CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF TRANSPORTATION SCIENCES

ANALYSIS of ITS ARCHITECTURES

Using eCall Example

Diploma Thesis

Mert Aksac
May 2019

CZECH TECHNICAL UNIVERSITY IN PRAGUE CTU

Faculty of Transportation Sciences
Dean’s office

CZECH TECHNICAL

Konviktska 20, 110 00 Prague 1, Czech Republic UNIVERSITY

IN PRAGUE

L T Department of Transport Telematics

MASTER'S THESIS ASSIGNMENT
(PROJECT, WORK OF ART)

Student’s name and surname (including degrees):
Bsc. Mert Aksac

Code of study programme code and study field of the student:
N 3710 — IS — Intelligent Transport Systems

Theme title (in Czech): Pouziti architektury ITS pri vyvoji systému

Theme title (in English): ITS Architecture Usage in a System Development

Guides for elaboration

During the elaboration of the master's thesis follow the outline below:
¢ Analysis of ITS projects lifecycle, management and architecture
e Analysis of legal and standardization framewark for ITS system deployment
¢ State of the art in ITS architectures, benefits, usage, theary
« Comparison of the analysed approaches, examples, best practices
o Use of 2 ITS architecture approaches with one real world ITS project, conclusions

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Graphical work range: standard

Accompanying report length: minimum of 55 pages

Bibliography: Jesty, P.; Bossom R. Using the FRAME Architecture for
planning integrated Intelligent Transport Systems, IEEE
Forum on Integrated and Sustainable Transportation
Systems, 2011

Perallos, A; et. all. Intelligent Transport Systems :
Technologies and Applications, 2015

Master's thesis supervisor: Ing.Petr Bures,Ph.D.

Date of master's thesis assignment: May 12, 2017
(date of the first assignment of this work, that has be minimum of 10 months before the deadline
of the theses submission based on the standard duration of the study)

Date of master's thesis submission: May 28, 2019
a) date of first anticipated submission of the thesis based on the standard study duration

and the recommended study time schedule
b) in case of postponing the submission of the thesis, next submission date results

from the recommended time schedule

=
78 e
.. ? A EYRTES
Ing. Zuzana Beélinova, Ph.D. doc. Ing. Pavel Hrube$, Ph.D.
head of the Department dean of the faculty
of Transpo] "Telematics
/-
I confirm assumption of master's thesis assignment. .
(P il

Bsc. Mert Aksag

Student’s name and signature

PR saxsnnvasnrssvmmsvevsenspussoss susmssnssicams s s srsamssasamns May 28, 2019

CZECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF TRANSPORTATION SCIENCES
DEPARTMENT OF TRANSPORT TELEMATICS

Diploma Thesis

ITS Architecture Usage in a System Deployment

Mert Aksac

Supervisor:
Petr Bures

28™ of May 2019

Declaration

| hereby declare that the presented thesis is my own work and that | have cited all sources of information in

accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis.

| acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No. 121/2000 Coll.,
the Copyright Act, as amended. In accordance with Article 46(6) of the Act, | hereby grant a nonexclusive
authorization (license) to utilize this thesis, including any and all computer programs incorporated therein or
attached thereto and all corresponding documentation (hereinafter collectively referred to as the “Work”), to
any and all persons that wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity. However, all persons that makes use of the above license shall be obliged to
grant a license at least in the same scope as defined above with respect to each and every work that is
created (wholly or in part) based on the Work, by modifying the Work, by combining the Work with another
work, by including the Work in a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way and scope that are comparable

to the way and scope in which the source code of the Work is made available.

Abstract

Since nearly all modern transportation applications maintain some sort of computerized solution, most of the
outputs of those systems are in form of digital information. To make it easier to build and sustain
transportation projects and to develop, gather and manage the data flowing between their separate parts,
several ITS Architecture Frameworks have been developed around the world. In this paper, an example ITS,
eCall will be analyzed in terms of ITS Architectures. Architectural Descriptions for eCall in FRAME and a
corresponding Service Package in Arc-IT will be created to contrast the products and methodologies of both

Architecture Frameworks. Additionally a way to develop FRAME will be proposed.

Keywords

Architecture, Architecture Description, Architecture Framework, System, System Engineering, Intelligent

Transportation System, ITS, FRAME, Arc-IT, eCall, E Call, Mayday Notification Service, Enterprise Architect

Abstrakt

VétsSina vystupl modernich dopravnich aplikaci ma formu digitalnich informaci. Aby bylo mozné snadnéji
budovat a udrzovat dopravni projekty a rozvijet, shromazdovat a spravovat data mezi jejich jednotlivymi
¢astmi, bylo na celém svété vyvinuto nékolik ramcovych ITS Architektur. V této praci je analyzovan systém
eCall v prostfedi 2 ramcovych ITS architektur. Popis systému eCall je vytvofen v evropské
architektufe FRAME a americké architektuife Arc-IT. Tyto popisy jsou vzajemné porovnany a navrzen postup

vyvoje evropské erchitektury za pouziti vizualniho nastroje Enterprise Architect.

Klicova slova

Architektura, Popis architektury, Architektonicky ramec, Systém, Systémové inzenyrstvi, Inteligentni

dopravni systém, ITS, FRAME, Arc-IT, eCall, E Call, Mayday Notification Service, Enterprise Architect

Contents

Chapter 1 - INTFOAUCTIONveiiiiee ettt e et e et re e e eare e e s aaeaeanes 55
Chapter 1.1 - What are architecture descriptions why do we need them?..........ccoovviviiiiiiiiinnnnnns 1
Chapter 1.2 - The European ITS Framework ArChiteCturevvuiiiiiiiiiiiiiinincncre e 5
Chapter 1.3 - Architecture Reference for Cooperative and Intelligent Transportation 12

Chapter 2 - MethOUOIOGYcueiiiieiii et 20

Chapter 3 — The Practical ANAIYSIScoviiiiiie e 55
Chapter 3.1 - The Call EXAMIPIE ... ceuie et e e e e e e e e e eneennes 21
Chapter 3.2 - Creating an Architecture Description of The eCall Example in FRAME................... 23
Chapter 3.3 - Creating an Architecture Description of The Mayday
NOLIfICAtioN SEIVICES IN AFC-IT .oeieie e e e e e e e e e e e eeeeneeneennes 39

Chapter 4 - A New Tool for Modelling the ArchiteCturescccooeiieiiiie e 55
Chapter 4.1 - Introducing Enterprise ArChiteCtcoiiiiiiiii i 55
Chapter 4.2 - Describing eCall on Enterprise ArchiteCtcoviiuiiiiiiiiii e 56
Chapter 4.3 - Proposal: Modelling FRAME on Enterprise Architectccocoeiviiiiiiiiiinnenenn, 61
Chapter 4.4 - Creating an Architecture Description of The Mayday Notification Services
IN ENLEIPIISE ANCNILECT . . e i e e e e et e et e e e e e e a e e eaeens 72

Chapter 5 - CONCIUSION ..ottt et et e e e nneeenneeaneas 75

R B BB C S ..o e 77

Chapter 1 - Introduction

Chapter 1.1 - What are architecture definitions and why do we need
them?

Any kind of human endeavour requires cooperation between a number of individuals and requires
them to make use of various tools. Today one hardly imagines any accomplishment in any major
domain of human activity such as building, manufacturing, governing, even in education and
entertainment, where it doesn't require many people to work together in small or large groups and
to utilize certain instruments, machines or appliances that most probably require some sort of
specialized knowledge to be operated well, and in a cooperative manner. There were major
projects throughout history that one immediately sees a great need of orchestration. Construction
of Roman Roads, Aqueducts and The Great Pyramids all required great management and
organization. Similar effort continued throughout human history, mostly with construction projects,
military organization etc. As man continued to advance in science, to develop knowledge in fields
such as biology, physics and social science the need for organized complexity grew bigger in
means of survival, making understanding of environment, coping with and surviving in it. We
developed the need for “continuity and unity in a reality fragmented and desegregated into
disciplines, languages, approaches and conceptions.” (Checkland 1981)

Average citizens of the 21st century spend their entire lives surrounded by establishments that
employ a vast array of methods and mechanisms, internal and external systems while fulfilling
their activities and operations in all aspects of daily life, such as finance, production and
procurement, supply chain and logistics, research and development and communications etc.
These systems often coexist and cooperate, most of the time in seemingly distant parts of the
same organization or even in different organizations and on an international level. An average
person is surrounded by a massive network of systems at their service or which they serve to, to
make their livings. Systems today bring together unprecedented opportunities and solutions that
depend on skills and knowledge from many different fields, on the other hand since everything is
getting smart and connected to each other, they are getting more and more complex and
challenging to build and utilize.

The level of complexity is rather high in the field of Intelligent Transportation Systems where
“advanced sensor, computer, electronics, and communication technologies and management
strategies are being applied in an integrated manner to improve the safety and efficiency of the
surface transportation system”®.

The domain of solving system problems is system engineering. System architecting is one of the
tools and methods offered in system engineering. A systems architecture is a conception and a
formal description of that system?. System Architecting is defining a system and its fundamental
concepts and properties, as a whole, in its environment and throughout its lifecycle. It is an effort to
document and communicate what the system(s) will be consisted of, how the system(s) will
behave, how they will be constructed and maintained and finally how they will be retired at the end
of their use. System Architecting is a response to the conceptual and practical difficulties of the

description and the design of complex systems®!,

The simplest way to describe a system is by using language — English —. The other ways include
graphics, charts and diagrams.

Systems are described through models. Today’s modern architectures allow to model systems in
their entirety, from their simplest element to the highest level, the interaction between their
elements and the relationship with their environment. Architectures for systems can be modelled in
many levels and in many different views so that all of its features are defined and all concerns
related to them are covered. It is possible to visualize all system technologies and also all other
aspects rather than solely the technology, even the roles and responsibilities of the people and
institutions gathered around the technologies, goals and objectives and procedures and protocols
may be included in the models in various ways. The state of the art products enables to investigate
the architectures in very high level allowing to view the models of the systems reacting with their
environment, and very low level, displaying how data flow from one process to another, in a single
tool.

The international standard ISO-IEC-IEEE 42010 proclaims that the work products of system and
software architecting are architecture descriptions, which are products expressing a systems
architecture, be it through plain language or complicated models that consist of many layers.

There is no single definition for what should be included in a system’s architecture description. The
architecture of a system constitutes what is essential for and the fundamental properties of the
system of interest and the definition for what is essential or fundamental varies from system to
system. An architecture for a system may contain any or all of the following: elements of the
system, how these elements are arranged and integrated, principles of their design and
organization and how the system should evolve throughout its life cycle. A single system may have
more than one architectures, for when the system is in different environments or for different
phases of the system’s life cycle. A single architecture may have been expressed through several
distinct architecture descriptions.

Stakeholders are defined as the parties who have interest with the particular system(s).
Stakeholders plan and invest in the system(s) to satisfy certain needs and to benefit from them in
one way or another. A system may have various purposes for different stakeholders. The
stakeholders’ interests in the system(s) are expressed as Stakeholder Concerns. The concerns
may manifest the stakeholders’ needs, goals, expectations, responsibilities, requirements, design
constraints, assumptions, dependencies, quality attributes, architecture decisions, risks or other
issues pertaining to the system. A system’s architecture addresses these concerns.

An architecture view is the description of the system addressing concerns particular to some group
of stakeholders or describing some certain aspect, property or perspective of the system. An
architecture is best understood through multiple views. An architecture description includes and
identifies one or more architecture views.

An architecture view expresses the architecture of the system in accordance with an architecture
viewpoint. Architecture viewpoints govern the views and establish conventions for constructing,
implementing and analyzing the view to address concerns framed by that viewpoint. The
conventions that Architectures Viewpoint include languages, notations, model kinds, design rules,
and/or modelling methods, analysis techniques and other operations on views.

Each Architecture View brings together one or more architecture models. Architecture models
describe some or all parts of the systems(s) of interest following certain Model Kinds. A Model
Kind set conventions and rules to model systems and how the models should be interpreted.
Model Kind could be one of the following: language, design languages, mathematical and
statistical models, use case modelling, data flow diagrams, class diagrams, interactive
demonstrations, state models etc.

The ideas presented above will be conceptualized below (see Figure 1).

axhibits

System-of-
Svievass r 3 Architecture

1 o identifies 1
A has interests in A axpresses
g i 1
identifies 1 Architecture
Stakeholder T Description
5 Architecture
1. O Rationale
has 4 identifies
Y
0.*
1.
Correspondence
Rule Correspondence
Concern
1.
frames &
: [1.
governs
Architecture Architecture
Viewpoint i 1 View
[y 1"
q j
Model Architecture
Kind Model
governs b

Figure 1 - The conceptual model of an architecture description (source: [2])

“Conceptualization of a system’s architecture, as expressed in an architecture description, assists
the understanding of the system’s essence and key properties pertaining to its behaviour,
composition and evolution, which in turn affect concerns such as the feasibility, utility and
maintainability of the system.” (ISO-IEC-IEEE 42010)

Architecture descriptions are used by the parties that create, utilize and manage modern systems
to improve communication and cooperation, enabling them to work in an integrated, coherent
fashion. They provide a strategic framework for design choices, development plans and
investment decisions. There are many benefits of using architecture descriptions to communicate

about systems. They empower all participants to understand the same system. The work can be
broken down into smaller pieces that may be started being built simultaneously instead of
suspending execution waiting for completion of parts as it would be in a “piecemeal” development.
The architecture descriptions provide stakeholders with strong documentation. Project owners
would possess clearly described, optimized requirements for the required service that they can
directly include to their tenders. Having solid stated requirements would provide a “basis for a
common understanding of the purpose and functions of the systems, thus avoiding conflicting
assumptions™ while tendering, contracting or implementing projects. The main advantage of
architecture descriptions is that they allow the system(s) to be tested and evaluated way earlier
than when they will be actually built. This makes it possible to ensure the system can be planned
in a logical manner, integrates well with other systems, meets the desired performance levels and
has the desired behaviour as well as to decrease any cost that would be implied to correct errors
or make changes in the systems. Spotting and correcting errors on a plan would be tens or
hundreds even thousand times less costly than trying to correct them after the systems are built
and deployed.

The architecture descriptions are aimed to be technology free, not suggesting any particular
product or technology but rather specifying the required function to be satisfied. They define “what”
must be done, not “how” it will be done. This approach allows the architecture to remain effective
over time. The functions the system performs remain the same while technology evolves. This
approach also serves to create a fair business environment by guaranteeing open market i.e. not
forcing practitioners to use a specific equipment, brand or product in their projects.

Another advantage of defining system architectures before building them is to identify common
elements, standards and processes throughout the system. This allows system builders to
eliminate excessive investment in redundant parts of their systems and cluster similar functions to
be performed by the same part or equipment.

Creating architectures for specific domains was proven to be successful given their ability to allow
reuse strategies®.

“An Architecture Framework establishes a common practice for creating, interpreting, analyzing
and using architecture descriptions within a particular domain of application or stakeholder
community.” (ISO-IEC-IEEE 42010)

There are architecture frameworks created in field of ITS. The purpose of this paper is to analyze
and compare two of those architecture frameworks, the American Arc-IT and European FRAME,
products developed through decades on both sides of Atlantic to support today’s connected and
cooperative ITS.

Chapter 1.2 - The European ITS Framework Architecture (FRAME)

Increasing safety and efficiency of transport and traffic was long regarded as a common interest by
the EU member countries even before the union was officially established. Significant efforts were
made in funding the research and development in the area. European Commission’s Third
Framework Program for Research and Technological Development between 1990-1994 was
concluded with emphasis “To contribute to the development of integrated trans-European services
in the field of transport, using advanced IT and communications to improve the performance
(safety and efficiency) of passenger and goods transport services, and at the same time reduce
the impact of transport on the environment™®. A Road Transport Telematics High Level Group was
established by the EC in the Fourth FP' to assist in the development of a long term strategy and
an action plan for deployment of road transport telematics. It was this group’s decision that a
framework ITS architecture to be created to provide a methodical basis for ITS implementations
throughout Europe, and the extensive work to create one was initiated when the European Council
of Ministers approved this decision. Following the outcomes of these works EC funded the
“Keystone Architecture Required For European Networks - KAREN” project, to create the
European ITS Framework Architecture - “FRAME” which was first published in October 2000. The
underlying aim of this initiative was to promote the deployment of (mainly road-based) ITS in
Europe by producing a framework which would provide a systematic basis for planning ITS
implementations, facilitate their integration when multiple systems were to be deployed and ensure
interoperability, including across European borders'®.

The European ITS Framework Architecture was created to support ITS deployment in all member
countries of the European Union and also ITS deployment in other parts the world, if ever the
project owners would like to benefit from such an architecture. To conform to the precepts of
subsidiarity that was imposed by the general principles of European Union law and considering
that the lifespan of transportation projects usually exceed the lifespan of technologies to be used™,
the Frame Architecture and all of its components were built in a technology independent manner
stating what is done by the systems to be deployed but not stating what mechanisms should be
employed by the systems in order to do so. Keeping in mind that various countries are sometimes
regulated by separate laws and operating in non-identical markets, it was aimed not to mandate
any specifications regarding the products or systems that are to be developed or deployed; or any
operational or organizational structure to its user. Instead FRAME was designed to be a
“framework architecture”, focusing on capturing features that its user would require from ITS and
guiding its user to derive definitions of the functions that the systems will have to perform to fulfil
these requirements. By making the standardized definitions of these requirements and the
corresponding functions available to its user, the FRAME Architecture is produced to help its user
as a tool to “convert” Stakeholder Concerns as it is defined in ISO-IEC-IEEE 42010, to descriptions
of the functionality of the systems to be deployed to constitute a “Functional” view. These
descriptions can be used in detailed design of the systems and their components or to produce
specifications that would be included in the Calls for Tenders for development or procurement of
the systems and their components.

There are two products of Frame Architecture, a list of User Needs which describes what is
wanted from the ITS and a Functional Viewpoint of the systems that satisfy those needs, a
comprehensive list of all functions that needs to be executed by the systems which would be
developed or deployed to satisfy the User Needs.

To provide a systematic starting point to any ITS implementation, the KAREN Group listed all
possible features that may ever be required from ITS after analyzing all existing ITS, through the
outcomes of preceding EC projects, other national ITS architectures and from the knowledge
derived out of the experience of the group members. The list of features then was narrowed down
to define User Needs, a set of formalized statements written in English language that describe
what features required from ITS. Below is an example of a User Need,;

6.2.0.7. The system shall be able to know where it is in the transport network, and hence
provide the position of the vehicle or person carrying it.

The User Needs are created to be as short and abstract as reasonably possible, clear in their
meaning, consistent with each other and characterized by testable properties so that it would be
possible to consider them as the smallest possible unit to describe a system, its functions, physical
or organizational structure. They are coined to describe one feature per statement. User Needs
are written from the systems’ point of view, and not from the users’, in order to enable the
architecture to be built on a common ground that is shared by all of its users regardless of their
purpose of using it. The User Needs are entry points to the FRAME Architecture since they are
providing specifications for what functions will be performed by the ITS.

Having all the features that would be required by the stakeholders defined with the User Needs,
KAREN Group then listed all functions that must be performed by ITS in order to fulfil those
requirements and created a Functional Viewpoint describing the conceptual structure of the logical
behaviour of the systems and defines what functionality should be provided by the systems that
would fulfil the User Needs. Since most of the functions related to ITS require data collected by
other parts of the ITS for their functionality and send out their data to be processed by other parts
at the end of their processes, a series of Data Flow Diagrams structured in hierarchical levels was
decided to be the best model to be used by the Functional Viewpoint to describe the Functional
View'?. Data Flow Modelling is a typical “Model Kind” when it is necessary to show how the
information flows through a sequence of processing steps in data intensive business processes!™*.

The highest level description of the Functional View of FRAME is the Context Diagram (see Figure
3) which depicts the ITS as a single item and shows its relation with the entities outside of the
system boundaries that interacts with ITS through designed interfaces. These entities provide
information to ITS to be processed or make use of the data produced by ITS. Since the sources of
the input data or users of the output data of the systems would be located where the diagrams
finish or terminate in a DFD representation of the, they are known as Terminators (see Figure 2).

| System Boundary |

Source of The System User of
input data Y output data

Figure 2 — Basic Context Diagram

Figure 2 - Conceptual Representation of Terminators (source: [12])

A Terminator can be humans (actors), other systems or various other entities from which data can
be obtained such as the atmosphere, or road surface. A Terminator may refer to a Parent
Terminator which contains a subset of terminators, each corresponding to variations of a specific
type of terminator such as Driver: Public Transport Driver, Emergency Vehicle Driver, Private
Driver or corresponding to different roles related to that type of terminator, Consignor/Consignee:
Freight Shipper, Principal.

The interaction between the elements of the Functional Viewpoint is described with Data Flows.
Each Data Flow is defined between a source and a destination Terminator and carries a specific
set of data. Throughout the Functional Viewpoint, the Data Flows are also represented in a
hierarchical structure. Parent Data Flows represents the communication between two elements in
high level, where the Data Flows they contain are used by different Low Level Functions in the
same Functional Area or High Level Function. In this level the communication between
Terminators and the system is depicted only in the broadest terms, such as: “to Driver” or “from
Driver”. Actually many different Low Level Functions interact with the Driver Terminator. In lower
level representations of the Functional Viewpoint these data flows will be further detailed and Data
Flow between Driver Terminator and each Low Level Function will be defined.

= =
v romimert i 1 Ta .
[N i il A
Bridge, Tunnel || Erreronmant "'xzvﬂ z/
Infrastirichse —— i il i . T Ve b
e T EviigaiTurwsl | Gl | A ToDrwer — ;
S [f_}:"‘k ||-' [- __;-"'-'
=, Fe ol | From ;. -
Woather From BridgeTunrel lI| Enwironment [corsigae
Systems [7— bhairatee) | Consgpen s Tornnad | Fnancial
T To'Westher Y 1 II ! / # Prom Crtesr Daaringhouss Cearinghouse
e Syt N, " | ! i ey !
" =, ™, \ ! F o4 = o
Fomwaatee ™ N\ iy ARt
— " b L / =
L — Sushems . LY ', \ b lIl' S /-'-:":.\ Firriisl To Esbemal Extermal Servics
s I T IR L, 7 ewighosa | ServenProeds] Provider
From Traffic 3 WO\ W [~ = 3 i,
T Travser_ e L T
] e S N e
] T m— — ~="" Fiisn Exteera
= Prom Trassbar . . Sarvie Frondder P -
To Tramport — 5 e TeVeh —— 3
. Bl F——] L N |
ot P A
L e I L T — system Kt Froem Vel
Planner Hanrer il il = .
— T —=—— From Lecation
ToEmerganey = Dk Sren | LieCatinn Dat a
— Systems] [P Source
Emergency f5 FrorEmergancy P Proem L
Systoms B cpstens ¥ - Endir cemuei
T oA] -lI RS W . B Banai el —
- ” #) L e, -
SETH | > . p | L L ., = Enforcirmint
Fevement &] I| "-. % A Frosn Fulk kil
To Markenane - ! Y *, \, ", Moddl Sty it
! ! ! | | \ ; -
X ry I ' , ., —
T mrne ,/ P,] | i \ 1Y A W —
Maintenance: |, FomNsninace f JEEE N ToRudiodd it madal
Drgandsation Organisation f ! | L1 Sysharm Siystem
. J o Foom ke I|I From Freight ™ “,
=i qe'-l "'L‘“ﬁ" yshem 4 [—) ", From Opershor
T] W
Roadsde Roadside T Ok To Presght .
Equpmsnt Exipmert Relatesd 5 ystem ."'f Exuipi \ g e
. \ | \ "
\ ! \
Diher Related Fraight :
System Equipment
[

Figure 3 - FRAME Context Diagram (source: [3])

The highest level of functionality inside the system boundaries is shown with the Functional Area
Diagram (DFDO0) (see Figure 4). This diagram represents the entire scope of FRAME defined in 9
Functional Areas which provide the set of functionality specific to their areas of ITS. The diagram
shows the interaction of all elements defined in FRAME with Data Flows either connecting two

Functional Areas or only entering to and leaving from one Functional Area, representing both the
information exchange between Functional Areas and the and interaction of the functions within
those Functional Areas with the Terminators outside the systems’ boundaries. This way of
representing the interaction of the Terminators with the elements within the system boundaries is
carried also to all lower level representations of the Functional Viewpoint since the Terminators are
not represented in any of the diagrams inside the system boundaries.

Pt o

.‘ By -~

| S

§E5 %

gy

Figure 4 - The high level data flow diagram DFDO (source: [3])

Each Functional Area contains the set of High Level Functions in their area of operations, and
some of them may contain one or more Data Stores. Data Stores are elements of Functional
Viewpoint that are used to store data that is used by two or more functions. Data Flow Diagrams
are numbered according to the Functional Areas that they represent. DFD 7 below (see Figure 5)
represents the Functional Area 7 - Provide Support for Law Enforcement. The interaction of High
Level Functions between each other and Data Stores are shown with Data Flows connecting the
elements. Interaction between High Level Functions and Terminators are also depicted, with Data
Flows only going in to or out from the High Level Functions since Terminators is not represented
inside system boundaries.

to-pie_record — > td-pale_record_request
Tv-paie_inpuls 3-d i pale pshes_vehicle D_request
et pade_inder-urban_endorcement_guidelnes PF —I
mi ple_irerurban_snioncemend_gudelines 00— ?F1.5D:1T ™y
"
e —
i pesles_sriboronmend_gudelines — iglabion T pate_ e mage
peale_rubes_read —3s
;’K_p E pabe_vehicle_ID_CC 4—\
Prile_user _Claarance y
read .\\
—— e
= —
L pale_user_data_read =i 7.2 iderity
R r iy it
eg;:a pele_uter_dals_request <—m——
— ﬁ?’
pale_wiolabor dabs_ K
for _imisge_anabhysis
pesle_umer_ pae_umer_ A
daba_load clemance_ |'
[+ load
Ton-pake_rues |I
Foubss and
fen-ple_user _cleararcs Lisers' -
flea-pele_user_regisration Regpstraton: /
Gl
pobe_rues_lond —" /
et _chacesifeafion _of_fraud_or_vicktion —J [frsie_viclation_fype_from_image_snahysis <f
il pe e _yiosdon_ndfcation — klpste_viclator_ID_from_viclalor_determination
pepid paie_fraud _nal foadon_Day' —z kst _viokation_type_from _vickabor _dedermirestio f < f——— _/I

i st _violalhon_notificetions. ——i

k- — poae_waolador D <

7.3 Process
Frausd mnad
Viekaion

Mot fic atiors

pepl pale_fraud_ndification_DPYv —§o
poce pale_bus_lane_vioklion —
patves pale_serace_nobifcabon —3i
pale_viclalion_seriousness —i)
= pai_violetion_higdory —I

i paie_violaion_1ype_Trom_complance_checl s

o prhe i _sndorcament_spupenant _inid
T poele mito_vickstion_rotification
—F> palemt_viobior D

> tha-pitie_prosecution_fike

Pt pule_prosecution_fike

Pl _violaton_nobfcaton_
o _shorags

— 3
tea-pele_viollon _ndification

les-paie_viclation_peosecution_fik

peste_load_viglabions_store <E
= pale_resd_viciabons_sfore —

len-pais wiolsbion_dals_request —if

Figure 5 - DFD7 representing Functional Area 7 Provide Support for Law Enforcement (source:
FRAME Browsing Tool)

Each High Level Function contains a set of Low Level Functions which perform the functionality
and the Data Stores related to those lower level functions (see Figure 6). These Low Level
Functions are the ultimate destinations or sources of the Data Flows pictured in the higher levels
and they provide the FRAME its functionality. Each Low Level Functions specifies the facilities that
the system(s) need to be able to provide to and describes Functional Requirements to define what
the system(s) are supposed to accomplish. Low Level Functions come together to deliver High
Level Functions similar to the way that High Level Functions come together to deliver Functional
Areas of ITS. Each High Level Function is described individually by data flow diagrams that are
named and numbered with the High Level Function they represent. The interaction between the
Low Level Functions and other elements is depicted in the similar manner that the higher level
data flow diagram is organized, where the same level elements are connected via Data Flows and
the connection to elements in higher levels are described with Data Flows that has one end free. In
some cases throughout the Functional Viewpoint functions are organized in even lower levels

9

where some functions interact with low Level Functions of the High Level Function but contains
even lower level functions themselves. The hierarchical organization is maintained in such cases,
the Data Flow Diagrams represent only one level at a time and the interaction with elements of
higher levels represented with one ended Data Flows.

to-pele_record —3 ——3> td-psle_record_reques
fvpske_vehicle_imags —i

fv-pele_characteristics y %> pdepshyvs_vehicle_ID_reguest

7.1.3 Get Vehide
pshvs pske_vehicle D —3y Informatin

mit psle_rban_snforcement Quiceings —

mi paie_nler-urban_enforcemant _gudslines PF —7

prste_rules_
load
7.2Users
T pele_clazsification_of_ Registralion
7.1 Rules Data £ fraud_or_violation Diata

ple_measure

U |

\—ppsb_ru-u_rcm —i 5 kf— psle_user_clearance read

mt psle_inter-urban_enforcement_guideines _CC — 5
mt psie_urban_enforcemert_complance_guideines ——F4 o4 5 mpae
peie_vehicle_D_CC ——3 Compance

mifo psle_cargo_characteristics ——J

—p> pthe_user_image
—> psle_viclation_type_from_compbance_check

—=> pele viclator D
mito psle_freight _vehicle_characteristics —3x

Figure 6 - High Level Function 7.1 Detect Fraud or Violation (source: FRAME Browsing Tool)

Systems described in the Functional Viewpoint of FRAME represent the systems that would fulfil
all User Needs defined in the architecture. Each User Need is referenced to one or more Low
Level Function that they require and thus the Functional Viewpoint is mapped to the User Needs.
Low Level Functions in the FRAME Functional Viewpoint are defined by a description of facilities
that the system(s) need to be able to provide, their Functional Requirements, the User Needs that
they were referenced to and the Data Flows that uses them as the source or the destination that
define the interaction of each Low Level Function with other elements of the Functional Viewpoint.

The FRAME continued to be developed over the years with further projects initiated to keep the
architecture up to date, promote its use and support its users. The latest version extends the
FRAME content to include results from various other EC funded projects on cooperative systems
such as CVIS (Co-operative Vehicle Infrastructure Systems), COOPER (Co-operative Networks for
Intelligent Road Safety) and SAFESPOT (Cooperative systems for road safety "Smart Vehicles on
Smart Roads”).

Covering each aspect of modern ITS, FRAME grew to be large in its size in years and it was found
that it is a complex and exhausting task to go through and finally make use of the architecture.
With the FRAME-S project (2001-2004) two computer-based tools were offered to assist
architecture users. The Browsing Tool was created in form of HTML pages to be viewed using

10

Microsoft Internet Explorer and contains graphical representation of the Functional Viewpoint and
the description of all of its Low Level Functions, Data Flows, Data Stores and Terminators along
with the User Needs that the functions were referenced. The Browsing Tool provides an interactive
interface through which the architecture could be navigated, enabling its user to move through its
parts and follow through the relationships between its elements in various hierarchical levels and
obtain the descriptions of each and every element within it.

A second tool, Selection Tool was created to support its user to select a consistent subset of the
architecture and complete creating the Functional Viewpoint description of their system. Although it
is not included in the boundaries of FRAME, The Selection Tool also supports the creation of
subsystems and modules so that functions can be allocated according their physical locations and
the system in subject can be defined by its Physical Viewpoint and the Organizational Viewpoint
describing the roles and responsibilities of the stakeholders.

Using the FRAME architecture to create an architecture description is a process of creating
subsets of the architecture by making selections out of it. Its ultimate product is a Functional
Viewpoint, which displays all the Low Level Functions that were selected by its user.

First, the architecture user should capture the stakeholder aspirations. The “concerns” defined in
ISO-IEC-IEEE 42010 is referred to as “stakeholder aspirations” in FRAME. Stakeholder aspirations
are statements that answer the question “What does the people accumulated around the system,
people who would own, use, operate, manufacture and supervise its use, expect the system to
fulfil”. To find this out, the parties who decided to have the ITS should come together, debate and
decide upon a comprehensive list of features and functionalities of the system that they desire.

The architecture user then should translate the Stakeholder Aspirations to User Needs by
selecting the set of User Needs that would best describe the Stakeholder Aspirations. Since the
User Needs are referenced to one or more function that compose the Functional Viewpoint, by
mapping the stakeholder aspirations to the User Needs of the system in subject, the user of the
Frame Architecture will be creating the Functional Viewpoint of primary functionalities of their
desired system. User may continue developing their systems by adding functionalities beyond the
primary functions offered with the selected User Needs.

The Functional Viewpoint created with FRAME may be used in further developing the systems, as
a basis for creating Physical and Communication Viewpoints, designing and developing its
components and parts, or comparing several alternative projects by cost and risk analysis and
prepare yearly economic plans.

11

Chapter 1.3 - Architecture Reference for Cooperative and Intelligent
Transportation (Arc-IT)

Architecture Reference for Cooperative and Intelligent Transportation (Arc-IT) provides a common
framework for developing architectures for ITS. It was the first framework architecture developed in
the field of ITS. It has been developed by United States Department of Transportation (US DOT) to
support and manage transportation projects in 1996M as a response to opportunities emerged due
to advancements in the information processing and communication technologies. It was titled US
National ITS Architecture when it was first published. US congress passed the Transportation
Equity Act for the 21 Century (TEA 21) in 1997 which requires to develop, implement and
maintain a national architecture to promote the widespread use and evaluation of intelligent
transportation system technology as a component of the surface transportation systems of the
United States. In January 2001 Federal Highway Administration published the Final Rule on
Architecture and Standards Conformity!*®! mandating that all ITS projects funded from the Highway
Trust Fund be in conformance with the National ITS Architecture!®. By mandating a reference
architecture US DOT aims a country wide integrated ITS.

National ITS Architecture was created to guide ITS planning and investment at both state and local
level. By identifying interconnections and interdependencies between systems and its
stakeholders, the common standards applicable for the systems the National Architecture aims to
develop a blueprint for integration of the systems. The National ITS architecture was updated
many times over the years to reflect the changes in technology and to make the architecture
compatible with current advancements in ITS. The latest revision is a result of merging with
Connected Vehicle Reference Implementation Architecture content to enable the architecture to
include services supported by Connected Vehicle capabilities and to expand the stakeholder
concerns addressed by the architecture. This since merger resulted with major changes in the
content and the architecture structure, it was decided to change its name to Arc-IT as it is known
today.

Following ISO/IEC/IEEE 42010, the architecture description of Arc-IT was organized into views
each describe the system(s) from different perspectives. There were four views identified for Arc-
IT, Enterprise, Functional, Physical, and Communication. Offering its user architecture descriptions
of various views, Arc-IT serves beyond defining the functionality of the systems but portraits the full
environment where the stakeholder concerns are satisfied.

Arc-IT was divided into Service Packages that describe architecture for a portion of ITS. With each
Service Package a single service is described. The Service Packages includes definitions of all
four views to describe the service that ITS provide, the concerns that are considered and how they
are satisfied. In Arc-IT a wide array of ITS is described by a set of total 139 Service Packages that
are distributed into 12 main service areas (see Figure 7). The Service Packages are entry points to
Arc-IT. Architecture user is expected to select the set of Service Packages that would best
describe the system(s) that would fulfil their needs. This paper will be differentiating two major
architectures, the National ITS Architecture is the entirety of all Service Packages and the
Regional Architecture is the architecture that the architecture user creates for their projects by
making their selections out of the National ITS Architecture.

12

PS01 Emergency Call-Taking and Dispatch

PS02 Routing Support for Emergency. Responders

PS03 Emergency Vehicle Preemption

PS04 IMayday_Notification

Ps05 Vehicle Emergency Response

Ps08 Incident Scene Pre-Arrival Staging Guidance for Emergency Responders

Ps07 Incident Scene Safety Monitoring

Public Safety
PS0N& Roadwav Service Patrols

Figure 7 - The Public Safety Service Area and some of its Service Packages (source: Arc-IT website)

Physical View elements that make up the architecture are depicted as Physical Objects and the
interrelation of elements are visualized with Information Flows that connects each other. There are
two types of Physical Objects: Subsystems and Terminators. Subsystems are parts of ITS which
perform transportation related tasks and thus provide the ITS its functionality. They are assigned
with Functional Objects, components of Physical View that clusters similar or complementary
functions together. The Functional Objects are mapped to functional requirements to describe
what is done by the Physical Objects. Terminators were not defined with any functionality nor were
assigned with any Functional Objects since they represent the agents outside of the system
boundary. They are either “sources” that provide the necessary information to or “sinks” that
consume the information produced by the systems. Typically they are human operators or other
systems but sometimes the ITS itself can be a Terminator for some Service Packages (E.g. Other
Emergency Management Centres). Both types Subsystems and Terminators exchange information
in order to provide ITS services thus are connected with other elements with Information Flows.
The Physical Viewpoint in Arc-IT is defined in 5 classes and was color coded throughout the
architecture to make it easier to analyze the diagrams.

* Centres, such as a Traffic Management Centre are in color cyan

* Field Equipments, such as a Traffic Signal Controller are in color orange

* Vehicles, including specialized vehicles such as Transit Vehicles are in color blue

* Traveller Devices, such as personal devices (smartphones) are in color yellow

» Support Systems; this class includes systems that provide non- operational use of ITS data (e.qg.
Archive Data Systems), and support to a variety of services (e.g. Map Update System). They are
coded in color khaki green in the physical view.

Below is the highest representation of Arc-IT Physical View. All 40 subsystems defined in all 5
classes of ITS and the general communication links used to exchange information between these
subsystems are depicted. It excludes anything outside the system boundaries, so the interaction
with terminators and the environment of the system is not pictured. When it is observed at this
level, the communication between subsystems is depicted in the broadest terms. Centres and
Support Systems are using Wide Area Wireless Networks or Broadcasting when communicating
with Vehicles and Traveller Devices whereas Field Equipment communicates with them using
Short Range Wireless Communication. The Centres and Support Systems link to Field Equipment
via centre to field communication channels. Centres and Support Systems employ centre to centre
communication channels to communicate with each other. Field equipment interconnection is
provided via field to field communication channels. Finally the vehicles establish communication
through Short Range Wireless between themselves and the Traveller Devices. The type of
communication channels required between different classes of Physical Objects lay the
foundations of the Communication View. A similar diagram will be offered to architecture user as a
product when they finish creating the Regional Architecture showing the Subsystems selected for
the architecture and the interaction between them.

13

Center to Center

Support Systems Traveler Devices
Wide Area Wireless +
Wide Area Broadcast
Archived Data hapariordlid Data Distribution Personal Information
| System Management System SR Lo
Fr—— Short Range
ject Registration)
Pi Protecti Wireless Traveler 5 t
Map Update System || and Discovery ok L2 L ——————— Travelersuppor
Gateway Equipment
\ System
Service Monitor mwf;:n’:::n
Systy Center 1o Field " ——
‘ L Disseminator System Field Equipment
Border Inspection | | Commercial Vehicle Short Range
Center to Center System Check Equipment Wireless
Centers Connected Vehicle Electric Charging Vehicles
Roadside Equipment Station
Border Inspection
— — L Cnmme:;;l Vehicle
Center | Center to Field Fleid Support Intermodal Terminal
Equipment
Commercial Vehicle
Administration Emergency Eisions Emergency Vehicle
i Management Center |M|nagemm center 175 Roadway TS onchay OBE
Equipment Payment Equipment
Fleet and Freight Freight Distribution Maint and Constr Freieht Extloaimt
Management Center || and Logistics Center |Mana¢emmt Center Parking sy b gt Equip
Management
System Equipment
.
] Traffic Management | | Transit Management Maint and Constr
Administration Center Center Vehicle OBE
Center
. Field to Field
ransportation
T bl Transit Vehicle OBE

Wide Area Wireless +

Vehicle OBE
Wide Area Broadcast
| VB Subsystem Diagram
Cenfer to Center : Short Range
|3 | Physical View Mar 9, 2017 I NAT
| wireless

Figure 8 - The Arc-IT Subsystem Diagram (source: [13])

A Service Package Diagram that depicts the Physical View of the Mayday Notification Service
Package is given as an example below (see Figure 9). There are two main interfaces defined with
the Service Package, between the Emergency Management Centre and the Vehicle OBE and
Personal Information Device. The green and red arrows are representing the Information Flow
between these Subsystems. There are six more interfaces defined with the Service Package to
represent the interaction of the system with its terminators in addition to the main interfaces. The
black arrows are representing the Information Flow between the system and the Terminators.

Information Flows will be used to define the Triples which are the basic element of the
Communication View.

Emergency System
1 Operator

emergency

Driver

emergency driver input +

operations request for service
status

operations driver updates
input
= 9 {1A) emergency notification + P T - (1A) driver H'\}JI‘JI information +
mergency N emergency notification relay bt bostiehiclebins
Management Center

Basic Vehicle

1A) driver update information
e s > (14} B >

(2C) emergency data request

Vehicle Emergency | <4 (1Al emergency notificationgs,

Notification emergency notification relay | Other Vehicle OBEs

EA) emergency acknowledge

Personal Information

Device
Emergency Call-Taking || _ (2C) emergency notification

¢ traveler input

Traveler
-

= T — traveler interface updates >
Emergency 12/ meeEncyackich e S Personal Emergency
Notification Support Notification
(2€) incident report

Other Emergency
PS04: Mayday Notification
Management Centers

7 Physical Jan11, 2018 NAT

Figure 9 - The Mayday Notification Service Package Diagram (source: Arc-IT website)

14

Functional Objects are components of Physical View and intermediary to the Functional View in
Arc-IT. The Functional Objects, represented by the white boxes above, are allocated to Physical
Objects. Each Functional Object is created to respond a set of functional requirements which are
originated to satisfy sets of needs (see Figure 10). In each Service Package the needs are listed
and matched to the functional requirements and to the Functional Objects where the need is
satisfied (or the process that satisfies the requirement is performed). Requirements analysis was
done while setting up the architecture and requirements have already been associated with
Functional Objects, which is stated as the reason why ARC-IT users are encouraged to jump start
from the Physical View of the architecture. Functional requirements identify the processes and
information exchanges necessary to satisfy needs. The functional requirements are traced to the
needs defined for each Service Package. Since a Functional Object can be included in many
Service Packages, the functional requirements are developed to cover all needs across all of the
Service Packages of the architecture and only some portions of the requirements are matched with
a single Service Package.

Functional 5
Need Object Requirement
The center shall be able to determine that a crash or
01 | emergency situation has taken place, based on on-board
sensor data collected from the vehicle.
The center shall monitor subscribed vehicle data, including
02 changes in Ve\oc!ty, attitude/orientation, position, and air bag
status to determine when an emergency situation (crash) has
happened.
The center shall request additional emergency details from or
Emergency Management needs to be able to determine Emergency |10 |issue commands to the vehicle's security systems or vehicle
that a crash or emergency situation has taken place, A :
01 - Notification driver if needed.
based on on-board sensor data that detect changes in 3
y . Support
velocity, vehicle orientation, and airbag status. 11 The center shall maintain a log of all mayday signals received
from vehicles.
13 The center shall determine that a collision has occurred based
nn rhannes in vehirle zenenr data

Figure 10 - Needs defined for the Mayday Notification Service Package and the Functional
Requirements that satisfy them (source: Arc-IT website)

The functionality of the systems is further described as a set of processes which are called as P-
specs in the Functional View (see Figure 11). Functional requirements are met by the P-specs.
The processes in Arc-IT exchange information through data flows. Capabilities that are provided
by each P-spec were described in detail and all Data Flows associated with each of them are
listed. A process may be associated with more than one Functional Object in the Physical View.
Data Flows define the specifications and the scope of the information that needs to be exchanged
between processes. The Information Flows in the Physical View are defined by the Data Flows.
Data Flows are organized in a hierarchical order where some Data Flows between P-specs may
be parenting some sub Data Flows.

Physical Object Functional Object PSpec Number |PSpec Name
51.1.1 Coordinate Emergency Inputs
5.1.1.3 Collect Incident And Event Data
2.1.2 Determine Coordinated Response Plan
Emergency Call-Taking
5.1.3 Communicate Emergency Status
5.1.4 Manage Emergency Response
Emergency Management Center
582 Provide Operator Interface for Emergency Data
5.1.2 Determine Coordinated Response Plan
5] Communicate Emergency_Status
Emergency Notification Support
5.1.6 Process Mayday Messages
5.2 Provide QOperator Interface for Emergency Data
6.8.1.5 Provide Traveler Emergency Message Interface
Personal Information Device Personal Emergency. Notification |6.8.2.1 Build Traveler Personal Security Message

Figure 11 - The Functional View description of Mayday Notification Service Package (source: Arc-IT
website)

15

In the Enterprise View the stakeholders and their involvement to the system throughout the
systems life cycle is described. The building blocks of Arc-IT's Enterprise View are Enterprise
Objects, who are the organizations or the individuals which are identified as stakeholders of the
system. In the Enterprise View relationships between these Enterprise Objects and their roles in
building, operating and maintaining the system are described. The interaction between
stakeholders, the services shared among each other and the information exchange are defined
with the agreements in the architecture. The needs that serve as the rationale for the services
described by the Service Packages are elements of the Enterprise View. Each need is matched
with the functions that they require from the system while building the Service Packages and thus
the Enterprise View is mapped into Functional Viewpoint. Each Enterprise Object has a kind of a
relationship with the Physical Objects, which are defined as Roles in architecture, such as owns,
operates, maintains etc. and some Responsibilities for them (see Figure 12). The Enterprise
Viewpoint is mapped to the Physical Viewpoint via the Roles.

Source Destination Role/Relationship
Basic Vehicle Maintainer Basic Vehicle Maintains

Basic Vehicle Manager Basic Vehicle Manages

Basic Vehicle Manager Basic Vehicle Operator System Usage Agreement
Basic Vehicle Manager Driver System Usage Agreement
Basic Vehicle Operator Basic Vehicle Qperates

Basic Vehicle Owner Basic Vehicle owns

Figure 12 - Some of the Roles defined in Operations Stage of The Enterprise View of Mayday
Notification Service Package (source: Arc-IT website)

The Communication Viewpoint describes the interaction between the elements and the processes
and defines the standards and protocols necessary to provide interoperability between them. The
information exchange between the elements of Functional View is provided with Data Flows (see
Figure 13). The Information Flows in the Physical View carries the Data Flows. The Information
Flows in Arc-IT are called as Triples. Triples define the Physical Object which is the source of the
information, the Data Flow that is carried with the Information Flow and the destination Physical
Object. Each Triple is described as a pair of communications stacks that lists the protocols
employed in each layer of the communication. The primary element that make up the view are the
communications diagrams (see Figure 14) that depict these communication stacks identifying the
protocols regarding each layer of communication for each Information Flow.

Communications

Source Flow Destination Diagram(s)

Alerting_and Advisory System alerts and advisories Commercial Vehicle Administration Center

Alerting and Advisory System alerts and advisories Emergency Management Center

Figure 13 - Some of the Triples defined in the Communication View of Arc-IT (source: Arc-IT website)

16

World Wide Web Browser / 1SON / Wide Area Wireless

emergency data request --»

Emergency Management Center Vehicle OBE

ITS Application Information Layer ITS Application Information Layer
SAE J2313-Mayday SAE J2313-Mayday

Application Layer Application Layer
IETF HTTP, IETF WebSockets IETF HTTP, IETF WebSockets

Presentation Layer Presentation Layer
W3C HTMLS, IETF JSON W3C HTMLS, IETF JSON

Session Layer
IETF TLS

Session Layer
IETF TLS

Transport Layer
IETF TCP

Transport Layer
IETF TCP

Security Plane
HTTP Auth, IETF TLS

Network Layer Network Layer
IETF IPv6 IETF IPvE

Data Link Layer Data Link Layer
Wide Area Wireless WAN Wide Area Wireless WAN

Physical Layer Physical Layer
Wide Area Wireless WAN Wide Area Wireless WAN

Figure 14 - The Communications Diagram of Emergency Management Centre - Vehicle OBE:

Emergency Data Request Triplet from the Mayday Notifications Service Package (source: Arc-IT
website)

Arc-IT content is reached through its web site. User is expected to study the Service Packages,
the views that are describing the services and all other artefacts defined for the Service Packages
from the architecture web site. The Arc-IT web site is developed in a tabular organization that the
user can navigate through the Physical, Functional and Enterprise Views of the Service Packages,
the Goals and Objectives they aim to satisfy, the Needs and Requirements that are defined for
them, the Sources they are referenced to and the Security levels defined for the Service
Packages.

Users are first directed explore the Physical Tab in a Service Package that contains the Physical
View. It is considered to be the most natural way to start articulating about systems since the
Physical View portrays the parts of the system that the user can touch, see and interact with. The
Physical View consists of a Service Package Diagram that depicts the Physical Objects and the
Information Flows between them and detailed descriptions of each Physical Object, Functional
Object and Information Flow included in the Service Package.

Functional Tab contains the Functional View and consists of the Functional Objects allocated to
Physical Objects included in the Service Package and the processes that the Functional Objects
required to be performed in order to fulfil the services defined with the Service Package. Each
process may be assigned to more than one Functional Object. User may find a detailed description
of each process and the list of all Data Flows defined for the process.

The Enterprise Tab is divided into four stages of the system development life cycle: Development
Stage, Installation Stage, Operations Stage and the Maintenance Stage. The roles and
relationships of Stakeholders are outlined with roles or agreements defined in the architecture. The
stakeholders were defined in a generic manner in the National ITS Architecture such as
“‘Emergency Management Centre Manager’, “Vehicle OBE Supplier” or “Personal Information
Device Maintainer” and the architecture user is expected to define who are those generic
stakeholders correspond to for their Regional Architectures. All roles / relations are defined with a

17

stakeholder as the source, a Physical Object as the destination and a role such as Owns, Installs,
Develops, Maintains etc. or a relationship such as The Installation Agreement, Application
Interface Specification, Expectation of Data Provision or System Usage Agreement. These roles
and agreements are already defined with the Arc-IT. The architecture user may define their own
agreements or role and relationships according to their needs for their Regional Architecture.

In the Goals and Objectives Tab the architecture user should find the planning factors and goals,
objective categories and the objectives and the performance measures for the Service Packages.
The decision to invest on ITS are made to achieve desired outcomes with the project. A set of
eight Planning Factors derived from 23 CFR part 450 - Planning assistance and standards for the
Federal Highway Administration’” and a Goal was defined for each Planning Factor in Arc-IT.
Each Goal than further was associated with some Objectives in few Objective Categories such as
Emergency Management, Safety, Transit Operations Management etc. The Objectives in Arc-IT
are provided with several Performance measures to assess compliance with the Objective such as
“Per capita time to evacuate” or “Mean incident clearance time per incident”. User is expected to
either user existing Goals, Objectives and the Performance Measures from the architecture web
site or to create their own according to the transportation plans for their projects.

The Needs and Requirements Tab contains the “stakeholder concerns” and the Functional
Requirements. The Needs were defined for each Service Package in the creation of the
architecture and Functional Requirements of the Functional Objects were matched with the Needs
they aim to satisfy. By choosing the Service Package for their Regional Architectures the
architecture user will be automatically including the set of Needs defined with the Service
Packages they have selected.

There may be National or Regional Transport Development Plans, Traffic Management Policies,
Government Incentives and Programs that are enforcing or supporting the ITS to be built or
developed and that may be why the user is creating an architecture. The Source Tab is containing
information of such sources for an ITS Architecture. The sources in Arc-IT are referencing such
documents for US. Architecture user may insert their own sources while creating their own
Regional Architectures.

Finally A set of security levels were defined for each Physical Object and Information Flow that
was defined in Arc-IT. The systems that the architecture user will be creating with the architecture
should at least meet or exceed the security levels that are assigned to each element of the
Physical View of the Service Package that is under the Security Tab in Arc-IT website.

User is expected to select the Service Packages that would best describe the totality of the
services that they are aspiring to obtain with their ITS investment and create a Regional
Architecture. Then these architectures are used to create deployment sized projects and continue
with next steps of systems engineering i.e. start defining product specifications etc.

There are two computer based products developed to enable architecture user to create the
architectures for their projects. The Regional Architecture Development tool for Intelligent
Transportation (Rad-IT) is where user creates their Regional Architecture which is a sub selection
of the National ITS Architecture. The System Engineering Tool for Intelligent Transportation (Set-
IT) is where they develop detailed architectures for the sub projects included in a Regional
Architecture. User is able to define each element that makes up the Physical View with visual

18

charts and complete developing the Communications and the Enterprise Views of their projects
with Set-IT. While the Set-It will not be covered with this paper, creating a Regional Architecture for
an example Service Package will be detailed in Chapter 6.

19

Chapter 2 - Methodology

This paper analyses architecture frameworks created in field of Intelligent Transportation and tries
to contrast the European ITS architecture (FRAME) with the American ITS architecture (Arc-IT).
Ways to transfer the functionality from FRAME to another tool that would support the architectures
to be represented better will be discussed.

In parts of the first chapter the concept of system architecting and architecture descriptions was
introduced summarising the ISO-IEC-IEEE 42010 on System and Software Engineering -
Architecture Descriptions. The architecture descriptions was proclaimed as the product of system
architecting efforts and architecture frameworks were presented to be guidelines and best
practicing while creating architecture descriptions in specific domains. Than the content of the
European and the American ITS architectures was described in detail to study their methodologies
in creating architecture descriptions, the conventions and principles they imply was discussed and
the tools they provide were introduced.

In the practical analysis part, the paper will continue with introducing a small part of present day
ITS service as an example, namely the eCall, to initiate discussion of architecture description
methodologies employed by both FRAME and Arc-IT. A similar system’s architecture description
will be created both in the Selection Tool of FRAME and Rad-IT of Arc-IT to be able to present the
architecture creation steps of both, in detail.

The fourth chapter introduces Enterprise Architect, a modern day architecture modelling tool that
has widespread usage in many industries. The architecture description for eCall in FRAME
Selection Tool will be modelled in this tool to add the visual representation that was missing in
FRAME's architecture description. To use Enterprise Architect instead of the current Selection
Tool will be proposed and a method to transfer FRAME content and methodology to Enterprise
Architect as a Model Library will be developed. Lastly the Mayday Notification Service Package,
the ITS service corresponds to eCall will also be modelled with Enterprise Architect. Since Arc-IT
already allows means of visually representing the resulting Regional Architectures, transferring to
another tool will not be proposed. The Mayday Notification Service Package will be modelled in
Enterprise Architect only to be able to contrast the end product of both framework architectures
under same conditions, to eliminate any differences that would arise because of using different
tools in the comparison. In other words the architecture descriptions of both will be modelled in a
third tool to not to be comparing apples with oranges. To further enable this, only the Functional
Viewpoint of FRAME and the Functional View of Arc-IT will be modelled in the new tool and
compared. Building other views on top of the functional will be discussed.

The paper will be concluded by pointing out the best practices in both FRAME and Arc-IT and by

elaborating on the future work that might be needed to further develop the European ITS
Architecture.

20

Chapter 3 — The Practical Analysis

Chapter 3.1 - The eCall Example

eCall is an in-vehicle emergency system that places an automated call to 112 in case of a severe
crash or road accident. 112 is the single free of charge emergency number for all European Union
member countries (in this case including also Iceland, Norway and Switzerland)™! and enables
access to emergency services EU wide regardless the country of origin of the host vehicle. The
system aims to reduce road accident related fatalities by reducing the emergency response time
after a crash occurs, by establishing a voice call to nearest emergency response centre and
communicating the precise vehicle location and other vital information about the incident (see
Figure 15).

Figure 15 - A Simple Description of eCall (source: [20])

eCall first gained publicity in late 1990s™ as a potential civilian safety application for Galileo (The
European Global Navigation Satellite System) and became mandatory for all new passenger cars
and light duty vehicles (vehicle types M1 and N1) being sold in European Union after April 2018,
While it is not mandatory for other regions in the world, similar services are being offered on
subscription basis by third party service providers®" or as standard or optional features by various
car manufacturers'??,

The eCall can both be triggered by the driver by pressing a button present in the vehicle or
automatically by the vehicle sensors in detection of a collision. When activated, the in-vehicle eCall
device establishes a voice call to the nearest Public Safety Answering Point and at the same time
transmits a mandated Minimum Set of Data (MSD) about the incident. The MSD was standardized
with EN 15722 and contains message id, vehicle id (VIN), vehicle propulsion type, time stamp,
vehicle location, direction of travel, type of the activation (manual or triggered), call type
(emergency or test) and the position confidence (the position confidence would be low if the
position is not within the limits of + / - 150 m with 95% confidence, otherwise would be trusted)®.
Additional critical data to mandatory MSD (Such as number of closed seat belts) may be
transmitted depending on the vehicle configuration. The eCall is monitoring the vehicle SRS
(Supplemental Restraint System) such as such as airbag systems, air curtains, and seatbelt
pretensioners, to detect collisions®*.

eCall requires the calls to be placed by the on-board eCall module, recognized and processed by
the mobile network and routed to specialized PSAPs where trained operators would coordinate the

21

necessary response and maintain contact with the occupants and the Traffic Management Centre
until the incident is closed.

The eCall system was provided as an example to illustrate the usage of FRAME in deployment of
ITS services with the FRAME NEXT project due to simplicity and small size®. We will also be
following that example in our research, creating the eCall architecture as it described in the
example and compare the architecture creation methodology of FRAME and Arc-IT by creating
architecture for a similar Service Package in Arc-IT.

We found that it is possible to cover the eCall capabilities with the Mayday Notification Service
Package in Arc-IT, only with slight differences. The Arc-IT defines the Mayday Notification services
to be accessible by traveller devices in addition to the vehicle on-board module. This is not the
case for eCall where the notifications from travellers outside any vehicle are excluded. eCall users
are able to report accidents that they are not involved using the panic button within their vehicles
but travellers outside the vehicles are required to call e112 from their personal devices, which is
another service maintained by EU initiative outside ITS scope.

To ensure that the service described in the eCall example is fully covered by the Mayday
Notification Service Package we compared the functions provided by them and created the
relationship matrix diagram below to demonstrate how they are related (see Figure 16). As
described above, the only difference is found to be the functions related to the services provided to
travellers outside the vehicle by the Mayday Notification Service Package.

5.1.1.1
51.1.3
5.1.6
6.8.1.5
6.8.2.1
6.8.2.2
3.1.3
3.3.1
3.3.2
6.7.1.2
6.7.2.1
6.7.2.2

5.1.2
5.1.3
5.1.4
52

FRAME / Arc-IT
5117
5127
2.1.21
2123
2124
2125

215
218

Figure 16. eCall - Mayday Notification Service Package Relationship Matrix (source: author)

We will be using the eCall and Mayday Notification Service Package examples throughout the
paper, to study how FRAME and Arc-IT define architectures for these services and demonstrate
the similarities and differences between the two architecture frameworks.

22

Chapter 3.2 - Creating an Architecture Description of The eCall Example
in FRAME

FRAME Selection Tool is a computer based product that was created to provide the architecture
user with the ability to make selections to create the Functional Viewpoint description of their ITS
projects. Once user created a Functional Viewpoint for their desired system(s) they can continue
describing Physical and Organizational Viewpoints for their architectures. The User Needs along
with the Viewpoints the user created make up the architecture for the particular system(s).

The architecture creation process is done in two phases, the first pass and the subsequent
passes. In the first pass the architecture user will be selecting the User Needs that would best
describe the system(s) of their interest and creating the part of the Functional Viewpoint that is
directly related to those User Needs. In the subsequent passes the user may add or remove
functionality or elements such as Data Stores or Terminators to fully describe the Functional
Viewpoint of the system(s) that they have in mind.

The Selection Tool offers a simple interface that repeats itself in each step of architecture creation.
The screen is divided into three main parts, the left half on the screen is where the available items
are listed, and the selected items are moved to the right half of the screen by “Add” button. On the
bottom the description and other information related to selected items are displayed. The user is
expected to confirm their selection by hitting “ok” to proceed to the next step in architecture
creation.

The architecture starts by offering the full list of User Needs to the architecture user (see Figure
17). The user may find the User Needs listed in a hierarchical order, divided into groups clustering
the User Needs in similar areas of ITS. User is expected to go through the User Needs and make
a selection of the ones that would best describe the system(s) of interest.

£3+ Sub-set Functional Viewpoint =} @
Selection of User Meeds ?
User Needs: ...selected User Needs
- []7.5 - Cooperative Systems - Traffic Efficiency 5102
B [[] 7.6 - Cooperative Systems - Value-Added & Other Services << Remove 51.03
D 8 - Intelligent Vehicle Systems E1.04
-- [] 8.2 - Automated Vehicle Operation 5.1.05
D 8.3 - Longitudinal Collision Avoidance 5.1.06
-- [[] 8.4 - Lateral Colision Avoidance 5.1.08
E-[18.5 - Safety Readiness 7206
1-[] 8.5.0 - Basic Services 7207
8.5.1-eCal 7611
i [Oesis 8.5.1.1
-- []8.5.2 - Automatic Parking 8512

8.5.3 - Environmental Monitoring 8513
- [7] 8.5.4 - Accident Data Recording oz

8.5.5 - Traffic Information & Signs —

8.5.6 - Vehicle Information v Quit

Select all Clear selection

Description:

The system shall be able to make an "eCall.

Figure 17 - Selecting User Needs (source: author)

23

In the next step the architecture user is offered the list of all Low Level Functions that are related to
the User Needs that were selected in the first step (see Figure 18). Each function that composes
the Functional Viewpoint is cross referenced to one or more User Needs (most commonly a
Functions is mapped to many User Needs) so by choosing the necessary User Need the user is

actually selecting a set of Functions that will be used to build up the Functional Viewpoint of the
desired system’s architecture.

As discussed earlier, the User Needs are used as an entry point for the Functional Viewpoint. The
architecture user is expected to go through the Browsing Tool to understand what are
implemented with the offered functions, how they are organized and how they will be interacting
with each other. The entirety of the Functional Viewpoint is described via Data Flow Diagrams in
the Browsing Tool with all of its low Level Functions, Data Stores and Terminators of the system(s)
along with all Data Flows between these elements. The user is expected to identify and study the
parts of the Functional Viewpoint that they would be including to their architecture so that they can
make necessary selections in the next steps of the Selection Tool.

The user is expected to create a subset from the list of all functions that are offered by the selected
User Needs and decide the primary functionality of their desired system(s). The selected functions
in this step will determine which data flows will be offered in the next step. Functions added to the
architecture in this step will be called as the primary functions throughout the rest of the paper.

The functions related to the selected User Needs are presented to user in this step with their
descriptions and the User Needs related to them. The User Needs that were selected in the
previous step are highlighted. User may go back to the previous step and change their selection of

the User Needs if necessary. We continue this step by selecting the Low Level Functions that was
mentioned in the eCall Example.

B3+ Sub-set Functional Viewpoint = @

Selection of low level Functions ?

Low Level Functions for Selected User Needs ...selected Functions

=-[]21 2123
5....D21_g << Remove 2124
[[] Area 3 (Manage Traffic) 2125
=-32 517
D Area 5 (Provide Support for Host Vehicle Services) 5127
s Back
..... Os12
oK
Quit
Select all Clear selection
Description:
Identify and Classify Emergencies - This Function shall be capable of providing the following facilities: ~
(1) The ability to collect incident notifications from a variety of sources.
(2) The capability to fiter and obtain azsociated information (e.g. location, cargoe status, Vehicle identification, Traveller identification) to produce the data needed for the planning of the
appropriate response from the Emergency Services.

User Need Satisfied (praviously selected are highlighted):

5.1.0.2 : The system shall be able to detect that the vehicle has been involved in an accident, identify its location, and initiate an "eCall' automatically. -~
5.1.0.3 : The system shall be able to identify the vehicle location. and make an ‘eCall' on the command of a vehicle occupant.

5.1.0.4 : The system shall be able to give the driver an immediate acknowledgement to his/her emergency call.

5.1.0.5 : The system shall be able to identify the driver / vehicle making an emergency call.

5.1.0.6 : The system shall be able to provide two-way data andior voice communications between the vehicle and the emergency control centre.

Figure 18 - Selecting Low Level Functions (source: author)

The functions 2.1.5 - Provide Access and Maintain Data for Emergency and 2.1.9 - Provide
Emergency Interface that were described with the system in the eCall example was not offered

24

here since no User Need that would require those functions were selected in the beginning. This
doesn’t necessarily mean that those functions will not be included in the Architecture. Users still
may add from the rest of the Functions that were not offered initially in the subsequent passes.

Upon selecting the primary functions that would be included in the architecture, the user is offered
a list of all data flows that starts and ends with the primary functions and required to define how the
primary functions interact with each other and also with the other elements of the Functional
Viewpoint such as Data Stores and Terminators. By now the architecture user is expected to have
a broad understanding of the Functional Viewpoint as it represented in the Browsing Tool since the
Data Stores and Terminators that will be offered as available on the next steps will be based on
the Data Flows that are selected in this step. If the user does not select any Data Flow that is
ending or beginning with a Data Store or a Terminator, there will be no Data Stores or Terminators
offered in the following steps. While it is possible to add those elements to the architecture in the
subsequent passes, the user is expected to choose all the Data Flows that are describing the
system(s) they have in mind in this step, for a meaningful first pass. The architecture user may
also add the Data Flows between the primary functions and the functions that will be included in
the architecture in the subsequent passes already in this step as long as they are confident that
the function in the other end of the Data Flow will be required for their system(s). Selecting Data
Flows related to elements that are not yet included in the architecture will result in errors at the end
of the first pass. User may add the missing elements in the subsequent passes or they can go
back to Data Flow selection screen and remove the unnecessary Data Flows to correct the
error(s).

The Data Flows in FRAME Functional Viewpoint is defined specifically between certain elements,
connecting a specified source element to a specified destination element and carry the designated
information from one to another. Notice how the direction of the selected Data Flow is displayed in
addition to it description on the related Selection Tool screen.

We continue this step by selecting the Data Flows between all elements that was defined with the
system described in the eCall Example (see Figure 19). The selection includes Data Flows
connecting eCall primary functions to each other, the Data Stores and Terminators in addition to
some of the Data Flows connecting the functions that will be added in the subsequent passes
(2.1.5 and 2.1.9). Note that the Data Flows connecting the Data Store D2.1 and the Terminator
Emergency Operator is not available since none of the primary functions have communication with
them defined in the Functional Viewpoint. We will be adding those elements and the additional
Data Flows to and from those elements in the subsequent passes.

25

E3+ Sub-set Functional Viewpoint = @

Selection of Data Flows related to selected Functions ?
Available Data Flows: ...selected Data Flows

fesp.dvip-identification_response -~ Add == fes-emergency_progress_report

fors.ems-emergency_or_incident_notification fes-intervention_answer

mffo.psef_incident_notification =< Hemove flds-vehicle_position_for_eCall

mpto.psef_alarm_notification fw.hmi-initiate_sCall

mpto.peef_PT_stop_alarm_notification fw.we-input_data

mt.psef_incident_notification psef.pshvs_eCall_final_acknowledgement

mt.pshvs_vehicle_s&g_input psefpshvs_eCall_first_acknowledgement

psef.mffo_incident_notification_acknowledgment psef_commen_data_for_emergency_classification

psef mpto_alarm_notification_acknowledgement psef_common_data_for_emergency_intervention_plans
psefmpto_PT_stop_alarm_acknowledgement Back psef_control_identity_and_clarification_request
psefmt_incident_data psef_control_identity_and_clarification_response
psefmt_incident_data_update psef_control_intervention_planning

[

peefmt_inter-urban_smergency_route_request w peef_control_intervention_planning_response W
Select all Clear selection Select all Clear selection
Description:

fes-emergency_progress_report - f contains information sent by the Emergency Services about the emergency processing.

Data Flow direction:

ez 2124

Figure 19 - Selecting Data Flows (source: author)

The Frame Selection Tool offers the Data Stores based on the Data Flows that were selected in
the previous step. We continue by adding the Data Store to our eCall Architecture (see Figure 20).

3. Sub-set Functional Viewpoint b= @
Selection of Data Stores related to selected Data Flows ?
Awailable Data Stores: __selected Data Stores:

2.2 - Incident And Emergency Data

<= Remove

e
< gemove |

Select all Clear selection Select all Clear selection
Description:
Incident And Emergency Data - This Data Store shall be used within the Provide Security and Emergency Facilities Area. It shall contain details of all incident/alarm notifications (including ~

mayday calls) that have been received by the functionality in this Area. | is in two parts; un-processed and processed emergencies.

The data for un-processed emergencies held in the Store shall be structured in the following way:
-time (numbers defining hours, minutes and seconds)
- date (date string)

Figure 20 - Selecting Data Stores (source: author)

In the next step, the Selection tool offers all Data Flows related with the Data Stores that were
selected in the previous step, the same way it offers the Data Flows for the Low Level Functions,
including the flow connecting elements that are not yet included in the architecture. The Data
Flows between the Data Stores and the primary functions were already added to the architecture
in the Data Flow selection step and we see those data flows already on the right half on the screen
when it is first opened. The user will be able to discover if more functions are related to the Data
Stores in their architecture and add the Data Flows connecting additional functions if they decide

26

to expand their selection. Again, the Selection Tool will throw an error at the end of the first pass if
the user adds any Data Flow that links functions that are not yet included in the architecture.

All Data Flows required for D2.2 Incident and Emergency Data was already added to the

architecture in the data flow selection step to our architecture for the eCall example, we continue to
next step without making any selection (see Figure 21).

B+ Sub-set Functional Viewpoint = @
Selection of Data Flows related to selected Data Stores

Awvailable Data Flows: ...extra Data Flows Added:

psef_load_emergency_data

i Q psef_read_emergency_data

=< Remowve

Select all Clear zelection Select all Clear zelection

Description:

Data Flow direction:

Figure 21 - Selecting additional Data Flows related to the selected Data Stores (source: author)

Since the available Terminators are offered based on the Data Flows selected previously there will
not be any additional Terminator offered in this step (see Figure 22). The 4 out of 5 Terminators
that were defined in the eCall example were connected to our system with the selection of Data
Flows. The Emergency Operator will be added in the subsequent passes.

£+ Sub-set Functional Viewpoint = @
Selection of Terminators/Actors related to selected Data Flows
Awailable Terminators/Actors.. _..selected Terminators/Actors

&%
lds
<< Hemove w.hmi

i

VVE

Select all Clear selection Select all Clear selection

Description:

Emergency Systems - This Terminator shall represent systems that are designed for and used by Emergency Services as part of their operations. In this context the term [Emergency Services]
shall include organizations that are responsible for services such asz fire, police, ambulance and vehicle recovery. The Emergency Systems shall be able to co-ordinate the activities of individual
Servicez. They shall dizpatch and control the activities of the vehicles and personnel belonging to a particular Service when they attend incidents. The Emergency Systems shall be given
infarmation by the Systern about emergencies that its functionality haz detected. [nretumn the Emergency Systems shall provide reparts on progress in dealing with the emergency to enable taffic

and travel management strategies to be updated. The Systems shall also provide details of emergency situations affecting road transportation that are reported directly to them, such as through a
tayday call from a vehicle.

27

Figure 22 - Selecting Terminators (source: author)

The final screen of the first pass displays the logical errors found within the selection made so far.
The possible errors are:

Data Flows that has one end free.

These are the Data Flows that do not have a source or a destination terminator. Since the
selection of data Flows is initiated by selection of functions and other elements in the
Selection tool, it is impossible to include a Data Flow with both terminators missing. The
Data Flows in FRAME Functional Viewpoint are defined individually to carry specific pieces
of information between certain functions; the error message indicates which end of the
Data Flow was found to be missing. The architecture user then add the specific element
that was found to be missing for the Data Flows or remove the Data Flow that is causing
the error from their architecture to correct this type of error.

The below screenshot is generated with the selection we made following the eCall example
(see Figure 23). The errors thrown on final screen of the first pass selection are related to
missing functions 2.1.5 and 2.1.9 which are needed to be included in the system described
in the eCall example. We have selected Data Flows related to those functions deliberately
after selecting the primary functions as it was mentioned above.

B3+ Sub-set Functional Viewpoint = @
Current consistency errors and warnings ?
Click to correct:
Locking for errors:
Functions.

Data Flow "psef_common_data_for_emergency_classification" needs Function 2.1.5 - "Provide Access and Maintain Data for Emergency”

Data Flow "psef_common_data_for_emergency_intervention_plans” needs Function 2.1.5 - "Provide Access and Maintain Data for Emergency”™

Data Flow "psef_control_identity_and_clarification_request" needs Function 2.1.9 - "Provide Emergency Operator Interface”™ Data Flows

Data Flow "psef_control_identity_and_clarificati _resp " needs Function 2.1.9 - "Provide Emergency Operator Interface”

Data Flow "psef_control_intervention_planning" needs Function 2.1.9 - "Provide Emergency Operator Interface”

Data Flow “psef_control_intervention_planning_response" needs Function 2.1.9 - “Provide Emergency Operator Interface” Data Stores

Data Flow "psef_control_progress_report_processing” needs Function 2.1.9 - "Provide Emergency Operator Interface”

Data Flow "psef_control_progress_report_processing_response” needs Function 2.1.9 - "Provide Emergency Operator Interface” .

Data Flow "psef_emergency_resp _statistics_resp " needs Function 2.1.9 - "Provide Emergency Operator Interface” B TS

Data Flow "psef_request_emergency_response_statistics” needs Function 2.1.9 - "Provide Emergency Operator Interface”

Found 10 errors
Looking for warnings:

None found

Figure 23 - Final screen of the first pass for ECall example (source: author)
Elements that are not linked to any Data Flows.

These are elements added to the architecture but not connected, in other words not
interacting with the system described in the architecture. Each function defined in FRAME
Functional Viewpoint to interact with at least one other function, data store or terminator
and these interactions most of the time are two way, where an element send some
information and receive some information back as a response. Any element added to

28

project architecture should have at least one, in most of the cases more Data Flows
defined to start or finish with that element. The error screen assist user to correct this type
of error by suggesting possible Data Flows related with the particular element. Architecture
user may follow the suggestions and connect the elements causing the error with Data
Flows or remove the element form their Functional Viewpoint.

Below screenshot was created to display this types of error only and is not related to our
eCall example (see Figure 24).

B3 - Sub-set Functional Viewpoint =] @
Current consistency errors and warnings ?
- Click to correct:
Looking for errors: ~

Functions
Function 1.1.1 -"Create EP Contract” has no Data Flows associated with it. See the following possibilities: g

» ft-pepf_contract_data
» pepf_requested_service_data
* ptja.pepf_service_contract_info

e ft-pepf_contract

* tt-pepf_service_information Data Stores
Data Store D1.1 -"EP Contracts Data" has no Data Flows associated with it. See the following possibilities: Terminatore/Act

* pepf_contract_CUC erminator: ors

= pepf_contract ECS
» pepf_contract LUA

Terminator ae - "Ambient Environment” has no Data Flows associated with it. See the following possibilities:
s fae-atmospheric_polution_inputs
* fae-bridge_weather_conditions.
* fae-local vehicle_atmospheric_conditions
* fag-local_vehicle_visibility_conditions.
» fae-noize_inputs
* fae-tunnel_atmospheric_conditions
* fas-weather_inputs

Data Flow "psef_common_data_for_emergency_classification" needs Function 2.1.5 - "Provide Access and Maintain Data for Emergency”

Data Flow "psef_common_data_for_emergency_intervention_plans" needs Function 2.1.5 - "Provide Access and Maintain Data for Emergency™
Data Flow "psef_control_identity_and_clarification_request" needs Function 2.1.9 - "Provide Emergency Operator Interface”

Data Flow "psef_control_i ity_and_clarification_resp " needs Function 2.1.% - "Provide Emergency Operator Interface™

Data Flow "psef_control_intervention_planning" needs Function 2.1.9 - "Provide Emergency Operator Interface”

Data Flow "psef_control_intervention_planning_response" needs Function 2.1.9 - "Provide Emergency Operator Interface”

Data Flow "psef_control_progress_report_processing” needs Function 2.1.9 - "Provide Emergency Operator Interface”

Data Flow "psef_control_progress_report_processing_response” needs Function 2.1.9 - "Provide Emergency Operator Interface” w Close |

Figure 24 - Final screen of the first pass with additional errors (source: author)

There are also Warnings displayed in the final screen addition to the errors. The warnings occur
when a function or a Data Store is connected with only one Data Flow. While it most of the time
indicates a mistake in Data Flow selection since there expected to be at least two Data Flows
related to each element representing the two way nature of the communication between elements,
it may just be the case for that particular architecture that only one Data Flow is required to
undertake the functions required by the system of interest. Warnings are not binding for the
resulting Functional Viewpoint and resolving all warnings is not obligatory.

The creation of Functional Viewpoint ends when all desired elements are added in the architecture
with no logical errors. Some warnings may remain.

The user is expected to correct the errors by adding or removing elements from their architecture.
User also can add / remove items that were not offered by the selection of the User Needs to
achieve the correct architecture describing the systems that they have interest with. This phase is
called the subsequent passes.

The user is expected to continue the subsequent passes with the buttons displayed on the right
end of the final screen. The user may start by adding / removing Low Level Functions, Data Flows,
Data Stores or Terminators. The Selection Tool will follow through the architecture creation steps
until the final screen as it was in the first pass no matter which step the user starts with. This is

29

because changes made in each step of the architecture may cause or require modifications to be
made in the following steps.

We continue this step by adding the missing Functions from the eCall Example that were not
offered by the User Needs selection (see Figure 25). Adding these functions to the architecture will
also resolve the errors that were found in the final screen.

3+ Sub-set Functional Viewpoint = @

Selection of low level Functions ?

Low Level Functions ...selected Functions

w18 A Add > 21241
[[] Area 2 (Provide Safety and Emergency Facilities) 2123
= << Remove 2124
2125
5117
5127
i) Back
®-[J22
[[] Area 3 (Manage Traffic) oK
E-[13.1 =
B-[032 v Quit
Select all Clear selection

Description:

Provide Emergency Operator Interface - This Function shall be capable of providing the following facilties:

(1) The provision of the HMI for the Emergency Operator so that emergencies and all related information can be managed.

(2) Enable the Emergency Operator to manage the processing, classification and rezponse to incidents or emergencies through Data Flow interfaces to other functionality.
(3) Enable the Emergency Operator to request statistics about the occurrence of incidents and the responses to them.

User Need Satisfied (previously selected are highlighted):

7.2.1.2 : The system shall be able to co-ordinate the emergency and rescue services once an incident has been detected, until all injured persons have reached a hospital.

Figure 25 - Adding missing Low Level Functions to the architecture (source: author)

The next step requires attention to detail since the Data Flows from that were not selected with first
pass will be listed again in this step along with the new Data Flows that would be offered with the
functions that were added to the architecture in the last step (see Figure 26). User is expected to
filter the redundant Data Flows select only the Data Flows necessary for their system(s).

Selection of Data Flows related to selected Functions

£3 + Sub-set Functional Viewpoint = @
?

Awvailable Data Flows: ...selected Data Flows:

psef_global_emergency_progress_report ~ Add == fes-emergency_progress_report LY
psef_individual_emergency_progress_report fes-intervention_answer
| psef_maintain_emergency_data_operator_request fv.hmi-initiate_sCall
v psef_maintain_emergency_data_response fv.ws-input_data
psef_planned_emergency_route psef.pshve_eCall_final_acknowledgement
v peef_read_common_emergency_data psef pshvs_eCall_first_acknowledgement
peef_roadside_eCall first_acknowledgement psef_common_data_for_emergency_classification
psef_roadside_eCall_ful_acknowledgement psef_common_data_for_emergency_intervention_plans
pshvs.mffo_vehicle_data Back psef_control_identity_and_clarification_reguest
pshvs.mt_data_for_wvehicles_as_incidents psef_control_identity_and_clarification_response
pshvs.pscs_hazarduous_goods_vehicle_data_for_route oK psef_control_intervention_planning
pshvs.pscs_vehicle_data_for_sensitive_areas w Quit psef_control_intervention_planning_response W
Select all Clear selection Select all Clear selection
Description:
psef_load_common_emergency_data - It contains data to be loaded into the store of Common Emergency Data.

Data Flow direction:
21.5==D21

30

Figure 26 - Adding Data Flows missing between newly added elements (source: author)

The Selection Tool offers the list of all Data Stores that were defined in FRAME Functional
Viewpoint (see Figure 27). The only Data Store related with the newly added functions will be
selected to achieve the system that was described by the eCall Example, which is also the only
Data Flow missing to create the architecture described in the eCall example.

E3 - Sub-set Functional Viewpoint
Selection of Data Stores

Awvailable Data Stores:

1.1- EP Contracts Data

1.2 - User's Account Data

1.3 - Service Information Data
1.4 - Transactions Data

1.5 - Tariffs Data

1.6 - Fraud Data

1.7 - Access Rights Data

3.3 - Environmental Data

3.4 - Incident Data

3.5 - Demand Data

3.8 - Maintenance Data

3.7 - Urban Road Static Data

3.8 - Inter-urban Road Static Data
3.9 - Urban Car Park Data

3.10 - Inter-urban Service Area Data

Select all Clear selection

Description:

- Add ==
<= Remove

2.1 - Common Emergency Data

Back

i

=[5kl
2 |

...selected Data Stores:

2.2 - Incident And Emergency Data

Select all Clear selection

Cemmon Emergency Data - This Data Store shal be used within the Provide Security and Emergency Facilities Area. It shall contain details of all the information needed to process the data LY
that is produced when any emergency takes place.

The data in the Store shall be structured in the following way:
-road network data (data for a digital readmap using a standard format, .g. GDF)
- predefined emergency route (data for a digital readmap using a standard format, e.g. GDF)

Figure 27 - Adding missing

Data Stores (source: author)

The Selection Tool will proceed with offering the set of all Terminators available in the FRAME
architecture. We will continue this step with including the Emergency Operator to complete the
architecture described in the eCall example (see Figure 28).

E3 - Sub-set Functional Viewpoint
Selection of Terminators/Actors

Awvailable Terminators/Actors....

[Jo.bo
o
o.fle
[Jo.iro
[o.0ds0
opo

[o.pto
[Jo.pzo
[o.rmo
o.me
[otio

[o.tnlo
oo
ors

[ors.ems
[ors.etms
=

Select all | LClear selection

Description:

- Add ==
<= Remove

Back

- 5 =
|

...selected Terminators/Actors

es
lds
v.hmi
V.S

!

Select all Clear selection

Services.

Emergency Dperator - Thiz Actor within the Dperator Terminator shall represent a human entity that uses the facilities of the spstem o manage some of the activities camied out by the Emergency
Services in response o incidents. The scope of the activities shall be limited to the management of vehicles belonging to the Emergency Services, plus the provision and receipt of information
about incidents. The system may be in communication with more than one huran entity that i an Emergency Operatar. Each entity may belong to the same Emergency Service, or ta different

Figure 28 - Adding missing Terminators (source: author)

31

With the subsequent passes we can see that the resulting architecture doesn’t have any errors
(see Figure 29). The creation of the Functional Viewpoint ends when all desired elements are
added to the architecture and there are no more errors.

£+ Sub-set Functional Viewpoint = @

Current consistency errors and warnings ?

Click to correct:

Looking for errors:

None found

Looking for warnings: Data Flows
N i d
anetoun Data Stores
Terminators/Actors

Close |

Figure 29 - Final Screen at the end of the subsequent passes (source: author)

The architecture user may continue the subsequent passes by adding and removing elements and
reaching to the final screen as many times it is necessary for them to build their desired Functional
Viewpoint. Since we have added all necessary elements mentioned in the eCall example and no
logical errors was found for our architecture, and we can finish creation of our Functional
Viewpoint.

The products of the Functional Viewpoint in Selection Tool is a handful of reports listing the
elements selected by the architecture user and the unselected Data Flows that are related with
selected functions and Data Stores (see Figure 30).

Selection Tool
Tocls Optiens Help

1 Report on Functional Viewpeint * Selected User Needs
Report on Physical Viewpoint Selected Functions
o Report on Organisational Viewpoint Selected Datastores
1 B . Selected Dataflows
rowsing Tool
g Selected Terminators and Actors

; for warnings: All selected elements
Unselected Data Flows of the Selected Functions

tnd Unselected Data Flows of the Selected Data Stores

Figure 30 - The Functional Viewpoint artifacts that can be produced with FRAME (source: author)

The creation of Physical Viewpoint starts by defining Sub-systems and Locations (see Figure 31).
The user is required to populate both fields themselves according the Physical Viewpoint they
have in mind. The Locations created for one Sub-system will be added to Location drop down
menu and may be used to assign other Sub-systems. Following the eCall example we start the

32

Physical Viewpoint creation by creating two sub-systems in two different locations: In-vehicle
Component in the location Vehicle and PSAP in location Emergency Centre.

-

B+ Sub-set Physical Viewpoint

(=& =]
Defiition of Sub-systems
i Modify I
Vehicle
Emergency Center L3 |
Delete |

B Modify Physical Sub System

Name |In Wehicle Component

Lacation IVehicle

ar LCancel

Figure 31 - The Sub-systems and Locations created for the eCall example (source: author)

The architecture user is expected to relate each function and Data Store form the Functional
Viewpoint with the Sub-systems in the Physical Viewpoint and distribute the functions to physical
locations. We continue this step by differentiating the Functional Viewpoint elements into two

physical locations, the elements related to the vehicle goes to In-Vehicle Component and others
go to the PSAP (see Figure 32).

Function ID Subsystem Data Store ID
21.21 PSAP D2.1

2123 PSAP D22

2124 PSAP

2125 PSAPR

2.1.5 PSAP

219 PSAP

5.11.7

In Wehicle Component
In Wehicle Component

5127

Add Du pIicatesl

Description:

D2.2: Incident And Emergency Data - This Data Store shall be used within the Provide Security and Emergency Facilities Area. | shall contain details of all incident/alarm
il

A
notifications (including mayday calls) that have been received by the functionality in this Area. 1 is in two parts; un-processed and processed emergencies.

The data for un-processed emergencies held in the Store shall be structured in the following way:
- time (numbers defining hours, minutes and seconds)

Back |
oK |
- date (date string)
Quit

- incident location (characters andfor numbers, e.g. GPS/Galileo data) W |

Figure 32 - Distributing the functions and Data Stores to Sub-systems (source: author)

33

In the next step the user may create Modules that would bundle similar functions together inside a
Sub-system (see Figure 33). Given the simplicity of the system described in the eCall example we
will not be specifying any Modules in our architecture. We have created the below imaginary
modules for this step to demonstrate how an architecture where distributing functions between
modules would be required.

£ - Sub-set Physical Viewpoint

Description:

Module

eCall communication
Emergency Classification
Emergency Response

Manage Maintain and Access Data

Operator Interface
Reporting
Vehicle Systems

Sub-System

In Wehicle Component
PSAP

PSAP

PSAP

PSAP

PSAP

In Vehicle Component

Figure 33 - Creating Modules for the Physical Viewpoint (source: author)

User is required to assign the Low Level Functions to Modules to define which functions will be

residing in which module (see Figure 34).

-Sub—se‘l'l'hysica‘lﬁmpuhﬂ

Elements to allocate: _.. allocations:
In Vehicle Component Element Wodule Modify |
8T 21241 Emergency Classification
5127 2123 Emergency Response
e 2124 Reporting
2121 2125 Manage Maintain and Access Data
215 Wanage Maintain and Access Data
218 Operator Interface
ST eCall ¢
5127 Vehicle Systems
D21 Manage Maintain and Access Data
022
Description:
Back
oK |
Quit
Figure 34 - Distributing the functions and Data Stores to Modules (source: author)

34

At the final screen of Physical Viewpoint creation the user is displayed the information flows that is
required between the Modules and the terminators of the system described in the architecture (see
Figure 35). Note that these flows include both the communication inside the sub-systems and
between them.

& - Sub-set Physical Viewpoint: Resulting Physical Data Flows = = S
Resulting Physical Dataflows 7|
| Parent Target :I
PO1001 Emergency Systems {Emergency Response |
PO1002 Emergency Systems Reporting
PO1003 Emergency Systems Manage Maintain and Access Data
PO1004 Emergency Systems PSAP
PO00S Location Data Source eCall communication
PO100S Location Data Source In Wehicle Component
PO10OT eCall communication Vehicle Systems
PO1003 eCall communication Emergency Classification
PO1009 eCall communication PSAP
PO10MOD eCall communication Human Machine Interface
P00 “ehicle Systems eCall communication
PO1012 Emergency Classification eCall communication
POM1013 Emergency Classification Emergency Response
PO1014 Emergency Classification Manage Maintain and Access Data
PO1O5S Emergency Classification Operator Interface
PO1018 Emergency Classification In Wehicle Component
PO1DT Emergency Response Emergency Systems LI
Description:
Back |
Close

Figure 35 - Physical Data Flows for the Physical Viewpoint. (source: author)

Since there will be no modules defined for our eCall example, the below description of the Physical

Viewpoint would be more accurate (see Figure 36).

& - Sub-set Physical Viewpoint: Resulting Physical Data Flows [= [=]E]
Resulting Physical Dataflows ? |
| Parent Target

PO3001 Emergency Systems PSAP

Po3002 Location Data Source In Vehicle Component

PO3003 Emergency Operator PSAP

PO3004 In Wehicle Component PSAP

PO3005 In Vehicle Component Human Machine Interface

P300S In Wehicle Component “ehicle Systems

PO300T PSAP Emergency Systems

PO3008 PSAP Emergency Operator

PO3009 PSAP In Vehicle Component

PO30M0 Human Machine Interface In Vehicle Component

PO3011 Vehicle Systems. In Vehicle Component

Description:
This physical data flow includes the following functional data flows: Back |
fes-emergency_progress_report

fes-emergency_services_information
fes-intervention_answer

Figure 36 - Physical Data Flows for the eCall example Physical Viewpoint (source: author)

35

After finishing creating the Physical Viewpoint the user can produce few reports related to it
describing the allocation of the elements from the Functional Viewpoint to the Modules and Sub-
system of the Physical Viewpoint (see Figure 37).

Tools Optiens Help
: Report on Functional Viewpoint 3 —
I Report on Physical Viewpoint b Allocation of Functions to Sub-systems/Modules

Report on Organisational Viewpoint > Allocation of Data Stores to Sub-systems/Modules
Browsing Taol Physical Data Flows
TIETYEITY Sy SIeTTs J Reporting

Figure 37 - The Physical Viewpoint artefacts that can be produced with FRAME (source: author)

Having the Physical Viewpoint created the architecture user then can start defining the
Organizational Viewpoint for their architecture. User is not obliged to follow any order in creation of
viewpoints after they have completed creation of the Functional Viewpoint for their systems but we
merely followed how the architecture creation is presented throughout FRAME documentation.

User starts by creating definitions for the stakeholders of system(s) of interest (see Figure 38). The
Low Level Functions and the Data Stores of the Functional Viewpoint will be allocated to
stakeholders defined in this step while creating the Organizational Viewpoint , which is why we
have defined only two stakeholders in this architecture. We find the way the Organizational
Viewpoint was organized in Selecting Tool to be limited since no other role or responsibility could
be assigned to stakeholders apart from being responsible of sending and receiving some Data
Flows in the Functional Viewpoint and only one stakeholder can be assigned for each Low Level
Function. As a result most of the stakeholders are excluded from the Organizational Viewpoint.

| Name | Additional ¢ | Modify |
PSAP Public Emergency Provider
Vehicle Manufacturer

Figure 38 - Defining Stakeholders (source: author)

We continue allocating the Functional Viewpoint elements to stakeholders (see Figure 39). As
mentioned above only one stakeholder can be defined for each function. Describing the

36

Organizational Viewpoint in this way comes short in cases where some functions require
interaction between two stakeholders. Who will be responsible of the function in that case? Also it
is not possible to specify the nature of the relationship between the stakeholders and functional
Viewpoint elements are not defined. Do they build, own or operate the functions or Data Stores?
What if in case one stakeholder maintains the Data Store and another uses it?

Function ID Or Data Store ID | organi | Modify |
21.21 PSAP D2.1 |Psap
2123 PSAP D22
2124 PSAP
2125 PSAP
215 PSAP
2158 PSAP
5T Vehicle Manufacturer
5127
Add Du plicatml
Description:
D2.2: Incident And Emergency Data - This Data Store shall be used within the Provide Security and Emergency Facilties Area. tshall contain details of all incident/alarm ~
notifications (including mayday calls) that have been received by the functionality in this Area. It is in two parts; un-processed and processed emergencies.
Back |
The data for un-processed emergencies held in the Store shall be structured in the following way:
- time (numbers defining hours, minutes and seconds) oK |
- date (date string)
- incident location (characters andfor numbers, &.g9. GPS/Galileo data) W Quit |

Figure 39 - Defining Stakeholder Responsibilities (source: author)

At the end a set of Organizational Data Flows is listed, showing which Data Flows must travel
between the Low Level Functions and Data Stores related to defined stakeholders and the
terminators of the system(s) (see Figure 40).

Description:

| Parent |Target
003001 Emergency Systems PSAP
Qozooz Location Data Source Vehicle Manufacturer
002003 Emergency Operator PSAP
002004 PSAP Emergency Systems
002005 PSAP Emergency Operator
Qoz00e PSAP Vehicle Manufacturer
Qozoo7 Vehicle Manufacturer PSAP
aozooe Vehicle Manufacturer Human Machine Interface
002009 Vehicle Manufacturer Vehicle Systems
Qozo Human Machine Interface ehicle Manufacturer
ooz2011 Vehicle Systems Vehicle Manufacturer

answer

This organisational data flow includes the following functional data flows:
fes-emergency_progress_report

fes-emergency_services_information
fes-intervention_;

Figure 40 - Organizational Data Flows (source

: author)

37

Similar to the Physical Viewpoints, few reports can be generated listing the allocation of Functional
Viewpoint elements to stakeholders and the Organizational Data Flows (see Figure 41).

Selection Tool
Tools Optiens Help

Report on Functional Viewpoint b |(a Flows

Report on Physical Viewpoint

Report on Organisatienal Viewpoint » Allocation of Functions to Organisations

. Allocation of Data Stores to Organisations
Browsing Tool
R e
Emergency Operator

Figure 41 - The Organizational Viewpoint artifacts that can be produced with FRAME (source: author)

Organisational Data Flows
e

Chapter 3.3 - Creating an Architecture Description of The Mayday
Notification Services in Arc-IT

Arc-IT offers the computer based Regional Architecture Development Tool for Intelligent
Transportation, Rad-IT, for its user to create architecture description of their projects. The user
selects the set of elements; the services provided by those elements and define the interaction
between those elements to be able to provide the services desired by the stakeholders of the
system(s). Rad-IT helps architecture user to create and define artefacts for Physical, Functional
and Communication Views related to their architecture.

The first screen in Rad-IT is the “Start” screen where users expected to define basic information
for their regional architecture (see Figure 42). As soon as the user hits the “New” button the fields
on the right half of the screen becomes editable. The user is then expected to give a name, write a
description, define a time frame, the geographical and service scope of their architecture. These
fields are all text based and user is expected to populate the fields their own. The information
entered by the architecture user will be used in later steps of architecture creation and will be the
source for the documents and charts that the user can produce with Rad-IT.

Start Planning Stakeholders Inventory Services Needs R&R Functions Interfaces Standards Agreements

Current Region: Mayday Motification

Architectures Regional Architecture Attributes
Regional Name
Mayday Notification |I.|ayd ay Notification
Delete Description
This service corresponds to E Call in FRAME. This architecture will be created following the E
Call architecture in FRAME that was created earlier in the paper to be able to compare

Project architecture creation methodologies and the final products of Arc-T and FRAME.

Timeframe

not specified

Geographic Scope
Capital City Prague

New Service Scope

Mayday Motification

Related

Developer Maintainer
[Mert aksac i |

Version Diate/Time
[10 | [osi122019 12:58:12 |

Hew Change Log

Figure 42 - The Start Tab (source: author)

User needs to hit the “Apply” button and confirm the changes made for each step in Rad-IT before
continuing to other fields or steps in the architecture creation.

Rad-IT offers the ability of creating projects under the regional architecture where user can divide
their regional architecture into projects according to their needs. These projects may be used to
cluster services that are similar or complementary to each other, services that are planned to be
deployed in various phases or timeframes, services that will be supplied by a specific vendor or
stakeholder or according to any other way that the architecture user would decide to organize their
projects. The architecture elements for the Regional Architecture and any of its Projects are
defined separately for each. Rad-IT keeps a list of all elements created throughout the Regional

39

Architecture so that these elements may be “Applied” to each other where necessary. We created
a single project and named it “E Call Project” for our Regional Architecture in our example since
the architecture will cover only one Service Package that will proposed in isolation of all other
possible ITS.

One of the main functionality that is offered to architecture user in this step is Architecture
Maintenance, where user can define the developers and maintainers of the architecture and
assign to it a version name or number (see Figure 43). Arc-IT offers its user a Change Log, where
the user can record and track the changes made to the selected architecture. Entries on the
Change Log contain the timestamp, the name and the version of the architecture and the
description of the changes made where all fields expected to be populated by the user.

u Mayday Notification Change Log *
Maintenance Records Maintenance Record Information
Date/Time Log Updated By Date/Time
12/05/2019 12:59:12 |1ms¢2019 1259012 | [Apply to Start Tab
Log Updated By
| M= e -
Version
1 Aveitosant Tao
Description
Start architecture creation in Rad-IT to generate examples to be
used in the paper

Figure 43 - The Change Log (source: author)

Rad-IT is a tabular based product where user can navigate the architecture creation steps through
the tabs. User needs to create a new architecture or open an existing one to unlock the tabs. Once
an architecture is created or selected the user is expected to follow the architecture creation steps
in the order of the tabs since changes made in each step will be determining for the following
steps. Nevertheless the user will be able to go to any tab they desire anytime during the
architecture creation to skip or revisit necessary tabs.

The Planning Tab is where the user defines objectives and strategies for their Regional or Project
Architecture (see Figure 44). These components are organized in two levels where and Objective
parent the subcomponent Strategy. One or more strategy may be defined for each Objective. The
user populates the goals for their architecture themselves by entering a name and a description for
their objectives / strategies and can assign numbers to each to be able to sort them. A source can
be defined for each objective such as National or Regional Traffic Management Policies,
Government Incentives and Programs etc.

40

Start Planning Stakeholders Inventory Services Needs R&R Functions Interfaces Standards Agreements

Current Regien: Mayday Netification

Objectives and Strategies ‘Objective/Strategy Attributes
Type Supports
Objectives: Regional Al Customize D
oduce E Mayd

-ation capability Number Name
[1] [introguce E Mayday Notification capabity to reduce traffic related fatalties| |

Description

Source

[tnesis |
Performance Measures: @ Selected O All

[A] Fatality relaed to road vehicle accidents
E Numeber of fatalities caused unavailability of immediate aid

Service Packages: @) Selected (O Al

‘@ PS04: Mayday Notification ‘

Projects: ® Selected O Al

‘@ E Call Project ‘

New Dekete [meey || canca

Figure 44 - The Planning Tab (source: author)

The user is expected to set Performance Measures for each objective / strategy they have added
to their architectures (see Figure 45). The Performance Measures are expected to be populated by
the user. The user can define categories for the criteria that they will be creating and assign
numbers to be able sort them.

[Performance Measures — O x
o— — =¥

|1. Decrease road accident related fataliies 50% by 2025 v‘ :: :: ‘ -

7 Category Number Limit Present

Include Category Number Performance Measure
&~ Public Safety - |1 Numer of fataliies caused by road accidents
[Public Safety v 2 Number of Fatalities not directly caused by the accident
» = System Reliability ~ |3 :,u;;.h;;:::ﬁmm where necessary emergency personnel was forwarded to Incident
. O -

| sy | cancel |

Figure 45 - Defining Performance Measures (source: author)

Lastly the user is expected to link the Service Packages that will fulfil the objective / strategies to
define how the ITS architecture relates to the Transportation Plans of the region / project. The
service packages selected to be associated with the objectives / strategies in this step will allow
Rad-IT to narrow down the Service Packages that will be offered in the Services Tab (see Figure
46).

Next step in architecture creation is the Stakeholders Tab. The user can define individual
stakeholders or associate them with Stakeholder Groups. The stakeholders defined in this step will

41

be used to associate them with inventory elements, agreements, needs and define the operational
concept by identifying their roles and responsibilities in the architecture.

Start Planning Stakeholders Inventory Services Needs R&R Functions Interfaces. Standards Agreements
Current Region: Mayday Motification

Stakeholder Attributes
Name

|Pragu&|l.|umcipa\ Management

~[]"" Ambulances (Helicopter)

Ambulances (Road)

[Ceské Vysoké Ugeni Technicke
i . Citizens of Prague

" Drivers

% . Emergency Services Association

“= Fire Department

" Pedestrians

= Police

Description

The transportation services wil be offered by the municipal management of Capital City of
Prague

: ¥l Prag Municipal Management
L[] Travellers
[] stakeholder Group r:‘
Included in O Associated @ All

[cttizens of Prague
D Emergency Services Association

Figure 46 - The Stakeholders Tab (source: author)

In the next tab the architecture user has to define elements that will be used in their architecture.
This step is the most crucial step in Arc-IT since user will be creating the Physical View of their
architecture. Since Arc-IT distributes Functional Objects directly associated to the Physical
Objects, the elements created in this step will be the foundation to describe the functionality of the
system(s). Since the Communications View consist of the Profiles describing the Protocols and
Standards of the necessary communication links between the Physical Objects, the elements
created in this step will also be used as an entry to the Communications View. Finally the
stakeholders defined as owners of the elements in this stage will be the foundation for agreements
in the Organizational View of the architecture.

The user is expected to have a broad understanding of how the Physical View of the Service
Packages are organised as they are described in the architecture website since they are required
to create the inventory of the elements that will be necessary to completely describe the system(s)
in their architecture. When creating an element the user is required to name the element and
define its type and class. An element may be,

- a normal element which is a part of transportation systems,

- an instance of an element,

- a communication element,

- a shared element which is also part of a Related Architecture
- or a Human who is operator or user of the system(s).

Communication Elements provide a way to create an inventory for important communication

elements that do not provide any transportation service directly. These elements will not have any
interface in the physical view but the interfaces between other types of elements will be assigned

42

to them. A Human element is a direct terminator to the system(s) and they cannot be assigned any
Functional Objects.

The elements are categorized in five Classes that were previously mentioned in the third chapter
of this paper, which are Centre, Field Equipment, Vehicle, Traveller Device or Support System.
The Physical Objects that will be suggested in the for the elements will be based upon their
classes. User may continue defining the stakeholder that is associated with the element, define its
status and populate a description for the element. An element’s status is defining its availability for
the current architecture which can be existing, planned, future or not applicable.

Any element that is to carry out a transportation related function is defined as a Physical Object in
Arc-IT. The architecture user should define which Physical Object the element is, to be able to
assign necessary functionality to the system(s). The user is offered a list of Physical Objects of the
selected type and class for the element but they are also able to select the Physical Object from a
list of all Physical Objects that were defined in Arc-IT.

Following the Mayday Notification Service Package we have created an inventory of 9 elements;
three Physical Objects, an Emergency Management Centre, a Vehicle OBE and a Personal
information Device that will provide the system with the main functionality, 3 terminating
subsystems which are Basic Vehicle, Other Emergency Centres and Other Vehicle OBEs along
with 3 Human elements, the Emergency System Operator, the Driver and the Traveller (see Figure
47).

Start Planning Stakeholders Inventory Services Needs R&R Functions Interfaces Standards Agreements
Current Region: Mayday Motification

Elements Element Attributes

Name

Elements: @ Regional O Al em center | j
] basic vehicle Type Class:
 driver
'j Transportation (Mormaly ~ | | Center v
= em system operator .
f Details
=] other em centers Stakeholder (Owner el Status (Region)
[other vehicle OBEs + | [Planned >
[Personal Information Device
o traveller
3 venicle OBE Description
Physical Objects: (O Selected (@) Related () &l
Z Emergency Management Center (Subsystem) ~
: Archived Data System <Support= (Subsystem)
: Authorizing Center (Subsystem) W
Projects: ®izeiected! O Al
E Call Project
SortBy: (@) Element () Stakeholder (O Physical Object

Hew Delete

Figure 47 - The Inventory Tab (source: author)

The architecture user can further define roles of stakeholders for each element that was assigned
as Physical Elements (see Figure 48). More than stakeholder can be assigned to a role for an
element for different statuses; an object may be owned by one stakeholder in “Planning” status but
may be owned by another in “Existing” status to be able to monitor how Roles and Responsibilities
of stakeholders will be changing throughout the project life cycle.

43

L Element's Stakeholders - m} X
Bement Name: |Dasic vehicle
Stakeholder Role Status
Car Manufacturers Develops Planned
Car Manufacturers Installs Planned
Car Manufacturers Owins Flanned
Ministerstvo dopravy CR Certifies Flanned
Drivers Owins Existing

b Drivers ~ | Operates Existing
Car Manufacturers Maintains Existing
Ministerstvo dopravy CR Verifies Existing

#*

Cancel

Figure 48 - Assigning Roles of Stakeholders for the elements (source: author)

The Services tab where user selects the Service Packages they would like to include to their
architecture is the next step in architecture creation. User may browse the list of all service
packages to go over the descriptions of them and evaluate one by one which ones to include along
the way or the may user the “Autoselect” function (see Figure 49). This function helps user to
reduce the list of all Service Packages into the list of Service Packages that was initially tied to an
Objective / Strategy in the Planning tab.

[Autoselect Services %

Planning Services Choose your Autoselect options and select ‘Continue’ when
RS0 you are ready to continue.
o
0 La
p &
o

Make These Changes

Continue Cancel

Add Service Packages selected on the Planning Tab

Remove Service Packages that are not selected on the Planning Tab

Figure 49 - Autoselecting Services (source: author)

The user continues with assigning elements that will be used in defining the Service Package and
selecting the projects that the Service Package will be included. Note that these selections are for
organizational purposes only and will not result with any implications for further steps in the
architecture creation. The Functions that will be available to assign to the elements are related to
which Physical Object they are and will not be changed or filtered in any way related to the Service
Package that they are assigned in this stage.

In the next step architecture user shall chose the Needs that will be fulfiled by the system(s)
described in the architecture (see Figure 51). User can define new Need Areas and add new
Needs to be addressed in their architecture. The “Autoselect” function is the only option to choose
among the Needs that are already defined with the architecture (see Figure 50).

Recommended Need Area Changes
Action Need Area / Architecture

» HAdd | PS04: Mayday Notification Mayday Motification

Figure 50 - Adding recommended Needs to architecture (source: author)

Architecture user is expected to go to the architecture website to study what Needs are already
related with the functional requirements. The requirements analysis is already done by the Arc-IT
while defining the functionality for the Service Packages. Each Need is referenced to some of the
functional requirements that are satisfied by Functional Objects that were defined in the Service
Package. Note that the Needs selected in this step are merely for documentation purposes only

44

and not definatory for the functionality of the system(s) to be defined with the architecture
no effect in the resulting architecture to exclude any needs or creating additional ones.

Start

Planning Stakeholders Inventory Services Needs R&R Functions Interfaces Standards Agreements
Current Region: Mayday Notification
Needs Need Attributes
Needs: (O Regional (@ Al Autoselect Agsociated Need Area N
PS04: Mayday Notificati
= [t PS04 Mayday Notification ey
N 01. Emergency Management needs to be able to determine that a crash or emergency s Mumber Applicability
N 02. Drivers need to be able to automatically or manually send a mayday alert or emerge 04 Applicable -
M 032. Pedestrians need to be able to send a mayday alert to Emergency g ino
04 Drivers need to be able to rebroadcast crash alerts to remote connected vehicles Need

N 05. Emergency Management needs to be able to route crash alerts to the appropriate &1
N 06. Emergency management needs to verify the crash alert message and/or provide ad

New Area New Need

Drivers need to be able to rebroadcast crash alerts to remote connected vehicles as well as
roadside “hotspets™ in order to forward mayday reguests even in areas where no vehicle to
infrastructure communications exists.

Comment

Projects: () selected @) Related

Figure 51 - Needs related to selected Service Package (source: author)

. It has

In the next step user shall define Roles and Responsibilities that would populate the
Organizational View (see Figure 52). User is expected to to populate their own Role definitions and
assign the stakeholders who will be Responsible for each Role.

Start Planning Stakeholders Inwentory Services

Role and Responsibility Areas
Autoselect

® A

| Emergency Management for E Call Project

Regional Areas: O Included

Ambulances (Helicopter)

Ambulances (Road)
: Ministerstvo dopravy er
i [[]z) Emergency Management for ecall trial

Delete

Needs

Functions Interfaces Standards Agreements

Current Region: Mayday Notification

Role and Responsibility Area Attributes

Name _J

Emergency Management for E Call Project |

Description

Service Packages: () selected ® Al

PS04: Mayday Motification (Instance 1) (Not in Region)
[] Ps04: Mayday Notification

® Al

Ambulances (Helicopter) ~
Ambulances (Read)
Ministerstvo dopravy cr

Aonled V bk h 112

Stakeholders: () Selected () Related

EKIEIE

O an

Projects: @ Selected

E Call Project

Figure 52 - The Roles and Responsibilities Tab (source: author)

45

The architecture creation continues with the Functions Tab where the user will be assigning
Functional Objects to the elements (see Figure 53). Note that it is only possible to assign functions
to elements which are classified as Physical Objects. The user can select the Functional Objects
that are defined for the Service Packages that they have included to their architecture from the list
or they can use the “Autoselect” function of Rad-IT. The user will be automatically offered the
Functional Objects that are related with the Service Packages they have selected in the Services
Tab.

i Start Planning Stakeholders Inventory Services Needs R&R Functions Interfaces Standards Agreements
Current Region: Mayday Motification
Elements Functionality
(®) Elements (O Functional Objects Specify Functionality f
basic vehicle
driver Functional Objects:) selected @ Al
alencener
em system operator
other em centers G sz EE
other vehicle OBEs
f" Personal Information Device Z Emergency Call-Taking ~
traveler Z Emergency Notification Support
‘f_" vehicle OBE : Emergency Commercial Vehicle Response
; [] Emergency Data Coliection
[] Emergency Dispatch
: Emergency Earty Warning System
: Emergency Envirenmental Monitering
: Emergency Evacuation Support
: Emergency Incident Command
: Emergency Incident Scene Safety Management
: Emergency Response Management
[] Emergency Routing v
Physical Object | Tyee |

Figure 53 - The Roles and Responsibilities Tab

The next tab in Rad-IT is the Interfaces Tab where the interaction between Physical View elements
is defined and also the Communications View is initiated. The architecture user shall define
interfaces in two parts. In the Connect part the user will be defining the interconnects that need to
be established between the Physical Objects. In the Flow part the user defines the Data Flow that
connect Functional Objects. The Data Flows between Functional Objects residing in different
Physical Objects will be passing through the interconnects.

We continue selecting all 8 interconnect that are necessary for the system described in Mayday
Notification Service Package (see Figure 54).

46

Start Planning Stakeholders Inventory Services Needs R&R Functions Interfaces Standards Agreements.
- eydsyNoufigtom AWnfercomnects (8Emves)
Element Element Include
basic vehicle wvehicle OBE E
driver wvehicle OBE E
em center em system operator E
em center other em centers E
em center Perzonal Information Device E
» em center vehicle OBE]
other vehicle OBEs wvehicle OBE I:‘
Personal Information Device traveller E

=

| [y]|

Figure 54 - Selecting Interconnects (source: author)

All possible information flows between Physical Objects are listed in the Flow part. The information
flows that are related to interconnects that were included to architecture in the last step are already
included here. We continue without making any selection in this part and confirm to include 24
Information Flows to our example architecture (see Figure 55).

Start Planning Stakeholders Inventory Services Needs R&R Functions Interfaces, Standards Agreements

- waydayNotifcation: AllArchitectureFlows (24Emres
Source Element Flow Name Destination Element Status Include =
em center emergency cperations status em system operator Planned ~ E
em center incident report other em centers Planned ~ E
em center emergency acknowledge Personal Information Device Planned - B

» Planned ~
em center emergency data request wehicle OBE Planned ~ E
em system operator emergency operations input em center Planned - B
other em centers incident report em center Planned ~ E
Perzonal Information Device emergency notification em center Planned ~ E
Personal Information Device traveler interface updates traveller Planned - B
traveler traveler input Personal Information Device Planned ~ @
vehicle 0BE driver update information basic vehicle Planned ~ E
vehicle OBE driver updates driver Planned ~ E
wvehicle OBE emergency notification relay em center Planned ~ @
vehicle OBE emergency notification em center Planned ~ E
other vehicle OBEs emergency netification relay wehicle OBE Mot Applicable ~ |:|
other vehicle OBEs emergency acknowledge wehicle OBE Mot Applicable ~ |:|
other vehicle OBEs emergency notification wehicle OBE Mot Applicable ~ |:|
vehicle OBE emergency netification relay other vehicle OBEs Mot Applicable ~ |:|
vehicle OBE emergency notification other vehicle OBEs Mot Applicable - |:|
vehicle O0BE emergency acknowledge other vehicle OBEs IMiAmimlh ~ |:| w
[incude sl { ‘ Clear All | | Apply | ‘ Cancel |

Figure 55 - Selecting Information Flows (source: author)

As mentioned in the introduction, one of the main purposes for developing and using ITS
architectures is to consider common standards on similar interfaces across the architecture. The
Standards in the Standards tab address the interfaces between ITS elements and provides
descriptions for the Communications View of the architecture (see Figure 56). Most of the

47

Information Flows defined in Arc-IT is already cross referenced to the standards related to specific
type of communication. Upon determining the information flows between elements the user is
presented the applicable standards to the information flows they have included in their
architecture. The standards are defined for information flows instead of the interfaces. Common
standards are grouped into profiles to be able present them in a simple way. Architecture user is
provided with a report that they can generate that is listing applicable standards for each
information flow to further investigate how the Communication View is organized. Standards are
identified for almost all of the information flows with few exceptions. Rad-IT provides the capability
to define new standards, or copy or modify existing ones to architecture user.

Start Planning Stakeholders Inventory Services Needs R&R Functions Interfaces Agreements
Mayday Notification $tandards (10 Entries)
Group Group/Doc D Title sSDOo Dg::;d Include
- I S N
RSEGateway-VehicleDestin... | Vehicle Communications via RSEs, Vehicle Destination Profile
RSEGateway-VehicleSource | WVehicle Communications via RSEs, Vehicle Source Profile I:‘
Wehicle-On-Board Vehicle-On-Board Profile |:|
WAW-ASNT Wide Area Wireless using ASM.1 as encoding method Profile |:|
WAW-WWWBrowser-JSON | Wide Area Wireless using JSON as encoding method Profile |:|
WAW-XML Wide Area Wireless using XML a= encoding method Profile |:|
|:| SAE J2313 On-Beard Land Vehicle Mayday Reporting Interface Society of Autemotive Engin... |:| |
|:| SAE J2735 Dedicated Short Range Communications (DSRC) Message Set Dicticnary Society of Autemotive Engin... |:|
|:| SAE J3087 Candidate Improvements to Dedicated Short Range Communications (D3RC) Message Set Dictionary [S... | Society of Autemotive Engin... |:|
New Copy Modify

Figure 56 - The Standards Tab (source: author)

The final step in creating Regional Architecture with Arc-IT is the Agreements Tab where the
architecture user to further develop the Organizational View. Similar to the interfaces of a system,
the agreements are interfaces between agencies and organizations who are stakeholders of the
system(s). Agreements define how a stakeholder interacts with other stakeholders, what service is
provided or acquired, which information need to be exchanged and how this exchange will be
done, and the roles and responsibilities of the stakeholders. The expected terms of agreement are
security, budget, scope, boundaries, standards, information exchange formats. Arc-IT provides
many different types of agreements such as formal agreements, financial agreements, operational
agreements and many other types that differ in their scope or complexity. A Lead stakeholder can
be assigned to agreements wherever necessary and these may be from all list of stakeholders
even they are not part of the agreement. Architecture user may populate their own agreements in
addition to agreements that would be suggested by Rad-IT. If architecture user utilizes the
Autoselect function Rad-IT provides agreement suggestions based on the information flows
created between Physical Objects (see Figure 57). Each Physical Object was assigned a
stakeholder as their owner in the Inventory Tab. Based on this assignment Rad-IT suggests that
an agreement is needed when Physical Objects owned by different stakeholders exchange
information.

48

|| B Autoselect Agreements - m] ®

Interfaces Agreements Choose your Autoselect options and select ‘Continue’ when you are ready
to continue:

=l S

Iake These Changes: Autoselect Agreement Options
Add agreements that are supported by flows (® Create one agresment per stakeholder pair

[] Autogenerate generic agreement descriptions (O Create one agresment per service package

Figure 57 - Autoselecting agreements (source: author)

We proceed with adding agreements based on the information flows in the architecture. There
were three Physical Objects defined in our example architecture, an emergency management
centre owned by Emergency Services Association stakeholder, Vehicle OBE owned by the drivers
stakeholder and Personal Information Device owned by the travelers stakeholder. Two information
provision agreements were offered by Rad-IT based on the information flow between these
Physical Objects, one between Drivers and Emergency Services Association and one between
Travellers and Emergency Services Association (see Figure 58).

Recommended Agreement Addiions
Title Type
1 Emergency Services Association Drivers Information Provision Agresment | Information Provision Agresment;
2 |Emergency Services Association Travellers Information Provision Agresment Information Provision Agreement,

Figure 58 - Recommended agreements based on Information Flows (source: author)

»

Rad-IT recommends a generic “blanket” agreement assigned to the service package where
architecture user populate agreements that bind all stakeholders defined for the service package in
the Services Tab, such as operating procedures, non-disclosure agreements etc. (see Figure 59).

Recommended Agreement Addifions
Title Type Description
b 3 [Mavdav Motification Blanket Aaresment Service Packaoe Blanket Aarsement This is a blanketagreementasso

Figure 59 - Recommended agreements based on Service Packages (source: author)

A total of 3 agreements are offered by Rad-IT for our example architecture (see Figure 60).
Architecture user may continue defining agreements, such as the user agreement with the vehicle
owner or the agreements with GSM operator for our example to complete defining the
Organizational View.

49

Start Planning Stakeholders Inventory Services Needs

Current Region: Mayday Notification

Agreements

Autoselect

Number Title
'y Emergency Services Association Drivers Information Provision Agres
52 Emergency Services Association Travellers Information Provigion Ag
%53 Mayday Motification Blanket Agreement
£ >
() Number () Title (@) Both
Hew Delete

R&R Functions Interfaces Standards Agreements
Agreement Attributes
Title @
|Emergen:y Services Association Drivers Information PruvﬁinnAgreem|
Humber Status
|1 Planned ~
Type
Information Provision Agreement (Specific) [
Description
This is a(n} Infermatien Provizion Agreement between Emergency Services Association and
Drivers.
L ead Stakehaider Applies to Interfaces...
v
Stakeholders: () Selected (@) &
[Drivers
Z Emergency Services Association
1 Ambidancras (Halicnnbar
Projects: O Selected @ All
[] E call Project

Figure 60 - Agreements Tab (source: author)

There are many artefacts offered with creation of a Regional architecture in Rad-IT that can be
accessed from the Output ribbon at the top of the screen (see Figure 61). These artefacts are few
diagrams representing Physical and Communication Views, a variety of detailed tables, a
document describes the regional architecture carrying the information specified and populated by
the architecture user from all eleven tabs of Rad-IT to a Microsoft Word template document and a
Web Page created in htm or html format that conveys all information of the architecture tabs in a
format that user can easily navigate between parts of the architecture and access to the tables

linked to the website.

Output

& E @9

Diagrams Tables Document Web

Figure 61 - The artefacts that can

The first diagram offered to the architecture user is the Subsystem diagram where the Physical
Objects in the architecture and the Communication links between them are displayed according to

their classes. Below is the Subsystem diagram generated for our example architecture (see Figure
62).

Pages

be produced with Rad-IT (source: author)

50

Traveler Devices
1 Archived Data Data Distribution Personfal
System System Information
Sys SYE Device
B Privacy Protection — ' Traveler Support
Map Update System — . .
pue b Gateway Field Equipment Eguipment
R L Support Border Inspection Commercial Vehicle
Service Monitor e System Check Equipment
System .
Equipment
Connected Vehicle Electric Charging
renter Roadside Equipment Station
Field Field Maintenance Vehicles
Equipment
| thorizing Cent Cent Commercial Vehicle
Authorizing Center enter
2 I IS Roadway OBE
Intermodal Terminal
Equipment
1
E ons Emergency Vehicle
Management Center TS Roadway Parking Management OBE
Payment Equipment System
Maint and Constr Freight Equipment
Management Center Security Monitoring
C r to Field Equipment
Payment _ S Maint and Constr
Administration e | Transt i ! " \ehicle OBE
- Center Center
Center _ —_
1 Transportation Transit Viehicle OBE
Information Center
Wide Area Wireless LECEFIEE
Center to Center Short Range Wireless

Figure 62 - The Subsystem Diagram (source: author)

The Interconnect diagram is a high level representation of the information flow between Physical
Objects. Below is the interconnect diagram produced for out example architecture (see Figure 63).

Emergency Services Association

driver
em center Personal Information Device
T I ——— .
| e - - H
e e s |
\ \L‘ | |
r |
| |
em system operator Emergency Services Association traveller
vehicle OBE other em centers
e
| .
| ‘
basic vehicle }
\
\
\
F————— J
J
other vehicleOBEs ~» —————~ Planned

Figure 63 - The Interconnect Diagram (source: author)

51

The final diagram that the architecture user is provided is the Flow diagram where all Information
Flows between the architecture elements are represented. Below is the Flow diagram for our
example architecture (see Figure 64).

Emergency Services Association other vehicle OBEs
em center Personal Information Device
| TTT FTTT temergenwnnﬁﬁcahnn ————— | F 1T Teaeter intertace updates — — — — — il
I || | -emeroency notfication relay — — — — | | “evelerinput- — — — — — — — — 1 |
| | emergency acknowledae — — — — 7 | | ||
| | | Lemergency data request— — — — — | | ‘ |
‘ ‘ —emergency acknowledge— — — — — -’—H— -’— ___________ ‘ ‘
| || emerseney nastiston — — — — — — e — J [
— | I | -emergency acknowledge — — — — — — — — — — ——— — — — — — —] | |
remergency opefations input emergency ntification — — — — — — — — — — — — — — — — — — —
| | pincident repo ‘ [‘EmErgEncyrmhﬁcalmn relay- — — — — —————— —— — — — — — —! | .
\
‘ Ll basic vehicle driver traveller
|1 vehicle OBE
|1
|1
Il
" R ———— ik T
| | “arnver ingut information — — — — — — — | N
L J“ L hostvenicle status— — — — — — — — — — | |
emergency operations status | | Lrver updates- — — — — — — BN
SE—= driver input— — — — — — — — —
| ‘ ‘ Lrequest for service — — — — — — — — J
!
[em system operator ™
\
\
\
l——
Emergency Services Association [Plamed
other em centers

Figure 64 - The Flow Diagram (source: author)

The architecture user is offered a list of tables where they can produce tabulation related to
general and administrative information related to architecture, specific information related to
stakeholders, the interaction between architecture elements and many more information defined
throughout the architecture tabs along with tables created to check the logical consistency of the
architecture (see Figure 65). The tables can be produced in Word, Excel or .csv formats.

Output Tables x
P

1. Select Table Filters

- Summary / File Info
- Stakeholder Topics
- Physical Components & Services
£ Interfaces & Standards
- Interconnects

Information Flows

Flow Defintions

Standards
& Check Your Architecture
- Region te Project Comparison

2. Select Columns

Available Calumns Selected Columns
Source Element
Destination Element
Fow Name
Fow Status
Comment
<<
3. Select Action
®) Saveto File () Open Application
4. Create Output
[Roll up muttiple rows into a single row
FR En,:|_| E=2]
10 Sl Sesv
Word Excel Text

52

Figure 65 - The Table outputs of Rad-IT (source: author)

In addition to the Diagrams and Tables, Rad-IT offers its user the ability to generate a document
for their architectures (see Figure 66). This document carries all information selected or populated
throughout the tabs of Rad-IT to a template Microsoft Word document contains basic definition and
explanation of the topics and fields in the architecture along with the information populated by the
user and provides ability for user to access all information in one place. The document then can be
further modified to contain logos, images and additional text that the user decides to include to
their architecture. All available output tables that the user can generate in previous section are
generated and included automatically in the document for further convenience of the architecture
user.

m Home Insert Page Layout References Mailings Review View Foxit PDF

= TV = ._
=) Arial 20 A A Al D T 2111+ AaBbCcD daBbCcl %
Paste B 7 U -ahe x, xX* by A+ o n4 1 Caption Emphasis |— Change
- 7 - : — & T | Styles +
Clipboard Font Styles

I'l'I'Z'I'E'|'4'|'E'|'5'I'_-_"I'E-'I'E'|'1:"|'11'|'12'|'13'|'14'|'15'|'H\|'|'1_'-
T T T T T T T T T T

Elt!-l-z-l-l-l-

EE<

Table of Contents

T INTRODUCTION ettt es s st ees ettt e2 e 22t e s nneseeen 1
2 ARCHITECTURE SCOPE.... 2
3 RELATIONSHIP TO PLANNING ... 3
4 TS STAKEHOLDERS ettt em st et ean e 5
S TS INVENTORY 6
B S SERVICES 7
7 ARCHITECTURE NEEDS .. 10
8 ROLESAND RESPONSIBILITIES o 13
D FUN T IO A L Y et er sttt ee s eenennennne 14
10 INTERFACES BETWEEN SYSTEMS 16
T TS STANDARD S 17
12 AGREEMENT S et e sttt se et em e sneeen 19
APPENDIXA. FUNCTIONAL OBJECTS DETAILS ..o 20
APPENDIXB. INTERFACES DETAILS 22

Figure 66 - The Table of Contents of the output document (source: author)

Finally the user can export the architecture to .htm or .html format that can be uploaded to internet
as a Web page (see Figure 67). The full content of the architecture document that was explained
previously is carried to this format and organized into sections that are linked to each other to
simplify the presentation and navigation through the architecture. Below is the first screen of the
Web page output for our example architecture.

53

rAD-ITv Mayday Notification Service

Home

i Welcome

Planning This Regional ITS Architecture is a roadmap for transportation systems integration. The
Stakeholders architecture was developed through a cooperative effort by the region's transportation agencies,
Inventory covering all modes and all roads in the region. It represents a shared vision of how each

agency's systems will work together in the future, sharing information and resources to provide a

i sl o safer, more efficient, and more effective transportation system for travelers in the region.

By Stakeholder The architecture provides an overarching framework that spans all of the region's transportation
Services organizations and individual fransportation projects. Using the architecture, each iransportation
Roles and Resp project can be viewed as an element of the overall transportation system, providing visibility into
Needs the relationship between individual transportation projects and ways to cost—effectively build an

integrated transportation system over time.

Interfaces The purpose of this regional ITS architecture web site is to encourage use of the regional ITS
Standards architecture and gather feedback so that the architecture is used and continues to reflect the
Agreements intelligent transportation system vision for the region. The menu bar at left provides access to the
- stakeholders, the transportation systems in the region (the Inventory), the transportation—related
Projects - S s X . A
functions that are envisioned, and the existing and planned integration opportunities in the
region.

... sendEmaiComments 19052009 |
Figure 67 - The Web Page output of Arc-IT (source: author)

The user is expected to continue developing lower level Project Architectures for the projects

defined in their Regional Architectures with the computer based System Engineering Tool for
Intelligent Transportation offered with Arc-IT, which will not be covered with this paper.

54

Chapter 4 - A New Tool for Modelling the Architectures

Chapter 4.1 - Introducing Enterprise Architect

Enterprise Architect is a repository based modelling software which enables user to benefit from a
wide range of state of the art modelling standards such as UML, BPMN, SysML and more.
Enterprise Architect supports architecture frameworks such as TOGAF, Archimate and others. In
addition to building models the software aims to assist its user in requirement analysis, simulation,
testing and documenting their architectures. With the repository based approach the tool offers
more than visual representation, the user is able to generate multiple views for their models using
the same repository elements and any change done for an element in a single representation can
be reflected in all models that the element is being used. Supporting many high end features for
architecture modelling the tool is widely used in many industries. Since it is also the preferred tool
for use by 1ISO TC204 and CEN TC278 for the development of ITS related standards, Enterprise
Architect was selected to be the tool in our proposal for improving FRAME. The Architectures for
both the eCall and the Mayday Notification Service Package will be visualized and a Model Library
based version of the Selection Tool will be created using Enterprise Architect software in the
coming sections of this paper.

55

Chapter 4.2 - Describing eCall on Enterprise Architect

We decided to describe the eCall architecture that we have created with the FRAME Selection
Tool in Enterprise Architect. We will be using Data Flow Diagrams to visualize our models. The
High and Low Level Functions will be represented by Processes, Terminators with External type
elements, Data Stores will be Data Stores and the interaction of the elements will be represented
with Data Flows. The Processes are represented as a circle, the External elements are
rectangular, the Data Stores are two parallel lines with some space between them and the Data
Flows are represented as arrows going from one element to another and the direction of the flow is
emphasized with the arrow heads on the Data Flows.

We started describing the system in the highest level and created the Context Diagram to display
the system’s interaction with the Terminators, the External elements which reside outside of the
system boundaries (see Figure 68). In this level of representation we see the whole system
depicted as a single process, the circle written “ECall” on it. The chain symbol on the process
notifies that the process is further linked to another Data Flow Diagram, which would be
representing inside the system boundaries in this case. By allowing to nest the diagrams in such
way Enterprise Architect supports the system depicted in an hierarchical structure, where several
levels of representation of the processes is possible. Data Flows that connects the system with the
External elements are represented in detail, depicting each piece of information that is exchanged
rather than clustering them in to interfaces, such as “to Emergency Systems” of “from Emergency
Systems”. This is because the Enterprise Architect does not support the Data Flows to be
hierarchically nested into parent and sub Data Flows. Please note that the Data Flows shown to be
connecting a Terminator and the system in this level of representation does not contain the
information of which Low Level Function is related with the Data Flow. The Data Flows are
represented to be going in and out of the system for illustration purposes only. These Data Flows
represent the interfaces that need to exist between the system and its Terminators and each Data
Flow need to pass through these interfaces. The true nature of the Data Flows that displays the
exact Source or Destination Processes should be represented with lower level data flow diagrams.

Wehicle Systems

Human Machine [w.ws)
Interface [v.hmi) tv.hmi-
WS-

eCall_response /]
fes-

output_data \
EMErgency_progress_report
vehicle_position_for_eCall
fes-
emergency_services_information
fes-

intervention_snswer tes-
intervention_request

fu.vs-
input_data

Emergency
Operator [o.e0)

Location Data
Source (lds)

Emergency Systems
[e=) tes-
global_progress_report

56

Figure 68 - eCall Example Context Diagram

We proceed to represent inside of the system boundaries with a lower level data flow diagram (see
Figure 69). This diagram corresponds to the DFDO for the FRAME Functional Viewpoint which
displays the interaction between the Functional Areas defined for the system. First the diagram
was created and then it was linked to the eCall Process that was represented in the Context
Diagram. This linkage was represented with a chain symbol on the eCall Process and the lower
level data flow diagram is accessible by double clicking on the parent Process in Enterprise
Architect. The Functional areas are represented as Processes and similar linkages were
established for the Functional Areas that link them with lower level data flow diagrams that display
the system inside each Functional Area. Just as it is in the Context Diagram, the Data Flows
between Functional Areas are illustrated to represent the interfaces that must be built between the
Functional Areas but do not express the correct Source or Destination Low Level Functions. The
relationship of Functional Areas and the Terminators are excluded from this diagram since the
elements outside system boundaries are not represented in this level.

psef.pshvs_eCall_first_acknowledgement ————._>

——
psef pshvs_eCall_final_acknowledgement ‘_'_"“"'--L

/ Functional Area 5 - In-

Functional Area 2 - Vehicle Systems

Emergency Naotification and
Rezponze

iy /

Figure 69 - DFDO for eCall Example (source: author)

Inside the Functional Area 2 - Emergency Notification and Response is defined a single High Level
Function depicted as a Process. The Process is represented on its own, without any interaction
since there is no other High Level Function was selected for eCall and the functionality that
interacts with other parts of the system is either in the lower level or the higher level
representations of the system (see Figure 70).

2.1Manage
Emergencies

o0

Figure 70 - DFD2 Emergency Notification and Response for eCall Example (source: author)

The High Level Function 2.1 - Manage Emergencies consists of a High Level Function, two Low
Level Functions and a Data Store (see Figure 71). The Data Flows between the Low Level
Functions and the Data Store represents the actual Data Flows with their correct source and
destination elements. The High Level Function 2.1.2 - Manage Emergency Intervention is
associated with further Low Level Functions and the relationships with higher level elements in the
architecture are not displayed on this diagram.

57

anage
PSEf_control_progress_report_processing response =
e L I R S A psef_common_data_for_emergency classification
psef_control_identity_and_clarification_response
psef_emergency_respanse_statistics_response

psef_control_identity_and_clarification_request

peaf_contral_intervantion_planning

z

D2.1Common
Emergency Data

Figure 71 - The Data Flow Diagram representing the High Level Function 2.1 (source: author)

There are four Low Level Functions and a Data Store selected for High Level Function 2.1.2
Manage Emergency Intervention (see Figure 72). All of the Data Flows represented in the diagram
below are the actual Data Flows defined in the architecture since this is the lowest level diagram
related with the Process and the all Processes that are displayed are Low Level Functions. This
diagram excludes the interaction with the rest of the Low Level Functions inside the Functional
Area, with the Low Level Functions of the Functional Area 5 - In-Vehicle Systems or the
Terminators of ECall since these elements are not represented in this level.

58

2.1.2.1 Identify
and Classify
Emergencies

psef_incident_description_for_classification psef_emergency_id_for_re-

classification

psef_incident_description_to_manage_information
psef_description_of_emergency_for_classification

psef_emergency_description_to_manage_information

psef_emergency_id_for_planning 2.1.2.5 Manage
o) ‘_-— sef_read_emergency_data
Incident and D "

Emergency
Data

psef_load_smergency_data

psef_selected_emergency_plan_description /
psef_emergency_data_for_planning_intervention ezt emzmeTe_sEms ISR
/ psef_emergency_description_PEFR

D2.2 Incident And
Emergency Data

2.1.2 4 Process

Emergency
2.1.2.3Plan Progress
Emergency Reports

Intervention

psef_emergency_id_for_processing

‘we e T e //

planning

Figure 72 - Data Flow Diagram representing High Level Function 2.1.2 Manage Emergency
Intervention (source: author)

We have summarized the Functional Area 5 - In-Vehicle Systems of the eCall example with the
below chart (see Figure 73). The first square represents the High Level Functions inside the
Functional Area and the interaction between them. Only one Low Level Function for each High
Level Function was selected in the eCall example. All of the diagrams below exclude the
relationship of the Processes in this Functional Area with the Processes in Functional Area 2 -
Emergency Notification and Response and the Terminators of the system following the method
hierarchical representation mentioned above.

59

5.11.7 Provide

In-vehicle eCall
Facilities

5.11 Provide
Driver
Monitoring and

eCall

pshvs_eCall_information

oo

pshvs_accident_detected

5.12 Provide 5127

Vehicle Communicate
Communications with In-vehicle
Interfacas Systems

oo

Figure 73 - The lower level Data Flow Diagrams in Functional Area 5 - In-Vehicle Systems of eCall
Example (source: author)

60

Chapter 4.3 - Proposal: Modelling FRAME on Enterprise Architect

FRAME offers its user the ability to create an architecture for their projects with the Selection Tool
and the user ends up having lists of elements they have included in their architecture at the end of
the selection process, but not a visual representation of their architectures. Although the user has
the complete lists of elements, this output is not enough to “clearly communicate” about the
system(s) as it is aimed with having an architecture in the first place. The architecture user needs
to transfer these otherwise complex lists to another tool and visually model the systems to be able
to create a harmonious understanding of the systems by all parties that are involved with the
system(s). We found that by using several functionality that was built in with the Enterprise
architect it is actually possible to mimic the Selection Tool and the architecture creation process of
FRAME without losing any details related to architecture in addition to access modern architecture
products such as Data Flow Diagrams represent user’s selection and many more features offered
available by the Enterprise architect. In this part we will model the part of FRAME that was related
with the eCall example and propose a Library of FRAME User Needs and functions to be created
in Enterprise Architect. We will demonstrate how the architecture user may benefit from such an
architecture creation method via the eCall example. We will show how this methodology could be
extended to cover all FRAME User Needs and Functional Viewpoint. Finally we will comment on
how the Physical Viewpoint representation may be added to this method of creating ITS
architectures.

To begin modelling the FRAME we first created a Data Flow Diagram that represents the
Functional Viewpoint of the eCall example in its lowest level (see Figure 74). We have transferred
all Low Level Functions, Data Stores and Terminators that was selected to Enterprise Architect
and connected them with Data Flows that uses the lowest level source or destination elements,
disabling the hierarchical representation of the Functional Viewpoint. This allowed us to relate the
elements with each other correctly where each Data Flow represents the actual interaction that will
take place between elements.

61

D2.2 Incident And
Emerzency Data

psaf_emergency_data_for_planning_intervention

2.1.2.4Process
Emergency
Progress
Reports

psef_emergency_id_for_re-
classification

nnnnnnn
Emergency Systems

2.1.2.1 Identify
and Classify
Emergencizs
fes-emergenc y_services_in farmation 2.1.23Plan in_requast
Emergency
Intervention

psaf comman_data_for_emergency_classification

psef_comman_data_for_emergency_intervention_plans:

ipsef_control_identity_snd_clarification_raquast:

sef_control_intarvem
rovide sef_control_intervention_pla
A n
i ata
nc
pef.pshvs_eCall final_scknowledzement
=
psef pshpshvs psef_eCall_dats dgamant
i -«
v

psef_maintain_emergency_data_operstor_request
Emargency

Operator (o.e0)

Location Data
Source (Ids]

flds-vehicle_position_for_eCall

HumanMachine | W=

Interface v.hmi) v hmi-

pshvs_sCall_informatian

input_data

Figure 74 - Lowest Level Data Flow Diagram for eCall example. (source: author)

Connecting elements in Enterprise Architect defines “Relationships” between them that are coded
to the connected elements (see Figure 75). Each Data Flow in the lowest level Data Flow Diagram
above defines a relationship between the elements that they connect. These relationships may be
traced back in any other diagram that would include the particular element since they are attached
to the element as soon as they are established. These relationships will be the basis for
automating the creation of the Functional View, which will be explained later in this section. The
figure below displays the list of elements that have relationship with the Low Level Function 2.1.2.3
- Plan Emergency Intervention.

62

2.1.2 1 Identify
and Classify
Emergencies

emergency_classification
’

1

T L
[psef_request_smergency_response_statistics

fes-emergency_services_information

psef psef_control_progress_report_processing onse y

e

LI T
Z

Z &

Z as-

%

gingrvan:mn_
2.1.2.3Plan il
Emergency [T

N e

Intervention [

\\\\\\\

¢
67/7//// m

% Lowest Level Data Flow Diagram x

Relationships

Stereotype

DFD_DataFlow
DFD_DataFlow
DFD_DataFlow
DFD_DataFlow
DFD_DataFlow
DFD_DataFlow
DFD_DataFlow
DFD_DataFlow
DFD_DataFlow
DFD_DataFlow

Source Type Source

External
Process
Process
Process
Process
Process
Process
Process
Process
Process

Emergency Systems

2.1.9 Provide Emergency Operator Interface

2.1.5 Provide Access and Maintain Data for Emergency
2.1.2.1 Identify and Classify Emergencies

2.1.2.5 Manage Incident and Emergency Data

2.1.2.4 Process Emergency Progress Repaorts

2.1.2.3 Plan Emergency Intervention

2.1.2.3 Plan Emergency Intervention

2.1.2.3 Plan Emergency Intervention

2.1.2.3 Plan Emergency Intervention

Target Type
Process
Process
Process
Process
Process
Process
Process
Process
Process
External

Target

2.1.2.3 Plan Emergency Intervention

2.1.2.3 Plan Emergency Intervention

2.1.2.3 Plan Emergency Intervention

2.1.2.3 Plan Emergency Intervention

2.1.2.3 Plan Emergency Intervention

2.1.2.3 Plan Emergency Intervention

2.1.2.4 Process Emergency Progress Reports
2.1.2,5 Manage Incident and Emergency Data
2.1.9 Provide Emergency Operator Interface
Emergency Systems

Figure 75 - List of elements that have relationship defined with the selected Low Level Function

2.1.2.3 - Plan Emergency Intervention (source: author)

We have created a library of elements that compose the Functional Viewpoint of the eCall example
by listing the Low Level Functions, Data Stores and Terminators that were used in the lowest level
Data Flow Diagram for the example (see Figure 76). This library will be used as a basis for the
Subsequent Passes while creating a project architecture, which will explained later in this section.

4 [5] 02. Functional Viewpoint

% Context Diagram

% Lowest Level Data Flow Diagram

«DFD_Extemals Emergency Operator (o.e0)
«DFD_Externals Emergency Systems
=DFD_External> Human Machine Interface (v.hmi)
«DFD_External» Location Data Source (lds)
«<DFD_External= Vehicle Systems (v.vs)
«DFD_Process= E Call

2 E Call

cppooo

4 O «DFD Processs Functional Area 2 - Emergency Notification and Respanse

= Functional Area 2 - Emergency Notification and Response

4 O «DFD_Process» 2.1 Manage Emergencies
#% 2.1 Manage Emergencies

= «DFD_DataStore» D2.1 Common Emergency Data

b O «DFD,

Process» 2.1.2 Manage Emergency Intervention

Q «DFD_Process» 2.1.5 Provide Access and Maintain Data for Emergency

(2 «DFD_Process» 2.1.9 Provide Emergency Operator Interface
4 O <DFD_Processs Functional Area 5 - In-Vehicle Systems

> O «DFD_Process 5.11 Provide Driver Monitoring and eCall

£ AR emeaee O

Figure 76 - The Functional Viewpoint library of eCall example (source: author)

o

Having the Functional Viewpoint library created we proceeded to create the list of User Needs that
was selected in the eCall example. We used the Requirement Specification View Diagram in the
Enterprise Architect that allows a text based editor to generate the requirements for an
architecture. We have transferred the User Needs along with their descriptions to this diagram

(see Figure 77).

63

ltem Stereotype Status Difficulty Priority
= 5.1.0.1 UserRequirement Propased Medium Medium

The system shall be able to make an 'sGall’.

@ 5.1.0.2 UserRequirement Propased Medium Medium
The system shall be able to detect that the vehicle has been involved in an accident, identify its location, and initiate 'eGall’
automatically.

@ 5.1.0.3 UserRequirement Proposed Medium Medium
The system shall enable the driver, or any other vehicle sccupant, to make an ‘eCall!, and to receive confirmation that the call
has been acknowledged, from outside the vehicle, i.e. at the roadside.

= 5.1.0.4 UserRequirement Proposed Medium Medium
The system shall be able to give the driver an immediate acknowledgement to his/her emergency call, i e. to indicate that
assistance is on the way

[5.1.0.5 UserRequirement Propased Medium Medium

The system shall be able to identify the driver / vehicle making an emergency call,

Figure 77 - The Requirement Specification View Diagram for eCall example (source: author)

Each entry in the Specification View Diagram creates a requirements element in the Enterprise
Architect Model Library. We have hierarchically organized these elements as it is in the User
Needs of FRAME (see Figure 78). The library of User Needs will be used as an entry point in the
First Pass of architecture creation, just as it was in the original Selection Tool of FRAME.

4 [UserNeeds
F srequirement= 5 Emergency Services
F «requirements 5.1 Emergency Notification and Personal Security
F srequirements 5.1.0 Basic Services

[s]

«UserRequirements= 5.1.0.1

]

«UserRequirement= 3.1.0.2
«UserRequirements 5.1.0.3
«UserRequirement» 5.1.0.4

8 EE

«UserRequirement= 5.1.0.5

(]

«UserRequirement= 5.1.0.6
[/ «UserRequirement= 5.1.0.8
4 srequirement» 7 Traffic, Incidents and Demand Management
F «requirements 7.2 Incident Management
4 srequirements 7.2.0 Objectives
«UserRequirements 7.2.0.6
«UserRequirement= 7.2.0.7
A «requirements 7.6 Cooperative Systems — Value-Added and Other Services
4 srequirement» 7.6.1 eCall
«UserRequirement= 7.6.1.1
4 srequirement» & Intelligent Vehicle Systems
4 7] greqirements 85 Safety Bead

Figure 78 - The User Needs Library created for eCall example (source: author)

The User Needs that was included in the eCall example than were referenced to the Low Level
Functions that they require, as it is in FRAME (see Figure 79). Relationships are defined between
User Needs and Low Level Functions are the basis for the First Pass in FRAME, this will allow
user to select the primary functionality for their architecture by selecting the User Needs.

64

Figure 79 - Mapping User Needs to Low Level Functions (source: author)

The Functions that are mapped to User Needs can be traced back similar to the Data Flow
relations between the Functional Viewpoint elements. Below is the list of User Needs those have
relationship defined with Low Level Function 2.1.2.1 Identify and Classify Emergencies (see Figure
80).

2.1.2.5Manage
_ =% incidentand
- Emergency

2.1.2.1dentify
znd Classify
Emergencies

@start Page * Lowest Level Data Flow Diagram \E*One Level Requirement Hierarchy x |‘Eg Requireme

Relationships

Stereotype Source Type ¥ Source ~ TargetType Target
UserRequirement 7.6.1.1 Process 2.1.2.1 Identify and Classify Emergencies

UserRequirement 7.2.0.7 Process 2.1.2.1 Identify and Classify Emergencies
UserRequirement 5.1.0.8 Process 2.1.2.1 |dentify and Classify Emergencies
UserRequirement 5.1.0.6 Process 2.1.2.1 Identify and Classify Emergencies

UserRequirement 5.1.0.5 Process 2.1.2.1 Identify and Classify Emergencies
UserRequirement 5.1.0.4 Process 2.1.2.1 Identify and Classify Emergencies
UserRequirement 5.1.0.3 Process 2.1.2.1 Identify and Classify Emergencies

Figure 80 - User Need relationships with the Low Level Function 2.1.2.1 Identify and Classify
Emergencies (source: author)

With creating the User Needs and Functional Viewpoint libraries we have finalized transferring
FRAME elements to Enterprise Architect. We have defined relationships between each element of
the Functional Viewpoint of the eCall example and also between the User Needs and the
Functional Viewpoint. Now we will explain how to use this libraries and the relationships to
automate the architecture creation and offer our method to replace the Selection Tool of FRAME.

We have added a blank Data Flow Diagram in our Model Library in Enterprise Architect and
named it “Create Your Architecture”. This blank diagram will be used by the architecture user to
create their own architectures out of FRAME. User is expected to select the User Needs from the
Model Library and “drag & drop” them to this blank diagram. When an element is inserted to a

65

diagram on Enterprise Architect, the elements that have a relationship defined with that can be
imported to the diagram by using the “Insert Related Elements” functionality (see Figure 81). This
feature of Enterprise Architect is the main factor of the architecture modelling method that we
propose in this paper.

Project Browser v R x> s OGS EEA [insert Related Elements... |
11 %8 | + 3 | == Clane Element as New Version...

Global Context Advanced >

4 o4 Model Wew Child Diagram »
I> [Z] Physical Viewpoint New Child Element
[User Needs
4 00. Create Your Architecture
%, 00. Create Your Architecture
> [=] Functional Viewpoint

Find
Copy / Paste

Appearance

Behavior

Lock Element...

Z-Order 3
Type Information...

Delete '5,1.0.2 ctri=D
%]
T f 2
(e =)

Figure 81 - Importing related elements to a diagram on Enterprise Architect (source: author)

51.0.2

When architecture user selects to import the elements in relationship with the User Need added to
the diagram, “Insert Related Element” window pops up as it is displayed below (see Figure 82). In
this window user can filter the type of elements that they would like to add to their architecture by
using “Connector Type” and “Element Type” fields. The Low Level Function are “Realization” of the
User Needs and the Functional Viewpoint elements those are connected via “DataFlow”
connectors. After adding the desired User Need to their architecture user is expected to import the
Low Level Functions related to the particular User Need.

Insert Related Elements

Connector types: Element types:

=) Realization O Process

ENE=:

Drag a column header here to group by that column.

| Depth | Hame Patkage In Diagram
1 © 21,21 |dentify and Classify Emergencies Functional Viewpoint No
1 (2.1.2.5 Manage Incident and Emergen... Functional Viewpoint No

1 © 21,23 Plan Emergency Intervention Functional Viewpaint No

Figure 82 - Importing Low Level Functions that are related to the User Need 5.0.1.2 (source: author)

66

2123pian As soon as the architecture user selects the elements to be added to the
: diagram Enterprise Architect creates an automatic layout for the items that
exist in the diagram as it is shown in the Figure 10 on the left (see Figure
83). It usually rearranges how the elements are distributed in the diagram
to achieve the least complex and easiest to follow representation of what
is already in the diagram. In our example the User Need 5.1.0.2 was
related to three Low level Functions. We have selected all to be included
in the diagram. Notice how the dashed arrows are pointing from the User
Need towards the Low Level Functions. This is how a Realization
relationship is depicted in the Enterprise Architect. The Low Level
Functions added to the diagram carried all Data Flows between them
since they were defined with DataFlow type of connectors in the first step,
when we were creating the lowest level Data Flow Diagram. Since all
relationships of elements are traceable in every diagram they are
| imported, Enterprise Architect automatically displays the relationships that

exist between the elements that are already in the diagram. This feature
o helps to automate the architecture creation process since any element
[that is added to a diagram would automatically establish relations with the

p— elements that exist in the diagram.

2.1.2.1 Identify
and Classify

Figure 83 - The Data Flow Diagram after inserting the related elements with the User Need 5.1.0.2
(source: author)

We continue adding the User Needs that are necessary
for the eCall example. Notice how adding User Need
5.1.0.3 automatically establishes the connections with
the Low Level Functions that already exist in the
diagram (see Figure 84). Since there are no other
elements related with the specific User Need, the
architecture user is not required to use Insert Related
Elements feature, user is expected to continue adding
User Needs.

Figure 84 - The Data Flow Diagram after inserting the related elements with the User Need 5.1.0.3
(source: author)

The architecture user should repeat the above steps for all User Needs they desire to add to their
architecture. The Low Level Functions that already exist in the diagram will be automatically
matched with the related User Needs. In case there are new Low Level Functions that are related
with a User Need user is expected to add them using Insert Related Elements feature. The Low
Level Functions that are added with new User Needs will automatically establish the Data Flows
between the other Low Level Functions that already exist in the diagram. The Enterprise Architect
carries those Data Flows from the Functional Viewpoint of the architecture that was created in the
first step, the creation of the lowest level Data Flow Diagram.

The user will be creating the primary functionality of their system(s) by repeating above steps for
each User Need that they desire to include with their architecture. Following the steps of Selection

67

Tool, now the user should investigate each Low Level Function included in their architecture and
add any Data Store that is found to be related with the primary Low Level Function in the
architecture. The architecture user can easily filter the Data Stores by the Element Type filter and
add only the missing Data Store as it is displayed in the figure below (see Figure 85).

Connector types:
= DataFlow

© Process
UserRequirement

Link Direction: A Find relationships to:

Limit to Namespace:

[A Cexr |

Drag a column header here to group by that column.

Depth Name i 4
(e 5 D2.2 Incident And Emergency Data Functional Viewpoint No !

Figure 85 - Adding Data Stores to the architecture (source: author)

The architecture user is then expected to add the Terminators to their architectures. They can do
so by filtering the External type of elements in addition to Data Stores with the last step. Since all
Terminators that are related to the eCall primary functions already exist in the diagram we do not
add any Terminators in this step.

By adding the Low Level Functions related to User Needs and the Data Stores and Terminators
related to these functions the First Pass of the architecture creation is completed. The architecture
user may continue with the Subsequent Passes by importing the elements from the Functional
View set in the Model Library that was created with the first step and / or using the Insert Related
Elements feature as all of the elements in the Functional View is already connected to one or more
element by their nature.

We continue the Subsequent Pass by adding the two Low Level Functions that were not related
with the User Needs by using the Insert Related Elements functionality (see Figure 86 & 87).

Draga

Depth Name
m [E] Emergency Systems
1 ©2.1.9 Provide Emergency Operator Inte... Functional Viewpoint Mo

Functional Viewpaint Yes

©2.1.2.1 Identity and Classity Emergendies Functional Viewpoint fes
©2.1.2.5 Manage Incident and Emergen...

Functional Viewpaint Yes

‘ Depth | Name | Package | In Diagram ‘
1 [E] D2.1 Common Emergency Data Functional Viewpoint No
1 [E] Emergency Systems Functional Viewpoint Yes
1 (O 2.1.9 Provide Emergency Operator Inte... Functional Viewpoint Yes
1 (O 2.1.2.1 Identify and Classify Emergencies Functional Viewpoint Yes
.

ooooag

() 2.1.2.3 Plan Emergency Intervention Functional Viewpoint Yes

Figure 87 - Adding Data Stores related with the secondary functions of eCall example (source: author)
To complete creating the architecture for eCall example we add the missing Terminator (see

Figure 88). This terminator was not added in the First Pass since it has no relation defined with the
primary functions of the eCall example.

68

g — —

W uiff

Emergency Operator (0.e0] Functional Viewpoint No
©2.15 Provide Access and Maintain Dat... Functional Viewpoint Yes
©2.1.2.1 Identify and Classify Emergencies Functional Viewpoint Yes

e mar T

s

2125 Manage Incident and Emergen... Functional Viewpoint Yes
2124 Process Emergency Progress Re... Functional Viewpoint Yes

oooooo

©2.1.2.3 Plan Emergengy Intervention Functional Viewpoint Yes

Figure 88 - Adding the missing Emergency Operator to the eCall example architecture (source: author)

After inserting each element that is necessary to completely describe the desired system(s), the
Enterprise Architect automatically lays out the elements to the once “blank” diagram for the user.
The Data Flow Diagram Below represents the resulting architecture that was created for the eCall
example (see Figure 89).

69

02.1Commen
Emergency Data

pssf_load_common_smergency_data

psef_rea

pssf_maintain_emergsncy_data_operator_request

{_common_emergency_data

(from

‘ S Provide

Accessand
Maintain Data
for Emergency

A

psef_common_data_for_emergency_interven

>

psipssf_maintain_smergency_data_respo

eracor (o.20)

psef_control_intervention_ i~

~ior cncnnnce
D e rasponss tesponse

K fo.20-requess_statistical_report

2.1 Frovide /
Emerzzncy

Operator
Interface

pssf_control_identity_and_clarification_response

fas-emergancy_services_information

T

psef_emergancy_processing information

psef_ control_progress_report_processing resppsef. load_emergancy, dats

espanse_statistics_response | |

Wehicle Systems
[

twvs-output_data

fe.vs-input_data

127
Communicate
with In-vehicle

Human Machine
Interface fv.hmi)

Systems

tv.hmi-eCall_rasponse

k rom UseNeet oy scaigems detacres

fu.hmi-initiste_sCall

pshus_eCall_information

v
8513

5.11.7 Provide
In-vehicle eCall
Facilities

Location Data
Source (ids)

User Needs)

fas-emergency_progress

tes-global_progress_repor

psef_emergency_id_for_processing

T

tion_plans

Emergency Systems

~of omergency.id_for_re-plannin
‘tes-intervention_request | oo 0 S PISINIng

/

fes-intervention_answer

2123Pin
Emergency
Intervention

Emerzency D3

pssf_emergancy_data_for_planning intervention

‘datan_description

psef_emergnc

2.1.2.5Manage
Incident and
Emergancy

mergency_classification

|psef_emepsef_incident_dascription_to_manage_information
I

psef_description_of_emerzency_for_classification

2.1.2.1 Identify
and Classify

/_id_for_re-classi

Emergencies

8512

(from User Needs)

ation

N
Tl AN Y
- £ ~ \
~~ B -
~~ / N P \
~~ N - \
4 2 ——_ v
-3 \
N =
2 s 1 [\
5102 7.207 5105 5.1.0.4

(from tiser Needs)

(from Uiser Needs] (from Uiser Needs] (from User Needs] {from User Needs)

{from User Needs)

{from User Needs)

Figure 89 - The Data Flow Diagram showing the resulting architecture

70

Here we saw an architecture created for a small portion of ITS. If the complete FRAME Functional
Viewpoint would be created with all Low Level Functions, Data Stores and the Terminators defined
in the architecture and cross referenced to the list of all User Needs in FRAME this example can
be extended to cover all FRAME, thus will be able to replace the Selection Tool entirely. Once
such a Model Library that contains all User Needs and Functional Viewpoint is created, It would be
sufficient for the user to have access to a copy of Enterprise Architect and download the FRAME
Model Library from the FRAME website.

71

Chapter 4.4 - Experiences on describing The Mayday Notification
Services in Enterprise Architect

We have transferred the Mayday Notification Service Package architecture that we have obtained
by Rad-IT to Enterprise Architect to be able to have an understanding of how a project architecture
could be made use of in case of a deployment scenario, in other words how the architecture user
should be using the architecture description when they are actually aiming to build a system in real
world. Our premise in doing so was that the architecture user would have to have a solid
understanding of the resulting architecture, its elements and the relationships between those
elements to be able to actually build the system(s) and trying to model the system(s) outside Arc-
IT would require the same understanding. By doing so we would have a solid base to be able to
compare the usability of architecture descriptions produced by FRAME and Arc-IT for a similar
system.

Arc-IT builds the architecture for a system based on Service Packages, for each Service Package
the Physical Objects that should exist in the system are defined with the Functional Objects that
eventually will be conveying the required functionality for the system(s). To be able to compare the
two ITS Architectures we tried to capture the Functional View of Arc-IT since the ultimate product
for FRAME is the Functional Viewpoint.

We found out that the Functional View on Arc-IT was not supported as much as the other views in
the architecture. While it is possible to trace interaction between Physical Objects to fulfil the
functionality that is required for the systems, the interaction of the individual functions is not so
visible. In other words the interaction of functions within a Physical Object, which gives the system
its functionality, is not known to the architecture user. To elaborate on this issue we have analysed
the Pspec 5.1.1.1 - Coordinate Emergency Input that is supposed to be included with the
Emergency Call Taking Functional Object defined for the Mayday Notification Service Package
(see Figure 90).

Physical Object Functional Object PSpec Number |PSpec Name

5.1.1.1 Coordinate Emergency Inputs

5.1.1.3 Collect Incident And Event Data

5.1.2 Determine Coordinated Response Plan

Emergency Call-Taking.

5.1.3 Communicate Emergency Status

5.1.4 Manage Emergency Response

Emergency Management Center

5.2 Provide Operator Interface for Emergency Data

Figure 90 - Some of the Pspecs that were defined for the Mayday Notification Service Package
(source: Arc-IT website)

The Pspec 5.1.1.1 - Coordinate Emergency Inputs were defined with a total eight Data Flows (see
Figure 91). When we investigate these Data Flows we found that the half of them were connecting
with other Pspec that are included with the Mayday Notification Service Package such as 5.2 -
Provide Operator Interface for Emergency Data, 5.1.2 - Determine Coordinated Response Plan
and 5.1.1.3 - Collect Incident and Event Data. The remaining four Data Flows are connecting
Pspect that do not meant to be included with the Service Package such as 5.1.1.2 - ldentify
Commercial Vehicle Emergencies or 5.1.1.4.2 - Manage Secure Area Surveillance. This distinction
is not made in the Functional View of Arc-IT and the user is expected to go through the list of all
Data Flows defined for each Pspec and figure which Data Flows will be required for the systems

72

they desire to build. Another large problem regarding this issue is that even a Data Flow connects
two Pspec that exist in the same architecture, it is not clear that if the Functional Objects need to
communicate the specific Data Flow for the functionality required for the Service Package in
guestion. Since same Functional Objects may be employed for several different Service Packages,
architecture user should differentiate if any of the Data Flows are related for their architecture
themselves with no guidance from the architecture.

This process is associated with the following data flows:

collected_incident_data
emergency_verification_from_operator
incident_and_event_data
incident_cvo_data
incident_sensor_data
incident_surveillance_data
threat_detected

verified_emergency.

Figure 91 - The list of Data Flows that was defined for Pspec 5.1.1.1 - Coordinate Emergency
Inputs (source: Arc-IT website)

We have given the Pspec 5.1.1.1 - Coordinate Emergency Inputs as an example since it is
associated with only two Functional Objects and has relatively small amount of Data Flows
defined. The Pspec 3.1.3 - Process Vehicle On-board Data on the other hand was associated with
22 Functional Objects throughout Arc-IT and a total of 88 Data Flows defined with it. When this is
the situation it is not very clear for the architecture user (see Figure 92).

This process is associated with the following data flows: * l2MIC_situation_data_from_vehicle_for_maps = vehicle status details for_broadcast
» lraffic_situational_data_configuration « vehicle_status_details_for_driver_security
» collision_data » tvsc-vehicle malfunction_data + vehicle_status_details_for_emergencies
« env sensor data from vehicle = lvsc-vehicle_system_status_for_diagnostics « vehicle status for intersection
« fov-brake servo_response + tvscvehicle type » vehicle_system_characteristics_for_emissions
» fov-diagnostics_data = vehicle_characteristics_for_emissions « vehicle_system_characteristics for_roadside
« fbv-driver_safety status = vehicle_characteristics_for_roadside « vehicle to_transit_current status_data
- fov-vehicle_attitude_data » vehicle_emv_current status data » vehicle_to_transit_device_identity
« fov-vehicle_charging_capacity + vehicle_emv_location_data » vehicle_to_transit_location_data
» fbv-vehicle charging_status = vehicle_emv_size data = vehicle to_transit_size_data
» fbv-vehicle_driver_inputs = venicle_emv_speed data » vehicle to transit speed data
« fov-vehicle_identity = vehicle_env_sensor_data » vehicle_to_transit_time_data
+ fov-vehicle_motion_data + vehicle_identity_for_central payment admin « vehicle_traffic_probe_data_for_archive
« fov-vehicle_occupants = vehicle_identity_for_road_use_payment » vehicle_traffic_situation_data
« fbv-vehicle_proximity_daia = vehicle_location_for_central_payment_admin = vehicle_traffic_situation_data_configuration
» fhv-vehicle_safety_siatus = vehicle_location_for_probe_data
« Tv-vehicle_securiy_status « vehicle_location_for_road_use_payment
+ fov-vehicle size » vehicle mcv_current status_data
+ fbv-vehicle_speed » vehicle_mecv_location_data
« fuel_and_charging_status_for_vehicle + vehicle_mcv_size_dala
« fudts-location » vehicle_mcv_speed data
. fydis-time » vehicle_occupants_detected
« host_vehicle details_for_emissions » vehicle_ped_current_slatus_data
« host_vehicle_status_for_eco_drive = venhicle_ped_device_identity
« intersection_status_data_for_vehicle = Vehicle_ped_location_data
« parking_vehicle_payment_number » vehicle ped size data
« [oadside_safety_data_to_vehicle = Venhicle_ped_speed_data
« safety_data + vehicle_ped lime dala
. safety data for mcy = vehicle_roadside_control_event_data
. safely_message. dala_for_remole_vehicles = vehicle_roadside_curreni_stalus_data
+ safety_message data from remote vehicles + vehicle roadside location data
+ speed_management_data_to_vehicle » vehicle_roadside_size_data
- tbv-vehicle_status_details_for_driver » vehicle_roadside_speed_dala)
« toll vehicle payment number = vehicle_roadside_surveillance_location_data
« traffic_situation_data_from_vehicle « vehicle_roadside_surveillance_size_data

= vehicle roadside_surveillance_speed_data

= vehicle_roadside_surveillance_status_data

= vehicle speed_and_distance_for_central_payment_admin
» vehicle speed and distance for road use pavment

Figure 92 - The list of Data Flows that was defined for Pspec 3.1.3 - Process Vehicle On-board
Data (source: Arc-IT website)

After analyzing all Pspecs suggested for the Functional Objects for the Mayday Notification
Service Package we have created below Data Flow Diagram in Enterprise Architect, representing
the Functional View (see Figure 93).

73

Figure 93 - The Functional View description of the Mayday Notification Service Package
architecture (source: author)

74

Chapter 5 - Conclusion

In this paper we have analysed two major architecture frameworks in field of ITS. With the first
chapter we have introduced the general concept of system architecting, we presented the
international standard ISO/IEC/IEEE 42010 - Systems and software engineering — Architecture
description to be able to introduce the terms and concepts related to the topic. We continued with
introducing the European ITS Framework Architecture (FRAME) and the Architecture Reference
for Cooperative and Intelligent Transportation (Arc-IT), presented their methodologies and
elaborated on their structure and key concepts. In the third chapter we have presented a small
portion of present day ITS and created architectures for this system in both FRAME and Arc-IT. In
the fourth chapter we introduced a new modelling tool and transferred the Functional Viewpoint
from FRAME to the new tool. We have proposed a new method of creating architectures of
FRAME with this new tool since we have found the current tools of FRAME to be underdeveloped
and missing features that today’s architecture tools may offer. Finally we have transferred the
Functional View from Arc-IT to this new tool, to contrast the effectiveness and usability of both
architectures.

FRAME and Arc-IT offers its user more or less the similar thing. That is to catalogue the existing
ITS and offering them to be selected by its user. Although both argues that they represent most of
the current day ITS, we found slight differences in the systems that they offer. There are some
features that was covered by one but not with the other and some other features that provides
similar functionality but not exactly the same.

We found FRAME’s approach of matching User Needs with systems’ functionality to be a better
approach compared to Arc-IT’s Service Packages due to the level of control provided by the
FRAME’s approach. With this perspective the architecture user has a bigger say on what is
wanted from the system(s) and what the system does to fulfil these needs. User can decide on
what to include to the system(s) based on their needs whereas with the Service Packages they are
presented the functionalities in a bulk and there is less room for them to customise the system(s)
they build according to their needs. It found not to be clear how users’ preferences would alter the
system(s) they will end up with as a result. We also found that a more comprehensive Functional
Viewpoint is offered with the FRAME, where it is clear why each function is added to the
architecture compared to Arc-IT where a bunch of functionalities thrown to the user without
justifying why the system(s) should include such functions and how not to include any function if
they are not needed. The Functional View of Arc-IT was found to not clearly communicate how the
data flows between the functions inside the Physical Objects and how they are processed but only
showing its users the information flows between the different Physical Objects.

On the other hand we have found the way that Arc-IT supports the stakeholder interaction to be
defined within the architecture which is a vital aspect when several entities are involved in building
and implementing necessary roles within the system, which is inevitably the case with ITS. The
Arc-IT allows not just to define but also to distribute roles to the stakeholders and document the
agreements should take place between them while fulfilling their task related to the system(s).
Finally we found that Arc-IT provides its user with many beneficial products for their architectures
whereas the FRAME only provides a handful of lists of selected elements. It is possible to
generate visual representations of the architecture to aid the architecture use to establish common

75

understanding between the related parties and also documents (even a website) detailing each
aspect of the architecture.

We have proposed a new method for the FRAME architecture user to create their own
architectures for their projects with a repository based modelling tool, Enterprise Architect to fill the
gaps we found in the products that can be produced for their selected architectures. By the method
we offer the user has direct access to the visual representation of their architectures. With many
documenting options that is offered with the Enterprise Architect the architecture will have access
to product that can be used to enhance the understanding and the cooperation between the
parties involved with the architecture.

With future work the FRAME architecture should be more developed with the Organizational
Viewpoint. It is understood that the Organizational Viewpoint was not developed, not to mandate
any structure to the architecture user, but we see that Arc-IT also is not “mandating” any structure
of such but offers its user means of setting relationship between the parties that are involved with
the architecture. Just as it is in the Arc-IT, user has to be able to “define” the agreements and
relationships between the stakeholders throughout the systems’ life cycle and make use of a well
developed Organizational Viewpoint that would ease the cooperation between many parties that is
involved in a transportation project.

76

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

US DOT. Federal Highway Administration. “Regional ITS Architecture Guidance”. Version
2.0. July 2006. http://local.iteris.com/arc-it/documents/raguide/raguide.pdf

International Standard ISO-IEC-IEEE 42010. “Systems and software engineering —
Architecture description”. December 2011.

Golden B. “A unified formalism for complex systems architecture” Ecole polytechnique.
May 2013. https://www.lix.polytechnigue.fr/~golden/research/phd.pdf

European Communities. “Planning a modern transport system”. Issue 2. April 2004.
http://frame-online.eu/wp-content/uploads/2014/10/PlanningGuide.pdf

Hennessy J., Patterson D.. “A New Golden Age for Computer Architecture”. 13 June 2018.
https://californiaconsultants.org/wp-content/uploads/2018/04/CNSV-1806-Patterson.pdf
European Commission, FP3-TELEMATICS 1C - Specific programme of research and
technological development (EEC) in the field of telematic systems in areas of general
interest, 1990-1994. https://cordis.europa.eu/programme/rcn/194/en

European Commission, Transport telematics - High level groups
https://cordis.europa.eu/news/rcn/7592/en

Bossom R., Jesty P.. D15 — FRAME Architecture — Part 1: Overview. WP300 EC FP7
project E-FRAME. September 2011 https://frame-online.eu/wp-
content/uploads/2015/09/D15-FRAME-Architecture-Part-1-1.0.pdf

Jesty P.. “D13 — Consolidated User Needs for Cooperative Systems”. WP200 EC FP7
project E-FRAME. September 2011. https://frame-online.eu/wp-
content/uploads/2014/10/D13-Consolidated-UNs-for-Coop-Systems-Issue.pdf

Bossom R., Jesty P.. “D15 — FRAME Architecture — Part 5: FRAME Architecture
Methodology”. WP300 EC FP7 project E-FRAME. September 2011. https://frame-
online.eu/wp-content/uploads/2015/09/D15-FRAME-Architecture-Part-5-1.0.pdf
Dolean C. C., Petrusel R.. “Data-Flow Modeling: A Survey of Issues and Approaches”.
Informatica Economica vol. 16, no. 4. 2012. http://www.revistaie.ase.ro/content/64/14%?20-
%20Dolean,%20Petrusel.pdf

“FRAME Selection Tool User Manual” - Retrieved from: https://frame-online.eu/wp-
content/uploads/2014/10/Selection-Tool-User-Manual-02.pdf

US Department of Transportation. “Key Concepts of ARC-IT”. June 2017.
https://local.iteris.com/arc-it/documents/keyconcepts/keyconcepts.pdf

Public Law 105-178. “Transportation Equity Act for the 21st Century”. Sec 5206.
https://www.fhwa.dot.gov/tea21/h2400-v.htm#5206

Federal Transit Administration. “The Final Rule on Intelligent Transportation System
Architecture and Standards”. Federal Register / Vol. 66, No. 5 January 2001.
https://ops.fhwa.dot.gov/its_arch_imp/docs/20010108.pdf

US Department of Transportation. “Regional its architecture guidance”. July 2006.
https://local.iteris.com/arc-it/documents/raguide/raguide.pdf

Code of Federal Regulation Title 23 Part 450. “Planning Assistance and Standards”
https://www.law.cornell.edu/cfr/text/23/part-450

Gellens R.. “Next-Generation Pan-European eCall”. Internet Engineering Task Force
(IETF). May 2017. http://www.rfc-editor.org/pdfrfc/rfc8147.txt.pdf. (ISSN: 2070-1721)
“The interoperable EU-wide eCall” - Retrieved from:
https://ec.europa.eu/transport/themes/its/road/action _plan/ecall _en

“eCall in New Cars from April 2018”, European Commission Digital Single Market
Newsletter. 28 April 2015. https://ec.europa.eu/digital-single-market/en/news/ecall-all-new-
cars-april-2018

Onstar. https://www.onstar.com/us/en/services/safety-security/

Mercedes Benz Me Connect. https://www.mbusa.com/en/mercedes-me-connect
Barca C. D., Ropot R., Dumitrescu S.. “eCall - Minimum Set of

Data”. ftp://ftp.repec.org/opt/ReDIF/RePEc/rau/jisomg/WI109/JISOM-WI109-A13.pdf

77

http://local.iteris.com/arc-it/documents/raguide/raguide.pdf
https://www.lix.polytechnique.fr/~golden/research/phd.pdf
http://frame-online.eu/wp-content/uploads/2014/10/PlanningGuide.pdf
https://californiaconsultants.org/wp-content/uploads/2018/04/CNSV-1806-Patterson.pdf
https://cordis.europa.eu/programme/rcn/194/en
https://cordis.europa.eu/news/rcn/7592/en
https://frame-online.eu/wp-content/uploads/2015/09/D15-FRAME-Architecture-Part-1-1.0.pdf
https://frame-online.eu/wp-content/uploads/2015/09/D15-FRAME-Architecture-Part-1-1.0.pdf
https://frame-online.eu/wp-content/uploads/2014/10/D13-Consolidated-UNs-for-Coop-Systems-Issue.pdf
https://frame-online.eu/wp-content/uploads/2014/10/D13-Consolidated-UNs-for-Coop-Systems-Issue.pdf
https://frame-online.eu/wp-content/uploads/2015/09/D15-FRAME-Architecture-Part-5-1.0.pdf
https://frame-online.eu/wp-content/uploads/2015/09/D15-FRAME-Architecture-Part-5-1.0.pdf
http://www.revistaie.ase.ro/content/64/14%20-%20Dolean,%20Petrusel.pdf
http://www.revistaie.ase.ro/content/64/14%20-%20Dolean,%20Petrusel.pdf
https://frame-online.eu/wp-content/uploads/2014/10/Selection-Tool-User-Manual-02.pdf
https://frame-online.eu/wp-content/uploads/2014/10/Selection-Tool-User-Manual-02.pdf
https://local.iteris.com/arc-it/documents/keyconcepts/keyconcepts.pdf
https://local.iteris.com/arc-it/documents/keyconcepts/keyconcepts.pdf
https://www.fhwa.dot.gov/tea21/h2400-v.htm#5206
https://ops.fhwa.dot.gov/its_arch_imp/docs/20010108.pdf
https://local.iteris.com/arc-it/documents/raguide/raguide.pdf
https://local.iteris.com/arc-it/documents/raguide/raguide.pdf
https://www.law.cornell.edu/cfr/text/23/part-450
http://www.rfc-editor.org/pdfrfc/rfc8147.txt.pdf
https://ec.europa.eu/transport/themes/its/road/action_plan/ecall_en
https://ec.europa.eu/digital-single-market/en/news/ecall-all-new-cars-april-2018
https://ec.europa.eu/digital-single-market/en/news/ecall-all-new-cars-april-2018
https://www.onstar.com/us/en/services/safety-security/
https://www.mbusa.com/en/mercedes-me-connect
ftp://ftp.repec.org/opt/ReDIF/RePEc/rau/jisomg/WI09/JISOM-WI09-A13.pdf

24, Kaminski T., Niezgoda M., Kruszewski M.. “Collision Detection Algorithms in The eCall
System”. Journal of KONES Powertrain and Transport, Vol 19, no 4. 2012.
http://yadda.icm.edu.pl/yadda/element/bwmetal.element.baztech-article-BUJ8-0020-
0032/c/httpwww_bg_utp _edu_plartkones42012j20020kones20201220n020420vol 201920kami
nski2.pdf

25. Jesty P. H., Grochowski A., Bossom R. A. P.. “Example Case Study of eCall Using The
FRAME Architecture”. 2017

26. Bossom R. “Frame Architecture artefacts and their inclusion in the new FRAME
architecture repository”. 2019.

78

http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ8-0020-0032/c/httpwww_bg_utp_edu_plartkones42012j20o20kones20201220no20420vol_201920kaminski2.pdf
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ8-0020-0032/c/httpwww_bg_utp_edu_plartkones42012j20o20kones20201220no20420vol_201920kaminski2.pdf
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ8-0020-0032/c/httpwww_bg_utp_edu_plartkones42012j20o20kones20201220no20420vol_201920kaminski2.pdf

