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Abstrakt

λ-kalkul je stěžejní koncept počítačových věd. Jako takový je učen na většině
univerzit vyučujících informatiku a počítačové vědy včetně FIT ČVUT. Pro
mnoho studentů může být studium λ-kalkulu a pochopení jeho významu a
dopadu na současné programovací jazyky obtížnou úlohou. Tato práce vytváří
evaluátor λ-kalkulu a jeho front-end navržený tak, aby prezentoval λ-kalkul
jako programovací jazyk a umožnil snadnou integraci do výukových materiálů.

Klíčová slova lambda calculus, λ-calculus, evaluator, interpreter, interak-
tivní interpreter

Abstract

λ-calculus is a fundamental concept in computer science and as such is taught
at almost all universities with a computer science programme, including FIT
CTU. But for many students, learning the λ-calculus and understanding its
significance and impact on programming languages is a challenging task. This
thesis describes a λ-calculus evaluator and its front-end designed to help stu-
dents understand λ-calculus by treating it more like a programming language
and by effortless integration with existing course materials.
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Introduction

λ-calculus is one of the fundamental concepts of computer science. As a the-
oretical concept, it is essential for constructing formal proofs for modern pro-
gramming languages. Furthermore, it is a theoretical foundation for all func-
tional languages. It is taught at most universities teaching computer science,
including FIT CTU (course BI-PPA). Despite the core concept of λ-calculus
being very simple, it often leads to confusion when approached for the first
time – mainly because of its notable difference from practical programming
languages. For students, it can be quite challenging to learn how to think and
write programs and algorithms in λ-calculus in a similar way they are used
from practical programming languages. On top of that, most of the students,
already having experience with imperative programming languages, struggle
with the purely functional paradigm, namely with the absence of state and
sequential control flow.

The author of this thesis, as a former student of the course PPA, learned
λ-calculus the hard way and realised there is significant room for improve-
ment. The most important part of teaching and making λ-calculus easier for
students, is to introduce and describe λ-calculus as a programming language.
Students must be able to adapt it and use it the same way they are using
other programming languages. For that reason, interactive and user-friendly
evaluator – Lambdulus must be developed. Lambdulus should help students
to realise, that λ-calculus can be considered the simplest pure functional lan-
guage. To facilitate this goal, λ-calculus must be introduced to the students
not as a purely theoretical concept, but as a programming language, complete
with tools to help writing λ-calculus “programs”, observing their execution
and debugging their errors in ways similar to the workflow of programming
languages the students already know and use.

Courses teaching λ-calculus often employ λ-calculus evaluators towards
this goal. However, these suffer from two main drawbacks: While they eval-
uate λ-calculus expressions, they lack more advanced support such as debug-
ging. They often use lambda-calculus definition and syntax far different from
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Introduction

what is taught at the courses.
This thesis describes Lambdulus, a λ-calculus evaluator developed to ad-

dress the main shortcomings of existing λ-calculus evaluators from the educa-
tional point of view.

Lambdulus will be used primarily by the students of the PPA course men-
tioned above. As such, it supports directly the definition and notation of
λ-calculus used in the course. But Lambdulus has been designed with modu-
larity in mind and adopting other λ-calculus dialects is extremely simple.

Any application actively trying to support the learning of programming
can only be effective if it can be integrated seamlessly into existing course
materials so that students can effortlessly use that tool daily. To this end,
Lambdulus allows simple, yet robust embedding into existing course materials
as well as sharing examples and whole λ-calculus programs among students
and teachers.

Finally, the purpose of this thesis is not only to create evaluator useful for
teaching but also produce code-base illustrating an exemplary implementation
of the λ-calculus interpreter so that students can view, explore and better
understand the simplicity and expressive power of the λ-calculus.

The rest of this thesis is organised as follows: The following chapter defines
the λ-calculus and its semantics. Chapter 2 describes existing λ evaluators.
Chapter 3 proposes the design of the evaluator created as the topic of this
thesis. The next chapter 4 explains the general architecture of developed
evaluator and its major parts. Chapter 5 demonstrates the benefits of such a
tool. The thesis concludes with a summary and discusses future work.
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Chapter 1
Definition of λ-calculus

Despite the fact, that λ-calculus is one of the most fundamental concepts of
computer science, its definitions differ across many materials. Specific def-
initions usually agree on the common core, then introduce some additional
properties of the language. For this thesis, the definition of λ-calculus from
the course PPA is used [1, Syntax of the λ-Calculus]

Valid λ expression is:

1. Single variable. Variable can be any sequence of lowercase letters from
the English alphabet also followed by the sequence of number

2. When M and N are valid λ expressions, the followings are also valid λ
expressions:

• (M) – λ expression enclosed in parentheses
• (λx . M) – where x is any variable, called λ abstraction; being a

function which takes argument named x and which body is M

• (M N) – called application, where M is applied to N , similar to
calling function M with an argument N

For reasons of practicality and by PPA course [1, Simplifying the notation],
additional features, which are easily transformed to the λ-calculus defined
above are defined, as follows:

• implicit parentheses

M N O P Q

is equivalent to

((((M N) O) P) Q)

• λ function with multiple arguments

3



1. Definition of λ-calculus

(λx y . M)

is λ abstraction equivalent to

(λx . (λy . M))

• square bracket closing all open parentheses

(A (B (C D]

is equivalent to

(A (B (C D)))

1.1 Free and Bound Variables
As declared in the materials of the course PPA [1, Free and Bound Variables]:
Depending on the context where a variable name is used in the λ expression,
that variable is either free or bound.

A free variable is variable with a name that does not correspond to the
name of the enclosing function’s argument.

A bound variable is variable in the body of λ function with the same name
as the argument of λ function enclosing that variable. Such variable is said to
be bound to the argument.

1.2 Reductions of λ expression
λ expression can be transformed using the following rules defined as [2, Re-
ductions]:

• β reduction (application)
“Given the λ expression (λ x . E) A, all bound occurrences of x in E
will be replaced with A. However, the β reduction can only be applied
if A does not contain any free variables that might collide (i.e. would
become bound when substituted in E).”

• α conversion (renaming)
“Builds on the observation that two λ expressions which are identical
in all but names of bound variables are indeed identical (i.e. there is
no difference between (λx . x) and (λy . y), they are both identity
functions). α conversion is thus defined as renaming λ argument x and
all its bound occurrences in the λ body to y as long as y does not appear
as a free variable in the λ body.”
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1.3. Normal Form

• η conversion (optimization)
“Given a λ expression (λ x . A x) where there are no bound occurrences
of x in A:”

(λ x . A x) η→ A

“This is true because if the expression above was ever followed by an
application of B, the result of it after substitution would have been:”

(λ x . A x) B β→ A B

It is worth noting, that there is a formal difference between evaluation and
normalization of λ expression [3]. Formally defined, former cannot reduce
λ function if that λ function is not being β reduced. Latter can step into
any λ function and proceed with a reduction inside its body. For the sake
of simplicity, the course PPA does not distinguish between those terms and
defines only the normalization, which it calls evaluation. From now on, when
term evaluation will be used, it will be referring to normalization.

The course PPA defines two orders of evaluation [2, Normal vs Applicative
Evaluation]:

• Normal order (leftmost outermost)
“In this order, expression being currently reduced is the leftmost λ func-
tion with the corresponding argument.”

• Applicative order (leftmost innermost)
“This order is identical to the former in terms of finding the λ function
to apply. But before the argument of the λ function is substituted, it is
first evaluated itself.”

1.3 Normal Form
According to the course PPA Normal Form is defined as follows [2, Normal
Form]:

“λ expression is said to be in normal form if it cannot be further reduced
using either β or η reductions. Note that α reductions are always possible
since they do not change the λ expression.”
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Chapter 2
Analysis of existing evaluators

Due to the simple definition of the λ-calculus, general λ evaluator is an uncom-
plicated tool. What makes this tool relatively complex, however, is demand
for illustrative features. To effectively teach and expose all of those operations,
transforming inputted λ expression.

This chapter compares λ evaluators designed for educational purposes.
Each of them has a unique set of features, which are described in detail. Many
of them are currently used in the course PPA as a teaching tool. Lambdulus
intends to replace them all.

In this chapter, terms macro and operator are used. Operator differs from
macro in an only way; it must be arithmetical or logical operator such as +
or AND. Otherwise, they are effectively the same thing.

2.1 Lambda Calculus
This evaluator [4] uses backslash instead of λ symbol and arrow symbol instead
of a dot symbol between last argument name and function’s body.

It also allows the use of multi-argument λ functions. It understands com-
ments like most programming languages do.

This particular evaluator features user-defined macros. As seen in figure
2.1, each macro is defined as an assignment to the identifier, which can be
named either with numeric or alphanumeric string. It is, however, not possible
to create macro for arithmetic operators and other special symbols.

The evaluator does not offer stepping functionality. For that reason, it is
not clear when or how are user-defined macros expanded. It evaluates input
in the background and then shows the result.

Evaluation of the input is not limited to reducing single expression. User
can define as many macros as they want and also specify as many λ expressions
to reduce as needed. As long as each expression is on its own line, Lambda Cal-
culus can parse and evaluate it. This is undoubtedly a very useful approach,
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2. Analysis of existing evaluators

Figure 2.1: Lambda Calculus

which leads to quick and easy workflow when the user needs to evaluate more
than a single λ expression.

Lambda Calculus supports only normal evaluation order.

2.2 λ Calculus Interpreter
This evaluator’s UI differs noticeably from all of the others. Its user interface
is composed of a terminal-like interactive console [5].

In terms of the syntax, λ Calculus Interpreter uses substitute keyword
lambda instead of λ symbol in the inputted expression. Each λ abstraction
can only be a function of a single argument. It also requires to enclose each
application in parentheses, making the following expression ambiguous.

(λ x . λ y . x y)

Because when not parenthesized, it means
(λ x . (λ y . x) y)

And not
(λ x . (λ y . x y))

Which is its actual meaning.
λ Calculus Interpreter does not interpret numbers or operators. For the

user, it is also not possible to define their own macros.

8



2.3. Lambda Calculator

Figure 2.2: λ Calculus Interpreter

It, however, offers Normal Order Reduction and Normal Order Evalua-
tion. Former reducing due to well-known and previously defined rules, latter
ignoring possible reductions inside the function’s body.

A notable feature of this evaluator is its detection of infinite recursions
and exponentially expanding parts of the expression. This functionality may
often prevent further evaluation of malformed expressions.

2.3 Lambda Calculator
This evaluator [6] also uses backslash as a convenient way to express λ symbol.
Each λ function has a single argument, and it understands implicit closing
inside function’s body, allowing to omit body level parentheses.

Lambda Calculator supports numbers if the user enables them explicitly.
In that case, they are treated strictly as numeric values. They can be passed as
arguments to arithmetic operators, but they cannot be treated as expandable
macros. A similar situation is with arithmetical operators. They can be
applied to numeric values, but they are not expandable macros so they will
not be applied to numbers in the form of Church numerals.

User is, however, allowed to define their own macros. In combination with
the possibility to redefine built-in arithmetical operators and also numerical
values, it is possible to modify the behaviour of said operators to work with
Church numerals. When redefined by the user, all operators work only with
native λ expression. And until the user deletes their macro, they can not be
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2. Analysis of existing evaluators

Figure 2.3: Lambda Calculator

used again with numerical or logical values. When enabled, Lambda Calculator
can substitute symbols – user-defined macros and arithmetical operators. This
substitution enables to expand macros and operators only when needed, but
also tends to substitute one macro for another instead of fully unwrapping
them. For instance, values False and number zero in the form of the Church
numeral suffer from this inconvenience. They are equivalent λ functions and
Lambda Calculator substitutes one for another instead of expanding them and
letting the user see what they look like 2.4.

Figure 2.4: Lambda Calculator – substitution

Another option is never to substitute those symbols. This means every
symbol will be expanded right at the begging of evaluation, making the steps
noticeably more complex and hard to read. Similar confusion may occur,
when the user selects Pure Calculus With Numerals. In this case, numbers
are expanded immediately, and operators are left as they are, making the
corresponding expression non-evaluable.

10



2.4. Lambdalab

Lambda Calculator, as only one from analysed evaluators implements η-
conversion.

It can be configured to use either Normal Evaluation or other strategies
which are out of the scope of this thesis.

2.4 Lambdalab

Figure 2.5: Lambdalab example

Lambdalab [7] is only one of the tested evaluators, which uses a λ symbol
for representing λ abstraction. When the user writes backslash, it replaces it
with a real λ symbol. This is a very convenient way to type the correct symbol
without too many difficulties. Same as most of the previous evaluators, it also
understands only single-argument λ functions. It also uses implicit closing
around the function’s body.

This evaluator does not implement any particular logic around numbers.
They are primitive values, which cannot be used as corresponding λ functions.

Compared to that, operators are not allowed at all. If typed, they will
cause a syntactic error.

It, however, supports user-defined macros. Macro can be an identifier with
all uppercase letters in its name. Lambdalab also forbids the use of macro,
which was not previously defined. When the macro is used in the inputted
expression, it is expanded only when it is needed due to the corresponding
evaluation order.

This particular evaluator also offers multiple evaluation strategies. Previ-
ously mentioned Normal Order, Applicative Order and some additional, which
exceed the scope of this thesis.

Lambdalab offers a very convenient way to share λ expressions between
multiple users or devices. It allows copying URL with encoded expression
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2. Analysis of existing evaluators

and serialised settings for easy sharing. Sharing feature, however, does not
serialise user-defined macros, which is something that could be very useful.

Finally, it allows to visualise the inputted expression and also every step
of its evaluation. This feature can be really useful, especially when dealing
with complex and long expressions. Lambdalab, however, seems to have issues
with displaying those long expressions, rendering a substantial part of graph
outside viewing area or otherwise malformed, as seen in figure 2.6.

Figure 2.6: Lambdalab – visualisation of λ expression

This chapter introduced multiple λ evaluators currently available on the
web. Many of them are created by computer science students. Others were
created on the universities to support the teaching of the λ-calculus. Most
of them share similar traits in terms of features. All of them implements
well known Normal Order of evaluation. Some of them additionally feature
Applicative Order and a few other specific ones. Except for one, all of them im-
plements macros or numbers. In the way they treat macros and numbers lays
the real difference between individual λ evaluators. Some implementations
enforce norms, others, on the contrary, allows the user to modify virtually
anything even built-ins.

12



Chapter 3
Design

This chapter considers positive and negative design decisions of previously
introduced λ evaluators. It also states features, which Lambdulus should
have, in order to compete with current evaluators on the internet.

To ensure future extensibility, implemented core and the front-end will
be independent on each other. Any additional abstraction will be introduced
as part of customizable front-end, whereas the core will remain small and
universal.

This chapter will further describe specific design decisions and features of
Lambdulus.

3.1 Evaluator Core
The core module will address parsing, representation of the expression in the
form of the abstract syntax tree (AST) and expression evaluation. Every
single step of evaluation, also referenced to as reduction or conversion, should
be done independently to whole evaluation sequence. The evaluation process
will be controlled within front-end’s user interface. The core module will not
feature any functionality directly related to continuous evaluation. The core
creates AST, passes it to front-end and then is used to identify and perform
the next step of evaluation when prompted by front-end; with both operations
done atomically.

Lambdulus will implement two common evaluation strategies – Normal
Order and Applicative Order to fulfil the objective of this thesis. Both orders
are subject of course PPA, and as such, they should be implemented in the
way they were defined earlier in chapter 1.

The core will not implement any features to support λ abstraction with
multiple arguments. Every part of this syntax short-hand will be implemented
within the front-end. For instance AST of λ expression (λ x y . x y ) looks
as shown on the figure 3.1. Moreover, the core will also not implement any
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3. Design

Figure 3.1: AST of λ abstraction

support for interaction between the user and the Lambdulus; core module is
intended to only communicate with compatible front-end.

Following sections describe important features and the design of the core
module.

3.1.1 Macros

Macros should expand only when it is needed. Macros are not a natural part
of the λ-calculus. They are, however, useful addition, when treated as lexical
substitutes for explicitly declared λ expressions. Use of the macros makes λ
expressions more readable. The positive effect is especially noticeable when
comparing two or more subsequent steps in the process of evaluation. Correct
use of macros can greatly simplify parts of the expression and make it look
cleaner and shorter. That is possible because the Lambdulus treats each macro
as identifier until that macro is being applied to its arguments.

Not every macro must be λ abstraction. Lambdulus accepts any valid λ
expression as the macro. This allows the user to encapsulate for example parts
of the λ expression in complex algorithms or whole algorithms, as in listing 1.
The listed expression is not traditional λ function, but still can be treated as
such. 1 Once a macro is expanded, newly created sub-expression can contain

1Once the expression is declared as macro, it can be applied to the argument in the
same way as any λ abstraction. This benefits from the fact that everything in λ-calculus is
a function; even result of any application.
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3.2. Front-end

as many other macros as needed. This is especially useful for evaluation of
recursive algorithms.

Arithmetical and logical operators are non-modifiable macros. These rep-
resent well-known abstraction and user will expect to be able to use them in
their expression.

nth-item-of-list := Y (λ fn lst n .
if (= n 0)

(first lst)
(if (null (lst))

nil
(fn (second lst) (- n 1))

)
)

nth-item-of-list (cons 3 (cons 5 (cons 1 nil))) 2

Listing 1: Usage of macros – function nth-item-of-list

3.1.2 Numbers
Numbers in the λ-calculus are an abstraction for native Church numeral ex-
pressions. When expressed numerically, they offer a convenient and easy way
to identify and observe actual values being passed into the λ functions. De-
spite that, they are still actual λ functions with all natural properties. They
can be applied to the argument of any kind, and Lambdulus treats them vir-
tually the same way as the macros. Numbers differ from macros in the way
they decide to which form they should expand. While macros obtain their def-
inition at the initialisation, native λ expression for numbers are constructed
at the time of expansion. Because of that, λ expression can contain really big
numbers without losing readability.

3.2 Front-end
Front-end module will implement user interface and have control over the
evaluation process as a whole. The front-end will also be responsible for visu-
alisation and representation of AST. However, front-end will not be allowed
to modify AST directly; it would undermine the separation of responsibilities
that both core and front-end have.

Because the Lambdulus will be mostly used as the teaching tool for the
course PPA, it should consistently implement notation as used in the said
course. Moreover, because this course, like many others, offers study materials

15



3. Design

on the web, Lambdulus should be easily integrated within these materials.
This consists, among other features, of ability to create shareable links to the
particular λ expressions. Study materials would benefit from such a feature
because any lambda expression would be directly linked to Lambdulus and
evaluable within a moment.

As a static website, Lambdulus will offer an option to use it without an
internet connection or any remote server after the first load. User is thus given
two options. Either they can load web application in their browser and use it
in the standard way as any other web page, or they can download the whole
project from a public repository and serve it locally.

The first option is expected to be preferred by most users, not only because
it offers an easy way to obtain the latest version of the tool, but also because
it is easy and convenient.

However, there is a technology centred around the idea of distributing web
applications as standalone desktop applications. It is entirely possible that
Lambdulus will be distributed as the one in the future. However, at the time
of writing, it would not bring any benefit to the students and other potential
users of Lambdulus.

Next section describes the most important part of the front-end applica-
tion.

3.2.1 Debugging and evaluation

To offer complete control over evaluation, Lambdulus implements the step-by-
step and continuous evaluation together with debugging functionality. Simple
step-by-step evaluation is built directly on top of the core’s functionality. Each
step passes current AST to the core and stores returned new AST. Similar
to this, the continuous evaluation does the same without the need for user
interaction for each step. User starts the procedure and then either interrupts
evaluation or waits until the evaluation ends. Continuous evaluation ends
when λ expression cannot be further reduced. Before this state is reached, the
user can interrupt evaluation.

Making the user interrupt evaluation on their own every time does not lead
to the best user experience. For that reason, Lambdulus implements break-
points. Break-point can be attached to any λ expression. User can interrupt
on the β reduction of λ function and even choose specific argument in case of
multi-argument functions. Macro and number expansions are also breakable.

These features will be combined with advanced visualisation functionalities
in the near future. For example, the interactive colouring of arguments would
offer even more insight into the debugging process.
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3.3. Error Detection

3.3 Error Detection
To encourage students to learn λ-calculus reductions, Lambdulus features val-
idation functionality. User can ask the tool to let them perform the next step
manually. Then Lambdulus checks if the λ expression is correct. In case user-
submitted expression is not valid, Lambdulus uses an expert system to try and
detect possible mistakes done by the user. It should help students understand
the process of evaluation better and prepare them for any important exams.
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Chapter 4
Realization

For this specific task, TypeScript language [8] was chosen. TypeScript is
JavaScript [9] superset with structural static types. It is transpiled to any
specified version of JavaScript. TypeScript compiler produces code, which
runs in most modern browsers, is reasonable readable and efficient. Moreover,
to write quality code that would be easily read by students of the course PPA,
TypeScript seems like the best option – it has syntax very similar to the one
of C++ [10]. Compilation step allows to catch and fix a significant number
of potential bugs, and it also introduces some useful semantic concepts for
keeping code cleaner.

There are numerous options for developing client-side – web-based ap-
plication. React.js [11] was chosen for its relative simplicity and rich set of
features. React is JavaScript library developed by Facebook, Inc. and com-
munity. It is created for declarative programming of UI and associated logic.
React implements single way data flow, which helps to keep control over data
and logic in clean and elegant shape. On top of that, TypeScript supports
React sufficiently for the purposes of this thesis.

This chapter describes two main modules of Lambdulus – core and front-
end. The core consists of the lexer, parser and evaluation procedure. Web
front-end consists of interactive features and error validation functionality
employing methods of knowledge engineering.
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4. Realization

4.1 Evaluator Core

This module is responsible for parsing and representation of λ expression
as AST. It also implements reductions making evaluation of that expression
possible. This chapter describes all of its features and abilities.

4.1.1 Lexer

⟨number⟩ ::= ⟨digit⟩ { ⟨digit⟩ }

⟨ident⟩ ::= letter { ⟨letter⟩ } { ⟨digit⟩ }

⟨digit⟩ ::= ‘0’
| ‘1’
| ‘2’
| ‘3’
| ‘4’
| ‘5’
| ‘6’
| ‘7’
| ‘8’
| ‘9’

⟨operator⟩ ::= ‘+’
| ‘-’
| ‘*’
| ‘/’
| ‘<’
| ‘>’
| ‘<=’
| ‘>=’
| ‘=’
| ‘^’

⟨keywords⟩ ::= ⟨lambda⟩
| ‘(’
| ‘)’
| ‘.’
| ‘]’

⟨lambda⟩ ::= λ
| ‘\’
| ⟨user-defined-token⟩

Listing 2: Lexer EBNF grammar

The listing 2 describes EBNF [12] grammar for lexer. Numbers are rep-
resented exclusively as integers in decimal radix since they are translated to
Church numerals. Operators available in Lambdulus are non-configurable.
Each supported operator is strictly defined in implementation and user is not
able to redefine it. Every identifier is at least a single alphabetic character.
This character may be immediately followed by a sequence of alphabetic char-
acters forming the word. In both cases, a single character or word is optionally
immediately followed by a valid number. However in course PPA it is com-
mon practice to use single-letter names for identifiers while omitting white
space in between them. This practice 3 allows for shorter expressions on the
whiteboard and is also supported in Lambdulus.
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4.1. Evaluator Core

(λ abc . cba) 1 2 3

≡

(λ a b c . c b a) 1 2 3

Listing 3: Example of λ expression with single letter names

4.1.2 Parser

⟨LEXPR⟩ ::= ⟨SINGLE⟩ { ⟨SINGLE⟩ }

⟨SINGLE⟩ ::= ⟨number⟩
| ⟨operator⟩
| ⟨ident⟩
| ‘(’ ⟨lambda⟩ ⟨ident⟩ { ⟨ident⟩ } ‘.’ ⟨LEXPR⟩ ‘)’
| ‘(’ ⟨LEXPR⟩ ‘)’

Listing 4: Parser EBNF grammar

Parser for Lambdulus is implemented as simple recursive descent parser
[13]. Recursive parser leads to simple and easy to understand code.

Parser traverses top-level expression until it encounters symbol ‘(‘ which
signals nested λ expression, this expression can be either λ application or λ
abstraction – every λ abstraction must be enclosed in parentheses. It is also
valid to nest non-empty λ expression in many levels of redundant parenthe-
ses. Redundancy of parentheses does not have any effect as they are entirely
removed by the parser. Once it is clear which kind of expression is enclosed in
these parentheses, it is then parsed in the entirely same way as any top-level
expression. The parser also keeps count of currently open sub-expressions,
referencing level of nesting. If the parser encounters the end of the expression,
it can only be valid, if this expression exists on the top level. Otherwise, it is
considered syntax error because missing closing parenthesis is forbidden.

The parser is also able to detect and report all sorts of syntax errors. For
instance, the empty sub-expression is considered invalid. Same goes for also
mentioned missing closing parenthesis. Also, every token placed in conflict
with formal grammar is considered syntax error, and as such, it will be raised
together with information about where has the error been found and what
was expected instead. Together with lexer’s ability to raise a lexical error,
Lambdulus can offer a useful and complete set of hints of what was entered
incorrectly and how to fix it.
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4.1.3 Abstract Syntax Tree
Parsing step produces AST – recursive data structure represented as a binary
tree. This implies that every non-terminal node of AST has two ancestors.
This also effectively describes the way Lambdulus represents λ abstraction.
In traditional λ-calculus each function is a single-argument function.

4.1.3.1 Application

AST node application represents two expressions applied one to another. Due
to the rules of the λ-calculus, left expression, being considered receiver of
argument, is applied to the right one, being considered the argument.

class Application implements AST, Binary {
constructor (

public left : AST,
public right : AST,
public readonly identifier : symbol = Symbol()

)

clone () : Application

visit (visitor : ASTVisitor) : void
}

Listing 5: Interface of Application AST node

4.1.3.2 Lambda

Lambda node holds two values; the left is of the type variable and is considered
a λ function’s argument, whereas the right value can be any valid λ expression.
As said previously, every λ function is a function of a single argument. This
pattern is based on the fact, that when needed, the visual representation
layer will be able to represent multiple λ functions standing as the body of
the previous ones. This also means, that due to this design this convenient
representation is also available for user functions as no steps from Lambdulus’s
core are needed to represent nested functions as multi-argument functions.

4.1.3.3 Variable

Variable node is the simplest of all the members of AST. It acts as node
wrapper for token identifier, and it additionally has utility features to satisfy
AST interface.

Variables are not required to start with or contain only lowercase letters.
It is however strongly recommended, as it keeps them visually distinguish-
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4.1. Evaluator Core

class Lambda implements AST, Binary {
constructor (

public argument : Variable,
public body : AST,
public readonly identifier : symbol = Symbol()

)

...

clone () : Lambda

visit (visitor : ASTVisitor) : void
}

Listing 6: Interface of Lambda AST node

able from macros, which are in contrast named with first or all characters in
uppercase.

class Variable implements AST {
constructor (

public readonly token : Token,
public readonly identifier : symbol = Symbol()

)

name () : string

clone () : Variable

visit (visitor : ASTVisitor) : void
}

Listing 7: Interface of Variable AST node

4.1.3.4 Macro

Macro is an expression such as operator or explicitly defined kind of the ab-
straction; for example, function ZERO would be considered macro. Macro
can expand itself into corresponding AST when needed. It is possible because
macro holds MacroDefinition object – already parsed definition of macro, in
the form of the AST. Macro acquires this definition at the time of its con-
struction. It is used lazily by macro – the definition is not touched until it is
needed. Moreover, only when macro needs to be expanded, then this defini-
tion is used to substitute the original macro identifier. It is also worth noting,
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that definition of one macro can contain another macro inside of it – allowing
users to compose more complicated macros out of the simple ones. What is
however forbidden is circular referencing of macros – every macro must be
able to expand itself in the finite number of steps by simple literal substitu-
tion. It is also not possible to use any macro before it was formally defined.
This restriction is due to only semantic nature of macros. Lambdulus does
not identify macros lexically. Whether the identifier is or is not considered
macro, depends solely on the corresponding definition being present or not.

class Macro implements AST {
constructor (

public readonly token : Token,
public readonly definition : MacroDef,
public readonly identifier : symbol = Symbol()

)

name () : string

clone () : Macro

visit (visitor : ASTVisitor) : void
}

Listing 8: Interface of Macro AST node

4.1.3.5 ChurchNumber

ChurchNumber node is a special kind of macro-like value. It represents a single
number in the form of Church numeral. When prompted to expand and only
then, churchNumber is replaced with full AST structure corresponding to the
correct native value of the said number.

While the last three nodes express terminals, each of them can also stand
as the root of the whole λ expression. It is worth noting that not every
expression can be evaluated per se, but some of them can be expanded, for
example, every churchNumber and macro.
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4.1. Evaluator Core

class ChurchNumber implements AST {
constructor (

public readonly token : Token,
public readonly identifier : symbol = Symbol()

)

name () : string

clone () : ChurchNumber

visit (visitor : ASTVisitor) : void
}

Listing 9: Interface of ChurchNumber AST node
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4.1.4 Evaluation of λ expression
As stated earlier, term evaluation is being used to describe the sequence of λ
reductions or conversions. For purposes of working with macros and Church
numerals, Lambdulus implements additional reduction - expansion. Also, the
empty reduction was added. It is called None and serves as a marker that
expression is in normal form. Each reduction object is a simple record; it serves
solely as a data structure for relevant information about the corresponding λ
reduction or conversion.

Lambdulus also implements both Normal and Applicative Order, defined
earlier chapter 1. These are called evaluators; for instance, NormalEvalua-
tor or ApplicativeEvaluator. Due to the isolation of each reduction in the
evaluation process, the user can change the evaluation strategy from step to
step.

Listing 10 shows an essential part of the primary evaluation method.
As far as each reduction object is only data record, any real transformation

happens in so-called reducers. Each reduction has appropriate reducer which
implements transformation by traversing AST and changing its structure.

Any reducer returns whole AST every time some transformation is per-
formed. This helps to unify cases where expression currently being trans-
formed is also top-level expression – AST root. This design allows for identical
control of evaluation for all cases as seen in listing 10. In the referenced listing,
no reduction or reducer can be seen. This is because reductions and reduc-
ers are considered low abstraction, so they only appear encapsulated inside
relevant evaluation strategy implementations – evaluators.

...
while (true) {

const normal : NormalEvaluator = new NormalEvaluator(root)

if (normal.nextReduction instanceof None) {
break

}

root = normal.perform() // new root is returned
}

...

Listing 10: Evaluation control flow

4.1.4.1 Alpha Conversion

The Alpha conversion represents every renaming which will be issued in a
single step. Each one renaming references single lambda abstraction, which
binds variable occurring freely in the argument. Every alpha conversion is
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4.1. Evaluator Core

class AlphaConverter extends ASTVisitor {
private converted : AST | null = null
private oldName : string = ''
private newName : string = ''
public readonly conversions : Set<Lambda>

constructor (
{ conversions } : Alpha,
public tree : AST

)

onApplication(application : Application) : void

onLambda(lambda : Lambda) : void

onChurchNumber(churchNumber : ChurchNumber) : void

onMacro(macro : Macro) : void

onVariable(variable : Variable) : void

perform () : void
}

Listing 11: Interface of Alpha Converter

issued because of and before some beta reduction, so argument containing
unbound or free variables here is meant concerning beta reduction taking place
right after earlier referenced alpha conversion. In the specific case, where the
free variable in argument value is identical to the name of function argument
currently being applied to, no alpha conversion is being issued.

When issuing renaming new non-conflicting name must be created. At the
time of writing, Lambdulus creates a new name by prepending an underscore
to the original name.

Interface of AlphaConverter in figure 11 demonstrating visitor pattern.

4.1.4.2 Beta Reduction

The beta represents every substitution of single argument value into the λ
function’s body. Beta reduction object carries the information needed for the
corresponding substitution. Parts of that information are the parent node
of the application being issued, side of the parent this application occupies,
argument name and also argument value related to the substitution. When
reduction is being processed, implementation of reducer traverses targeted
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class BetaReducer extends ASTVisitor {
private substituted : AST | null = null
private parent : Binary | null
private treeSide : Child | null
private target : AST
private readonly argName : string
private readonly value : AST

constructor (
{ parent, treeSide, target, argName, value } : Beta,
public tree : AST,

)

onApplication(application : Application) : void

onLambda(lambda : Lambda) : void

onChurchNumber(churchNumber : ChurchNumber) : void

onMacro(macro : Macro) : void

onVariable(variable : Variable) : void

perform () : void
}

Listing 12: Interface of Beta Reducer

AST for occurrences of unbound argument name – unbound inside λ function’s
body expression – and replaces them accordingly.

Interface of BetaReducer in figure 12 demonstrating visitor pattern.

4.1.4.3 Eta Conversion

The eta conversion, also known as optimisation, transforms λ abstraction to
another λ expression from former’s body.

Interface of EtaConverter in figure 13 demonstrating visitor pattern.

4.1.4.4 Macro Expansion

The expansion was added to express the transformation of macro or Church
numeral value to corresponding AST value. Its reducer – expander implements
both transformations. Every macro or the numeric value is expanded right
before they are beta reduced. Beta reduction of the expandable identifier
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class EtaConverter extends ASTVisitor {
private parent : Binary | null
private treeSide : Child | null
private target : AST

constructor (
{ parent, treeSide, target, argName, value } : Beta,
public tree : AST,

)

onApplication(application : Application) : void

onLambda(lambda : Lambda) : void

onChurchNumber(churchNumber : ChurchNumber) : void

onMacro(macro : Macro) : void

onVariable(variable : Variable) : void

perform () : void
}

Listing 13: Interface of Eta Converter

is needed for expansion to take place in the evaluation sequence. If macro
or number is never going to be applied to its argument, it is never going to
be expanded. This only follows rules of λ-calculus and its lazy evaluation.
The only exception to this rule is expandable identifier standing as individual
expression. Reason for this is to allow the user to create a macro which
abstracts λ application and then evaluate the whole program from a single
macro.

Exemplary evaluation of a macro expression in listing 14 – consequent
steps are read from top to bottom and macros T and F are defined on the
right.

T T F
(λ t f . t ) T F
(λ f . T ) F
T
(λ t f . t )

T := (λ t f . t )
F := (λ t f . t )

Listing 14: Lambdulus macro evaluation
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class Expander extends ASTVisitor {
private expanded : AST | null = null
private parent : Binary | null
private treeSide : Child | null
private target : AST

constructor (
{ parent, treeSide, target } : Expansion,
public tree : AST

)

churchNumberBody (n : number) : AST

churchNumberHeader (tree : AST) : AST

onChurchNumber(churchNumber : ChurchNumber) : void

onMacro(macro : Macro) : void

perform () : void
}

Listing 15: Interface of Macro Expander

Interface of Expander in figure 15 demonstrating visitor pattern.
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4.2. Front-end

4.2 Front-end
Lamdbulus’s primary front-end is built as a web-based application. It is
built as a completely server-less application running only inside the user’s
web browser. The user has the option to either instantly use the software or
download it from a public repository and build it themselves and use locally.

The main focus was placed on creating a functionally rich but otherwise
plain application. Opportunity to enhance the user interface, as well as user
experience (UX). Mostly in the process of integrating Lambdulus to the course
PPA. The central part of the current UI is displayed in figure 4.1.

Figure 4.1: Lambdulus

As seen in figure 4.1 central part of the Lambdulus’s front-end function-
ality is an evaluation of λ expression written by the user. The evaluation
itself is done by Lambdulus’s core module. Front-end’s responsibility is to
either continually run one reduction after other – in case of RUN action, or
evaluate step by step – in case of STEP action. While step-by-step evalua-
tion is controlled by the user, a continuous evaluation is being controlled by
run-time, and thus, it is necessary to employ some additional features for easy
control over the evaluation process. For instance, to avoid infinite evaluation
of ever-expanding λ expressions, Lambdulus can stop evaluation process at
any moment – user pushes button STOP which appears once button RUN is
pushed. This feature is complemented by break-point functionality.

Because many λ expressions have very long evaluation process and many
intermediate steps form very long and confusing expressions, Lambdulus sup-
ports break-points. User can attach break-point on the β reduction of the
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whole function or specific argument by clicking on it. It can also be attached
to macro and ChurchNumber. Each break-point can interrupt continuous
evaluation. These break-points work in a similar way as the break-points in
general debuggers. User can take advantage of skipping many steps and then
observe and analyse the step-by-step evaluation of produced λ expression.

In addition to built-in macros, front-end allows the user to define their
own macros. As mentioned in chapter 3 This is done in application settings,
and the user can construct any complex macro expression.

Figure 4.2: Lambdulus – Settings UI

As seen in the top part of Figure 4.2 user customise some parts of the
parsing and writing process. Most significant customisation in terms of rele-
vance to the course PPA is an option to enable single-letter-identifiers parsing
mode. In this mode, λ expression containing identifiers which are longer than
a single letter will be parsed as if each letter was separated by space from
others. It is especially useful for quick typing of simple expressions.

In figure 4.3 is demonstrated colour highlighting feature. The green colour
is used for λ abstraction, which is going to be applied to its argument, which
is highlighted with a pink colour. For the expansion of the macro blue colour
is used. Expanding numbers are highlighted with a different shade of blue.
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Figure 4.3: Lambdulus – Colouring of Expressions
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4.3 Error Detection
For the purpose of analyzing user-inputted λ expression in step-by-step check-
ing, various methods of knowledge engineering were considered. Expert sys-
tems were chosen because validating user input and analysing possible mis-
takes seems to be a problem, which methods of knowledge engineering suit
best. The main advantage of expert systems over neural networks, decision
trees and others, is their ability to behave in a deterministic way – if they
are given the same knowledge base and same answers they produce the same
result every time. This is significantly easier to use in these specific conditions.

Validation process proceeds as follows: User prompts validation of their
ability to perform a single step of evaluation. User is given input element,
types and submits their expression. Input is validated, in case of any difference
between user input and referential expression, an expert system is being used
to decide which mistakes were possibly made. The user is then informed
about the result of the analysis – possible mistakes and reasons leading to
their expression being invalid.

Figure 4.4: Lambdulus – Error Detection

The knowledge base needs to be defined clearly and effectively. The knowl-
edge base used in this thesis is defined as JavaScript Object Notation (JSON)
because it is easily parsed and also readable by people. Its structure looks as
follows.
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[{
"name" : "tried-beta-instead-of-alpha",
"type" : "dis",
"predicates" : [

"correct-beta-instead-of-alpha",
"incorrect-beta-instead-of-alpha"

]
},
{

"name" : "ignored-beta-reduction",
"type" : "con",
"predicates" : [

"should-do-beta",
"old-same-or-equivalent-to-user"

]
}]

Listing 16: Knowledge Base structure

In figure 16 are displayed two exemplary rules of the knowledge base. The
entire base is the sequence of rules similar to those shown. Each rule must
be named – name will be used as an outputted result in case the rule is
satisfied. To satisfy the rule system must evaluate the sequence of queries
called predicates. Each sequence specifies the relation between sole predicate
by setting the type of the rule. Each rule stands either as disjunction – type
dis or conjunction – type con.

The predicate in the sequence can be either primitive or name of another
rule. In the former case expert system directly queries front-end of Lambdulus
by implemented Application Programming Interface (API). The queried part
of the Lambdulus traverses AST of the last valid expression, next valid expres-
sion, and the user-submitted expression and resolves the query as either true
or false. Besides the Boolean value, each resolution adds a list of warnings
or errors in case any of them have occurred. They help to further identify
possible mistakes done by the user. As mentioned earlier predicate can be a
reference to another rule. In that case, the expert system effectively queries
itself. This scenario comes with the only limitation – it is not allowed to nest
rules recursively, other than that there is no limitation of the depth of nested
rules.

In case it is needed, it is permitted to create a rule with a single predicate.
Such rule can serve as named primitive predicate and can also carry the same
name as one.

The structure for the rule is noticeably flat. More semantical structures
were also considered, but any intricacy comes with the undesired effect of
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worse readability. The chosen structure allows for comfortable observation
and easy modification. For example, adding the rule identifying that user
ignored any reduction can be made like so.

{
"name" : "ignored-beta-reduction",
"type" : "con",
"predicates" : [
"should-do-beta",
"old-same-or-equivalent-to-user"

]
}

Listing 17: Rule Ignored-Beta-Reduction

The corresponding handler to newly created primitive predicate must also
be implemented by Lambdulus.

The core of the expert system is backwards-chaining inference engine. It
iterates over all rules in the knowledge base and tries to prove one rule at
the time. In this specific case of the expert system, there is no need for
implementing the priority of the rules. Order of the rules in the knowledge
base should not influence the result in any way. Reason for this is the fact
that as an expert system is not querying human, it is not important to prefer
any specific order. The expert system might implement no store for answers
as well. That is true only because querying API is functionally pure by design
– every query resolves to the same answer when given the same combination
of three instances of AST. For that matter, any storage for answers would
serve only as optimisation.
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Chapter 5
Evaluation

The main objective of this thesis was to create λ evaluator suitable for use
in course PPA. An important part of the integration of the Lambdulus to
the mentioned course is the modification of current study materials on Course
Pages. To evaluate the level of satisfaction of course’s specific demands, author
of this thesis edited teaching material for equivalent course BIE-PPA – the
same course, but taught in the English language.

While each exercise on λ-calculus was being processed, Lambdulus proved
itself to be a useful tool even for correcting typical mistakes done by teachers
when preparing materials. In this process, several mistakes were discovered
and corrected.

• Missing single or multiple parenthesis

Original: (λx y . (-x y) 5 2

Corrected: (λx y . (-x y)) 5 2

• Incorrectly used precedence

Original: (λx. (* + 3 x - x 4)) 5

Corrected: (λx. (* (+ 3 x) (- x 4))) 5

• Possibly missing argument or otherwise malformed expression

Original: (λx. (λy. * + y z - x 4) 5) 2

Corrected: (λx. (λy. (λz. * (+ y z) (- 4 x))) 5) 2 4

• Infix instead of prefix
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Original: ((x or y) and (not (x and y)))

Corrected: (AND (OR x y) (NOT (AND x y)))

• Missing λ symbol

Original: (p.(λq.(λp.p (p q))(λr.+ p r))(+ p 4)) 2

Corrected: (λp.(λq.(λp.p (p q))(λr.+ p r))(+ p 4)) 2

This proves that Lambdulus, as a λ evaluator, functions well even for quick
checking of the validity of arbitrary λ expression.

To integrate Lambdulus into materials, a teacher must only copy URL
of Lambdulus expression – which is automatically updated while typing and
paste this link to teaching materials online. When clicked, this link will open
prepared λ expression inside Lambdulus. Students can observe and learn
about the evaluation of this expression without any preparation from their
side.
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Conclusion

The aim of this thesis was to develop Lambdulus, an interactive λ-calculus
evaluator for the course PPA at FIT CTU. Lambdulus fulfils all the require-
ments of the course and has already been integrated into the teaching mate-
rials.

Lambdulus is built prioritising student’s needs and taking into account
other already existing evaluators. It consists of two separate modules to en-
sure future extensibility. The core module’s code is written as an illustration
and teaching aid for explaining the simplicity of implementation of λ-calculus
interpreter to students. As such it has been designed with ease of use in mind
and is well documented. The core of Lambdulus is extremely minimal step-
by-step λ expression evaluator which can easily be extended with different
λ-calculus dialects, or extra features (different evaluation orders, etc.) It is
also intended to be used as a demonstration of the simplicity and power of the
simple λ-calculus; all complex features, such as multi-variable λ functions are
simplified into the most basic forms, and great emphasis has been placed on
the readability of the code, including full documentation. The front-end mod-
ule is built on top of the core evaluator and provides the visualization and user
interface layer that in terms of workflow and usability brings λ-calculus much
closer to practical programming languages. The front-end supports clear visu-
alization of λ-calculus evaluation steps and proper debugging of λ expressions.
It also features an error checking mode where the student attempts their own
step-by-step solutions, and Lambdulus corrects their mistakes offering hints
to the errors made. Finally, the front-end has features for simple sharing and
embedding in existing course materials via state-of-the-art web methods.

The whole code-base of Lambdulus is on the Github and application is ac-
cessible online at this address: https://lambdulus.github.io It is easy-to-deploy
on any type of web hosting because it is a client-only static web application.

In the moment of the writing, the author and his advisor are in the process
of preparation for submitting the paper on the SPLASH-E conference.
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Conclusion

Future work
For the future work on this thesis, its author was given the grant for the
integration of Lambdulus to the PPA’s teaching materials and to improve the
user interface and experience. This section discusses the work that will be
done as a fulfilment of this grant as well as more general improvements to be
done in a more distant future.

• more evaluation strategies
Optimized evaluation of arithmetical and logical expressions will be im-
plemented.

• usability testing and refinement of UI
The user interface of the web front-end application will be refactored to
become more intuitive and easy to use.

• meaningful and semantic renaming when α converting
Lambdulus will find an optimal and unique name for substitution. This
name should correspond to some convention and make α converted λ
expression more readable.

• reverse macro expansion
Macros and numbers will be able to reverse-expand back to their ab-
stract form. This will simplify the results of mathematical and logical
operations and make them more readable.

• better visualization and debugging
Visualisation and debugging are going to be significantly improved. Bet-
ter control over evaluation and debugger with more features will make
understanding of the evaluation process more clear and intuitive. Ad-
ditional functionalities such as conditional break-points will give users
much more control over the evaluation process. Also, highlighting the
expression with colour combinations will be implemented. User will be
able to click on any argument of the function, and every occurrence will
be highlighted, offering a better way of orientation.

• operator precedence
To make λ expressions even more easy to read and type, Lambdulus will
implement operator precedence as known from math. User will be able
to write expressions such as: + ∗ 3 2 ∗ 2 2 being effectively equivalent
to: + (∗ 3 2) (∗ 2 2)
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Appendix A
Acronyms

FIT CTU Faculty of Information Technology at Czech Technical University
in Prague

PPA Programming Paradigms

AST Abstract Syntax Tree

UI User Interface

UX User Experience

EBNF Extended Backus-Naur form

URL Uniform Resource Locator
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Appendix B
Contents of enclosed CD

readme.md..........................the file with CD contents description
src.........................................the directory of source codes

core.....................the directory of source codes of core module
dist..............the directory of compiles JavaScript source code

frontend...........the directory of source codes of front-end module
build.........................the directory of built static web-site

wbdcm ........................................ implementation sources
thesis...............the directory of LATEX source codes of the thesis

text............................................ the thesis text directory
thesis.pdf............................the thesis text in PDF format
thesis.ps...............................the thesis text in PS format
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