes

A multipro
essing pipe is one of the simplest types of IPC. It only
onne
ts two pro
esses

with ea
h other. The pipe is bidire
tional by default. It may also be unidire
tional, thus

it only allows sending messages by one pro
ess (produ
er) and only allows re
eiving the

messages by the other pro
ess (
onsumer).

2.4.3.2 Multipro
essing queues

A multipro
essing queue is a multi-produ
er, multi-
onsumer First in, �rst out (FIFO)

queue, i.e., unlike multipro
essing pipes, it enables the
onne
tion between multiple pro-

27

esses. It is implemented using multipro
essing pipes and lo
ks/semaphores and a feeder

thread. When data is put to the queue by a pro
ess, the data �rst
omes to queue bu�er

and then the feeder thread distributes the data to the multipro
essing pipe leading to the

appropriate pro
ess.

2.4.4 PyQt

PyQt [14℄ is a binding

4

of a Qt framework for Python. The Qt framework is a robust

toolkit used for GUI development as well as multi-platform appli
ations. Qt framework

in
ludes various development tools, su
h as the Qt Creator, the Qt Designer and the User

Interfa
e Compiler.

2.4.4.1 Qt Creator

Qt Creator is a C++ Integrated Development Environment (IDE) whi
h is part of the

Qt framework. Qt Creator provides features su
h as syntax highlighting, auto
ompletion,

a visual debugger and integrates the Qt Designer for designing and building GUIs from

Qt widgets

5

.

2.4.4.2 Qt Designer

Qt Designer is a tool in
luded in the Qt framework [15℄ whi
h is used for designing and

building GUIs in a WYSIWYG fashion. The GUI design
an be saved in a platform-

independent, XML-formatted (or rather QML

6

) �le with *.ui extension. The �le
ontains

the whole user interfa
e de�nition, whi
h
an be
ompiled into a sour
e
ode using the

User Interfa
e Compiler.

4

Binding is a wrapper library that bridges two programming languages. For instan
e it enables one to

use a library developed in C/C++ programming language with Python.

5

Widget is the foundation of all obje
ts of the GUI.

6

Qt Modeling language (QML) is a markup language used by the Qt framework for GUI de
laration

28

2.4.4.3 User Interfa
e Compiler

The User Interfa
e Compiler (UIC) is a tool for
ompiling GUIs designed by the Qt De-

signer into a sour
e
ode. The UIC natively
ompiles the *.ui �le into a header �le for use

with the C++ programming language. In order to
ompile the *.ui �le into the Python

sour
e
ode, PyQt provides a tool PyUIC whi
h operates the UIC likewise.

2.4.5 PyQwt

PyQwt [16℄ is a Python binding for the Qwt (Qt Widgets for Te
hni
al Appli
ations) [17℄

library. Qwt extends the Qt framework with widgets aimed at engineering and s
ienti�

appli
ations, su
h as a widget to plot 2-dimensoinal data. It also features dials,
ompasses,

thermometers, sliders, wheels or knobs to
ontrol or display values, et
.

2.4.6 Matplotlib

Matplotlib [18℄ is a plotting library for Python whi
h produ
es publi
ation quality �gures

in various formats, su
h as *.svg, *.eps, *.pdf, et
. It in
ludes ba
kends for use with various

widget toolkits, su
h as Qt and GTK.

2.4.7 PyGnuplot

PyGnuplot [19℄ is a Python wrapper for Gnuplot [20℄. Gnuplot is a multi-platform plotting

library. It enables the generation of two-dimensional and three-dimensional �gures and

displays them dire
tly on s
reen or saves them in various high quality image formats su
h

as *.svg, *.eps, et
.

29

Chapter 3

Initial state

In 2017, a �rst-generation
ontrol software for experimental devi
es operated in the De-

partment of Me
hani
s and Materials in the Fa
ulty of Transportation S
ien
es at the

Cze
h Te
hni
al University and at the Institute of Theoreti
al and Applied Me
hani
s

of the Cze
h A
ademy of S
ien
es was developed as part of my Ba
helor's thesis [21℄.

The
ontrol software was based on the Python Interfa
e of the open-sour
e system Lin-

uxCNC [2℄. The
ontrol software was developed using the Python programming language

version 2.7. For user interfa
e development, the Qt framework version 4.8, in
ooperation

with Python binding PyQt was used.

The main features of the �rst-generation
ontrol software are:

• straightforward adaptation to various experimental devi
es

• sensor support

• obtaining and logging data

• real-time plotting and stati
 plotting

• displa
ement-driven experiment pro
edures

30

Figure 3.1: Axes position bars

3.1 Straightforward adaptation to various experimen-

tal devi
es

The devi
es operated in our department are equipped with
ommon parts su
h as an

a
tuator, an en
oder, limit swit
hes and with appli
ation spe
i�
 equipment su
h as a

load
ell, et
. Ea
h experimental devi
e
omes with its own LinuxCNC initialising �le.

The initialising �le satis�es the devi
e spe
i�
s, therefore, it is essential for the proper

ontrol software operation. The �le in
ludes various parameters spe
ifying, for instan
e,

the number of axes, whi
h type of hardware is used for the data a
quisition, et
.

The
ontrol software was designed as a set of separate plugins. There are plugins for
om-

mon features of all devi
es su
h as an emergen
y-stop (E-STOP) button, a power button,

a home position button, axes position display bars, for
e display bar, et
. On the other

hand, there are plugins for spe
i�
 appli
ations su
h as a plugin for a displa
ement-driven

experiment, et
. The user interfa
e and the plugins inside of it are generated dynami-

ally based on the ma
hine initialising �le. For instan
e, the parameters AXES_ACTIVE

and AXES_UNITS
orrespond with the axes position diplay bars.

31

3.2 Sensor support

The
ontrol software has been used to
ontrol the laboratory devi
es in order to observe

the me
hani
al properties of materials by obtaining data samples of physi
al quantities

su
h as the for
e, position, et
. In our department, load
ells based on strain gauges are

used for for
e measurement.

For proper sensor use, ea
h sensor is
hara
terised by a set of
onstants (sensitivity, range,

overload fa
tor, et
.) and the
ontrol software must take them into a

ount. In
ase of load

ells, these
ontants refer to the tensometri
 bridge properties inside the load
ell. The

ontrol software features an interfa
e for one for
e sensor only whi
h be
ame a signi�
ant

limitation (e.g., one of the newly developed experimental devi
es in our department,

the four-point bending devi
e [22℄ operates with two loading units and ea
h of them is

equipped with a for
e sensor).

3.3 Displa
ement-driven experiments

The
ontrol software enables one to perform displa
ement-driven experiments only. The

displa
ement-driven experiment is a fundamental type of me
hani
al testing. The defor-

mation of an experimental sample during the experiment is
ontrolled by a
rosshead

movement. The displa
ement-driven experiment is very simple to perform, however it

annot be adjusted based on the sample response during the experiment.

3.4 Obtaining and logging data

The
ontrol software in
ludes a dis
rete thread to obtain data, su
h as the for
e, the axes

position, et
. Ea
h data sample in
ludes a unique timestamp to provide a time referen
e.

The data samples are obtained in a loop with typi
aly 0.02 se
onds period within the

loop whi
h results in a sampling rate of 50Hz. The data samples are periodi
ally saved to

a text-based output �le.

32

Figure 3.2: Plot plugin of the user interfa
e

3.5 Real-time plotting and stati
 plotting

In order to visualise the data, the
ontrol software features a plotting fun
tionality. It

enables the real-time plotting (replotting the data periodi
ally) and stati
 plotting, see

Figure 3.2. The user
an
on�gure the plotting parameters, su
h as the real-time plot

refresh timeout, data series, et
.

It is based on the matplotlib library whi
h produ
es high quality �gures, however mat-

plotlib has signi�
antly limited performan
e whi
h has be
ome a drawba
k espe
ially for

real-time plotting.

3.6 Overview

The �rst-generation
ontrol software has been used in the Department of Me
hani
s and

Materials in the Fa
ulty of Transportation S
ien
es at the Cze
h Te
hni
al University and

at the Institute of Theoreti
al and Applied Me
hani
s of the Cze
h A
ademy of S
i-

en
es for two years in full operation.

The most signi�
ant limitation of the
ontrol software is the sampling rate performan
e

and the real-time plot performan
e due to the Python threads. It features two dis
rete

threads within a single Python pro
ess. The �rst thread obtains and saves the data,

the other thread is used for the real-time plotting. Referring to the GIL, the Python

threads
annot bring any performan
e gain by the parallel exe
ution in this s
enario, see

sub
hapter 2.4.1. Furthermore, the plotting library matplotlib is not very suitable for

performan
e-oriented real-time plotting.

The
ontrol software does not feature displaying en
oder feedba
k within the axes position

bars, see Figure 3.1. In order to display the en
oder feedba
k, an external GladeVCP panel

33

is ne
essary to be used. The
ontrol software features support for a single for
e sensor and

the plotting of a single data series whi
h has be
ome a limitation with a wider portfolio

of experimental devi
es operated in the department.

Some of the newly developed experimental devi
es require support for multiple for
e sen-

sors or support of various types of sensors apart from for
e sensors, su
h as thermometers.

Moreover, these devi
es require more sophisti
ated and modular experimental pro
edures

su
h as for
e-driven experiments, et
. for proper utilisation.

34

Chapter 4

Developed software

The new-generation
ontrol software developed as part of this Master's thesis is the su
-

essor to the �rst-generation
ontrol software des
ribed in the previous
hapter.

4.1 Introdu
tion

The main obje
tive of the
ontrol software development was to improve performan
e,

primarily the sampling rate and the real-time plot refresh rate
apabilities. This required

over
oming the Python threads limitations o

uring in the �rst-generation
ontrol soft-

ware by using separate Python pro
esses instead of the threads. Furthermore, with a

wider portfolio of experimental devi
es operated in the department, new demands for

fun
tionality
ame up.

4.2 Performan
e gain

Python pro
esses enable the parallel exe
ution of the Python
ode whi
h may result

in a rapid performan
e inrease. To demostrate the performan
e di�eren
e between the

Python threads and the Python pro
esses, a simple s
ript for a ben
hmark was
reated,

see Appendix A. The ben
hmark is based on a prime fa
torisation of a range of numbers

utilising multiple threads or multiple pro
esses and
omparing the exe
ution time. The

prime fa
torisation ben
hmark was performed on a range of 1 million integers and run on

35

the Intel Xeon W-2145 �4.5 Ghz (8-
ore, 16-thread) CPU. The result of the ben
hmark

is shown in Figure 4.1.

The results
on�rm, that the Python threads do not bring any performan
e in
rease. In

fa
t, the Python threads have a negative impa
t on the performan
e due to the swit
hing

between the threads (releasing and a
quiring the GIL, see sub
hapter 2.4.1). The results

also prove that the performan
e may be in
reased by the parallel exe
ution of the
ode

using separate Python pro
esses.

The developed
ontrol software is based on a multi-pro
ess
ore
onsisting of pro
esses

with various funtionality and a single-pro
ess user interfa
e. Besides the multi-pro
ess

ore and the user interfa
e, the
ontrol software in
ludes two more pro
esses. The Server

Manager pro
ess whi
h is des
ribed in detail in sub
hapter 6.1 and the API Provider

pro
ess whi
h is des
ribed in sub
hapter 4.3. The
ontrol software ar
hite
ture is shown

in Figure 4.2.

4.2.1 Control software
ore

The
ontrol software
ore
onsists of �ve pro
esses: a Stat Poller, a Command Exe
utor,

a Data Logger, a Data Keeper and an I/O Manager. Ea
h pro
ess has a dedi
ated queue

for re
eiving and pro
essing messages from other pro
esses. Therefore, the multi-pro
ess

ore is able to utilise multiple CPU
ores, whi
h led into a sampling rate in
rease from

50Hz up to 500Hz
ompared with the �rst-generation
ontrol software. A detailed s
heme

of the
ontrol software
ore is shown in Figure 4.3. A further des
ription of the s
heme

an be found in Appendix B.

4.2.1.1 Stat Poller

The Stat Poller pro
ess is one of the
ru
ial pro
esses of the
ontrol software. It is based on

the status
hannel and the error
hannel of the LinuxCNC Python Interfa
e. The status

hannel provides a

ess to all status variables of the devi
e, the error
hannel
he
ks if

any error o

urred. The Stat Poller extends the status
hannel fun
tionality by in
luding

an interfa
e for reading sensors the output signal, et
. It supports sensors operating on

an ele
tri
al signal whi
h is proportional to the applied ex
itation voltage (millivolts per

36

Figure 4.1: Results of the prime fa
torisation ben
hmark

37

�✁✂✁ ✄☎✆✆✝✞
✟☎✠✠✂✡☛

☞✌✝✍✎✁☎✞

✏✂✁✂

✑☎✒✒✝✞

✏✂✁✂

✓✝✝✔✝✞

✕✖✗

✘✂✡✂✒✝✞

✙✚✛✜✢✚✣ ✤✚✥✜✦✧✢★ ✙✚✢★ ✩✢✧✪✫✬✭✧✣ ✮✯★✢ ✰✛✜★✢✥✧✭★

✱✲✕ ✟☎✞✝

✱✲✕ ✔✆✎✒✳✡ ✴

✱✲✕ ✔✆✎✒✳✡ ✵

✱✲✕ ✔✆✎✒✳✡ ✡✶✴

✱✲✕ ✔✆✎✒✳✡ ✡

✤★✢✷★✢ ✸✧✛✧✹★✢ ✺✻✰ ✻✢✚✷✬✼★✢

✽✟✄ �☎✍✾✝✁ ✲✡✳✌ ✏☎✠✂✳✡ �☎✍✾✝✁

Figure 4.2: The developed
ontrol software s
heme

volts output signal).

The pro
ess periodi
ally
alls the poll method of the LinuxCNC Python interfa
e status

hannel and the error
hannel to obtain the status variables of the devi
e, the eventual

errors and reads out the sensors output signal. The pro
ess then sends the obtained

variables to other pro
esses of the
ontrol software
ore, su
h as the Data Logger and

Data Keeper and to the user interfa
e.

4.2.1.2 Data Logger

The Stat Poller pro
ess sends the obtained data to a queue leading to the Data Logger

pro
ess. The Data Logger re
eives the data and saves is periodi
ally to a plain-text-based

output �le.

4.2.1.3 Data Keeper

The Data Keeper re
eives the data from the Stat Poller and keeps it in an array. It provides

a simple post-pro
essing fun
tionality, su
h as a �oating average. The Data Keeper then

sends the data, for instan
e, to the user interfa
e in order to show the data in a graph.

38

S��� ������

1

Command

E���	���

2

5

6

7

8

Data

L�

��

Data

K�����

I�

M���
��

3

4

9

11

12

1�

13

14

Figure 4.3: The
ontrol software
ore inter-pro
ess
ommuni
ation s
heme

39

4.2.1.4 Command Exe
utor

The Command Exe
utor is a pro
ess based on the
ommand
hannel of the LinuxCNC

Python Interfa
e. It provides the exe
ution of the dynami
ally generated Python string

ommands using the exe
 statement.

4.2.1.5 I/O Manager

The I/O Manager provides the
ommuni
ation with the real-time HAL using the Python

HAL
omponent (see sub
hapter 2.3.1) or using analog and digital inputs/outputs. The

Python HAL
omponent is, for instan
e, used for experiments driven by non-linear dis-

pla
ement or for
e-driven experiments, see sub
hapter 4.4.5.

4.2.2 User Interfa
e

The user interfa
e of the
ontrol software runs separatedly from the
ontrol software
ore

whi
h results in a performan
e in
rease on the side of user interfa
e as well. It is a single-

pro
ess obje
t
onne
ted with the
ontrol software
ore using various queues. The user

interfa
e is built ontop of user interfa
e
ore, whi
h provides all ne
essary fun
tionality

for
ommuni
ation with the
ontrol software
ore, see Figure 4.4 and Appendix B.

The user interfa
e is designed as a set of separate plugins, whi
h gives it an ability to be

modular and makes it very e�e
tively adjustable for parti
ular appli
ations. One of the

plugins is a plotting plugin whi
h has been a signi�
ant limitation of the �rst-generation

ontrol software, as it was developed on top of the matplotlib ba
kend for the Qt frame-

work. The plotting plugin of the new-generation
ontrol software is built on top of the

PythonQwt library whi
h provides more plotting performan
e over the matplotlib.

4.2.2.1 Plotting performan
e ben
hmark

To demostrate the plotting performan
e di�eren
e of PythonQwt and matplotlib, a simple

ben
hmark was performed. It was run on the Intel Xeon W-2145 �4.5 Ghz (8-
ore, 16-

thread) CPU. The ben
hmark is based on plotting a single period of a sinus fun
tion

f(x) = sin(x). The s
ript used for the ben
hmark is shown in Appendix C.

40

�✁✂ ✄☎✆✝

✞✞

✞✟

✠

✡

☛

✞

✟

☞

✌

�✁✂ ✍✎✏✑✒✓ ✞

�✁✂ ✍✎✏✑✒✓ ✟

�✁✂ ✍✎✏✑✒✓ ✓✔✞

�✁✂ ✍✎✏✑✒✓ ✓

Figure 4.4: The
ontrol software user interfa
e s
heme

41

Figure 4.5: Matplotlib and PythonQwt plot
omparison results

Unlike matplotlib whi
h is written entirely in Python, PythonQwt is a Python wrapper (or

binding) for the Qwt library whi
h is written in C++, so it
an deliver more performan
e

over the matplotlib library.

The performan
e in
rease also enabled the new-generation plot plugin to plot multiple

data series in real-time.

4.3 Custom Python s
ript exe
ution

The
ontrol software also allows sending
ommands to the
ontrol software
ore through

an external Python s
ript. The external Python s
ript exe
ution
an be used for the

automated measurement, et
.

The
ommuni
ation of the external Python s
ript with the
ore was implemented by an

API Provider pro
ess whi
h is
onne
ted with the
ontrol software
ore using queues, see

Figure 4.2 and Figure 4.6 and Appendix B.

The external Python s
ript is
onne
ted with the API Provider pro
ess using the
ustom

42

������ ��������

� ���� ! "�� $�% " &

import rapo

� ' ("!()!"!*) "+, '���"+, '-"++($)

) s "��.�)!"!/ (��!(s0"$)(5

' s "��.'���"+,/5

� *�,"!()!"!*) 6" �"%$()

).��$$/5

� 7(! $�)! �8 (:*���(,)(+)�)

).)(+)�);"'!*"$/5

� (:*��)(+)� +"�(, <$�",'($$<

'.$�'c;)(+)�)/=<$�",'($$<>?=@>5

A�B �C�DF�GC

HJ

HN

HO

8

7

H

P

J

N

U�FQ R���F� T��VG�

C�r� WFXC�C�

HY

U�FQ R���F�

Socket

HY

Figure 4.6: The API provider and rapo library
onne
tion s
heme

43

rapo library (see sub
hapter 4.4.7) whi
h features a Unix domain so
ket.

4.3.1 Unix domain so
ket

The Unix domain so
ket (or inter-pro
ess
ommuni
ation so
ket) is a
ommuni
ation

endpoint for sending messages between pro
esses running on the same host system. Unix

domain so
kets share the same semanti
s as network so
kets, but Unix domain so
kets do

not
onne
t via a hostname and port. They
onne
t using a �le system, thus, the whole

ommuni
ation o

urs entirely within the operating system.

In order to send Python data obje
ts su
h as a list, di
tionary, et
. through the Unix

domain so
ket, the data obje
t must be �rstly serialised into a stream of bytes format

whi
h
an be pushed through the so
ket.

4.3.2 Serialising modules

Python features various serialising modules su
h as pi
kle,
Pi
kle, json, et
. whi
h

provide proto
ols for serialising and deserialising Python data obje
ts.

4.3.2.1 Pi
kle and
Pi
kle modules

The pi
kle module is part of the Python standard library and is widely used for seriali-

sation in Python. However, it is written entirely in Python whi
h limits its performan
e

and the data format used by pi
kle is Python-spe
i�
, therefore, it is not suitable for

appli
ations with interoperability requirements.

The Python standard library also features a
Pi
kle module whi
h provides the same

fu
tionality as the pi
kle module. Unlike pi
kle,
Pi
kle is written in the C programming

language, so
Pi
kle gives more performan
e than pi
kle whi
h makes it more suitable for

performan
e-oriented appli
ations. Pi
kle and
Pi
kle feature various serialising proto
ols:

• Proto
ol 0 is the original ASCII proto
ol whi
h is human-readable and is ba
kwards

ompatible with other versions of Python.

44

• Proto
ol 1 is an obsolete binary format whi
h is also ba
kwards
ompatible. It has

been substituted by proto
ol 2.

• Proto
ol 2 was introdu
ed with Python version 2.3 and is the highest proto
ol of

Python 2.x. It provides mu
h more e�
ient serialisation of the new-style
lasses.

1

• Proto
ol 3 was introdu
ed in Python 3.0. It has expli
it support for bytes obje
ts

and
annot be unpi
kled by Python 2.x.

• Proto
ol 4 was added in Python 3.4. It is the highest proto
ol of Python 3. It

adds support for very large obje
ts, pi
kling more kinds of obje
ts, and data format

optimisations.

4.3.2.2 JSON module

Javas
ript Obje
t Notation (JSON) is a standardized format used for serialising data ob-

je
ts to a human-readable format. Unlike pi
kle and
Pi
kle, JSON is a language inde-

pendent data format derived from JavaS
ript.

It uses
onventions that are
ompatible with programming languages in
luding C, C++,

C#, Java, JavaS
ript, Perl, Python, and many others. These properties make JSON an

ideal serialising format for appli
ations with data-inter
hange and interoperability require-

ments.

The proposed
ontrol software is entirely developed in Python programming language,

thus, any data-inter
hange
apability is not required. The only requirement for the seri-

alising module used within the developed software is to provide as mu
h performan
e as

possible. For that reason a ben
hmark
omparing the serialising performan
e and memory

onsumption of the serialised obje
t was performed.

The ben
hmark is based on serialising and deserialising Python list and di
tionary obje
ts.

These obje
ts were
hosen purposefully as they are the data obje
ts transfered through

the Unix domain so
ket.

1

A new-style
lass inherits from the obje
t
lass and is a re
ommended option for
reating a
lass in

modern Python.

45

The list used for the serialisation ben
hmark was a range of one million integer numbers

and the di
tionary
onsisted of one million (key, value) pairs. In
ase of the pi
kle and

Pi
kle modules, the performan
e of the di�erent serialising proto
ols was also ben
h-

marked. In addition to the performan
e ben
hmark, the size of the serialised data obje
t

is also a signi�
ant fa
tor in terms of the memory
onsumption and data transfer per-

forman
e, so the size of the serialised obje
t was also
ompared. The whole s
ript used

for the ben
hmark is in
luded in Appendix D. The ben
hmark was run on the Intel Xeon

W-2145 �4.5 Ghz (8-
ore, 16-thread) CPU.

4.3.2.3 List serialisation ben
hmark

List serialisation performan
e is shown in Figure 4.7. The ben
hmark results show that

the serialisation of the Python list using the pi
kle module is signi�
antly slower regard-

less of the used serialising proto
ol
ompared to the JSON module or even the
Pi
kle

module. The
Pi
kle module was able to provide the best performan
e out of the tested

modules. Unlike pi
kle, the
Pi
kle performan
e di�ered depending on the serialising pro-

to
ol used. CPi
kle proto
ol 0, whi
h is the default proto
ol is the slowest out of the

proto
ols tested but it gives a
omparable performan
e with JSON.
Pi
kle proto
ols 1

and 2 have signi�
antly better performan
e than
Pi
kle proto
ol 0 and JSON.

In the
ase of the deserialisation performan
e,
Pi
kle shows the best performan
e, the

same as during the serialisation task. JSON performan
e is slightly lower, whereas the per-

forman
e of the pi
kle module is in
omparably worse. The list deserialisation performan
e

is shown in Figure 4.8.

An additional aspe
t of the serialising module
omparison was the serialised obje
t size.

The size of the obje
t a�e
ts the data transfer performan
e and memory
onsumption.

Pi
kle and
Pi
kle proto
ols 1 and 2 serialise the data to a binary format whi
h is the

least memory-intensive
ompared to proto
ol 0 or JSON. Proto
ol 0 and JSON produ
e

a human-readable ASCII-based format whi
h
onsumes more memory
ompared to the

binary format. The results of the serialised obje
t size
omparison is shown in Figure 4.9.

46

Figure 4.7: Python list serialisation performan
e
omparison

Figure 4.8: Python list deserialisation performan
e
omparison

47

Figure 4.9: serialised Python list size
omparison

48

Figure 4.10: Python di
tionary serialisation performan
e
omparison

4.3.2.4 Di
tionary serialisation ben
hmark

Besides the list serialisation perfoman
e
omparison, a di
tionary serialisation was also

ben
hmarked. The results are very similar to the list serialisation. When it
omes to

the di
tionary serialisation, the pi
kle module exhibits signi�
antly worse results during

the di
tionary serialisation when
ompared to the
Pi
kle and JSON modules. CPi
kle

proto
ol 0 is slightly faster than JSON and in general the
Pi
kle proto
ols are the fastest.

The performan
e di�eren
e between
Pi
kle proto
ols 1 and 2 is marginal, see Figure 4.10.

The
Pi
kle module delivers the best di
tionary deserialisation performan
e likewise in the

list deserialisation task. JSON is se
ond with a large gap, the worst results were a
hieved

by the pi
kle module, see Figure 4.11.

In relation to the memory
onsumption, the JSON module has the lowest demands, the

demands of
Pi
kle proto
ols 1 and 2 are slightly higher. The serialised di
tionary by the

pi
kle module is approximately twi
e as large in size, see Figure 4.12.

49

Figure 4.11: Python di
tionary deserialisation performan
e
omparison

Figure 4.12: serialised Python di
tionary size
omparison

50

4.3.2.5 Re
apitulation

The list and di
tionary serialisation/deserialisation ben
hmarks pointed out that
Pi
kle

is the most suitable module for performan
e-oriented appli
ations. Espe
ially
Pi
kle pro-

to
ols 1 and 2 deliver mu
h more performan
e
ompared to the pi
kle and JSON modules.

The developed
ontrol software does not require any interoperability
apabilities as it is

developed using the Python programming language only. The aim of the
ontrol software

is to provide as mu
h performan
e as possible whi
h makes
Pi
kle a perfe
t
andidate

for the serialising module. The ben
hmarks showed that
Pi
kle is the most performan
e-

oriented serialising module out of the ben
hmarked modules. In parti
ular, the
Pi
kle

proto
ol 2 ful�ls the performan
e requirements the best so it was
hosen as the serialising

module for the developed
ontrol software.

4.4 Enhan
ed Fun
tionality

4.4.1 Introdu
tion

The need to develop the proposed
ontrol system was not motivated by the performan
e

limitations only, but also by progress in the devi
e's
onstru
tion and the use of advan
ed

experimental pro
edures.

Sin
e the �rst-generation software has been developed, various new experimental devi
es

have been
onstru
ted whi
h also involved developing a new set of fun
tionality features,

su
h as the support for multiple and various types of sensors or advan
ed experimental

pro
edures, et
.

4.4.2 Sensor support

One of the newly developed experimental devi
es was a loading devi
e intended to perform

4-point bending experiments [22℄. This involves the usage of two load
ells whi
h the �rst-

generation
ontrol software did not support, see Figure 4.13.

51

Figure 4.13: Experimental devi
e for the 4-point bending

The new-generation
ontrol software supports a theoreti
ally unlimited number

2

of sen-

sors. Moreover, another experimental devi
e [23℄ involves the support for di�erent types

of sensors (load
ells and thermometers) in terms of measuring the physi
al quantities,

due to simultaneous for
e measurement and
ir
ulating �uid temperature measurement.

Ea
h sensor is identi�ed and initialised by the
ontrol software using its own initialising

�le with a spe
i�
 header and parameters. The header (the �rst line of the initialising

�le starting with a # sign) determines the type of the sensor (load
ell, thermometer,

et
.), the parameters inside the �le des
ribe the important sensor parameters ne
essary

for the realiable and pre
ise measurement, su
h as sensitivity, et
. The load
ell initialising

�le
ontent is shown in Figure 4.14, the thermometer initialising �le
ontent is shown in

Figure 4.15.

Figure 4.14: Load
ell sensor initialising �le
ontent

2

For the sensor signal readout a LabJa
k T7 Pro (Labja
k Corporation, USA) is used whi
h features

up to 14 analog input
hannels. With this data a
quisition setup, the
ontrol system is able to handle up

to 14 sensors, whi
h is the hardware limitation.

52

Figure 4.16: The plugin for handling the sensors

Figure 4.15: Thermometer sensor initialising �le
ontent

These initialising �les are loaded into a
ontrol software sensor database during the
ontrol

software startup. The sensors plugin of the
ontrol software user interfa
e provides the

fun
tionality for operating the sensors, see Figure 4.16.

The plugin for handling the sensors in
ludes
omboboxes

3

used to sele
t a
tual sensors

from the list of the loaded sensor initialising �les. Underneath these �elds are spinboxes

4

to spe
ify a �oating average window width, see the red boxes in Figure 4.16. The �oating

average is used to eliminate noise whi
h may o

ur in the data. Based on initialising �le

ontents of the
hosen sensors, the display bars of the sensors are dynami
ally generated,

see the blue boxes in Figure 4.16.

The display bar of the load
ell (the upper blue box in Figure 4.16)
onsists of a label

5

for

displaying the a
tual for
e with [N] units. The display bar of the load
ell also features

3

QCombobox is a sele
tion widget that displays the
urrent item and
an pop up a list of sele
table

items.

4

QSpinBox allows the user to
hoose a value by
li
king the up/down buttons or pressing up/down

on the keyboard to in
rease/de
rease the value
urrently displayed. The user
an also type in the value

manually.

5

QLabel is a widget used for displaying the text or an image.

53

various signalisation me
hanisms. For instan
e, it provides a diode

6

signaling whether the

load
ell is in
onta
t with the tested sample. If the a
tual for
e is greater than the value

of the CONTACT parameter in the load
ell initialising �le, the diode
hanges from grey

to orange. The other diode is used for the load
ell overload signalisation. If the a
tual

for
e is below the value of the RANGE parameter, the diode remains grey. When the

for
e ex
eeds the RANGE limit, the diode be
omes orange. If the for
e even ex
eeds

the RANGE ∗ OV ERLOAD value, the diode be
omes red to signal the eventual load

ell damage if the load
ontinues to in
rease further. The
ontrol software automati
ally

triggers the E-STOP (emergergen
y-stop) pro
edure and stops the ma
hine to prevent the

load
ell damage whenever the load
ell
ould be in danger due to a high load. The display

bar in
ludes a tare button

7

whi
h tares the load
ell based on the last data samples. The

number of samples used for determining the tare value depends on the data a
quisition

rate and on the signal noise.

Unlike the load
ell display bar, the display bar of the thermometer (the bottom blue box

in Figure 4.16) in
ludes a label for displaying the a
tual temperature with [◦C] units. Any

other fun
tionality is not needed.

The sensors plugin also in
ludes two buttons to lo
k and unlo
k the sensors, see the green

box of in Figure 4.16. The lo
k button is used to set the
hosen sensors and start reading

values from them. Until the sensors are not set/lo
ked, all the
ontrols of the user interfa
e

ex
ept the E-STOP and POWER buttons remain disabled, unable to send any
ommands

to the
ontrol software
ore for safety reasons. The button for unlo
king the sensors has

inverse fun
tionality. It unlo
ks the sensors whi
h have been lo
ked previously in order to

stop reading sensor values or lo
k other sensors.

At the bottom of the sensors plugin a measured data status bar is lo
ated. The status bar

provides simple information about the measurement, su
h as the data aquisition rate, the

time elapsed by the measurement, the number of data samples obtained and the memory

onsumed by the data, see the purple box in Figure 4.16.

6

A diode image put in the QLabel

7

The QPushButton is perhaps the most
ommonly used widget in any graphi
al user interfa
e. Pushing

it (
li
k) makes the button
ommand the
omputer to perform some a
tion.

54

4.4.3 Axes position bar

The axes position bar is a plugin of the user interfa
e to show the a
tual position of the

axes. It provides further information, su
h as the axis
oordinate and axis units, see the

purple box in Figure 4.17. The plugin also features labels to show the a
tual position stated

by the LinuxCNC motion interpreter, see the value in bold in the red box in Figure 4.17.

The plugin also indi
ates the a
tual position per
entagewise using a progress bar

8

, i.e., if

the a
tual position rea
hes the minimum axis limit, the progress bar indi
ates 0 %. If the

a
tual position rea
hes the maximum limit, the progress bar indi
ates 100 %. The axis

minimum and maximum limits are shown within the plugin as well, see the orange boxes

in Figure 4.17.

Figure 4.17: The axes position plugin of the user interfa
e

The �rst-generation
ontrol software did not feature any fun
tionality for showing the en-

oders position dire
tly in the axes position bar. It was done using an external GladeVCP

omponent, see sub
hapter 2.3.6.

4.4.3.1 En
oder support

The newly developed experimental devi
es are mostly equipped with multiple en
oders.

An en
oder is a devi
e whi
h provides the position feedba
k, see sub
hapter 2.2 and

sub
hapter 2.1.1.2.

The new-generation
ontrol software enables one to show en
oders's position within the

axes position bars (see the value in bold in the blue box in Figure 4.17) instead of using the

external GladeVCP
omponent. This required a

essing the real-time HAL from Python

8

QProgressBar is used to give the user an indi
ation of the progress. The progress bar uses the
on
ept

of steps. It is set up by spe
ifying the minimum and maximum possible step values, and it will display

the per
entage of the steps that have been
ompleted.

55

in order to obtain the en
oder position. It was a
hieved by linking the en
oder position in

HAL to the analog input of the LinuxCNC Python interfa
e whi
h
an be a

essed from

Python dire
tly.

4.4.3.2 G92 o�set

The G92
ommand of the G-
ode

9

is used to set the start position (origin) o�set for one

or more axes. The �rst-generation did not support this fun
tionality at all. The o�set

fun
tinality is useful for the measurement to set the origin of the
oordinate system when

the experimental devi
e rea
hes
onta
t with the sample. Thus the experimental pro
edure

begins with the position equal to zero.

The a
tual position and en
oder position display areas (see the red and blue boxes in

Figure 4.17)
onsist of two values ea
h. The values are separated by a slash. The value to

the left of the slash is the absolute a
tual position of the axis. The value to the right of the

slash is the G92 position whi
h is relative to the shifted origin of the axis. In Figure 4.17,

the a
tual and the G92 positions are equal whi
h means that the G92 o�set is zero. If the

G92 o�set is present (i.e., the G92 o�set is a non-zero value), the G92 position be
omes

bold to signal that the axis origin has
hanged.

Figure 4.18: The axes position plugin of the user interfa
e with G92 o�set a
tive

In Figure 4.18, the G92 o�set is shown. The absolute axis position equals 2.000 µm, the

G92 position (the position relative to the new axis origin) equals 0.000 µm. In this
ase,

the G92 o�set equals 2000 µm, see Figure 4.18.

9

G-
ode is a
ommon name for the most widely used numeri
al
ontrol (NC) programming language.

It is mainly used in
omputer-aided manufa
turing to
ontrol automated ma
hine tools.

56

4.4.3.3 Positioning error

If an axis is equipped with an en
oder, the positioning error
an be determined. The

positioning error is de�ned as the di�eren
e of the position given by the LinuxCNC motion

interpreter and the position given by the feedba
k en
oder. It is displayed within the axes

position bar as well, see the brown box in Figure 4.17. The smaller the positioning error,

the more pre
ise the positioning is.

4.4.3.4 Homed status

The axes position bar of the new-generation
ontrol software also provides additional

information, su
h as whether the axis is homed (i.e., a referen
e point has been found).

Ea
h axis should be homed properly in order to provide pre
ise positioning. The axes

position plugin displays the HOMED text if the axis is homed, otherwise it displays the

UNHOMED text, see the
yan box in Figure 4.17.

4.4.4 Plot plugin

One of the main disadvantages of the �rst-generation
ontrol software was its limited

real-time plot performan
e. The plot performan
e of the new-generation
ontrol software

has been signi�
antly improved thanks to the
ontrol software ar
hite
ture des
ribed in

sub
hapter 4.2.

Besides the performan
e improvement, the plot plugin of the user interfa
e has been

extended with new fun
tionality.

Figure 4.19: The plot plugin of the user interfa
e

57

One of the
on�guring parameters of the plot is the plot time window w, see the red box in

Figure 4.19. The plot time window de�nes the time period of the past data samples shown

within the plot. Another parameter is the plot resolution r. The resolution de�nes the

number of data samples to plot within a single se
ond of the plot time window. The higher

the plot resolution, the more demanding the plotting is in terms of hardware resour
es

due to larger number of data samples, see the blue box in Figure 4.19. Total number of

the data samples n within the plot
an be determined as:

n = w · r, (4.1)

where w is the plot time window and r is the plot resolution. The total number of the

samples is used for the real-time plot performan
e predi
tion in formula 4.2.

The plot enables plotting of a multiple data series. The data series of the plot
an be

dynami
ally added with a plus sign button or removed with
ross sign button, see the

purple box in Figure 4.19. The data series share the same X-
oordinate, the Y-
oordinate

is spe
i�
 to the data series, see the green and orange boxes in Figure 4.19.

The plot plugin also features simple real-time pro
essing fun
tionality, su
h as a �oating

average. The smooth input �eld parameter de�nes the �oating average window. If the

smooth parameter equals 1, the �oating average does not take e�e
t due to the �oating

average window size. When using the �oating average real-time pro
essing, it is important

to take the in
reased
omputational demands into
onsideration. Therefore, the �oating

average window size is limited up to 1000.

For the real-time plotting performan
e predi
tion, the plot plugin provides a simple indi-

ator showing the possible Frames per se
ond (FPS), see the yellow box in Figure 4.19.

The FPS predi
tion is based on the plotting performan
e of the PythonQwt library. The

results of the PythonQwt plotting ben
hmark (see sub
hapter 4.2) have been used to �nd

a linear fun
tion:

T (n) = K ·C · (A ·n+B), (4.2)

where the fun
tion T des
ribes the time period needed to plot n data samples. Coe�
ients

A and B are given by linear regression based on the plotting ben
hmark. Coe�
ient

C de�nes the number of data series in the �gure and
oe�
ient K is a safety fa
tor.

58

The safety fa
tor is primarily used to balan
e the user interfa
e overall performan
e and

�uen
y. In most of the appli
ations, the safety fa
torK = 3, whi
h reserves one third of the

hardware resour
es to the real-time plotting fun
tionality. On
e the plotting parameters

are
on�gured, the real-time plot starts by using the start plot button, see the brown box

in Figure 4.19.

Besides the real-time plotting fun
tionality, the plot plugin also provides stati
 plotting.

The stati
 plotting is realised separately from the user interfa
e using the external plotting

tootkit Gnuplot in
ooperation with the Python wrapper PyGnuplot, see sub
hapter 2.4.7.

4.4.5 For
e
ontrol

Another enhan
ement of the new-generation
ontrol software over the �rst-generation is

the support for for
e-driven experiments. An experiment
an be driven by a
onstant

for
e
ommand or by a for
e fun
tion. The
ontrol software uses the load
ell feedba
k

to
al
ulate the axis velo
ity to
opy the
ontrol
ommand. The for
e
ontrol enables

the
ontrolling of the loading for
e independently to the displa
ement, thus, adapting the

loading to a parti
ular sample.

The for
e
ontrol is realised using the PID
ontroller featured by HAL, see sub
hapter 2.3.2

and Figure 4.20. The setpoint r(t) of the PID
ontroller may be various time-dependent

for
e fun
tions, su
h as a linear fun
tion, periodi
 waves or a
onstant value. The error

e(t) is de�ned as the di�eren
e of the setpoint r(t) and the a
tual for
e y(t) measured by

the load
ell. Based on the proportional, intergral and derivarive terms, the manipulated

variable u(t) is determined. The manipulated variable u(t) is the velo
ity
ommand for

the LinuxCNC motion interpreter. Based on the motion velo
ity u(t), the measured for
e

(output variable) is a�e
ted.

59

�✁✂✄☎ ✄✁✆✝✂✁✞

☎✆✟✠✞☎✡

☛✝✟✂✝

☛☎✝☞✁✌✆✝✍ ✎✏✑✒

☞✌✡ ✄✁✆✝✂✁✞✞☎✂✍ ✓✔✕ ✓✖✕ ✓✗

✆✁ ✂☎✟✡ ✘✏✑✒

✙☎☛

☎✆✡

✚✏✑✒ ✛ ✎✏✑✒ ✜ ✘✏✑✒

☞✌✡ ✄✁✆✝✂✁✞✞☎✂

✢✏✑✒ ✛ ☞ ✣ ✌ ✣ ✡

✤✟✆✌☞✥✞✟✝☎✡ ✦✟✂✌✟✠✞☎

✏✤✁✝✌✁✆ ✦☎✞✁✄✌✝✙ ✄✁✤✤✟✆✡✒

✢✏✑✒

Figure 4.20: For
e
ontrol �ow
hart

The for
e
ommand plugin
onsists of
ontrols
ommon to all for
e
ommand fun
tions,

su
h as sine, square, triangle and sawtooth waves (see the red box in Figure 4.21) and

multiple tabs, ea
h tab is dedi
ated to a spe
i�
 for
e
ommand fun
tion (see the blue

box in Figure 4.21).

60

Figure 4.21: For
e
ontrol plugin overall view

4.4.5.1 Common
ontrols

Some
ontrols of the for
e
ontrol plugin are
ommon to all the for
e
ommand tabs, see

Figure 4.22.

61

Figure 4.22: For
e
ontrol plugin
ommon
ontrols

These
ontrols
onsist of a button

10

to start or stop the for
e
ontrol measurement, see the

red box in Figure 4.22. The button in
ludes a diode to signal the for
e
ontrol status. If the

for
e
ontrol is disabled, the diode remains grey. When the for
e
ontrol is a
tivated, the

diode be
omes green. The for
e
ontrol features a PID
ontroller whi
h outputs a velo
ity

ommand. The maximum motion velo
ity is an attribute of the axis whi
h
annot be

ex
eeded. The value of the maximum motion velo
ity is signalled in the
ommon
ontrols

area, see the green box in Figure 4.22. The PID
ontroller maximum output velo
ity might

be adjusted by setting the
ustom velo
ity limit to the PID
ontroller, see the blue box

in Figure 4.22.

4.4.5.2 Constant for
e
ommand tab

The for
e
ontrol plugin features a
onstant for
e
ommand tab. The
onstant
ommand is

on�gured by putting the for
e value in a double spinbox

11

, see the red box in Figure 4.23.

The se
ond parameter of the
onstant
ommand is the
ommand duration. When the for
e

ontrol is enabled a timer is trigerred. When the duration time expires, the for
e
ommand

is set ba
k to zero and the pro
edure automati
ally stops.

10

QToolButton is a spe
ial button that provides qui
k-a

ess to spe
i�

ommands or options. As

opposed to a normal
ommand button, a tool button usually does not show a text label, but shows an

i
on instead.

11

QDoubleSpinBox allows the user to
hoose a value by
li
king the up and down buttons or by pressing

Up or Down on the keyboard to in
rease or de
rease the value
urrently displayed. The user
an also

type in the value manually.

62

Figure 4.23: Constant for
e
ommand tab

4.4.5.3 Linear for
e
ommand tab

Loading a

ording to the linear fun
tion is another for
e
ommand fun
tion F (t) = A · t+

B implemented in the for
e
ommand plugin. The linear fun
tion is de�ned by slope A

in [N/s] units, see the red box in Figure 4.24 and by o�set B in [N] units, see the blue

box in Figure 4.24.

In order to visualise the for
e
ommand as a fun
tion of time, a simple plot window is

in
luded, see the orange box in Figure 4.24. The plot window may be adjusted by the plot

width parameter, see the purple box in Figure 4.24. As the for
e
ontrol is started, the

for
e given by the for
e
ontrol fun
tion starts to grow. The user may de�ne a duration

parameter whi
h automati
ally stops the for
e
ontrol when a
ertain ammount of time

elapses, see the geen box in Figure 4.24.

63

Figure 4.24: Linear for
e
ommand tab

4.4.5.4 Sine wave for
e
ommand tab

The for
e
ontrol plugin in
ludes various periodi
 for
e
ommand fun
tions. The most

ommonly used periodi
 for
e
ommand is the sine wave fun
tion.

The sine wave for
e
ommand fun
tion is de�ned as:

F (t) = A · sin(2 ·π · f · t+ ϕ) +B, (4.3)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequen
y (the

number of
y
les per se
ond), ϕ is the phase shift and B is the o�set.

These parameters may be adjusted using spinboxes within the sine for
e
ommand tab,

see the red, blue, purple and green boxes in Figure 4.25. The for
e
ontrol fun
tion is

visualised using a simple plot window, see the orange box in Figure 4.25. The number

of periods shown within the plot window may be adjusted as well, see the grey box in

Figure 4.25.

64

In order to start the for
e
ontrol, the number of
y
les (periods) must be quanti�ed. As

soon as the number of
y
les is rea
hed, the for
e
ontrol automati
ally stops, see the

brown box in Figure 4.25.

Figure 4.25: Sine wave for
e
ommand tab

4.4.5.5 Square wave for
e
ommand tab

Another periodi
 for
e
ommand fun
tion is the square wave fun
tion. The square wave

for
e
ommand fun
tion is de�ned as:

F (t) = A · sgn sin(2 ·π · f · t+ ϕ) +B, (4.4)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequen
y (the

number of
y
les per se
ond), ϕ is the phase shift and B is the o�set.

The square wave parameters may be adjusted similarly to the previously introdu
ed pe-

riodi
 fun
tion and the input �elds of the user interfa
e for the parameters have the same

65

layout as well, see sub
hapter 4.4.5.4 and Figure 4.26.

Figure 4.26: Square wave for
e
ommand tab

4.4.5.6 Triangle wave for
e
ommand tab

The triangle wave for
e
ommand fun
tion is de�ned as:

F (t) =
2 ·A

π
· arcsin [sin (2 ·π · f · t+ ϕ)] +B, (4.5)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequen
y (the

number of
y
les per se
ond), ϕ is the phase shift and B is the o�set.

The triangle wave parameters may be adjusted similarly to the previously introdu
ed

periodi
 fun
tion and the input �elds of the user interfa
e for the parameters have the

same layout as well, see sub
hapter 4.4.5.4 and Figure 4.27.

66

Figure 4.27: Triangle wave for
e
ommand tab

4.4.5.7 Sawtooth wave for
e
ommand tab

The sawtooth wave for
e
ommand fun
tion is de�ned as:

F (t) = −

2 ·A

π
· arctan

[

1

tan (π · f · t + ϕ)

]

+B, (4.6)

where A is the sine wave amplitude (peak deviation), f is the ordinary frequen
y (the

number of
y
les per se
ond), ϕ is the phase shift and B is the o�set.

Adjusting the sawtooth wave parameters is the same as in the
ases of the other periodi

fun
tions, see sub
hapter 4.4.5.4 and Figure 4.28.

67

Figure 4.28: Sawtooth wave for
e
ommand tab

4.4.6 Temperature
ontrol

The newly developed experimental devi
es also allow one to perform an experiment with

the sample put in a
ontrolled enviroment, be
ause the me
hani
al properties of a material

may vary dramati
ally based on enviromental
onditions. To simulate these
onditions, an

observed sample
an be submerged in a
ir
ulating liquid, su
h as a simulated body-�uid,

arti�
ial blood, water, degradation solutions - a
ids et
., with
ontrolled temperature.

To
ontrol the temperature, the newly developed devi
e is equipped with a heating plate.

When the heating plate is under voltage, it heats the �uid to in
rease the temperature. As

soon as the measured temperature y(t) rea
hes the temperature setpoint r(t), the heating

plate is
ut o� from the voltage. Then the �uid starts to
ool down to the ambient

temperature. When the �uid temperature
omes down to the setpoint minus hysteresis

value r(t)− h(t), the heating plate is put under voltage to in
rease the �uid temperature

68

ba
k again, see the temperature
ontrol �ow
hart in Figure 4.29.

�✁✂✄ ☎✆✝�✞✆✟

✁✝✠✡✟✁☛

☞�✠✞�

☞✁�✄✆✌✝�✍ ✎✏✑✒ ✓ ✔✕✖✗ ✘☎

✙✚☞�✁✞✁☞✌☞✍ ✛✏✑✒ ✓ ✗✖✜ ✘☎

✝✆
✞✁✠☛ ✢✏✑✒

✎✏✑✒✣✛✏✑✒✤✢✏✑✒

✚✁☞

✎✏✑✒✥✓✢✏✑✒

✚✁☞ ✚✁☞

✝✆ ✝✆

✁✝☛

✙✁✠�✌✝✦

✁✝✠✡✟✁☛

☞�✆✄ ✙✁✠�✌✝✦

✚✁☞

✝✆

✙✁✠�✌✝✦

✁✝✠✡✟✁☛

☞�✠✞� ✙✁✠�✌✝✦

✝✆

✚✁☞ ✙✁✠�✌✝✦

✁✝✠✡✟✁☛

☞�✆✄ ✙✁✠�✌✝✦

✚✁☞

✝✆

Figure 4.29: Temperature
ontrol �ow
hart

In order to keep the temperature within the whole loop (the so-
alled Biorea
tor) uniform,

the devi
e is also equipped with a pump whi
h
ir
ulates the �uid. These new features

required developing a plugin for the user interfa
e with a spe
i�
 set of
ontrols.

The plugin of the user interfa
e features a button to swit
h on and swit
h o� the pump,

see the red box in Figure 4.30. The button in
ludes a diode to signal whether the pump

is swit
h on. Until the pump is swit
hed, the diode remains grey. When the pump is

69

swit
hed on, the diode be
omes green.

Another button in
luded in the plugin is used to swit
h on and swit
h o� the temperature

ontrol fun
tionality. The button also in
ludes a diode signalling whether the temperature

ontrol is a
tive. When the temperature
ontrol is a
tivated, the diode be
omes green,

otherwise it remains grey, see the blue box in Figure 4.30.

The plugin features another diode, signalling whether the heating plate is under voltage to

heat the �uid. When the heating plate starts heating, the diode be
omes orange, otherwise

it remains grey, see the green box in Figure 4.30.

The temperature setpoint needed for the temperature
ontrol may be adjusted using a

spinbox within the temperature
ontrol plugin, see the purple box in Figure 4.30.

Figure 4.30: Temperature
ontrol plugin of the user interfa
e

4.4.7 Rapo library

The
ontrol software
omes with
ustom developed Python library whi
h allows one to

send
ommands to the
ontrol software
ore from an external Python s
ript, see Figure 4.6.

The library features the Unix domain so
ket
onne
ted with the API provider pro
ess.

The rapo library ar
hite
ture is inspired by the LinuxCNC Python Interfa
e. It in
ludes

various status
hannels and a
ommand
hannel. The status
hannels provide status vari-

ables of the devi
e, variables related with the measurement, su
h as the measured data,

et
. The
ommand
hannel allows one to send
ommands to the experimental devi
e from

the Python s
ript in order to automate the experimental pro
edure.

70

Chapter 5

Case Studies

The newly developed
ontrol software found utilisation in
ontrolling various experimental

devi
es at the department and numerous experiments were su

essfully performed. Some

of the experiments are presented in this
hapter.

5.1 Compression of a spongious sample in simulated

physiologi
al
onditions

In this study [23℄, an in-house designed table top loading devi
e equipped with a biorea
-

tor

1

is used for the in-situ
ompression of a human-bone sample in simulated physiologi
al

onditions, see Figures 5.1 and 5.2.

Fast on-the-�y 4D Computed Tomography (CT) together with a fast readout semi
ondu
-

tor dete
tor are used as the tools for the advan
ed volumetri
 analysis of the deforming

mi
rostru
ture of the spe
imen, see Figure 5.3. Digital Volume Correlation (DVC) is em-

ployed as the method for the 3D strain analysis of the bone stru
ture under loading.

The loading devi
e with the biorea
tor was pla
ed onto the rotary stage of the CT s
anner.

The geometry of the CT s
anner was adjusted to a fo
us-obje
t distan
e of 60 mm and

a fo
us-dete
tor distan
e of 300 mm. Thus, the nominal magni�
ation was 5× with the

1

The biorea
tor is part of the loading devi
e whi
h
an simulate the physiologi
al
onditions (temper-

ature and �ow) and it
an be either used as an autonomous devi
e or as an optional modular part of the

loading devi
e.

71

orresponding pixel size of 15 µm.

The displa
ement-driven
ompression of the spe
imen was
ondu
ted at a
onstant loading

velo
ity of 0.25 µm/s. After the initial
ompression, three loading/unloading
y
les were

performed in the for
e range of 200 N − 400 N. At the end of the experiment, the stru
ture

was
ompressed to the nominal engineering strain of 2 %. The overall duration of the

experiment was 3200 s.

(a) Tested human bone spe
-

imen

(b) Spe
imen submerged

in the simulated body

�uid

(
) Cutaway view of the in-situ

loading devi
e with biorea
tor

Figure 5.1: Human bone spe
imen and loading devi
e

Figure 5.2: Loading devi
e exploded view in detail

72

Figure 5.3: Loading devi
e exploded view in detail

The newly developed features of the
ontrol software used to perform the experiment

involve the simultaneous for
e and temperature measuring fun
tionality des
ribed in detail

in sub
hapter 4.4.2 and the temperature
ontrol with the
ontrolled �ow of the simulated

body �uid, see sub
hapter 4.4.6.

During the experiment all of the features in
luding the real-time plotting worked as it was

supposed to. The data samples obtained by the
ontrol software were su

essfully logged

and exported to the plain-text �le. The
ontrol software proved that it is
apable of
on-

trolling the experimental devi
es reliably, without any issues and the results showed that

the measured data is
orre
t. Overall view of the
ontrol software during the experiment

is shown in Figure 5.4.

73

Figure 5.4: Overall view of the
ontrol software

5.2 Fra
ture analysis of sandstone

In this study, an in-house designed experimental devi
e is used for the 4-point bending of

weathered sandstone samples. The experimental devi
e features two loading units, ea
h

of whi
h is motorised by a stepper motor and equipped with a load
ell. The frame of the

devi
e is made of high-strength aluminium alloy and
arbon
omposite, see Figure 5.5.

Figure 5.5: Experimental devi
e for the 4-point bending me
hani
al test

74

The devi
e is intended to be used for the 4-point bending me
hani
al test paired with

a CT s
anner to perform on-the-�y 4D CT during the bending, see Figure 5.6. The CT

s
ans may be used for the 3D strain analysis using the DVC.

Figure 5.6: Prin
iple of the 4-point bending and on-the-�y CT

The sandstone samples were very fragile, therefore a pre
ise positioning was required,

espe
ially when approa
hing a
onta
t for
e. The
onta
t for
e was set to 5 N as the
on-

stant for
e
ontrol fun
tion. Maximum velo
ity (maximum output of the PID
ontroller)

was set to 10 µm/s. As the loading units rea
hed the
onta
t for
e, a displa
ement-driven

experiment started. The loading velo
ity was 1 µm/s and the experiment stopped when

the sandstone sample was broken in half.

Numerous series of sandstone samples were observed. Some of the samples were weathered

by water, some of them were weathered by i
e, some of the samples were observed inta
t.

Results of the experiments are shown in Figures 5.7.

75

Figure 5.7: Results of the sandstone analysis

76

Chapter 6

Work in Progress

Currently, the
ontrol software is still being developed. New features are being imple-

mented, su
h as a remote
ontrol.

6.1 Remote
ontrol

The remote
ontrol
apabilities of the
ontrol software allow the user to
ontrol the ex-

perimental devi
es over the network in a
lient-server fashion, see Figure 6.1.

Z[\]^_`]abde

device

Control

unit

Remote

fg

TCP/IP

(client) (server)

Figure 6.1: S
heme of the
ontrol software remote
ontrol

The
ontrol unit physi
ally
ontrolling the experimental devi
e a
ts like a server. The

ontrol software
ore, in
luding all the real-time demands and se
urity pro
edures, su
h

as limit swit
h supervision or load
ell overload inspe
tion, run within the
ontrol unit.

The remote PC is used to send
ommands or requests for variables

1

to the
ontrol unit

using the TCP stream so
ket.

1

Variables, su
h as status variables, error status, measured data, et
.

77

6.1.1 TCP so
ket

A so
ket programming interfa
e provides the routines required for interpro
ess
ommu-

ni
ation between the appli
ations, either on the lo
al system (Unix domain so
ket, see

sub
hapter 4.3.1) or spread in the TCP/IP based network environment. The TCP/IP

onne
tion is de�ned as an internet address (IPv4 or IPv6) and a port numeri
al value.

TCP so
kets provide a reliable, nearly error-free data pipe between two endpoints. Both

of the devi
es
an send and re
eive streams of bytes so a serialising module must be used

when sending the data stru
ture, su
h as a Python list or di
tionary, see sub
hapter 4.3.2.

One devi
e, known as the
lient,
reates a so
ket,
onne
ts to the server, and then begins

sending and re
eiving data. On the other side, the server
reates a so
ket and listens for

the in
oming
onne
tion from the
lient. On
e a
onne
tion is initiated, the server a

epts

the
onne
tion, and then starts to send and re
eive data to and from the in
oming
lient.

The
ontrol software in
ludes a pro
ess of the so-
alled Server Manager. The Server man-

ager is
onne
ted with other pro
esses within the
ontrol software
ore whi
h makes the

ontrol software ar
hite
ture more
omplex than des
ribed in Figure 4.3, see Figure 6.2

and Appendix B.

6.1.2 Server Manager

The Server Manager pro
ess is part of the
ontrol software running within the
ontrol

unit. It provides remote a

ess over the network to the
ontrol software
ore using the

TCP so
ket, see Figure 6.3 and Appendix B. The TCP so
ket of the Server Manager
an

be a

essed by the remote PC through the so-
alled Client Manager pro
ess.

6.1.3 Client Manager

The Client Manager pro
ess runs within a
lient appli
ation on the remote PC and pro-

vides all fun
tionality needed for
ommuni
ation with the Server Manager pro
ess running

inside the
ontrol unit. The
lient appli
ation in
ludes the Client Manager pro
ess whi
h

is
onne
ted with the remote user interfa
e and with the remote API provider pro
ess.

78

hiji klmmno

p

Command

qtnuvilo

w

5

6

7

8

Data

xlyyno
zjij {nn|no

I/O

Manager

3

4

9

11

12

10

13

14

16

17

18

19

20

21

22

23

24

25

Figure 6.2: Control software
ore with
onne
tion to the Server Manager in
luded

79

}~��~� �����~�

24

25

23

22

21

1

2

3

4

��� ����~�

19

20

18

17

16

26

���~�� �����~�

29

30

28

27

31

32

33

34

��� ����~�

35

40

41

42

43

44

36

37

38

39

Figure 6.3: Server Manager and Client Manager inter-pro
ess
ommuni
ation s
heme

80

6.1.4 Remote user interfa
e

The remote user interfa
e is
onne
ted with the Client Manager using multipro
essing

queues. On
e a
ommand is sent from the remote user interfa
e, it rea
hes the Client

Manager whi
h adds an identi�
ation stamp to the
ommand and sends it through the

TCP so
ket to the Server Manager running within the
ontrol unit. The Server Manager

re
eives the
ommand and reads the identi�
ation stamp. Based on the identi�
ation

stamp, the Server Manager puts the
ommand to an appropriate queue leading into a

pro
ess suitable for exe
uting the
ommand.

Due to this identi�
ation stamp me
hanism, the developed user interfa
e may be
on-

ne
ted either with the
ontrol software
ore dire
tly within the
ontrol unit, or paired

with the Client Manager within the
lient appli
ation. All the spe
i�
 fun
tionality re-

quired for sending
ommands remotely is in
luded in Client Manager and Server Manager

pro
esses, whi
h
reate a transfer layer for the remote
ommands. Noti
e, that the remote

user interfa
e ar
hite
ture remains the same, it only
onne
ts to queues of the Client

Manager, see Figure 6.4 and Appendix B.

6.1.5 Remote s
ript exe
ution

The remote appli
ation also in
ludes the API provider pro
ess
onne
ted with the Client

Manager. The API provider allows one to send
ommands from the remote Python s
ript

using the rapo library. The API provider and the rapo library are based on the same

ar
hite
ture shown in Figure 4.6 and des
ribed in sub
hapter 4.3 whi
h makes them

suitable for remote use as well. All the fun
tionality needed for transfering
ommands

from the remote API provider to the
ontrol software
ore is in
luded in Client Manager

and Server Manager pro
esses, see Figure 6.5 and Appendix B.

81

�✁✂ ✄☎✆✝

✞✟

✞✠

✞✞

✞✡

✞☛

✡☞

✡✌

✡✍

✞✎

�✁✂ ✏✑✒✓✔✕ ☛

�✁✂ ✏✑✒✓✔✕ ✡

�✁✂ ✏✑✒✓✔✕ ✕✖☛

�✁✂ ✏✑✒✓✔✕ ✕

Figure 6.4: Remote user interfa
e ar
hite
ture

82

� ������ ��������

� ���� ¡ ¢�� £�¤ ¢ ¥

���� ¡ ¢��

� ¦ §¢¡§ ¨¡¢¡©¨ ¢ª« ¦���¢ª« ¦¬¢ªª§£¨

¨ ­ ¢��®�¨¡¢¡¯ §��¡§­° ©§±

¦ ­ ¢��®¦���¢ª«¯±

� ©�«¢¡§ ¨¡¢¡©¨ ²¢ �¢¤£§¨

¨®��££¯±

� ³§¡ £�¨¡ �´ §µ©���§« ¨§ª¨� ¨

¨®¨§ª¨� ¨¶¢¦¡©¢£¯±

� §µ©�� ¨§ª¨� ª¢�§« ·£�¢«¦§££·

¦®£�¦¸¶¨§ª¨� ¨¯¹·£�¢«¦§££·º»¹¼º±

½�¾ �¿�ÀÁ�Â¿

43

44

42

41

40

36

37

38

39

Ã�ÁÄ Å���Á� Æ��ÇÂ�

¿�È� ÉÁÊ¿�¿�

15

Ã�ÁÄ Å���Á�

Æ��ÇÂ�

45

Figure 6.5: Remote API provider and rapo library
onne
tion s
heme

83

Chapter 7

Con
lusion

Within the proposed thesis, a modular multi-pro
ess
ontrol software for experimental

devi
es operated in the Department of Me
hani
s and Materials in the Fa
ulty of Trans-

portation S
ien
es at the Cze
h Te
hni
al University and at the Institute of Theoreti
al

and Applied Me
hani
s of the Cze
h A
ademy of S
ien
es was developed.

The newly developed
ontrol software repla
ed the �rst-generation
ontrol software pub-

lished previously as part of my Ba
helor's thesis. The new-generation
ontrol software gives

mu
h more performan
e than the �rst-generation
ontrol software as the new-generation

is based on a multi-pro
ess ar
hite
ture with a robust multi-pro
ess
ore and the
ontrol

software fun
tionality was also enahan
ed with new features to satisfy needs of the re-

ently developed experimental devi
es, su
h as the support for various types of sensors

(load
ells, thermometers, et
.), en
oders support, temperature
ontrol fun
tionality or

the support for performing for
e-driven experiments.

Furthermore, the
ontrol software features a s
ripting fun
tionality whi
h enables the

exe
ution of
ustom external Python s
ripts. These s
ripts
an operate with the experi-

mental devi
e through the developed rapo library. The library allows one to monitor the

status variables of the experimental devi
e, send various
ommands to the devi
e, et
.

Therefore, the library may be used for
reating various types of automated pro
edures,

su
h as advan
ed experimental pro
edures, et
.

Currently, the
ontrol software has been utilised with a great su

ess in
ontrolling experi-

mental devi
es in the department. Thanks to the
ontrol software, numerous experiments

84

have been performed and many studies have been published. The
ontrol software has

proved its long-term stability and reliability as several experimental pro
edures last for

many hours and
ertain pro
edures took even more than one day of uninterrupted mea-

surement.

The
ontrol software also parti
ipated at the LinuxCNC
ommunity meeting in Stuttgart,

Germany in July 2018. Alhough the
ontrol software was still being developed during

that time, the majority of the features had been implemented already. The software drew

the attention of the
ommunity as it
ombines
onventional pre
ise CNC positioning

apabilities with high-performan
e and high-pre
ision data a
quisition.

Still, the
ontrol software is being developed and new features are being added. The most

re
ent feature in the development is the remote
ontrol whi
h enables one to
ontrol the

experimental devi
es remotely over a lo
al network or even over the internet. Another

feature that has
ome into
onsideration for future development is the real-time image

pro
essing fun
tionality of the imaging data obtained during an experimental pro
edure,

su
h as digital planar image
orrelation or digital volumetri
 image
orrelation.

85

Bibliography

[1℄ Eml 2023 � motor
ontrol le
ture 3 � feedba
k sensor opti
al en
oder. https://

slideplayer.
om/slide/6003777/. A

essed: 2019-03-03.

[2℄ T. LinuxCNC Team. LinuxCNC Getting Started Guide. Samurai Media Limited,

2016.

[3℄ Hal Introdu
tion. http://linux
n
.org/do
s/html/hal/intro.html. A

essed:

2019-05-11.

[4℄ PID Controller. http://linux
n
.org/do
s/html/motion/pid-theory.html. A
-

essed: 2019-05-11.

[5℄ Mesa HostMot2 Driver. http://www.linux
n
.org/do
s/html/drivers/hostmot2.

html. A

essed: 2019-05-11.

[6℄ AXIS GUI. http://linux
n
.org/do
s/html/gui/axis.html. A

essed: 2019-05-

11.

[7℄ Tou
hy GUI. http://linux
n
.org/do
s/html/gui/tou
hy.html. A

essed: 2019-

05-11.

[8℄ Python Virtual Control Panel. http://www.linux
n
.org/do
s/2.4/html/hal_

pyv
p.html. A

essed: 2019-05-11.

[9℄ Glade Virtual Control Panel. http://linux
n
.org/do
s/html/gui/gladev
p.

html. A

essed: 2019-05-11.

[10℄ LinuxCNC Python Interfa
e Do
umantation. http://linux
n
.org/do
s/2.6/

html/
ommon/python-interfa
e.html. A

essed: 2019-05-11.

86

https://slideplayer.com/slide/6003777/
https://slideplayer.com/slide/6003777/
http://linuxcnc.org/docs/html/hal/intro.html
http://linuxcnc.org/docs/html/motion/pid-theory.html
http://www.linuxcnc.org/docs/html/drivers/hostmot2.html
http://www.linuxcnc.org/docs/html/drivers/hostmot2.html
http://linuxcnc.org/docs/html/gui/axis.html
http://linuxcnc.org/docs/html/gui/touchy.html
http://www.linuxcnc.org/docs/2.4/html/hal_pyvcp.html
http://www.linuxcnc.org/docs/2.4/html/hal_pyvcp.html
http://linuxcnc.org/docs/html/gui/gladevcp.html
http://linuxcnc.org/docs/html/gui/gladevcp.html
http://linuxcnc.org/docs/2.6/html/common/python-interface.html
http://linuxcnc.org/docs/2.6/html/common/python-interface.html

[11℄ Creating Userspa
e Python Components. http://linux
n
.org/do
s/html/hal/

halmodule.html. A

essed: 2019-05-11.

[12℄ What is Python? Exe
utive Summary. https://www.python.org/do
/essays/

blurb/. A

essed: 2019-05-11.

[13℄ G. Za

one. Python Parallel Programming Cookbook. Pa
kt Publishing Ltd., 35

Livery Street, Birmingham B3 2PB, UK, 2015.

[14℄ PyQt Do
umentation. https://wiki.python.org/moin/PyQt. A

essed: 2019-05-11.

[15℄ Qt Do
umentation. http://do
.qt.io/qt-5.9/index.html. A

essed: 2019-05-11.

[16℄ PythonQwt Manual. https://pythonhosted.org/PythonQwt/. A

essed: 2019-05-

11.

[17℄ Qwt - Qt Widgets for Te
hni
al Appli
ations. http://qwt.sour
eforge.net/. A
-

essed: 2019-05-11.

[18℄ J. D. Hunter. Matplotlib: A 2D Graphi
s Environment. Computing In S
ien
e &

Engineering 9(3):90�95, 2007. doi:10.1109/MCSE.2007.55.

[19℄ B. S
hneider. PyGnuplot: Python wrapper for Gnuplot. https://pypi.org/

proje
t/PyGnuplot/. A

essed: 2019-05-11.

[20℄ T. Williams, C. Kelley, many others. Gnuplot 5.2: an intera
tive plotting program.

http://gnuplot.sour
eforge.net/, 2019.

[21℄ V. Rada. Software pro °ízení stroj· a experimentální
h za°ízení. https://

dspa
e.
vut.
z/handle/10467/73180?lo
ale-attribute=en, Ba
helor's Thesis,

Cze
h Te
hni
al University in Prague, Fa
ulty of Transportation S
ien
es, Depart-

ment of Me
hani
s and Materials, 2017.

[22℄ P. Koudelka, T. Fíla, D. Kytý°, et al. Novel devi
e for 4-point �exural testing of

quasi-brittle materials during 4d
omputed tomography. In Stru
tural Integrity, pp.

27�32. Springer International Publishing, 2018. doi:10.1007/978-3-319-91989-8_5.

[23℄ T. Fíla, J. �lei
hrt, D. Kytý°, et al. Deformation analysis of the spongious sample

in simulated physiologi
al
onditions based on in-situ
ompression, 4d
omputed

87

http://linuxcnc.org/docs/html/hal/halmodule.html
http://linuxcnc.org/docs/html/hal/halmodule.html
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://wiki.python.org/moin/PyQt
http://doc.qt.io/qt-5.9/index.html
https://pythonhosted.org/PythonQwt/
http://qwt.sourceforge.net/
http://dx.doi.org/10.1109/MCSE.2007.55
https://pypi.org/project/PyGnuplot/
https://pypi.org/project/PyGnuplot/
http://gnuplot.sourceforge.net/
https://dspace.cvut.cz/handle/10467/73180?locale-attribute=en
https://dspace.cvut.cz/handle/10467/73180?locale-attribute=en
http://dx.doi.org/10.1007/978-3-319-91989-8_5

tomography and fast readout dete
tor. Journal of Instrumentation 13(11):C11021�

C11021, 2018. doi:10.1088/1748-0221/13/11/
11021.

88

http://dx.doi.org/10.1088/1748-0221/13/11/c11021

Appendix A

Prime fatorisation s
ript

Listing A.1: Prime fatorisation s
ript

"""

how many numbers? 1000000

single thread: 22.4188029766 se
onds

2 threads: 31.318999052 se
onds

4 threads: 52.8587779999 se
onds

6 threads: 63.3178188801 se
onds

8 threads: 71.5121889114 se
onds

10 threads: 75.6294119358 se
onds

12 threads: 76.9113698006 se
onds

16 threads: 81.545334816 se
onds

2 pro
esses: 15.542855978 se
onds

4 pro
esses: 8.67697715759 se
onds

6 pro
esses: 5.94609308243 se
onds

8 pro
esses: 4.50127601624 se
onds

10 pro
esses: 4.2152929306 se
onds

12 pro
esses: 3.7843940258 se
onds

16 pro
esses: 3.41232895851 se
onds

"""

import time, math

from multipro
essing import Pro
ess, Queue

import threading

89

def fa
torize(n):

"""

A fa
torization method. Take integer 'n', return list of fa
tors.

"""

if n < 2:

return [℄

fa
tors = [℄

p = 2

while True:

if n == 1:

return fa
tors

r = n % p

if r == 0:

fa
tors.append(p)

n = n / p

elif p ∗ p >= n:

fa
tors.append(n)

return fa
tors

elif p > 2:

Advan
e in steps of 2 over odd numbers

p += 2

else:

If p == 2, get to 3

p += 1

def plain_fa
torizer(nums):

"""

Single threaded method fa
torizing list of numbers

:param nums: list of numbers to fa
tor

:return: di
t, key is a fa
torized integer, value is list of fa
tors

"""

return {n: fa
torize(n) for n in nums}

def thread_worker(nums, outdi
t):

"""

90

The worker fun
tion, invoked in a thread.

:param nums: list of numbers to fa
tor

:param outdi
t: results are pla
ed in outdi
t

"""

for n in nums:

outdi
t[n℄ = fa
torize(n)

def threaded_fa
torizer(nums, nthreads):

"""

Method fa
torizing list of numbers using n threads.

:param nums: list of numbers to fa
tor

:param nthreads: number of threads to utilize

:return: di
t, key is a fa
torized integer, value is list of fa
tors

"""

Ea
h thread will get '
hunksize' nums and its own output di
t

hunksize = int(math.
eil(len(nums) / �oat(nthreads)))

threads = [℄

outs = [{} for _ in range(nthreads)℄

for i in range(nthreads):

Create ea
h thread, passing it its
hunk of numbers to fa
tor and output di
t.

t = threading.Thread(target=thread_worker, args=(nums[
hunksize ∗ i:
hunksize ∗ (i + 1)℄,

→֒ outs[i℄))

threads.append(t)

t.start()

Wait for all threads to �nish

for t in threads:

t.join()

Merge all partial output di
ts into a single di
t and return it

return {k: v for out_d in outs for k, v in out_d.iteritems()}

def pro
ess_worker(nums, out_q):

"""

The worker fun
tion, invoked in a pro
ess.

:param nums: :param nums: list of numbers to fa
tor

91

:param out_q: results are pushed to the queue

"""

outdi
t = {}

for n in nums:

outdi
t[n℄ = fa
torize(n)

out_q.put(outdi
t)

def multipro
ess_fa
torizer(nums, npro
s):

"""

Method fa
torizing list of numbers using n pro
esses.

:param nums: list of numbers to fa
tor

:param npro
s: number of pro
esses to utilize

:return: di
t, key is a fa
torized integer, value is list of fa
tors

"""

Ea
h pro
ess will get '
hunksize' nums and a queue to put his out di
t into

out_q = Queue()

hunksize = int(math.
eil(len(nums) / �oat(npro
s)))

pro
s = [℄

for i in range(npro
s):

p = Pro
ess(

target=pro
ess_worker,

args=(nums[
hunksize ∗ i:
hunksize ∗ (i + 1)℄,

out_q))

pro
s.append(p)

p.start()

Colle
t all results into a single result di
t. We know how many di
ts with results to expe
t.

resultdi
t = {}

for i in range(npro
s):

resultdi
t.update(out_q.get())

Wait for all worker pro
esses to �nish

for p in pro
s:

p.join()

return resultdi
t

92

def main():

"""

Main method of the s
ript, performs ben
hmark

:return: exit
ode 0

"""

test performan
e for n threads and pro
esses from the lists

N_THREADS = [2, 4, 6, 8, 10, 12, 16℄

N_PROCESSES = [2, 4, 6, 8, 10, 12, 16℄

get the numbers to fa
torize as user input

N = input("how many numbers? ")

nums = range(N)

ben
hmark fa
torizing by single thread

t0 = time.time()

plain_fa
torizer(nums)

t1 = time.time()

print("single thread: {} se
onds".format(t1 − t0))

ben
hmark fa
torizing by threads

for nthreads in N_THREADS:

t0 = time.time()

threaded_fa
torizer(nums, nthreads)

t1 = time.time()

print("{} threads: {} se
onds".format(nthreads, t1 − t0))

ben
hmark fa
torizing by pro
esses

for npro
s in N_PROCESSES:

t0 = time.time()

multipro
ess_fa
torizer(nums, npro
s)

t1 = time.time()

print("{} pro
esses: {} se
onds".format(npro
s, t1 − t0))

return 0

if __name__ == '__main__':

main()

93

Appendix B

Communi
ation s
hemes des
ription

1
Conne
tion to a queue leading to the Stat Poller, used for sending
ommands to the

Stat Poller

2 Conne
tion to a queue leading to the Command Exe
utor, used for sending
om-

mands to the Command Exe
utor

3 Conne
tion to a queue leading to the I/O Manager, used for sending
ommands to

the I/O Manager

4 Conne
tion to a queue leading to the Data Keeper, used for sending
ommands to

the Data Keeper

5 Conne
tion to a queue leading to the GUI
ore, used for sending ma
hine status

variables from the Stat Poller to the GUI

6 Conne
tion to a queue leading to the GUI
ore, used for sending eventual error

messages from the Stat Poller to the GUI

7 Conne
tion to a queue leading to the API Provider, used for sending ma
hine status

variables from the Stat Poller to the API Provider

8 Conne
tion to a queue leading to the API Provider, used for sending eventual error

messages from the Stat Poller to the API Provider

9 Conne
tion to a queue leading to the GUI
ore, used for sending I/O status variables

from the I/O Manager to the GUI

94

10
Conne
tion to a queue leading to the API Provider, used for sending I/O status

variables from the I/O Manager to the API Provider

11 Conne
tion to a queue leading to the GUI
ore, used for sending measured data

variables from the Data Keeper to the GUI

12 Conne
tion to a queue leading to the GUI
ore, used for sending data to plot from

the Data Keeper to the GUI

13 Conne
tion to a queue leading to the API Provider, used for sending measured data

variables from the Data Keeper to the API Provider

14 Conne
tion to a queue leading to the API Provider, used for sending data to plot

from the Data Keeper to the API Provider

15 Conne
tion of the API Provider and rapo library through the Unix domain so
ket

16 Conne
tion to a queue leading to the Server Manager, used for sending ma
hine sta-

tus variables from the Stat Poller through the Server Manager and Client Manager

to the remote GUI

17 Conne
tion to a queue leading to the Server Manager, used for sending eventual error

messages from the Stat Poller through the Server Manager and Client Manager to

the remote GUI

18 Conne
tion to a queue leading to the Server Manager, used for sending ma
hine sta-

tus variables from the Stat Poller through the Server Manager and Client Manager

to the remote API Provider

19 Conne
tion to a queue leading to the Server Manager, used for sending eventual error

messages from the Stat Poller through the Server Manager and Client Manager to

the remote API Provider

20 Conne
tion to a queue leading to the Server Manager, used for sending I/O status

variables from the I/O Manager through the Server Manager and Client Manager

to the remote GUI

95

21
Conne
tion to a queue leading to the Server Manager, used for sending I/O status

variables from the I/O Manager through the Server Manager and Client Manager

to the remote API Provider

22 Conne
tion to a queue leading to the Server Manager, used for sending measured

data variables from the Data Keeper through the Server Manager and Client Man-

ager to the remote GUI

23 Conne
tion to a queue leading to the Server Manager, used for sending data to

plot from the Data Keeper through the Server Manager and Client Manager to the

remote GUI

24 Conne
tion to a queue leading to the Server Manager, used for sending measured

data variables from the Data Keeper through the Server Manager and Client Man-

ager to the remote API Provider

25
Conne
tion to a queue leading to the Server Manager, used for sending data to

plot from the Data Keeper through the Server Manager and Client Manager to the

remote API Provider

26 Conne
tion of the Server Manager and Client Manager through the TCP so
ket

27 Conne
tion to a queue leading to the Client Manager, used for sending
ommands

from the remote GUI to the Stat Poller through the Client Manager and Server

Manager

28
Conne
tion to a queue leading to the Client Manager, used for sending
ommands

from the remote GUI to the Command Exe
utor through the Client Manager and

Server Manager

29 Conne
tion to a queue leading to the Client Manager, used for sending
ommands

from the remote GUI to the I/O Manager through the Client Manager and Server

Manager

30 Conne
tion to a queue leading to the Client Manager, used for sending
ommands

from the remote GUI to the Data Keeper through the Client Manager and Server

Manager

96

31
Conne
tion to a queue leading to the remote GUI
ore, used for sending ma
hine

status variables from the Stat Poller to the remote GUI

32 Conne
tion to a queue leading to the remote GUI
ore, used for sending eventual

error messages from the Stat Poller to the remote GUI

33 Conne
tion to a queue leading to the remote GUI
ore, used for sending I/O status

variables from the I/O Manager to the remote GUI

34 Conne
tion to a queue leading to the remote GUI
ore, used for sending measured

data variables from the Data Keeper to the remote GUI

35 Conne
tion to a queue leading to the remote GUI
ore, used for sending data to

plot from the Data Keeper to the remote GUI

36 Conne
tion to a queue leading to the Client Manager, used for sending
ommands

from the remote API Provider to the Stat Poller through the Client Manager and

Server Manager

37 Conne
tion to a queue leading to the Client Manager, used for sending
ommands

from the remote API Provider to the Command Exe
utor through the Client Man-

ager and Server Manager

38 Conne
tion to a queue leading to the Client Manager, used for sending
ommands

from the remote API Provider to the I/O Manager through the Client Manager and

Server Manager

39 Conne
tion to a queue leading to the Client Manager, used for sending
ommands

from the remote API Provider to the Data Keeper through the Client Manager and

Server Manager

40 Conne
tion to a queue leading to the remote API Provider, used for sending ma
hine

status variables from the Stat Poller to the remote API Provider

41 Conne
tion to a queue leading to the remote API Provider, used for sending eventual

error messages from the Stat Poller to the remote API Provider

42 Conne
tion to a queue leading to the remote API Provider, used for sending I/O

status variables from the I/O Manager to the remote API Provider

97

43
Conne
tion to a queue leading to the remote API Provider, used for sending mea-

sured data variables from the Data Keeper to the remote API Provider

44 Conne
tion to a queue leading to the remote API Provider, used for sending data

to plot from the Data Keeper to the remote API Provider

45 Conne
tion of the remote API Provider and rapo library on the remote devi
e

through the Unix domain so
ket

98

Appendix C

Plot
omparison s
ript

Listing C.1: Plot
omparison s
ript

"""

PythonQwt: plotting 100 data samples took 0.00383186340332 se
onds

Matplotlib: plotting 100 data samples took 0.0366899967194 se
onds

PythonQwt: plotting 1000 data samples took 0.00513195991516 se
onds

Matplotlib: plotting 1000 data samples took 0.0264139175415 se
onds

PythonQwt: plotting 10000 data samples took 0.00405383110046 se
onds

Matplotlib: plotting 10000 data samples took 0.0248889923096 se
onds

PythonQwt: plotting 50000 data samples took 0.00433802604675 se
onds

Matplotlib: plotting 50000 data samples took 0.0284330844879 se
onds

PythonQwt: plotting 100000 data samples took 0.00466799736023 se
onds

Matplotlib: plotting 100000 data samples took 0.0300550460815 se
onds

PythonQwt: plotting 250000 data samples took 0.00639510154724 se
onds

Matplotlib: plotting 250000 data samples took 0.0396320819855 se
onds

PythonQwt: plotting 500000 data samples took 0.00936698913574 se
onds

Matplotlib: plotting 500000 data samples took 0.0492820739746 se
onds

PythonQwt: plotting 1000000 data samples took 0.0142869949341 se
onds

Matplotlib: plotting 1000000 data samples took 0.0847151279449 se
onds

"""

from PyQt5.QtWidgets import QAppli
ation

from qwt import QwtPlot, QwtPlotCurve

from matplotlib.ba
kends.ba
kend_qt5agg import FigureCanvasQTAgg as FigureCanvas

from matplotlib.�gure import Figure

99

import numpy as np

import time

import sys

def plot_qwt(n_samples):

"""

Plot n data samples using PythonQwt

:param n_samples: number of samples

:return: exit
ode

"""

reate QAppli
ation and Qwt plot widget

app = QAppli
ation(sys.argv)

gui = QwtPlot()

prepare data samples

x = np.arange(0.0, 2∗np.pi, 2∗np.pi/n_samples)

y = np.sin(x)

start measuring plot time

t0 = time.time()

urve = QwtPlotCurve()

urve.setData(x, y)

urve.atta
h(gui)

t1 = time.time()

print results

print "PythonQwt: plotting {} data samples took {} se
onds".format(n_samples, t1−t0)

gui.show() # un
omment to show user interfa
e

return sys.exit(app.exe
_()) # un
omment to start QAppli
ation event loop

def plot_matplotlib(n_samples):

"""

Plot n data samples using matplotlib

:param n_samples: number of samples

:return: exit
ode

"""

reate QAppli
ation and matplotlib widget

100

app = QAppli
ation(sys.argv)

�gure = Figure()

subplot = �gure.add_subplot(111)

gui = FigureCanvas(�gure)

prepare data samples

x = np.arange(0.0, 2∗np.pi, 2∗np.pi/n_samples)

y = np.sin(x)

start measuring plot time

t0 = time.time()

subplot.plot(x, y)

gui.draw()

t1 = time.time()

gui.show() # un
omment to show user interfa
e

print results

print "Matplotlib: plotting {} data samples took {} se
onds".format(n_samples, t1−t0)

return sys.exit(app.exe
_()) # un
omment to start QAppli
ation event loop

def main():

"""

Main method of the s
ript

:return: exit
ode 0

"""

for n in [100, 1000, 10000, 50000, 100000, 250000, 500000, 1000000℄:

plot_qwt(n)

plot_matplotlib(n)

return 0

if __name__ == '__main__':

main()

101

Appendix D

Serialising modules
omparison s
ript

Listing D.1: Serialising modules
omparison s
ript

"""

pi
kle.dumps − proto
ol 0: type <type 'list'> took 1.23852205276 se
onds, size 8888896 B

Pi
kle.dumps − proto
ol 0: type <type 'list'> took 0.118358135223 se
onds, size 8888896 B

pi
kle.dumps − proto
ol 1: type <type 'list'> took 1.43744206429 se
onds, size 4870676 B

Pi
kle.dumps − proto
ol 1: type <type 'list'> took 0.0186970233917 se
onds, size 4870676 B

pi
kle.dumps − proto
ol 2: type <type 'list'> took 1.43182492256 se
onds, size 4870678 B

Pi
kle.dumps − proto
ol 2: type <type 'list'> took 0.0189759731293 se
onds, size 4870678 B

pi
kle.loads: type <type 'list'> took 0.590484857559 se
onds

Pi
kle.loads: type <type 'list'> took 0.0240499973297 se
onds

json.dumps: type <type 'list'> took 0.105890989304 se
onds, size 7888890 B

json.loads: type <type 'list'> took 0.0827050209045 se
onds

pi
kle.dumps − proto
ol 0: type <type 'di
t'> took 2.33178496361 se
onds, size 16777786 B

Pi
kle.dumps − proto
ol 0: type <type 'di
t'> took 0.241229057312 se
onds, size 16777786 B

pi
kle.dumps − proto
ol 1: type <type 'di
t'> took 2.68368887901 se
onds, size 9739348 B

Pi
kle.dumps − proto
ol 1: type <type 'di
t'> took 0.0424699783325 se
onds, size 9739350 B

pi
kle.dumps − proto
ol 2: type <type 'di
t'> took 2.68153905869 se
onds, size 9739350 B

Pi
kle.dumps − proto
ol 2: type <type 'di
t'> took 0.0431780815125 se
onds, size 9739352 B

pi
kle.loads: type <type 'di
t'> took 1.30437397957 se
onds

Pi
kle.loads: type <type 'di
t'> took 0.0720989704132 se
onds

json.dumps: type <type 'di
t'> took 0.286577939987 se
onds, size 17777780 B

json.loads: type <type 'di
t'> took 0.533478021622 se
onds

"""

102

import pi
kle

import
Pi
kle

import json

import time

import sys

def dumps_pi
kle(data, proto
ol):

"""

Pi
kle/serialize data with pi
kle module using a proto
ol

:param data: data to pi
kle/serialize

:param proto
ol: proto
ol used for pi
kling/serialization

:return: pi
kled/serialized data

"""

return pi
kle.dumps(data, proto
ol=proto
ol)

def loads_pi
kle(data):

"""

Unpi
kle/deserialize data with pi
kle module

:param data: data to unpi
kle/deserialize

:return: unpi
kled/deserialized data

"""

return pi
kle.loads(data)

def dumps_
Pi
kle(data, proto
ol):

"""

Pi
kle/serialize data with
Pi
kle module using a proto
ol

:param data: data to pi
kle/serialize

:param proto
ol: proto
ol used for pi
kling/serialization

:return: pi
kled/serialized data

"""

return
Pi
kle.dumps(data, proto
ol=proto
ol)

def loads_
Pi
kle(data):

"""

103

Unpi
kle/deserialize data with
Pi
kle module

:param data: data to unpi
kle/deserialize

:return: unpi
kled/deserialized data

"""

return
Pi
kle.loads(data)

def dumps_json(data):

"""

Pi
kle/serialize data with json module

:param data: data to pi
kle/serialize

:return: pi
kled/serialized data

"""

return json.dumps(data)

def loads_json(data):

"""

Unpi
kle/deserialize data with json module

:param data: data to unpi
kle/deserialize

:return: unpi
kled/deserialized data

"""

return json.loads(data)

def main():

"""

Main method of the s
ript

:return: exit
ode 0

"""

PROTOCOLS = [0, 1, 2℄

DATA = [list(range(1000000)), di
t(zip(range(1000000), range(1000000)))℄

for data in DATA:

ben
hmark various pi
kle and
Pi
kle proto
ols

for proto
ol in PROTOCOLS:

ben
hmark pi
kle.dumps

t0 = time.time()

pi
kled = dumps_pi
kle(data, proto
ol)

104

t1 = time.time()

print "pi
kle.dumps − proto
ol {}: type {} took {} se
onds, size {} B".format(

→֒ proto
ol, type(data), t1−t0, len(pi
kled))

ben
hmark
Pi
kle.dumps

t0 = time.time()

pi
kled = dumps_
Pi
kle(data, proto
ol)

t1 = time.time()

print "
Pi
kle.dumps − proto
ol {}: type {} took {} se
onds, size {} B".format(

→֒ proto
ol, type(data), t1−t0, len(pi
kled))

ben
hmark pi
kle.loads

t0 = time.time()

unpi
kled = loads_pi
kle(pi
kled)

t1 = time.time()

print "pi
kle.loads: type {} took {} se
onds".format(type(data), t1 − t0)

ben
hmark
Pi
kle.loads

t0 = time.time()

unpi
kled = loads_
Pi
kle(pi
kled)

t1 = time.time()

print "
Pi
kle.loads: type {} took {} se
onds".format(type(data), t1−t0)

ben
hmark json.dumps

t0 = time.time()

pi
kled = dumps_json(data)

t1 = time.time()

print "json.dumps: type {} took {} se
onds, size {} B".format(type(data), t1−t0, len(

→֒ pi
kled))

ben
hmark json.loads

t0 = time.time()

unpi
kled = loads_json(pi
kled)

t1 = time.time()

print "json.loads: type {} took {} se
onds".format(type(data), t1−t0)

return 0

if __name__ == '__main__':

main()

105

	Introduction
	Theoretical background
	Stepper motor
	Controlling stepper motors
	Open-loop control system
	Closed-loop control system

	Encoders
	Optical encoders
	Magnetic encoders
	Incremental and absolute encoders
	Absolute encoders
	Incremental encoders

	LinuxCNC
	Hardware abstraction layer
	PID controller
	Proportional term
	Integral term
	Derivative term

	Hostmot2 driver
	User interfaces
	PyVCP
	GladeVCP
	Python Interface
	Python HAL component

	Python
	Global interpreter lock
	Threading module
	Multiprocessing module
	Multiprocessing pipes
	Multiprocessing queues

	PyQt
	Qt Creator
	Qt Designer
	User Interface Compiler

	PyQwt
	Matplotlib
	PyGnuplot

	Initial state
	Straightforward adaptation to various experimental devices
	Sensor support
	Displacement-driven experiments
	Obtaining and logging data
	Real-time plotting and static plotting
	Overview

	Developed software
	Introduction
	Performance gain
	Control software core
	Stat Poller
	Data Logger
	Data Keeper
	Command Executor
	I/O Manager

	User Interface
	Plotting performance benchmark

	Custom Python script execution
	Unix domain socket
	Serialising modules
	Pickle and cPickle modules
	JSON module
	List serialisation benchmark
	Dictionary serialisation benchmark
	Recapitulation

	Enhanced Functionality
	Introduction
	Sensor support
	Axes position bar
	Encoder support
	G92 offset
	Positioning error
	Homed status

	Plot plugin
	Force control
	Common controls
	Constant force command tab
	Linear force command tab
	Sine wave force command tab
	Square wave force command tab
	Triangle wave force command tab
	Sawtooth wave force command tab

	Temperature control
	Rapo library

	Case Studies
	Compression of a spongious sample in simulated physiological conditions
	Fracture analysis of sandstone

	Work in Progress
	Remote control
	TCP socket
	Server Manager
	Client Manager
	Remote user interface
	Remote script execution

	Conclusion
	Appendices
	Prime fatorisation script
	Communication schemes description
	Plot comparison script
	Serialising modules comparison script

