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Abstrakt

Tato prace se zabyva problematikou matematické optimalizace a ukazuje, jak ji 1ze aplikovat
na problematiku znalostniho inzenyrstvi. Nejdfive se zamérime na teoretické zdklady matem-
atické optimalizace a formulujeme zakladni optimaliza¢ni problémy jako linedrni programovani,
kvadratické programovani ¢i optimalizaci vektorJu. Déle se zaméfime na vybrané problémy z
oblasti znalostniho inzenyrstvi a vyjadiime je v ramci optimalizace. Déle prezentujeme metody
feSeni optimalizac¢nich problém|u, konkrétné metody sestupu, Newtonovu metodu a bariérovou
metodu. Nakonec se presuneme do praktické ¢asti, kde demonstrujeme rJuzné néstroje pro reseni
optimalizacnich tloh.

Klicova slova optimalizace, konvexni optimalizace, metody konvexni optimalizace, metody
sestupu, metoda vnitiniho bodu, znalostni inzenyrstvi, strojové uceni, vytézovani dat

Abstract

This thesis explore the field of mathematical optimization and show how it can be applied on the
problems of knowledge engineering. Firstly, we develop a theoretical background in mathemati-
cal optimization and formulate basic optimization problems like linear programming, quadratic
programming and vector optimization. Next we select different problems from the domain of
knowledge engineering and express them in optimization framework. Then we present meth-
ods handling optimization problems, namely descent methods, Newton’s method and barrier
method. Finally, we move beyond the theoretical part and demonstrate various programming
tools for solving optimization tasks.

Keywords optimization, convex optimization, methods of convex optimization, descent meth-
ods, interior point method, knowledge engineering, machine learning, data mining
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Introduction

In this thesis, we investigate the connection between optimization and field of knowledge en-
gineering. At first glance the relation looks quite poor, certainly we want to achieve the best
results solving any problem, but usually the mathematical part is overlooked. One might think
of knowledge engineering as writing domain specific programs solving particular problems, and
in fact, there exist tons of such programs based on inexact heuristics, hence showing suboptimal
results. Moreover, such heuristic algorithms mostly do not provide us with proof of the solution
optimality, so we have to trust the implementation. However, within notion of mathematical op-
timization framework we would be able to handle these tasks efficiently achieving the guaranteed
optimal performance with small computational time.

The thesis contributes to gaining a solid understanding of mathematical optimization meth-
ods applied to the demands of knowledge engineering. Thus, motivating us for further devel-
opment and improvement of computer programs for deriving knowledge based on optimization
technics.

Initially, we review mathematical backgrounds of optimization, in particular, convex opti-
mization problems that in general can be solved efficiently. Talking about convex optimization,
we formulate specific types of problems like linear optimization, quadratic programming, or vec-
tor optimization. Nevertheless, we make some notes on non-convex optimization and show its
relation to the convex one. Next, we study various problems in knowledge engineering that can
be represented in terms of mathematical optimization. Also, these problems will be assigned to
already defined optimization classes. Then, we review existing optimization methods for solving
formulated types of problems. In the end, we look at programming constituent, namely on var-
ious software tools that can solve optimization tasks, preferably open-source packages. Finally,
we take some already defined problems benchmark selected solvers.

Objective

The main goal of this thesis is to show strong relation between two huge fields, namely mathe-
matical optimization and knowledge engineering. Usually, knowledge engineering is considered
as writing sophisticated computer programs that cary out non-trivial results, and it turns out,
that such programs are mostly derived from mathematical models describing the problem do-
main.

For our first goal, we formulate such problems in terms of optimization and review math-
ematical methods that can solve these tasks yielding desired optimal outcomes. We not only
analyze the mathematical part, but also show how these problems are solved in terms of the
optimization framework. The partial objective is to investigate existing software tools that are
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able to carry out optimizational computations on earlier formulated problems. As a result, we
would eliminate a black box perspective of optimization technics used in knowledge engineering.



CHAPTER ].

Mathematical optimization

The field of mathematical optimization is surely not a new topic and traces back to the 17th cen-
tury, when Pierre de Fermat formulated the principle of first derivative vanishment at the func-
tion extreme point. Until 20th century optimization problems frequently appeared in physics,
for example Newton’s minimal resistance problem and principle of least action. As for the al-
gorithms, the first one was least squares method presented in 19th century by Carl Friedrich
Gauss and Adrien-Marie Legendre. The main advantage of least squares method is the analytical
solution, though in general, optimization problems are solved algorithmically than analytically.
Nevertheless, the main optimization theory, namely convex optimization, and algorithms were
set on motion in 1950 and by 1970 were quite well developed.

The first widely known general algorithm for solving optimization problems, specifically
linear problems, was the simplex method invented by George Dantzig in 1947 at Stanford. The
next milestone was the ellipsoid method from 1970s developed by the Soviet and Ukrainian
mathematicians. The ellipsoid method was the first algorithm to show that LP (a.k.a. linear
optimization a.k.a. linear programming) is solvable in polynomial time. In fact, it was the
reason why in late 70s an article related to LP appeared at the front page of New York Times.
In 80th an interior method was developed, originally it was used to solve LP problems and later
it was realized that this approach can be generalized to convex optimization as well.

Actually, one can notice that the invention of the simplex method coincides with the de-
velopment of modern digital computers. Since generally optimization problems do not have
an analytical solution, they are usually solved by some iterative methods. Thus, potential of
solving sophisticated optimization problems is highly correlated with growth of the computer
performance.

Although, mathematical optimization is not a new subject, the thing that makes it interesting
now is its applications in various fields like finance, circuit design, statistics and machine learning.
Moreover, the theory behind convex optimization shows that convex problems can be solved time
and space efficiently depending on the input size. As for non-convex problems, it appears that
in most cases non-convex problems use convex optimization as its subroutine.

This chapter looks at the theory behind optimization along with most important families
of convex and non-convex optimization problems. Then we move on to duality that gives a
interesting way of solving even hard problems. Next, some notes on non-convex case will be
given. At the end we step aside and introduce theoretical ideas of reproducing kernel Hilbert
spaces, that will be also widely used in the next chapter. This chapter is a brief outline of the
book [I, Chapters 1-5], the section about Hilbert spaces summarizes [2].

3



1. MATHEMATICAL OPTIMIZATION

1.1 Theory

1.1.1 Preliminaries

In this subsection we summarize basic theoretical concepts that we will widely use throughout
the thesis.

Remark 1.1 (Notation).

e Suppose x € R” is a column vector, we identify vector x by n-tuple of reals as z =
(z1,...,2y) € R™. Thus, when we write elements of a column vector in parentheses we do
not use the transposition.

o We denote all non-negative and positive real numbers by R; and R, respectively.

e Suppose X € R"*™. We denote the ith columns of X by X;,, for the jth row we have
X, j.

Linear algebra

Definition 1.1 (Symmetric matrix). Suppose A € R™*". We say that A is symmetric if A = AT
and denote this as A € S™ ©

A nice property of symmetric matrices is that they have real eigenvalues.

Definition 1.2 (Positive semidefinite symmetric matrix). Suppose A € S™. If for all x € R™ if
the following holds
zTAz > 0.

we call A a positive semidefinite matrix or PSD matrix and denote this vy A € S}. If for all
non-zeo x € R™ we obtain
2T Az >0,

then A is called positive definite or PD matrix, we denote this by A € S . ®
Lemma 1.3 (Characterization). Suppose A € S".

o A €8S if and only if all eigenvalues of A are non-negative.
o« A S, if and only if all eigenvalues of A are positive.

Definition 1.4 (Norm). Suppose X is a vector space. A function |- ||y : X — R is called a
norm if for all z,y € X and a € R the following holds:

1. Positive definiteness: |z|x =0 A (Jz|x =0 < x =0).
2. Positive homogeneity: |az|x = |af||z|x.
3. Triangle inequality: |z + y|x < |z|x + [ly]x- ©®

Remark 1.2 (Notation). In the majority of the text our vector space X will be just R™, so

notation || - || will stand for norm defined on R"™, in particular we denote the Euclidean norma
as | - |2 . If we use another vector space ) it would be explicitly specified by the index, i.e.
I ly °

4



1.1. Theory

Theorem 1.5 (Cauchy-Schwarz inequality). Suppose x,y € R™, then the following inequality
holds

2yl < 2]yl

We have an equality
" y| = []2]y]2

only if x,y are collinear.

Multivariable functions Lets have a look at basic points related to differentiability of mul-
tivariable functions.

Definition 1.6 (Partial derivative). Let f : R”™ — R be a real valued function. If ¢ € dom f
and the following limit exits

o (@ he) = £(@)

p h s 61':(01,...,Oi_l,li,0i+1,...,0n),

then we say that value of this limit is a partial derivative of f at a point a with respect to i-th

variable and we always write it as g—i(a). ©

Remark 1.3 (Vector valued functions). Let f : R® — R™ be a vector valued function. Partial
derivative of f at a point a € dom f with respect to z; is the following vector

S = (S )

Definition 1.7 (Differentiability). Suppose f : R® — R™ is a function. We say that f is
differentiable at a point a € dom f,a # x if and only if there exist a linear map J : R — R™

such that
)~ (@) = 3@ = a)l

z=a |z — a2

= 0.

We say that f is differentiable if its domain is open and it is differentiable at every point of its
domain. ©
Remark 1.4 (The Jacobian matrix and the gradient). In the definition of differentiability of a
function we talk about linear mapping J : R™ — R™, which is defined as a matrix of all first-
order partial derivatives of a vector valued function and is called the Jacobian matrix J € R™"*™,

i.e. 5
Jij(a) = ‘];gfj)

, ,7=1,...,n.

If original function f is a scalar valued function, then we talk about vector in R™. This vector
is called the gradient of the function f and is denoted as Vf, i.e.

V/(a) = <a§$) 9;95:))

Definition 1.8 (Second derivative). Suppose f : R”™ — R is a function. Second derivative or
Hessian matriz of f at a € int dom f, denoted V2 f(a) € S™ is defined as the following,

(v2f(a))Z o a2f(a)

J 03:18% ’

,7=1,...,n.

We say that f is twice differentiable if its Hessian exists at each point in the domain of f, which
is open. ©



1. MATHEMATICAL OPTIMIZATION

1.1.2 Convex sets

In this section we start with some basic definitions like affine set, convex set and cones. Next
we move on to some important examples like balls, ellipsoids or half-spaces. Then we focus
on operations that preserve convexity to formulate so using these operations we can construct
new convex sets from other convex sets. After that we look at generalized inequalities or vector
inequalities with respect of proper cones.

We begin with important idea of convex sets and other related concepts.

Definition 1.9 (Line segment). Suppose a,b € R™ and a # b. The set (} # C = R™ such that
C={yly=0a+(1-0)b 0<0<1}

is called a line segment between a and b. If # € R then C is called the line passing through a
and b, ©)

Definition 1.10 (Convex combination). Let z1,...,z, € R™ and 64,...,0, € R, such that
>.;0; = 1. Point y of the from
m
Y= Z Oixi,
i=1

is called a convex combination of the points z1,...,z,. If we let § be any real number we obtain
an affine combination. ©

In fact, affine and convex combinations are special cases of linear combination with some
constrains on the coefficients.

Definition 1.11 (Convex set). Suppose § # C < R™. If for every a,b € C and a # b the
following condition holds

{yly=0a+(1-0)b 0<0<1}cC,

then we call C is a convex set. If we let 0 € R then C is an afline set. ©

The definition tells us that if set C' contains every line segment between its two points then
it is convex, this situation is illustrated in the Figure|1.1

OOl

Figure 1.1: Three sets on the left hand side are convex, others are not.

Now we move on to convex cones and conic combinations.
Definition 1.12 (Conic combination). Let a,b € R™ and C' € R™. Any point z of the following
form:
x = aa + b, a,BeRy

is called a conic combination of a and b. If C' contains all such z, then we call it convex
cone. ©
Geometrically we have a sort of pie slice. Points on boundaries are just non-negative multiples

of u or v and points inside the slice are positive multiples of u+ v, to see this consider the Figure
1w



1.1. Theory

Z1

x2

0

Figure 1.2: Convex cone illustration.

Lets look at some important sets that we will use later in analysis of the domains of opti-
mization problems.

Example 1.5 (Solution set of linear equations). Let C' = {x | Az = b}, where A € R™*" b e R™,
i.e. C is the solution set of a system of linear equations. To show that C is affine, suppose
u,v € C, u # v and 0 € R. Lets consider a line passing u, v, so we have

Au+ (1—0)v)=0Au+ (1—-0)Av =00+ (1—0)b=h. @)

Example 1.6 (Hyperplanes and half-spaces). Let C' € R™ be a solution set of a single linear
equation, i.e. set of the form

C={zxeR"|a'z =0} a # 0.

The set C' is called a hyperplane, with a normal vector a. Notice, when we move around with b
we get parallel hyperplanes to the first one.
A solution set of a single linear inequality, i.e. set of the form

{zeR" | alz < b}, a#0

is called a half-space.
Both hyperplanes and half-spaces are affine hence convex. Now lets pick a # € R and verify
the definition of an affine set.

al (Qu+ (1 —0)v) =b0au+ (1 —0)a"v =00+ (1 —-0)b=0b

An example of a half-space and hyperplane is illustrated in the Figure [1.3 O
a
T
alz <b

Figure 1.3: Hyperplane a’ zg = b and a half-space a2 < b.

Example 1.7 (Polyhedron). Suppose < is a component-wise inequality and a,b € R", i.e.

a<b < a; <b;, ie{l,...,n}.



1. MATHEMATICAL OPTIMIZATION

A set P € R"™ defined as a solution set of a finite number of linear inequalities and equations
P={zeR"| Az <b, Bz =d}, AeR™" BeRP" beR™ peR?

is called a polyhedron. Notice, that a polyhedron can be both bounded and unbounded.Using
the fact that intersection preserve convexity (will be shown later) we can say that polyhedron

is a convex set. A example of a polyhedron is illustrated in the figure [1.4 O
az
as
ai
a4
as

Figure 1.4: Polyhedron.

Example 1.8 (Balls and ellipsoids). The set B(z,, ) of the form
Blae,r) = {z | |z —zc|2 <7}

is called a Fuclidean ball with the center x. and radius r. Generalization of a ball is an ellipsoid,
i.e. set of the form

E={zeR"|(z—z) P (z—x,) <1}, PeSY,. (1.1)

To see that a ball is a special case of an ellipsoid consider the following

1

|z —acls <7 = 72(:6 —x) I(x — z.) < 1.

Thus, we have P~ = 1/7%I or equivalently P = 1.

Let us derive an equivalent formulation of an ellipsoid. Since P € S’ by the spectral
theorem for symmetric matrices we have P = QAQ’, where Q is an orthogonal matrix, i.e.
QQ” = QTQ =1 and A is a diagonal matrix of eigenvalues of P, such that eigenvalues \; of P
are positive. Now we define P2 e ST, as P2 = QAY2QT. Therefore, P can be expressed as
P = PY2P1/2, Moreover, since P and P2 are positive definite, the inverses exist and we have

Pl— <P1/2P1/2)*1 _ p-l2p-1/2 p-l2pl/2 1.
The condition in (I.1)) can be reformulated as
(2 =2 Pz —7) <1 — [PTP@—a)| <1.

Now we say that P~Y2(z — x.) = u for some u € R” hence ||ull < 1. Thus, we get

T =T+ P2y,
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Therefore, taking A = P'/2 an ellipsoid can be expressed as
E=f{rc+Au|Juls <1}, AeSl,.
In the same way we can represent a ball
B(xe,r) = {ze +1u | |ul2 < 1}

To show that ellipsoid is convex consider the definition and two points
Ze + Au, 2.+ Av € E. Lets check that 0(x. + Au) + (1 — 0)(x. + Av) € E:

O(zc+ Au) + (1 —0)(xc + Av) = .+ 0Au + (1 — 0)Av
=z, + A(Ou+ (1 —0)v).

Now we verify that [fu + (1 — 0)v|2 < 1. Because 2. + Au, .+ Av € E we have
[0u+ (1 =02 <O+ (1-0)=1

Example 1.9 (Normed cone). A set C < R"*! of a form

C={(z,t) eR™ | t > ]}

is called a normed cone. If we think in terms of functions and interpret norm as a function, then
C represents an epigraph of a norm (epigraphs will be formally defined in the next subsection).
To see that a normed cone is a convex cone consider (a,u), (b,v) € C and «, 3 € Ry:

ala,u) + B(b,v) = (aa + b, au+ o)
and by assumption and triangle inequality we have
laa + Bblz < allal2 + B[b]2 < au + Bv

so normed cone is a convex cone.

Example 1.10 (Positive semidefinite cone). A set S’} of the following form
ST ={AeR"™ | A>0}={AeR™ | zTAz >0, xeR"},

is called a positive semidefinite cone.
To show that S” is a convex cone suppose A,B €S’ , x € R" and o, 8 > 0O:

z(aA + B)z = azT Az + BzTBz > 0

so S is actually a convex cone.
Similarly it can be shown that positive definite cone S’} | :

ST, ={AeR™ | A>0}={AeR" | 2TAz >0, 0#xeR"}

is a convex cone.

O

Now we move on to operations that preserve convexity, i.e. calculus of convex sets. The
motivation to learn about convex calculus is that we will need to determine wether a set is convex
or not. In most cases showing convexity by the definition is non-trivial, but with convex calculus
we are able to establish convexity, because it was constructed from convex sets by operations

that preserve convexity.

In fact, this approach is very useful. If we want to write a program that determines wether
a set is convex, using convex calculus we will need to create a tree such that its leaves will be
basic convex sets, its nodes will be operations that preserve convexity and the root will be the

originally given set.



1. MATHEMATICAL OPTIMIZATION

Theorem 1.13 (Intersection of convex sets). If ) # A, B € R" are convex sets, then A n B is
convex.

Proof. Suppose u,v e An B and 6 € [0, 1].
u,v€ AnB < (u,ve A) A (u,v e B)
> (Qu+(1—0weA) A (Bu+ (1—-0)ve B)
— (u+(1—-0w)e AnB O

Theorem 1.14 (Affine mapping of convex sets). Let C' be a convex sets and f : R" — R™ an
affine function defined as z — Az + b with A € R™*" b e R™. The image of C under f,

f(C) ={f(z) eR™ [z e C}

is convex.
Likewise,the inverse image of A under f,

fHO)={zeR"| f(z) e C}
is convex.
Proof. Suppose f(u), f(v) € f(C), 8 €[0,1] and C is convex,
fw),f(v)e f(C) = u,veC < Ou+(1—-0)elC
— Afu+ (1—-0)v)+be f(C)
< AlGu+ (1—-0)v)+b+60b—0be f(C)
— O(Au+b)+ (1 —-0)(Av+b) e f(CO),
so 0f(u) + (1 —0)f(v) e f(C) and f(C) is convex.
Now consider p,q e f~1(C), B e [0,1] and C is convex,

pae fTHC) = f(p), fl@)e A < Bf(p)+(1—-B)f(g)eA
> [B(Ap+b)+(1—-pB)(Ag+b)e A
= ABp+(1-pP)g) +be A

= Bp+(1-PBge f(C) -
Remark 1.11 (Balls and ellipsoids). As our formulation of balls and ellipsoids suggests, they are
just affine transformations of a unit ball, which is obviously convex. o

Now we focus on generalized inequalities. As name suggests we generalize the idea of a
familiar inequality on R to another context like matrix inequalities, or vector inequalities.

Definition 1.15 (Proper cone). A convex cone K is a proper cone if
1. K is closed (contains its boundary)

2. K is solid (has nonempty interior, i.e. is full dimensional with respect to a given vector
space)

3. K is pointed (contains no line, i.e. x € K,—z € K = x =0) ©

Definition 1.16 (Generalized inequality). Let K be a proper cone. We define a partial ordering
associated with a proper cone K as

r<gy <= y—xeK, x,y e K.

This ordering is called generalized inequality defined by convex cone K. ®

10



1.1. Theory

Remark 1.12. Strict generalized inequality can be defined as following,
r<gy < y—xecint K, x,y € K. o

Example 1.13 (Nonnegative orthant). An intuitive example of a proper cone is the nonneg-
ative orthant R}, where vectors with some zero components form its boundary, interior is all
component-wise positive vectors. So for x,y € R’} we have component-wise inequality

r<pry = y—reR} = z;<y;, ie{l,...,n}

Notice that we used this inequality in the to express a polyhedron. O

Example 1.14 (Semidefinite cone). Another example will be a positive semidefinite cone. In-
terior is formed by positive definite matrices, boundary contains all matrices with some zero
eigenvalue, i.e. all singular positive semidefinite matrices and positive semidefinite with all
eigenvalues equal to zero forms the origin. Now we can define matrix inequality with respect to
st
A<§1B<2B—AES?_<:»’B_A>O O
Notice, that unlike < a generalized inequality < is a partial ordering as we can have vectors
that are incomparable, i.e. © X y and x ¥k y. That’s why idea of the smallest element splits
into two parts the minimum and the minimal element.

Definition 1.17 (Minimum and minimal). Let <x be a generalized inequality with respect to
a proper cone K and S as an arbitrary set. Element x € S such that,

r <K Y, vy€S7

is called the minimum element of S with respect to <g.
Element u« € S such that,

Yve S, v <kg u = v =u,

is called a minimal element of S with respect to <. ©

Remark 1.15. Minimal and minimum elements can be described in set notation. The point x € S
is the minimum of S if and only if
Sczr+ K.

Here = + K is a set of all points that are comparable and grater or equal to . Notice that if
is minimum it follows that S € K.
The point x € S is minimal of S if and only if

Snzx—K = {z}.
Here x — K determines a set of all points that are comparable and less or equal to z. Thus, if

2 is minimal then S&ZK. o

The intuitive difference between the minimum and a minimal is the following, a point z € S
is the minimum, when all other points are larger then x with respect to cone K, and if y € S is
a minimal, then there is no points that are less then y.

Now we look at some concepts that will help us to gain a useful characterization of minimum
and minimal elements, that will be used in vector optimization problems.

Definition 1.18 (Dual cone). Let K < R" be a cone. The set
K*={zeR"|ulz>0, Vue K}

is called the dual cone of K. ©

11



1. MATHEMATICAL OPTIMIZATION

Lets look at the following lemma that tells us that the duals of proper cones can define
generalized inequalities.

Lemma 1.19. Let K be a cone. Then
1. K* is a convex cone.

2. If K is closed, i.e. cl K = K, then the dual cone of the dual cone is the original cone, i.e.
K** =K.

3. If K is proper, then the dual cone K* is a proper cone.
Proof.

1. Using the definition of the dual cone we see that for every x € K the set {y | 27y > 0} is
a half-space, so we express K* as the following,

- (ty 12"y =0}

zeK
Since we use non-strict inequality 27y > 0 it follows that the dual cone is closed.

2. We start with the fact that closure of any cone K can be expressed as an intersection of
all homogeneous half-spaces containing K .Thus, for closed cones the statement cl K = K
holds. With the previous point we have:

Ad K= (){yla"y=0={y|aTy>0 Ve K*} = K**.

reK*

3. Suppose that K is a proper cone. To see that K* is pointed we use the fact that the
original cone K has nonempty interior. Assume that K* is not pointed, i.e.

O;éu—ueK*:>3: ZO,J:( u) =0, Vee K
u=0, z7u<0
:>K:{:c]:1; u:O,u;ﬁO},
so K is affine, hence does not contain nondegenerate ball from the original vector space
(R™) and so has an empty interior.

Now we show that K* has nonempty interior assuming K is pointed. Consider the follow-

ing:
int K*z@:ﬂx#O:K*z{y\xT?JZO (—2)"y = 0}
=z -—re K" ={u|alu=0, ae K*},
hence K** contains a line and using point 2 we have that K is not pointed. ]

Remark 1.16. In the proof of the previous lemma we used characterization of the interior point
of a set from topology, so for S € R" and z € .9, the following holds

zeint S < {z+rulfulla <1, ueR", r#0}< S, o

By now we obtained important properties associated with relation between generalized in-
equalities and their duals.
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Remark 1.17. If K is a convex proper cone and < is a generalized inequality with respect to
K, then its dual K™ is also a convex proper cone, hence defines a generalized inequality < gs.
Let z, y € K and A >g+ 0. The important relations between K and K* are the following;:

. z<gy < Mz<\y
2. x<gy «— ANz <Ay, \+#0. o

Here we present characterization of minimum and minimal using the dual cones, however we
omit the proof, since it is based on other non-trivial theorems.

Theorem 1.20 (The minimum element characterization). Let S € R"™ be any set and = € S.
The element z is the minimum element of S with respect to <, if and only if for every A >+ 0,
x is the unique minimizer of ATw over u € S.

In case of a minimal characterization splits into two different parts.

Theorem 1.21. Let S € R™ be any set and = € S. If A >+ 0 and z is a unique minimizer of
My over all u € S then z is minimal.

However for the converse implication we need to assume that S is a convex set, as in general
x € S can be a minimal element but not the minimizer of ATu,u € S if S is not convex.

Theorem 1.22. Let S be a convex set. If z € S is minimal and there exists A\ > such that x
is the unique minimizer of ATu over all u € S.

The proofs for these theorems can be found in the book [I, p. 46-57].

1.1.3 Convex functions

In this subsection we extend the meaning of convexity to the context of functions. At first,
we say what a convex function is and illustrate this definition on some examples. Establishing
convexity of a function plays critical role in optimization problem as, roughly speaking, convex
problems can be efficiently solved. Then we explain reasons why convexity plays a crucial role in
optimization and how with local information about the gradient we obtain global results. Next
we move on to operations that preserve convexity and form the basics of the convex calculus in
terms of functions.

Definition 1.23 (Convex function). Suppose f : R™ — R is a function, such that dom f is a
convex set. If for any =,y € dom f the following holds:

[0+ (1 =0)y) <Of(x) + (1 -0)f(y),  0€[0,1]

then we say that f is a convex function. If the strict inequality holds then f is called a strictly
convex function. If there holds > instead of < then f is called concave function. ®

The illustration of a convex function can be viewed in the Figure [I.5

Actually, we have already seen points of this type fa + (1 — 0)b, it is nothing else but a point
on a line segment between a and b. The definition says that if you evaluate function at a point
in a line segment between a and b you get smaller value than convex combination of the end
points. In terms of graph we say that line segment connecting (z, f(x)) and (y, f(y)) lies above
the graph of the function.

One extremely useful property of convex functions that directly follows from the definition
is that if we restrict the domain of a convex function to a line, then f will be below that line.
In some cases it will be worth plotting a function before formal verification of convexity, if the
function value is higher then convex weighted sum of the end points, then we are done, and the
function is not convex. However, if no such line was founded we have to check convexity by
hand.

13
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(0 + (1= 0)y, f(6z + (1 -0)y))

Figure 1.5: Convex function illustration.

Remark 1.18 (Restriction to a line). The function f : R™ — R is convex if and only if the
function g : R — R such that,

g(t) = f(z + tv), domg={t|z+tvedomf}, zredomf, veR"

is convex in t. o

Remark 1.19 (Extended-value extension). Let f : R® — R be a convex function. We define
function f:R"™ — R U {400} such that,

fz) =

+00, otherwise,

. {f(x), x € dom f,

and call it extended-value extension of f. o

This extension will simplify the notation now we can write for any a,b € R” the function is
convex if and only if

f(Ba+ (1 —0)b) < 0f(a) + (1 —0)f(b).

Notice, that now we are using extended arithmetic and ordering. In the rest of the thesis
extended-value notation of functions will be used explicitly instead of the ordinary one.
Now we look at theorems that will help us to establish convexity of a given function.

Theorem 1.24 (First order condition). Suppose f : R” — R is a differentiable function with
convex domain. The function f is convex if and only if for Vu,v € dom f the following holds

flw) = f(v) + V() (u—0).
Proof. The proof can be found in [I, p. 70]. O

Remark 1.20 (First order Tylor approximation). Note, that expression on the right hand side is
a first order Tylor approximation of a function f at a point v and is, actually, affine in w. )

The main assertion of the first order condition is, that the function is has higher value
everywhere than the first order Tylor approximation. As it is a global result now we can claim
that our solution is the optimal and no other can do better.

Theorem 1.25 (Second order condition). Suppose f : R™ — R is a twice differentiable function
with convex domain. We say that f is convex if and only if the following condition holds

V2f(u) > 0, Vu € dom f.
Proof. The proof can be found in the literature [I, p. 71]. O
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Corollary 1.26 (Strict convexity). If the Hessian matrix is positive definite, i.e. V2f(u) >
0, Yu € dom f, then we call f strictly convex. However, the converse is not generally true as
for f(z) = 22 second derivative at = 0 is zero, although it is a strictly convex function.

Corollary 1.27 (Concavity). Using negation of second order condition we can say that
f is concave <= dom f is convex, V?f(z) <0, z € dom f.

We use these conditions to establish convexity of the basic functions, that will be used as
cornerstones of calculus of convex functions. Now lets have a look at some examples.

Example 1.21 (Examples on R). Consider the following functions:

1. Affine: f(x) = ax+b, dom f =R, a,b € R is convex and concave, as a(fz+ (1—0)y)+b =
O(ax +b) + (1 —0)(ay + b).

2. Ezponential: f(x) = e, dom f = R, 0 # a € R is convex, because second derivative is
always positive.

3. Powers: f(z) = 2% dom f = Ri;. If a € [0,1] function is concave, and if a € R\ (0,1)
function is convex. According to the second order condition we have a(a — 1)z%2 > 0,
because power of z is always positive and a(a —1) >0 < a € R\ (0,1).

4. Powers of absolute values: f(x) = |z|%, dom f = R, a > 1 is convex, by the previous
point.

5. Logarithms: f(z) = logz, dom f = R, is concave, as f < 0.

6. Negative entropy: f(x) = xzlogx, dom f = R, is convex, by the second order condition.

O
Now we move on to more interesting and practical examples on R”.
Example 1.22 (Norms). Let | - || : R — R be a norm. To see that any norm is convex, let
0 € [0,1] and using homogeneity property and triangle inequality we obtain the following:
[0a + (1 = 0)bl2 < Oaf2 + (1 — 6)[b]l2. O

Example 1.23 (Max function). Suppose f : R" — R is a function defined as the following
f(z) = max{z1,...,z,}.

We call f a mazx function. To see that max function is convex, let 6 € [0,1] and consider the
following
max (fa; + (1 — 6)b;) < fmax a; + (1 — ) max b;.
(] (3 (]

The inequality holds as the sum of maximum elements is at least maximum of sums. Another
way to interpret max function is an infinity norm on R”, ie. | - | O

Example 1.24 (Quadratic function). Suppose f : R" — R is a function defined as the following
f(z) = (1/2)2"Px + ¢Tx + 7, PeSt.
We call f a quadratic function. To show that f is convex we look at the Hessian.
Vf=Px+q V2f =P.

So a quadratic function is convex if and only if P € S} O
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Example 1.25 (leastsquares objective). Suppose f : R” — R is a function defined as the
following
f(z)=|Az—b]3, AeR™"

We call f a leastsquares objective function. We use the second order condition to see that f is
convex.

Vf=AT(Az —b) V2if =2ATA.

Now we show that the Hessian is positive semidefinite. Suppose x € R" and consider the
following equations
eTATAz = (Az)T Az = |Az|3 >0 O

Example 1.26 (Quadratic-over-linear function). Suppose f : R? — R is a function defined as
the following

f(@) = f(z,y) = 2°/y, domf=RxRy,.

We call f a quadratic-over-linear function. To see that f is convex we use the second coincident,
so for the gradient we have
2x x?
Vf - <, - 2) .
Y x
Now we can work out the Hessian

vepo | 2 =2z/y*] _ 2 v* —ay|l_ 2 [y |[v T>0
—2x/y? 22%/y3 3 |-y 2? 3 |l—z||—z| T
To see that outer product of any vector x € R™ with itself is positive semidefinite lets take an
arbitrary y € R™. Now consider the following

ylozly = (aTy) 2Ty = [2Ty|3 = 0. O

function

Example 1.27 (Log-sum-exp function). Suppose f : R” — R is a function such that
flx) = log(lTew), e’ =(e",...,e"), 1=(11,...,1,).

The function f is called log-sum-exp function.
We show that log-sum-exp function is convex using the second order condition. For the
gradient we have

1
szmz, z=e".

Before computing the Hessian lets take partial derivatives

]

Pf oz Pf zu(1Tz2) =22

or;or;  (172)2 2z, (1T2)2

Now we can work out the Hessian.

[21(172) — 22 -+ 212 . 21%n, |
V2f = ! 2iz o 2i(1T2) =22 - 2i2
= (1Tz)2 j~1 J i jen
Zn 21 e ZnZj e zn(sz) — z,%_
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So in the matrix notation we have

Vif = (17 2) diag(z) — zz1).

(sz)2

Now we verify that V2f > 0 i.e.

1950 it ((22) () - (Boim)) 20

the inequality holds by Cauchy-Schwarz inequality (p”p)(¢”q) > (p”q)? when we take p; = v;\/Z;
and ¢; = 4/z;, hence log-sum-exp function is convex. O

Now we show the connection between convex sets and convex functions that will be useful
in transforming optimization problems in equivalent forms.

Definition 1.28 (Epigraph). Let f be a function f : R™ — R. The set denoted as the following
epif = {(z,t) e R"" | z e dom f,t > f(x)},

is called epigraph of f. ©
Remark 1.28 (Epigraphs of convex functions). The connection between convex functions and
convex sets is the epigraph. The function f is convex if and only if epi f is convex. The claim
is, actually, obvious as the border of f, that is equal to graph of f, is convex and epi f has solid
interior, hence contains every line segment between its two arbitrary points. o

Remark 1.29 (Hypograph). Similarly, if f : R” — R is a concave function, then we define its
hypograph as the following,

hypo f = {(z,1) e R™*! | z e dom ¢ < f(2)}.

We see that f is concave if and only if hypo f is convex. o

So far we have discovered some basic techniques for establishing convexity of a function, like
the Hessian, the gradient and lines. However, these methods are quite complicated and they
may be the last resort to verify convexity, as in most cases we can calculus of convex functions.
We have already seen a bunch of basic convex functions so lets look at methods to combine these
atoms that will give us an easier way to examine convexity.

We start with some elementary operations moving on to complicated one.

Lemma 1.29 (Nonnegative weighted sum). If A and g are convex functions and « € Ry, then
afi + fo is convex. This idea can be generalized to n convex functions,

QZsz‘fi, w; = 0.
p

Proof. Follows from the definition of convex function. O

Lemma 1.30 (Composition with affine function). Let f : R® — R be a convex function. The
function g : R™ — R defined as the following,

g(z) = f(Ax + D), AeR"™™ heR"
is convex.
Proof. Suppose 6 € [0,1],

fA(@z+(1—0)y)+b) = f(O(Az+b)+ (1 —0)(Ay+ b)) <Of(Az+b)+ (1 —0)f(Ay + &)

17
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Remark 1.30 (Norm of affine function). By the previous statement we have that for any norm
precomposed with affine mapping, i.e. |Az + bl|2 is convex. o

Theorem 1.31 (Point-wise supremum). Let f be a function such that f(z,y) is convex in x for
all y € A, where A is a completely arbitrary set. Then function ¢ defined as the supremum over
A, ie.

g(x) = sup f(z,y)
yeA

is a convex function of x with domain

domg = {z | (z,y) e dom f,Yy € A, sup f(x,y) < +0}.
yeA

Proof. To see that g is a convex function we use the epigraph characterization of convex functions
and say that

epig = [ ] epif(-y).

yeA

So the epigraph of g is convex, hence g is convex. O

Remark 1.31 (Point-wise infimum of concave functions ). Similarly, we say that point-wise infi-
mum over concave functions is concave. °

Example 1.32 (leastsquares cost as a function of weights). Suppose we have a weighted least-
squares problem, so we minimize the objective

Z wi(alz — b;)?, a; € R™.
i

Here w; denote weights and can be negative, so function can be unbounded below. We define
the optimal list-squares cost function g as the following,

g(w) = ingwi(a;fpx —b;)?,

where domain is defined as
domg = {z | g(x) > —o0}.

In the matrix form we obtain

g(w) = inf(Axz — b) diag(w)(Az —b).

T

By definition g if infimum over linear functions in w, hence is concave. O

Example 1.33 (Maximum eigenvalue of a symmetric matrix). Let f : S — R be a function
such that,
F(X) = Amax(X) = sup y! Xy.
lyll2=1
According to the definition of f as a supremum over linear functions in X it follows that f is
convex. O

Notice that in the Theorem there is no requirement of any kind how the variable you
maximizing over enters the function, the only requirement is that f(x,y) is convex for all y € A.
In the case of minimizing a convex function we find a noticeable asymmetry in the assumptions,
so we have a much stronger condition.

18
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Theorem 1.32 (Minimization). If g is jointly convex in (z,y) and C # () is a convex set, then
the function f defined as

f(z) = Zilg(fjg(w,y), dom f = {z | (z,y) edomyg,y e C, f(x)> —0}

is a convex function.

Proof. To show this we use the characterization of a convex function via convexity of its epigraph,

epif = {(z,t) | (z,y,t) e epif,ye C}.

Epigraph of f is a convex set as it is a projection of a convex set epi f onto y. O

Let’s consider more general ideas like function composition. The thing that needs to be
said is that most previously defined operations that preserve convexity, can be formulated as
special cases of the composition rule, however, they are worth mentioning as they are easy to
understand and remember.

Before looking at the formal definition of the composition rule consider the following straight-
forward example.

Assume that ¢ : R - R and 4 : R — R, both functions are twice differentiable and dom h =
dom g = R. Now we define f : R — R such that f(z) = h(g(z)). By the second order condition
convexity of f reduces to f”(z) = 0, Vx € R, roughly speaking only the sign of the second
derivative of f matters. Next step will be applying the chain rule twice, so we get

(@) = h"(g(x))g' (x)* + B (g(x))g" ().
Now suppose that g is concave, i.e. ¢” < 0, in this case we need to have h’ < 0, i.e. h should be
non-increasing, so the second term is positive. The first term is positive only if h is convex, i.e.

h” = 0. As the result we have made up our first composition rule
f is convex if g is concave, h is convex and non-increasing.
Theorem 1.33 (The composition rule). Let g : R — R and h : R — R be any functions. We
define a function f : R" — R as
f(z) = h(g(x)), dom f = {z e domy | g(z) € dom h}.
The function f is convex if
e g are convex, h is convex and h is non-decreasing,
e g are concave, h is convex and h is non-increasing.

Here h is an extended-value extension of h.

Proof. The proof can be found in the book [1, p. 85,86]. O
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1.2 Convex Optimization

In this section we look at optimization problems in general and related concepts like feasibility,
constrains set. Then we study the problem of convex optimization and common families of
related problems.

Definition 1.34 (Optimization problem in standard form ). An optimization problem in stan-
dard form is given by

minimize fo(x)
subject to fi(z) <0, i=1,...,m, (1.2)

where
e x € R" is the optimization variable

e fo:R"™ — R is the objective function

fi : R™ — R are the inequality constrains
e hj :R"™ — R are the equality constrains ©

In the definition we use word “minimize” which is not the same as mathematical operator
min. In our context “minimize” and “subject to” can be viewed as attributes of an optimization
problem.

Remark 1.34 (Terminology). Assume that we have an optimization problem in standard form
1.2

e The set of all points where the objective function and constrains are defined, i.e.
m p
D = ﬂ dom f; n ﬂ dom h;,
i=0 i=1
is called the domain of an optimization problem (1.2)).

e The point z € R™ that lies in the domain D of an optimization problem and satisfies the
constrains it is called a feasible point. The set of all feasible points z is called the feasible
set.

e If an optimization problem has no constrains, we call it an uncostrained problem.

o If an optimization problem has an empty feasible set it is call infeasible, otherwise it is
feastble.

o If there exists a sequence of feasible points z; such that fy(xy) — —o0, as £ — oo then the
optimization problem is called unbounded below.

e The optimal value p* of the optimization problem is defined as

inf {fo(z) | fi(z) <0, hj(z)=0,i=1,...,m,j=1,...,p}, problem is feasible
p =4 +00, problem is infeasible

—00, problem is unbounded
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o If z* is feasible and solves the optimization problem, i.e. f(z*) = p*, we call z* an optimal
point. The set of all optimal points, denoted as Xqpt, is called the optimal set.

e A feasible point x is called locally optimal, if there exists R > 0 such that

fo(z) = inf{fo(y) | y is feasible, |y —z|2 < R}.

e The constrain is called redundant, if it does not change the feasible set. o

Now we look at some straightforward examples to illustrate defined terminology.
Example 1.35 (Examples). Assume we have an unconstrained problem such that fy: R — R,
dom fO = R++.

o fo(x) = —logz, p* = —o0 and the problem is unbounded below.

o folz) =xlogz, p* = —1/e, x* = 1/e.
If we add a constraint = < 0, where the objective function is given by fo(x) = logz then this

problem is infeasible. O

Now we look at one variation on optimization problems that is called feasibility problem.
Actually, before rushing into solving an optimization problem, we need to check wether the
feasible set is not empty and if it is not, we start searching the solution.

Definition 1.35 (Feasibility problem). The optimization problem of the following form

find =«
subject to fi(z) <0, i=1,....m
h](LU):O, .]:17 D
is called a feasibility problem. ®

Notice that feasibility problem corresponds to optimization a constant function subject to
some constraints. Finally we get to the definition of a convex optimization problem.

Definition 1.36 (Convex optimization problem). The optimization problem defined as

minimize fo(x)
subject to f;(z) <0, 1=1,...,m, (1.3)

T .
a; r = by, t1=1,...,p

where fo, ..., fm are convex functions, is called a convexr optimization problem. ®

Moreover, another equivalent definition of convex optimization can be given, but we stay
with [[.3] We now look at the stunning fact that makes convex optimization so important.

Theorem 1.37 (Local and global optima). Suppose we have an optimization problem (|1.3]). If
x is locally optimal, then x is (global) optimal.

Proof. By the definition of the local optimum we have
|z —zf2 <7 = fo(z) < fo(z), =z is feasible, r > 0.

Now we suppose that x is not global optimum, so there exists y such that fo(y) < fo(x) and
ly — x|2 > r. We take z and € as the following
r

c=O0y+(1—0z, O=—"
=9 2y =2l
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Then we have ||z — x||2 = 7/2 < r and z is feasible since feasible set is convex. As fp is a convex
function we get

fo(z) < 0fo(y) + (1 —0)fo(z) = fo(x) — 0(fo(z) — foly)) < fo(z),

which contradicts with local optimality of x. O

Roughly speaking, what this theorem says is this, if we take a point x and look around in
its arbitrary close neighborhood and it is better then all the others that means that its better
then all the other points that are outside the neighborhood.

Theorem 1.38 (Optimality for differentiable objective). Suppose we have a convex optimization
problem with differentiable objective. A feasible point z € dom fj is optimal if and only if the
following inequality holds.

V(@) (y —z) =0, Vy feasible.
Proof. The proof can be found in the literature [I, p. 139, 140]. O

Corollary 1.39 (Unconstrained problem). Suppose we have an unconstrained convex optimiza-
tion problem with differentiable objective. A feasible point x € dom fy is optimal if and only if
the following holds.

Vfo(x) =0
Proof. The proof can be found in the book [I], p. 140]. O

We now show basic transformations that preserve convexity of an optimization problem.

Equivalent transformations
o Suppose we have a convex optimization problem (1.3)) with equality constraints, given by
Az =b, A e R e R" be RP. We can eliminate these constraints by passing
expressing the variable z as Fz + Z, where column vectors of F € R™* (»=P) gpan the null
space of A and z is a particular solution of Az = b. New optimization problem is given

by

minimize fo(Fz + )
z

subject to f;(Fz + ) <0, i=1,...,m.
Since we only precomposed convex functions with an affine one convexity remains.
o For the problem (1.3]) we can formulate an equivalent epigraph problem as the following

minimize ¢

(z,t)
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1.2.1 Linear programming

Linear programming or LP is in some sense the simplest optimization problem, where every
function involved is affine. Moreover, it is totally not a new topic as even Fourier had a paper
about this [3]. However modern methods for solving LP trace back to 1950 to Stanford where
the SIMPLEX method was invented by George Dantzig.

Definition 1.40 (Linear program). The optimization problem of the following form is called a
linear program or just LP

minimize ¢! z

subjectto Gz < h, G e R™*™
Az —b,  AeRP ®

In linear programs the feasible set is a polyhedron. Although, linear program seems to be
a poor model as every function are affine it can be applied on problems that does not seem
linear at all. To illustrate this we look at an interesting example called Chebychev center of a
polyhedron, avoiding "Hello World" historical one called the diet problem.

Example 1.36 (Chebychev center of a polyhedron). Suppose we have a polyhedron P = {z €
R™ | alTa? =b,7=1,...,m}. The task is to find the largest ball that lies in the polyhedron P,
here the center of the ball is called the Chebyshev center. We represent an Euclidean ball as
B(ze,r) = {xc + u | |u|2 < r}. Thus, the variables are z.,r, and we want to find maximum r
such that B(z.,r) € P . At first glance this problem is way not linear, so it will illustrate that
LP can be applied in very unobvious cases.

The simplest possible case is that the polyhedron is just a half-space defined by (a,b) € R* !
hence we want to have

|ulls < r = a¥ (z, + u) < b.

By the Cauchy-Schwarz inequality we obtain
sup{a’u | Julz <} = rfuls.
Now for every a;,b;, i = 1,...,m that form the polyhedron we obtain
alrxc + rlai2 < b;.
Notice that here ||a;[|2 is a constant, hence we can formulate a corresponding linear program as

maximize r
T)me

subject to alz. + a2 < b, i=1,...,m. @)

1.2.2 Quadratic programming

Generally quadratic programming came up in middle fifties of the 20th century, it was first
generalization of LP, where objective is not linear but a convex quadratic function, although
feasible set reminds a polyhedron.

Definition 1.41 (Quadratic program). The optimization problem of the following form is called
a quadratic program or just QP
minimize (1/2)z' Pz + ¢Tz +r
subjectto Gz > h
Az =D
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Here matrices are defined as
PeSY, GeR™*", AeRP" ©

Notice, if we take P = 0 we get an LP. Also, if P is not a positive semidefinite the problem
goes from being extremely straightforward to NP-hard.

One thing that we immediately see, that for LP in most cases we get the solution on a vertex
(if there is more than one solution, for example all the points on the edge minimize the objective,
we still can pick an end point of this edge, which is a vertex). In case of QP the solution does
not have to be in vertex, as level curves of the objective are now ellipsoids.

Now let have a look at some examples, now we are not ignoring "Hello World" example called
leastsquares.

Example 1.37 (leastsquares). The leastsquares problem corresponds to the following uncon-
strained QP problem
minimize |Az — b|3.
Here A € R™*™ be R™ O
Next generalization is to introduce convex quadratic inequalities instead of linear.

Definition 1.42 (Quadratically constrained quadratic program). The optimization problem of
the following form is called a quadratically constrained quadratic program or QCQP

minimize (1/2)zT Poz + ¢d  + 7o
subject to (1/2)z' Pz + ¢l = + r; <0, i=1,...,m
Ax =b.

Here matrices used in quadratic functions are positive semidefinite, i.e.
n N Xn
P;eS%, i=0,...,mand A e RP*", ©

1.2.3 Vector optimization

Now we introduce the extension of the objective to be vector valued function.

Definition 1.43 (Vector optimization problem). The problem of the following form is called
vector optimization problem

TR folo)

subject to f;(x)

<0, i=1,...,m (1.4)
Ax=1»

Here
e fo:R" - R?is K convex.
e K < R?is a proper cones.

o AeRP™

©
Notice that if we have a scalar valued objective and two points that are feasible and have
the same objective value we can not prefer one point to another, if we do then our model is
not valid. Now the objective returns a vector, so we do not have total ordering and we have to
decide.
To actually compare objective values we introduce the following concepts.
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Remark 1.38 (Terminology). Suppose O is a set of all feasible objective value, i.e.
O = {fo(x) | = is feasible}.
o Point z is optimal if f(z) is the minimum value of O (1.17).
o Point xz is Pareto optimal if f(z) is a minimal value of O. o

Definition 1.44 (Multicretarion optimization). Consider the problem of the form (1.4]). If
K = R% we call such problem multicretarion optimization problem as the components of the
objective can be interpreted as the following

fo(z) = (Fi(z),..., Fy(x)).
We can say that F;(x) are separate scalar objectives, and we want each of the to be minimized.
e The point x* is optimal if
y is feasible = fo(z*) <k fo(y).
If the optimal points exist, then the objectives do not compete.

e The point z°P is Pareto optimal if

y is feasible A fo(y) <k fo(z°?) = fo(z°) = fo(y)
In these case we say that there exists a trade-off between the objective functions. ®

Now we can define the semantics of solving a multicretarion problem as finding a Pareto
optimal point, or even exploring all the Pareto optimal points. We can interpret it like having
a joystick that we are allowed to move around on the Pareto optimal surface.

Definition 1.45 (Scalarization). Assume a problem of the form (1.4)). To solve such a problem
means to choose A >g= 0 and solve a new problem called scalar optimization problem of the
following form

minimize A\ fo(z)

subject to fi(z) <0, i=1,....,m

Az =0, A e RP*™,
©
Remark 1.39 (Pareto optimal). If point x is the optimal for a scalar problem, then x is a Pareto-
optimal point for the original vector problem. o

1.3 Duality

The next topic is duality. Duality can be viewed as an organized way of forming highly non-
trivial bounds on optimization problems, even on hard ones that are not convex. Furthermore,
when the problem is convex the bound is usually tight. Another interpretation corresponds to
passing the constraints directly to the objective, roughly speaking, making an unconstrained
problem.

Remark 1.40 (Terminology). In this section we call the original optimization problem the primal
problem. o

25
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We start with the the definition of the Lagrangian.

Definition 1.46 (Lagrangian). The Lagrangian L : R™ x R™ x RP — R of an optimization
problem in standard form (1.2)) is given by

m p
L(z,\v) = fo(z) + Y Nifi(x) + ) vihi(z),  domL =D x R™ x R”.
i=1 i=1

Vectors A, v are called dual variables. ©

Roughly speaking, we take the objective and add a linear combination of the inequality and
equality constraints.

Definition 1.47 (Lagrange dual function). The Lagrange dual function is defined as
g(\,v) = inf L(z,\,v). ©
zeD

Remark 1.41 (Convexity). Notice that the Lagrange dual function is concave in A, v regardless
the convexity of the original problem, since it is an infimum over affine functions (affine functions
by the definition are both convex and concave). o

This brings us to what we call the Lagrange dual problem. Intuition is this, for any op-
timization problem we want to construct the best possible lower bound on the optimal value
established by the Lagrange dual function, in other words we are interested in the maximum
lower bound.

Definition 1.48 (Lagrange dual problem). Suppose we have a primal optimization problem in
the standard form (1.2]). The Lagrange dual problem is given by

maximize g(\,v)

sV

subject to A > 0.

The optimal value of the Lagrange dual problem is denoted by ¢g* and (A*,v*) is the solution of

the dual problem. ©
Remark 1.42 (Dual). In the remaining text instead of writing Lagrange dual problem we write
dual problem or just dual. By now we have primal and dual optimization problems. o

Remark 1.43 (Unboundness below). Since Lagrange dual function is infimum over linear func-
tion, it is unbounded below. As we can see, when the hyperplane has any slope, for every given
point we can find a point with smaller vallue of the Lagrangian. Furthermore, such lower bound
is useless. The whole thing changes when hyperplane has no slope, in this case the minimum
takes a real value. One way to handle unboundness is to define the domain of the Lagrange dual
implicitly as the following

domg = {(\,v) e R" x R” | iIlgL($, A, v) > o0}
xe

However, in case of an optimization problems, we rather make the domain constrains explicit
and write directly to the subject to attribute of the problem. o
Remark 1.44 (Dual feasible points). Notice that the only case when g actually defines a lower
bound is when A > 0, as by the definition of the standard form (1.2)) inequality constrains are
non-positive. So any vector (A, ) € dom g with non-negative A is called dual feasible point. o

Lemma 1.49 (Lower bound property). Suppose (A, v) € dom g and A > 0. Then the following

is always true
*

g\ v) <p”.

Here p* is the optimal value of the given optimization problem.
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Proof. Suppose z is primal feasible. Now since fi(x) < 0, i = 1,...,p and h;(z) = 0, ¢ =
1,...,m for every feasible x and A >> 0 we obtain

9\ v) = inf (fo(x) + ) Aifilx) + )] Vﬂli(@)
i=1 i=1

< fo(Z) + Z )\Zfl(z) + Z l/ihi(z)
i=1 1=1
< fo(2). =

Combining the dual problem with lower bound property we get an idea of weak duality.

Definition 1.50 (Weak duality). Suppose we have primal and dual problems with optimal
values p* and g* respectively. Then by (1.49)

This property is called weak duality and it always holds. The difference between the dual optimal
value and the primal optimal value

is called the optimal duality gap. ®

One may ask, if weak duality is actually useful. The answer is yes. As we saw the dual
problem is convex, hence efficiently solvable, so we use weak duality to find a lower bound on a
very difficult problem and then talk about suboptimal points. Moreover, the lower bound can
be used to define some non-trivial heuristics for solving the original hard problem.

Now we look at strong duality, when the dual optimal value is equals to the primal optimal
value.

Definition 1.51 (Strong duality). Suppose we have primal and dual problems with optimal
values p* and g* respectively and the optimal duality gap is zero, i.e.
g =p,

then we say that strong duality holds. ®

Generally, strong duality does not hold, however there exists non-convex problems with zero
duality gap. More interesting fact is this, usually for convex problems strong duality is attained.

Remark 1.45 (Constraint qualifications). Conditions under which strong duality holds are called
constraint qualifications. o

Remark 1.46 (Relative interior). Notice that interior of an affine set C' is an empty set, so we
define a relative interior of an affine set as the following

relintC = {z € C | B(z,r) naffC, aff C < C,r > 0}.

Here aff C is the set of all affine combinations (1.10) of C' and B(xz,r) is a ball with center x

and radius 7 (|1.8]). o
Theorem 1.52 (Slater’s condition). If we have a convex optimization problem (|1.3)) and there
exists a strictly feasible point z, i.e.

JzerelintD: fi(z) <0, Az =b, i=1,...,m,

then strong duality holds. We call this condition Slater’s condition.
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Remark 1.47 (Variation on Slater’s condition). If we have a convex optimization problem with
k affine constrains, then we have a relaxed version of Slater’s condition

fi(2) <0, fi(z) <0, Az =b, j=1,...,k, i=k+1,...,m. )
Proof. The proof of this condition can be found in the book [I, Section 5.3.2]. O

Now we observe the situation with zero duality gap.

Remark 1.48 (Complementary slackness). Let z* and (A*,v*) be solutions for primal and dual
problems respectively. If strong duality holds, then we obtain the following

p
fo(a*) = g(\*,v") = inf ( ) + Z A fiz) + ) Vi*hi(w)>
=1
(x*) + 2 S fi(x™) + Z vihi(z
=1 i=1

< fo(z"),

hence equality holds. This observation leads to important consequences. Firstly, we get this
m
DI fila") =0, (15)
i=1

The statement above is called complementary slackness and implies the following
A >0 = fi(z*) =0 fi(z*) <0 = A7 =0.

The second point is that for fixed (A\*,v*) point 2* minimizes the Lagrangian L(x, \*,v*), hence
the gradient vanishes

V fo(z +ZA*Vf, +ZV Vhi(z*) = 0. o
=1

This brings us to necessary optimality condition for any optimization problem.

Corollary 1.53 (Karush—-Kuhn—Tucker conditions). Suppose we have a primal problem with
differentiable objective and constraint functions. If strong duality holds and z* and (\*,v*) are
primal and dual solutions then the following conditions must be satisfied

o Primal constrains: f;(z*) <0, hj(z*)=0;i=1,...,m, j=1,...,p.

Dual constrains: \* >0

Complementary slackness: > /" A7 fi(z*) = 0.

Gradient of the Lagrangian with respect to z* is zero

V folx +2>\ v fi(x +Zth

These conditions are called Karush-Kuhn-Tucker conditions or the KKT conditions.

Moreover, for convex problems these conditions are also sufficient, so we have an equivalence.
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Corollary 1.54 (KKT conditions for convex problems). Suppose primal problem is convex and
the strong duality holds. Let & and A, 7 be points that satisfy the KKT conditions, then they
are primal and dual optimal points respectively.

Proof. By complementary slackness we have fo(Z) = L(%,A,7). Since the primal is convex
and the gradient vanishes we get g(\,7) = L(Z,\, ), hence we reach the lower bound, i.e.
fo(Z) = g(\,7) and &, \, U are optimal. O

Notice that since the Slater’s condition implies the strong duality we get the following char-
acterization of the primal solution.

Corollary 1.55 (KKT conditions and Slater’s condition). Suppose we have a convex opti-
mization problem with differentiable objective and constraint functions that satisfies Slater’s
condition. Then Z is optimal if and only if there exist X, 7 such that &, \, 7 satisfy the KKT
conditions.

1.4 Non-convex optimization

Let us make some notes on non-convex optimization, i.e. when we can not transform the problem
to the convex form In general, it can be shown that solving a non-convex problem is NP-
hard [4]. The intuition is this, in convex setting we knew that local optimum is a global one, but
in non-convex case there exists more than one local optimal points, often exponentially many
local minima, so to prove optimality we have to check all of them. Thus, in general, there is no
an effective method suitable for every task, and typically every problem uses its own approach.
Some basic scenarios of dealing with non-convexity are the following

« Formulate a convex relaxation of the original problem and solve the relaxation. i.e. relaxing
some of the constraints of the original problem and extend the objective to the larger
space. Thus, all feasible points of the original non-convex problem are still reachable, but
the optimal value is now a lower or upper bound on the original optimal value [5, Chapter
6].

e Use a domain specific heuristics, derived from the problem structure. We would see one
such approach in the later chapter.

e Run convex optimization algorithm E] more than once with different initial points and hope
for sensible results.

1.5 Reproducing Kernel Hilbert Spaces

In this section we introduce useful concepts from functional analysis related to reproducing
kernel Hilbert spaces or RKHS, like inner product spaces and functionals. This section may
seem to be outlying from the general stream of the text, however, it has immediate applications
in machine learning as it can enormously strengthen linear models to cope with non-linear data.
We start with general Hilbert spaces without reproducing property and related concepts.

Definition 1.56 (Inner product). Assume F is a vector space over R. A function (-, -)r :
F x F — R is called an inner product on F if for every f,g,h € F and all o, 8 € R the following
holds:

® <af +/Bgah>.7: = Oé<f, h>.7:+/8<g’ h>.7-—

LOften algorithm is slightly adapted to a given problem.
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* <f7g>]::<g7f>]:

Remark 1.49 (Norm). Within a specific inner product that maps every two elements to the real
numbers we can also define norm as the following

|fl7 = /< DF-

It can be shown that using Cauchy-Schwarz inequality and properties of the inner product this
norm satisfies the norm Definition [I.4l o

Remark 1.50 (Dot product). If our vector space is R™ the inner product takes the following form

(u, vYpn = ulw. o

Now the only one ingredient remains to define a Hilbert space. It is so-called completeness,
the reason we need this is, we want limits of every Cauchy sequence of space elements be in the
vector space.

Remark 1.51 (Metric). Using the definition of a norm ((1.4]) with respect to a vector space F, we
can define the distance between the vectors g, h € F as d(g,h) = |g— h| . This concept enables
us to examine convergence of vector sequences. o

Definition 1.57 (Convergent sequence). Suppose F is a normed vector space and {f,}_; is a
sequence of vectors in F. We say that {f,}°_; converges to f € F if

Ve > 0, dng = no(e) e N: ¥n = ng [fn— fllr <e ©

Remark 1.52 (Notation). Here we use notation with parentheses to emphasise the dependency
of ng on € . o

Definition 1.58 (Cauchy sequence). Suppose F is a normed vector space and {f,}r; is a
sequence of vectors in F. We say that {f,}; is a Cauchy sequence if

Ve>0, Ingle) eN:Vn,m=ng | fn— fmlr <e ®

Remark 1.53 (Convergence and Cauchy sequences). Note that by triangle inequality every con-
vergent sequence is Cauchy. To see this, we take €¢/2 and find ng that for all n,m > ng we have
| fr — flF <e€/2 and || fm — f| 7 < €/2. Finally, we obtain

Ifn = flF < Ifo = flr+1fn = flr <e

However the converse does not holds. Take a normed space (Q, |- |) and the sequence 3.1, 3.14,
3.141, 3.1415, ..., which is not convergent since 7 ¢ Q. o

Now we are ready to generalize concepts from finite dimensional space to infinite ones namely
to Hilbert spaces. A common example, that will be widely used in this section, is a vector space
of functions.

Definition 1.59 (Hilbert space). Let H be a vector space over R with associated inner product,
such that every Cauchy sequence converges. We call H a Hilbert space. ©

Let us look at a bunch of concepts from functional analysis tightly associated with repro-
ducing kernel Hilbert spaces.

Definition 1.60 (Linear operator). Let F and G be normed vector spaces over R. We call a
function A : F — G a linear operator if it meets homogeneity and additivity, i.e.

Alaf +g) = aAf + Ag, Vfi,ge F, aeR. ®
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Definition 1.61 (Linear functional). Suppose F is a vector spaces over R. A linear operator

A: F — Ris called a linear functional on F. ®
Example 1.54. Suppose F is a vector spaces over R with an inner product. We can define a
linear functional A, mapping form F to R for a specific g € F as Ay(f) = {f,9)F O

Definition 1.62 (Continuity). Suppose F and G are normed vector spaces over R. A function
A : F — G is called continuous at a point h € F if

Ve >0, 36 = 6(fo,€) > 0: If —hlr <6 = |Af — Ahg <e.

We say that A is continous on F if, it is continuous at every h € F. ©

The definition above tells us that a continuous function always maps a convergent sequence
to another convergent sequence in its domain.

Definition 1.63 (Lipschitz continuity). Suppose F and G are normed spaces over R. A function
A: F — G is called Lipschitz continuous if

3C>0:Yf,he F  |Af — Ahlg < C|f — h|F. ®

Notice that Lipschitz continuity is a stronger condition than ordinary continuity, as we can
have § = ¢/C so 0 depends only on e.

Remark 1.55 (Continuity of linear functionals). A linear functional ((1.54) defined as a function
of f € F is continuous by Cauchy-Schwarz inequality

[A4g(f) = Ag(W)lr = [Ag(f) = Ag(W)| = Kf = h, g)7| < lgl7 | f = Pl o

Definition 1.64 (Bounded operator). Suppose F and G are normed spaces over R and A : F —
G is a linear operator. The norm of the operator A is defined as

Af
4] = sup 1A7le.
oxfer |flF
We say that A is bounded operator, if | Al < . ©

The following lemma shows the relation between operator boundness and continuity.

Lemma 1.65 (Boundness and continuity). Assume F and G are normed spaces over R and
A : F — G is a linear operator. A is bounded if and only if A is continuous at some point of F.

Proof. The proof for the lemma above can be found in the literature [2] p. 6]. O

As we have seen linear functionals on a normed space F can be defined via an inner product
by fixing one argument. The next theorem states that, every linear functional can be represented
as an inner product with some vector from F.

Theorem 1.66 (Riesz representation). Assume F is a Hilbert spaces over R. All continuous
linear functionals take the form of (-, g)» for some g € F.

Proof. The proof of this theorem can be found in the literature[6, Theorem 4.12]. O

Now we are ready to define a reproducing kernel Hilbert space of functions from some set X
to R.

Definition 1.67 (Evaluational functional). Suppose H is a Hilbert space of functions f : X — R,
where X # () and x € X. A mapping §, : H — R, such that f — f(x) is called the evaluational
functional. ©
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Remark 1.56 (Linearity of evaluational functional). To see that evaluational functionals are
indeed linear operators we recall the definition of a sum of functions

(af +9)(z) = af(z) + g(z), f,geH, aeR.

And now for ¢, : H — R we have

ox(af +g) = (af +9)(x) = ady f + 9. o

The desired feature of evaluational functional is boundness or continuity. Roughly speaking,
if we have, in some sense, similar functions f, g and evaluate these functions at a some point z,
images of x under f, g will also be similar. This intuition leads to the concept of reproducing
kernel Hilbert spaces.

Definition 1.68 (Reproducing kernel Hilbert spaces). Assume H is a Hilbert space of functions
f X — R, where X is not empty. Hilbert space H is called the reproducing kernel Hilbert
spaces or RKHS if for all x € X' evaluational functional §, is continuous. ©

This definition brings us to a pretty property of RKHS like point-wise convergence.

Lemma 1.69 (Point-wise convergence). Assume H is a RKHS of functions f : X — R and
X # (. If a sequence of functions {f,}°_; converges to some f € H in the norm | - g, then this
sequence converges at every point x from the domain, i.e.

7}2{)10|\fn—f\\H=0 = nli_r)xgofn(x)zf(x), Ve X.
Proof. Since for all z € X we have the following

(@) = ()] = 102 fn = 0 f| < [0c] | = [l

The inequality holds, as by the definition of RKHS evaluational functional 4, is continuous, i.e.

bounded ([1.65]). O

Remark 1.57 (Point-wise convergence in Hilbert spaces). However, if a given Hilbert space is not
RKHS, convergence does not imply point-wise convergence. In other words, although sequence
of functions converges to some other function f, there exists at least one point u such that, the
sequence of function values at u does not get close to the image of u under the f. o

Even though we are talking about reproducing kernel Hilbert spaces, by now we have no
idea of reproducing kernels and what do they actually reproduce.

Definition 1.70 (Reproducing kernel). Let H be a Hilbert space of functions f : X — R and
X # (0. A function k : X x X — R such that, for all z € X and all f € H the following holds

o k(,z)eH,
o fx) ={fk(:,x))n (the reproducing property),
is called a reproducing kernel of H. Particularly, for all x,y € X we have
k(z,y) = k() k(5 y)n ©

As we can see a reproducing kernel is tightly related to an inner product on some Hilbert
space of functions. However, it also yields questions like how reproducing kernels are connected
with RKHS, or why we need reproducing property?

Lemma 1.71 (Uniqueness). Let H be a Hilbert space of function f : X — R. If it has a
reproducing kernel k then k is unique.
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Proof. Assume k, h are kernels of H. Now for all f € H and all z € X we have
(fih( ) = k(s 2)m = f(z) — f(z) = 0.
Taking f = h(-,x) — k(-, ) we get
|h(x) = k(,2)|f =0, VaelX.
Hence h = k. O

The next theorem shows the relation between reproducing kernels and RKHS.

Theorem 1.72 (Existence of the reproducing kernel in RKHS). Let H be a Hilbert space of
function f: X — R. Hilbert space H is RKHS if and only if H has a reproducing kernel.

Proof. <= Suppose we have a Hilbert space H with reproducing kernel k : X x X — R, then
by Cauchy-Schwarz inequality and reproducing property we obtain

02 f| = |f(2)] = I<f, k(s )l
< [ fllelk(s ) e
= | flev/<k(, 2), k(- 2)m
= [ flev/ k(2 z).

So d, f is bounded, hence continuous, therefore H is RKHS.
= Now suppose we have a RKHS H with a continuous evaluational functional §,. By
Riesz theorem ((1.66]) there exists f5, € H and for all f € H the following is true

6zf = <f> f5z>H

Now for all x € X we introduce a function k(-,z) : X — R defined as

ko) = fi @), Vale X,

so k(-,x) = fs, € H and now
(fok(x)m = 0o f = f(z),  Vfel (1.6)
Hence k meets the conditions of reproducing kernel ((1.70)). O]

Remark 1.58 (Representer and inner products in RKHS). The theorem above brings us to very
important properties of RKHS:

o By (1.6) we can call k(-,z) a representer of a evaluation at point .

o Evaluation of f in RKHS H can be viewed as taking inner product of f with the representer
of x. o
Now we look at an important property of reproducing kernels called positive definiteness.

Definition 1.73 (Positive definite function). Suppose h : X x X — R is a function. If A is
symmetric add for every (ay,...,a,) € R™ and for all (z1,...,x,) € R the following is true

n
>} wiajh(wi,x;) =0,
Jyi=1

we call h a positive definite functionﬂ ©

2If we represent the sum in matrix form we get a” Ha > 0, in this case matrix H is positive semidefinite and
not positive definite. However, we would call function h positive definite to stay consistent with machine learning
literature.
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Lemma 1.74 (Positive definiteness and inner products). Suppose H is a Hilbert space and
¢ : X — H is a mapping from non empty set X to the Hilbert space H. Then for all z,y € X
inner product {(¢(x), ¢(y) m is a positive definite function.

Proof. For all a € R™ we obtain

Z Z a;jai{d(x;), p(xj))m = Z Z@zﬁb ), a;¢(x5))m

i=1j=1 i=1j5=1

n

= { Yaip(zi), Y] aj¢(flfj)>
Pt o

Z aid(x;), Z ai¢(mi)> > 0. O
H

=1

Corollary 1.75 (Positive definiteness and reproducing kernels). If we take k(-,z) = ¢(z) we
see that reproducing kernels are positive definite functions.

Remark 1.59 (Converse implication). Actually, it can be shown that converse also holds and
all positive definite functions are related to inner products as positive definite functions meet
Cauchy-Schwarz inequality. o

We now define a kernel, as a function that is an inner product in some Hilbert space.

Definition 1.76 (Kernel). Suppose k : X x X — R is a function, with X’ # (). We call k a kernel
if there exists a Hilbert space H over R and a function ¢ : X — H such that for all x,y € X the
following holds

Remark 1.60 (Kernels, reproducing kernels and positive definiteness). Notice in that we dropped
word reproducing and stuck with kernel focusing only on the inner product in some Hilbert space
which is not necessary RKHS. However, by the definition every reproducing kernel is also
a kernel. Since we derived the definition of kernel from the inner product by the definition
kernels are positive definite. o

Now the only question is, why we have to know about RKHS and reproducing kernels. The
next theorem will give us the answer, more precisely, how to construct RKHS from a given kernel
(not a reproducing kernel).

Remark 1.61 (Moore-Aronszajn). Let k be a kernel, such that k : X x X — R and X # (.
Then there exists a unique Hilbert space of functions f : X — R for which k is a reproducing
kernel. o

Proof. Complete prof can be found in the literature[2], p. 11 - 18]. O

Corollary 1.77 (Reproducing kernels and PD functions). Every positive definite function is a
reproducing kernel.

By the given above corollary reproducing kernels, positive definite functions and kernels are
the same concepts!

This leads to operations with kernels, that gives us a free hand in constructing our own
kernels.

Lemma 1.78 (Operations on kernels). Suppose k, h are kernels on X and ), respectively, and
a € Ry. Then for all a,be X and u,v € ) the following functions

1. ak(a,b),

34



1.5. Reproducing Kernel Hilbert Spaces

2. k(a,b) + h(u,v),
3. k(a,b)h(u,v)
are kernels.

Proof. First and second points follow from positive definiteness of kernels.

For the last point we use the fact that Gram matrices K,H € S} associated with inner
products defined by kernels k, h are positive semidefinite. Applying Cholesky decomposition on
K we obtain XX7 such that K = XX*. Now for any ¢ € R" consider the following

n n n n n
Z CiCj (2 Xi,ka,k> Hi,j = Z Z Cichi,ka,kHi,j = 2 ZgHZk = 0.
i,j=1 k=1 k=11,j5=1 k=1

With z, = (01X17k, .. ,Can’k). ]

By the lemma above we can construct some useful kernels.

Example 1.62 (Kernels). Suppose X = H = R™. The simplest case would be a linear kernel
that is just an inner product

iin(u, v) = (u,v), Yu,v e R™.

For polynomials with non-negative coefficients p(z) = Y ;a;z" we can define the following
polynomial kernel
Epoly (u,v) = ((u,v) + €)%, Vu,ve R", ce Ry.

We can also use infinite sums with non-negative coefficients, for example Tylor series. This
brings us to exponential kernel

kexp(u, v) = exp <<u, U>> , Yu,veR", o > 0.

o2

Now we define a feature map ¢ : R® — R as

2
¢(x) exp <—|23322) , Vu,v e R", o >0,
o

so here the feature space is just R. From feature map we work out a kernel h : R™ x R" — R,
as the following

u 2 v 2
h(u,v) = (B(u), $(v))r = $(u)p(v) = exp (Jl;“) |

Next for all u,v € R™ we introduce a new Gaussian kernel

kGauSS (u’ U) = h(u’ U)kel‘p(u’ U)

2 2 2
o (Ll I 2000

202

— exp (_'“—”5) . (1.7)
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CHAPTER 2

Knowledge Engineering

This chapter outlines basic tasks in the field of knowledge engineering. Here knowledge engi-
neering is viewed in broader sense of extracting non-trivial insights about the given domain. We
mainly use popular data based approach instead of expert driven one and focus on problems that
can be represented in our mathematical optimization framework. As the result, we formulate
various tasks as optimization problems, so solving them provides us with hidden patterns in the
data. This mathematical approach yields a great advantage over computer systems, since we
can measure quality of knowledge obtained. In other words, we want our mathematical models,
or better machines, to learn some knowledge from raw data. Thus, in this chapter we use widely
developed framework of machine learning and data mining.

Two main scenarios will be considered: supervised and unsupervised learning. We now
present terminology related to supervised case and after this make make some notes to unsu-
pervised one.

Next terminology outlines summarize [7, Chapter 1, 2].

Supervised learning setting In the supervised learning scenario problems usually take the
following form, we have encoded some information and now based on this information we want
to make some decisions. This intuition describes a prediction task.

o We receive a training set S = ((x1,91),- -, (Tm,Ym)), that is used to find the best model
describing the data. For every element (x;,y;) we call z; an input and y; a label or output.
Inputs and outputs come from some input space and output space X and ), respectively.
We assume that there exists some unknown distribution Z over X and x; are drawn i.i.d.
from Z, we denote this by z; ~ Z.

e Suppose there exists some target mapping f : X — ) that maps inputs to the outputs.
However, the exact representation of f is not known. We have only some examples of
evaluation f on the training data, i.e. y; = f(x;), where (x;,y;) € S.

e We now construct a space of mappings h : X — ). Usually we do not include every
function that maps X to ), i.e. h are chosen according to our assumptions about f. The
space of all h is denoted by H = {h : X — Y} and is called hypothesis space. Each h € H
is called a hypothesis.

¢ Depending on the problem we introduce a loss function L : Y x )Y — R, that measures
the difference between predicted labels h(z;) and true labels y;.
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2. KNOWLEDGE ENGINEERING

o The learning rule is to pick a h € H that minimizes the mean difference between h(z;) for
x; ~ Z and corresponding y;. We write this problem as the following
minimize Ey . z[L(h(z;),y:)]-
heH

Here the objective is called the generalization error. Since the the distribution Z is not
known we rather minimize empirical error over the training set given by

1
mir%lig{ize @ Z L<h(xi)7yi)'
(:B’Lyyi)es

Unsupervised learning setting In unsupervised learning we do not have any labels so the
training set looks like S < X'. Thus, we can hardly speak about loss functions, hence we do not
minimize the generalized error. Since there is no labels our goal is to find some structure in the
data. The space of such structures can be viewed as hypothesis set in the supervised scenario.
Additionally, the problem domain usually suggests some criterion of the structure quality. The
learning rule is to find a pattern in the data that optimizes the given criterion.

Hyperparameters Often when we introduce the learning rule we have some free parameters.
These are called hyperparametrs. To give an example, consider clustering problem, in k-means
optimization problem the hyperparameter k corresponds to the number of clusters. Usually to
find suitable hyperparameters we use cross-validation. We create ¢ validation sets V;,j = 1,...,¢
from the training and then ¢ times train the model on S\ V; and measure the error ; on Vj.
Then we calculate cross-validation error ¢ = (1/¢) 3 ¢; and select the hyperparameters with
the lowest error.

Kernels Before we dive in, let us present usage of kernel functions in machine learning based
on the Corollary [I.77] and the Remark [T.60]

Remark 2.1 (Kernel related terminology).

e A function that maps original data to some RKHS, i.e. ¢ : X — H is called feature
mapping.

e A symmetric positive definite function k : X x X — R is called a kernel function. Kernel
function is determined by the feature map ¢. and represents evaluation of inner product
on mapped vectors, i.e. for z,y € X

k(z,y) = <{o(x), o(y))m. o

o An image of a data point z € X’ under a feature mapping, i.e. ¢(x) € H is called a feture
vector.

« A RKHS, where the original data points are mapped is called feature space and denoted
by H. Quite often H represents a space of functions and has infinite dimension, consider
the Gaussian kernel

Since every kernel has reproducing property, i.e. for all f € H, and all z € X we obtain

f(x) = k(s -), Pon,

and also for every x € X
k(zx,-) € H.
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2.1. Classification

In other words, assuming that H is a function space ¢(x) is a function such that ¢(z)(-) : H — R!
We can also write this as
o(x)(-) = k(z, ).

Such notation is called canonical feature map representation. Summing up reproducing property
and canonical representation, now for every x,y € X we have a canonical representations in a
Hilbert space, and by reproducing property we can always evaluate an inner product of these
two representations. This fact allows us to fix some x € X and iterate over other data points
z; € X and compute inner products

<k‘(£L’, ')a k(zh )>H

Remark 2.2 (Kernel matrix). It is common practice to represent kernel functions via Gram
matrix K of inner products in the feature space. So for every z;,x; from the training set we
have

Kij = k(zi, xj) = (d(x:), ¢(2;) )m- o
Now we move on to specific problems. Basically, every subsection that follows can be divided
in two these parts

e problem formulation, for example linear classification or regression,
e determining some solving strategy and working out a hypothesis space,

o working out a learning rule, for example SVM for classification or least squares for regres-
sion.

2.1 Classification

In this section we look at special type of supervised learning problems called classification,
namely binary classification. The setting is the following

o Training set is denoted by S € (X x ))™ such that y; = f(x;), where X < R" is an input
space and ) = {£1} is an output space.

e The learning problem is to find hypothesis from the hypothesis space h € H with the
smallest number of misclassifications of data points x € X.

We introduce most popular learning rule called support vector machines.

2.1.1 Hard SVM

Here we present a support vector machine learning rule that handles an intuitive approach of
margin maximization. Furthermore, in conjunction with kernel methods this learning approach
is comparable to neural network one. This section summarizes [7, Chapters 5,6] and [§].

Definition 2.1 (Liner separability). Let S € (X x V)™ be a training set. If there exists a
hyperplane
Hy={zeR"|wlz =0}, weR%beR

such that for all (z;,y;) € S
wT:UZ'+b>0, y; =1
wlz; +b<0, y=—1,

then S is called linearly separable and the hyperplane Hy is called a separating hyperplane. ®
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2. KNOWLEDGE ENGINEERING

Remark 2.3 (Hypothesis space). Assuming linear separability we formulate the hypothesis space
as the following

H = {h(z) = sign (w?z +b) | y(w?z +b) > 0,weR",be R, (z,y) € S}. o

Notice that in case of linear separability we have infinitely many such hyperplanes, hence
hypothesis space H has infinitely many elements. That leeds us to the question, how to select
the best one. Intuitively, we want such hyperplane to be the "safest" one, i.e. if we wiggle a bit
with our data points we want our hyperplane be still a valid classifier.

Remark 2.4 (Marginal hyperplanes). Now we replace Hy with two hyperplanes H,; and H_
parallel to Hy
Hy={zeR|wlz+b=1+6}, weR", bdeR.

For simplicity reasons we define § = 1. Hyperplanes Hy are called marginal, since there is a
margin between them. Now the data points with positive label are in the half-space defined by
H and negative ones in H_, i.e. for H; we have

wle; +b>+1, y =1, (2.1)
and for H_
wlz; +b< -1, y;=—1. (2.2)

(e]

Remark 2.5 (Liner separability modification). Instead of two inequalities it is handy to have the
only one. Multiplying both (2.1)) and (2.2]) by corresponding y; we get

yi(wlz; +b) =1, (v,)eS °

Since we have a notion of marginal hyperplanes let us also precisely derive a margin between
them.

Remark 2.6 (Margin). Assume x, € Hy, so wlz, +b = 1. We want to find a perpendicular
distance p from x; to H_. Since H; and H_ are parallel, they share same (w, b), so moving x
p times unit step in the negative direction given by w we make x, lie on H_. Now consider the
following

wl (4 — pL) +b=-1
[wll2
T
wT:r:Jr—pM—l—b: -1
[wl2

wlzy +b+1=plwls
2

lwll2
The last step follows by x4 € H. o

By now we have precisely formulated “safeness” of classification given by a hyperplane. Now
we want the “safest” classifier, i.e. with maximum margin. The optimization problem looks like

maximize —-—
wh w2
subject to y;(wlz; + b) > 1, i=1,...,m.

Equivalently in familiar minimization form we get the following.
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2.1. Classification

Definition 2.2 (Hard SVM learning rule). Let S € (X x V)™ be a training set. Assuming the
linearly separable case [2.1] the optimization problem given by

mimize w3
mmﬁggme 5lwlz
subject to yi(wai +b) =1, 1=1,...,m,

is called the hard margin SVM learning rule or just hard SVM. ®

Remark 2.7 (Support vectors). Since hard SVM is a differentiable problem and inequalities
constraints are affine by Slater’s condition ([1.52)) strong duality holds. The Lagrangian takes
the form

1 m
L(w,b,\) = 5Hw“; — > Aii(w"z; +b) — 1).
i=1
By (1.55) we get that (w*,b*) is optimal if and only if there exists Lagrange dual variable \*
such that the KKT conditions hold.

 Since (w*,b*) minimizes L(w*,b*, \*) the gradient V,, ;L turns zero, i.e.

VwL(w*,b*,\*) = w* — 2 Nyizi =0 = w'= 2 N yiti, (2.3)
i=1 i=1
Ve L(w*, b*, \*) = = > Ay = 0 = > Nyi=0,
i=1 i=1

e Dual and primal feasibility

T

A =0 yi(w z; +0*) =1, i=1,...,m.
e Complementary slackness, i.e for i = 1,..., m the following holds
Nyi(wTz;+0)—1)=0 = A =0vyw’ z+b)=1 (2.4)

By we see that the solution w* takes the form of linear combination of data points ;.
Furthermore, by x; appears in the summation only when it lies in the the marginal hyper-
planes Hy. Such x; are called support vectors. Thus, w* depends only on support vectors, while
other x; have no effect on the solution. o

2.1.2 Soft SVM

Now we consider more realistic situation, when the training data are not linearly separable.
This technique can be also viewed as a regularized version of hard margin SVM, when we want
produce a larger margin, thus our model is less influenced by outliers.

Remark 2.8 (Non-separable case). If the training points (x;,v;), ¢ = 1,...,m are not linearly
separable there does not exist a hyperplane defined by w € R",b € R such that

yi(whz; + b)=1.
Thus, for every (x;,y;) € S we introduce slack variables &; indicating how much z; violates linear
separability, i.e.

yi(wlz; +0) = 1- ¢, 1=1,...,m. o
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2. KNOWLEDGE ENGINEERING

This approach brings us to an optimization problem that minimizes total slack amount
and maximizes the margin. However, by reducing slack we always have a thinner margin, or
conversely by maximization the margin we get more total slack, so we need to establish a trade-
off between slack amount and margin thickness.

Definition 2.3 (Soft SVM learning rule). Let S € (X x V)™ be a linearly non-separable training
set, C' > 0 and p = 1. The optimization problem of the following form

minimize —|w|5 + C b
e 5ol + € D¢

subject to y;(wlz; +b) =1 — &, 1=1,...,m,
£ =0

is called the soft margin SVM learning rule or just soft SVM with trade-off C' and slack penal-
ization rate p. ©
Remark 2.9 (Loss function). Setting penalization rate p = 1 we get a so called the hinge loss.
For p = 2 we obtain the quadratic hinge loss. For the rest of this section we stick with the hinge
loss. o
Remark 2.10 (Soft SVM convexity). Since &; is non-negative, £ is a convex function, hence the
objective is convex. Inequality constrains are affine in w, b, £, thus are convex. Thus, soft SVM
is also a convex problem, in particular QP. o

Remark 2.11 (Support vectors of soft SVM). The Lagrangian of soft SVM is given by

L(w,b,&,\, X) = fuwnsz& ZA yi(w e +0) - 14+ &) — EA’@

i=1 i=1

Notice that soft margin SVM is a convex problem and has differentiable objective and con-
strains, and constrains are affine hence qualified . Now by the Corollary (w*, b, &%)
is optimal if and only if there exist (A\*, ) such that the KKT conditions hold. Let L =
L(w*,b*, £, A*, X'"). The KKT conditions are

o Primal solution (w*,b*,£*) minimizes the Lagrangian

m m
Vol = w* — Z Nyix; =0 = w'= Z Ay, (2.5)
i=1 i=1
m m
Vol ==Y X'y =0 = > Xy =0, (2.6)
i=1 =1
Ve, L =C— )\ — M =0 = N+ N =0 (2.7)
o Feasibility
(AN =0 yi(w Tz +0")=1-¢, i=1,...,m.
e Complementary slackness, i.e fori=1,...,m
A (ys(w* Tz +0*) =146 =0 = MN=0vywle+b)=1-¢, (2.8)
N =0 = N/ =0v¢& =0 (2.9)

Again the solution takes the form of linear combination of training points , and all z; with
A*# 0 are support vectors. However, now two types of support vectors are presented see
second complementary slackness condition (| . If & = 0, then x; lies on Hy, thus yl(w T; +
b*) = 1, otherwise z; is considered to be an outlier with non-zero slack. o
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2.1. Classification

This brings us to a dual problem of soft support vector machines. Later we use the dual
formulation to obtain kernel SVM, that consumes highly non-linear cases.

Remark 2.12 (Soft SVM dual formulation). The standard form of the dual function for the soft
SVM is the following

1 m m
N — j 2 . NETRETLAS _ N T
9 X) = inf <2w\2 O Q6= M+~ 1+6) =) 5) .
Notice that the Lagrangian is a convex function of (w,b, &), since the soft SVM is a convex

problem and convexity is preserved under non-negative weighted sums. So L is minimized,
when its gradient with respect to primal variables is equal to zero. Now applying (2.5, (2.6)),

(2.7) we obtain

ATe 4+ N, (2.10)

C&
i-1

1 1 &
§HWH§ =35 1 NiNyiya ;)
=1
Z )\i(yi(mei +b)—1+&) = Z )\i)\jyiijiij + ()\Ty) b+ 17X = \T¢.
i=1 ii=1 —

=0

Notice that A’ vanishes after we plug in (2.10), however we still must handle A’ > 0. To avoid
this, by (2.7) it is valid to write 0 < A; < C. Finally, a dual problem for SVM with linearly
non-separable data is given by

1 m
maximize 17\ — = Z Ni\jyiyit a; (2.11)
A 2 -
i,7=1
subjectto 0 < \; < C, t=1,...,m,
My =o.

Surely we have a convex problem, namely QP. As was mentioned in (2.11]) by Slater condition
strong duality is attained. The resulting classifier h is given in the following form

h(z) = sign <Z Nyixl 2 + b) .

i=1

Here we get b from any support vector z;, i.e. from every z; with 0 < A\; < C, by w’ z; +b = y;.
Consider the following

m T
b= Yi — (Z )\jyjmi) ZTj. o
j=1

2.1.3 Kernel SVM

Notice that in data points z;, x; are used only in terms of dot product, and we do not rely
on the vectors’ representation directly. That actually motivates us to use some sophisticated
vector space, where we can compute inner products and also exploit structure of the data to
make more accurate predictions. Since soft margin SVM is a regularized problem, term C
preserves the model from overfitting.
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2. KNOWLEDGE ENGINEERING

This brings us to kernel functions. As was mentioned earlier, kernel functions actually
represent an inner product in a Hilbert space denoted by H. To get data to a such vector space
we need a feature mapping ¢ : X — H. Now we can evaluate the kernel function on every two
images of data points under the feature map.

Thus, instead of dot product we rewrite soft SVM in terms of kernels as the following

1 m
o T
maxgmze 1" X — 5 Z )\i)\jyiyjk(xi,wj)
7,7=1
subjectto 0 < \; < C| 1=1,...,m,
My =o.

The resulting classifier is now given by

h(z) = sign (i Niyik(xs, z) + b> .

=1

Our final version in the matrix form is the following.

Definition 2.4 (Kernel SVM learning rule). Suppose S € (X x V)™ is a linearly non-separable
training set. The optimization problem of the following form

Lon)TK(Aoy)

maximize 17\ — =
A 2

subjectto 0 < \; < C, t=1,...,m,
Ay =0,

is called the kernel support vector machine learning rule. Here (A o y) is a Hadamard product
of \,y, defined as (Aoy); = \jy; fori =1,...,m. ®

2.2 Regression

Now we move on to regression problem. The main difference between regression and classification
is given by the output space ), since in terms of regression J = R. Thus, we do not attempt
to have precise predictions, we rather want our predictions to be as close to the real ones as
possible. The regression setting is the following

o Training set is given by S € (X x V)™, where X < R™ is an input space and ) < R" is an
output space.

e The learning problem consists of establishing hypothesis A € H form the hypothesis space
with the smallest training error.

In this section we introduce two main learning rules, namely leastsquares and neural net-
works. As in the SVM case we start with linear hypothesis, then derive a regularized version
and finally apply kernel methods on regularized least squares. In case of neural nets we describe
the basic model called feed—forward neural network. This section is based on the [7, Chapter
11]
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2.2. Regression

2.2.1 Ordinary least squares

We start with a strong assumption that our training data are linearly predictable.

Definition 2.5 (Linear predictable case). Suppose S € (X x V)™ is a training set. We say that
S is linearly predictable for ¢ = 1,...,m labels y; are linearly dependent on z;, i.e.

JweR",beR : yi~wla +b, V(xi,y;) € S. ®

Remark 2.13 (Hypothesis space). In linear predictable case hypothesis set can be formulated as
the following
H={h(z)=wlz+b] (z,y) € S}, weR" beR.

Here vector w € R™ is usually called a slope and scalar b a bias term. o

Remark 2.14 (Residual sum of squares). We base the learning strategy on commonly used
squared loss also called residual sum of squares or just RSS. It is given by

Lo(h(z:), yi) = (h(z:) — yi)*.

This type of loss function defines a learning rule called ordinary least squares. In standard form
the learning rule is given by the optimization problem
minimize ) i((wa- +b) —y;)?
w,b m b} ! v

However, we better introduce a matrix formulation. o

Definition 2.6 (Ordinary least squares learning rule). Let S € (X x V)™ be a training set, X €
RM+DXm he o matrix given by placing m training points z; into columns and adding (n+ 1)th
row with all ones, w € R"*! be a vector of weights and a bias term, i.e. w = (wy, ..., w,,b) and
y = (Y1,...,Ym) € R™ be a vector of labels.

IR o
. Y1
] wy
1 1 b Ym
The optimization problem given by
1
minimize fo(w) = —| X" w — y|3
w m
is called the ordinary least squares learning rule or simply least squares. ®

To see convexity of least squares problem recall example ([1.25)).

Remark 2.15 (Least squares solution). By (1.25)) we can derive analytical solution, setting the
gradient to zero

2
Vi =0e —X(XTw-y) & XXTw = Xy.
m

Depending whether XX is invertible or not, the solution takes the following form

. (XXT)~1Xy XXTis invertible,
w =
(XXT)IXy  otherwise.

Here (XXT)T is a pseudo inverse, that can be obtained via singular value decomposition or QR
decomposition. o
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2. KNOWLEDGE ENGINEERING

Remark 2.16 (Least squares pitfalls). Two main issues with the least squares solution is this: a
problem of multicolliniarity, when matrix X7 has almost linear dependent columns, i.e. some
features of z; are highly correlated. In this case computation of matrix inverse of XX is not
numerically stable. Moreover, from statistical point of view resulting w* will have high variance,
so since data points are highly correlated even small change in the training set will cause large
changes in w*. In this case our regression model will overfit the training dataset and loose
generalization property.

2.2.2 Ridge regression

Since we have observed the bottlenecks of ordinary least squares let us introduce a more robust
approach, namely ridge regression. Basically, ridge regression is a special example of least
squares regularization methods.

As in the soft margin SVM we introduce a regularization term |w]|3.
Remark 2.17 (Ridge regression in standard form). Suppose S € (X x V)™ is a training set,
w1, ..., wn € R, be R is a bias term, and 8 > 0. Ridge regression learning rule in the standard
form is given by the following optimization problem

BV SR PR 2 ", 2
minimize —Z(w i +b—y;) +[5’Zwi.
w,b m “ ;
1=1 i=1
Here |wl||3 is a regularization term. o

Remark 2.18 (Regularization intuition). One may ask how regularization term prevents linear
model from overfitting? The intuition is the following, obviously penalty term might slightly
influence the optimal value p* on the training data, however it will significantly reduce the
solution variance by filtering hypothesis with high slope. Thus, making £ to big we obtain an
underfit model, that barely captures the data structure. As the result, we wiggle a bit with g
to find a suitable 5. o

Remark 2.19 (Bias term and data centering). Notice that by the Deﬁnitionwe do not penalize
the bias term, since there is no reason to prefer solutions that are close to the origin. So we
rather reformulate the standard form of the ridge regression to get rid of the bias. Obviously,
objective function of ridge regression is convex in b, namely quadratic, hence the global minimum
attained, when first derivative with respect to b E| is equal to zero, i.e.

1 & 1 & 1 &
—ZQwT:ci+2b—2yi=0 = b:—Zyi—wT 72%
mia mia mi4
~~ -
Yy T

Here 4y and z correspond to the mean value of y; and z; respectively. Now we rewrite the
objective as the following

%Z (wla; + (5 —wl'z) —y;)? —I—ﬁsz—éZ(wT(xi—:i)—(yi—gj))2+52wi.
i=1 =1 =1

Procedure of subtracting means is called data centering and can be done as a preprocessing
step. o

3Since b is a scalar.
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2.2. Regression

We drop the constant 1/m and reformulate the problem (2.8) in terms of matrices.

Definition 2.7 (Ridge regression learning rule). Suppose S € (X x )™ is a training set,
X’ € R™™ is a matrix with vectors x; — Z in its columns, w € R" is a vector of weights,
v =1 —9Y, .-, ym — y) € R™ is a vector of labels, and § > 0. The optimization problem

e . T
minimize fo(w) = X" w =[5+ Blwl|3

is called the ridge regression learning rule with regularization term |w]|3. ©

Remark 2.20 (Notation). For the rest of this section we rather write X instead of X’ and similarly
y instead of y/. However, X and y will refer to centered data. )

Remark 2.21 (Solution). We can see that (2.7]) is a convex problem, since objective is a non-
negative weighted sum of convex functions. Thus, the minimum is attained at the point, where
the gradient vanishes. Now consider the following

Vi(w*) =0« (XX + 81 YJu* =Xy < w* = (XXT + pI) "' Xy.
ESZ ESTJ:Jr

The inverse always exists, since the matrix is defined by the sum of positive semidefine and
positive definite matrices. o

Remark 2.22 (Prediction). Once we have computed w* we can make our prediction in the fol-

lowing form
h(z) = wlz = 2T(XXT + 1) ' Xy.

Notice by our notation (2.20) the matrix X contains data with subtracted mean, so does the
vector y, hence the bias term is implicitly included. o

Before computing a dual we formulate an equivalent problem by introducing slack variables

| 1
minimize - Bl + €[5 (2.12)

)

subjectto & = XTw —y.

Remark 2.23 (Dual formulation). The Lagrangian corresponding to the (2.12)) is given by
1 1
L(w, &) = Bl + 51613 + " (€~ XTw + ).

Generally, for the dual problem we have

1 1
maximize inf | =B||lw|3 + =[€]3 + v (XTw —1y) ).
v w£ 2 2

)

Notice if we reformulate constrains of (2.12)) as inequalities, they will be affine in £ and w, hence
the Slater’s condition holds (|1.47)) and the strong duality is attained. Now by (1.55) w*,&* are
optimal if and only if exists v* such that the KKT conditions hold

e The gradient of the Lagrangian with respect to primal variables evaluated at w*,£* van-
ishes, i.e. w*,&* minimize the Lagrangian with respect to w, &

VoL(w*, & v*) = Xv* + fw* = w'==-Xv", (2.13)

VeL(w*, & v) =+ v =0 = = (2.14)
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o Feasibility
g* _ ’LU*TX — .

o Complementary slackness

e —wt™X+y)=0 = v =0v&=uvw'X-y.
Since w*, £* minimize the Lagrangian, we obtain the following

. 1 1
it (5610l + 51613 + 76~ XT0+1))
1 . 1, ., ) N
= 5 Blw3 + SIETE + v (€ = X w” +y)
2

1 |1 1
=56 ’%Xu 2 +351- v+ v (—v — XTXv +y)

1 1
25 (Xu)! (Xv) + §I/TI/ — vy — (X)) Xv + 07Ty
= —[Xv[3 - Blv]3 + 20"y
= T (XX + pD)v + 207y
Now we can formulate a dual problem as the following

maximize T (XX + ) + 207y. (2.15)

Since the dual variable v corresponds to equality constrains we do not need constrain v > 0. o

Remark 2.24 (Dual solution). Obviously, objective in (2.15)) is differentiable and strictly concave
by the same argument as in (2.21). We get the solution setting the gradient to zero, i.e.

2AXTX + v =2y <= v=XIX+pD) .

Applying (2.13) we obtain final predictor in the following form

h(z) = wlz = ;(XV*)TZ = ;zTX(XTX + BD) "1y

Again by notation (2.20]) bias term is implicitly included. o

2.2.3 Kernel ridge regression

Now we formulate desired version of regularized linear regression in terms of kernels, so our final
model will be able to deal with highly non-trivial data. To formulate a kernel version we use
the results of , that does not depend on representation of training data and requires only
inner products.

Definition 2.8 (Kernel ridge regression learning rule). Suppose
o Se (X xY)™is a training set,
e X e R™¥"™ is a matrix with centered vectors x; — Z in its columns,
e y € R™ is a centered vector of labels,

e v e R™ is the Lagrangian dual variable,
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2.2. Regression

e 3> 0 is a free positive parameter
o k:X x X — Ris a kernel function with matrix K € S” such that K;; = k(X4;, Xa;).

The optimization problem defined as
maximize —v* (K + pI)v + 2v' y
14

is called the kernel ridge regression learning rule or just KRR. ©

Remark 2.25 (Solution). Solution is given by the dual solution, however we use kernel matrix K
instead of X”X, i.e.

v=(K+ BI)_ly.

Recall that the solution is obtained for the centered data Let ¢ : X — H be a feature map
to a feature space Hl, then our prediction is given by a hypothesis h

- T
h(z) = wTe(z) = ; (Z<¢(z)a ¢(%’)>H> (K+4D) 'y
i=1

m T
(Z (2, xz-)) (K + 51"y

™| =

2.2.4 Neural Networks

We end our short tour in supervised learning models with a powerful tool called neural networklﬂ
Neural network, or artificial neural network, or neural net or just NN is a mathematical model
inspired by activity of human brain. Even though neural networks seems to be mysterious they
are just non-linear statistical models. We describe basic technique called a feed—forward NN.
Neural nets can handle both discrete and continuous labels, we look at both cases and in the
end we formalize the learning rule for regression. This chapter summarizes [9, Chapter 11] and
[10, Chapter 20].

Remark 2.26 (Feed—forward neural network basic setting).

o A neural network consists of d + 1 disjoint sets Vj, ..., Vy of neurons called layers. Size of
the layer Vj is denoted by |Vi|. Layer Vj is called the input layer and Vy the output layer.
Layers Vi, ..., Vy_1 are called hidden layers, for the reasons that values of hidden neurons
are not directly observed.

e A neuron is an atomic element of a neural net. In feed-forward nets neurons are only
connected with neurons of previous and succeeding layers. We denote the ith neuron in
the kth layer by vy ;.

(4,9)

« Each connection (edge) between vy, ; and vy41,; has a weight Wy

e A non-linear activation function o : R — R is a function that fires the neurons in response
to the incoming stimuli. Usually we have one fixed activation function for whole NN.
Almost every time we choose o to be differentiable. Non-differentiability of o was the
main reason caused the interest decay in neural networks after their invention.

4Neural nets can be applied to unsupervised learning problems as well.

49



2. KNOWLEDGE ENGINEERING

e An output function g : R — R, that is only used in the output layer to produce the final
result. We call g a final transformation. Obviously, we want g to be differentiable as
well. o

Now we work out the matrix notation to represent the whole neural net as a function.

Remark 2.27 (Feed-forward neural network matrix setting).

e For every vi41,; we define a vector of weights of incoming edges as
2, Vil,g
Wht1,j = (w,(cﬂ), w,(gfl), e ,w,(ctr’i' ])) e RIVA. (2.16)

« Since every vjy1; has its own wyi1; we can define a matrix Wy, of weights for each
k + 1 layer as the following

Wi = | Wkt11 W12 -0 Wil V|

e RIVelXIVesal

[Vi|

o Now for every vg41,; we define a function of the output fri1; : RI"*' — R as

[Vi|

fre+1(@) =0 Zwk 1Swa(z

Notice that for every neuron in the first hidden layer V; we have

Here Vj simply returns = € R™, moreover the size of Vj often corresponds to the dimension
of z, i.e. n = |Vp.

e The output function of one neuron v ; can be generalized to the output function of the
whole & + 1 layer, so we have fiiq : RIV*l — RIVi+1l defined as

fer1(z) =6 (Wg+1fk($)) .

Here we extend the activation function to be vector valued, so it handles whole layers, i.e.
& : RIVis1l — RIVe+1l ig given by

U(w§+1,1fk($))
& (W, fule) = U(wk+1;2fk(l‘)> < BVt

U(wg+1,|vk+l|fk(3«"))
o Now for fixed Vi,...,Vy and o, g the neural network can be represented by a function
fx)=g(z) =g (Wis(...6(WTz)..))),

where § : RIVi-1l — RIVal is a vector valued extension of a scalar function g.
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2.2. Regression

e We rather implicitly denote that the output of a neural net corresponds to the specific
Wi, ...W, by the index notation

folz),  ©=(Wy,..Wy). .

Remark 2.28 (Bias term). Basically, we do not require the neural net fg to pass through the
origin, so we need to propagate some bias terms. This issue is solved by adding the extra neuron
to each layer, except the output one. This neuron does not take any input and always returns 1,
but with the weight assigned it takes the form of a some constant. For simplicity suppose that

our neural network implicitly comes with biases. o
Definition 2.9 (Architecture of a neural network). Let (V,o,g) be a triplet such that, V =
(Vi,...,Vy) is a d-tuple of layers, 0 : R — R an activation function, g : R — R is an output
function. We call (V,0,g) a neural network architecture. ©

Definition 2.10 (Neural network hypothesis space). Let (V, 0, g) be a neural network architec-
ture. We define the neural network hypothesis space as the following

H(V,mg) = {h@ RVl _, rIVal 0= (Wl, - ,Wd)},

where O is a d-tuple of weights. ®

Example 2.29 (NN with two hidden layers). According to our notation neural net for fixed ©
and architecture (V, o, g) with two hidden layers takes the form

fo(z) = § (W35 (W26 (Wiz))). O

Remark 2.30 (Choice of activation function). The performance of a network highly depends
on the activation function. If we choose a linear o the net collapses to a linear model, hence
generally NN can be viewed as non-linear generalization of linear models. Common choice for
activation function are:

e sigmoid function £ : R — R

1
k - —
(z) 1+e 2’
e softPlus or smoothRelU Lk : R — R
k(x) = log(1l + €”). o

Remark 2.31 (Choice of output function). As we stated earlier, neural nets can handle both
classification problems and regression ones. Roughly, the difference lies in the output function.

e Common choice for the regression is the identity function x — x. Moreover, dealing with
regression the output layer usually contains only one neuron, i.e.

fo(z) =y¢ (w§:1fd—1(l‘)) = w£1fd—1($)

e With [-class classification the number of neurons in the output layer is | and common
choice of the output function that is so-called softmax function h : R™ — R™ defined as

eCE
h(.ZC) = W’ €x = (exl,...,exm).
The whole neural net takes the form

fo(x) = (W fa-1(z)). °
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2. KNOWLEDGE ENGINEERING

So far we introduced all terminology related to evaluation a neural network at a point x.
However nothing was said about the neural net learning rule. For these reasons we define a loss
function that tells the difference between our predictions fg(z;) and real labels y;.

Remark 2.32 (Loss function). In general, regardless the problem type we denote the loss as
function of weights as L(©). Suppose |Vy| = 1, a common choice for regression is familiar
residual sum of squares loss

L(©) = > (y — fo(a))*.

(z,y) €S

For classification cross-entropy is usually used

L(©) = = Y y" log(fe()).

(z,y) €S

Here we use the vector valued extension for the log function

log(fo («)) = (log(w] fa1 (@), . Jog(w]y, fa1(2)) ) :

Since we have defined loss functions for regression and classification we are ready to introduce
the neural net learning rule. Here we demonstrate the learning rule with the regression problem.

Definition 2.11 (Neural network regression learning rule). Suppose X ¢ R™ and Y < R™, a
set S € (X x V)™ is the training set and

Hv,oq) = {h@ -RIVol _, RlVal

@:(Wl,...,Wd)}

is the hypothesis space corresponding to the neural network architecture (V, o, g) with |Vy| = 1.
The optimization problem given by

e 2
mlnlénlze Z(y — he(r))”,
(z,y) €S

is called the neural network regression learning rule . ®

Since we formulated the neural network learning rule as an optimization problem we intro-
duce the famous learning algorithm, that will be described in great details in the next chapter.

Remark 2.33 (Back-propagation algorithm). As we already stated, evaluation of a network with
fixed ©® and (V, 0, g) can be written as fg(x). The process of output computation of a neural
network for given z is called the forward pass, which is the first step of the back-propagation
algorithm.

The second step is to compute the error for all pairs (z,y) € S and propagate this error
to the preceding layers. We propagate the error and update the weights with the help of the
gradient and the chain rule. This step is called the backward pass.

These two passes are repeated until convergence. In machine learning literature this two-
pass algorithm is usually called back-propagation algorithm, in context of the mathematical
optimization we usually call it the gradient descent, moreover we will discus it in the next
chapter. o

Remark 2.34 (Methods of learning). Notice that in the backward pass we compute the error for
the whole training set, and only then we update the weights. If the training set is not very
small, such learning consumes a lot of time, so we better slightly modificate the objective for a
faster performance.
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2.3. Clustering

e Mini-batch learning corresponds to random selection of a subset C' = S and compute an
error within C, i.e. Z(y — he(x))2.
(zy)eC

e In online learning case we use only one training point at a time, so the objective now is
given by (y — he(x))?. o

Although neural network learning rule seems to be a powerful learning strategy it has some
drawbacks.

Remark 2.35 (issues with neural networks).

¢ We can see that learning a neural network requires establishing a huge amount of weights ©,
hence the first pitfall is overparametrization. Usually finding optimal ©* causes overfitting,
i.e. the final predictor excessively fits the training data, and at the same time has pour
generalization properties and fails to predict unseen data. To avoid this situation according
to the definition of the vector of weights (2.16)) we can introduce a regularization term

d Vil
J(©) = > w3
i=1j=1
Now the objective function can be formulated as
L(©) + A\J(0©), A =0,

with trade-off parameter \.

e However, a more important drawback is that learning a neural network is generally a
non-convex optimization problem, hence we can stuck in some local minimum. To have
an intuition of non-convexity, consider that the whole network fg for some architecture
(V,0,g) is not guaranteed to be a convex function of ©. It can be shown that even for only
one neuron, sigmoid activation function and residual sum of squares loss the objective has
exponential number of local minima [I1]. o

2.3 Clustering

So far we have discussed supervised problems, where we used labels to estimate the performance
of our model. Now we consider a widely known unsupervised task of determination some hidden
patterns in the data, namely, we need to find some classes and then associate each data point
with some class. In case of supervised learning these classes were given beforehand, here they
are unknown and we need to work them out. In terms of machine learning this problem is called
clustering. Usually establishing such clusters provides us with non-trivial insights of the dataset,
unfortunately in most cases we have no idea about data relations.

Intuitively, we can formulate clustering as a dividing the original set of objects into well
organized groups. By well organized cluster we can imagine a set, where its elements are very
similar at the same time are very different comparing to elements from other clusters. In general,
we are looking for some function that assigns each data point to some cluster.

There exists many approaches to determine a clustering of the data, but we focus on a
famous one called k-means learning rule. Then we describe a widely used heuristic algorithm
called k-means algorithm, that will converge to some local minima, since the learning rule is not
convex.

Clustering setting is the following
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2. KNOWLEDGE ENGINEERING

o Unlabelled training set S < R™, S = {x1,...,2mn}.
e Number of clusters k.

o Hypothesis space of functions H = {h : S — {1,...,k}} mapping every training point to
some cluster. Notice that our hypothesises are functions with discrete domain. A better
way to understand function A is to take it as an element of {1,...,k}", here we use x € S
as index in h, i.e. hy € {1,...,k}.

e Target function h* to be found is a solution to the optimization problem.

2.3.1 K-means learning rule

We base our learning rule on minimization of within the cluster dissimilarity.

Definition 2.12 (Dissimilarity learning rule). Suppose S = {z1,...,2,,,} < R" is the training
set and H = {h:S — {1,...,k}} is the hypothesis space. The optimization problem defined as

m

mir}lig{ize 2|h ZH&: yl3, (2.17)
hz A

is called the within the cluster dissimilarity learning rule. We denote by |h~1(1)| size of the Ith
cluster. ©

One may notice that (2.21]) does not implicitly take into account the distance between clusters
so subtracting corresponding term we obtain

m
minigie | 3oy Sl -l |- 5 S le vk (218)
hz hrl hz;ehy
Lemma 2.13 (Target function and cluster distance). The solution h* of (2.21)) also solves (2.18)).

Proof. Consider the second sum in optimization problem ({2.18)), we express it in the complement
form, as the distance between all points minus the distance between points in the same cluster.

Yle=yl3= X o=yl -Yle-yB-4-3 Y-yl

Z,y: x,Y ES Z,y: = .
ha#hy ha=h, ha=hy=1

Here A is a non-negative constant for a given dataset. Now we express ([2.18) as the following

m
e 1 9 1
minimize — |z —yl3 | — A
h 1_21 =1 (D) ;y] 2
ha=hy=l

The above problem differs from ([2.21)) by positive scaling 2 and subtracting a non-negative
constant, hence the solution remains the same. O

Now we look at the useful concept in clustering called center of mass.

Definition 2.14 (Center of mass). Let S = {z1,...,2,,} € R™ be a set. A center of mass of S
is defined as the expected mean of its elements, i.e.

1 m
:m;% ©
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2.3. Clustering

Remark 2.36 (Expected distance from a center of mass). The expected squared distance between
points and the center of mass can be expressed as the following

J— i 2 [ R -
ml;xl pslla ml;‘ml’b Z:: mgm Zzl
1 m m
=~ Slml3 - 2 (219)
=1 j=1
O
Lemma 2.15 (Center of mass solution). Suppose S = {x1,...,zy}. The optimization problem

1T 2
minimize — Z sz - ﬁ”2
B mi4

is solved by the center of mass ug

Proof. Notice that the objective as a function of 3 is convex, since it is a non-negative weighted
sum of squared norms precomposed with affine functions g¢;(8) = —If + x;. Thus we set its
gradient equal to zero to get the minimum

1
—Z —x;+0)=0 = B:Ei;xizus. O

Remark 2.37 (Equivalent problem). Let us reformulate the optimization problem (2.21)) as the
following

k k
1 ) 1
2_71 lz —ylls = A1) o'z — 22Ty +y"y
=2k ;z; ; 2|h=(1)] 2
ha=hy=l ha= hy_l
A |
SN - —2
IO WP i Vg eI
B hz—hy—l he= hy_z he= hy_z
b
=) o \leHz Zw y
B O]
=1
ho=l hy= hy_z
k
=0 2 v =l
I=1, 2
Now optimization problem (2.21)) takes the form
o 2
minimize Z |z — tn, |I5- (2.20)
zeS
Actually, the problem takes its name after formulation above. o

Remark 2.38 (Centroid). In terms of clustering problem we call the center of mass of a [th cluster
just centroid, and denote as
o3 .

x:hy=l

7
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Now we are ready to present the standard k-means learning rule.

Definition 2.16 (K-means learning rule). Suppose S = {z1,...,2,} < R" is the training set
and H = {h:S — {1,...,k}} is the hypothesis space. The optimization problem defined as

. 2
— . 2.21
minimize E |z — tn, |5 (2.21)

zeS

is called the k-means learning rule. Here pyp, corresponds to the centroid of the cluster given by
h, where z is assigned. ®

Remark 2.39 (Analysis of k-means problem). Even though the problem does not seem to
be difficult, the domain of the objective is discrete since the number of possible clusters is finite.
Thus the objective is not continuous and is non-differentiable, so we can not apply classical
derivative based approaches. Actually, this problem is NP-hard [12]. To solve this problem we
can use popular heuristic algorithm that rapidly converges to some local minima. Unfortunately,
no guarantees are given on the quality of the result, so common practice is to run that algorithm
more times with different initial states. o

2.3.2 K-means algorithm

In this subsection we briefly describe the k-means algorithm that is often used for minimization
the k-means learning rule.

Algorithm 1 K-means

1: procedure K-MEANS(S, k)

2: 1=1 '

3 4 ,u,(j) =RANDOM__CENTROIDS()
4: VreS: h(z) = argmin |z — ul(l)H

X

5. v = CoMPUTE_ OBJECTIVE(h(?)
6: W =
7. while (Is_convEGING(v(~D 1)) do
8: t=4+1
9: p Y = RecompuTe_ceNTROIDS(AGD)
10: VreS: h(z) = argmin |z — ul(Z)H
‘ 1<i<k ‘
11: v = CompPUTE_ 0BJECTIVE(h®))
12: return h()(.)

Lemma 2.17 (K-means algorithm correctness). The k-means Algorithm [1{ will stop and return
some locally optimal clustering assignment.

Proof. Notice that the algorithm can not return a clustering until it go through the loop. New
centroids replacing ,ugifl), e ,ugfl) with ygi), cee ,u,(f) for clusters given by AU~ will not in-
crease the objective by . Assigning all x € S to the nearest cluster will not increase the
objective as well. Thus every iteration does not increase the value of the objective, hence the
algorithm converges. However we are not guaranteed to have a global optimal value, so the

minimum attained is a local one. O
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CHAPTER 3

Algorithms

So far we have discussed theoretical background and real problems in knowledge engineering,
although nothing was said how to solve these problems. The goal of the chapter is to show basic
methods for theoretical problems described in the first chapter and practical cases in chapter
two as well. This chapter summarizes [I, chapters 9-11].

3.1 Unconstrained optimization methods

We start our tour in optimization techniques with the simplest case when there are no constraints
presented.

Definition 3.1 (Unconstrained minimization problem). Let f : R® — R be a convex twice
continuously differentiable function, hence domain of f is open. An optimization problem given
by

minimize f(x)

with p* = inf f(z) finite and attained, is called the convex unconstrained minimization problem.

©

Since the problem is convex, by Corollary we are looking for such an z € dom f that
Vf(z)=0.

Remark 3.1 (Quadratic objective). Notice that if the objective f is a quadratic function in x,

then Vf(z) = 0 is a system of linear equations, hence can be solved analytically. Thus, we

would consider non-quadratic problems where, iterative methods can be applied. o

Remark 3.2 (Iterative methods). An iterative algorithm is a technique of finding sequence of

points {:E(k)}zozo e dom f such that f(z(*)) Foo, p* with initial point z(°). This sequence is

called a minimizing sequence. We usually use some € > 0 representing a tolerated error, so the
stopping criterion is given by f(z(*)) —p* < e. Since we have assumed that p* € R” and attained
this sequence converges. o

Assumptions We assume that the set

Sz{xeR"

f@) < f@0)}

is closed. The set S is usually called a-sublevel set with o = f(y), in our case o = f(x(©).
The intuition is simple, if S is not closed the algorithm might converge to the point that is not
in the domain. Unfortunately, this condition is not easy to verify, but if all sublevel sets are
closed or, equivalently, epi f is closed the condition trivially holds. Another way to say that all
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sublevel sets are closed is that function values goes to infinitely when x reaches the boundary of
the domain of f.
We also suppose that problem given by the Definition [3.1]is strongly convex on the sublevel
set S, i.e.
V2f(z) = ml, xes (3.1)

for some m > 0. Since f is twice differentiable, for z,y € S using Taylor theorem we express
fy) as

Fly) = (@) + Vi@ @~ 9) + 5y V() )

-

~
remainder in the Lagrange form,
z=0z+(1—0)y, 0<O<1

By strong convexity the remainder can be rewritten as

=2 V() 2) > Ty - )y — ).

Thus, we obtain better lower bound for f(y) than first order condition rom the Theorem m
m
F) = f(@) + V@) (@ = y) + Sy = 2[5 (3.2)

We now show how the above inequality can be used to measure suboptimality of the point x € S.
Notice that the right hand side of the inequality is a convex quadratic function of y, so setting
its gradient to zero we obtain § = x — (1/m)V f(x) that minimizes the right hand side. We now
rewrite the inequality above with ¢ instead of y

) > 1) — = |V ()3

2m
Notice that the result above holds for every y € S, so taking y* € S such that p* = f(y*), we

have
1

J@) = p* < 5 IVF@)B. (33)

Therefore, inequality (3.3) can be viewed as a suboptimality criterion, i.e. if the gradient is
small then f(z) is near the optimum, i.e.

IVf(x)]2 < V2me — f(z)—p* <e

Here we are talking about conceptual stopping criterion, since m is actually unknown, however
we can use it to derive a practical one. We pick 7 > 0, such that |V f(x)|2 < n. When 7 is small
enough, it will to be very likely smaller than v/2me, hence f(x) — p* < e.

By the inequality we also have that all off sublevel sets in S are bounded, so S is
bounded as well. Since V2 f(z) is a continuous function of z by the Definition we have that
the maximum eigenvalue of V2f(z) is bounded above on S, in other words there exists M > 0
such that for all x € S we get

V2f(r) < ML

In similar way as in (3.2) we obtain the following inequality
T M 2
Fly) < f@) + V(@) (2 —y) + -y — 23 (3.4)
Now we introduce general descent method and discuss basic ideas and related terminology.
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Algorithm 2 General descent method

1: procedure GENERAL DESCENT(z € dom f)
2 while not (stoping criterion) do

3 Determine a descent direction Ax

4: Choose t > 0 via line search

5 T =2x+tAzx

6 return z

Remark 3.3 (Terminology). The Algorithm [2 produces a minimizing sequence of points k1) —
z®) + B Az®) such that f(z*+D) < f(z®). Here t*) > 0 is called step and Az € R™ is
called descent direction. e
Remark 3.4 (Descent direction). Using the first order condition get the following

Vi) (y—2®) =0 = f(y) = f(=¥),

hence to get f(z**t1) < f(z®)) we want Az make a negative inner product with the gradient,
ie.

Vf(z"T Az < 0. o

Line search The line search in the fourth step corresponds to finding such t along the ray
{x +tAx | t > 0} the value of the objective decreases, i.e. f(z) > f(z + tAx).

One way to determine t is the exact line search. We define a function of one variable
f(t) = f(z + tAz) and now t is given by

texact = argmin f(S)
=0
Here we minimize a convex function of one variable, that can be done by setting the first
derivative of f(t) to zero and finding the root by bisection.
However, in practice we are also satisfied with ¢ that approximately minimize f. A popular
inexact method of line search is called backtracking line search. Here we find ¢ using the following
algorithm.

Algorithm 3 Backtracking line search

1: procedure BACKTRACK(Azx for f(z), 0 <a<0.5,0< 5 <1)
2: t=1

3. while f(t) > f(z) + atVf(z)T Az do

4: t=pt

5 return ¢

Do not be confused by f(z) + atVf(z)T Az, it is a linear function of ¢, since f(x) and
aV f(x)T Az are constants. The intuition behind is this, we pick some 0 < a < 0.5 and degrade
the slope of the lower bound f(x) + tVf(z)T Az by a factor of a, and then search for such ¢
where f(t) < f(z) + atV f(z)T Az. This situation is illustrated in the Figure

To see why this algorithm terminates consider that for a small enough ¢ > 0 the function
value f(z + tAz) is almost f(x) + tV f(x)T Az and since Vf(2)" Az < 0 we have the following

flx+tAz) ~ f(z) +tVf(x) Az < f(z) + atV f(z)T Az.

Notice that the algorithm will terminate with ¢ =1 ort e (Bto, to], where tg is a point such that
fto) = f(x) + atVf(z)T Az.
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N f(x)+atVf(z)T Ax
f(z) +tVf(x)T Az

Figure 3.1: Backtracking illustration.

3.1.1 Gradient descent

We are ready to instantiate our first descent method, namely the gradient descent algorithm.
Intuition is really straightforward, by using the gradient at some point we obtain local infor-
mation about the direction where the objective is going up the fastest, so we take the opposite
direction.

Algorithm 4 Gradient descent method

1: procedure GRADIENT DESCENT(z € dom f)
2 while True do

3 Ax = =V f(z).

4 if |Az|2 < n then

5: break

6 Choose t > 0 by line search.

7 x =x+tAz.

8 return z

Convergence analysis

We now show converge analysis for the case of the exact line search. Let f : R — R be a
function of a step length defined as f(t) = f(x — tV f(x)), such that x — tV f(z) € S. Setting

y =x —tV f(z) to the inequality (3.4]) we get

5 2
Ft) < @) ~ V@) + - 195 @),

Since exact line search is used, we minimize over ¢ both sides of the inequality. On the left hand
side we obtain t.,q.+ that minimizes f, and since the right hand side is a simple quadratic it is
minimized by ¢ = 1/M and the minimum is attained at f(z) — 53|V f(z)|3. Thus, we have

1
ftezacr) = F(@* ) < f@®) — [V f(=D)[3.
2M
Now we subtract p* and by using in the form of |V f(z®)|2 = 2m(f(z®) — p*) we get
FED) — < (= mAD () ),
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If we apply this inequality recursively, we get
F@®) —p* < (1= m/M)F(f(2) - p*). (3.5)

Thus, we conclude that f (m(k)) converges to p* as k — o0 at least as fast as geometric sequence.

Remark 3.5 (Gradient descent drawback). Even though by the gradient descent algorithm
converges exponentially with the number of iterations, it depends on unknown constants m, M.
The most non-obvious fact that this algorithm can work really bad. Recall that m and M were
a lower and upper bounds on the eigenvalues of V2 f(z) for all € S, so depending on the initial
step (0 if 0 < m/M « 1 we might get horrible performance. )

3.1.2 Newton’s method

We now look at some improvements of the gradient method that will bring us to the Newton’s
method.

Remark 3.6 (Directional derivative). Consider the first order Taylor approximation of f(x + v)
atv=20
fla+v) ~ f(z) + Vf(z) o

Here the term V f(x)Tv corresponds to the directional derivative of f(z) in the direction of v.
The directional derivative tells us the following, if we are at © how does the function changes if
we move in the direction of v. o

Thus, now we want to choose v in such a way that the directional derivative is as negative as
possible. Obviously, we normalize V f(z)Tv by |v|, since we are only interested in the direction
and but in the magnitude.

Definition 3.2 (Normalized steepest ascent direction). Suppose | - || is an arbitrary norm on
R™. A normalized steepest descent direction is defined as

Apsa = argmin (V(@)"u | u = 1}. ®

The most unintuitive result is this, if we want to determine the direction where the function
decreases the fastest, our result will depend on the norm.

Definition 3.3 (Dual norm). Let |- || be a norm on R™. The function || - |« : R” — R defined as
alx
als = sup{la”a| | ] <1} = sup —
w0 [

is a called the dual norm of || - |. ©

We can also interpret the dual norm as an operator norm of a’, recall Intuition behind
the dual norms is the following, if we interpret a’ as a function a” (+), the dual norm of a’ gives
the largest function value of a”(+) divided by the norm of the maximize

Definition 3.4 (Unnormalized steepest descent direction). Suppose | - | is an arbitrary norm
on R™ and | - |« is the corresponding dual norm. The descent direction

Azsg = [V (2)[+AZnsa

is called an unnormalized steepest descent direction. ©

°In fact, a”(+) is a linear functional given by the Euclidean inner product on R", i.e. {a, z)r»

61



3. ALGORITHMS

Remark 3.7 (Unnormalized steepest descent direction property). By the definition of the dual
norm we obtain

V(@) Arpsg = =V f(z)" (argmax Vf(SU)TU> = =V f(2)]«

lul=1
Now we have the following useful property of Az
V(@) Azgg = [V (@) |V f(2)T Apeg = =V ()| °

We now look at some concrete examples of Ax,sq and Axgq for given norms.

Example 3.8 (Steepest descent in the Euclidean norm). Notice if we use the Euclidean norm,
then the steepest descent direction Ax,g is in fact the negative gradient. To see this we first
show that the Euclidean norm is self-dual

Vi) |

Vily = sup
V@)l 220 |z]2

By the Cauchy—Schwarz inequality we get

ViW el _ IVl

E ]2

If we take x = ¢V f(y) with ¢ # 0 we get the equality, so the maximum value is |V f(y)]|2, hence
the Euclidean norm is self dual. Now applying Az,,q = —V f(x) to the Property we get
—|Vf(z)|3, hence we conclude that the negative gradient gives the direction of the steepest
descent in the Euclidean norm. O

Example 3.9 (Steepest descent for quadratic norm). Supposed we are given a quadratic norm
|- [lp : R™ — R such that

lalp = (a"Pa)'/? = [P 2aly,  PeSh,.

1/2

The corresponding dual norm is |a|« = |[P~"/?a|2. The normalized and unnormalized steepest

descent directions are given by

—-1/2

Az = —P7IVf(x), Azpsa = — (V@) PV (z)) "PIVf(2).

The steepest descent direction can be viewed as the gradient descent direction in new coordinates.
We define y = PY2z so |y|2 = |z|lp and g : R® — R such that

9(y) = f(Py) = f(a).
Now we apply the gradient descent method on g(y)
yF ) =y — g (y®) = y® — P12V (P2 W),
In terms of the original coordinates we obtain

Pfl/Qy(k+1) _ Pfl/Qy(k) o nPfl/QPfl/Qvf(Pfl/Qy(k))
g5+ — 20 plyf(20),

We conclude that —P~1V f (x(k)) corresponds to the steepest descent direction Ax .4 in quadratic
norm | - ||p Furthermore, we derive Az,,sq by the definition of Azgy. O
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Now the question is how we choose || - || for the faster convergence. The intuitive approach
is to choose P that approximately matches the level curves of the given function f. Another
way to think about P is that we want to transform the coordinates in such a way that the level
curves are almost rounded, then we apply the gradient decent method.

These ideas bring us to the Newton’s method. The intuition is quite straightforward, we
choose the norm based on our best guess of the curvature of f. Moreover, we change the norm
after every step made, since the curvature also changes. Surely, one of the best guesses is given
by the Hessian V2 f(x). Thus, using 3.9 we define the Newton step.

Definition 3.5 (Newton step). Suppose we are given an unconstrained problem Let x €
dom f, the vector Ax,; defined as

Azpy = =V f(a) "'V f(x)

is called the Newton step for f(x). ©

Remark 3.10 (Descent direction of the Newton step). Since we assumed that f is strictly convex,
the Hessian for every = € dom f is positive definite, hence invertible and V2 f(z)~! € S7 . Thus,
for all Vf(z) # 0,2z € S we have

Vi@) Az = =V f(z)IV2f(z) 'V f(z) <0.

Thus the Newton step is a valid descent direction. o

Remark 3.11 (Interpretations of the Newton step).

 Consider the second order Taylor approximation of f at the point x denoted by T3 ,(x +v)

Too(x +v) = f(x) + Vf(z)Tv + %UTVQf(x)v.

It is a convex quadratic function of v, hence to find the minimizer we need to solve the
system of linear equations

VoTou(z +v) = V() v+ V2if(z)v = 0.
The solution is given by v = —V?2f(z)"'V f(z) that is exactly the Newton step.

e Another interpretation is the following. Suppose we are at & and we are searching for v
such that V f(z+wv) = 0. This actually corresponds to finding z* = z+wv since V f(x*) = 0.
However, if f : R” — R is a non-quadratic function equality V f(z+v) = 0 leads to solving
system of non-linear equations. To avoid this, we simply linearize V f(x + v) by the first
order Taylor approximation at x and set the approximation to zero

Vi +v) ~Tiz(r+v)=Vf(z)+ V3f(z)v=0.
Thus, we have a system of linear equations and the solution is given by v = Axy;.

o The last interpretation is exactly derived from our motivation to adapt P € S | to the
level curves for better convergence in | - |p. Thus by Example Az is the steepest
descent direction at x induced by the Hessian V2f(x), in other words

lullv @) = (V2 fla)u)'/2. o
Lemma 3.6 (Affine invariance). Newton step is independent of a linear change of coordinates.
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Proof. Suppose A € R™"™ is non-singular. We define a function g(y) = f(Ay). The gradient
and the Hessian of g are

Vly) = ATV f(z) Vg(y) = ATV f(2)A, z = Ay. (3.6)
Thus, the Newton step for g at y is given by
Ayu = =V2g(y)"'Vy(y) = ~(ATV2f(AyA) ATV f(Ay) = A Azp. (3.7)

Here Ax,; is the Newton step of f at x = Ay. Hence we see if x = Ay then the Newton step
for f at x is Axp = AAy,, i.e. the same transformation holds. O

According to the lemma above, if we change coordinates the descent direction remains un-
changed and we will make the same Newton steps in new coordinate system. Thus if z(?) = Ay©
then z(*) = Ay,

Remark 3.12 (Gradient descendent and affine invariance). However, the gradient descent direc-
tion is not affine invariant. To see this, suppose g(y) = f(Ay) with A € R"*" det A # 0. The
gradient of g is given by Vg(y) = ATV f(x) with 2 = Ay, so the gradient descent direction
for g(y) is given by Ay = ATAxz. Finally, if we choose = Ay then the gradient descendent
direction for f(z) is Az = AT"' Ay, hence linear transformation differs. o

Definition 3.7 (Newton decrement). Suppose we have an unconstrained optimization problem
The following quantity

Mz) = (Vf(2) V2 f(2) "'V f ()"

is called the Newton decrement of f at a point x. ©

Remark 3.13 (Newton decrement properties).

o Newton decrement gives an estimate of suboptimality of f(x), for some x € S. based on
the second order Taylor approximation of f at x

F(2) 0 Ty(0) =F(2) — To(e + At
_f(2) — f(2) — V(@) Azpy — %A:cztw F(2) Ay
1

e Notice that the Newton decrement can be viewed as the quadratic norm of Newton step
defined by the Hessian

1/2

AMzx) = (AthVQf(x)Axm) = HAacntHsz(x). (3.8)

o We can also use A(x) in backtracking line search since

Vi(x) Axpy = —Mz)2

o By (3.6) and we have that for g(y) = f(Ay), with det A # 0, the Newton decrement
Ag(y) is equal to A¢(z) for f at o = Ay. Thus, Newton decrement is affine invariant since
the stopping criterion for ¢g(y) and f(z) is the same. o
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We now are ready to present Newton’s method, namely damped Newton’s method, since we
can use step length ¢t < 1.

Algorithm 5 Newton’s method

1: procedure NEWTON UNCONSTRAINED(z € dom f, € > 0)
2 while True do

3 Azp = —V2f(2)" 'V f(z)

4 Aa)? = Vf(2)TV2f(2) 7'V f(2)

5: if A(z)?/2 < € then

6 return z

7 Choose t > 0 via backtracking

8 r =+ tAZL‘nt

9

return x

Convergence analysis

We now present outline of convergence analysis for Newton’s method and its conclusions, com-
plete proof can be found in the book [II, p. 489-491].

Assume that f is twice continuously differentiable and strong convexity holds, hence by
implications of strong convexity we have

Im, M > 0:ml< V?f(z) < MI, Vz € S.
Also suppose that V2f(-) is Lipschitz continuous on S with constant L, i.e.
IV2f(2) = V?f(W)l2 < Lz —yl2s  z,y€S.

Remark 3.14 (Operator norm). Here | - |2 : R™*™ — R corresponds to the operator norm [1.64]
of X : R" —» R", with matrix X € R™"*" induced by the Euclidean norm, i.e.

| Xul2

0zuekrn U2

1X ]2 = = Omax(X).
As we see this this norm is given by the largest singular value of X. Moreover, since V2 f(x) € ST
this norm gives the largest eigenvalue. o

Remark 3.15 (Comments on Lipschitz constant). Actually Lipschitz constant L says how fast
the second derivative changes, so we can interpret L as a bound on the third derivative, which
in case of multivariable functions is a third order tensor or a 3-linear form. Notice that if f
is quadratic, the second order approximation is the function itself, so the Hessian is constant,
hence we can take L = 0. Now intuition is this, if quadratic model was good enough the third
derivative is small, so the Newtons method will perform really well. Thus, there are two ways
to say that Newton’s method works well

e The third derivative is small,
e The second derivative has small Lipschitz constant.

We rather interpret L in the second way, to avoid dealing with obscure tensors. o

The result of convergence proof is that there exist 1, such that 0 < n < m?/L and v > 0
and the following holds:

o It [Vf(a®)]2 =y then
F@®D) — fa®) < —. (3.9)
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o If [V f(z®)|; < n then backtracking line search selects t*) = 1 and we have

2
91l < (S92 (3.10)

We now analyse the second result. Assume |V f(z(¥))|2 < 7 holds, then for every next iteration
the condition remains satisfied. To see this, recall that 0 < 1 < m?/L and consider the following

L L 2 L 2 L
2 VI < (o190 ) < (55) o < g

Applying the inequality ¢ > k times we get

ol—k

2l VIOl < (5I976k) < (5)

Thus, using implications of strong convexity, namely (3.3]) we obtain

9l—k

ol—k+1

L 2 1
Fet) -0 < gV < 2 () (3.11)

As we see in the last inequality if |V f(z*))|, < 7 algorithm converges very fast. Informally,
the number of correct digits doubles after each iteration. This type of convergence is called
quadratic convergence.

Depending on the condition |V f(z®)|s < 5, the algorithm can be divided into two phases.
First one is called damped Newton phase and the second is quadratically convergent stage.

We now count the number of iterations in each stage separately. Since in first phase value
of the objective decreases at least by v the total number of iterations is less than

f@@) —p*
S )
To derive the bound in quadratic convergent phase we use (3.11]) and take ¢y = 2Lﬂ23
1 217k+1
FzW) —p* < e <2> <e

Now consider the following

logy €9 — 2! F
log, logy(€o/€)

Hence to achieve precision at least ¢ we perform no more than log, logs(€g/€) iterations. Thus,
total number of iterations is given by

(0)y _ *
W + log, logs (€p/€).

Remarkably, number of iterations for good solution and outstandingly precise one differers by
the last term, that grows extremely slowly.
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3.2 Equality constrained minimization

We are stepping towards general methods for solving convex problems, and now add simplest
constrains, namely equality ones, these, according to the definition of the convex problem
are linear. In this section we modify the Newton’s method to handle equality constrains.

Definition 3.8 (Equality constrained minimization). Let f : R” — R be a convex twice contin-
uously differentiable function, A € RP*" such that rank A = p < n and b € RP. An optimization
problem given by

minimize f(x)
subjectto Ax =b

with p* = inf {f(z) | Ax = b} finite and attained, is called the convex equality constrained
minimization problem. ©

Using Lagrange duality and the KKT conditions we formulate the optimality conditions.

Corollary 3.9 (Optimality conditions). Assume we have an equality constrained minimization
problem and z* € dom f. Point z* is optimal point if and only if there exists v* € RP such that
the following hold
Az*=b,  Vf@*)+Alv =o0.

These equations are called the KKT' equations.

As we discussed earlier, assuming that the problem is not quadratic, Vf(z) + ATv = 0 is
a system of nonlinear equations in z. As we will see, solving convex quadratic problems with
equality constants is pure linear algebra.

Example 3.16 (Equality constrained convex quadratic optimization). Suppose we are given a
problem

minimize f(z) = (1/2)2T Pz + ¢ "z +r, (3.12)
subjectto Az = b,

with P € S, A e RP*", be RP, g e R", such that rank P = p < n. The optimality condition
is given by
Az* =b, Pz + ATV +¢=0.

We can rewrite the optimality condition using block matrix notation as the following

[

As we see the optimality condition is just a system of n + p linear equations. This system is
called the KK T system for equality constrained QP (3.12)) with the KK T matriz of coefficients.

Solution of the KKT system depends on the non-singularity of KKT matrix. If the matrix
is non-singular there exists exactly one pair (z*,v*) solving the KKT system. If The KKT
matrix is singular but the system is solvable then there exists infinitely many solutions (z*, v*),
otherwise the KKT system is unsolvable, meaning that the optimization problem is unbounded
below or infeasible. O

Lemma 3.10 (Non-singularity of the KKT system). Suppose we are given the problem (3.12)).
The following condition for 0 # x € R”

Az =b = 2Pz >0,

is equivalent to non-singularity of the KKT matrix.
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Proof. We prove both implications by contradiction.

e <« Suppose Ax =0, Px =0, z # 0, then we obtain

£ -

hence the KKT matrix is singular.

e — Suppose the KKT matrix is singular, i.e. for x,r not both zero we obtain

X OE]

Thus, Pz + ATy = 0 and Az = 0. We multiply the first equality by 27 on the left and
get 2T Px + 2T ATy = 0. Applying Az = 0 first equality reduces to 27 Px = 0, if z # 0
we immediately get contradiction, if x = 0 then v # 0 and Av =0, i.e. rank A <p. [

3.2.1 Newton’s method with equality constrains

This brings us to the extension of the Newton step and the Newton decrement for equality
constrained minimization. In case of constrained minimization we need to preserve feasibility at
each iteration, moreover, the initial point z(°) should also be feasible. This actually means that
every Newton step must satisfy AAx,; = 0, i.e. Az, is an element of the null space of A.

Definition 3.11 (Newton step for equality constrained optimization). Suppose we are given
an equality constrained problem The Newton step Az, for feasible x is characterized by

solution in v of
1 8-[%)

with dual variable w. ©

Notice that in unconstrained case the system of linear equations reduces to V2f(z)v =
—V f(z). Thus, the Newton step for equality constrained optimization is an extension of the
original Newton step. Moreover, the same interpretations as in unconstrained case hold.

Remark 3.17 (Interpretations of the Newton step).

e As the example [3.12] suggests the Newton step Ax,; solves an optimization problem with
objective given by the second order Taylor approximation near x with variable v

minimize Ty, (z + v) = f(z) + Vf(x) v + (1/2)0T V2 f(2)v

subject to A(x +v) = b.

e The Newton step can be also viewed as the solution to linearized version of optimality
conditions taking x* = ¢ + Az, and v* = w we obtain

Vfi(z)+ sz(x)Aa:nt + ATw =0, Az + Azyy) = b.

Since Az = b we obtain exactly the same system of linear equations as in the definition

B.1T
V2f(2)Azp + ATw = —Vf(z),  AAz, =0. o
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Definition 3.12 (Newton decrement for equality constrained optimization). Assume that we
are given an equality constrained problem[3.8] The Newton decrement is defined as the following

AMz) = (AthVQf(x)Aa:m)l/Q. ©®

Notice that by the definition the Newton decrement in equality constrained case is equal
to . However it can not be expressed as since we are using extended version of the
Newton step. The Newton decrement for constrained problems derives its properties from an
unconstrained case.

Remark 3.18 (Properties of the Newton decrement).

o The Newton decrement gives an estimation of suboptimality for f(x) based on the second
order approximation

f(z) — irl}f{Tg’m(:n +0) | A(z +v) =b}
= (&) ~ (&) = VI @) v+ 2"V f
= —\(z)%/2.
Since by the definition we have Az, V2 f(2)Azy = Az, Vf(x).
e We can also use the Newton decrement in the backtracking line search

Vi) Azyy = —Mx)?. o

Lemma 3.13 (Affine invariance). The Newton step and the Newton decrement for an equality
constrained optimization problem [3.8| are affine invariant.

Proof. Suppose Q € R™*" is invertible. We define function g(y) = f(Qy) = f(z), z = Qy. The
gradient and the Hessian for g are

Vyly) = Q"V f(Qy), V(y) = Q"V?f(Qy)Q.
We now formulate the following optimization problem

minimize g(y)

subject to AQy = b. (3.13)

To start with, we determine the Newton step Ax,; corresponding to the original problem
by solving system of linear equations

1 )

We reformulate this system as
Azy = —V2f(z) Y (ATw + Vf(2)), AAz, =0
Now we work out the Newton step Ay, for the optimization problem given by g (3.13))

[QTVZEZQ@/)Q QTOAT] [Aém] _ [—QTVOf(Qy)].
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This system can be rewritten as

Ayn = —Q7IVAf(Qy) " (ATw + VF(Qy)), AQAY,; =0
Notice if x = Qy the system above takes the following form
Aynt = Qilenh AAz, = 0.

Thus, the the Newton steps for z and y are related by the same transformation and w = w.
Finally, using Ay,; = Q 'Axz,; we see that the Newton decrement \g4(y) matches A¢(z) for

x = Qy. O

Now we present the Newton’s method for equality constrained minimization, which is a
modified version of the algorithm for unconstrained problems However, here we use the
extended Newton step and decrement. This method is usually called feasible descent method,
since every z(*t1) = 2(F) 4 tAz,; is a feasible point and f(z*+D) < f(z(*)) .

Algorithm 6 Newton’s method for equality constrained problems

1. procedure NEWTON EQUALITY(x € dom f, € > 0)
2 while True do

3 Compute Ax,; according to

4: ANz)? = Az V2 f(2) Az

5: if \(7)?/2 < ¢ then

6 return

7 Choose t > 0 via backtracking

8 T =2+ tAT,

9 return =

Convergence analysis

To show that Newton’s method for equality constrained optimization converges, we eliminate
the equality constraints and propagate them to the objective

minimize f(Fz+ ).
z

Here columns of F € R"*("=P) span the null space of A, i.e. AF =0, and rank F = n —p. The
point Z is a particular solution of Az = b.

In general, the proof remains the same. The relation between Newton’s method applied on
the eliminated problem and one that directly handles the equality constraints along with slightly
changed convergence analysis can be found in the book [I, p. 528 - 531].

Here we only outline modified assumptions of the Newton’s method for inequality constraints.

o The sublevel sets of f are closed, hence the initial sublevel set S = {z € R" | = €
dom f, f(z) < f(z(©), Az = b} with 2(°) € dom f, Az(®) = b is also closed.

e For any z,y € S the Hessian is Lipschitz continuous on S, i.e. there exists a positive
Lipschitz constant such that |V2f(z) — V2f(y)|2 < Ll|z — y|2.

e The inverse of the KK'T matrix exists and is bounded on 5, i.e.

[v2 f(2) AT]_I

A 0
We also assume that the Hessian as a function of z € S is bounded, i.e. V2f(z) <
MI, M > 0.

< K.
2
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To understand the last assumption on KKT matrix recall operator norm since the KKT
matrix is symmetric it has real eigenvalues. Notice if there were no equality constraints this
condition reduces to |V2f(z)"!s < K on S, so if m = 1/K we have V2f(z) > mI from strong
convexity assumptions (3.1). Here the norm of the inverse of the KKT matrix returns 1/|)\|,
where || = 1/K is the smallest eigenvalue of the KKT matrix in the absolute value, hence we
want positive and negative eigenvalues be away from zero.

3.3 Inequality constrained minimization

We now are ready to look at the algorithm that handles general convex problems with inequal-
ities. As previously we reformulate the optimization problem in a proper way to apply already
shown algorithms for equality constrained and unconstrained minimization.

Definition 3.14 (Inequality constrained problem). Let fo,..., fiy : R™ — R be a convex twice
continuously differentiable functions, A € RP*™ such that rank A = p < n. An optimization
problem given by

minimize fo(z)
subject to f;

—~

x)

where p* is a finite and attained optimal value and solution z* exists. This problem is called a
convex inequality constrained minimization problem. ©)

As we see QCQP, QP, LP are just special cases of inequality constrained problems.

Remark 3.19 (The KKT conditions). We also assume that the problem is strictly feasible, i.e.
Jz € D such that Az = b and f;(x) <0, i = 1,...,m so the Slater’s qualification holds
hence the strong duality attained. By the characterization of optimal point vector =™ is
optimal if and only if there exist dual optimal \* € R™, v* € RP and the KKT conditions hold

Az* =0,
fi(z*) <0, i=1,...,m.
AT =0, (3.14)
X fi(a*) =0, i=1,...,m.
Vfo(z*) + Xty M fi(e*) + ATv* = 0.
(@]

3.3.1 Barrier method

Now we reformulate the inequality constrained problem to one with equality constrains, although
with non-differentiable objective. Further, we look how to properly approximate it. The original
problem can be reformulated as

minimize fo(z) + >0, I-(fi(x)), (3.15)
subject to Az = b.

Here I_ : R — R is an irritation function for negative reals given by
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Since I_ is not differentiable we approximate it as the following

~

I ~I_=—(1/t)log(-z), doml_=R,,.

Here parameter ¢ > 0 determines the accuracy of the approximation, and as we will see later when
t — oo the approximation gets more accurate. The given approximation is valid by assumption
of strict feasibility. Notice that the approximation of the indicator function is differentiable
and closed, since every its sublevel set is closed. We also extend I_ to take value of infinity
when z > 0, so I_ is convex non-decreasing function by the composition rule We now
reformulate [3.15] as the following

minimize fo(z) + >0, —(1/t) log(fi(x)) (3.16)
subject to Ax = b.

Definition 3.15 (Logarithmic barrier). Suppose we have an inequality optimization problem
Let ¢ : R” — R be a function with domain domy = {z € R" | f;(x) <0,i=1,...,m}
defined as

— Y log(—fi(x))
=1

Function ¢ is called the logarithmic barrier or simply the log barrier. ©

For further purposes we work out the gradient and the hessian of the log barrier

Z Fap V@i

fi(x).

Now we closely look at the approximated optimization problem (|3.16))

minimize ¢ fy(z) + ¢(x), (3.17)
subject to Az = b.

Suppose the Newton’s method is used for solving this problem, and for V¢ > 0 the solution z*(¢)
is unique, later we will discuss these assumptions.

Definition 3.16 (Central path). A set {z*(t) € R" | t > 0} is called the central path of the
problem Every z*(t) is called the central point. ©

Remark 3.20 (Characterization of central points). Every central point x*(¢) on the central path
can be characterized as the following: x*(t) is a central point if and only if it is strictly feasible
and there exists v € RP such that

0 =tV f(a*(1)) + Vipla* (¢ >> + AT

)+ Z - fz e )+ (/AT o

Remark 3.21 (Duality). Notice that by the characterization of central points we can work out
the dual variables \*(t), v*(t) defined as

1

v =v/t N = s my

1=1,...,m.
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Since A7 (t) > 0 and by x*(t) minimizes the Lagrangian at A*(t), v*(t)
Lix, A*(t),v* (1)) = folx) + D A () filw) +v* (1) (Az — b)
i=1
points \*(t), v*(t) are dual feasible. Hence, the dual function at A*(¢), v*(t) is finite and we have

g (1), 07 (1)) = fola™(8)) + Y N () fila™ (1)) + v (8)" (Aa™(t) — )
i —

= fola* (1)) —m/t.

By definition g(A*(¢),v*(t)) determines a lower bound on fy(z*(t)), so we can determine the
suboptimality of fo(x*(t)) as

fo(@™(t)) —p" < m/t.
The inequality above actually proves the intuition, that when ¢ — oo central point z*(¢) converges
to z* of B.14 o

Remark 3.22 (Interpretation). The characterization can be interpret in terms of the modified
KKT conditions. Point z*(t) is optimal if and only if there exist A, v such that

Az*(t) = b, fi(z*(£) <0, i=1,...,m.
A>=0

A fi(a*(t) = 1/t,  i=1,...,m.
Vio(@* () + 20" Mi(z*) + ATy =0

As we see these conditions slightly differers from conditions given in in particular we
replaced complementary condition A;fi(z) = 0 by \*fi(z*(¢)) = 1/t. Thus as ¢ increases we
approximate the original KKT conditions. o

Now we are ready to look at the algorithm handling inequality constrained problems, that
is actually a simple extension of the Newton’s method. The method is called barrier method or
SUMT, sequential unconstrained minimization technique, since Newton’s method for equality
constrains corresponds to applying original Newton’s method on eliminated problem.

Algorithm 7 Barrier method

1: procedure BARRIER(strictly feasible x, tO >0 p>1,e> 0)
2. t=1t0

3 while True do

4 Centring step: x*(t) = argmin {tfo(z) + ¢(z) | Az = b}
5: x = z*(t)

6 if m/t < e then

7 return x

8 t=put

As we see the algorithm produces sequence of z* () until the duality gap is not small enough,
i.e. m/t < e. The algorithm can also return (A\*(¢),v*(t)) as a certificate proving the optimality
of z. As was assumed earlier, in the centring step we use Newton’s method, however any other
method handling equality constrains can be used. We usually call centring step outer iteration
and iterations of the Newton’s method inner iterations.
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3. ALGORITHMS

Remark 3.23 (Choice of p and tp). As we wil see in convergence analysis choice of 1 determines
the trade-off between the number of inner and outer iterations, choosing p large there will be
fewer outer, however number of inner steps increases. The intuition behind this is the following,
when g is small enough previous x already approximates well enough, so we produce a small
number of iterations in probably in quadratic convergent stage. The usual choice of u is between
10 and 50. In addition, choice of ty determines the same trade-of since it gives how “far” the
next centring step z(!) will be. o

Remark 3.24 (Feasibility). Notice that the barrier method requires strictly feasible starting point
x. To find one or determine that such a point does not exist we formulate the following opti-
mization problem

minimize s
T,s

subject to f;(z) < s, 1=1,....,m
Ax =0b.

Here decision variables are x € R"™, s € R. Fortunately, this problem is always feasible,
we just pick any z(© € dom f; n -+ n dom f,, as a starting point and determine s =
max;—1,.m fi(:c(o)) + & where £ > 0. Now barrier method can be applied on feasibility problem.

We terminate the barrier method when s*) < 0 and use z(®) as a starting point for the
original problem. If we finished with s*) > 0 this means that there is no such z that for all
fi satisfies fi(z) < 0 and the problem is infeasible. However if s(F) = 0 returned the original
problem is feasible but not strictly feasible, hence we can not apply the barrier method. o

Convergence analysis

Since whole barrier method is based on the Newton’s method for equality constrains, we do
need a separate proof. Suppose that ¢fy + ¢ can be minimized by Newton’s method fot ¢ =
tO 1@ 2¢O We know that the duality gap will be exactly m/,u(k)t(o) after k iterations
so we can determine the precise number of steps

log, m < k + log, et

(0)
> log(m/(et'™))
log p

. [mg(m/(et(ow
log ¢4

plus initial centering step in the feasibility phase. Here we exactly see the trade-of determined
by pu.

Thus, we conclude that the problem is solvable if £ fy + (o satisfies the conditions discussed in
the convergence analysis of Newton’s method for equality constrained minimization. To ensure
strong convexity we can add new (m + 1)th constraint |23 < R?, this constraint adds a new
term — log(R? — 27x) = finy1() to p(x). Now we define ¢(z) = — 37 log(— fi(z)) and show
that V2(fo(z) + @(z)) is positive definite. The gradient and the Hessian of f,,1(x) are

2
R 2Tz

2
(R? — 2T2)?

meJrl(x) =

VQme(w) = ((R2 — ZL'T:L‘)I + 2:17:ET).
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3.3. Inequality constrained minimization

Now consider the following

V2 (fol@) + 8(2)) = VA(ol@) + 90) + gy T (s gt

= V2 (fo(a) + pl) + oy
> 27
= R2 .

Thus, fo + ¢ is strongly convex.
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CHAPTER 4

Applications

In this chapter we focus on programming part of mathematical optimization. Firstly, we recall
the Kernel SVM learning rule and describe a problem of image recognition. Then we explore
existing and benchmark solvers in Julia and Python that can handle optimization problems.
Finally, we show how kernel SVM learning rule can be optimized with a selected solver.

4.1 Problem specification

A nice illustrative example of kernel SVM usage is image recognition, in particular the task is
to determine wether an image contains letter “X” or not. Some sampling from the dataset is
shown in the Figure

a) Images with letters “X”.

) Other images.

Figure 4.1: Dataset illustration.

Every image is represented by 16 x 16 binary matrix. Since the dataset contains only 168
images, we enlarge it adding rotated versions of original images, i.e we rotate images by 90, 180,
270 degrees. Then for every image we add its transpose as well.Hence in total we obtain about
1500 images.

Since determining wether image contains “X” is a binary classification problem, we use kernel
SVM learning rule For this example X < R16*16 ig an input space of images, ) = +1 is
the output space of labels and ((z1,y1),-- -, (Tm,Ym)) € (X x V)™ is a training set of m points.
For the kernel function k(-,-) : R16X16 x R16x16 _, R we use the Gaussian kernel defined as

k(z,y) = exp ( Iz yH2> The task is to find the dual variable \* that solves the optimization
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4. APPLICATIONS

using JuMP
function solve_opt(K, y; optimizer, C=22)
dim = length(y)
m = Model (with_optimizer (optimizer))
@variable(m, 0 <= L[1:dim] <= C)
@variable(m, t)
Q@objective(m, Min, t)
@constraint(m, conl,
sum(L[i]1*L[jI*y[il*y[jI1*K[i] [j] for j in 1:dim for i in 1:dim)
<= sum(var for var in L) + t)
Q@constraint(m, con2, sum(y[i]#L[i] for i in 1:dim) == 0)
optimize! (m)

return value. (L)

end
Listing 1: Function for solving optimization problems for different optimizers.
problem
m
minimize )\i)\jyiyjk(xi, a:j) — lT)\
AeR™ L~
i,j=1
subjectto 0 < \; < C, t=1,...,m,
My =o.

Recall that, the constant C' > 0 gives the trade off between higher margin and number of
missclassifications, since higher margin leads to more missclassifications. Thus, in our final
model we have two free parameters C and o, in the example section we will also establish a
good enough choice for them by cross validation.

4.2 Julia

In Julia programming language we use a nice modeling tool, namely JuMP [I3]m for mathemat-
ical optimization that provides a simple API for solvers usage. In the following code Listing
is shown how to use JuMP for solving optimization problems. This function takes as an input
a kernel matrix K € R™*™ labels y € R™, solver or optimizer and a hyperparameter C' > 0, for
now we stick with C' = 22. Firstly, we call the constructor for our model m by Model () with the
given optimizer. Here the macro @variable determines the decision variable A, tﬂ Notice that
bounds on the decision variables can be directly handled in macro @variable. We use macros
@objective and @constraint to define objective and constraint functions. When the problem
is formulated we simply call optimize! (m) and return the solution Xﬂ

5We introduced a slack variable t for technical reasons, since solvers do not directly support QP.
"If the problem is feasible.
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4.2. Julia

using ECOS

using Gurobi

using Mosek

using MathOptInterfaceMosek

1 = [ECO0S.Optimizer, Gurobi.Optimizer, MosekOptimizer]
for solver in 1

solve_opt(K, Y, optimizer = solver)
end

Listing 2: Solvers usage.

In the Julia section we focus on the following solvers
« ECOS [14],
o Gurobi [15],

o Mosek [16].

4.2.1 Solvers

The following code Listing [2] illustrates how to use solvers with function solve_opt.

ECOS ECOS is an embedded conic solver for second order cone programs, these can be viewed
as generalization of QCQP. Even though it is a distributed under GPL as we will see ECOS
shows competitive results comparable to commercial solvers. ECOS implements a sophisticated
version of the barrier method for second order cone problems.

Gurobi Gurobi is a commercial solver, however it is available for academic purposes. This
optimizer handles plenty of problems, including non-convex ones like integer linear programming
and integer second order cone problems. Remarkably, Gurobi also implements barrier method
for second order cone programs.

Mosek Mosek is another commercial tool available under academic licence. Comparing with
Gurobi, Mosek allows to solve more general convex problems, namely conic ones. In conic
optimization we have a convex objective function and the constrains are given by some convex
cone, like positive semidefinite cone Additionally, Mosek can solve integer versions of linear
and second order cone programs. As other solvers, Mosek implements barrier methods.

4.2.2 Benchmarks

For benchmarking we use Julia package called BenchmarkTools. j1, it provides intuitive interface
for carrying out measurements. Usage of this package is illustrated in the code Listing [3] To
estimate time and memory usage we simply use macro @benchmarkable for our function. Then
we set benchmark variables and run our experiments. Setting seconds to 1800 means limits the
benchmark time to 30 minutes. In this benchmark we evaluate every model 12 times 2 times
per each sample to get good enough overview of the solvers performance.
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4. APPLICATIONS

using BenchmarkTools
b = G@benchmarkable solve_opt(K, Y, optimizer = Gurobi.Optimizer)
run(b, samples = 6, evals = 2, seconds = 1800)

Listing 3: Benchmarking.

Here we compare the solvers’ performance using the whole datasetﬂ Moreover, we slightly
extend it by moving around with images, i.e. every image is replaced with its two horizontally
shifted versions by one column. These manipulation allow us to get about 3000 of images, and
that is fairly enough for our benchmarks.

m 1500 images 2000 images 2500 images

solvers ECOS | Gurobi | Mosek | ECOS | Gurobi | Mosek | ECOS | Gurobi | Mosek

memory 6.62 5.8 6.29 11.68 | 10.38 11.10 | 18.35 | 16.24 17.39

min. time | 31.125 | 18.004 | 15.749 | 113.89 | 44.145 | 35.611 | 239.76 | 90.531 | 72.696

mean time | 33.211 | 18.763 | 16.305 | 117.16 | 45.360 | 36.406 | 252.71 | 94.004 | 74.475

max. time | 35.498 | 19.493 | 18.050 | 122.16 | 47.149 | 37.267 | 282.59 | 98.024 | 77.011

Table 4.1: Benchmarks of the solvers performance, memory is measured in gibibytes and time
is measured in seconds.

The results of benchmarks are given in the Table

Obviously, commercial solvers demonstrate better performance, but as we see open source
ECOS solver shows satisfying computer time results for not large problems. Notice that com-
putational time doubles every 500 images, so problem with about 4000 or 5000 images can be
solved in less than an hour with commercial solvers. Moreover, even not so large problems with
only 2000 images require more than ten gibibytes of memory.

This benchmark shows that the Mosek has the best time performance out of the selected
solvers, however memory usage is almost the same for all optimizers.

4.3 Python

For Python we also use a modeling language, namely CVXPY [I7], [I8]. This modeling language
has similar interface as JuMP, moreover it implicitly supports matrix operation for problem
formulation. Another advantage of CVXPY is that it is implicitly distributed with open source
solvers. As earlier we use one generic function solve_opt for testing solvers performance.
The code for this function is given in the Listing [4, We import package cvxopt and use classes
Variable, Problem and Minimize to formulate an optimization problem. Notice that constraints
are simply stored in the list. As we mention CVXPY comes with implicit solvers, in particular

« OQCP [19],
. SCS [20] [211,
. ECOS,

thus we use them for our benchmarking.

8Since in this we are only carrying out the benchmarks and not searching for the best model.
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4.3. Python

import cvxpy as cp
@benchmark (12)
def solve_opt(K, y, optimizer=None, C=22):
dim = len(y)
x = cp.Variable(dim)
obj = cp.Minimize(cp.quad_form(cp.multiply(y,x),K) - sum(x))
constraints = [x >= 0, x <= C, sum([x[i]*y[i] for i in range(len(y))]) == 0]
probl = cp.Problem(obj, constraints)
probl.solve(optimizer)
return x.value

Listing 4: Python solve_opt function.

X,Y = perturb(*preprocessing())
K = compute_kernel matrix(X)
solver_list = [cp.0SQP, cp.ECOS, cp.SCS]
for s in solver_list:
solve_opt(K,Y, optimizer=s)

Listing 5: Passing solvers.

4.3.1 Solvers

All solvers that we use in Python are open source and as we will see some of them also show
even better results than solvers we used in Julia. Although, these optimizers are not written
in Python they provide Python interface, hence ECOS is exactly the same solver described
earlier, but now we communicate with it through Python API. Since OQCP, SCS, ECOS are
directly installed in CVXPY, there is no need to import other libraries and we only pass different
parameter to solve_opt, it is illustrated in the Listing

OQCP OQCP is a solver for QP problems, hence the inequality constraints must be afﬁneﬂ
This solver implements alternating direction method of multipliers (ADMM), that belongs to
the family of proximal algorithms that can directly handle non-smooth functions.

SCS Split conic solver or SCS is another optimizer that implements ADMM algorithm for
conic problems. As Mosek it can be applied on positive semidefinite and second order cones.

4.3.2 Benchmarks

For benchmarking we implement a simple decorator function, the implementation can be viewed
in the Listing [f] To display statistics we use package pandas and for time measurements time
is used. Thus to keep our Python benchmarks consistent with Julia ones we perform the same
preprocessing routine. We now run every optimizer on 1500, 2000, 2500 images 12 times. Here
we only measure time performance, but not the memory usage.

9Notice that it is exactly our case.

81



© 0w N O O W NN =

NN N = = = = = e e
N OB O © 0 N O U ok W N = O

4. APPLICATIONS

import functools

import time

import pandas as pd

def benchmark(n=2):
def timer(func):
@functools.wraps (func)

def

wrapper_timer (*args, **kwargs):

1=1[]

value = None

for x in range(n):
start_time = time.perf_counter()
value = func(*args, **kwargs)
end_time = time.perf_counter()
1.append (end_time - start_time)

print ()

print('Stats:')

s = pd.Series(1)

print(s.describe())

return value

return wrapper_timer
return timer

Listing 6: Decorator function for carrying out benchmarks.

m 1500 images 2000 images 2500 images
solvers OQCP | ECOS | SCS OQCP | ECOS | SCS OQCP | ECOS | SCS
min. time | 6.789 137.96 | 15.749 | 6.789 137.96 | 134.29 | 24.694 | 639.17 | 347.19
mean time | 7.249 142.94 | 16.305 | 7.249 142.94 | 145.33 | 24.88 671.67 | 360.39
max. time | 8.313 150.45 | 18.050 | 8.313 150.45 | 178.02 | 25.308 | 712.38 | 381.20

Table 4.2: Python solvers benchmark, time is measured in seconds.

As we see in the Table {.2, ADMM algorithm implemented in OQCP works really well
even comparing to commercial solvers with Julia interface. One reason might be that OQCP
is a specific solver for convex quadratic problems with affine constrains, whereas other solvers
handle more general optimization tasks. However, in contrast to Julia version ECOS solver for
Python shows way worse results.

OosQP
m 3000 3500
min. time | 44.07 67.144
mean time | 47.168 | 70.565
max. time | 54.40 | 75.168

Table 4.3: OQCP benchmark, time is measured in seconds.

Let us now test OQCP on larger sets of images. Thus as is demonstrated in the Table
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4.4. Example

function train_test_split(X, Y, p = 1301)
joined = shuffle([(X[i], Y[i]) for i in 1:length(X)])
X_train = [joined[i] [1] for i in 1:length(joined) if i < p]
Y_train = [joined[i][2] for i in 1:length(joined) if i < p]
X_test [joined[i] [1] for i in p:length(joined)]
Y_test = [joined[i][2] for i in p:length(joined)]
return X_train, Y_train, X_test, Y_test

end

Listing 7: Julia train_test_split function.

OQCP applied on image recognition works unbelievably well and definitely beats commercial
solvers discussed in Julia section. Unfortunately, this solver can be applied only on specific
optimization problems, namely on QP.

4.4 Example

In this section we show how to use optimization solvers in problems of knowledge engineering,
in particular optimizing kernel SVM learning rule for image recognition. For this example we
stay with Julia and use Mosek solver.

Firstly, we split the original dataset with 1477 unique images, into training and testing data.
Then we use five fold cross validation to measure the cross validation error on the training set,
this allows us to choose suitable hyperparameters ¢ and C' for the final model. When the choice
of hyperparameters is made we test the final model on the testing data.

To divide the data into training and testing set we use custom function train_test_plit
that is presented in the Listing [7]] Here parameter p specifies the number of training points, the
remaining data points form the testing data.

Next from the training data we create five cross validation sets by calling custom function
five_fold_cross_validation. We perform cross validation to find good enough hyperparam-
eters o, C. This is done by making five validation sets S!, ¢ = 1,...,5 from the training
set, where for every S/ four fifths of it are used to train the model with fixed o, C and the
remaining one fifth is used determine the error ;. Then we compute the cross validation er-
ror as (1/5) Y0 ¢;. Obviously, we select o, C' with the lowest cross validation error. Code for
five_fold_cross_validation is shown in the Listing |8l To estimate the error we simply count
the number of missclassifications for training or validation set, and divide it by the number of
training points.

We now show the code Listing 9] for optimization kernel SVM learning rule. Here the function
preprocessing corresponds to reading the images from the text file. After we established o, C
with the lowest cross validation error, we use these hyperparameters to train the model on the
whole training set, and afterwards display the results.

For this example the minimum cross validation error 0.0646 corresponds to o = 8.5, C' = 27.
As the result, we have 0.0508 for the testing error, this leads to 9 out of 177 missclassifications.
The missclassified images are illustrated in the Figure [4.2

As we see kernel SVM learning rule does really good job in image classification, moreover it
can be easily implemented using JuMP package.
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APPLICATIONS

function five_fold_cross_validation(X,Y)

end

n=260

xt = reshape(X, (n, div(length(X), n)))

x1 = [xt[:,i] for i in 1:div(length(X), n) ]

xr = [(x,collect(Iterators.flatten([u for u in x1 if x != ul]))) for x in x1]
yt = reshape(Y, (n, div(length(Y), n)))

yl = [yt[:,i] for i in 1:div(length(Y), n) 1]

yr = [(x,collect(Iterators.flatten([u for u in yl if x != ul))) for x in yl]

res = [(xr[i][2], yrl[il[2],xr[i]([1], yr([il[1]) for i in 1:length(yr)]

return res

Listing 8: Julia five_fold_cross_validation function.

IS ELNEE

Figure 4.2: Missclassified images.
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36
37
38
39
40
41
42
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44
45
46

4.4. Example

X, Y = preprocessing();
X_train, Y_train, X_test, Y_test = train_test_split(X, Y)
validation = ten_fold_cross_validation(X_train, Y_train)

sigmas = [
6, 6, 6,
TolBg Moy Ty To®p Toldg
8.8, 8.5, 8.5, .6, 8.5y
10, 10, 10, 10, 10
]
Cs = [
17, 27, 34,
17, 27, 34, 40, 48,
17, 27, 34, 40, 48,
25, 34, 40, 44, 55,
]
hyppar = [(sigmas[i], Cs[i]) for i in 1:length(sigmas)]
result = []

for (sigma, c) in hyppar
validation_errors = []
for (X_t, Y.t, X val, Y val) in validation
K = compute_kernel matrix(X_t, sigma)
lambda = solve_opt(K, Y_t, optimizer=MosekOptimizer, C=c)
h = compute_classifier(X_t, Y_t, c, sigma, lambda)
push! (validation_errors, error_estimate(h, X_val, Y_val)[1])
end
push! (result, (sigma, c, sum(err for err in validation_errors)/5))
end

min_err_sigma = O
min_err_ C = O
min_err = result[1] [end]
for (sigma, c, err) in result
if min_err > err
min_err_sigma = sigma
min_err_ C = c
min_err = err
end
end

K = compute_kernel matrix(X_train, min_err_sigma)

lambda = solve_opt(K, Y_train, optimizer=MosekOptimizer, C=min_err_C)

h = compute_classifier(X_train, Y_train, min_err_C, min_err_sigma, lambda)

missclassified_images_display(error_estimate(h, X_test, Y_test)...,
X_test, min_err_C, min_err_sigma)

Listing 9: Kernel SVM learning rule optimized.
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Conclusion

The main goal was to make a review of theory and methods of mathematical optimization and
apply them on problems belonging to the realm of knowledge engineering.

1. There was introduced theoretical background of mathematical optimization, based on its
convex part and we showed how to model plenty of problems using convex techniques. We
studied the importance of convex optimization and its guarantees for the optimal results.

2. Then we looked at various problems in the field of knowledge engineering. Using already
developed optimization framework we expressed these problems in terms of mathematical
optimization, so they can be efficiently solved.

3. Next we studied modern methods for solving optimization problems. As we saw, these
methods not only solve the optimization problems but can also return the certificate of
the optimality.

4. Finally, we explored various software tools that can handle optimization problems using
Python and Julia programming languages. We tested not only open source solvers, but
also commercial ones. As it was shown, for specific problems open source tools can give
competitive results comparing to commercial solvers.
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APPENDIX A

Contents of enclosed CD

readme . tXE ..ot i e the file with CD contents description
= oo the directory of source codes
B 0 e PP Julia nootebooks
PYthOm e Python nootebooks
thesSiS . .vviiiiiiiiiiiii i the directory of IATEX source codes of the thesis

I =3 A the thesis text directory
LRSI DAL« .ttt the thesis text in PDF format
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