
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 19, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Machine learning for financial crime detection

 Student: Stanislav Němec

 Supervisor: MSc. Juan Pablo Maldonado Lopez, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2019/20

Instructions

Financial institutions face increasing pressure from regulators to prevent financial crime: money
laundering, terrorism funding and tax evasion. Part of the challenge is to design systems that produce as
little false positives as possible, as this minimizes the work that human analysts need to perform. The goal
of this work is:

- Survey the different data mining techniques for financial crimes.
- Implement a baseline algorithm that identifies fraudulent transactions and entities (perhaps separately).
- Propose different improvements on the baseline algorithm while reducing the number of false positives.
- Implement the improved version and compare its performance and interpretability.
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Abstrakt

Tato práce se zabývá návrhem modelu pro detekci pokus̊u o finančńı pod-
vody za pomoci strojového učeńı. Ćılem práce je vybrat a vyhodnotit základńı
model a po vyhodnoceńı jeho přesnosti jej upravit a rozš́ı̌rit. Účelem úprav
základńıho modelu je zvýšeńı přesnosti modelu a eliminace př́ıpad̊u, kdy model
označ́ı běžné chováńı za podvnodné.

Na základě rešerše existuj́ıćıch a použ́ıvaných řešeńı je vybrán rozhodovaćı
strom jako algoritmus pro základńı model. Poté je provedena rešerše možných
rozš́ı̌reńı tohoto algoritmu. Vybrané algoritmy a rozš́ı̌reńı, jako je zavedeńı
cost-sensitivity pro rozhodovaćı stromy nebo shlukováńı rozhodovaćıch stromů
pomoćı metody AdaCost, jsou následně realizovány pomoćı knihoven jazyka
Python. Vybrané algoritmy jsou trénovány a testovány na simulovaných da-
tech finančńıch transakćı.

Výsledky experimentálńı části práce ukazuj́ı, že vylepšené modely jsou
úspěšněǰśı v porovnáńı se základńım modelem. Aplikováńı cost-sensitivity vedlo
k nalezeńı vyváženého kompromisu mezi eliminaćı počtu falešných obviněńı
a odhaleńım větš́ı části podvod̊u. Prototyp algoritmu AdaCost také dosáhl
lepš́ıch výsledk̊u v porovnáńı se základńım modelem.

Př́ınosem této práce je vyhodnoceńı navržených a realizovaných úprav pro
rozhodovaćı stromy, které mohou být zužitkovány při návrhu systémů pro
detekci finančńıch podvod̊u.

Kĺıčová slova klasifikačńı algoritmy, detekce finančńıch podvod̊u, rozho-
dovaćı stromy, vylepšeńı rozhodovaćıch stromů, boosting, AdaCost, detekce
prańı špinavých peněz

vii



Abstract

This work focuses on designing a machine learning model for financial crime
detection. The goal of this work is to select a baseline model and apply it to the
financial dataset. After evaluating it, propose extensions and improvements to
it with an aim to improve its performance and reduce the number of activities
falsely classified as fraudulent.

Based on the survey of existing solutions, decision tree algorithm was se-
lected as the baseline model. Afterwards a study of possible improvements
and extensions to this algorithm is carried out. Proposed improvements, such
as introducing cost-sensitivity and cost-sensitive ensemble called AdaCost, are
applied and evaluated using the Python programming language. The experi-
ments are carried out using simulated money transactions.

The results of the experimental part show that the improvements applied
to the baseline model were successful. The cost-sensitivity helped to find
a model with a good balance between eliminating the false accusations and
detecting a majority of frauds. The prototype of the AdaCost algorithm also
showed better results when compared to the baseline model.

The usefulness of this work comes from the evaluation of proposed im-
provements to decision trees, that can be utilized while designing systems for
financial fraud detection.

Keywords classification algorithms, financial fraud detection, decision tree,
improvements to decision trees, boosting, AdaCost, money laundering detec-
tion
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Introduction

Financial crime goes hand in hand with tax evasion and thus it causes huge
financial losses for states. Most of the money connected to financial crime
finances terrorist and other criminal organisations. That is why state institutes
put a lot of pressure on financial institutions to monitor the activity of their
customers and detect any suspicious behaviour. Considering the volume of
records that bank customers produce, it is almost impossible to accomplish
this task without its automation.

Systems for detecting suspicious behaviour, that are currently used by
financial institutions, are mostly based on sets of rules defined by experts
and consultants. The rules are based on the best practices and information
collected from different institutions. The rules are not very flexible and adapt-
able which makes them prone to being abused and bypassed. Other problem
is that the systems are producing high numbers of false positives - normal
entities marked as suspicious. This creates an unnecessary backlog of work
that the employees are unable to process.

Solutions based on machine learning can be continuously trained and up-
dated with new data which makes them adaptable and eliminates the need for
consultants defining new rules. The solution proposed in this work is based
on decision tree algorithm (DT). DT is suitable because it is easily visualized
and interpreted which provides the reasoning behind its decisions. Extensions
to the decision tree, examined in this work, aim at reducing the number of
false positives. The drawback of the extensions is that they also reduce the
number of detected frauds and creates a trade-off between false positives and
undetected frauds.

The result of this work can help financial institutions with developing or
improving systems generating suspicious activity reports. It will help to imple-
ment systems that will relieve some pressure of bank analysts by eliminating
some of the workload they face.
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Introduction

The first two chapters provide introduction to the goals of this work and
to the problem of financial fraud respectively. The following chapter provides
basic introduction to machine learning, the fourth chapter introduces the used
dataset. The fifth chapter is a survey of existing solutions and presents theo-
retical foundation for algorithms selected for this work. After briefly describing
utilized technologies in chapter six, the seventh chapter contains the experi-
mental part. The experimental part follows a methodology called CRISP-DM,
that provides a guideline for carrying out machine learning projects.
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Chapter 1
Goals of the work

The goal of this work is to survey data mining techniques that could be used
for detecting financial crime and propose and implement a model for this
problem based on the gained information.

In the research part of this work I will survey different data mining tech-
niques that are used for detecting financial crime. After gaining an overview
of possible solutions, I am going to choose a baseline model for the experi-
mental part. I will also survey possible extensions to the selected algorithm
that should increase the performance of the model.

In the experimental part I will evaluate a selected baseline algorithm that
identifies fraudulent entities. After evaluating the performance of the baseline
model, I will apply to it the improvements chosen in the research part. The
aim is to keep the number of false positives as low as possible while also
reducing the number of undetected frauds. After implementing the improved
model I am going to evaluate its performance and interpretability and make
a comparison between all the models.
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Chapter 2
Financial crime

This chapter briefly explains the terms used in this work that are connected
to financial crime. It will also help to better understand the purpose of this
work.

2.1 Money laundering

The purpose of money laundering is to conceal the origin of money gener-
ated by illicit business. It consists of many activities and techniques that aim
at making the illegal income seem legitimate in front of controlling institu-
tions. [1]

2.1.1 Money laundering techniques

Criminals have developed many techniques over the years. The evolution and
increasing presence of technology in financial sector, such as online banking,
online payment services, mobile transactions or virtual currencies, allow the
criminal organizations to find novel ways to launder their illegal funds. [2]

The techniques involving banks and other financial institutions usually
consist of three stages. First the cash is broken down into smaller sums and
deposited in multiple accounts. Then the money is run through a series of
transactions so that it is almost impossible to trace it back to it’s original
source. At last the money is returned to the criminals, usually in a form of
expensive wares. [3]

2.2 Anti money laundering

Anti money laundering (AML) consists of regulations and procedures that aim
to prevent money laundering attempts or financing criminal organisations. All
entities in the financial market are obliged to follow these regulations. [4]
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2. Financial crime

Financial institutions execute various strategies in order to prevent and
detect the cases of money laundering. Banks use controlling systems that
monitor their customers and their transactions. When the systems detect
any suspicious activity, it notifies employees who then examine the situation
and determine whether it should be reported to law enforcement as a finan-
cial fraud. The report is called Suspicious activity report (SAR). SARs are
then investigated by law enforcement and can potentially lead to uncovering
criminal offenders. [5]

Current systems used by financial institutions are mostly based on rules
assembled by consultants. The rules are based on best practices and experi-
ence collected from the clients. Having a fixed set of rules creates a risk of
them being exposed and thus easily circumvented. [6]

2.2.1 Demands on practical AML systems

Financial institutions need to prove that they are efficiently processing the
alerts generated by their systems. To prove the efficiency they need to show
that they are able to process and successfully evaluate all the generated re-
ports. When the system produces high number of false accusations, it causes
an emergence of backlogs of unprocessed alerts. This is why the system is ex-
pected to produce low number of false positives, even if it means not detecting
all the frauds. [6]

Other important feature, that system for detecting suspicious transactions
should have, is an ability to provide a reasoning behind its decision. When
producing a SAR, there needs to be an explanation of why the activity is
considered suspicious.

6



Chapter 3
Machine learning essentials

This chapter provides a general overview and explanation of the terms related
to machine learning that are going to be used in this work.

3.1 Machine learning

Machine learning (ML) is a popular term that appears in many fields of in-
dustry with no fixed definition. Tom Mitchell [7] describes machine learning
by the question this field of science tries to answer. The question is how to
build computer systems and programs that automatically improve in specified
tasks with experience.

Ian H. Witten and Eibe Frank [8] state that the purpose of ML is to extract
information and relations from raw data and discover structures that underlie
it. The information should be in comprehensible form and should be usable
for given purposes.

To summarize this term I will use the common parts of most of the def-
initions. ML covers means (mainly algorithms) of making machines learn to
make a decision or prediction based on input data and experience gained from
past observation.

3.2 ML model

Machine learning model is a final product of the learning process where ML
algorithm is trained on the input data. The trained model can then be used
to produce an output (e.g., decision, prediction) when presented previously
unseen input. [9]

A ML model can also be seen as a suitable function f(X) = y that maps
input data X on to an output y (decision, prediction, . . . ). [10]

7



3. Machine learning essentials

3.2.1 Supervised learning

The goal of supervised learning is to create a model g(·) that tries to learn
relations between an input X and an output Y . The training set for supervised
learning consists of pairs of input x and known output y. The model is defined
as:

y = g(x|θ)

where θ are the parameters of the model. The parameters θ are optimized
during the training phase in order to minimize the error of the prediction. In
other words, to get the prediction as close to the correct output values from
the training set. [11]

3.2.2 Classification

Classification is one of the supervised learning problems. The output y is called
a class and it is a categorical and discrete attribute. The model is called a
discriminator or classifier and its purpose is to separate the samples into given
classes. The class attribute has a finite number of possible values. The case
When the target class has only two values is called binary classification. [11]

3.3 CRISP-DM

Cross-Industry Standard Process for Data Mining (CRISP-DM) is a method-
ology that serves as a guideline for carrying out a data mining project. The
process is formed of the six following stages:

Business understanding stage is about discovering how the business can
benefit from data mining;

Data understanding is a stage when one takes a closer look at the data to
find out what the format is and how consistent the dataset is;

Data preparation stage is for data cleansing and preprocessing;

Modeling is a stage for selecting a suitable model and training it on the
prepared dataset;

Evaluation is where the performance of the model is measured;

Deployment is a step when the model is integrated with other systems and
utilized to make improvements.

The stages do not necessarily need to follow the above order. It is common
that one goes back to former stages or skipping some. For example when the
results in evaluation stage are insufficient, the process might return to the
Data Preparation stage. [12]

8



3.3. CRISP-DM

3.3.1 Analyzing and understanding the data

This activity corresponds to the Data Understanding stage in the CRISP-DM
methodology. The goal of this phase is to have a first look at the data, analyze
its properties explore it and verify its quality.

First step, before analyzing can begin, is to collect the data and load it into
a chosen tool for exploring data. This can also involve integrating multiple
data sources or merging multiple tables.

In the next step, the goal is to describe the loaded data. This includes
determining its format, finding out how big the dataset is (number of records
and attributes) and understanding what particular attributes represent.

After understanding the format and structure of the dataset, one can start
with the data exploration. The outcome of this step is gaining a better insight
into the data. This insight is gained by computing basic statistics, determining
the relationships between individual attributes, finding the distributions of key
attributes or by aggregating the data.

Other step is about verifying the quality of the dataset. That means
checking whether there are some missing values or whether there are some
errors in the records. [12]

3.3.2 Data preprocessing

Data preprocessing is a vital step in the ML procedure and should be one
of the first steps taken. The purpose of data preprocessing is to make sure
that the data is complete, correct and processable by algorithms in the further
steps of the project. The preprocessing phase consists of multiple techniques
sorted into categories like data cleansing, data integration and data transfor-
mation. [13]

Data cleansing aims at handling problems such as missing values, records
violating some constraints or regulations or records that probably originate
from an error during the data collecting.

Missing values are usually resolved by filling in the values based on some
statistics of the data or based on some similar records. Or if the size of the
dataset allows it, the records with missing values are discarded.

Records that violate some constraints can occur for example as mistakes
amongst categorical attributes (e.g., values should be “true” or “false” and
“truth” occurs). Another type of data violating some rules are values in a
wrong format (e.g., decimal number is expected and there is a alphabetical
character). Values that do not make sense in given context also fall into this
category. (e.g., negative number between size measurement data. Possible
ways of dealing with these faulty records are to manually correct them or to
leave them out. [13]

9



3. Machine learning essentials

Data integration means putting together data from various sources. [13]
This involves not only joining data from different databases and files, but also
converting all the data into united structure and format.

Data transformation covers multiple techniques for transforming and
adjusting the data. More information regarding this topic can be found in
Data Preprocessing Techniques for Data Mining [13].

Feature engineering focuses on adding new attributes to the records
based on those that are already present in the dataset. Forming the new
features is a good way to embed a knowledge of given topic. New attributes can
be created by applying basic mathematical operations or even more complex
formulas on the existing ones. Another way of introducing new attributes is
to aggregate data using time periods. [14]

It is strongly recommended to split the dataset into two parts. The first
part is called the training set and is used to train the ML model. The other
part is called the test set and is used to evaluate the model after it has been
trained. The splitting ratio varies, but it is common to use 70% of the data
for training and save the remaining 30% for testing. It is also important to
have all types of data evenly represented in the split parts. [11]

3.4 Evaluating machine learning models

When the ML model is trained, it is important to check how well it learned
to perform it’s task before it is applied in real life. This is where evaluation
metrics come into play and help us determine how accurate the model is or
how many mistakes it makes.

3.4.1 Confusion matrix and accuracy

In a case of a binary classifier with positive and negative classes, there are four
possible outcomes when comparing the predicted values to the true values.
To find out how the model performed, a matrix is constructed. The matrix
contains sums of following cases over the observed set of data:

True Positives (TP) are cases where the model correctly predicted the pos-
itive class.

True Negatives (TN) are samples correctly predicted by the model that
belong to the negative class.

False Positives (FP) are cases where the model predicted the positive class
while the correct output was the negative class.

False Negatives (FN) are samples that the model labeled as the negative
class but the correct label is the positive class.

10



3.4. Evaluating machine learning models

It is often convenient to have a single value as a result of evaluation. One of
the measures can be accuracy that is calculated by dividing correct predictions
by the total number of samples, expressed by the following equation [8]:

acc = TP + TN

TP + TN + FP + FN

Table 3.1: Visualization of the confusion matrix

Predicted positive Predicted negative
Original positive TP FN
Original negative FP TN

3.4.2 Recall and balanced accuracy

Balanced accuracy is an evaluation metric for classifiers that utilizes recalls
obtained on all classes (both classes in case of binary classification).

Recall of a class expresses the fraction of detected test samples of given
class. [8] In other words, it is obtained by dividing the number of detected
samples of the class by the total number of samples of the given class. In
binary classification problem (with classes marked as positive and negative),
the equation for recall (for the positive class) can be expressed using terms
from the confusion matrix:

recallpositive =
∑
TP∑

TP +
∑
FN

Balanced accuracy is calculated by averaging the recalls obtained on each
class. [15] I will use the metric for binary classification (with positive and
negative classes), expressed as follows:

balancedAccuracy = recallpositive + recallnegative

2
It is a good metric to evaluate a model trained and tested on dataset with
uneven distribution of target classes, because it punishes models that favour
one class over the other.

3.4.3 Weighted f-score

Basic F-score is obtained by computing the harmonic mean H of recall and
precision. With n being the number of values and xi the values, harmonic
mean is:

H = n∑n
i=1

1
xi

11



3. Machine learning essentials

Precision (with focus on positive class) of a binary classifier in a test is the
number of correctly classified positives divided by the number of all samples
classified as positive. [8]

precisionpositive = TP

TP + FP

The F-score is then expressed as follows:

F = 2
1
P + 1

R

= 2PR
P +R

where P is precision and R is recall. [16]
Weighted F-score is then computed as a weighted mean of the f-scores for

each class. [17] The weight wi for class i is equal to the number of samples
from the test set belonging to the class i. With n being the number of classes
and Fi the F-score for class i, weighted f-score is:

fweighted =
∑n

i=1wiFi∑n
i=1wi

3.5 Imbalanced classes

The problem of imbalanced classes occurs when the dataset used for training a
classifier has an uneven distribution of the target classes. In other words one of
the classes is represented by much larger portion of samples in a dataset. [18]
This problem can lead to models that favor the class that contains the majority
of the samples over the other classes when not taken into consideration.
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Chapter 4
Description of used data

This chapter describes the dataset used in this work. It also provides infor-
mation about the origin of the data and reasons why I decided to use this
dataset.

4.1 Origin of the data - AMLSim

Dataset generated using the AMLSim project [19] is used in the experimental
part of this work. AMLSim simulates the transactions and brings a fraud
patterns into the data in two phases.

During the first phase, a network of transactions is generated and alerts
signaling suspicious activities are introduced. The network represents rela-
tions, or transactions, between the accounts of customers.

The second phase uses another project called PaySim to simulate the trans-
actions in the network generated during the first phase. The algorithm in
PaySim was presented a data of real mobile transactions which it was sup-
posed to imitate. PaySim utilizes statistics and Agent-Based simulation to
create synthetic data with characteristics similar to the original data. [20]

Considering the nature and sensitivity of the data that is needed for train-
ing AML models, there is no real data publicly available. AML Models can be
trained on records of labeled money transactions and using various personal
information about customers [21]. Financial institutions cannot publicly share
this data about customers and their transactions so there is a need for syn-
thetic dataset simulating real life data.
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4.2 Dataset description - Tables

The dataset consists of approximately 10000 generated accounts with over
500000 transactional records over 150 time steps which is equivalent to 5
months.

Each row contains step in which the transaction was carried out (one step
corresponds to one day), identification of both participants of the transaction,
their account balance before and after the transaction, the amount transferred
and the type of the transaction. Each record also contains an indicator of
whether the transaction is fraudulent. Every record, or transaction, is labeled
as suspicious if it is a part of an activity that has been flagged as possibly
fraudulent.

The time step corresponds to one day of real time. The currency of the
transactions is unspecified but is uniform for all transactions. Types of trans-
actions are either incoming and outgoing cash transactions or normal non-cash
transaction.
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Chapter 5
Survey of solutions

This chapter provides an overview of existing solutions for AML systems. The
other section of this chapter introduces algorithms selected for the experimen-
tal part of this work.

5.1 Survey of existing solutions

The details of the solutions used by financial institutions are rarely publicly
available. They have been using systems based on rules defined and tuned
over time by experts.

An article presenting an overview of machine learning (ML) algorithms
used in experiments on this topic was published by Chen et al. [21]. The au-
thors have divided known ML algorithms into six categories, including AML
typologies, Link analysis, Behavioural modelling, Risk scoring, Anomaly de-
tection and Geographic capability. The division is based on the aspects taken
into consideration by the algorithm when detecting suspicious behaviour.

AML typologies use records of past cases of money laundering to detect
similar future attempts. That means that either data with labeled fraudulent
activities or an assistance from a domain expert is needed to train models
of this type. Chen and Mathe [22] utilized fuzzy rules to detect suspicious
activities, their approach is to convert the rules created by analysts into a set
of fuzzy rules and then use inference to detect suspicious transactions. Other
approach is to treat this task as a classification problem and solve it using
Support Vector Machine [23].

Link analysis based solutions focus on identifying connections between
customers’ accounts to discover relationships between them. The transac-
tions between accounts form graphs that can be analyzed to find potentially
fraudulent patterns. [24] The resulting structures or patterns are visualized to
support further analyzing.
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Behavioural modelling combines various information sources to construct
a behavioural model of customers. New activities are then compared to the
modelled behaviour.

Risk scoring solutions rank transactions or customers by a potential risk.
The risk score is obtained by applying statistical models and business rules.
The ranking is taken into consideration when deciding whether a report should
be generated. Wang and Yang [25] presented a solution using a decision tree
algorithm to rank the customers. Another approach by Liu et al. [26] analyzes
sequences of transactions over time, where new activities are compared to the
historical ones.

Anomaly detection models identify activities deviating from a norm. Ap-
proaches based on anomaly detection should be able to identify uncommon
activities within an account.

Geographic capability tool aims at identifying fraudulent activities carried
out across different geographical locations and states. It requires data about
geographic locations of the participating parts.

I decided to focus on the risk scoring approach to this problem, namely
algorithms involving decision trees. This approach is suitable with regard to
being applied on the available dataset that contains all the needed information.
The predictions produced by decision trees can also easily be interpreted and
explained, thus solutions using this algorithm satisfy one of the demands on
systems for detecting fraudulent activities.
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5.2 Baseline model - decision tree

Decision tree (DT) or a tree structured classifier is constructed by repeatedly
splitting the subsets of a dataset based on values of samples’ variables. The
whole dataset is split first and then the created subsets are split until a con-
dition for stopping is met. I will focus on a binary tree structured classifier
where each split creates two subsets. The samples that meet the condition set
by the splitting rule are sent to the left subset (child node) and the rest to the
right one. The subsets that are not split are called terminal subsets or termi-
nal nodes. The union of terminal subsets forms the original set. Each terminal
node is assigned a class label. Further I will describe the Classification and
Regression Trees (CART) [27] approach for building the tree structure, be-
cause this approach is used in the scikit-learn implementation of DT. [28]
The process of constructing a DT requires the following parts:

• A set of questions Q (splitting rules) with two possible answers (True or
False), where the questions are in a form of {Is x ∈ A?}, where x ∈ X,
X is a set of data records and A ⊂ X.

• A function Φ(s, t) evaluating how good the split s is on node t.

• Conditions that define when to stop splitting.

• A rule that defines which class label will be assigned to each terminal
node.
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5.2.1 Splitting rules

Data records have standard structure when they are in form of vectors x =
(x1, x2, . . . , xM ) of fixed dimensionality M , where x1, ..., xM are variables of
either categorical or ordered type. With data having the standard structure,
standardized set of splitting rules Q can be defined as:

1. The value of only a single variable is taken into consideration in each
rule.

2. Q contains all questions in form of {Is xi ≤ c?} for each ordered variable
xi and ∀c ∈ (−∞,∞).

3. For a categorical variable xi that is taking possible values in V =
{v1, v2, . . . , vL}, L ∈ N, Q contains questions {Is xi ∈ v?} for all subsets
v of V .

There is a finite number of splitting rules for each ordered variable xi restricted
by the number of distinct values of xi in the dataset. For categorical variable xi

with possible values from V = {v1, v2, . . . , vL}, L ∈ N, the number of splitting
rules is restricted by 2L−1 − 1. Only a half of all the possible subsets v of V
needs to be tested, beacause cases of {xi ∈ v} and {xi /∈ v} are both tested
within one rule and empty set is not tested. [27]

5.2.2 Splitting criterion

Let π(i) be the prior probability of class i, interpreted as a probability of
sample belonging to class i being presented to the tree. The proportion of
samples of class i to the total number of samples, π(i) = Ni/N , is often used
to estimate π(i). Ni(t) is the number of samples labeled as i present in a node
t. A probability that a sample both belongs to class i and is in a node t is
expressed by

p(i, t) = π(i)Ni(t)/Ni.

With J being the set of classes, the estimation of probability p(t) of any sample
getting into node t is

p(t) =
∑
i∈J

p(i, t).

An estimated probability that case belongs to class i given that it is in node
t is

p(i|t) = p(i, t)/p(t).
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The function, that evaluates how good a split is, is called a split criterion.
Split criterion is originally based on impurity function. Impurity function φ
is defined on a set of all J-tuples (p1, p2, . . . , pJ) where pi ≥ 0, ∀i ∈ {1, . . . , J}
and

∑J
i=1 pi = 1, J is the number of classes. The function φ has the following

properties:

1. φ reaches its maximum at the point ( 1
J , . . . ,

1
J ),

2. φ reaches its minimum at the points (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,
(0, 0, . . . , 0, 1),

3. φ is a symmetric function of p1, . . . , pJ .

Given the impurity function φ, the impurity measure i(t) of a node t is defined
as

i(t) = φ(p(1|t), p(2|t), . . . , p(J |t)).
The split s on node t is evaluated by the decrease in impurity ∆i(s, t) it
provides which is expressed as follows:

∆i(s, t) = i(t)− pRi(tr)− pLi(tL)
where pR and pL are the proportions of data samples sent to the right and
left child node respectively. [27]

The total decrease brought by all rules containing one attribute can express
the importance of the attribute, or feature importance.

The scikit-learn implementation of DT allows the usage of either Gini
i(t) =

∑
i∈J

p(i|t)(1− p(i|t))

or Entropy
i(t) = −

∑
i∈J

p(i|t) log(p(i|t))

as the impurity measures. [28]

5.2.3 When to stop splitting

When there are no additional restrictions, the splitting in node t is stopped
when there is no split that would bring a decrease in impurity. This can
be restricted by a threshold, so that the splitting will stop when there is no
split that would decrease the impurity at least by an amount equal to the
threshold. [27]

One way to restrict further splitting is to set the maximal depth of the
tree. The depth is equal to the number of splits (nodes) on the longest way
from the first split (root) to a terminal node.

Setting the minimal number of samples in a node can also be used to
terminate splitting. In this case, the node is denoted as terminal if all the
splits would create child nodes containing lower number of samples than the
defined minimum.
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5.2.4 Class assignment rule

Each terminal node t ∈ τ is assigned a class label j ∈ {1, . . . , J} following the
class assignment rule. j(t) notation is used to describe the class assigned to
node t. The estimated probability of misclassification for a node t is:∑

i∈J\{j(t)}
p(i|t).

The rule is formed so that it minimizes this estimate. The class assignment
rule is defined as:

If p(j|t) = max
i
p(i|t) then j(t) = j.

In case that multiple classes reach the maximum, one of them is chosen arbi-
trarily. [27]

5.2.5 Classifying new samples

The class for a new sample is predicted using the constructed tree. The sample
progresses through the tree depending on the splitting rules until it arrives in
a terminal node. The class label assigned to the terminal node is then used
as a prediction for given sample. The progression through the tree creates a
set of rules that can be used to interpret the reasoning behind the decision.

5.3 Improving the baseline model

This section contains a description of techniques and algorithms that can be
applied to the DT to improve its performance.

5.3.1 K-Fold cross-validation

First step of K-Fold cross-validation is splitting the dataset X into K parts of
equal size, χ = {X1, X2, . . . , XK}. It is important to preserve the distribution
of the classes in each of the splits. K pairs {Ti, Vi}, i = 1, . . . ,K of training
and validation sets are created. The validation set Vi is equal to the split Xi

and the combination of the rest of the splits forms the training set Ti. [11]

Vi = Xi

Ti = χ \Xi

The created pairs are then used to validate a model, training sets are
used in the training phase and validation sets serve as sets for evaluating the
model. This approach produces K different results that can be averaged to
gain a single value.
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Cross-validation can be used for selecting the parameters of a model. The
combinations of selected values for parameters of the model form a parameter
grid. All the settings from the grid are then used to create models that are
validated in the K-Fold cross-validation. The best-performing model with its
parameter setting is selected as the predictor. This approach is implemented
in scikit-learn and used in the experimental part. [29]

5.3.2 Weighted classes

A weight wj can be assigned to each class j. The weight then influences the
probability estimates defined in 5.2.2.

The prior probability becomes

π(j) = wjNj∑
i∈J wiNi

.

This adjusts all the probability estimates dependent on the prior probability.
I will describe only the final forms showing the influence on class assignment
rule and on Gini impurity.1

The Gini impurity used in scikit-learn [28] will take the following form
when class weights are introduced:

i(t) =
∑
i∈J

wiNi(t)∑
j∈J wjNj(t)(1− wiNi(t)∑

j∈J wjNj(t)).

The rule for class assignment is then expressed as follows:

If wkNk(t)∑
j∈J wjNj(t) = max

i

wiNi(t)∑
j∈J wjNj(t) then j(t) = k.

It is clear that the introduction of class weights influences both the split-
ting criterion and class assignment rule. Finding suitable values for the class
weights thus can influence how the predictor is built and how it assigns class
labels. Finding the values and evaluating the influence on accuracy of the
predictor is addressed in the experimental part 7.4.2.

Assigning higher class weight to one class also has similar effect as random
re-sampling. Random re-sampling means randomly selecting samples of the
class with less representatives and including them in the dataset until both
classes have similar representation. [30] Re-sampling is used to deal with class
imbalance.

1All the adjusted probabilities can be computed by substituting in the new π(j).
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5.3.3 AdaBoost

AdaBoost is a boosting algorithm. The formalization of boosting is following:
A training set of pairs (x1, y1), (x2, y2), . . . , (xN , yN ), where xi is a sample
labeled as yi, is presented to a booster. The booster defines a distribution Dt

over the set of samples on each step t = 1, . . . , T , and requests a hypothesis
ht with error εt. The distribution Dt assigns each sample an importance in
step t. After T steps, the booster combines the hypotheses and creates one
prediction rule. [31]

The AdaBoost algorithm is following:

Algorithm 1 AdaBoost
Require: set of N labeled samples {(x1, y1), . . . , (xN , yN )}

distribution D over the N samples
Predictor that classifies samples
integer T , the number of steps

1: Initialize the weight vector: w1
i = D(i), i = 1, . . . , N

2: for t = 1, 2, . . . , T do
3: Set

pt = wt∑N
i=1w

t
i

4: Get hypothesis ht : X → [0, 1] from calling Predictor and providing it
with the distribution pt.

5: Calculate the error of ht: εt =
∑N

i=1 p
t
i|ht(xi)− yi|

6: Set βt = εt/(1− εt)
7: Set the new weight vector as

wt+1
i = wt

iβ
1−|ht(xi)−yi|
t

8: end for
9: return the hypothesis

hf (x) =
{

0 if
∑T

t=1(log 1/βt)ht(x) ≥ 1
2

∑T
t=1 log 1/βt

1 otherwise.
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5.3.4 AdaCost

AdaCost is a variant of AdaBoost that is cost-sensitive. Cost-sensitive mod-
els’ predictions are influenced by the misclassification cost. Misclassification
cost Ci,j is a cost for misclassifying a sample of class i as class j. In AdaCost,
the misclassification costs are used when updating the sample weights in each
step. [32]

Algorithm 2 AdaCost
Require: set of N labeled samples with costs

S = {(x1, c1, y1), . . . , (xN , cN , yN )};
xi ∈ X, X is a set of data samples, ci ∈ R+, yi ∈ {−1, 1}
Predictor that classifies samples
integer T , the number of steps

1: Initialize distribution D1; D1(i) = ci/
∑N

j=1 cj

2: for t = 1, 2, . . . , T do
3: Get hypothesis ht : X → R from training Predictor and providing it

with the distribution Dt.
4: Choose αt ∈ R
5: Update the distribution

Dt+1(i) = Dt(i) exp (−αtyiht(xi)β(i))
Zt

. where β(i) = β(sign(yiht(xi)), ci) and Zt is a normalization factor so
that Dt+1 is a distribution

6: end for
7: return the hypothesis

H(x) = sign(f(x)) where f(x) =
T∑

t=1
αtht(x)
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I decided to use the same selection of parameters α and β as the authors
of AdaCost mentioned in their work [32]. The parameter α was selected as
follows:

α = 1
2 ln(1 + r

1− r )

where

r =
∑

i

D(i)ui, ui = yih(xi)β(i).

And the parameter β is following:

β(sign(yiht(xi)), ci) = (−1)sign(yiht(xi))0.5c+ 0.5.
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Chapter 6
Technologies used

This chapter provides an overview of the technologies used in the experimental
part.

6.1 Python

Python is a programming language with an extensive community that is also
involved in developing and extending the language. [33] The extensions are
called packages or libraries and include many reliable and open source imple-
mentations of machine learning algorithms, methods for manipulating with
data and visualization tools. The functionality and stability of the extensions
and the fact that Python is easy to understand and use are one of many
reasons why Python is commonly used by data scientists.

6.1.1 Jupyter

Jupyter is an open-source project that provides interactive environment for
scientific computation across various programming languages. [34]

6.1.2 Pandas

Pandas is an open source library for Python. It provides data structures that
are described as high-performance and easy-to-use. The data structures and
their functionality help with analyzing various types of data.

The library provides functions for loading input data in different formats
and storing them in unified data structures. The loaded data can then be
viewed, filtered, sorted or transformed with the help of the functions imple-
mented in the library. [35]
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6.1.3 Matplotlib

Matplotlib is a Python library that helps creating various types of 2D plots.
It is intuitive for basic use, but also provides advanced options for full control
of line styles, fonts and axes properties. [36]

6.1.4 SKLearn

This Python library provides simple and efficient tools for data mining and
data analysis. It implements many of the commonly used machine learning
algorithms, tools for data exploration and preprocessing and means to evaluate
the efficiency of trained models. [37]

6.1.5 NumPy

NumPy is a package providing tools for scientific computing in the Python
programming language. [38] The functionality utilized in this work is the N-
dimensional array object and ability to carry out mathematical operations on
its elements.
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Chapter 7
Realization

This chapter describes the practical realization of this thesis’ goal, which is
implementing chosen models and proposed improvements. The experimental
part follows the CRISP-DM methodology, outlined in 3.3. The chapter con-
tains evaluation of the experiments and a summary of how the experiments
worked out. The source code of all the following parts can be found on the
enclosed CD, its content is described in appendix B.

7.1 Data analysis

This part corresponds to the first step of CRISP-DM and is described in 3.3.1.
It contains the discovery of the structure and features of the dataset.

After I loaded the data from the CSV file, I printed out five rows from
the dataset to get the intuition of what the structure of the data is and what
values can I expect for the attributes. The attributes were already described
in 4.2.

After getting familiar with the data, I searched the dataset for missing
values or some inconsistencies. There were no missing values discovered, which
was expected since the data is synthetic. However, I found approximately 1500
transactions where the amount of money transferred was 0. I found out that
none of these transactions were reported as part of a fraud, so I consider them
insignificant and decided to leave them out.

7.2 Data preprocessing

The work described in this section corresponds to the second step of CRISP-
DM methodology that is described in 3.3.2. In chapter 5 I selected the ap-
proach of scoring entities as fraudulent or not, that means that I need data
aggregated per account for training the model.
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First I addressed the issues discovered when analyzing the data by filter-
ing out the unwanted records. After that, with clean and consistent dataset,
I extracted all account identifiers. Then I decided to separate the transac-
tions based on their type into two categories, cash and non-cash transactions.
For each type of transactions, I collected aggregated data for every account,
specifically the summed incoming and outgoing amounts of money and the
number of incoming and outgoing transactions of each type. I also retrieved
the mean balance for each account. I marked each account that has been in-
volved in some fraud as suspicious, this indicator serves as the target variable
(class). After the data was transformed, I printed out a few examples to see
the values of new attributes.

After preprocessing the dataset, I split the data into training and test sets.
The function for splitting the data implemented in scikit-learn ensures that
the distribution of target variable is similar to the distribution in the original
dataset.

I also visualized the distribution of the target variable. It is clear from
the figure 7.1 that the distribution of the classes is uneven. This indicates the
imbalanced classes problem described in 3.5.
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Figure 7.1: A visualization of the class imbalance
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7.3 Baseline model

In section 5.2 I explain my decision to use decision tree (DT) as a baseline
model. I used the scikit-learn implementation of DT for classification.

I used the training set for training the model, utilizing the scikit-learn im-
plementation of the decision tree classifier. I selected the values of parameters
for the DT with a use of the grid search cross-validation. The parameter that
was tuned was splitting criterion and the possible values are gini and entropy
and are described in 5.2.2. The parameters maximal depth and minimal sam-
ples in a leaf are restricted because they influence the size of the constructed
tree. Restricting the size of the tree is important because smaller and simpler
tree is easy to interpret and understand. The test set was used to evaluate
the baseline model. Table 7.1 shows the confusion matrix constructed using
the predictions for the test set produced by the trained classifier. Table 7.2
contains the overall accuracy of the baseline model, precision and recall for
both classes.

It is apparent from the confusion matrix that the problem of class imbal-
ance influenced the trained classifier. The classifier clearly favours the major-
ity class. Although the overall accuracy is reasonably high and the number of
false positives low, the number of undetected frauds is unacceptable.

Table 7.1: Confusion matrix for the baseline model

Predicted positive Predicted negative
Original positive 265 257
Original negative 90 2370

Table 7.2: Results of the baseline model

Measure Value
Accuracy 88.36

Precision positive 74.85
Precision negative 90.22

Recall positive 50.77
Recall negative 96.34

7.4 Improved decision tree models

The evaluation of the baseline model indicates that adjustments to the baseline
model are needed with regard to balancing the importance of each class.
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7.4.1 Custom metric for parameter tuning

First of all I introduced a new metric to be used in cross-validation while
tuning the parameters of the DT. The purpose of the custom metric is to
provide a score that reflects the demands on the model. As it was stated,
the model should produce low number of false positives while detecting the
majority of frauds. The score, given by the metric to sample i with true label
yt and predicted label yp, is defined as follows:

scorei =


−a if yt = 0 & yp 6= yt

−b if yt = 1 & yp 6= yt

1 if yt = yp

where a and b are the parameters that express how big the cost of mis-
classifying the given class is.

The new metric itself needed to be tuned to find the right balance between
the misclassification costs. I created a set of 100 custom evaluation functions,
each with different parameter settings ((a, b) ∈ {1, . . . , 10}×{1, . . . , 10}). The
tuning of the parameters was carried out by evaluating a set of randomly
configured DTs with each metric. Then the numbers of false positives and
false negatives produced by the models considered as best by each metric
were visualized in figures 7.2 and 7.3. I decided to go with values of a = 4
and b = 6 which, according to the experiments, should provide a good balance
between punishing false positives and missed frauds.
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Figure 7.2: Heatmap with the number of false positives produced by models
selected by different metrics
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Figure 7.3: Heatmap with the number of false negatives produced by models
selected by different metrics

7.4.2 Adjusting the class weights

As it is described in 5.3.2, introducing weights to the classes can help deal
with the class imbalance problem as well as make the model cost-sensitive.

First I decided to balance the class importance. With this approach, each
class is assigned a weight so that weighted sums of samples of a class are equal.
For the binary classification problem with positive and negative classes, the
weights w0 and w1 are assigned so that w0N0 = w1N1, where N0, N1 are
numbers of respective classes.

Table 7.3: Results of the decision tree with balanced class weights

Measure Value
Accuracy 84.00

Precision positive 52.87
Precision negative 95.13

Recall positive 79.50
Recall negative 84.96

FP 370
FN 107

As the numbers in the table 7.3 suggest, weighting the classes so that they
are balanced, helped to detect more positive samples. Although the number
of detected frauds increased, compared to the baseline model, the number of
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false positives increased as well. As it was established in 2.2.1, the number of
false positives needs to be reduced. The previous facts imply that there will
occur a trade-off between the number of false positives and true negatives.

The metric introduced and tuned in previous subsection is designed to
select a model that provides a good balance between minimizing the number
of false positives and detecting true negatives. The metric is used in cross-
validation to select the class weight parameter.

Table 7.4: Results of the decision tree with class weights tuned using the
custom metric

Measure Value
Accuracy 88.90

Precision positive 69.94
Precision negative 92.53

Recall positive 64.18
Recall negative 94.15

FP 144
FN 187

The model with weights w1 = 3 and w0 = 2 for positive and negative class
achieved the best results in the cross-validation. An evaluation of the models’
performance is shown in table 7.4. It detected 64% of frauds while retaining
acceptable level of false positives.
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7.5 AdaCost

I implemented a prototype of the AdaCost algorithm described in 5.3.4. This
algorithm ensembles a group of classifiers and uses the combination of their
predictions to classify a sample. I decided to use decision trees with maximal
depth max depth = 4 as the base predictors. The costs for missclassifying
each class were selected as c0 = 4 and c1 = 6. The selection of the costs is
based on the custom metric selected in section 7.4.1. I selected the costs to be
the same as the weights in the metric because of how they reflect the demands
on the fraud detection system.

An evaluation of the performance of this algorithm is in table 7.5. Al-
though the accuracy is lower than the one of the decision tree with tuned
class weights, the results are still acceptable.

Table 7.5: Results of the prototype of the AdaCost algorithm

Measure Value
Accuracy 88.16

Precision positive 71.07
Precision negative 90.82

Recall positive 54.60
Recall negative 95.28

FP 116
FN 237

The drawback to this approach is that the decisions it makes cannot be
interpreted as easily as in the case of decision tree algorithm. Discovering the
feature importance is a method for partially uncovering the reasoning behind
a decision. I utilized the feature importances returned by individual predictors
and weighted them with the weights used when predicting.
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7.6 Overall evaluation and comparison

Table 7.6 contains an evaluation of all the trained models. The tests were car-
ried out using a test set consisting of 2982 entities, of which 522 was marked as
suspicious. Balanced accuracy and weighted f-score are described in section 3.4
and are designed to fairly evaluate models trained on data with imbalanced
class distribution. False positives are samples falsely classified as fraud and
recall of the positive class is the percentage of detected frauds.

The baseline model produced a small number of false positives but it was
due to the influence of the class imbalance, which resulted in bias towards the
majority class. This is also confirmed by the recall of the positive class. The
recall expresses that only a half of the fraudulent entities was detected.

Balancing the class weights eliminates the problem of class imbalance. It
resulted in increasing the percentage of detected frauds to almost 80%, but it
also increased the number of false positives. The number of false positives is
now over 12% of all tested samples which means a lot of additional needless
reports that is hard to process.

The usage of tuned class weights for a decision tree resulted in a good
balance between the number of produced false positives and detected frauds.
Model with tuned class weights detected 15% more fraudulent entities while
retaining the number of false positives under 5%.

The prototype of the AdaCost algorithm shows promising results with an
increase in percentage of detected frauds and keeping a low number of false
positives when compared to the baseline model. There is a lot of parameters
of the model that can be adjusted and potentially improve the performance of
the model. Adjusting and designing these parameters requires further study
of the algorithm and will be subject to future research. The drawback to this
approach is the loss of clear interpretability of the decisions, substituted by
only providing the feature importance.

Table 7.6: Results of all trained models, table shows balanced accuracy,
weighted f-score, number of false positives and recall of the positive class

model balanced acc. w. f-score FP recall pos.
Baseline - DT 73.55 87.45 90 50.77

DT - balanced weights 82.23 85.16 370 79.50
DT - tuned weights 79.16 88.71 144 64.18

AdaCost 74.94 87.53 116 54.60
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Conclusion

The first goal of this work was to survey existing solutions for detecting finan-
cial fraud. The following goals were to select, study and evaluate a baseline
model based on the information gained in the previous survey, then survey
and propose possible improvements to the baseline model, apply and evaluate
them. The final goal was to compare the baseline model with the improved
models.

I carried out the survey of solutions based on machine learning to the
problem of detecting financial fraud. Based on the survey and demands on
the fraud detection systems, especially the interpretability of the decisions, I
chose a decision tree algorithm as the baseline model that can be trained on
available data.

After a study of the selected algorithm I applied it on the available dataset.
Then I evaluated the model and surveyed possible extensions to the model that
could improve its performance, mainly balancing the trade-off between false
positives and undetected frauds.

The proposed improvements were custom metric that reflects the demands
on the system and helps to select class weights. Weighting the classes is
another extension to the decision tree, which introduces cost-sensitivity. The
final improvement was to ensemble multiple decision trees using cost-sensitive
boosting.

The proposed extensions were applied and evaluated in the experimental
part. The results of the evaluation show that introducing cost-sensitivity helps
to get a reasonable trade-off between false positives and undetected frauds.
The prototype of the AdaCost algorithm produced promising results and a
small improvement when compared with the baseline model.

Further study of parameters for AdaCost algorithm and ensuring compat-
ibility of the implemented prototype with components from the scikit-learn is
a subject to future work. Future work could also be based on a cooperation
with a financial institution, that would provide a real dataset for more realistic
evaluation of the models. The models could also be compared with solutions
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used by the institution to discover new shortcomings. New improvements and
adjustments could be proposed to eliminate the shortcomings and make the
model ready for production use.
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Appendix A
Glossary

AML Anti money laundering

CART Classification and Regression Trees

CSV Comma separated values

CRISP-DM Cross-Industry Standard Process for Data Mining

DT Decision tree

FNs False negatives

FPs False positives

ML Machine learning

SAR Suspicious activity report

TNs True negatives

TPs True positives

41





Appendix B
Content of the enclosed CD

readme.txt...................Brief description of the content of the CD
src.....................Directory with sources for the practical part

html ........ Directory contains notebooks with outputs in HTML
data analysis.html........................................
data preprocessing.html...................................
baseline model.html.......................................
custom metric tuning.html.................................
dt cost sensitivity.html..................................
model ensemble AdaCost.html ..............................
evaluation.html ...........................................

jupyter notebooks.......Directory containing Jupyter notebooks
data..........................Directory contains the datasets
models ..................... Directory contains trained models
graphics .................... Directory contains visualizations
data analysis.ipynb.......................................
data preprocessing.ipynb .................................
baseline model.ipynb......................................
custom metric tuning.ipynb ...............................
dt cost sensitivity.ipynb.................................
model ensemble AdaCost.ipynb.............................
evaluation.ipynb..........................................

written.................................The written part of the thesis
thesis.....................The source of the thesis in LATEX format
thesis.pdf........................Text of the thesis in PDF format
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