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3. Review existing mathematical methods for solving optimization problems from point 1 of this
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4. Explore available software tools (software packages, libraries) able to solve optimization problems.
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Abstrakt

Tato práce se zabývá problematikou matematické optimalizace a ukazuje, jak ji lze aplikovat
na problematiku znalostního inženýrství. Nejdříve se zaměříme na teoretické základy matem-
atické optimalizace a formulujeme základní optimalizační problémy jako lineární programování,
kvadratické programování či optimalizaci vektor]u. Dále se zaměříme na vybrané problémy z
oblasti znalostního inženýrství a vyjádříme je v rámci optimalizace. Dále prezentujeme metody
řešení optimalizačních problém]u, konkrétně metody sestupu, Newtonovu metodu a bariérovou
metodu. Nakonec se přesuneme do praktické části, kde demonstrujeme r]uzné nástroje pro řešení
optimalizačních úloh.

Klíčová slova optimalizace, konvexní optimalizace, metody konvexní optimalizace, metody
sestupu, metoda vnitřního bodu, znalostní inženýrství, strojové učení, vytěžování dát

Abstract

This thesis explore the field of mathematical optimization and show how it can be applied on the
problems of knowledge engineering. Firstly, we develop a theoretical background in mathemati-
cal optimization and formulate basic optimization problems like linear programming, quadratic
programming and vector optimization. Next we select different problems from the domain of
knowledge engineering and express them in optimization framework. Then we present meth-
ods handling optimization problems, namely descent methods, Newton’s method and barrier
method. Finally, we move beyond the theoretical part and demonstrate various programming
tools for solving optimization tasks.

Keywords optimization, convex optimization, methods of convex optimization, descent meth-
ods, interior point method, knowledge engineering, machine learning, data mining
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Introduction

In this thesis, we investigate the connection between optimization and field of knowledge en-
gineering. At first glance the relation looks quite poor, certainly we want to achieve the best
results solving any problem, but usually the mathematical part is overlooked. One might think
of knowledge engineering as writing domain specific programs solving particular problems, and
in fact, there exist tons of such programs based on inexact heuristics, hence showing suboptimal
results. Moreover, such heuristic algorithms mostly do not provide us with proof of the solution
optimality, so we have to trust the implementation. However, within notion of mathematical op-
timization framework we would be able to handle these tasks efficiently achieving the guaranteed
optimal performance with small computational time.

The thesis contributes to gaining a solid understanding of mathematical optimization meth-
ods applied to the demands of knowledge engineering. Thus, motivating us for further devel-
opment and improvement of computer programs for deriving knowledge based on optimization
technics.

Initially, we review mathematical backgrounds of optimization, in particular, convex opti-
mization problems that in general can be solved efficiently. Talking about convex optimization,
we formulate specific types of problems like linear optimization, quadratic programming, or vec-
tor optimization. Nevertheless, we make some notes on non-convex optimization and show its
relation to the convex one. Next, we study various problems in knowledge engineering that can
be represented in terms of mathematical optimization. Also, these problems will be assigned to
already defined optimization classes. Then, we review existing optimization methods for solving
formulated types of problems. In the end, we look at programming constituent, namely on var-
ious software tools that can solve optimization tasks, preferably open-source packages. Finally,
we take some already defined problems benchmark selected solvers.

Objective

The main goal of this thesis is to show strong relation between two huge fields, namely mathe-
matical optimization and knowledge engineering. Usually, knowledge engineering is considered
as writing sophisticated computer programs that cary out non-trivial results, and it turns out,
that such programs are mostly derived from mathematical models describing the problem do-
main.

For our first goal, we formulate such problems in terms of optimization and review math-
ematical methods that can solve these tasks yielding desired optimal outcomes. We not only
analyze the mathematical part, but also show how these problems are solved in terms of the
optimization framework. The partial objective is to investigate existing software tools that are
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Introduction

able to carry out optimizational computations on earlier formulated problems. As a result, we
would eliminate a black box perspective of optimization technics used in knowledge engineering.
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Chapter 1
Mathematical optimization

The field of mathematical optimization is surely not a new topic and traces back to the 17th cen-
tury, when Pierre de Fermat formulated the principle of first derivative vanishment at the func-
tion extreme point. Until 20th century optimization problems frequently appeared in physics,
for example Newton’s minimal resistance problem and principle of least action. As for the al-
gorithms, the first one was least squares method presented in 19th century by Carl Friedrich
Gauss and Adrien-Marie Legendre. The main advantage of least squares method is the analytical
solution, though in general, optimization problems are solved algorithmically than analytically.
Nevertheless, the main optimization theory, namely convex optimization, and algorithms were
set on motion in 1950 and by 1970 were quite well developed.

The first widely known general algorithm for solving optimization problems, specifically
linear problems, was the simplex method invented by George Dantzig in 1947 at Stanford. The
next milestone was the ellipsoid method from 1970s developed by the Soviet and Ukrainian
mathematicians. The ellipsoid method was the first algorithm to show that LP (a.k.a. linear
optimization a.k.a. linear programming) is solvable in polynomial time. In fact, it was the
reason why in late 70s an article related to LP appeared at the front page of New York Times.
In 80th an interior method was developed, originally it was used to solve LP problems and later
it was realized that this approach can be generalized to convex optimization as well.

Actually, one can notice that the invention of the simplex method coincides with the de-
velopment of modern digital computers. Since generally optimization problems do not have
an analytical solution, they are usually solved by some iterative methods. Thus, potential of
solving sophisticated optimization problems is highly correlated with growth of the computer
performance.

Although, mathematical optimization is not a new subject, the thing that makes it interesting
now is its applications in various fields like finance, circuit design, statistics and machine learning.
Moreover, the theory behind convex optimization shows that convex problems can be solved time
and space efficiently depending on the input size. As for non-convex problems, it appears that
in most cases non-convex problems use convex optimization as its subroutine.

This chapter looks at the theory behind optimization along with most important families
of convex and non-convex optimization problems. Then we move on to duality that gives a
interesting way of solving even hard problems. Next, some notes on non-convex case will be
given. At the end we step aside and introduce theoretical ideas of reproducing kernel Hilbert
spaces, that will be also widely used in the next chapter. This chapter is a brief outline of the
book [1, Chapters 1-5], the section about Hilbert spaces summarizes [2].
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1. Mathematical optimization

1.1 Theory

1.1.1 Preliminaries

In this subsection we summarize basic theoretical concepts that we will widely use throughout
the thesis.
Remark 1.1 (Notation).

• Suppose x P Rn is a column vector, we identify vector x by n-tuple of reals as x “
px1, . . . , xnq P Rn. Thus, when we write elements of a column vector in parentheses we do
not use the transposition.

• We denote all non-negative and positive real numbers by R` and R``, respectively.

• Suppose X P Rnˆm. We denote the ith columns of X by Xi,‚, for the jth row we have
X‚,j .

˝

Linear algebra
Definition 1.1 (Symmetric matrix). Suppose A P Rnˆn. We say that A is symmetric if A “ AT

and denote this as A P Sn e

A nice property of symmetric matrices is that they have real eigenvalues.
Definition 1.2 (Positive semidefinite symmetric matrix). Suppose A P Sn. If for all x P Rn if
the following holds

xTAx ě 0.

we call A a positive semidefinite matrix or PSD matrix and denote this vy A P Sn`. If for all
non-zeo x P Rn we obtain

xTAx ą 0,

then A is called positive definite or PD matrix, we denote this by A P Sn``. e

Lemma 1.3 (Characterization). Suppose A P Sn.

• A P Sn` if and only if all eigenvalues of A are non-negative.

• A P Sn`` if and only if all eigenvalues of A are positive.

Definition 1.4 (Norm). Suppose X is a vector space. A function } ¨ }X : X Ñ R is called a
norm if for all x, y P X and α P R the following holds:

1. Positive definiteness: }x}X ě 0^ p}x}X “ 0 ðñ x “ 0q.

2. Positive homogeneity: }αx}X “ |α|}x}X .

3. Triangle inequality: }x` y}X ď }x}X ` }y}X . e

Remark 1.2 (Notation). In the majority of the text our vector space X will be just Rn, so
notation } ¨ } will stand for norm defined on Rn, in particular we denote the Euclidean norma
as } ¨ }2 . If we use another vector space Y it would be explicitly specified by the index, i.e.
} ¨ }Y ˝

4



1.1. Theory

Theorem 1.5 (Cauchy-Schwarz inequality). Suppose x, y P Rn, then the following inequality
holds

|xT y| ď }x}2}y}2.

We have an equality
|xT y| “ }x}2}y}2

only if x, y are collinear.

Multivariable functions Lets have a look at basic points related to differentiability of mul-
tivariable functions.
Definition 1.6 (Partial derivative). Let f : Rn Ñ R be a real valued function. If a P dom f
and the following limit exits

lim
hÑ0

fpa` heiq ´ fpxq

h
, ei “ p01, . . . , 0i´1, 1i, 0i`1, . . . , 0nq,

then we say that value of this limit is a partial derivative of f at a point a with respect to i-th
variable and we always write it as Bf

Bxi
paq. e

Remark 1.3 (Vector valued functions). Let f : Rn Ñ Rm be a vector valued function. Partial
derivative of f at a point a P dom f with respect to xi is the following vector

Bf

Bxi
paq “

´

Bf1paq

Bxi
, ¨ ¨ ¨ ,

Bfnpaq

Bxm

¯

. ˝

Definition 1.7 (Differentiability). Suppose f : Rn Ñ Rm is a function. We say that f is
differentiable at a point a P dom f, a ‰ x if and only if there exist a linear map J : Rn Ñ Rm
such that

lim
xÑa

}fpxq ´ fpaq ´ Jpx´ aq}2
}x´ a}2

“ 0.

We say that f is differentiable if its domain is open and it is differentiable at every point of its
domain. e

Remark 1.4 (The Jacobian matrix and the gradient). In the definition of differentiability of a
function we talk about linear mapping J : Rn Ñ Rm, which is defined as a matrix of all first-
order partial derivatives of a vector valued function and is called the Jacobian matrix J P Rnˆn,
i.e.

Jijpaq “
Bfipaq

Bxj
, i, j “ 1, . . . , n.

If original function f is a scalar valued function, then we talk about vector in Rn. This vector
is called the gradient of the function f and is denoted as ∇f , i.e.

∇fpaq “
´

Bfpaq

Bx1
, ¨ ¨ ¨ ,

Bfpaq

Bxn

¯

. ˝

Definition 1.8 (Second derivative). Suppose f : Rn Ñ R is a function. Second derivative or
Hessian matrix of f at a P int dom f , denoted ∇2fpaq P Sn is defined as the following,

`

∇2fpaq
˘

ij
“
B2fpaq

BxiBxj
, i, j “ 1, . . . , n.

We say that f is twice differentiable if its Hessian exists at each point in the domain of f , which
is open. e

5



1. Mathematical optimization

1.1.2 Convex sets

In this section we start with some basic definitions like affine set, convex set and cones. Next
we move on to some important examples like balls, ellipsoids or half-spaces. Then we focus
on operations that preserve convexity to formulate so using these operations we can construct
new convex sets from other convex sets. After that we look at generalized inequalities or vector
inequalities with respect of proper cones.

We begin with important idea of convex sets and other related concepts.
Definition 1.9 (Line segment). Suppose a, b P Rn and a ‰ b. The set ∅ ‰ C Ď Rn such that

C “ ty | y “ θa` p1´ θqb, 0 ď θ ď 1u

is called a line segment between a and b. If θ P R then C is called the line passing through a
and b, e

Definition 1.10 (Convex combination). Let x1, . . . , xm P Rn and θ1, . . . , θn P R` such that
ř

i θi “ 1. Point y of the from

y “
m
ÿ

i“1
θixi,

is called a convex combination of the points x1, . . . , xn. If we let θ be any real number we obtain
an affine combination. e

In fact, affine and convex combinations are special cases of linear combination with some
constrains on the coefficients.
Definition 1.11 (Convex set). Suppose ∅ ‰ C Ď Rn. If for every a, b P C and a ‰ b the
following condition holds

ty | y “ θa` p1´ θqb, 0 ď θ ď 1u Ď C,

then we call C is a convex set. If we let θ P R then C is an affine set. e

The definition tells us that if set C contains every line segment between its two points then
it is convex, this situation is illustrated in the Figure 1.1.

Figure 1.1: Three sets on the left hand side are convex, others are not.

Now we move on to convex cones and conic combinations.
Definition 1.12 (Conic combination). Let a, b P Rn and C Ď Rn. Any point x of the following
form:

x “ αa` βb, α, β P R`

is called a conic combination of a and b. If C contains all such x, then we call it convex
cone. e

Geometrically we have a sort of pie slice. Points on boundaries are just non-negative multiples
of u or v and points inside the slice are positive multiples of u`v, to see this consider the Figure
1.2.

6



1.1. Theory

0

x1

x2

Figure 1.2: Convex cone illustration.

Lets look at some important sets that we will use later in analysis of the domains of opti-
mization problems.
Example 1.5 (Solution set of linear equations). Let C “ tx |Ax “ bu, where A P Rmˆn, b P Rm,
i.e. C is the solution set of a system of linear equations. To show that C is affine, suppose
u, v P C, u ‰ v and θ P R. Lets consider a line passing u, v, so we have

Apθu` p1´ θqvq “ θAu` p1´ θqAv “ θb` p1´ θqb “ b. l

Example 1.6 (Hyperplanes and half-spaces). Let C Ď Rn be a solution set of a single linear
equation, i.e. set of the form

C “ tx P Rn | aTx “ bu, a ‰ 0.

The set C is called a hyperplane, with a normal vector a. Notice, when we move around with b
we get parallel hyperplanes to the first one.

A solution set of a single linear inequality, i.e. set of the form

tx P Rn | aTx ď bu, a ‰ 0

is called a half-space.
Both hyperplanes and half-spaces are affine hence convex. Now lets pick a θ P R and verify

the definition of an affine set.

aT pθu` p1´ θqvq “ θaTu` p1´ θqaT v “ θb` p1´ θqb “ b

An example of a half-space and hyperplane is illustrated in the Figure 1.3. l

a

x0

aTx ď b

Figure 1.3: Hyperplane aTx0 “ b and a half-space aTx ď b.

Example 1.7 (Polyhedron). Suppose ď is a component-wise inequality and a, b P Rn, i.e.

a ď b ðñ ai ď bi, i P t1, . . . , nu.

7



1. Mathematical optimization

A set P Ď Rn defined as a solution set of a finite number of linear inequalities and equations

P “ tx P Rn | Ax ď b, Bx “ du, A P Rmˆn, B P Rpˆn, b P Rm, p P Rp

is called a polyhedron. Notice, that a polyhedron can be both bounded and unbounded.Using
the fact that intersection preserve convexity (will be shown later) we can say that polyhedron
is a convex set. A example of a polyhedron is illustrated in the figure 1.4 l

a1

a2
a3

a4

a5

P

Figure 1.4: Polyhedron.

Example 1.8 (Balls and ellipsoids). The set Bpxc, rq of the form

Bpxc, rq “ tx | }x´ xc}2 ď ru

is called a Euclidean ball with the center xc and radius r. Generalization of a ball is an ellipsoid,
i.e. set of the form

E “ tx P Rn | px´ xcqTP´1px´ xcq ď 1u, P P Sn``. (1.1)

To see that a ball is a special case of an ellipsoid consider the following

}x´ xc}2 ď r ðñ
1
r2 px´ xcq

T Ipx´ xcq ď 1.

Thus, we have P´1 “ 1{r2I or equivalently P “ r2I.
Let us derive an equivalent formulation of an ellipsoid. Since P P Sn`` by the spectral

theorem for symmetric matrices we have P “ QΛQT , where Q is an orthogonal matrix, i.e.
QQT “ QTQ “ I and Λ is a diagonal matrix of eigenvalues of P, such that eigenvalues λi of P
are positive. Now we define P1{2 P Sn`` as P1{2 “ QΛ1{2QT . Therefore, P can be expressed as
P “ P1{2P1{2. Moreover, since P and P1{2 are positive definite, the inverses exist and we have

P´1 “
´

P1{2P1{2
¯´1

“ P´1{2P´1{2, P´1{2P1{2 “ I.

The condition in (1.1) can be reformulated as

px´ xcq
TP´1px´ xcq ď 1 ðñ

›

›

›
P´1{2px´ xcq

›

›

›

2
ď 1.

Now we say that P´1{2px´ xcq “ u for some u P Rn hence }u}2 ď 1. Thus, we get

x “ xc `P1{2u.

8



1.1. Theory

Therefore, taking A “ P1{2 an ellipsoid can be expressed as

E “ txc `Au | }u}2 ď 1u, A P Sn``.

In the same way we can represent a ball

Bpxc, rq “ txc ` ru | }u}2 ď 1u.

To show that ellipsoid is convex consider the definition and two points
xc `Au, xc `Av P E. Lets check that θpxc `Auq ` p1´ θqpxc `Avq P E:

θpxc `Auq ` p1´ θqpxc `Avq “ xc ` θAu` p1´ θqAv
“ xc `Apθu` p1´ θqvq.

Now we verify that }θu` p1´ θqv}2 ď 1. Because xc `Au, xc `Av P E we have

}θu` p1´ θqv}2 ď θ ` p1´ θq “ 1

l

Example 1.9 (Normed cone). A set C Ď Rn`1 of a form

C “ tpx, tq P Rn`1 | t ě }x}u

is called a normed cone. If we think in terms of functions and interpret norm as a function, then
C represents an epigraph of a norm (epigraphs will be formally defined in the next subsection).

To see that a normed cone is a convex cone consider pa, uq, pb, vq P C and α, β P R`:

αpa, uq ` βpb, vq “ pαa` βb, αu` βvq

and by assumption and triangle inequality we have

}αa` βb}2 ď α}a}2 ` β}b}2 ď αu` βv

so normed cone is a convex cone. l

Example 1.10 (Positive semidefinite cone). A set Sn` of the following form

Sn` “ tA P RnˆP | A ě 0u “ tA P RnˆP | xTAx ě 0, x P Rnu,

is called a positive semidefinite cone.
To show that Sn` is a convex cone suppose A,B P Sn`, x P Rn and α, β ě 0:

xT pαA` βBqx “ αxTAx` βxTBx ě 0

so Sn` is actually a convex cone.
Similarly it can be shown that positive definite cone Sn``:

Sn`` “ tA P RnˆP | A ą 0u “ tA P RnˆP | xTAx ą 0, 0 ‰ x P Rnu,

is a convex cone. l

Now we move on to operations that preserve convexity, i.e. calculus of convex sets. The
motivation to learn about convex calculus is that we will need to determine wether a set is convex
or not. In most cases showing convexity by the definition is non-trivial, but with convex calculus
we are able to establish convexity, because it was constructed from convex sets by operations
that preserve convexity.

In fact, this approach is very useful. If we want to write a program that determines wether
a set is convex, using convex calculus we will need to create a tree such that its leaves will be
basic convex sets, its nodes will be operations that preserve convexity and the root will be the
originally given set.

9



1. Mathematical optimization

Theorem 1.13 (Intersection of convex sets). If ∅ ‰ A,B Ď Rn are convex sets, then A X B is
convex.

Proof. Suppose u, v P AXB and θ P r0, 1s.

u, v P AXB ðñ pu, v P Aq ^ pu, v P Bq

ðñ pθu` p1´ θqv P Aq ^ pθu` p1´ θqv P Bq
ðñ pθu` p1´ θqvq P AXB

Theorem 1.14 (Affine mapping of convex sets). Let C be a convex sets and f : Rn Ñ Rm an
affine function defined as x ÞÑ Ax` b with A P Rmˆn, b P Rm. The image of C under f ,

fpCq “ tfpxq P Rm | x P Cu

is convex.
Likewise,the inverse image of A under f ,

f´1pCq “ tx P Rn | fpxq P Cu

is convex.

Proof. Suppose fpuq, fpvq P fpCq, θ P r0, 1s and C is convex,

fpuq, fpvq P fpCq ðñ u, v P C ðñ θu` p1´ θqv P C
ðñ Apθu` p1´ θqvq ` b P fpCq
ðñ Apθu` p1´ θqvq ` b` θb´ θb P fpCq
ðñ θpAu` bq ` p1´ θqpAv ` bq P fpCq,

so θfpuq ` p1´ θqfpvq P fpCq and fpCq is convex.
Now consider p, q P f´1pCq, β P r0, 1s and C is convex,

p, q P f´1pCq ðñ fppq, fpqq P A ðñ βfppq ` p1´ βqfpqq P A
ðñ βpAp` bq ` p1´ βqpAq ` bq P A
ðñ Apβp` p1´ βqqq ` b P A
ðñ βp` p1´ βqq P f´1pCq

Remark 1.11 (Balls and ellipsoids). As our formulation of balls and ellipsoids suggests, they are
just affine transformations of a unit ball, which is obviously convex. ˝

Now we focus on generalized inequalities. As name suggests we generalize the idea of a
familiar inequality on R to another context like matrix inequalities, or vector inequalities.
Definition 1.15 (Proper cone). A convex cone K is a proper cone if

1. K is closed (contains its boundary)

2. K is solid (has nonempty interior, i.e. is full dimensional with respect to a given vector
space)

3. K is pointed (contains no line, i.e. x P K,´x P K ùñ x “ 0) e

Definition 1.16 (Generalized inequality). Let K be a proper cone. We define a partial ordering
associated with a proper cone K as

x ďK y ðñ y ´ x P K, x, y P K.

This ordering is called generalized inequality defined by convex cone K. e

10



1.1. Theory

Remark 1.12. Strict generalized inequality can be defined as following,

x ăK y ðñ y ´ x P int K, x, y P K. ˝

Example 1.13 (Nonnegative orthant). An intuitive example of a proper cone is the nonneg-
ative orthant Rn`, where vectors with some zero components form its boundary, interior is all
component-wise positive vectors. So for x, y P Rn` we have component-wise inequality

x ďRn
`
y ðñ y ´ x P Rn` ðñ xi ď yi, i P t1, . . . , nu.

Notice that we used this inequality in the to express a polyhedron. l

Example 1.14 (Semidefinite cone). Another example will be a positive semidefinite cone. In-
terior is formed by positive definite matrices, boundary contains all matrices with some zero
eigenvalue, i.e. all singular positive semidefinite matrices and positive semidefinite with all
eigenvalues equal to zero forms the origin. Now we can define matrix inequality with respect to
Sn`

A ďSn
`

B ðñ B´A P Sn` ðñ B´A ě 0 l

Notice, that unlike ď a generalized inequality ďK is a partial ordering as we can have vectors
that are incomparable, i.e. x ��ďK y and x ��ěK y. That’s why idea of the smallest element splits
into two parts the minimum and the minimal element.
Definition 1.17 (Minimum and minimal). Let ďK be a generalized inequality with respect to
a proper cone K and S as an arbitrary set. Element x P S such that,

x ďK y, @y P S,

is called the minimum element of S with respect to ďK .
Element u P S such that,

@v P S, v ďK u ùñ v “ u,

is called a minimal element of S with respect to ďK . e

Remark 1.15. Minimal and minimum elements can be described in set notation. The point x P S
is the minimum of S if and only if

S Ď x`K.

Here x`K is a set of all points that are comparable and grater or equal to x. Notice that if x
is minimum it follows that S Ď K.

The point x P S is minimal of S if and only if

S X x´K “ txu.

Here x ´K determines a set of all points that are comparable and less or equal to x. Thus, if
x is minimal then S��ĎK. ˝

The intuitive difference between the minimum and a minimal is the following, a point x P S
is the minimum, when all other points are larger then x with respect to cone K, and if y P S is
a minimal, then there is no points that are less then y.

Now we look at some concepts that will help us to gain a useful characterization of minimum
and minimal elements, that will be used in vector optimization problems.
Definition 1.18 (Dual cone). Let K Ď Rn be a cone. The set

K˚ “ tx P Rn | uTx ě 0, @u P Ku

is called the dual cone of K. e

11



1. Mathematical optimization

Lets look at the following lemma that tells us that the duals of proper cones can define
generalized inequalities.
Lemma 1.19. Let K be a cone. Then

1. K˚ is a convex cone.

2. If K is closed, i.e. cl K “ K, then the dual cone of the dual cone is the original cone, i.e.
K˚˚ “ K.

3. If K is proper, then the dual cone K˚ is a proper cone.

Proof.

1. Using the definition of the dual cone we see that for every x P K the set ty | xT y ě 0u is
a half-space, so we express K˚ as the following,

K˚ “
č

xPK

ty | xT y ě 0u.

Since we use non-strict inequality xT y ě 0 it follows that the dual cone is closed.

2. We start with the fact that closure of any cone K can be expressed as an intersection of
all homogeneous half-spaces containing K.Thus, for closed cones the statement cl K “ K
holds. With the previous point we have:

cl K “
č

xPK˚

ty | xT y ě 0u “ ty | xT y ě 0, @y P K˚u “ K˚˚.

3. Suppose that K is a proper cone. To see that K˚ is pointed we use the fact that the
original cone K has nonempty interior. Assume that K˚ is not pointed, i.e.

0 ‰ u,´u P K˚ ñ xTu ě 0, xT p´uq ě 0, @x P K

ñ xTu ě 0, xTu ď 0
ñ K “ tx | xTu “ 0, u ‰ 0u,

so K is affine, hence does not contain nondegenerate ball from the original vector space
(Rn) and so has an empty interior.
Now we show that K˚ has nonempty interior assuming K is pointed. Consider the follow-
ing:

int K˚ “ ∅ñ Dx ‰ 0 : K˚ “ ty | xT y “ 0, p´xqT y “ 0u
ñ x,´x P K˚˚ “ tu | aTu ě 0, a P K˚u,

hence K˚˚ contains a line and using point 2 we have that K is not pointed.

Remark 1.16. In the proof of the previous lemma we used characterization of the interior point
of a set from topology, so for S Ď Rn and x P S, the following holds

x P int S ðñ tx` ru | }u}2 ď 1, u P Rn, r ‰ 0u Ď S, ˝

By now we obtained important properties associated with relation between generalized in-
equalities and their duals.
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1.1. Theory

Remark 1.17. If K is a convex proper cone and ďK is a generalized inequality with respect to
K, then its dual K˚ is also a convex proper cone, hence defines a generalized inequality ďK˚ .
Let x, y P K and λ ěK˚ 0. The important relations between K and K˚ are the following:

1. x ďK y ðñ λTx ď λT y

2. x ăK y ðñ λTx ă λT y, λ ‰ 0. ˝

Here we present characterization of minimum and minimal using the dual cones, however we
omit the proof, since it is based on other non-trivial theorems.
Theorem 1.20 (The minimum element characterization). Let S Ď Rn be any set and x P S.
The element x is the minimum element of S with respect to ďK , if and only if for every λ ąK˚ 0,
x is the unique minimizer of λTu over u P S.

In case of a minimal characterization splits into two different parts.
Theorem 1.21. Let S Ď Rn be any set and x P S. If λ ąK˚ 0 and x is a unique minimizer of
λTu over all u P S then x is minimal.

However for the converse implication we need to assume that S is a convex set, as in general
x P S can be a minimal element but not the minimizer of λTu, u P S if S is not convex.
Theorem 1.22. Let S be a convex set. If x P S is minimal and there exists λ ěK˚ such that x
is the unique minimizer of λTu over all u P S.

The proofs for these theorems can be found in the book [1, p. 46-57].

1.1.3 Convex functions

In this subsection we extend the meaning of convexity to the context of functions. At first,
we say what a convex function is and illustrate this definition on some examples. Establishing
convexity of a function plays critical role in optimization problem as, roughly speaking, convex
problems can be efficiently solved. Then we explain reasons why convexity plays a crucial role in
optimization and how with local information about the gradient we obtain global results. Next
we move on to operations that preserve convexity and form the basics of the convex calculus in
terms of functions.
Definition 1.23 (Convex function). Suppose f : Rn Ñ R is a function, such that dom f is a
convex set. If for any x, y P dom f the following holds:

fpθx` p1´ θqyq ď θfpxq ` p1´ θqfpyq, θ P r0, 1s

then we say that f is a convex function. If the strict inequality holds then f is called a strictly
convex function. If there holds ě instead of ď then f is called concave function. e

The illustration of a convex function can be viewed in the Figure 1.5.
Actually, we have already seen points of this type θa`p1´ θqb, it is nothing else but a point

on a line segment between a and b. The definition says that if you evaluate function at a point
in a line segment between a and b you get smaller value than convex combination of the end
points. In terms of graph we say that line segment connecting px, fpxqq and py, fpyqq lies above
the graph of the function.

One extremely useful property of convex functions that directly follows from the definition
is that if we restrict the domain of a convex function to a line, then f will be below that line.
In some cases it will be worth plotting a function before formal verification of convexity, if the
function value is higher then convex weighted sum of the end points, then we are done, and the
function is not convex. However, if no such line was founded we have to check convexity by
hand.
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1. Mathematical optimization

px, fpxqq

py, fpyqq

pθx`
p1´ θqy,

θfpxq
` p1´ θ

qfpyqq

pθx` p1´ θqy, fpθx` p1´ θqyqq

Figure 1.5: Convex function illustration.

Remark 1.18 (Restriction to a line). The function f : Rn Ñ R is convex if and only if the
function g : RÑ R such that,

gptq “ fpx` tvq, dom g “ tt | x` tv P dom fu, x P dom f, v P Rn

is convex in t. ˝

Remark 1.19 (Extended-value extension). Let f : Rn Ñ R be a convex function. We define
function f̃ : Rn Ñ RY t`8u such that,

f̃pxq “

#

fpxq, x P dom f,

`8, otherwise,

and call it extended-value extension of f . ˝

This extension will simplify the notation now we can write for any a, b P Rn the function is
convex if and only if

f̃pθa` p1´ θqbq ď θf̃paq ` p1´ θqf̃pbq.

Notice, that now we are using extended arithmetic and ordering. In the rest of the thesis
extended-value notation of functions will be used explicitly instead of the ordinary one.

Now we look at theorems that will help us to establish convexity of a given function.
Theorem 1.24 (First order condition). Suppose f : Rn Ñ R is a differentiable function with
convex domain. The function f is convex if and only if for @u, v P dom f the following holds

fpuq ě fpvq `∇fpvqT pu´ vq.

Proof. The proof can be found in [1, p. 70].

Remark 1.20 (First order Tylor approximation). Note, that expression on the right hand side is
a first order Tylor approximation of a function f at a point v and is, actually, affine in u. ˝

The main assertion of the first order condition is, that the function is has higher value
everywhere than the first order Tylor approximation. As it is a global result now we can claim
that our solution is the optimal and no other can do better.
Theorem 1.25 (Second order condition). Suppose f : Rn Ñ R is a twice differentiable function
with convex domain. We say that f is convex if and only if the following condition holds

∇2fpuq ě 0, @u P dom f.

Proof. The proof can be found in the literature [1, p. 71].
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1.1. Theory

Corollary 1.26 (Strict convexity). If the Hessian matrix is positive definite, i.e. ∇2fpuq ą

0, @u P dom f , then we call f strictly convex. However, the converse is not generally true as
for fpxq “ x2 second derivative at x “ 0 is zero, although it is a strictly convex function.
Corollary 1.27 (Concavity). Using negation of second order condition we can say that

f is concave ðñ dom f is convex, ∇2fpxq ď 0, x P dom f.

We use these conditions to establish convexity of the basic functions, that will be used as
cornerstones of calculus of convex functions. Now lets have a look at some examples.
Example 1.21 (Examples on R). Consider the following functions:

1. Affine: fpxq “ ax`b, dom f “ R, a, b P R is convex and concave, as apθx`p1´θqyq`b “
θpax` bq ` p1´ θqpay ` bq.

2. Exponential: fpxq “ eax, dom f “ R, 0 ‰ a P R is convex, because second derivative is
always positive.

3. Powers: fpxq “ xa, dom f “ R``. If a P r0, 1s function is concave, and if a P R z p0, 1q
function is convex. According to the second order condition we have apa ´ 1qxa´2 ě 0,
because power of x is always positive and apa´ 1q ě 0 ðñ a P R z p0, 1q.

4. Powers of absolute values: fpxq “ |x|a, dom f “ R, a ě 1 is convex, by the previous
point.

5. Logarithms: fpxq “ log x, dom f “ R`` is concave, as f 2 ă 0.

6. Negative entropy: fpxq “ x log x, dom f “ R`` is convex, by the second order condition.
l

Now we move on to more interesting and practical examples on Rn.
Example 1.22 (Norms). Let } ¨ } : Rn Ñ R be a norm. To see that any norm is convex, let
θ P r0, 1s and using homogeneity property and triangle inequality we obtain the following:

}θa` p1´ θqb}2 ď θ}a}2 ` p1´ θq}b}2. l

Example 1.23 (Max function). Suppose f : Rn Ñ R is a function defined as the following

fpxq “ maxtx1, . . . , xnu.

We call f a max function. To see that max function is convex, let θ P r0, 1s and consider the
following

max
i
pθai ` p1´ θqbiq ď θmax

i
ai ` p1´ θqmax

i
bi.

The inequality holds as the sum of maximum elements is at least maximum of sums. Another
way to interpret max function is an infinity norm on Rn, i.e. } ¨ }8 l

Example 1.24 (Quadratic function). Suppose f : Rn Ñ R is a function defined as the following

fpxq “ p1{2qxTPx` qTx` r, P P Sn`.

We call f a quadratic function. To show that f is convex we look at the Hessian.

∇f “ Px` q ∇2f “ P.

So a quadratic function is convex if and only if P P Sn` l
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1. Mathematical optimization

Example 1.25 (leastsquares objective). Suppose f : Rn Ñ R is a function defined as the
following

fpxq “ }Ax´ b}22, A P Rmˆn.

We call f a leastsquares objective function. We use the second order condition to see that f is
convex.

∇f “ AT pAx´ bq ∇2f “ 2ATA.

Now we show that the Hessian is positive semidefinite. Suppose x P Rn and consider the
following equations

xTATAx “ pAxqTAx “ }Ax}22 ě 0 l

Example 1.26 (Quadratic-over-linear function). Suppose f : R2 Ñ R is a function defined as
the following

fpxq “ fpx, yq “ x2{y, dom f “ Rˆ R``.

We call f a quadratic-over-linear function. To see that f is convex we use the second coincident,
so for the gradient we have

∇f “
ˆ

2x
y
, ´

x2

x2

˙

.

Now we can work out the Hessian

∇2f “

„

2{y ´2x{y2

´2x{y2 2x2{y3



“
2
y3

„

y2 ´xy
´xy x2



“
2
y3

„

y
´x

 „

y
´x

T

ě 0.

To see that outer product of any vector x P Rn with itself is positive semidefinite lets take an
arbitrary y P Rn. Now consider the following

yTxxT y “ pxT yqTxT y “ }xT y}22 ě 0. l

function
Example 1.27 (Log-sum-exp function). Suppose f : Rn Ñ R is a function such that

fpxq “ logp1T exq, ex “ pex1 , . . . , exnq, 1 “ p11, . . . , 1nq.

The function f is called log-sum-exp function.
We show that log-sum-exp function is convex using the second order condition. For the

gradient we have
∇f “ 1

1T z z, z “ ex.

Before computing the Hessian lets take partial derivatives

B2f

BxiBxj
“ ´

zizj
p1T zq2

B2f

B2xi
“
zip1T zq ´ z2

i

p1T zq2 .

Now we can work out the Hessian.

∇2f “
1

p1T zq2

»

—

—

—

—

—

—

–

z1p1T zq ´ z2
1 ¨ ¨ ¨ z1zj ¨ ¨ ¨ z1zn

... . . . ...
zjz1 ¨ ¨ ¨ zjp1T zq ´ z2

j ¨ ¨ ¨ zjzn
... . . . ...

znz1 ¨ ¨ ¨ znzj ¨ ¨ ¨ znp1T zq ´ z2
n

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

16



1.1. Theory

So in the matrix notation we have

∇2f “
1

p1T zq2 pp1
T zqdiagpzq ´ zzT q.

Now we verify that ∇2f ą 0 i.e.

vT∇2fv “
1

p1T zq2

˜

´

ÿ

i

zi

¯´

ÿ

i

vizi

¯

´

´

ÿ

i

vizi

¯2
¸

ě 0

the inequality holds by Cauchy-Schwarz inequality ppT pqpqT qq ě ppT qq2 when we take pi “ vi
?
zi

and qi “
?
zi, hence log-sum-exp function is convex. l

Now we show the connection between convex sets and convex functions that will be useful
in transforming optimization problems in equivalent forms.
Definition 1.28 (Epigraph). Let f be a function f : Rn Ñ R. The set denoted as the following

epi f “ tpx, tq P Rn`1 | x P dom f, t ě fpxqu,

is called epigraph of f . e

Remark 1.28 (Epigraphs of convex functions). The connection between convex functions and
convex sets is the epigraph. The function f is convex if and only if epi f is convex. The claim
is, actually, obvious as the border of f , that is equal to graph of f , is convex and epi f has solid
interior, hence contains every line segment between its two arbitrary points. ˝

Remark 1.29 (Hypograph). Similarly, if f : Rn Ñ R is a concave function, then we define its
hypograph as the following,

hypo f “ tpx, tq P Rn`1 | x P dom f, t ď fpxqu.

We see that f is concave if and only if hypo f is convex. ˝

So far we have discovered some basic techniques for establishing convexity of a function, like
the Hessian, the gradient and lines. However, these methods are quite complicated and they
may be the last resort to verify convexity, as in most cases we can calculus of convex functions.
We have already seen a bunch of basic convex functions so lets look at methods to combine these
atoms that will give us an easier way to examine convexity.

We start with some elementary operations moving on to complicated one.
Lemma 1.29 (Nonnegative weighted sum). If h and g are convex functions and α P R``, then
αf1 ` f2 is convex. This idea can be generalized to n convex functions,

g “
ÿ

i

wifi, wi ě 0.

Proof. Follows from the definition of convex function.

Lemma 1.30 (Composition with affine function). Let f : Rn Ñ R be a convex function. The
function g : Rm Ñ R defined as the following,

gpxq “ fpAx` bq, A P Rnˆm, b P Rn

is convex.

Proof. Suppose θ P r0, 1s,

fpApθx` p1´ θqyq ` bq “ fpθpAx` bq ` p1´ θqpAy ` bqq ď θfpAx` bq ` p1´ θqfpAy ` bq
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Remark 1.30 (Norm of affine function). By the previous statement we have that for any norm
precomposed with affine mapping, i.e. }Ax` b}2 is convex. ˝

Theorem 1.31 (Point-wise supremum). Let f be a function such that fpx, yq is convex in x for
all y P A, where A is a completely arbitrary set. Then function g defined as the supremum over
A, i.e.

gpxq “ sup
yPA

fpx, yq

is a convex function of x with domain

dom g “ tx | px, yq P dom f,@y P A, sup
yPA

fpx, yq ă `8u.

Proof. To see that g is a convex function we use the epigraph characterization of convex functions
and say that

epi g “
č

yPA

epi fp¨, yq.

So the epigraph of g is convex, hence g is convex.

Remark 1.31 (Point-wise infimum of concave functions ). Similarly, we say that point-wise infi-
mum over concave functions is concave. ˝

Example 1.32 (leastsquares cost as a function of weights). Suppose we have a weighted least-
squares problem, so we minimize the objective

ÿ

i

wipa
T
i x´ biq

2, ai P Rm.

Here wi denote weights and can be negative, so function can be unbounded below. We define
the optimal list-squares cost function g as the following,

gpwq “ inf
x

ÿ

i

wipa
T
i x´ biq

2,

where domain is defined as
dom g “ tx | gpxq ą ´8u.

In the matrix form we obtain

gpwq “ inf
x
pAx´ bqdiagpwqpAx´ bq.

By definition g if infimum over linear functions in w, hence is concave. l

Example 1.33 (Maximum eigenvalue of a symmetric matrix). Let f : Sn Ñ R be a function
such that,

fpXq “ λmaxpXq “ sup
}y}2“1

yTXy.

According to the definition of f as a supremum over linear functions in X it follows that f is
convex. l

Notice that in the Theorem 1.31 there is no requirement of any kind how the variable you
maximizing over enters the function, the only requirement is that fpx, yq is convex for all y P A.
In the case of minimizing a convex function we find a noticeable asymmetry in the assumptions,
so we have a much stronger condition.
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Theorem 1.32 (Minimization). If g is jointly convex in px, yq and C ‰ ∅ is a convex set, then
the function f defined as

fpxq “ inf
yPC

gpx, yq, dom f “ tx | px, yq P dom g, y P C, fpxq ą ´8u

is a convex function.

Proof. To show this we use the characterization of a convex function via convexity of its epigraph,

epi f “ tpx, tq | px, y, tq P epi f, y P Cu.

Epigraph of f is a convex set as it is a projection of a convex set epi f onto y.

Let’s consider more general ideas like function composition. The thing that needs to be
said is that most previously defined operations that preserve convexity, can be formulated as
special cases of the composition rule, however, they are worth mentioning as they are easy to
understand and remember.

Before looking at the formal definition of the composition rule consider the following straight-
forward example.

Assume that g : RÑ R and h : RÑ R, both functions are twice differentiable and domh “
dom g “ R. Now we define f : RÑ R such that fpxq “ hpgpxqq. By the second order condition
convexity of f reduces to f2pxq ě 0, @x P R, roughly speaking only the sign of the second
derivative of f matters. Next step will be applying the chain rule twice, so we get

f2pxq “ h2pgpxqqg1pxq2 ` h1pgpxqqg2pxq.

Now suppose that g is concave, i.e. g2 ď 0, in this case we need to have h1 ď 0, i.e. h should be
non-increasing, so the second term is positive. The first term is positive only if h is convex, i.e.
h2 ě 0. As the result we have made up our first composition rule

f is convex if g is concave, h is convex and non-increasing.

Theorem 1.33 (The composition rule). Let g : Rn Ñ R and h : R Ñ R be any functions. We
define a function f : Rn Ñ R as

fpxq “ hpgpxqq, dom f “ tx P dom g | gpxq P domhu.

The function f is convex if

• g are convex, h is convex and h̃ is non-decreasing,

• g are concave, h is convex and h̃ is non-increasing.

Here h̃ is an extended-value extension of h.

Proof. The proof can be found in the book [1, p. 85,86].
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1.2 Convex Optimization

In this section we look at optimization problems in general and related concepts like feasibility,
constrains set. Then we study the problem of convex optimization and common families of
related problems.
Definition 1.34 (Optimization problem in standard form ). An optimization problem in stan-
dard form is given by

minimize f0pxq

subject to fipxq ď 0, i “ 1, . . . ,m, (1.2)
hjpxq “ 0, j “ 1, . . . , p.

where

• x P Rn is the optimization variable

• f0 : Rn Ñ R is the objective function

• fi : Rn Ñ R are the inequality constrains

• hj : Rn Ñ R are the equality constrains e

In the definition we use word “minimize” which is not the same as mathematical operator
min. In our context “minimize” and “subject to” can be viewed as attributes of an optimization
problem.
Remark 1.34 (Terminology). Assume that we have an optimization problem in standard form
1.2.

• The set of all points where the objective function and constrains are defined, i.e.

D “

m
č

i“0
dom fi X

p
č

i“1
domhi,

is called the domain of an optimization problem (1.2).

• The point x P Rn that lies in the domain D of an optimization problem and satisfies the
constrains it is called a feasible point. The set of all feasible points x is called the feasible
set.

• If an optimization problem has no constrains, we call it an uncostrained problem.

• If an optimization problem has an empty feasible set it is call infeasible, otherwise it is
feasible.

• If there exists a sequence of feasible points x` such that f0px`q Ñ ´8, as `Ñ8 then the
optimization problem is called unbounded below.

• The optimal value p‹ of the optimization problem is defined as

p‹ “

$

’

&

’

%

infxtf0pxq | fipxq ď 0, hjpxq “ 0, i “ 1, . . . ,m, j “ 1, . . . , pu, problem is feasible
`8, problem is infeasible
´8, problem is unbounded

20



1.2. Convex Optimization

• If x‹ is feasible and solves the optimization problem, i.e. fpx‹q “ p‹, we call x‹ an optimal
point. The set of all optimal points, denoted as Xopt, is called the optimal set.

• A feasible point x is called locally optimal, if there exists R ą 0 such that

f0pxq “ inf
x
tf0pyq | y is feasible, }y ´ x}2 ď Ru.

• The constrain is called redundant, if it does not change the feasible set. ˝

Now we look at some straightforward examples to illustrate defined terminology.
Example 1.35 (Examples). Assume we have an unconstrained problem such that f0 : RÑ R,
dom f0 “ R``.

• f0pxq “ ´ log x, p‹ “ ´8 and the problem is unbounded below.

• f0pxq “ x log x, p‹ “ ´1{e, x‹ “ 1{e.

If we add a constraint x ă 0, where the objective function is given by f0pxq “ log x then this
problem is infeasible. l

Now we look at one variation on optimization problems that is called feasibility problem.
Actually, before rushing into solving an optimization problem, we need to check wether the
feasible set is not empty and if it is not, we start searching the solution.
Definition 1.35 (Feasibility problem). The optimization problem of the following form

find x

subject to fipxq ď 0, i “ 1, . . . ,m
hjpxq “ 0, j “ 1, . . . , p

is called a feasibility problem. e

Notice that feasibility problem corresponds to optimization a constant function subject to
some constraints. Finally we get to the definition of a convex optimization problem.
Definition 1.36 (Convex optimization problem). The optimization problem defined as

minimize f0pxq

subject to fipxq ď 0, i “ 1, . . . ,m, (1.3)
aTi x “ bi, i “ 1, . . . , p

where f0, . . . , fm are convex functions, is called a convex optimization problem. e

Moreover, another equivalent definition of convex optimization can be given, but we stay
with 1.3. We now look at the stunning fact that makes convex optimization so important.
Theorem 1.37 (Local and global optima). Suppose we have an optimization problem (1.3). If
x is locally optimal, then x is (global) optimal.

Proof. By the definition of the local optimum we have

}z ´ x}2 ď r ùñ f0pxq ď f0pzq, z is feasible, r ą 0.

Now we suppose that x is not global optimum, so there exists y such that f0pyq ď f0pxq and
}y ´ x}2 ą r. We take z and θ as the following

z “ θy ` p1´ θqx, θ “
r

2}y ´ x}2
.
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1. Mathematical optimization

Then we have }z ´ x}2 “ r{2 ă r and z is feasible since feasible set is convex. As f0 is a convex
function we get

f0pzq ď θf0pyq ` p1´ θqf0pxq “ f0pxq ´ θpf0pxq ´ f0pyqq ă f0pxq,

which contradicts with local optimality of x.

Roughly speaking, what this theorem says is this, if we take a point x and look around in
its arbitrary close neighborhood and it is better then all the others that means that its better
then all the other points that are outside the neighborhood.
Theorem 1.38 (Optimality for differentiable objective). Suppose we have a convex optimization
problem with differentiable objective. A feasible point x P dom f0 is optimal if and only if the
following inequality holds.

∇f0pxq
T py ´ xq ě 0, @y feasible.

Proof. The proof can be found in the literature [1, p. 139, 140].

Corollary 1.39 (Unconstrained problem). Suppose we have an unconstrained convex optimiza-
tion problem with differentiable objective. A feasible point x P dom f0 is optimal if and only if
the following holds.

∇f0pxq “ 0

Proof. The proof can be found in the book [1, p. 140].

We now show basic transformations that preserve convexity of an optimization problem.

Equivalent transformations

• Suppose we have a convex optimization problem (1.3) with equality constraints, given by
Ax “ b, A P Rpˆn, x P Rn, b P Rp. We can eliminate these constraints by passing
expressing the variable x as Fz ` x̄, where column vectors of F P Rnˆ pn´pq span the null
space of A and x̄ is a particular solution of Ax “ b. New optimization problem is given
by

minimize
z

f0pFz ` x̄q

subject to fipFz ` x̄q ď 0, i “ 1, . . . ,m.

Since we only precomposed convex functions with an affine one convexity remains.

• For the problem (1.3) we can formulate an equivalent epigraph problem as the following

minimize
px,tq

t

subject to f0pxq ď t,

fipxq ď 0, i “ 1, . . . ,m,
Ax “ b.
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1.2. Convex Optimization

1.2.1 Linear programming

Linear programming or LP is in some sense the simplest optimization problem, where every
function involved is affine. Moreover, it is totally not a new topic as even Fourier had a paper
about this [3]. However modern methods for solving LP trace back to 1950 to Stanford where
the SIMPLEX method was invented by George Dantzig.
Definition 1.40 (Linear program). The optimization problem of the following form is called a
linear program or just LP

minimize cTx
subject to Gx ď h, G P Rmˆn

Ax “ b, A P Rpˆn. e

In linear programs the feasible set is a polyhedron. Although, linear program seems to be
a poor model as every function are affine it can be applied on problems that does not seem
linear at all. To illustrate this we look at an interesting example called Chebychev center of a
polyhedron, avoiding "Hello World" historical one called the diet problem.
Example 1.36 (Chebychev center of a polyhedron). Suppose we have a polyhedron P “ tx P
Rn | aTi x “ b, i “ 1, . . . ,mu. The task is to find the largest ball that lies in the polyhedron P ,
here the center of the ball is called the Chebyshev center. We represent an Euclidean ball as
Bpxc, rq “ txc ` u | }u}2 ď ru. Thus, the variables are xc, r, and we want to find maximum r
such that Bpxc, rq Ď P . At first glance this problem is way not linear, so it will illustrate that
LP can be applied in very unobvious cases.

The simplest possible case is that the polyhedron is just a half-space defined by pa, bq P Rn`1,
hence we want to have

}u}2 ă r ñ aT pxc ` uq ď b.

By the Cauchy-Schwarz inequality we obtain

suptaTu | }u}2 ď ru “ r}u}2.

Now for every ai, bi, i “ 1, . . . ,m that form the polyhedron we obtain

aTi xc ` r}ai}2 ď bi.

Notice that here }ai}2 is a constant, hence we can formulate a corresponding linear program as

maximize
r,xx

r

subject to aTi xc ` r}ai}2 ď bi, i “ 1, . . . ,m. l

1.2.2 Quadratic programming

Generally quadratic programming came up in middle fifties of the 20th century, it was first
generalization of LP, where objective is not linear but a convex quadratic function, although
feasible set reminds a polyhedron.
Definition 1.41 (Quadratic program). The optimization problem of the following form is called
a quadratic program or just QP

minimize p1{2qxTPx` qTx` r
subject to Gx ě h

Ax “ b.
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1. Mathematical optimization

Here matrices are defined as

P P Sn`, G P Rmˆn, A P Rpˆn e

Notice, if we take P “ 0 we get an LP. Also, if P is not a positive semidefinite the problem
goes from being extremely straightforward to NP-hard.

One thing that we immediately see, that for LP in most cases we get the solution on a vertex
(if there is more than one solution, for example all the points on the edge minimize the objective,
we still can pick an end point of this edge, which is a vertex). In case of QP the solution does
not have to be in vertex, as level curves of the objective are now ellipsoids.

Now let have a look at some examples, now we are not ignoring "Hello World" example called
leastsquares.
Example 1.37 (leastsquares). The leastsquares problem corresponds to the following uncon-
strained QP problem

minimize }Ax´ b}22.

Here A P Rmˆn, b P Rm l

Next generalization is to introduce convex quadratic inequalities instead of linear.
Definition 1.42 (Quadratically constrained quadratic program). The optimization problem of
the following form is called a quadratically constrained quadratic program or QCQP

minimize p1{2qxTP0x` q
T
0 x` r0

subject to p1{2qxTPix` q
T
i x` ri ď 0, i “ 1, . . . ,m

Ax “ b.

Here matrices used in quadratic functions are positive semidefinite, i.e.
Pi P Sn`, i “ 0, . . . ,m and A P Rpˆn. e

1.2.3 Vector optimization

Now we introduce the extension of the objective to be vector valued function.
Definition 1.43 (Vector optimization problem). The problem of the following form is called
vector optimization problem

minimize
w.r.t.K

f0pxq

subject to fipxq ď 0, i “ 1, . . . ,m (1.4)
Ax “ b.

Here

• f0 : Rn Ñ Rq is K convex.

• K Ď Rq is a proper cones.

• A P Rpˆn.

e

Notice that if we have a scalar valued objective and two points that are feasible and have
the same objective value we can not prefer one point to another, if we do then our model is
not valid. Now the objective returns a vector, so we do not have total ordering and we have to
decide.

To actually compare objective values we introduce the following concepts.
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1.3. Duality

Remark 1.38 (Terminology). Suppose O is a set of all feasible objective value, i.e.

O “ tf0pxq | x is feasibleu.

• Point x is optimal if fpxq is the minimum value of O (1.17).

• Point x is Pareto optimal if fpxq is a minimal value of O. ˝

Definition 1.44 (Multicretarion optimization). Consider the problem of the form (1.4). If
K “ Rq` we call such problem multicretarion optimization problem as the components of the
objective can be interpreted as the following

f0pxq “ pF1pxq, . . . , Fqpxqq.

We can say that Fipxq are separate scalar objectives, and we want each of the to be minimized.

• The point x‹ is optimal if

y is feasible ùñ f0px
‹q ďK f0pyq.

If the optimal points exist, then the objectives do not compete.

• The point xop is Pareto optimal if

y is feasible ^ f0pyq ďK f0px
opq ùñ f0px

opq “ f0pyq

In these case we say that there exists a trade-off between the objective functions. e

Now we can define the semantics of solving a multicretarion problem as finding a Pareto
optimal point, or even exploring all the Pareto optimal points. We can interpret it like having
a joystick that we are allowed to move around on the Pareto optimal surface.
Definition 1.45 (Scalarization). Assume a problem of the form (1.4). To solve such a problem
means to choose λ ąK˚ 0 and solve a new problem called scalar optimization problem of the
following form

minimize λT f0pxq

subject to fipxq ď 0, i “ 1, . . . ,m
Ax “ b, A P Rpˆn.

e

Remark 1.39 (Pareto optimal). If point x is the optimal for a scalar problem, then x is a Pareto-
optimal point for the original vector problem. ˝

1.3 Duality
The next topic is duality. Duality can be viewed as an organized way of forming highly non-
trivial bounds on optimization problems, even on hard ones that are not convex. Furthermore,
when the problem is convex the bound is usually tight. Another interpretation corresponds to
passing the constraints directly to the objective, roughly speaking, making an unconstrained
problem.
Remark 1.40 (Terminology). In this section we call the original optimization problem the primal
problem. ˝

25
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We start with the the definition of the Lagrangian.
Definition 1.46 (Lagrangian). The Lagrangian L : Rn ˆ Rm ˆ Rp Ñ R of an optimization
problem in standard form (1.2) is given by

Lpx, λ, νq “ f0pxq `
m
ÿ

i“1
λifipxq `

p
ÿ

i“1
νihipxq, domL “ D ˆ Rm ˆ Rp.

Vectors λ, ν are called dual variables. e

Roughly speaking, we take the objective and add a linear combination of the inequality and
equality constraints.
Definition 1.47 (Lagrange dual function). The Lagrange dual function is defined as

gpλ, νq “ inf
xPD

Lpx, λ, νq. e

Remark 1.41 (Convexity). Notice that the Lagrange dual function is concave in λ, ν regardless
the convexity of the original problem, since it is an infimum over affine functions (affine functions
by the definition are both convex and concave). ˝

This brings us to what we call the Lagrange dual problem. Intuition is this, for any op-
timization problem we want to construct the best possible lower bound on the optimal value
established by the Lagrange dual function, in other words we are interested in the maximum
lower bound.
Definition 1.48 (Lagrange dual problem). Suppose we have a primal optimization problem in
the standard form (1.2). The Lagrange dual problem is given by

maximize
λ,ν

gpλ, νq

subject to λ ě 0.

The optimal value of the Lagrange dual problem is denoted by g‹ and pλ‹, ν‹q is the solution of
the dual problem. e

Remark 1.42 (Dual). In the remaining text instead of writing Lagrange dual problem we write
dual problem or just dual. By now we have primal and dual optimization problems. ˝

Remark 1.43 (Unboundness below). Since Lagrange dual function is infimum over linear func-
tion, it is unbounded below. As we can see, when the hyperplane has any slope, for every given
point we can find a point with smaller vallue of the Lagrangian. Furthermore, such lower bound
is useless. The whole thing changes when hyperplane has no slope, in this case the minimum
takes a real value. One way to handle unboundness is to define the domain of the Lagrange dual
implicitly as the following

dom g “ tpλ, νq P Rm ˆ Rp | inf
xPD

Lpx, λ, νq ą 8u.

However, in case of an optimization problems, we rather make the domain constrains explicit
and write directly to the subject to attribute of the problem. ˝

Remark 1.44 (Dual feasible points). Notice that the only case when g actually defines a lower
bound is when λ ě 0, as by the definition of the standard form (1.2) inequality constrains are
non-positive. So any vector pλ, νq P dom g with non-negative λ is called dual feasible point. ˝

Lemma 1.49 (Lower bound property). Suppose pλ, νq P dom g and λ ě 0. Then the following
is always true

gpλ, νq ď p‹.

Here p‹ is the optimal value of the given optimization problem.
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1.3. Duality

Proof. Suppose z is primal feasible. Now since fipxq ď 0, i “ 1, . . . , p and hipxq “ 0, i “
1, . . . ,m for every feasible x and λ ě 0 we obtain

gpλ, νq “ inf
xPD

˜

f0pxq `
m
ÿ

i“1
λifipxq `

p
ÿ

i“1
νihipxq

¸

ď f0pzq `
m
ÿ

i“1
λifipzq `

p
ÿ

i“1
νihipzq

ď f0pzq.

Combining the dual problem with lower bound property we get an idea of weak duality.
Definition 1.50 (Weak duality). Suppose we have primal and dual problems with optimal
values p‹ and g‹ respectively. Then by (1.49)

g‹ ď p‹.

This property is called weak duality and it always holds. The difference between the dual optimal
value and the primal optimal value

p‹ ´ g‹

is called the optimal duality gap. e

One may ask, if weak duality is actually useful. The answer is yes. As we saw the dual
problem is convex, hence efficiently solvable, so we use weak duality to find a lower bound on a
very difficult problem and then talk about suboptimal points. Moreover, the lower bound can
be used to define some non-trivial heuristics for solving the original hard problem.

Now we look at strong duality, when the dual optimal value is equals to the primal optimal
value.
Definition 1.51 (Strong duality). Suppose we have primal and dual problems with optimal
values p‹ and g‹ respectively and the optimal duality gap is zero, i.e.

g‹ “ p‹,

then we say that strong duality holds. e

Generally, strong duality does not hold, however there exists non-convex problems with zero
duality gap. More interesting fact is this, usually for convex problems strong duality is attained.

Remark 1.45 (Constraint qualifications). Conditions under which strong duality holds are called
constraint qualifications. ˝

Remark 1.46 (Relative interior). Notice that interior of an affine set C is an empty set, so we
define a relative interior of an affine set as the following

relintC “ tx P C | Bpx, rq X affC, affC Ď C, r ą 0u.

Here affC is the set of all affine combinations (1.10) of C and Bpx, rq is a ball with center x
and radius r (1.8). ˝

Theorem 1.52 (Slater’s condition). If we have a convex optimization problem (1.3) and there
exists a strictly feasible point z, i.e.

Dz P relintD : fipzq ă 0, Az “ b, i “ 1, . . . ,m,

then strong duality holds. We call this condition Slater’s condition.
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Remark 1.47 (Variation on Slater’s condition). If we have a convex optimization problem with
k affine constrains, then we have a relaxed version of Slater’s condition

fjpzq ď 0, fipzq ă 0, Az “ b, j “ 1, . . . , k, i “ k ` 1, . . . ,m. ˝

Proof. The proof of this condition can be found in the book [1, Section 5.3.2].

Now we observe the situation with zero duality gap.
Remark 1.48 (Complementary slackness). Let x‹ and pλ‹, ν‹q be solutions for primal and dual
problems respectively. If strong duality holds, then we obtain the following

f0px
‹q “ gpλ‹, ν‹q “ inf

xPD

˜

f0pxq `
m
ÿ

i“1
λ‹i fipxq `

p
ÿ

i“1
ν‹i hipxq

¸

ď f0px
‹q `

m
ÿ

i“1
λ‹i fipx

‹q `

p
ÿ

i“1
ν‹i hipx

‹q

ď f0px
‹q,

hence equality holds. This observation leads to important consequences. Firstly, we get this
m
ÿ

i“1
λ‹i fipx

‹q “ 0. (1.5)

The statement above is called complementary slackness and implies the following

λ‹i ą 0 ùñ fipx
‹q “ 0 fipx

‹q ă 0 ùñ λ‹i “ 0.

The second point is that for fixed pλ‹, ν‹q point x‹ minimizes the Lagrangian Lpx, λ‹, ν‹q, hence
the gradient vanishes

∇f0px
‹q `

m
ÿ

i“1
λ‹i∇fipx‹q `

p
ÿ

i“1
ν‹i ∇hipx‹q “ 0. ˝

This brings us to necessary optimality condition for any optimization problem.
Corollary 1.53 (Karush–Kuhn–Tucker conditions). Suppose we have a primal problem with
differentiable objective and constraint functions. If strong duality holds and x‹ and pλ‹, ν‹q are
primal and dual solutions then the following conditions must be satisfied

• Primal constrains: fipx‹q ď 0, hjpx‹q “ 0; i “ 1, . . . ,m, j “ 1, . . . , p.

• Dual constrains: λ‹ ě 0.

• Complementary slackness:
řm
i“1 λ

‹
i fipx

‹q “ 0.

• Gradient of the Lagrangian with respect to x‹ is zero

∇f0px
‹q `

m
ÿ

i“1
λ‹i∇fipx‹q `

p
ÿ

i“1
ν‹i ∇hipx‹q “ 0.

These conditions are called Karush-Kuhn-Tucker conditions or the KKT conditions.
Moreover, for convex problems these conditions are also sufficient, so we have an equivalence.
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Corollary 1.54 (KKT conditions for convex problems). Suppose primal problem is convex and
the strong duality holds. Let x̃ and λ̃, ν̃ be points that satisfy the KKT conditions, then they
are primal and dual optimal points respectively.

Proof. By complementary slackness we have f0px̃q “ Lpx̃, λ̃, ν̃q. Since the primal is convex
and the gradient vanishes we get gpλ̃, ν̃q “ Lpx̃, λ̃, ν̃q, hence we reach the lower bound, i.e.
f0px̃q “ gpλ̃, ν̃q and x̃, λ̃, ν̃ are optimal.

Notice that since the Slater’s condition implies the strong duality we get the following char-
acterization of the primal solution.
Corollary 1.55 (KKT conditions and Slater’s condition). Suppose we have a convex opti-
mization problem with differentiable objective and constraint functions that satisfies Slater’s
condition. Then x̃ is optimal if and only if there exist λ̃, ν̃ such that x̃, λ̃, ν̃ satisfy the KKT
conditions.

1.4 Non-convex optimization
Let us make some notes on non-convex optimization, i.e. when we can not transform the problem
to the convex form 1.3. In general, it can be shown that solving a non-convex problem is NP-
hard [4]. The intuition is this, in convex setting we knew that local optimum is a global one, but
in non-convex case there exists more than one local optimal points, often exponentially many
local minima, so to prove optimality we have to check all of them. Thus, in general, there is no
an effective method suitable for every task, and typically every problem uses its own approach.
Some basic scenarios of dealing with non-convexity are the following

• Formulate a convex relaxation of the original problem and solve the relaxation. i.e. relaxing
some of the constraints of the original problem and extend the objective to the larger
space. Thus, all feasible points of the original non-convex problem are still reachable, but
the optimal value is now a lower or upper bound on the original optimal value [5, Chapter
6].

• Use a domain specific heuristics, derived from the problem structure. We would see one
such approach in the later chapter.

• Run convex optimization algorithm 1 more than once with different initial points and hope
for sensible results.

1.5 Reproducing Kernel Hilbert Spaces
In this section we introduce useful concepts from functional analysis related to reproducing
kernel Hilbert spaces or RKHS, like inner product spaces and functionals. This section may
seem to be outlying from the general stream of the text, however, it has immediate applications
in machine learning as it can enormously strengthen linear models to cope with non-linear data.

We start with general Hilbert spaces without reproducing property and related concepts.
Definition 1.56 (Inner product). Assume F is a vector space over R. A function x¨, ¨yF :
F ˆF Ñ R is called an inner product on F if for every f, g, h P F and all α, β P R the following
holds:

• xαf ` βg, hyF “ αxf, hyF ` βxg, hyF

1Often algorithm is slightly adapted to a given problem.
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• xf, gyF “ xg, fyF

• pxf, fyF ě 0q ^ pxf, fyF “ 0 ðñ f “ 0q e

Remark 1.49 (Norm). Within a specific inner product that maps every two elements to the real
numbers we can also define norm as the following

}f}F “
a

xf, fyF .

It can be shown that using Cauchy-Schwarz inequality and properties of the inner product this
norm satisfies the norm Definition 1.4. ˝

Remark 1.50 (Dot product). If our vector space is Rn the inner product takes the following form

xu, vyRn “ uT v. ˝

Now the only one ingredient remains to define a Hilbert space. It is so-called completeness,
the reason we need this is, we want limits of every Cauchy sequence of space elements be in the
vector space.
Remark 1.51 (Metric). Using the definition of a norm (1.4) with respect to a vector space F , we
can define the distance between the vectors g, h P F as dpg, hq “ }g´h}F . This concept enables
us to examine convergence of vector sequences. ˝

Definition 1.57 (Convergent sequence). Suppose F is a normed vector space and tfnu8n“1 is a
sequence of vectors in F . We say that tfnu8n“1 converges to f P F if

@ε ą 0, Dn0 “ n0pεq P N : @n ě n0 }fn ´ f}F ă ε. e

Remark 1.52 (Notation). Here we use notation with parentheses to emphasise the dependency
of n0 on ε . ˝

Definition 1.58 (Cauchy sequence). Suppose F is a normed vector space and tfnu8n“1 is a
sequence of vectors in F . We say that tfnu8n“1 is a Cauchy sequence if

@ε ą 0, Dn0pεq P N : @n,m ě n0 }fn ´ fm}F ă ε. e

Remark 1.53 (Convergence and Cauchy sequences). Note that by triangle inequality every con-
vergent sequence is Cauchy. To see this, we take ε{2 and find n0 that for all n,m ą n0 we have
}fn ´ f}F ă ε{2 and }fm ´ f}F ă ε{2. Finally, we obtain

}fn ´ fm}F ď }fn ´ f}F ` }fn ´ f}F ă ε.

However the converse does not holds. Take a normed space pQ, | ¨ |q and the sequence 3.1, 3.14,
3.141, 3.1415, . . . , which is not convergent since π �PQ. ˝

Now we are ready to generalize concepts from finite dimensional space to infinite ones namely
to Hilbert spaces. A common example, that will be widely used in this section, is a vector space
of functions.
Definition 1.59 (Hilbert space). Let H be a vector space over R with associated inner product,
such that every Cauchy sequence converges. We call H a Hilbert space. e

Let us look at a bunch of concepts from functional analysis tightly associated with repro-
ducing kernel Hilbert spaces.
Definition 1.60 (Linear operator). Let F and G be normed vector spaces over R. We call a
function A : F Ñ G a linear operator if it meets homogeneity and additivity, i.e.

Apαf ` gq “ αAf `Ag, @f, g P F , α P R. e
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Definition 1.61 (Linear functional). Suppose F is a vector spaces over R. A linear operator
A : F Ñ R is called a linear functional on F . e

Example 1.54. Suppose F is a vector spaces over R with an inner product. We can define a
linear functional Ag mapping form F to R for a specific g P F as Agpfq “ xf, gyF l

Definition 1.62 (Continuity). Suppose F and G are normed vector spaces over R. A function
A : F Ñ G is called continuous at a point h P F if

@ε ą 0, Dδ “ δpf0, εq ą 0 : }f ´ h}F ă δ ùñ }Af ´Ah}G ă ε.

We say that A is continous on F if, it is continuous at every h P F . e

The definition above tells us that a continuous function always maps a convergent sequence
to another convergent sequence in its domain.
Definition 1.63 (Lipschitz continuity). Suppose F and G are normed spaces over R. A function
A : F Ñ G is called Lipschitz continuous if

DC ą 0 : @f, h P F }Af ´Ah}G ď C}f ´ h}F . e

Notice that Lipschitz continuity is a stronger condition than ordinary continuity, as we can
have δ “ ε{C so δ depends only on ε.
Remark 1.55 (Continuity of linear functionals). A linear functional (1.54) defined as a function
of f P F is continuous by Cauchy-Schwarz inequality

}Agpfq ´Agphq}R “ |Agpfq ´Agphq| “ |xf ´ h, gyF | ď }g}F }f ´ h}F . ˝

Definition 1.64 (Bounded operator). Suppose F and G are normed spaces over R and A : F Ñ

G is a linear operator. The norm of the operator A is defined as

}A} “ sup
0‰fPF

}Af}G
}f}F

.

We say that A is bounded operator, if }A} ă 8. e

The following lemma shows the relation between operator boundness and continuity.
Lemma 1.65 (Boundness and continuity). Assume F and G are normed spaces over R and
A : F Ñ G is a linear operator. A is bounded if and only if A is continuous at some point of F .

Proof. The proof for the lemma above can be found in the literature [2, p. 6].

As we have seen linear functionals on a normed space F can be defined via an inner product
by fixing one argument. The next theorem states that, every linear functional can be represented
as an inner product with some vector from F .
Theorem 1.66 (Riesz representation). Assume F is a Hilbert spaces over R. All continuous
linear functionals take the form of x¨, gyF for some g P F .

Proof. The proof of this theorem can be found in the literature[6, Theorem 4.12].

Now we are ready to define a reproducing kernel Hilbert space of functions from some set X
to R.
Definition 1.67 (Evaluational functional). Suppose H is a Hilbert space of functions f : X Ñ R,
where X ‰ ∅ and x P X . A mapping δx : HÑ R, such that f ÞÑ fpxq is called the evaluational
functional. e
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Remark 1.56 (Linearity of evaluational functional). To see that evaluational functionals are
indeed linear operators we recall the definition of a sum of functions

pαf ` gqpxq “ αfpxq ` gpxq, f, g P H, α P R.

And now for δx : HÑ R we have

δxpαf ` gq “ pαf ` gqpxq “ αδxf ` δxg. ˝

The desired feature of evaluational functional is boundness or continuity. Roughly speaking,
if we have, in some sense, similar functions f, g and evaluate these functions at a some point x,
images of x under f, g will also be similar. This intuition leads to the concept of reproducing
kernel Hilbert spaces.
Definition 1.68 (Reproducing kernel Hilbert spaces). Assume H is a Hilbert space of functions
f : X Ñ R, where X is not empty. Hilbert space H is called the reproducing kernel Hilbert
spaces or RKHS if for all x P X evaluational functional δx is continuous. e

This definition brings us to a pretty property of RKHS like point-wise convergence.
Lemma 1.69 (Point-wise convergence). Assume H is a RKHS of functions f : X Ñ R and
X ‰ ∅. If a sequence of functions tfnu8n“1 converges to some f P H in the norm } ¨ }H, then this
sequence converges at every point x from the domain, i.e.

lim
nÑ8

}fn ´ f}H “ 0 ùñ lim
nÑ8

fnpxq “ fpxq, @x P X .

Proof. Since for all x P X we have the following

|fnpxq ´ fpxq| “ |δxfn ´ δxf | ď }δx} }fn ´ f}H.

The inequality holds, as by the definition of RKHS evaluational functional δx is continuous, i.e.
bounded (1.65).

Remark 1.57 (Point-wise convergence in Hilbert spaces). However, if a given Hilbert space is not
RKHS, convergence does not imply point-wise convergence. In other words, although sequence
of functions converges to some other function f , there exists at least one point u such that, the
sequence of function values at u does not get close to the image of u under the f . ˝

Even though we are talking about reproducing kernel Hilbert spaces, by now we have no
idea of reproducing kernels and what do they actually reproduce.
Definition 1.70 (Reproducing kernel). Let H be a Hilbert space of functions f : X Ñ R and
X ‰ ∅. A function k : X ˆ X Ñ R such that, for all x P X and all f P H the following holds

• kp¨, xq P H,

• fpxq “ xf, kp¨, xqyH (the reproducing property),

is called a reproducing kernel of H. Particularly, for all x, y P X we have

kpx, yq “ xkp¨, xq, kp¨, yqyH e

As we can see a reproducing kernel is tightly related to an inner product on some Hilbert
space of functions. However, it also yields questions like how reproducing kernels are connected
with RKHS, or why we need reproducing property?
Lemma 1.71 (Uniqueness). Let H be a Hilbert space of function f : X Ñ R. If it has a
reproducing kernel k then k is unique.
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Proof. Assume k, h are kernels of H. Now for all f P H and all x P X we have

xf, hp¨, xq ´ kp¨, xqyH “ fpxq ´ fpxq “ 0.

Taking f “ hp¨, xq ´ kp¨, xq we get

}hp¨, xq ´ kp¨, xq}2H “ 0, @x P X .

Hence h “ k.

The next theorem shows the relation between reproducing kernels and RKHS.
Theorem 1.72 (Existence of the reproducing kernel in RKHS). Let H be a Hilbert space of
function f : X Ñ R. Hilbert space H is RKHS if and only if H has a reproducing kernel.

Proof. ðù Suppose we have a Hilbert space H with reproducing kernel k : X ˆ X Ñ R, then
by Cauchy-Schwarz inequality and reproducing property we obtain

|δxf | “ |fpxq| “ |xf, kp¨, xqyH|

ď }f}H}kp¨, xq}H

“ }f}H
a

xkp¨, xq, kp¨, xqyH

“ }f}H
a

kpx, xq.

So δxf is bounded, hence continuous, therefore H is RKHS.
ùñ Now suppose we have a RKHS H with a continuous evaluational functional δx. By

Riesz theorem (1.66) there exists fδx P H and for all f P H the following is true

δxf “ xf, fδxyH.

Now for all x P X we introduce a function kp¨, xq : X Ñ R defined as

kpx1, xq “ fδxpx
1q, @x1 P X ,

so kp¨, xq “ fδx P H and now

xf, kp¨, xqyH “ δxf “ fpxq, @f P H. (1.6)

Hence k meets the conditions of reproducing kernel (1.70).

Remark 1.58 (Representer and inner products in RKHS). The theorem above brings us to very
important properties of RKHS:

• By (1.6) we can call kp¨, xq a representer of a evaluation at point x.

• Evaluation of f in RKHS H can be viewed as taking inner product of f with the representer
of x. ˝

Now we look at an important property of reproducing kernels called positive definiteness.
Definition 1.73 (Positive definite function). Suppose h : X ˆ X Ñ R is a function. If h is
symmetric add for every pa1, . . . , anq P Rn and for all px1, . . . , xnq P Rn the following is true

n
ÿ

j,i“1
aiajhpxi, xjq ě 0,

we call h a positive definite function2. e

2If we represent the sum in matrix form we get aT Ha ě 0, in this case matrix H is positive semidefinite and
not positive definite. However, we would call function h positive definite to stay consistent with machine learning
literature.
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Lemma 1.74 (Positive definiteness and inner products). Suppose H is a Hilbert space and
φ : X Ñ H is a mapping from non empty set X to the Hilbert space H. Then for all x, y P X
inner product xφpxq, φpyqyH is a positive definite function.

Proof. For all a P Rn we obtain

n
ÿ

i“1

n
ÿ

j“1
aiajxφpxiq, φpxjqyH “

n
ÿ

i“1

n
ÿ

j“1
xaiφpxiq, ajφpxjqyH

“

C

n
ÿ

i“1
aiφpxiq,

n
ÿ

j“1
ajφpxjq

G

H

“

C

n
ÿ

i“1
aiφpxiq,

n
ÿ

i“1
aiφpxiq

G

H

ě 0.

Corollary 1.75 (Positive definiteness and reproducing kernels). If we take kp¨, xq “ φpxq we
see that reproducing kernels are positive definite functions.
Remark 1.59 (Converse implication). Actually, it can be shown that converse also holds and
all positive definite functions are related to inner products as positive definite functions meet
Cauchy-Schwarz inequality. ˝

We now define a kernel, as a function that is an inner product in some Hilbert space.
Definition 1.76 (Kernel). Suppose k : X ˆX Ñ R is a function, with X ‰ ∅. We call k a kernel
if there exists a Hilbert space H over R and a function φ : X Ñ H such that for all x, y P X the
following holds

kpx, yq “ xφpxq, φpyqyH. e

Remark 1.60 (Kernels, reproducing kernels and positive definiteness). Notice in that we dropped
word reproducing and stuck with kernel focusing only on the inner product in some Hilbert space
which is not necessary RKHS. However, by the definition (1.70) every reproducing kernel is also
a kernel. Since we derived the definition of kernel from the inner product by the definition
kernels are positive definite. ˝

Now the only question is, why we have to know about RKHS and reproducing kernels. The
next theorem will give us the answer, more precisely, how to construct RKHS from a given kernel
(not a reproducing kernel).
Remark 1.61 (Moore-Aronszajn). Let k be a kernel, such that k : X ˆ X Ñ R and X ‰ ∅.
Then there exists a unique Hilbert space of functions f : X Ñ R for which k is a reproducing
kernel. ˝

Proof. Complete prof can be found in the literature[2, p. 11 - 18].

Corollary 1.77 (Reproducing kernels and PD functions). Every positive definite function is a
reproducing kernel.

By the given above corollary reproducing kernels, positive definite functions and kernels are
the same concepts!

This leads to operations with kernels, that gives us a free hand in constructing our own
kernels.
Lemma 1.78 (Operations on kernels). Suppose k, h are kernels on X and Y, respectively, and
α P R`. Then for all a, b P X and u, v P Y the following functions

1. αkpa, bq,
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1.5. Reproducing Kernel Hilbert Spaces

2. kpa, bq ` hpu, vq,

3. kpa, bqhpu, vq

are kernels.

Proof. First and second points follow from positive definiteness of kernels.
For the last point we use the fact that Gram matrices K,H P Sn` associated with inner

products defined by kernels k, h are positive semidefinite. Applying Cholesky decomposition on
K we obtain XXT such that K “ XXT . Now for any c P Rn consider the following

n
ÿ

i,j“1
cicj

˜

n
ÿ

k“1
Xi,kXj,k

¸

Hi,j “

n
ÿ

k“1

n
ÿ

i,j“1
cicjXi,kXj,kHi,j “

n
ÿ

k“1
zTk Hzk ě 0.

With zk “ pc1X1,k, . . . , cnXn,kq.

By the lemma above we can construct some useful kernels.
Example 1.62 (Kernels). Suppose X “ H “ Rn. The simplest case would be a linear kernel
that is just an inner product

klinpu, vq “ xu, vy, @u, v P Rn.

For polynomials with non-negative coefficients ppxq “
řn
i“0 aix

i we can define the following
polynomial kernel

kpolypu, vq “ pxu, vy ` cq
d, @u, v P Rn, c P R`.

We can also use infinite sums with non-negative coefficients, for example Tylor series. This
brings us to exponential kernel

kexppu, vq “ exp
ˆ

xu, vy

σ2

˙

, @u, v P Rn, σ ą 0.

Now we define a feature map φ : Rn Ñ R as

φpxq exp
ˆ

´
}x}22
2σ2

˙

, @u, v P Rn, σ ą 0,

so here the feature space is just R. From feature map we work out a kernel h : Rn ˆ Rn Ñ R,
as the following

hpu, vq “ xφpuq, φpvqyR “ φpuqφpvq “ exp
ˆ

´
}u}22 ` }v}

2
2

2σ2

˙

.

Next for all u, v P Rn we introduce a new Gaussian kernel

kGausspu, vq “ hpu, vqkexppu, vq

“ exp
ˆ

´
}u}22 ` }v}

2
2 ´ 2xu, vy

2σ2

˙

“ exp
ˆ

´
}u´ v}22

2σ2

˙

. (1.7)

l
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Chapter 2
Knowledge Engineering

This chapter outlines basic tasks in the field of knowledge engineering. Here knowledge engi-
neering is viewed in broader sense of extracting non-trivial insights about the given domain. We
mainly use popular data based approach instead of expert driven one and focus on problems that
can be represented in our mathematical optimization framework. As the result, we formulate
various tasks as optimization problems, so solving them provides us with hidden patterns in the
data. This mathematical approach yields a great advantage over computer systems, since we
can measure quality of knowledge obtained. In other words, we want our mathematical models,
or better machines, to learn some knowledge from raw data. Thus, in this chapter we use widely
developed framework of machine learning and data mining.

Two main scenarios will be considered: supervised and unsupervised learning. We now
present terminology related to supervised case and after this make make some notes to unsu-
pervised one.

Next terminology outlines summarize [7, Chapter 1, 2].

Supervised learning setting In the supervised learning scenario problems usually take the
following form, we have encoded some information and now based on this information we want
to make some decisions. This intuition describes a prediction task.

• We receive a training set S “ ppx1, y1q, . . . , pxm, ymqq, that is used to find the best model
describing the data. For every element pxi, yiq we call xi an input and yi a label or output.
Inputs and outputs come from some input space and output space X and Y, respectively.
We assume that there exists some unknown distribution Z over X and xi are drawn i.i.d.
from Z, we denote this by xi „ Z.

• Suppose there exists some target mapping f : X Ñ Y that maps inputs to the outputs.
However, the exact representation of f is not known. We have only some examples of
evaluation f on the training data, i.e. yi “ fpxiq, where pxi, yiq P S.

• We now construct a space of mappings h : X Ñ Y. Usually we do not include every
function that maps X to Y, i.e. h are chosen according to our assumptions about f . The
space of all h is denoted by H “ th : X Ñ Yu and is called hypothesis space. Each h P H
is called a hypothesis.

• Depending on the problem we introduce a loss function L : Y ˆ Y Ñ R` that measures
the difference between predicted labels hpxiq and true labels yi.
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• The learning rule is to pick a h P H that minimizes the mean difference between hpxiq for
xi „ Z and corresponding yi. We write this problem as the following

minimize
hPH

Exi„Z rLphpxiq, yiqs.

Here the objective is called the generalization error. Since the the distribution Z is not
known we rather minimize empirical error over the training set given by

minimize
hPH

1
|S|

ÿ

pxi,yiqPS

Lphpxiq, yiq.

Unsupervised learning setting In unsupervised learning we do not have any labels so the
training set looks like S Ă X . Thus, we can hardly speak about loss functions, hence we do not
minimize the generalized error. Since there is no labels our goal is to find some structure in the
data. The space of such structures can be viewed as hypothesis set in the supervised scenario.
Additionally, the problem domain usually suggests some criterion of the structure quality. The
learning rule is to find a pattern in the data that optimizes the given criterion.

Hyperparameters Often when we introduce the learning rule we have some free parameters.
These are called hyperparametrs. To give an example, consider clustering problem, in k-means
optimization problem the hyperparameter k corresponds to the number of clusters. Usually to
find suitable hyperparameters we use cross-validation. We create ` validation sets Vj , j “ 1, . . . , `
from the training and then ` times train the model on S zVj and measure the error εj on Vj .
Then we calculate cross-validation error ε “ p1{`q

ř

j εj and select the hyperparameters with
the lowest error.

Kernels Before we dive in, let us present usage of kernel functions in machine learning based
on the Corollary 1.77 and the Remark 1.60.
Remark 2.1 (Kernel related terminology).

• A function that maps original data to some RKHS, i.e. φ : X Ñ H is called feature
mapping.

• A symmetric positive definite function k : X ˆ X Ñ R is called a kernel function. Kernel
function is determined by the feature map φ. and represents evaluation of inner product
on mapped vectors, i.e. for x, y P X

kpx, yq “ xφpxq, φpyqyH. ˝

• An image of a data point x P X under a feature mapping, i.e. φpxq P H is called a feture
vector.

• A RKHS, where the original data points are mapped is called feature space and denoted
by H. Quite often H represents a space of functions and has infinite dimension, consider
the Gaussian kernel 1.7.

Since every kernel has reproducing property, i.e. for all f P H, and all x P X we obtain

fpxq “ xkpx, ¨q, fyH,

and also for every x P X
kpx, ¨q P H.
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In other words, assuming that H is a function space φpxq is a function such that φpxqp¨q : HÑ R!
We can also write this as

φpxqp¨q “ kpx, ¨q.

Such notation is called canonical feature map representation. Summing up reproducing property
and canonical representation, now for every x, y P X we have a canonical representations in a
Hilbert space, and by reproducing property we can always evaluate an inner product of these
two representations. This fact allows us to fix some x P X and iterate over other data points
zi P X and compute inner products

xkpx, ¨q, kpzi, ¨qyH.

Remark 2.2 (Kernel matrix). It is common practice to represent kernel functions via Gram
matrix K of inner products in the feature space. So for every xi, xj from the training set we
have

Ki,j “ kpxi, xjq “ xφpxiq, φpxjqyH. ˝

Now we move on to specific problems. Basically, every subsection that follows can be divided
in two these parts

• problem formulation, for example linear classification or regression,

• determining some solving strategy and working out a hypothesis space,

• working out a learning rule, for example SVM for classification or least squares for regres-
sion.

2.1 Classification
In this section we look at special type of supervised learning problems called classification,
namely binary classification. The setting is the following

• Training set is denoted by S P pX ˆ Yqm such that yi “ fpxiq, where X Ă Rn is an input
space and Y “ t˘1u is an output space.

• The learning problem is to find hypothesis from the hypothesis space h P H with the
smallest number of misclassifications of data points x P X .

We introduce most popular learning rule called support vector machines.

2.1.1 Hard SVM

Here we present a support vector machine learning rule that handles an intuitive approach of
margin maximization. Furthermore, in conjunction with kernel methods this learning approach
is comparable to neural network one. This section summarizes [7, Chapters 5,6] and [8].
Definition 2.1 (Liner separability). Let S P pX ˆ Yqm be a training set. If there exists a
hyperplane

H0 “ tx P Rn | wTx “ bu, w P Rn, b P R
such that for all pxi, yiq P S

wTxi ` b ą 0, yi “ 1
wTxi ` b ă 0, yi “ ´1,

then S is called linearly separable and the hyperplane H0 is called a separating hyperplane. e
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Remark 2.3 (Hypothesis space). Assuming linear separability we formulate the hypothesis space
as the following

H “ thpxq “ sign pwTx` bq | ypwTx` bq ą 0, w P Rn, b P R, px, yq P Su. ˝

Notice that in case of linear separability we have infinitely many such hyperplanes, hence
hypothesis space H has infinitely many elements. That leeds us to the question, how to select
the best one. Intuitively, we want such hyperplane to be the "safest" one, i.e. if we wiggle a bit
with our data points we want our hyperplane be still a valid classifier.
Remark 2.4 (Marginal hyperplanes). Now we replace H0 with two hyperplanes H` and H´
parallel to H0

H˘ “ tx P R | wTx` b “ ˘δu, w P Rn, b, δ P R.

For simplicity reasons we define δ “ 1. Hyperplanes H˘ are called marginal, since there is a
margin between them. Now the data points with positive label are in the half-space defined by
H` and negative ones in H´, i.e. for H` we have

wTxi ` b ě `1, yi “ 1, (2.1)

and for H´

wTxi ` b ď ´1, yi “ ´1. (2.2)

˝

Remark 2.5 (Liner separability modification). Instead of two inequalities it is handy to have the
only one. Multiplying both (2.1) and (2.2) by corresponding yi we get

yipw
Txi ` bq ě 1, pxi, yiq P S ˝

Since we have a notion of marginal hyperplanes let us also precisely derive a margin between
them.
Remark 2.6 (Margin). Assume x` P H`, so wTx` ` b “ 1. We want to find a perpendicular
distance ρ from x` to H´. Since H` and H´ are parallel, they share same pw, bq, so moving x`
ρ times unit step in the negative direction given by w we make x` lie on H´. Now consider the
following

wT px` ´ ρ
w

}w}2
q ` b “ ´1

wTx` ´ ρ
wTw

}w}2
` b “ ´1

wTx` ` b` 1 “ ρ}w}2

ρ “
2
}w}2

The last step follows by x` P H`. ˝

By now we have precisely formulated “safeness” of classification given by a hyperplane. Now
we want the “safest” classifier, i.e. with maximum margin. The optimization problem looks like

maximize
w,b

2
}w}2

subject to yipw
Txi ` bq ě 1, i “ 1, . . . ,m.

Equivalently in familiar minimization form we get the following.
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Definition 2.2 (Hard SVM learning rule). Let S P pX ˆ Yqm be a training set. Assuming the
linearly separable case 2.1 the optimization problem given by

minimize
w,b

1
2}w}

2
2

subject to yipw
Txi ` bq ě 1, i “ 1, . . . ,m,

is called the hard margin SVM learning rule or just hard SVM. e

Remark 2.7 (Support vectors). Since hard SVM is a differentiable problem and inequalities
constraints are affine by Slater’s condition (1.52) strong duality holds. The Lagrangian takes
the form

Lpw, b, λq “
1
2}w}

2
2 ´

m
ÿ

i“1
λipyipw

Txi ` bq ´ 1q.

By (1.55) we get that pw‹, b‹q is optimal if and only if there exists Lagrange dual variable λ‹
such that the KKT conditions hold.

• Since pw‹, b‹q minimizes Lpw‹, b‹, λ‹q the gradient ∇w,bL turns zero, i.e.

∇wLpw
‹, b‹, λ‹q “ w‹ ´

m
ÿ

i“1
λ‹i yixi “ 0 ñ w‹ “

m
ÿ

i“1
λ‹i yixi, (2.3)

∇bLpw
‹, b‹, λ‹q “ ´

m
ÿ

i“1
λ‹i yi “ 0 ñ

m
ÿ

i“1
λ‹i yi “ 0,

• Dual and primal feasibility

λ‹ ě 0 yipw
‹Txi ` b

‹q ě 1, i “ 1, . . . ,m.

• Complementary slackness, i.e for i “ 1, . . . ,m the following holds

λ‹i pyipw
‹Txi ` bq ´ 1q “ 0 ñ λ‹i “ 0_ yipw‹Txi ` b‹q “ 1. (2.4)

By (2.3) we see that the solution w‹ takes the form of linear combination of data points xi.
Furthermore, by (2.4) xi appears in the summation only when it lies in the the marginal hyper-
planes H˘. Such xi are called support vectors. Thus, w‹ depends only on support vectors, while
other xj have no effect on the solution. ˝

2.1.2 Soft SVM

Now we consider more realistic situation, when the training data are not linearly separable.
This technique can be also viewed as a regularized version of hard margin SVM, when we want
produce a larger margin, thus our model is less influenced by outliers.
Remark 2.8 (Non-separable case). If the training points pxi, yiq, i “ 1, . . . ,m are not linearly
separable there does not exist a hyperplane defined by w P Rn, b P R such that

yipw
Txi ` bqě1.

Thus, for every pxi, yiq P S we introduce slack variables ξi indicating how much xi violates linear
separability, i.e.

yipw
Txi ` bq ě 1´ ξi, i “ 1, . . . ,m. ˝
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This approach brings us to an optimization problem that minimizes total slack amount
and maximizes the margin. However, by reducing slack we always have a thinner margin, or
conversely by maximization the margin we get more total slack, so we need to establish a trade-
off between slack amount and margin thickness.
Definition 2.3 (Soft SVM learning rule). Let S P pX ˆYqm be a linearly non-separable training
set, C ě 0 and p ě 1. The optimization problem of the following form

minimize
w,b,ξ

1
2}w}

2
2 ` C

m
ÿ

i“1
ξpi

subject to yipw
Txi ` bq ě 1´ ξi, i “ 1, . . . ,m,

ξi ě 0.

is called the soft margin SVM learning rule or just soft SVM with trade-off C and slack penal-
ization rate p. e

Remark 2.9 (Loss function). Setting penalization rate p “ 1 we get a so called the hinge loss.
For p “ 2 we obtain the quadratic hinge loss. For the rest of this section we stick with the hinge
loss. ˝

Remark 2.10 (Soft SVM convexity). Since ξi is non-negative, ξpi is a convex function, hence the
objective is convex. Inequality constrains are affine in w, b, ξ, thus are convex. Thus, soft SVM
is also a convex problem, in particular QP. ˝

Remark 2.11 (Support vectors of soft SVM). The Lagrangian of soft SVM is given by

Lpw, b, ξ, λ, λ1q “
1
2}w}

2
2 ` C

m
ÿ

i“1
ξi ´

m
ÿ

i“1
λipyipw

Txi ` bq ´ 1` ξiq ´
m
ÿ

i“1
λ1iξi.

Notice that soft margin SVM is a convex problem and has differentiable objective and con-
strains, and constrains are affine hence qualified (1.47). Now by the Corollary 1.55 pw‹, b‹, ξ‹q
is optimal if and only if there exist pλ‹, λ1‹q such that the KKT conditions hold. Let L ”

Lpw‹, b‹, ξ‹, λ‹, λ1‹q. The KKT conditions are

• Primal solution pw‹, b‹, ξ‹q minimizes the Lagrangian

∇wL “ w‹ ´
m
ÿ

i“1
λ‹i yixi “ 0 ñ w‹ “

m
ÿ

i“1
λ‹i yixi, (2.5)

∇bL “ ´
m
ÿ

i“1
λ1i
‹
yi “ 0 ñ

m
ÿ

i“1
λ1i
‹
yi “ 0, (2.6)

∇ξi
L “ C ´ λ‹i ´ λ

1
i
‹
“ 0 ñ λ‹i ` λ

1
i
‹
“ C. (2.7)

• Feasibility

pλ‹, λ1
‹
q ě 0 yipw

‹Txi ` b
‹q ě 1´ ξ‹i , i “ 1, . . . ,m.

• Complementary slackness, i.e for i “ 1, . . . ,m

λ‹i pyipw
‹Txi ` b

‹q ´ 1` ξ‹i q “ 0 ñ λ‹i “ 0_ yipw‹Txi ` b‹q “ 1´ ξ‹i , (2.8)
λ1
‹

i ξ
‹
i “ 0 ñ λ1

‹

i “ 0_ ξ‹i “ 0. (2.9)

Again the solution takes the form of linear combination of training points (2.5), and all xi with
λ‹ ‰ 0 (2.8) are support vectors. However, now two types of support vectors are presented, see
second complementary slackness condition (2.9). If ξ‹i “ 0, then xi lies on H˘, thus yipw‹Txi `
b‹q “ 1, otherwise xi is considered to be an outlier with non-zero slack. ˝

42



2.1. Classification

This brings us to a dual problem of soft support vector machines. Later we use the dual
formulation to obtain kernel SVM, that consumes highly non-linear cases.
Remark 2.12 (Soft SVM dual formulation). The standard form of the dual function for the soft
SVM is the following

gpλ, λ1q “ inf
w,b,ξ

˜

1
2}w}

2
2 ` C

m
ÿ

i“1
ξi ´

m
ÿ

i“1
λipyipw

Txi ` bq ´ 1` ξiq ´ λ1T ξ
¸

.

Notice that the Lagrangian is a convex function of pw, b, ξq, since the soft SVM is a convex
problem and convexity is preserved under non-negative weighted sums. So L is minimized,
when its gradient with respect to primal variables is equal to zero. Now applying (2.5), (2.6),
(2.7) we obtain

C
m
ÿ

i“1
ξi “ λT ξ ` λ1

T
ξ, (2.10)

1
2}w}

2
2 “

1
2

m
ÿ

i,j“1
λiλjyiyjx

T
i xj ,

m
ÿ

i“1
λipyipw

Txi ` bq ´ 1` ξiq “
m
ÿ

i,j“1
λiλjyiyjx

T
i xj ` pλ

T yq
loomoon

“0

b` 1Tλ´ λT ξ.

Notice that λ1 vanishes after we plug in (2.10), however we still must handle λ1 ě 0. To avoid
this, by (2.7) it is valid to write 0 ď λi ď C. Finally, a dual problem for SVM with linearly
non-separable data is given by

maximize
λ

1Tλ´ 1
2

m
ÿ

i,j“1
λiλjyiyjx

T
i xj (2.11)

subject to 0 ď λi ď C, i “ 1, . . . ,m,
λT y “ 0.

Surely we have a convex problem, namely QP. As was mentioned in (2.11) by Slater condition
strong duality is attained. The resulting classifier h is given in the following form

hpzq “ sign
˜

m
ÿ

i“1
λiyix

T
i z ` b

¸

.

Here we get b from any support vector xi, i.e. from every xi with 0 ă λi ă C, by wTxi` b “ yi.
Consider the following

b “ yi ´

˜

m
ÿ

j“1
λjyjxi

¸T

xi. ˝

2.1.3 Kernel SVM

Notice that in (2.11) data points xi, xj are used only in terms of dot product, and we do not rely
on the vectors’ representation directly. That actually motivates us to use some sophisticated
vector space, where we can compute inner products and also exploit structure of the data to
make more accurate predictions. Since soft margin SVM is a regularized problem, term C
preserves the model from overfitting.
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2. Knowledge Engineering

This brings us to kernel functions. As was mentioned earlier, kernel functions actually
represent an inner product in a Hilbert space denoted by H. To get data to a such vector space
we need a feature mapping φ : X Ñ H. Now we can evaluate the kernel function on every two
images of data points under the feature map.

Thus, instead of dot product we rewrite soft SVM in terms of kernels as the following

maximize
λ

1Tλ´ 1
2

m
ÿ

i,j“1
λiλjyiyjkpxi, xjq

subject to 0 ď λi ď C, i “ 1, . . . ,m,
λT y “ 0.

The resulting classifier is now given by

hpzq “ sign
˜

m
ÿ

i“1
λiyikpxi, zq ` b

¸

.

Our final version in the matrix form is the following.
Definition 2.4 (Kernel SVM learning rule). Suppose S P pX ˆ Yqm is a linearly non-separable
training set. The optimization problem of the following form

maximize
λ

1Tλ´ 1
2pλ ˝ yq

TKpλ ˝ yq

subject to 0 ď λi ď C, i “ 1, . . . ,m,
λT y “ 0,

is called the kernel support vector machine learning rule. Here pλ ˝ yq is a Hadamard product
of λ, y, defined as pλ ˝ yqi “ λiyi for i “ 1, . . . ,m. e

2.2 Regression

Now we move on to regression problem. The main difference between regression and classification
is given by the output space Y, since in terms of regression Y “ R. Thus, we do not attempt
to have precise predictions, we rather want our predictions to be as close to the real ones as
possible. The regression setting is the following

• Training set is given by S P pX ˆYqm, where X Ă Rn is an input space and Y Ă Rn is an
output space.

• The learning problem consists of establishing hypothesis h P H form the hypothesis space
with the smallest training error.

In this section we introduce two main learning rules, namely leastsquares and neural net-
works. As in the SVM case we start with linear hypothesis, then derive a regularized version
and finally apply kernel methods on regularized least squares. In case of neural nets we describe
the basic model called feed–forward neural network. This section is based on the [7, Chapter
11]
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2.2. Regression

2.2.1 Ordinary least squares

We start with a strong assumption that our training data are linearly predictable.
Definition 2.5 (Linear predictable case). Suppose S P pX ˆYqm is a training set. We say that
S is linearly predictable for i “ 1, . . . ,m labels yi are linearly dependent on xi, i.e.

Dw P Rn, b P R : yi « wTxi ` b, @pxi, yiq P S. e

Remark 2.13 (Hypothesis space). In linear predictable case hypothesis set can be formulated as
the following

H “ thpxq “ wTx` b | px, yq P Su, w P Rn, b P R.

Here vector w P Rn is usually called a slope and scalar b a bias term. ˝

Remark 2.14 (Residual sum of squares). We base the learning strategy on commonly used
squared loss also called residual sum of squares or just RSS. It is given by

L2phpxiq, yiq “ phpxiq ´ yiq
2.

This type of loss function defines a learning rule called ordinary least squares. In standard form
the learning rule is given by the optimization problem

minimize
w,b

1
m

m
ÿ

i“1
ppwTxi ` bq ´ yiq

2.

However, we better introduce a matrix formulation. ˝

Definition 2.6 (Ordinary least squares learning rule). Let S P pX ˆYqm be a training set, X P

Rpn`1qˆm be a matrix given by placing m training points xi into columns and adding pn` 1qth
row with all ones, w P Rn`1 be a vector of weights and a bias term, i.e. w “ pw1, . . . , wn, bq and
y “ py1, . . . , ymq P Rm be a vector of labels.

X “

»

—

—

–

x1 ¨ ¨ ¨ xm

1 ¨ ¨ ¨ 1

fi

ffi

ffi

fl

w “

»

—

—

—

–

w1
...
wn
b

fi

ffi

ffi

ffi

fl

y “

»

—

–

y1
...
ym

fi

ffi

fl

The optimization problem given by

minimize
w

f0pwq “
1
m
}XTw ´ y}22

is called the ordinary least squares learning rule or simply least squares. e

To see convexity of least squares problem recall example (1.25).
Remark 2.15 (Least squares solution). By (1.25) we can derive analytical solution, setting the
gradient to zero

∇f0 “ 0 ô 2
m

XpXTw ´ yq ô XXTw “ Xy.

Depending whether XXT is invertible or not, the solution takes the following form

w‹ “

#

pXXT q´1Xy XXT is invertible,
pXXT q:Xy otherwise.

Here pXXT q: is a pseudo inverse, that can be obtained via singular value decomposition or QR
decomposition. ˝
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2. Knowledge Engineering

Remark 2.16 (Least squares pitfalls). Two main issues with the least squares solution is this: a
problem of multicolliniarity, when matrix XT has almost linear dependent columns, i.e. some
features of xi are highly correlated. In this case computation of matrix inverse of XXT is not
numerically stable. Moreover, from statistical point of view resulting w‹ will have high variance,
so since data points are highly correlated even small change in the training set will cause large
changes in w‹. In this case our regression model will overfit the training dataset and loose
generalization property.

˝

2.2.2 Ridge regression

Since we have observed the bottlenecks of ordinary least squares let us introduce a more robust
approach, namely ridge regression. Basically, ridge regression is a special example of least
squares regularization methods.

As in the soft margin SVM we introduce a regularization term }w}22.
Remark 2.17 (Ridge regression in standard form). Suppose S P pX ˆ Yqm is a training set,
w1, . . . , wm P R, b P R is a bias term, and β ą 0. Ridge regression learning rule in the standard
form is given by the following optimization problem

minimize
w,b

1
m

m
ÿ

i“1
pwTxi ` b´ yiq

2 ` β
m
ÿ

i“1
w2
i .

Here }w}22 is a regularization term. ˝

Remark 2.18 (Regularization intuition). One may ask how regularization term prevents linear
model from overfitting? The intuition is the following, obviously penalty term might slightly
influence the optimal value p‹ on the training data, however it will significantly reduce the
solution variance by filtering hypothesis with high slope. Thus, making β to big we obtain an
underfit model, that barely captures the data structure. As the result, we wiggle a bit with β
to find a suitable β. ˝

Remark 2.19 (Bias term and data centering). Notice that by the Definition 2.8 we do not penalize
the bias term, since there is no reason to prefer solutions that are close to the origin. So we
rather reformulate the standard form of the ridge regression to get rid of the bias. Obviously,
objective function of ridge regression is convex in b, namely quadratic, hence the global minimum
attained, when first derivative with respect to b 3 is equal to zero, i.e.

1
m

m
ÿ

i“1
2wTxi ` 2b´ 2yi “ 0 ô b “

1
m

m
ÿ

i“1
yi

looomooon

ȳ

´wT

¨

˚

˚

˚

˝

1
m

m
ÿ

i“1
xi

looomooon

x̄

˛

‹

‹

‹

‚

.

Here ȳ and x̄ correspond to the mean value of yi and xi respectively. Now we rewrite the
objective as the following

1
m

m
ÿ

i“1
pwTxi ` pȳ ´ w

T x̄q ´ yiq
2 ` β

m
ÿ

i“1
wi “

1
m

m
ÿ

i“1
pwT pxi ´ x̄q ´ pyi ´ ȳqq

2 ` β
m
ÿ

i“1
wi.

Procedure of subtracting means is called data centering and can be done as a preprocessing
step. ˝

3Since b is a scalar.
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2.2. Regression

We drop the constant 1{m and reformulate the problem (2.8) in terms of matrices.
Definition 2.7 (Ridge regression learning rule). Suppose S P pX ˆ Yqm is a training set,
X1 P Rnˆm is a matrix with vectors xi ´ x̄ in its columns, w P Rn is a vector of weights,
y1 “ py1 ´ ȳ, . . . , ym ´ ȳq P Rm is a vector of labels, and β ą 0. The optimization problem

minimize
w

f0pwq “ }X1Tw ´ y1}22 ` β}w}
2
2

is called the ridge regression learning rule with regularization term }w}22. e

Remark 2.20 (Notation). For the rest of this section we rather write X instead of X1 and similarly
y instead of y1. However, X and y will refer to centered data. ˝

Remark 2.21 (Solution). We can see that (2.7) is a convex problem, since objective is a non-
negative weighted sum of convex functions. Thus, the minimum is attained at the point, where
the gradient vanishes. Now consider the following

∇f0pw
‹q “ 0 ô pXXT

loomoon

PSn
`

` βI
loomoon

PSn
``

qw‹ “ Xy ô w‹ “ pXXT ` βIq´1Xy.

The inverse always exists, since the matrix is defined by the sum of positive semidefine and
positive definite matrices. ˝

Remark 2.22 (Prediction). Once we have computed w‹ we can make our prediction in the fol-
lowing form

hpzq “ w‹T z “ zT pXXT ` βIq´1Xy.

Notice by our notation (2.20) the matrix X contains data with subtracted mean, so does the
vector y, hence the bias term is implicitly included. ˝

Before computing a dual we formulate an equivalent problem by introducing slack variables

minimize
w,ξ

1
2β}w}

2
2 `

1
2}ξ}

2
2 (2.12)

subject to ξ “ XTw ´ y.

Remark 2.23 (Dual formulation). The Lagrangian corresponding to the (2.12) is given by

Lpw, ξ, νq “
1
2β}w}

2
2 `

1
2}ξ}

2
2 ` ν

T pξ ´XTw ` yq.

Generally, for the dual problem we have

maximize
ν

inf
w,ξ

ˆ

1
2β}w}

2
2 `

1
2}ξ}

2
2 ` ν

T pXTw ´ yq

˙

.

Notice if we reformulate constrains of (2.12) as inequalities, they will be affine in ξ and w, hence
the Slater’s condition holds (1.47) and the strong duality is attained. Now by (1.55) w‹, ξ‹ are
optimal if and only if exists ν‹ such that the KKT conditions hold

• The gradient of the Lagrangian with respect to primal variables evaluated at w‹, ξ‹ van-
ishes, i.e. w‹, ξ‹ minimize the Lagrangian with respect to w, ξ

∇wLpw
‹, ξ‹, ν‹q “ Xν‹ ` βw‹ ñ w‹ “

1
β

Xν‹, (2.13)

∇ξLpw
‹, ξ‹, ν‹q “ ξ‹ ` ν‹ “ 0 ñ ξ‹ “ ´ν‹. (2.14)
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2. Knowledge Engineering

• Feasibility
ξ‹ “ w‹TX´ y.

• Complementary slackness

ν‹T pξ‹ ´ w‹TX` yq “ 0 ñ ν‹ “ 0_ ξ‹ “ w‹TX´ y.

Since w‹, ξ‹ minimize the Lagrangian, we obtain the following

inf
w,ξ

ˆ

1
2β}w}

2
2 `

1
2}ξ}

2
2 ` ν

T pξ ´XTw ` yq

˙

“
1
2β}w

‹}22 `
1
2}ξ

‹}22 ` ν
T pξ‹ ´XTw‹ ` yq

“
1
2β

›

›

›

›

1
2βXν

›

›

›

›

2

2
`

1
2} ´ ν}

2
2 ` ν

T p´ν ´XTXν ` yq

“
1

2β pXνq
T
pXνq ` 1

2ν
T ν ´ νT ν ´ pXνqTXν ` νT y

“ ´}Xν}22 ´ β}ν}22 ` 2νT y
“ ´νT pXTX` βIqν ` 2νT y

Now we can formulate a dual problem as the following

maximize
ν

´νT pXTX` βIqν ` 2νT y. (2.15)

Since the dual variable ν corresponds to equality constrains we do not need constrain ν ě 0. ˝

Remark 2.24 (Dual solution). Obviously, objective in (2.15) is differentiable and strictly concave
by the same argument as in (2.21). We get the solution setting the gradient to zero, i.e.

2pXTX` βIqν “ 2y ô ν “ pXTX` βIq´1y.

Applying (2.13) we obtain final predictor in the following form

hpzq “ w‹T z “
1
β
pXν‹qT z “ 1

β
zTXpXTX` βIq´1y.

Again by notation (2.20) bias term is implicitly included. ˝

2.2.3 Kernel ridge regression

Now we formulate desired version of regularized linear regression in terms of kernels, so our final
model will be able to deal with highly non-trivial data. To formulate a kernel version we use
the results of (2.15), that does not depend on representation of training data and requires only
inner products.
Definition 2.8 (Kernel ridge regression learning rule). Suppose

• S P pX ˆ Yqm is a training set,

• X P Rnˆm is a matrix with centered vectors xi ´ x̄ in its columns,

• y P Rm is a centered vector of labels,

• ν P Rm is the Lagrangian dual variable,
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2.2. Regression

• β ą 0 is a free positive parameter

• k : X ˆ X Ñ R is a kernel function with matrix K P Sn` such that Kij “ kpX‚i,X‚jq.

The optimization problem defined as

maximize
ν

´νT pK` βIqν ` 2νT y

is called the kernel ridge regression learning rule or just KRR. e

Remark 2.25 (Solution). Solution is given by the dual solution, however we use kernel matrix K
instead of XTX, i.e.

ν “ pK` βIq´1y.

Recall that the solution is obtained for the centered data 2.19. Let φ : X Ñ H be a feature map
to a feature space H, then our prediction is given by a hypothesis h

hpzq “ w‹Tφpzq “
1
β

˜

m
ÿ

i“1
xφpzq, φpxiqyH

¸T

pK` βIq´1y

“
1
β

˜

m
ÿ

i“1
kpz, xiq

¸T

pK` βIq´1y

˝

2.2.4 Neural Networks

We end our short tour in supervised learning models with a powerful tool called neural network4.
Neural network, or artificial neural network, or neural net or just NN is a mathematical model
inspired by activity of human brain. Even though neural networks seems to be mysterious they
are just non-linear statistical models. We describe basic technique called a feed–forward NN.
Neural nets can handle both discrete and continuous labels, we look at both cases and in the
end we formalize the learning rule for regression. This chapter summarizes [9, Chapter 11] and
[10, Chapter 20].
Remark 2.26 (Feed–forward neural network basic setting).

• A neural network consists of d` 1 disjoint sets V0, . . . , Vd of neurons called layers. Size of
the layer Vk is denoted by |Vk|. Layer V0 is called the input layer and Vd the output layer.
Layers V1, . . . , Vd´1 are called hidden layers, for the reasons that values of hidden neurons
are not directly observed.

• A neuron is an atomic element of a neural net. In feed-forward nets neurons are only
connected with neurons of previous and succeeding layers. We denote the ith neuron in
the kth layer by vk,i.

• Each connection (edge) between vk,i and vk`1,j has a weight wpi,jqk`1 .

• A non-linear activation function σ : RÑ R is a function that fires the neurons in response
to the incoming stimuli. Usually we have one fixed activation function for whole NN.
Almost every time we choose σ to be differentiable. Non-differentiability of σ was the
main reason caused the interest decay in neural networks after their invention.

4Neural nets can be applied to unsupervised learning problems as well.
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• An output function g : R Ñ R, that is only used in the output layer to produce the final
result. We call g a final transformation. Obviously, we want g to be differentiable as
well. ˝

Now we work out the matrix notation to represent the whole neural net as a function.
Remark 2.27 (Feed-forward neural network matrix setting).

• For every vk`1,j we define a vector of weights of incoming edges as

wk`1,j “
´

w
p1,jq
k`1 , w

p2,jq
k`1 , . . . , w

p|Vk|,jq
k`1

¯

P R|Vk|. (2.16)

• Since every vk`1,j has its own wk`1,j we can define a matrix Wk`1 of weights for each
k ` 1 layer as the following

Wk`1 “

»

– wk`1,1 wk`1,2 . . . wk`1,|Vk`1|

fi

fl P R|Vk|ˆ|Vk`1|.

• Now for every vk`1,j we define a function of the output fk`1,j : R|Vk| Ñ R as

fk`1,jpxq “ σ

¨

˝

|Vk|
ÿ

l“1
w
pl,jq
k`1fk,lpxq

˛

‚.

Notice that for every neuron in the first hidden layer V1 we have

f1,jpxq “ σ

¨

˝

|V0|
ÿ

l“1
w
pl,jq
1 xl

˛

‚.

Here V0 simply returns x P Rn, moreover the size of V0 often corresponds to the dimension
of x, i.e. n “ |V0|.

• The output function of one neuron vk`1,j can be generalized to the output function of the
whole k ` 1 layer, so we have fk`1 : R|Vk| Ñ R|Vk`1| defined as

fk`1pxq “ σ̃
`

WT
k`1fkpxq

˘

.

Here we extend the activation function to be vector valued, so it handles whole layers, i.e.
σ̃ : R|Vk`1| Ñ R|Vk`1| is given by

σ̃
`

WT
k`1fkpxq

˘

“

»

—

—

—

–

σpwTk`1,1fkpxqq

σpwTk`1,2fkpxqq
...

σpwTk`1,|Vk`1|
fkpxqq

fi

ffi

ffi

ffi

fl

P R|Vk`1|.

• Now for fixed V1, . . . , Vd and σ, g the neural network can be represented by a function

fpxq “ g̃pxq “ g̃
`

WT
d σ̃p. . . σ̃pWT

1 xq . . .q
˘

,

where g̃ : R|Vd´1| Ñ R|Vd| is a vector valued extension of a scalar function g.
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• We rather implicitly denote that the output of a neural net corresponds to the specific
W1, ...Wd, by the index notation

fΘpxq, Θ “ pW1, ...Wdq. ˝

Remark 2.28 (Bias term). Basically, we do not require the neural net fΘ to pass through the
origin, so we need to propagate some bias terms. This issue is solved by adding the extra neuron
to each layer, except the output one. This neuron does not take any input and always returns 1,
but with the weight assigned it takes the form of a some constant. For simplicity suppose that
our neural network implicitly comes with biases. ˝

Definition 2.9 (Architecture of a neural network). Let pV, σ, gq be a triplet such that, V “

pV1, . . . , Vdq is a d-tuple of layers, σ : R Ñ R an activation function, g : R Ñ R is an output
function. We call pV, σ, gq a neural network architecture. e

Definition 2.10 (Neural network hypothesis space). Let pV, σ, gq be a neural network architec-
ture. We define the neural network hypothesis space as the following

HpV,σ,gq “

!

hΘ : R|V0| Ñ R|Vd|
ˇ

ˇ

ˇ
Θ “ pW1, . . . ,Wdq

)

,

where Θ is a d-tuple of weights. e

Example 2.29 (NN with two hidden layers). According to our notation neural net for fixed Θ
and architecture pV, σ, gq with two hidden layers takes the form

fΘpxq “ g̃
`

WT
3 σ̃

`

WT
2 σ̃

`

WT
1 x

˘˘˘

. l

Remark 2.30 (Choice of activation function). The performance of a network highly depends
on the activation function. If we choose a linear σ the net collapses to a linear model, hence
generally NN can be viewed as non-linear generalization of linear models. Common choice for
activation function are:

• sigmoid function k : RÑ R
kpxq “

1
1` e´x ,

• softPlus or smoothReLU k : RÑ R

kpxq “ logp1` exq. ˝

Remark 2.31 (Choice of output function). As we stated earlier, neural nets can handle both
classification problems and regression ones. Roughly, the difference lies in the output function.

• Common choice for the regression is the identity function x ÞÑ x. Moreover, dealing with
regression the output layer usually contains only one neuron, i.e.

fΘpxq “ g
`

wTd,1fd´1pxq
˘

“ wTd,1fd´1pxq

• With l-class classification the number of neurons in the output layer is l and common
choice of the output function that is so-called softmax function h : Rm Ñ Rm defined as

hpxq “
ex

1T ex , ex “ pex1 , . . . , exmq.

The whole neural net takes the form

fΘpxq “ hpWT
d fd´1pxqq. ˝
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So far we introduced all terminology related to evaluation a neural network at a point x.
However nothing was said about the neural net learning rule. For these reasons we define a loss
function that tells the difference between our predictions fΘpxiq and real labels yi.
Remark 2.32 (Loss function). In general, regardless the problem type we denote the loss as
function of weights as LpΘq. Suppose |Vd| “ 1, a common choice for regression is familiar
residual sum of squares loss

LpΘq “
ÿ

px,yq PS

py ´ fΘpxqq
2 .

For classification cross-entropy is usually used

LpΘq “ ´
ÿ

px,yq PS

yT logpfΘpxqq.

Here we use the vector valued extension for the log function

logpfΘpxqq “
´

logpwTd,1fd´1pxqq, . . . , logpwTd,|Vd|
fd´1pxqq

¯

. ˝

Since we have defined loss functions for regression and classification we are ready to introduce
the neural net learning rule. Here we demonstrate the learning rule with the regression problem.
Definition 2.11 (Neural network regression learning rule). Suppose X Ă Rn and Y Ă Rm, a
set S P pX ˆ Yqm is the training set and

HpV,σ,gq “

!

hΘ : R|V0| Ñ R|Vd|
ˇ

ˇ

ˇ
Θ “ pW1, . . . ,Wdq

)

is the hypothesis space corresponding to the neural network architecture pV, σ, gq with |Vd| “ 1.
The optimization problem given by

minimize
Θ

ÿ

px,yq PS

py ´ hΘpxqq
2,

is called the neural network regression learning rule . e

Since we formulated the neural network learning rule as an optimization problem we intro-
duce the famous learning algorithm, that will be described in great details in the next chapter.

Remark 2.33 (Back-propagation algorithm). As we already stated, evaluation of a network with
fixed Θ and pV, σ, gq can be written as fΘpxq. The process of output computation of a neural
network for given x is called the forward pass, which is the first step of the back-propagation
algorithm.

The second step is to compute the error for all pairs px, yq P S and propagate this error
to the preceding layers. We propagate the error and update the weights with the help of the
gradient and the chain rule. This step is called the backward pass.

These two passes are repeated until convergence. In machine learning literature this two-
pass algorithm is usually called back-propagation algorithm, in context of the mathematical
optimization we usually call it the gradient descent, moreover we will discus it in the next
chapter. ˝

Remark 2.34 (Methods of learning). Notice that in the backward pass we compute the error for
the whole training set, and only then we update the weights. If the training set is not very
small, such learning consumes a lot of time, so we better slightly modificate the objective for a
faster performance.
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2.3. Clustering

• Mini-batch learning corresponds to random selection of a subset C Ă S and compute an
error within C, i.e.

ÿ

px,yq PC

py ´ hΘpxqq
2.

• In online learning case we use only one training point at a time, so the objective now is
given by py ´ hΘpxqq

2. ˝

Although neural network learning rule seems to be a powerful learning strategy it has some
drawbacks.
Remark 2.35 (issues with neural networks).

• We can see that learning a neural network requires establishing a huge amount of weights Θ,
hence the first pitfall is overparametrization. Usually finding optimal Θ‹ causes overfitting,
i.e. the final predictor excessively fits the training data, and at the same time has pour
generalization properties and fails to predict unseen data. To avoid this situation according
to the definition of the vector of weights (2.16) we can introduce a regularization term

JpΘq “
d
ÿ

i“1

|Vi|
ÿ

j“1
}wi,j}

2
2.

Now the objective function can be formulated as

LpΘq ` λJpΘq, λ ě 0,

with trade-off parameter λ.

• However, a more important drawback is that learning a neural network is generally a
non-convex optimization problem, hence we can stuck in some local minimum. To have
an intuition of non-convexity, consider that the whole network fΘ for some architecture
pV, σ, gq is not guaranteed to be a convex function of Θ. It can be shown that even for only
one neuron, sigmoid activation function and residual sum of squares loss the objective has
exponential number of local minima [11]. ˝

2.3 Clustering
So far we have discussed supervised problems, where we used labels to estimate the performance
of our model. Now we consider a widely known unsupervised task of determination some hidden
patterns in the data, namely, we need to find some classes and then associate each data point
with some class. In case of supervised learning these classes were given beforehand, here they
are unknown and we need to work them out. In terms of machine learning this problem is called
clustering. Usually establishing such clusters provides us with non-trivial insights of the dataset,
unfortunately in most cases we have no idea about data relations.

Intuitively, we can formulate clustering as a dividing the original set of objects into well
organized groups. By well organized cluster we can imagine a set, where its elements are very
similar at the same time are very different comparing to elements from other clusters. In general,
we are looking for some function that assigns each data point to some cluster.

There exists many approaches to determine a clustering of the data, but we focus on a
famous one called k-means learning rule. Then we describe a widely used heuristic algorithm
called k-means algorithm, that will converge to some local minima, since the learning rule is not
convex.

Clustering setting is the following
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• Unlabelled training set S Ă Rn, S “ tx1, . . . , xmu.

• Number of clusters k.

• Hypothesis space of functions H “ th : S Ñ t1, . . . , kuu mapping every training point to
some cluster. Notice that our hypothesises are functions with discrete domain. A better
way to understand function h is to take it as an element of t1, . . . , kum, here we use x P S
as index in h, i.e. hx P t1, . . . , ku.

• Target function h‹ to be found is a solution to the optimization problem.

2.3.1 K-means learning rule

We base our learning rule on minimization of within the cluster dissimilarity.
Definition 2.12 (Dissimilarity learning rule). Suppose S “ tx1, . . . , xmu Ă Rn is the training
set and H “ th : S Ñ t1, . . . , kuu is the hypothesis space. The optimization problem defined as

minimize
hPH

m
ÿ

l“1

1
2|h´1plq|

ÿ

x,y:
hx“hy“l

}x´ y}22, (2.17)

is called the within the cluster dissimilarity learning rule. We denote by |h´1plq| size of the lth
cluster. e

One may notice that (2.21) does not implicitly take into account the distance between clusters
so subtracting corresponding term we obtain

minimize
hPH

¨

˚

˝

m
ÿ

l“1

1
2|h´1plq|

ÿ

x,y:
hx“hy“l

}x´ y}22

˛

‹

‚

´
1
2
ÿ

x,y:
hx‰hy

}x´ y}22. (2.18)

Lemma 2.13 (Target function and cluster distance). The solution h‹ of (2.21) also solves (2.18).

Proof. Consider the second sum in optimization problem (2.18), we express it in the complement
form, as the distance between all points minus the distance between points in the same cluster.

ÿ

x,y:
hx‰hy

}x´ y}22 “
ÿ

x,y PS

}x´ y}2 ´
ÿ

x,y:
hx“hy

}x´ y}22 “ A´
m
ÿ

l“1

ÿ

x,y:
hx“hy“l

}x´ y}22.

Here A is a non-negative constant for a given dataset. Now we express (2.18) as the following

minimize
h

¨

˚

˝

m
ÿ

l“1

1
|h´1plq|

ÿ

x,y:
hx“hy“l

}x´ y}22

˛

‹

‚

´
1
2A.

The above problem differs from (2.21) by positive scaling 2 and subtracting a non-negative
constant, hence the solution remains the same.

Now we look at the useful concept in clustering called center of mass.
Definition 2.14 (Center of mass). Let S “ tx1, . . . , xmu Ă Rn be a set. A center of mass of S
is defined as the expected mean of its elements, i.e.

µS “
1
m

m
ÿ

i“1
xi. e
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Remark 2.36 (Expected distance from a center of mass). The expected squared distance between
points and the center of mass can be expressed as the following

1
m

m
ÿ

l“1
}xl ´ µS}

2
2 “

1
m

m
ÿ

l“1
}xl}

2
2 ´

2
m2

m
ÿ

l,j“1
xTl xj `

1
m

m
ÿ

l“1

1
m2

m
ÿ

i,j“1
xTi xj

“
1
m

m
ÿ

l“1
}xl}

2
2 ´

1
m2

m
ÿ

i,j“1
xTi xj (2.19)

˝

Lemma 2.15 (Center of mass solution). Suppose S “ tx1, . . . , xmu. The optimization problem

minimize
β

1
m

m
ÿ

i“1
}xi ´ β}

2
2

is solved by the center of mass µS

Proof. Notice that the objective as a function of β is convex, since it is a non-negative weighted
sum of squared norms precomposed with affine functions gipβq “ ´Iβ ` xi. Thus we set its
gradient equal to zero to get the minimum

1
m

ÿ

i“1
2p´xi ` βq “ 0 ñ β “

1
m

ÿ

i“1
xi “ µS .

Remark 2.37 (Equivalent problem). Let us reformulate the optimization problem (2.21) as the
following

k
ÿ

l“1

1
2|h´1plq|

ÿ

x,y:
hx“hy“l

}x´ y}22 “
k
ÿ

l“1

1
2|h´1plq|

ÿ

x,y:
hx“hy“l

xTx´ 2xT y ` yT y

“

k
ÿ

l“1

1
2|h´1plq|

¨

˚

˝

ÿ

x,y:
hx“hy“l

xTx´ 2
ÿ

x,y:
hx“hy“l

xT y `
ÿ

x,y:
hx“hy“l

yT y

˛

‹

‚

“

k
ÿ

l“1

1
|h´1plq|

¨

˚

˝

|h´1plq|
ÿ

x:
hx“l

}x}22 ´
ÿ

x,y:
hx“hy“l

xT y

˛

‹

‚

“

k
ÿ

l“1

ÿ

x:
hx“l

}x´ µl}
2
2.

Now optimization problem (2.21) takes the form

minimize
h

ÿ

xPS

}x´ µhx}
2
2. (2.20)

Actually, the problem takes its name after formulation above. ˝

Remark 2.38 (Centroid). In terms of clustering problem we call the center of mass of a lth cluster
just centroid, and denote as

µk “
1

|h´1plq|

ÿ

x:hx“l

x ˝
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Now we are ready to present the standard k-means learning rule.
Definition 2.16 (K-means learning rule). Suppose S “ tx1, . . . , xmu Ă Rn is the training set
and H “ th : S Ñ t1, . . . , kuu is the hypothesis space. The optimization problem defined as

minimize
h

ÿ

xPS

}x´ µhx}
2
2. (2.21)

is called the k-means learning rule. Here µhx corresponds to the centroid of the cluster given by
h, where x is assigned. e

Remark 2.39 (Analysis of k-means problem). Even though the problem (2.20) does not seem to
be difficult, the domain of the objective is discrete since the number of possible clusters is finite.
Thus the objective is not continuous and is non-differentiable, so we can not apply classical
derivative based approaches. Actually, this problem is NP-hard [12]. To solve this problem we
can use popular heuristic algorithm that rapidly converges to some local minima. Unfortunately,
no guarantees are given on the quality of the result, so common practice is to run that algorithm
more times with different initial states. ˝

2.3.2 K-means algorithm

In this subsection we briefly describe the k-means algorithm that is often used for minimization
the k-means learning rule.

Algorithm 1 K-means
1: procedure K-means(S, k)
2: i “ 1
3: µ

piq
1 , . . . , µ

piq
k “Random_centroids()

4: @x P S : hpiqpxq “ argmin
1ďlďk

}x´ µ
piq
l }

5: vpiq “ Compute_objective(hpiq)
6: v0 “ 8
7: while (Is_conveging(vpi´1q, vpiq)) do
8: i “ i` 1
9: µ

piq
1 , . . . , µ

piq
k = Recompute_centroids(hpi´1q)

10: @x P S : hpiqpxq “ argmin
1ďlďk

}x´ µ
piq
l }

11: vpiq “ Compute_objective(hpiq)
12: return hpiqp¨q

Lemma 2.17 (K-means algorithm correctness). The k-means Algorithm 1 will stop and return
some locally optimal clustering assignment.

Proof. Notice that the algorithm can not return a clustering until it go through the loop. New
centroids replacing µpi´1q

1 , . . . , µ
pi´1q
k with µ

piq
1 , . . . , µ

piq
k for clusters given by hpi´1q will not in-

crease the objective by (2.15). Assigning all x P S to the nearest cluster will not increase the
objective as well. Thus every iteration does not increase the value of the objective, hence the
algorithm converges. However we are not guaranteed to have a global optimal value, so the
minimum attained is a local one.
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Chapter 3
Algorithms

So far we have discussed theoretical background and real problems in knowledge engineering,
although nothing was said how to solve these problems. The goal of the chapter is to show basic
methods for theoretical problems described in the first chapter and practical cases in chapter
two as well. This chapter summarizes [1, chapters 9-11].

3.1 Unconstrained optimization methods
We start our tour in optimization techniques with the simplest case when there are no constraints
presented.
Definition 3.1 (Unconstrained minimization problem). Let f : Rn Ñ R be a convex twice
continuously differentiable function, hence domain of f is open. An optimization problem given
by

minimize fpxq

with p‹ “ inf fpxq finite and attained, is called the convex unconstrained minimization problem.
e

Since the problem is convex, by Corollary 1.39 we are looking for such an z P dom f that
∇fpzq “ 0.
Remark 3.1 (Quadratic objective). Notice that if the objective f is a quadratic function in x,
then ∇fpxq “ 0 is a system of linear equations, hence can be solved analytically. Thus, we
would consider non-quadratic problems where, iterative methods can be applied. ˝

Remark 3.2 (Iterative methods). An iterative algorithm is a technique of finding sequence of
points

 

xpkq
(8

k“0 P dom f such that fpxpkqq kÑ8
ÝÝÝÑ p‹ with initial point xp0q. This sequence is

called a minimizing sequence. We usually use some ε ą 0 representing a tolerated error, so the
stopping criterion is given by fpxpkqq´p‹ ď ε. Since we have assumed that p‹ P Rn and attained
this sequence converges. ˝

Assumptions We assume that the set

S “
!

x P Rn
ˇ

ˇ

ˇ
fpxq ď fpxp0qq

)

is closed. The set S is usually called α-sublevel set with α “ fpyq, in our case α “ fpxp0qq.
The intuition is simple, if S is not closed the algorithm might converge to the point that is not
in the domain. Unfortunately, this condition is not easy to verify, but if all sublevel sets are
closed or, equivalently, epi f is closed the condition trivially holds. Another way to say that all
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sublevel sets are closed is that function values goes to infinitely when x reaches the boundary of
the domain of f .

We also suppose that problem given by the Definition 3.1 is strongly convex on the sublevel
set S, i.e.

∇2fpxq ě mI, x P S (3.1)

for some m ą 0. Since f is twice differentiable, for x, y P S using Taylor theorem we express
fpyq as

fpyq “ fpxq `∇fpxqT px´ yq ` 1
2py ´ xq

T∇2fpzqpy ´ xq
looooooooooooooomooooooooooooooon

remainder in the Lagrange form,
z“θx`p1´θqy, 0ďθď1

.

By strong convexity the remainder can be rewritten as

1
2py ´ xq

T∇2fpzqpy ´ xq ě
m

2 py ´ xq
T Ipy ´ xq.

Thus, we obtain better lower bound for fpyq than first order condition rom the Theorem 1.24

fpyq ě fpxq `∇fpxqT px´ yq ` m

2 }y ´ x}
2
2. (3.2)

We now show how the above inequality can be used to measure suboptimality of the point x P S.
Notice that the right hand side of the inequality is a convex quadratic function of y, so setting
its gradient to zero we obtain ỹ “ x´ p1{mq∇fpxq that minimizes the right hand side. We now
rewrite the inequality above with ỹ instead of y

fpyq ě fpxq ´
1

2m}∇fpxq}
2
2.

Notice that the result above holds for every y P S, so taking y‹ P S such that p‹ “ fpy‹q, we
have

fpxq ´ p‹ ď
1

2m}∇fpxq}
2
2. (3.3)

Therefore, inequality (3.3) can be viewed as a suboptimality criterion, i.e. if the gradient is
small then fpxq is near the optimum, i.e.

}∇fpxq}2 ď
?

2mε ùñ fpxq ´ p‹ ď ε.

Here we are talking about conceptual stopping criterion, since m is actually unknown, however
we can use it to derive a practical one. We pick η ą 0, such that }∇fpxq}2 ď η. When η is small
enough, it will to be very likely smaller than

?
2mε, hence fpxq ´ p‹ ď ε.

By the inequality (3.2) we also have that all off sublevel sets in S are bounded, so S is
bounded as well. Since ∇2fpxq is a continuous function of x by the Definition 3.1, we have that
the maximum eigenvalue of ∇2fpxq is bounded above on S, in other words there exists M ą 0
such that for all x P S we get

∇2fpxq ď MI.

In similar way as in (3.2) we obtain the following inequality

fpyq ď fpxq `∇fpxqT px´ yq ` M

2 }y ´ x}
2
2. (3.4)

Now we introduce general descent method and discuss basic ideas and related terminology.
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Algorithm 2 General descent method
1: procedure General descent(x P dom f)
2: while not (stoping criterion) do
3: Determine a descent direction ∆x
4: Choose t ą 0 via line search
5: x “ x` t∆x
6: return x

Remark 3.3 (Terminology). The Algorithm 2 produces a minimizing sequence of points xpk`1q “
xpkq ` tpkq∆xpkq such that fpxpk`1qq ă fpxpkqq. Here tpkq ą 0 is called step and ∆xpkq P Rn is
called descent direction. ˝

Remark 3.4 (Descent direction). Using the first order condition 1.24 get the following

∇fpxpkqqT py ´ xpkqq ě 0 ùñ fpyq ě fpxpkqq,

hence to get fpxpk`1qq ă fpxpkqq we want ∆x make a negative inner product with the gradient,
i.e.

∇fpxpkqqT∆x ă 0. ˝

Line search The line search in the fourth step corresponds to finding such t along the ray
tx` t∆x | t ą 0u the value of the objective decreases, i.e. fpxq ą fpx` t∆xq.

One way to determine t is the exact line search. We define a function of one variable
f̃ptq “ fpx` t∆xq and now t is given by

texact “ argmin
sě0

f̃psq.

Here we minimize a convex function of one variable, that can be done by setting the first
derivative of f̃ptq to zero and finding the root by bisection.

However, in practice we are also satisfied with t that approximately minimize f̃ . A popular
inexact method of line search is called backtracking line search. Here we find t using the following
algorithm.

Algorithm 3 Backtracking line search
1: procedure Backtrack(∆x for fpxq, 0 ă α ă 0.5, 0 ă β ă 1)
2: t “ 1
3: while f̃ptq ą fpxq ` αt∇fpxqT∆x do
4: t “ βt

5: return t

Do not be confused by fpxq ` αt∇fpxqT∆x, it is a linear function of t, since fpxq and
α∇fpxqT∆x are constants. The intuition behind is this, we pick some 0 ă α ă 0.5 and degrade
the slope of the lower bound fpxq ` t∇fpxqT∆x by a factor of α, and then search for such t
where f̃ptq ď fpxq ` αt∇fpxqT∆x. This situation is illustrated in the Figure ??.

To see why this algorithm terminates consider that for a small enough t ą 0 the function
value fpx` t∆xq is almost fpxq ` t∇fpxqT∆x and since ∇fpxqT∆x ă 0 we have the following

fpx` t∆xq « fpxq ` t∇fpxqT∆x ă fpxq ` αt∇fpxqT∆x.

Notice that the algorithm will terminate with t “ 1 or t P pβt0, t0s, where t0 is a point such that
f̃pt0q “ fpxq ` αt∇fpxqT∆x.
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t0

fpx` t∆xq

fpxq ` t∇fpxqT∆x
fpxq ` αt∇fpxqT∆x

t

Figure 3.1: Backtracking illustration.

3.1.1 Gradient descent

We are ready to instantiate our first descent method, namely the gradient descent algorithm.
Intuition is really straightforward, by using the gradient at some point we obtain local infor-
mation about the direction where the objective is going up the fastest, so we take the opposite
direction.

Algorithm 4 Gradient descent method
1: procedure Gradient descent(x P dom f)
2: while True do
3: ∆x “ ´∇fpxq.
4: if }∆x}2 ă η then
5: break
6: Choose t ą 0 by line search.
7: x “ x` t∆x.
8: return x

Convergence analysis

We now show converge analysis for the case of the exact line search. Let f̃ : R Ñ R be a
function of a step length defined as f̃ptq “ fpx ´ t∇fpxqq, such that x ´ t∇fpxq P S. Setting
y “ x´ t∇fpxq to the inequality (3.4) we get

f̃ptq ď fpxq ´ t}∇fpxq}22 `
Mt2

2 }∇fpxq}22.

Since exact line search is used, we minimize over t both sides of the inequality. On the left hand
side we obtain texact that minimizes f̃ , and since the right hand side is a simple quadratic it is
minimized by t “ 1{M and the minimum is attained at fpxq ´ 1

2M }∇fpxq}
2
2. Thus, we have

f̃ptexactq “ fpxpk`1qq ď fpxpkqq ´
1

2M }∇fpxpkqq}22.

Now we subtract p‹ and by using (3.3) in the form of }∇fpxpkqq}22 ě 2mpfpxpkqq ´ p‹q we get

fpxpk`1qq ´ p‹ ď p1´m{Mqpfpxpkqq ´ p‹q.
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If we apply this inequality recursively, we get

fpxpkqq ´ p‹ ď p1´m{Mqkpfpxp0qq ´ p‹q. (3.5)

Thus, we conclude that fpxpkqq converges to p‹ as k Ñ8 at least as fast as geometric sequence.

Remark 3.5 (Gradient descent drawback). Even though by (3.5) the gradient descent algorithm
converges exponentially with the number of iterations, it depends on unknown constants m,M .
The most non-obvious fact that this algorithm can work really bad. Recall that m and M were
a lower and upper bounds on the eigenvalues of ∇2fpxq for all x P S, so depending on the initial
step xp0q if 0 ă m{M ! 1 we might get horrible performance. ˝

3.1.2 Newton’s method

We now look at some improvements of the gradient method that will bring us to the Newton’s
method.
Remark 3.6 (Directional derivative). Consider the first order Taylor approximation of fpx` vq
at v “ 0

fpx` vq « fpxq `∇fpxqT v.

Here the term ∇fpxqT v corresponds to the directional derivative of fpxq in the direction of v.
The directional derivative tells us the following, if we are at x how does the function changes if
we move in the direction of v. ˝

Thus, now we want to choose v in such a way that the directional derivative is as negative as
possible. Obviously, we normalize ∇fpxqT v by }v}, since we are only interested in the direction
and but in the magnitude.
Definition 3.2 (Normalized steepest ascent direction). Suppose } ¨ } is an arbitrary norm on
Rn. A normalized steepest descent direction is defined as

∆xnsd “ argmin t∇fpxqTu | }u} “ 1u. e

The most unintuitive result is this, if we want to determine the direction where the function
decreases the fastest, our result will depend on the norm.
Definition 3.3 (Dual norm). Let } ¨ } be a norm on Rn. The function } ¨ }˚ : Rn Ñ R defined as

}a}˚ “ supt|aTx| | }x} ď 1u “ sup
x‰0

aTx

}x}

is a called the dual norm of } ¨ }. e

We can also interpret the dual norm as an operator norm of aT , recall 1.64. Intuition behind
the dual norms is the following, if we interpret aT as a function aT p¨q, the dual norm of aT gives
the largest function value of aT p¨q divided by the norm of the maximizer5.
Definition 3.4 (Unnormalized steepest descent direction). Suppose } ¨ } is an arbitrary norm
on Rn and } ¨ }˚ is the corresponding dual norm. The descent direction

∆xsd “ }∇fpxq}˚∆xnsd

is called an unnormalized steepest descent direction. e

5In fact, aT
p¨q is a linear functional 1.54 given by the Euclidean inner product on Rn, i.e. xa, xyRn
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Remark 3.7 (Unnormalized steepest descent direction property). By the definition of the dual
norm we obtain

∇fpxqT∆xnsd “ ´∇fpxqT
˜

argmax
}u}“1

∇fpxqTu

¸

“ ´}∇fpxq}˚

Now we have the following useful property of ∆xsd

∇fpxqT∆xsd “ }∇fpxq}˚∇fpxqT∆xnsd “ ´}∇fpxq}2˚. ˝

We now look at some concrete examples of ∆xnsd and ∆xsd for given norms.
Example 3.8 (Steepest descent in the Euclidean norm). Notice if we use the Euclidean norm,
then the steepest descent direction ∆xsd is in fact the negative gradient. To see this we first
show that the Euclidean norm is self-dual

}∇fpyq}˚ “ sup
x‰0

|∇fpyqTx|
}x}2

.

By the Cauchy–Schwarz inequality we get

|∇fpyqTx|
}x}2

ď
}∇fpyq}2 }x}2

}x}2
.

If we take x “ c∇fpyq with c ‰ 0 we get the equality, so the maximum value is }∇fpyq}2, hence
the Euclidean norm is self dual. Now applying ∆xnsd “ ´∇fpxq to the Property 3.7, we get
´}∇fpxq}22, hence we conclude that the negative gradient gives the direction of the steepest
descent in the Euclidean norm. l

Example 3.9 (Steepest descent for quadratic norm). Supposed we are given a quadratic norm
} ¨ }P : Rn Ñ R such that

}a}P “ pa
TPaq1{2 “ }P1{2a}2, P P Sn``.

The corresponding dual norm is }a}˚ “ }P´1{2a}2. The normalized and unnormalized steepest
descent directions are given by

∆xsd “ ´P´1∇fpxq, ∆xnsd “ ´
`

∇fpxqTP´1∇fpxq
˘´1{2 P´1∇fpxq.

The steepest descent direction can be viewed as the gradient descent direction in new coordinates.
We define y “ P1{2x so }y}2 “ }x}P and g : Rn Ñ R such that

gpyq “ fpP´1{2yq “ fpxq.

Now we apply the gradient descent method on gpyq

ypk`1q “ ypkq ´ η∇gpypkqq “ ypkq ´ ηP´1{2∇fpP´1{2ypkqq.

In terms of the original coordinates we obtain

P´1{2ypk`1q “ P´1{2ypkq ´ ηP´1{2P´1{2∇fpP´1{2ypkqq

xpk`1q “ xpkq ´ ηP´1∇fpxpkqq.

We conclude that ´P´1∇fpxpkqq corresponds to the steepest descent direction ∆xsd in quadratic
norm } ¨ }P Furthermore, we derive ∆xnsd by the definition of ∆xsd. l
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Now the question is how we choose } ¨ } for the faster convergence. The intuitive approach
is to choose P that approximately matches the level curves of the given function f . Another
way to think about P is that we want to transform the coordinates in such a way that the level
curves are almost rounded, then we apply the gradient decent method.

These ideas bring us to the Newton’s method. The intuition is quite straightforward, we
choose the norm based on our best guess of the curvature of f . Moreover, we change the norm
after every step made, since the curvature also changes. Surely, one of the best guesses is given
by the Hessian ∇2fpxq. Thus, using 3.9 we define the Newton step.
Definition 3.5 (Newton step). Suppose we are given an unconstrained problem 3.1. Let x P
dom f , the vector ∆xnt defined as

∆xnt “ ´∇2fpxq´1∇fpxq

is called the Newton step for fpxq. e

Remark 3.10 (Descent direction of the Newton step). Since we assumed that f is strictly convex,
the Hessian for every x P dom f is positive definite, hence invertible and ∇2fpxq´1 P Sn``. Thus,
for all ∇fpxq ‰ 0, x P S we have

∇fpxq∆xnt “ ´∇fpxqT∇2fpxq´1∇fpxq ă 0.

Thus the Newton step is a valid descent direction. ˝

Remark 3.11 (Interpretations of the Newton step).

• Consider the second order Taylor approximation of f at the point x denoted by T2,xpx`vq

T2,xpx` vq “ fpxq `∇fpxqT v ` 1
2v

T∇2fpxqv.

It is a convex quadratic function of v, hence to find the minimizer we need to solve the
system of linear equations

∇vT2,xpx` vq “ ∇fpxqT v `∇2fpxqv “ 0.

The solution is given by v “ ´∇2fpxq´1∇fpxq that is exactly the Newton step.

• Another interpretation is the following. Suppose we are at x and we are searching for v
such that ∇fpx`vq “ 0. This actually corresponds to finding x‹ “ x`v since ∇fpx‹q “ 0.
However, if f : Rn Ñ R is a non-quadratic function equality ∇fpx`vq “ 0 leads to solving
system of non-linear equations. To avoid this, we simply linearize ∇fpx ` vq by the first
order Taylor approximation at x and set the approximation to zero

∇fpx` vq « T1,xpx` vq “ ∇fpxq `∇2fpxqv “ 0.

Thus, we have a system of linear equations and the solution is given by v “ ∆xnt.

• The last interpretation is exactly derived from our motivation to adapt P P Sn`` to the
level curves for better convergence in } ¨ }P . Thus by Example 3.9 ∆xnt is the steepest
descent direction at x induced by the Hessian ∇2fpxq, in other words

}u}∇2fpxq “ pu
T∇2fpxquq1{2. ˝

Lemma 3.6 (Affine invariance). Newton step is independent of a linear change of coordinates.
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Proof. Suppose A P Rnˆn is non-singular. We define a function gpyq “ fpAyq. The gradient
and the Hessian of g are

∇gpyq “ AT∇fpxq ∇2gpyq “ AT∇2fpxqA, x “ Ay. (3.6)

Thus, the Newton step for g at y is given by

∆ynt “ ´∇2gpyq´1∇gpyq “ ´pAT∇2fpAyqAq´1pAT∇fpAyqq “ A´1∆xnt. (3.7)

Here ∆xnt is the Newton step of f at x “ Ay. Hence we see if x “ Ay then the Newton step
for f at x is ∆xnt “ A∆ynt, i.e. the same transformation holds.

According to the lemma above, if we change coordinates the descent direction remains un-
changed and we will make the same Newton steps in new coordinate system. Thus if xp0q “ Ayp0q
then xpkq “ Aypkq.
Remark 3.12 (Gradient descendent and affine invariance). However, the gradient descent direc-
tion is not affine invariant. To see this, suppose gpyq “ fpAyq with A P Rnˆn, det A ‰ 0. The
gradient of g is given by ∇gpyq “ AT∇fpxq with x “ Ay, so the gradient descent direction
for gpyq is given by ∆y “ AT∆x. Finally, if we choose x “ Ay then the gradient descendent
direction for fpxq is ∆x “ AT´1∆y, hence linear transformation differs. ˝

Definition 3.7 (Newton decrement). Suppose we have an unconstrained optimization problem
3.1. The following quantity

λpxq “ p∇fpxqT∇2fpxq´1∇fpxqq1{2

is called the Newton decrement of f at a point x. e

Remark 3.13 (Newton decrement properties).

• Newton decrement gives an estimate of suboptimality of fpxq, for some x P S. based on
the second order Taylor approximation of f at x

fpxq ´ inf
v
T2,xpvq “fpxq ´ T2,xpx`∆xntq

“fpxq ´ fpxq ´∇fpxqT∆xnt ´
1
2∆xTnt∇2fpxq∆xnt

“
1
2λpxq

2.

• Notice that the Newton decrement can be viewed as the quadratic norm of Newton step
defined by the Hessian

λpxq “
`

∆xTnt∇2fpxq∆xnt
˘1{2

“ }∆xnt}∇2fpxq. (3.8)

• We can also use λpxq in backtracking line search since

∇fpxqT∆xnt “ ´λpxq2.

• By (3.6) and 3.7 we have that for gpyq “ fpAyq, with det A ‰ 0, the Newton decrement
λgpyq is equal to λf pxq for f at x “ Ay. Thus, Newton decrement is affine invariant since
the stopping criterion for gpyq and fpxq is the same. ˝
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We now are ready to present Newton’s method, namely damped Newton’s method, since we
can use step length t ă 1.

Algorithm 5 Newton’s method
1: procedure Newton unconstrained(x P dom f, ε ą 0)
2: while True do
3: ∆xnt “ ´∇2fpxq´1∇fpxq
4: λpxq2 “ ∇fpxqT∇2fpxq´1∇fpxq
5: if λpxq2{2 ď ε then
6: return x
7: Choose t ą 0 via backtracking
8: x “ x` t∆xnt
9: return x

Convergence analysis

We now present outline of convergence analysis for Newton’s method and its conclusions, com-
plete proof can be found in the book [1, p. 489-491].

Assume that f is twice continuously differentiable and strong convexity holds, hence by
implications of strong convexity we have

Dm,M ą 0 : mI ď ∇2fpxq ď MI, @x P S.

Also suppose that ∇2fp¨q is Lipschitz continuous 1.63 on S with constant L, i.e.

}∇2fpxq ´∇2fpyq}2 ď L}x´ y}2, x, y P S.

Remark 3.14 (Operator norm). Here } ¨ }2 : Rnˆm Ñ R corresponds to the operator norm 1.64
of X : Rn Ñ Rn, with matrix X P Rnˆn induced by the Euclidean norm, i.e.

}X}2 “ sup
0‰uPRn

}Xu}2
}u}2

“ σmaxpXq.

As we see this this norm is given by the largest singular value of X. Moreover, since ∇2fpxq P Sn`
this norm gives the largest eigenvalue. ˝

Remark 3.15 (Comments on Lipschitz constant). Actually Lipschitz constant L says how fast
the second derivative changes, so we can interpret L as a bound on the third derivative, which
in case of multivariable functions is a third order tensor or a 3-linear form. Notice that if f
is quadratic, the second order approximation is the function itself, so the Hessian is constant,
hence we can take L “ 0. Now intuition is this, if quadratic model was good enough the third
derivative is small, so the Newtons method will perform really well. Thus, there are two ways
to say that Newton’s method works well

• The third derivative is small,

• The second derivative has small Lipschitz constant.

We rather interpret L in the second way, to avoid dealing with obscure tensors. ˝

The result of convergence proof is that there exist η, γ such that 0 ă η ď m2{L and γ ą 0
and the following holds:

• If }∇fpxpkqq}2 ě η then
fpxpk`1qq ´ fpxpkqq ď ´γ. (3.9)

65



3. Algorithms

• If }∇fpxpkqq}2 ă η then backtracking line search selects tpkq “ 1 and we have

L

2m2 }∇fpx
pk`1qq}2 ď

ˆ

L

2m2 }∇fpx
pkqq}2

˙2
. (3.10)

We now analyse the second result. Assume }∇fpxpkqq}2 ă η holds, then for every next iteration
the condition remains satisfied. To see this, recall that 0 ă η ď m2{L and consider the following

L

2m2 }∇fpx
pk`1qq}2 ď

ˆ

L

2m2 }∇fpx
pkq}2

˙2
ă

ˆ

L

2m2

˙2
η2 ď

L

4m2 η.

Applying the inequality ` ą k times we get

L

2m2 }∇fpx
p`qq}2 ď

ˆ

L

2m2 }∇fpx
pkqq}2

˙2`´k

ď

ˆ

1
2

˙2`´k

.

Thus, using implications of strong convexity, namely (3.3) we obtain

fpxplqq ´ p‹ ď
L

2m2 }∇fpx
plqq}22 ď

2m3

L2

ˆ

1
2

˙2l´k`1

. (3.11)

As we see in the last inequality if }∇fpxpkqq}2 ă η algorithm converges very fast. Informally,
the number of correct digits doubles after each iteration. This type of convergence is called
quadratic convergence.

Depending on the condition }∇fpxpkqq}2 ă η, the algorithm can be divided into two phases.
First one is called damped Newton phase and the second is quadratically convergent stage.

We now count the number of iterations in each stage separately. Since in first phase value
of the objective decreases at least by γ the total number of iterations is less than

fpxp0qq ´ p‹

γ
.

To derive the bound in quadratic convergent phase we use (3.11) and take ε0 “ 2m3

L2

fpxplqq ´ p‹ ď ε0

ˆ

1
2

˙2l´k`1

ď ε.

Now consider the following

ε02´2l´k`1
ď ε

log2 ε0 ´ 2l´k`1 ď log2 ε

log2 log2pε0{εq ď l ´ k ` 1.

Hence to achieve precision at least ε we perform no more than log2 log2pε0{εq iterations. Thus,
total number of iterations is given by

fpxp0qq ´ p‹

γ
` log2 log2pε0{εq.

Remarkably, number of iterations for good solution and outstandingly precise one differers by
the last term, that grows extremely slowly.
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3.2 Equality constrained minimization
We are stepping towards general methods for solving convex problems, and now add simplest
constrains, namely equality ones, these, according to the definition of the convex problem 1.3,
are linear. In this section we modify the Newton’s method to handle equality constrains.
Definition 3.8 (Equality constrained minimization). Let f : Rn Ñ R be a convex twice contin-
uously differentiable function, A P Rpˆn such that rankA “ p ă n and b P Rp. An optimization
problem given by

minimize fpxq
subject to Ax “ b

with p‹ “ infxtfpxq | Ax “ bu finite and attained, is called the convex equality constrained
minimization problem. e

Using Lagrange duality and the KKT conditions 1.54 we formulate the optimality conditions.

Corollary 3.9 (Optimality conditions). Assume we have an equality constrained minimization
problem and x‹ P dom f . Point x‹ is optimal point if and only if there exists ν‹ P Rp such that
the following hold

Ax‹ “ b, ∇fpx‹q `AT ν‹ “ 0.
These equations are called the KKT equations.

As we discussed earlier, assuming that the problem is not quadratic, ∇fpxq `AT ν “ 0 is
a system of nonlinear equations in x. As we will see, solving convex quadratic problems with
equality constants is pure linear algebra.
Example 3.16 (Equality constrained convex quadratic optimization). Suppose we are given a
problem

minimize fpxq “ p1{2qxTPx` qTx` r, (3.12)
subject to Ax “ b,

with P P Sn`, A P Rpˆn, b P Rp, q P Rn, such that rankP “ p ă n. The optimality condition
is given by

Ax‹ “ b, Px‹ `AT ν‹ ` q “ 0.
We can rewrite the optimality condition using block matrix notation as the following

„

P AT

A 0

 „

x‹

ν‹



“

„

´q
b



.

As we see the optimality condition is just a system of n ` p linear equations. This system is
called the KKT system for equality constrained QP (3.12) with the KKT matrix of coefficients.

Solution of the KKT system depends on the non-singularity of KKT matrix. If the matrix
is non-singular there exists exactly one pair px‹, ν‹q solving the KKT system. If The KKT
matrix is singular but the system is solvable then there exists infinitely many solutions px‹, ν‹q,
otherwise the KKT system is unsolvable, meaning that the optimization problem is unbounded
below or infeasible. l

Lemma 3.10 (Non-singularity of the KKT system). Suppose we are given the problem (3.12).
The following condition for 0 ‰ x P Rn

Ax “ b ùñ xTPx ą 0,

is equivalent to non-singularity of the KKT matrix.
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Proof. We prove both implications by contradiction.

• ðù Suppose Ax “ 0, Px “ 0, x ‰ 0, then we obtain
„

P AT

A 0

 „

x
0



“ 0,

hence the KKT matrix is singular.

• ùñ Suppose the KKT matrix is singular, i.e. for x, ν not both zero we obtain
„

P AT

A 0

 „

x
ν



“ 0,

Thus, Px `AT ν “ 0 and Ax “ 0. We multiply the first equality by xT on the left and
get xTPx ` xTAT ν “ 0. Applying Ax “ 0 first equality reduces to xTPx “ 0, if x ‰ 0
we immediately get contradiction, if x “ 0 then ν ‰ 0 and Aν “ 0, i.e. rankA ă p.

3.2.1 Newton’s method with equality constrains

This brings us to the extension of the Newton step and the Newton decrement for equality
constrained minimization. In case of constrained minimization we need to preserve feasibility at
each iteration, moreover, the initial point xp0q should also be feasible. This actually means that
every Newton step must satisfy A∆xnt “ 0, i.e. ∆xnt is an element of the null space of A.
Definition 3.11 (Newton step for equality constrained optimization). Suppose we are given
an equality constrained problem 3.8. The Newton step ∆xnt for feasible x is characterized by
solution in v of

„

∇2fpxq AT

A 0

 „

v
w



“

„

´∇fpxq
0



,

with dual variable w. e

Notice that in unconstrained case the system of linear equations reduces to ∇2fpxqv “
´∇fpxq. Thus, the Newton step for equality constrained optimization is an extension of the
original Newton step. Moreover, the same interpretations as in unconstrained case hold.
Remark 3.17 (Interpretations of the Newton step).

• As the example 3.12 suggests the Newton step ∆xnt solves an optimization problem with
objective given by the second order Taylor approximation near x with variable v

minimize T2,xpx` vq “ fpxq `∇fpxqT v ` p1{2qvT∇2fpxqv

subject to Apx` vq “ b.

• The Newton step can be also viewed as the solution to linearized version of optimality
conditions 3.9, taking x‹ “ x`∆xnt and ν‹ “ w we obtain

∇fpxq `∇2fpxq∆xnt `ATw “ 0, Apx`∆xntq “ b.

Since Ax “ b we obtain exactly the same system of linear equations as in the definition
3.11

∇2fpxq∆xnt `ATw “ ´∇fpxq, A∆xnt “ 0. ˝
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Definition 3.12 (Newton decrement for equality constrained optimization). Assume that we
are given an equality constrained problem 3.8. The Newton decrement is defined as the following

λpxq “ p∆xTnt∇2fpxq∆xntq1{2. e

Notice that by the definition the Newton decrement in equality constrained case is equal
to (3.8). However it can not be expressed as 3.7, since we are using extended version of the
Newton step. The Newton decrement for constrained problems derives its properties from an
unconstrained case.
Remark 3.18 (Properties of the Newton decrement).

• The Newton decrement gives an estimation of suboptimality for fpxq based on the second
order approximation

fpxq ´ inf
v
tT2,xpx` vq | Apx` vq “ bu

“ fpxq ´ fpxq ´∇fpxqT v ` 1
2v

T∇2fpxqv

“ ´λpxq2{2.

Since by the definition 3.11 we have ∆xTnt∇2fpxq∆xnt “ ´∆xTnt∇fpxq.

• We can also use the Newton decrement in the backtracking line search

∇fpxqT∆xnt “ ´λpxq2. ˝

Lemma 3.13 (Affine invariance). The Newton step and the Newton decrement for an equality
constrained optimization problem 3.8 are affine invariant.

Proof. Suppose Q P Rnˆn is invertible. We define function gpyq “ fpQyq “ fpxq, x “ Qy. The
gradient and the Hessian for g are

∇gpyq “ QT∇fpQyq, ∇2gpyq “ QT∇2fpQyqQ.

We now formulate the following optimization problem

minimize gpyq
subject to AQy “ b. (3.13)

To start with, we determine the Newton step ∆xnt corresponding to the original problem 3.8
by solving system of linear equations

„

∇2fpxq AT

A 0

 „

∆xnt
w



“

„

´∇fpxq
0



.

We reformulate this system as

∆xnt “ ´∇2fpxq´1pATw `∇fpxqq, A∆xnt “ 0

Now we work out the Newton step ∆ynt for the optimization problem given by g (3.13)
„

QT∇2fpQyqQ QTAT

AQ 0

 „

∆ynt
w̄



“

„

´QT∇fpQyq
0



.
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This system can be rewritten as

∆ynt “ ´Q´1∇2fpQyq´1pAT w̄ `∇fpQyqq, AQ∆ynt “ 0

Notice if x “ Qy the system above takes the following form

∆ynt “ Q´1∆xnt, A∆xnt “ 0.

Thus, the the Newton steps for x and y are related by the same transformation and w̄ “ w.
Finally, using ∆ynt “ Q´1∆xnt we see that the Newton decrement λgpyq matches λf pxq for
x “ Qy.

Now we present the Newton’s method for equality constrained minimization, which is a
modified version of the algorithm for unconstrained problems 5. However, here we use the
extended Newton step and decrement. This method is usually called feasible descent method,
since every xpk`1q “ xpkq ` t∆xnt is a feasible point and fpxpk`1qq ă fpxpkqq .

Algorithm 6 Newton’s method for equality constrained problems
1: procedure Newton equality(x P dom f, ε ą 0)
2: while True do
3: Compute ∆xnt according to 3.11.
4: λpxq2 “ ∆xnt∇2fpxq∆xnt
5: if λpxq2{2 ď ε then
6: return x
7: Choose t ą 0 via backtracking
8: x “ x` t∆xnt
9: return x

Convergence analysis

To show that Newton’s method for equality constrained optimization converges, we eliminate
the equality constraints and propagate them to the objective

minimize
z

fpFz ` x̃q.

Here columns of F P Rnˆpn´pq span the null space of A, i.e. AF “ 0, and rankF “ n´ p. The
point x̃ is a particular solution of Ax “ b.

In general, the proof remains the same. The relation between Newton’s method applied on
the eliminated problem and one that directly handles the equality constraints along with slightly
changed convergence analysis can be found in the book [1, p. 528 - 531].

Here we only outline modified assumptions of the Newton’s method for inequality constraints.

• The sublevel sets of f are closed, hence the initial sublevel set S “ tx P Rn | x P

dom f, fpxq ď fpxp0qq, Ax “ bu with xp0q P dom f,Axp0q “ b is also closed.

• For any x, y P S the Hessian is Lipschitz continuous on S, i.e. there exists a positive
Lipschitz constant such that }∇2fpxq ´∇2fpyq}2 ď L}x´ y}2.

• The inverse of the KKT matrix exists and is bounded on S, i.e.
›

›

›

›

›

„

∇2fpxq AT

A 0

´1
›

›

›

›

›

2

ď K.

We also assume that the Hessian as a function of x P S is bounded, i.e. ∇2fpxq ď

MI, M ą 0.
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To understand the last assumption on KKT matrix recall operator norm 3.14, since the KKT
matrix is symmetric it has real eigenvalues. Notice if there were no equality constraints this
condition reduces to }∇2fpxq´1}2 ď K on S, so if m “ 1{K we have ∇2fpxq ě mI from strong
convexity assumptions (3.1). Here the norm of the inverse of the KKT matrix returns 1{|λ1|,
where |λ1| ě 1{K is the smallest eigenvalue of the KKT matrix in the absolute value, hence we
want positive and negative eigenvalues be away from zero.

3.3 Inequality constrained minimization
We now are ready to look at the algorithm that handles general convex problems with inequal-
ities. As previously we reformulate the optimization problem in a proper way to apply already
shown algorithms for equality constrained and unconstrained minimization.
Definition 3.14 (Inequality constrained problem). Let f0, . . . , fm : Rn Ñ R be a convex twice
continuously differentiable functions, A P Rpˆn such that rankA “ p ă n. An optimization
problem given by

minimize f0pxq

subject to fipxq ď 0, i “ 1, . . . ,m
Ax “ b

where p‹ is a finite and attained optimal value and solution x‹ exists. This problem is called a
convex inequality constrained minimization problem. e

As we see QCQP, QP, LP are just special cases of inequality constrained problems.
Remark 3.19 (The KKT conditions). We also assume that the problem is strictly feasible, i.e.
Dx P D such that Ax “ b and fipxq ă 0, i “ 1, . . . ,m so the Slater’s qualification holds 1.52,
hence the strong duality attained. By the characterization of optimal point 1.55 vector x‹ is
optimal if and only if there exist dual optimal λ‹ P Rm, ν‹ P Rp and the KKT conditions hold

Ax‹ “ b,

fipx
‹q ď 0, i “ 1, . . . ,m.
λ‹ ě 0, (3.14)

λ‹T fipx
‹q “ 0, i “ 1, . . . ,m.

∇f0px
‹q `

řm
i“1 λ

‹fipx
‹q `AT ν‹ “ 0.

˝

3.3.1 Barrier method

Now we reformulate the inequality constrained problem to one with equality constrains, although
with non-differentiable objective. Further, we look how to properly approximate it. The original
problem 3.14 can be reformulated as

minimize f0pxq `
řm
i“1 I´pfipxqq, (3.15)

subject to Ax “ b.

Here I´ : RÑ R is an irritation function for negative reals given by

I´pxq “

#

0, x ď 0,
8, x ą 0.
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Since I´ is not differentiable we approximate it as the following

I´ « pI´ “ ´p1{tq logp´xq, dom pI´ “ R``.

Here parameter t ą 0 determines the accuracy of the approximation, and as we will see later when
tÑ8 the approximation gets more accurate. The given approximation is valid by assumption
of strict feasibility. Notice that the approximation of the indicator function is differentiable
and closed, since every its sublevel set is closed. We also extend pI´ to take value of infinity
when x ą 0, so pI´ is convex non-decreasing function by the composition rule 1.33. We now
reformulate 3.15 as the following

minimize f0pxq `
řm
i“1´p1{tq logpfipxqq (3.16)

subject to Ax “ b.

Definition 3.15 (Logarithmic barrier). Suppose we have an inequality optimization problem
3.14. Let ϕ : Rn Ñ R be a function with domain domϕ “ tx P Rn | fipxq ă 0, i “ 1, . . . ,mu
defined as

ϕpxq “ ´
m
ÿ

i“1
logp´fipxqq.

Function ϕ is called the logarithmic barrier or simply the log barrier. e

For further purposes we work out the gradient and the hessian of the log barrier

∇ϕpxq “
m
ÿ

i“1

1
´fipxq

∇fipxq

∇2ϕpxq “
m
ÿ

i“1

1
fipxq2

∇fipxq∇fipxqT `
m
ÿ

i“1

1
´fipxq

∇2fipxq.

Now we closely look at the approximated optimization problem (3.16)

minimize tf0pxq ` ϕpxq, (3.17)
subject to Ax “ b.

Suppose the Newton’s method is used for solving this problem, and for @t ą 0 the solution x‹ptq
is unique, later we will discuss these assumptions.
Definition 3.16 (Central path). A set tx‹ptq P Rn | t ą 0u is called the central path of the
problem 3.14. Every x‹ptq is called the central point. e

Remark 3.20 (Characterization of central points). Every central point x‹ptq on the central path
can be characterized as the following: x‹ptq is a central point if and only if it is strictly feasible
and there exists ν̄ P Rp such that

0 “t∇fpx‹ptqq `∇ϕpx‹ptqq `AT ν̄

“∇fpx‹ptqq `
m
ÿ

i“1

1
´tfipx‹ptqq

∇fipx‹ptqq ` p1{tqAT ν̄. ˝

Remark 3.21 (Duality). Notice that by the characterization of central points we can work out
the dual variables λ‹ptq, ν‹ptq defined as

ν‹ptq “ ν̄{t, λ‹i ptq “
1

´tfipx‹ptqq
, i “ 1, . . . ,m.
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3.3. Inequality constrained minimization

Since λ‹i ptq ą 0 and by 3.20 x‹ptq minimizes the Lagrangian at λ‹ptq, ν‹ptq

Lpx, λ‹ptq, ν‹ptqq “ f0pxq `
m
ÿ

i“1
λ‹i ptqfipxq ` ν

‹ptqT pAx´ bq

points λ‹ptq, ν‹ptq are dual feasible. Hence, the dual function at λ‹ptq, ν‹ptq is finite and we have

gpλ‹ptq, ν‹ptqq “ f0px
‹ptqq `

m
ÿ

i

λ‹i ptqfipx
‹ptqq ` ν‹ptqT pAx‹ptq ´ bq

loooooomoooooon

“0

“ f0px
‹ptqq ´m{t.

By definition gpλ‹ptq, ν‹ptqq determines a lower bound on f0px
‹ptqq, so we can determine the

suboptimality of f0px
‹ptqq as

f0px
‹ptqq ´ p‹ ď m{t.

The inequality above actually proves the intuition, that when tÑ8 central point x‹ptq converges
to x‹ of 3.14. ˝

Remark 3.22 (Interpretation). The characterization 3.20 can be interpret in terms of the modified
KKT conditions. Point x‹ptq is optimal if and only if there exist λ, ν such that

Ax‹ptq “ b, fipx
‹ptqq ď 0, i “ 1, . . . ,m.

λ ě 0
λT fipx

‹ptqq “ 1{t, i “ 1, . . . ,m.
∇f0px

‹ptqq `
řm
i“1 λfipx

‹q `AT ν “ 0

As we see these conditions slightly differers from conditions given in 3.14, in particular we
replaced complementary condition λifipxq “ 0 by λ‹fipx

‹ptqq “ 1{t. Thus as t increases we
approximate the original KKT conditions. ˝

Now we are ready to look at the algorithm handling inequality constrained problems, that
is actually a simple extension of the Newton’s method. The method is called barrier method or
SUMT, sequential unconstrained minimization technique, since Newton’s method for equality
constrains corresponds to applying original Newton’s method on eliminated problem.

Algorithm 7 Barrier method
1: procedure Barrier(strictly feasible x, tp0q ą 0, µ ą 1, ε ą 0)
2: t “ tp0q

3: while True do
4: Centring step: x‹ptq “ argmin ttf0pxq ` ϕpxq | Ax “ bu
5: x “ x‹ptq
6: if m{t ă ε then
7: return x
8: t “ µt

As we see the algorithm produces sequence of x‹ptq until the duality gap is not small enough,
i.e. m{t ă ε. The algorithm can also return pλ‹ptq, ν‹ptqq as a certificate proving the optimality
of x. As was assumed earlier, in the centring step we use Newton’s method, however any other
method handling equality constrains can be used. We usually call centring step outer iteration
and iterations of the Newton’s method inner iterations.
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3. Algorithms

Remark 3.23 (Choice of µ and t0). As we wil see in convergence analysis choice of µ determines
the trade-off between the number of inner and outer iterations, choosing µ large there will be
fewer outer, however number of inner steps increases. The intuition behind this is the following,
when µ is small enough previous x already approximates well enough, so we produce a small
number of iterations in probably in quadratic convergent stage. The usual choice of µ is between
10 and 50. In addition, choice of t0 determines the same trade-of since it gives how “far” the
next centring step xp1q will be. ˝

Remark 3.24 (Feasibility). Notice that the barrier method requires strictly feasible starting point
x. To find one or determine that such a point does not exist we formulate the following opti-
mization problem

minimize
x,s

s

subject to fipxq ď s, i “ 1, . . . ,m
Ax “ b.

Here decision variables are x P Rn, s P R. Fortunately, this problem is always feasible,
we just pick any xp0q P dom f1 X ¨ ¨ ¨ X dom fm as a starting point and determine sp0q “
maxi“1,...,m fipx

p0qq` ξ where ξ ą 0. Now barrier method can be applied on feasibility problem.
We terminate the barrier method when spkq ă 0 and use xpkq as a starting point for the

original problem. If we finished with spkq ą 0 this means that there is no such x that for all
fi satisfies fipxq ď 0 and the problem is infeasible. However if spkq “ 0 returned the original
problem is feasible but not strictly feasible, hence we can not apply the barrier method. ˝

Convergence analysis

Since whole barrier method is based on the Newton’s method for equality constrains, we do
need a separate proof. Suppose that tf0 ` ϕ can be minimized by Newton’s method fot t “
tp0q, µtp0q, µ2tp0q, . . . . We know that the duality gap will be exactly m{µpkqtp0q after k iterations
so we can determine the precise number of steps

m ď εµktp0q

logµm ď k ` logµ εtp0q

k ě
logpm{pεtp0qqq

logµ

k “

S

logpm{pεtp0qqq
logµ

W

plus initial centering step in the feasibility phase. Here we exactly see the trade-of determined
by µ.

Thus, we conclude that the problem is solvable if tf0`ϕ satisfies the conditions discussed in
the convergence analysis of Newton’s method for equality constrained minimization. To ensure
strong convexity we can add new pm ` 1qth constraint }x}22 ď R2, this constraint adds a new
term ´ logpR2´ xTxq “ fm`1pxq to ϕpxq. Now we define ϕ̃pxq “ ´

řm`1
i“1 logp´fipxqq and show

that ∇2pf0pxq ` ϕ̃pxqq is positive definite. The gradient and the Hessian of fm`1pxq are

∇fm`1pxq “
2

R2 ´ xTx
x

∇2fm`1pxq “
2

pR2 ´ xTxq2
ppR2 ´ xTxqI` 2xxT q.

74



3.3. Inequality constrained minimization

Now consider the following

∇2pf0pxq ` ϕ̃pxqq “ ∇2pf0pxq ` ϕpxqq `
2

pR2 ´ xTxq
I` 2

pR4 ´ xTxq2
xxT

ě ∇2pf0pxq ` ϕpxqq `
2
R2 I

ě
2
R2 I.

Thus, f0 ` ϕ̃ is strongly convex.
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Chapter 4
Applications

In this chapter we focus on programming part of mathematical optimization. Firstly, we recall
the Kernel SVM learning rule and describe a problem of image recognition. Then we explore
existing and benchmark solvers in Julia and Python that can handle optimization problems.
Finally, we show how kernel SVM learning rule can be optimized with a selected solver.

4.1 Problem specification

A nice illustrative example of kernel SVM usage is image recognition, in particular the task is
to determine wether an image contains letter “X” or not. Some sampling from the dataset is
shown in the Figure 4.1.

(a) Images with letters “X”.

(b) Other images.

Figure 4.1: Dataset illustration.

Every image is represented by 16 ˆ 16 binary matrix. Since the dataset contains only 168
images, we enlarge it adding rotated versions of original images, i.e we rotate images by 90, 180,
270 degrees. Then for every image we add its transpose as well.Hence in total we obtain about
1500 images.

Since determining wether image contains “X” is a binary classification problem, we use kernel
SVM learning rule 2.4. For this example X Ď R16ˆ16 is an input space of images, Y “ ˘1 is
the output space of labels and ppx1, y1q, . . . , pxm, ymqq P pX ˆ Yqm is a training set of m points.
For the kernel function kp¨, ¨q : R16ˆ16ˆR16ˆ16 Ñ R we use the Gaussian kernel (1.7) defined as
kpx, yq “ exp

´

´
}x´y}22

2σ2

¯

. The task is to find the dual variable λ‹ that solves the optimization
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4. Applications

1 using JuMP
2 function solve_opt(K, y; optimizer, C=22)
3 dim = length(y)
4 m = Model(with_optimizer(optimizer))
5 @variable(m, 0 <= L[1:dim] <= C)
6 @variable(m, t)
7 @objective(m, Min, t)
8 @constraint(m, con1,
9 sum(L[i]*L[j]*y[i]*y[j]*K[i][j] for j in 1:dim for i in 1:dim)

10 <= sum(var for var in L) + t)
11 @constraint(m, con2, sum(y[i]*L[i] for i in 1:dim) == 0)
12 optimize!(m)
13

14 return value.(L)
15 end

Listing 1: Function for solving optimization problems for different optimizers.

problem

minimize
λPRm

m
ÿ

i,j“1
λiλjyiyjkpxi, xjq ´ 1Tλ

subject to 0 ď λi ď C, i “ 1, . . . ,m,
λT y “ 0.

Recall that, the constant C ą 0 gives the trade off between higher margin and number of
missclassifications, since higher margin leads to more missclassifications. Thus, in our final
model we have two free parameters C and σ, in the example section we will also establish a
good enough choice for them by cross validation.

4.2 Julia

In Julia programming language we use a nice modeling tool, namely JuMP [13]m for mathemat-
ical optimization that provides a simple API for solvers usage. In the following code Listing 1
is shown how to use JuMP for solving optimization problems. This function takes as an input
a kernel matrix K P Rmˆm, labels y P Rm, solver or optimizer and a hyperparameter C ą 0, for
now we stick with C “ 22. Firstly, we call the constructor for our model m by Model() with the
given optimizer. Here the macro @variable determines the decision variable λ, t6. Notice that
bounds on the decision variables can be directly handled in macro @variable. We use macros
@objective and @constraint to define objective and constraint functions. When the problem
is formulated we simply call optimize!(m) and return the solution λ‹7.

6We introduced a slack variable t for technical reasons, since solvers do not directly support QP.
7If the problem is feasible.
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4.2. Julia

1 using ECOS
2 using Gurobi
3 using Mosek
4 using MathOptInterfaceMosek
5

6 l = [ECOS.Optimizer, Gurobi.Optimizer, MosekOptimizer]
7 for solver in l
8 solve_opt(K, Y, optimizer = solver)
9 end

Listing 2: Solvers usage.

In the Julia section we focus on the following solvers

• ECOS [14],

• Gurobi [15],

• Mosek [16].

4.2.1 Solvers

The following code Listing 2 illustrates how to use solvers with function solve_opt.

ECOS ECOS is an embedded conic solver for second order cone programs, these can be viewed
as generalization of QCQP. Even though it is a distributed under GPL as we will see ECOS
shows competitive results comparable to commercial solvers. ECOS implements a sophisticated
version of the barrier method for second order cone problems.

Gurobi Gurobi is a commercial solver, however it is available for academic purposes. This
optimizer handles plenty of problems, including non-convex ones like integer linear programming
and integer second order cone problems. Remarkably, Gurobi also implements barrier method
for second order cone programs.

Mosek Mosek is another commercial tool available under academic licence. Comparing with
Gurobi, Mosek allows to solve more general convex problems, namely conic ones. In conic
optimization we have a convex objective function and the constrains are given by some convex
cone, like positive semidefinite cone 1.10. Additionally, Mosek can solve integer versions of linear
and second order cone programs. As other solvers, Mosek implements barrier methods.

4.2.2 Benchmarks

For benchmarking we use Julia package called BenchmarkTools.jl, it provides intuitive interface
for carrying out measurements. Usage of this package is illustrated in the code Listing 3. To
estimate time and memory usage we simply use macro @benchmarkable for our function. Then
we set benchmark variables and run our experiments. Setting seconds to 1800 means limits the
benchmark time to 30 minutes. In this benchmark we evaluate every model 12 times 2 times
per each sample to get good enough overview of the solvers performance.
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4. Applications

1 using BenchmarkTools
2 b = @benchmarkable solve_opt(K, Y, optimizer = Gurobi.Optimizer)
3 run(b, samples = 6, evals = 2, seconds = 1800)

Listing 3: Benchmarking.

Here we compare the solvers’ performance using the whole dataset8. Moreover, we slightly
extend it by moving around with images, i.e. every image is replaced with its two horizontally
shifted versions by one column. These manipulation allow us to get about 3000 of images, and
that is fairly enough for our benchmarks.

m 1500 images 2000 images 2500 images
solvers ECOS Gurobi Mosek ECOS Gurobi Mosek ECOS Gurobi Mosek
memory 6.62 5.85 6.29 11.68 10.38 11.10 18.35 16.24 17.39
min. time 31.125 18.004 15.749 113.89 44.145 35.611 239.76 90.531 72.696
mean time 33.211 18.763 16.305 117.16 45.360 36.406 252.71 94.004 74.475
max. time 35.498 19.493 18.050 122.16 47.149 37.267 282.59 98.024 77.011

Table 4.1: Benchmarks of the solvers performance, memory is measured in gibibytes and time
is measured in seconds.

The results of benchmarks are given in the Table 4.1.
Obviously, commercial solvers demonstrate better performance, but as we see open source

ECOS solver shows satisfying computer time results for not large problems. Notice that com-
putational time doubles every 500 images, so problem with about 4000 or 5000 images can be
solved in less than an hour with commercial solvers. Moreover, even not so large problems with
only 2000 images require more than ten gibibytes of memory.

This benchmark shows that the Mosek has the best time performance out of the selected
solvers, however memory usage is almost the same for all optimizers.

4.3 Python
For Python we also use a modeling language, namely CVXPY [17], [18]. This modeling language
has similar interface as JuMP, moreover it implicitly supports matrix operation for problem
formulation. Another advantage of CVXPY is that it is implicitly distributed with open source
solvers. As earlier we use one generic function solve_opt for testing solvers performance.
The code for this function is given in the Listing 4. We import package cvxopt and use classes
Variable, Problem and Minimize to formulate an optimization problem. Notice that constraints
are simply stored in the list. As we mention CVXPY comes with implicit solvers, in particular

• OQCP [19],

• SCS [20] [21],

• ECOS,

thus we use them for our benchmarking.
8Since in this we are only carrying out the benchmarks and not searching for the best model.
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4.3. Python

1 import cvxpy as cp
2 @benchmark(12)
3 def solve_opt(K, y, optimizer=None, C=22):
4 dim = len(y)
5 x = cp.Variable(dim)
6 obj = cp.Minimize(cp.quad_form(cp.multiply(y,x),K) - sum(x))
7 constraints = [x >= 0, x <= C, sum([x[i]*y[i] for i in range(len(y))]) == 0]
8 probl = cp.Problem(obj, constraints)
9 probl.solve(optimizer)

10 return x.value

Listing 4: Python solve_opt function.

1 X,Y = perturb(*preprocessing())
2 K = compute_kernel_matrix(X)
3 solver_list = [cp.OSQP, cp.ECOS, cp.SCS]
4 for s in solver_list:
5 solve_opt(K,Y, optimizer=s)

Listing 5: Passing solvers.

4.3.1 Solvers

All solvers that we use in Python are open source and as we will see some of them also show
even better results than solvers we used in Julia. Although, these optimizers are not written
in Python they provide Python interface, hence ECOS is exactly the same solver described
earlier, but now we communicate with it through Python API. Since OQCP, SCS, ECOS are
directly installed in CVXPY, there is no need to import other libraries and we only pass different
parameter to solve_opt, it is illustrated in the Listing 5.

OQCP OQCP is a solver for QP problems, hence the inequality constraints must be affine9.
This solver implements alternating direction method of multipliers (ADMM), that belongs to
the family of proximal algorithms that can directly handle non-smooth functions.

SCS Split conic solver or SCS is another optimizer that implements ADMM algorithm for
conic problems. As Mosek it can be applied on positive semidefinite and second order cones.

4.3.2 Benchmarks

For benchmarking we implement a simple decorator function, the implementation can be viewed
in the Listing 6. To display statistics we use package pandas and for time measurements time
is used. Thus to keep our Python benchmarks consistent with Julia ones we perform the same
preprocessing routine. We now run every optimizer on 1500, 2000, 2500 images 12 times. Here
we only measure time performance, but not the memory usage.

9Notice that it is exactly our case.
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4. Applications

1 import functools
2 import time
3 import pandas as pd
4

5 def benchmark(n=2):
6 def timer(func):
7 @functools.wraps(func)
8 def wrapper_timer(*args, **kwargs):
9 l = []

10 value = None
11 for x in range(n):
12 start_time = time.perf_counter()
13 value = func(*args, **kwargs)
14 end_time = time.perf_counter()
15 l.append (end_time - start_time)
16 print()
17 print('Stats:')
18 s = pd.Series(l)
19 print(s.describe())
20 return value
21 return wrapper_timer
22 return timer

Listing 6: Decorator function for carrying out benchmarks.

m 1500 images 2000 images 2500 images
solvers OQCP ECOS SCS OQCP ECOS SCS OQCP ECOS SCS
min. time 6.789 137.96 15.749 6.789 137.96 134.29 24.694 639.17 347.19
mean time 7.249 142.94 16.305 7.249 142.94 145.33 24.88 671.67 360.39
max. time 8.313 150.45 18.050 8.313 150.45 178.02 25.308 712.38 381.20

Table 4.2: Python solvers benchmark, time is measured in seconds.

As we see in the Table 4.2, ADMM algorithm implemented in OQCP works really well
even comparing to commercial solvers with Julia interface. One reason might be that OQCP
is a specific solver for convex quadratic problems with affine constrains, whereas other solvers
handle more general optimization tasks. However, in contrast to Julia version ECOS solver for
Python shows way worse results.

OSQP
m 3000 3500
min. time 44.07 67.144
mean time 47.168 70.565
max. time 54.40 75.168

Table 4.3: OQCP benchmark, time is measured in seconds.

Let us now test OQCP on larger sets of images. Thus as is demonstrated in the Table 4.3
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4.4. Example

1 function train_test_split(X, Y, p = 1301)
2 joined = shuffle([(X[i], Y[i]) for i in 1:length(X)])
3 X_train = [joined[i][1] for i in 1:length(joined) if i < p]
4 Y_train = [joined[i][2] for i in 1:length(joined) if i < p]
5 X_test = [joined[i][1] for i in p:length(joined)]
6 Y_test = [joined[i][2] for i in p:length(joined)]
7 return X_train, Y_train, X_test, Y_test
8 end

Listing 7: Julia train_test_split function.

OQCP applied on image recognition works unbelievably well and definitely beats commercial
solvers discussed in Julia section. Unfortunately, this solver can be applied only on specific
optimization problems, namely on QP.

4.4 Example
In this section we show how to use optimization solvers in problems of knowledge engineering,
in particular optimizing kernel SVM learning rule for image recognition. For this example we
stay with Julia and use Mosek solver.

Firstly, we split the original dataset with 1477 unique images, into training and testing data.
Then we use five fold cross validation to measure the cross validation error on the training set,
this allows us to choose suitable hyperparameters σ and C for the final model. When the choice
of hyperparameters is made we test the final model on the testing data.

To divide the data into training and testing set we use custom function train_test_plit
that is presented in the Listing 7. Here parameter p specifies the number of training points, the
remaining data points form the testing data.

Next from the training data we create five cross validation sets by calling custom function
five_fold_cross_validation. We perform cross validation to find good enough hyperparam-
eters σ, C. This is done by making five validation sets S1i, i “ 1, . . . , 5 from the training
set, where for every S1i four fifths of it are used to train the model with fixed σ, C and the
remaining one fifth is used determine the error εi. Then we compute the cross validation er-
ror as p1{5q

ř5
i εi. Obviously, we select σ, C with the lowest cross validation error. Code for

five_fold_cross_validation is shown in the Listing 8. To estimate the error we simply count
the number of missclassifications for training or validation set, and divide it by the number of
training points.

We now show the code Listing 9 for optimization kernel SVM learning rule. Here the function
preprocessing corresponds to reading the images from the text file. After we established σ, C
with the lowest cross validation error, we use these hyperparameters to train the model on the
whole training set, and afterwards display the results.

For this example the minimum cross validation error 0.0646 corresponds to σ “ 8.5, C “ 27.
As the result, we have 0.0508 for the testing error, this leads to 9 out of 177 missclassifications.
The missclassified images are illustrated in the Figure 4.2.

As we see kernel SVM learning rule does really good job in image classification, moreover it
can be easily implemented using JuMP package.
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4. Applications

1 function five_fold_cross_validation(X,Y)
2 n=260
3 xt = reshape(X, (n, div(length(X), n)))
4 xl = [xt[:,i] for i in 1:div(length(X), n) ]
5 xr = [(x,collect(Iterators.flatten([u for u in xl if x != u]))) for x in xl]
6

7 yt = reshape(Y, (n, div(length(Y), n)))
8 yl = [yt[:,i] for i in 1:div(length(Y), n) ]
9 yr = [(x,collect(Iterators.flatten([u for u in yl if x != u]))) for x in yl]

10 res = [(xr[i][2], yr[i][2],xr[i][1], yr[i][1]) for i in 1:length(yr)]
11 return res
12 end

Listing 8: Julia five_fold_cross_validation function.

Figure 4.2: Missclassified images.
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4.4. Example

1 X, Y = preprocessing();
2 X_train, Y_train, X_test, Y_test = train_test_split(X, Y)
3 validation = ten_fold_cross_validation(X_train, Y_train)
4 sigmas = [
5 6, 6, 6,
6 7.5, 7.5, 7.5, 7.5, 7.5,
7 8.5, 8.5, 8.5, 8.5, 8.5,
8 10, 10, 10, 10, 10
9 ]

10 Cs = [
11 17, 27, 34,
12 17, 27, 34, 40, 48,
13 17, 27, 34, 40, 48,
14 25, 34, 40, 44, 55,
15 ]
16 hyppar = [(sigmas[i], Cs[i]) for i in 1:length(sigmas)]
17

18

19 result = []
20 for (sigma, c) in hyppar
21 validation_errors = []
22 for (X_t, Y_t, X_val, Y_val) in validation
23 K = compute_kernel_matrix(X_t, sigma)
24 lambda = solve_opt(K, Y_t, optimizer=MosekOptimizer, C=c)
25 h = compute_classifier(X_t, Y_t, c, sigma, lambda)
26 push!(validation_errors, error_estimate(h, X_val, Y_val)[1])
27 end
28 push!(result, (sigma, c, sum(err for err in validation_errors)/5))
29 end
30

31 min_err_sigma = 0
32 min_err_C = 0
33 min_err = result[1][end]
34 for (sigma, c, err) in result
35 if min_err > err
36 min_err_sigma = sigma
37 min_err_C = c
38 min_err = err
39 end
40 end
41

42 K = compute_kernel_matrix(X_train, min_err_sigma)
43 lambda = solve_opt(K, Y_train, optimizer=MosekOptimizer, C=min_err_C)
44 h = compute_classifier(X_train, Y_train, min_err_C, min_err_sigma, lambda)
45 missclassified_images_display(error_estimate(h, X_test, Y_test)...,
46 X_test, min_err_C, min_err_sigma)

Listing 9: Kernel SVM learning rule optimized.
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Conclusion

The main goal was to make a review of theory and methods of mathematical optimization and
apply them on problems belonging to the realm of knowledge engineering.

1. There was introduced theoretical background of mathematical optimization, based on its
convex part and we showed how to model plenty of problems using convex techniques. We
studied the importance of convex optimization and its guarantees for the optimal results.

2. Then we looked at various problems in the field of knowledge engineering. Using already
developed optimization framework we expressed these problems in terms of mathematical
optimization, so they can be efficiently solved.

3. Next we studied modern methods for solving optimization problems. As we saw, these
methods not only solve the optimization problems but can also return the certificate of
the optimality.

4. Finally, we explored various software tools that can handle optimization problems using
Python and Julia programming languages. We tested not only open source solvers, but
also commercial ones. As it was shown, for specific problems open source tools can give
competitive results comparing to commercial solvers.
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Appendix A
Contents of enclosed CD

readme.txt.........................................the file with CD contents description
src........................................................the directory of source codes

Julia..............................................................Julia nootebooks
Python ..........................................................Python nootebooks
thesis...............................the directory of LATEX source codes of the thesis

text........................................................... the thesis text directory
thesis.pdf............................................the thesis text in PDF format
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