
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 5, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Storage Network Command Simulator - server and storage part

 Student: Dmitrii Vekshin

 Supervisor: Ing. Jiří Kašpar

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2019/20

Instructions

Research command line interface of a typical Fibre Channel (FC) based storage and Linux commands
related to a storage connection.Design and implement server and storage part of the storage network
command simulator.
Use the CDU-CLI framework for command line parsing and UDP message passing for communication with
the FC switch part of the simulator.
Simulate the data operations by a direct filesystem link between the mount point and a directory
representing a LUN on the storage side.

References

Will be provided by the supervisor.

Bachelor’s thesis

Storage Network Command
Simulator – server and storage part

Dmitrii Vekshin

Katedra poč́ıtačových systémů
Supervisor: Ing. Jǐŕı Kašpar

May 17, 2019

Acknowledgements

I would like to express gratitude to my supervisor Ing. Jǐŕı Kašpar for his
help, advises and opportunity to work on very project. Also I would like to
thank to my family and friends.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 17, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2019 Dmitrii Vekshin. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vekshin, Dmitrii. Storage Network Command Simulator – server and storage
part. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2019.

Abstrakt

Primárńım ćılem této bakalářské práce je vytvořeńı storage a serverové části
v rámci projektu Simulace konfigurace storage śıtě. V prvńı části práce je
provedena analýza vybrané množiny datových śıt́ı, datových úložǐsť, jejich
př́ıkazových rozhrańı a simulátor̊u daných technologíı. Daľśı část́ı je návrh,
implementace a testováńı simulátor̊u úložǐstě a server̊u s podporou modelováńı
datových operaćı.

Kĺıčová slova datová śı̌t, Fibre Channel, úložǐstě, World Wide Name, př́ıkazové
rozhrańı

vii

Abstract

The primary goal of this bachelor thesis is to create storage and server parts
within the project Storage Network Command Simulator. The first part of
the thesis presents an analysis of existing storage networks, data storages,
their command interfaces and data storages simulators. The next part is
the development, implementation and testing simulators of storage and server
components, with supporting data operations modeling.

Keywords Storage Area Network, Fibre Channel, storage, World Wide
Name, command line interface

viii

Contents

Introduction 1

1 Thesis description 3
1.1 Thesis’ goal . 3
1.2 Keyword and Shortcut definition 3
1.3 Storage area network and environment 4
1.4 Execution in the real world . 5
1.5 Existing storage area network simulators 10

2 Analysis 13
2.1 Project architecture . 13
2.2 Simulated technologies . 14
2.3 Tools and technologies used in project 15

3 Design 19
3.1 Design foundations . 19
3.2 Server . 19
3.3 Storage . 20
3.4 Command line interface . 22
3.5 Interaction of components . 23
3.6 WWID generator . 26

4 Implementation 27
4.1 Server . 27
4.2 Server commands definition . 28
4.3 Storage . 28
4.4 Storage commands definition 30
4.5 Routines . 34

5 Testing 37

ix

5.1 Consistency . 37
5.2 Components features . 37
5.3 Integration . 37
5.4 Mapped and Mounting . 38

Conclusion 39

Bibliography 41

A Acronyms 43

B Contents of enclosed CD 45

x

List of Figures

1.1 Fibre channel switch factory . 4
1.2 SAN architecture . 5
1.3 Choosing SAN components . 7
1.4 SSSU commands . 9

2.1 Project architecture . 14
2.2 CDU use . 17

3.1 Storage architecture . 21
3.2 UDP function . 24

4.1 LVOL location . 29
4.2 Add physical disk group, command definition 31
4.3 ADD PDG routine . 34

5.1 Commands examples . 38

xi

List of Tables

1.1 Storage features comparing . 8
1.2 List of simulated by IBM storages 11

xiii

Introduction

At the beginning of a programmer’s career, a situation may arise when a
practical experience is as important as theoretical knowledge. This situation is
a typical case in a data storage management industry where graduate students
do not have enough experience in a technological field to be employed and
fulfill the requirement of the company.

Today the faculty of Information Technology provides excellent textbooks,
high-class lectures, and has professional teachers for students who want to
gain knowledge about the world of Information Technology. Unfortunately,
not in all cases faculty equipment can provide practical skills that would be
sufficient in the usage of some technologies in this infrastructure. The example
of one of these technologies is a Storage Area Network (the term shall from
hereon be referred to as the “SAN”). Today, SAN is a relevant topic in modern
Information Infrastructure. SAN is a relevant topic because SAN is intended
to process a high volume of information, which constantly growing and has to
be saved and processed.
Another reason is that the help of SAN the requirement of segregation of
the storage space between servers and the requirements of high performance,
reliability, and support-ability will be fulfilled.

The project, in which I was lucky enough to participate, is aimed to design
and create a system of modeling the Storage Area Network Environment, that
consists of host servers, switches, storages and their interaction.
The goal of this project is to provide opportunities for monitoring process,
configuring network and managing overall data network. The project is ded-
icated to students of the Faculty of Information Technology of the Czech
Technical University in Prague and give opportunities to get knowledge and
skills, that can be applied in actual work with data networking. The imple-
mentation of this system promotes an expansion of a content of The Storage
and File-systems (code:BI-STO).

1

Introduction

The thesis consists of five chapters, each of them describes the phase of the
project.
The first chapter presents the project objectives, overall information about
The Storage Area Network and lists of existing SAN storages and SAN simu-
lators.
Next chapter describes the project structure, enumeration of simulated tech-
nologies and explanation of the tools. The terms are also explained here.
The third chapter shows the approach used in the stage design.
The Process of development is demonstrated in the fourth chapter.
The last chapter is about testing the use cases. The chapter contains the
examples of usage and functions.

2

Chapter 1
Thesis description

The chapter describes the goal of the project. It also introduces the basic
theory and issues in a data network and provides analysis of state-of-the-art
data network technology.

1.1 Thesis’ goal

• Research command line interface of a typical Fibre Channel (FC) based
storage and Linux commands related to a storage connection. Design
and implement server and storage part of the storage network command
simulator.

• Use the CDU-CLI framework for command line parsing and UDP mes-
sage passing for communication with the FC switch part of the simulator.

• Simulate the data operations by a direct filesystem link between the
mount point and a directory representing a LUN on the storage side.

1.2 Keyword and Shortcut definition

This section will be presented by different definitions of terms, that are used
in this project.

• Fibre channel (hereinafter FC) is a high-speed network technology,
that intended for block-level data transferring, transfer of the data in
a data-centers between servers, switches and storages. FC is a reliable
technology, that prevents the loss of frames and it guarantees delivery
of frames in the correct sequence. The standard technology description
involves the use of optical fibre. [1]

• Fibre Channel Protocol is a transport protocol, that distributes
Small Computer System Interface (hereinafter SCSI) commands in the

3

1. Thesis description

network. Before sending, the commands are encapsulated in Fibre Chan-
nel frames. The Protocol is designed for usage in FC network.[1]

• Server-host is a server with access to SAN and SAN storage.

• Storage is a data storage in SAN.

• Fibre Channel switch is a network device used in Fibre Channel
networks. Fibre Channel switches are highly compatible with SANs.
They provide high performance on the networks. In SAN, FC switches
provide name server service. [2]

• Fibre Channel Switch fabric is the network topology, that consist
of one or more switches. In switched fabric, all node ports are intercon-
nected. [3]. Described topology in figure 1.1.

Figure 1.1: Fibre channel switch factory

The switch provides a connection between the compute node and the stor-
age node during a data transfer operation.[4]

1.3 Storage area network and environment

A storage network is a data network that provides servers with access to
shared storage resources. Storage Area Network is designed to manage and
store large amounts of data.
SAN consists of the storages, switches and server-hosts. SAN architecture is
demonstrated in figure 1.2.

4

1.4. Execution in the real world

Figure 1.2: SAN architecture

In most cases, the Fibre Channel protocol is used to transfer data between
SAN components. Also due to the protocol translation feature, SAN can
include devices running on other protocols. That feature significantly increases
system’s flexibility. SAN topology is based on switched-architecture. [4]

It is worth noting how the presented storage volumes are presented to the
operating system. The OS sees the volumes as directly related.
SAN is an isolated network, which means that SAN prevents access to re-
sources for external network devices.

1.4 Execution in the real world

SAN is a great solution for the enterprise environment. The main advantages
of using SAN in the enterprise environment are savings in operating costs,
simple administration, reliability, and fault tolerance.

Furthermore, by using SAN it might bring the increase of:

• availability of business applications

5

1. Thesis description

• speed of backup

• centralization of monitoring processes

The price and complexity of using SAN dropped significantly at the beginning
of the century. This made the technology available for deployment in the small
and medium-sized enterprises.[5]

Today there is a wide range of SAN components on the data network market
but there are no offers of ready-made solutions. The reason for this is that the
approach to SAN implementation for each case must be unique and taken into
account the specific order conditions. This caused by diversity of topology,
different number of servers, storages and switches in the system, as well as
different requirements of capacity, speed of data transmission, security level,
and data protection.

Some major suppliers (Lenovo, Dell and QSAN) in online stores offer cus-
tomers to set up an online SAN order - choose switches, storage, and hosts.
This process is performed in such a way that the provider determines the
types of components that are required in the SAN structure, and then the
client selects the devices of each type. 1.3

1.4.1 SAN storages

The following analysis of the existence of SAN storages provide knowledge,
that needed for modeling a storage part of the simulator.

Lenovo ThinkSystem DE2000H.
The supplier declares that the following product characteristics:
The ThinkSystem DE2000H (hereinafter Lenovo DE2000H) is low-cost and
efficient, secure, and has a large capacity. It works great and has a high
workload conditionals, which guarantees suitability for corporate needs. And
also have the ability to solve the problem, assuming intense I / O operations
such as Big-Date, data analysis, camera systems, backups. [7]

QSAN XCubeSAN XS1200 Series.
The supplier considers that the system effective and effective. The XCubeSAN
XS1200 (QSAN XS1200) system provides data services such as data secu-
rity, data protection, accessibility, scalability, and high consolidation. QSAN
XS1200 is a storage designed for critical significant applications. [8]

Dell EMC PowerVault ME4.
Dell EMC PowerVault ME4. The supplier defines the product as: affordable,
simple and fast, designed to manage the needs of physical and virtual appli-
cations. PowerVault ME4 (Dell ME4 only) is suitable for small businesses. It

6

1.4. Execution in the real world

Figure 1.3: Choosing SAN components

[6]

takes care of storage block consolidation requirements, intensive I / O opera-
tions, virtualization optimization, and data management. [9]

Systems are supported following host’s OS,

Dell ME4:
Windows 2016,2012 R2
RHEL 6.9 and 7.4
SLES 12.3

7

1. Thesis description

VMware 6.7, 6.5 and 6.0

QSAN XS1200:
Windows 2008(R2),2012(R2),2016
SLES(SUSE Server)10,11,12
RHEL(Red Hat)5,6,7
CentOS 6,7
Solaris 10, 11
Free BSD 9, 10
Mac OS X 10.11 or later

Lenovo DE2000H:
Windows 2012 R2,2016
RHEL 6, 7
SLES(SUSE Server)11,12,15
vSphere 5.5, 6.0, 6.5, 6.7.

Comparing of products functionality is demonstrated in table 1.1.

Table 1.1: Storage features comparing

option Dell ME4 QSAN XS1200 Lenovo DE2000H
Controllers 2 2 2
Controller cache 8GB up to 32GB 8GB
Max drives 336 626 96
Max raw capacity 4PB 2.6PB 1.47PB
Host Connectivity 37 34 12
Host type FC,iSCSI,SAS FC,iSCSI,SAS FC,iSCSI,SAS
RAIDs support 0,1,5,6,10,50 0,1,5,6,10,50 0,1,3,5,6,10
Data encryption SED,FCE SED,ISE SED

8

1.4. Execution in the real world

Then the SAN management software was investigated. SAN control pro-
grams are not an open source. But the YouTube channel “Lenovo Data Cen-
ter” demonstrates the providing of Lenovo customer support. The channel
contents video tutorials. Tutorials demonstrate management of Lenovo S Se-
ries array using the Lenovo Storage Management console.
This course shows the basic software components and functions. Part of the
demo of the workstation with the Lenovo Storage S3200, which mentions topics
such as creating and presenting to hosts logical volumes (LVOL) also system
configuration. The videos provide visualization of command syntax, structure
and results of execution.

Another survey included two command interfaces - the IBM SAN Volume
Controller and the HP Storage System Scripting Utility (hereinafter SSSU).
Then SSSU was selected as CLI design model in the project for reasons of
logical ordering and syntax clarity. Most suitability of the SSSU in the project
is also ensured by the fact that the tool is provided by a supplier of another tool
already selected for use in the project. The SSSU functionality is presented
by figure 1.4. Most commands are presented by figure come with a variety of
flags that are setting up command target or execution.

Figure 1.4: SSSU commands

[10]

Knowledge based on the analysis of functionality, architecture, graphical and

9

1. Thesis description

command interface structure of real software and hardware products are using
on the design of components and commands interface in the planning phase
of the project.

1.5 Existing storage area network simulators

Only SimSan simulator was found at the time of examining existing SAN
simulators. In addition, storage simulators are analyzed to gain knowledge to
form the right design approach.

1.5.1 SimSan

The program models the network behavior when running data transferring
operations and shows the process of moving the SCSI command over FC/
FCoE. SimSan in detail demonstrates structure of frames in the network. The
simulator allows users to test the role of the network administrator and get
acquaintance with that role daily tickets. Examples of such tasks are work
with logical unit numbers, port configurations, and name server queries.

The weak side of SimSan is not carrying out a simulation of working with
volumes. This is the most important part of the SAN feature.

1.5.2 HP EVA P6000

It is a storage simulator with a graphical interface that very accurately sim-
ulates the behavior of product from HP Eva group. The program supports
simulation work with hosts over Internet Small Computer System Interface
(hereinafter iSCSI) and FCoE.
Simulator’s command interface consists of two commands groups:

The first group is called ”Provision” and contains a list of commands for
simulating volume management operations.

• Create a logical volume group

• Add host

• Create logical volume

• Map logical volume to host

The second group is called Data Protection:

• Replication

10

1.5. Existing storage area network simulators

• Snapshots

• Clone

An interesting feature of the system is the ability to set snapshot rules for
each individual LVOL.

1.5.3 IBM System StorageDS Storage Manager

The program can simulate the behavior of several storages in data centre.
Each of such storage is represented as SubSystem.
After installation, the program creates the default SubSystems (the descrip-
tion is presented in the table. 1.2

Table 1.2: List of simulated by IBM storages

Model Controllers Storage Array Arrays count Drives
DS5300 1 EXP5000 28 FDE, FC, SATA
DS5300 1 EXP5000 20 FDE, FC, SATA
DS5100 1 EXP5000 10 FC, SATA
DS4800 1 EXP810 8 FC, STA
DS4700 1 EXP810 6 FC, SATA

Each of that subsystems responds to a actual IBM product. Program sim-
ulates the creation of logical volumes, provision LVOLs to hosts and other
volume management operations. In addition, the application simulates raid
management and ports configuration. The graphical interface of the program
is very clear and well demonstrates the structure of disk arrays.

1.5.4 HPE 3PAR StoreServ Simulator

The application imitates the behavior of the HPE 3PAR StoreServ Storage
System. Software provides simulation of maintenance, administration and
reporting processes.

Supported functionality and features:

• Disk array up to 48 disks HDDs

• Disk interfaces FC, SSD, NL

• 3PAR Management Console

• CLI and Remote CLI support

11

1. Thesis description

• Storage Provisioning

• Exporting Virtual Volumes

• Local Replication (Snapshot)

HP 3PAR Simulator does not provide server host simulations. The lack of
hosts in the program makes it impossible to monitor the impact of data man-
agement operations.
However, the program allows to create a Fake-Host. Fake-Host has no prop-
erties, except the presence of WWID and Host-name.

12

Chapter 2
Analysis

The chapter describes the structure of the project. Moreover, It presents the
tools used in the project. Information in this chapter is served as a starting
point for further design.

2.1 Project architecture

The project architecture consists of four components:

• Storage

• Storage network

• Control console simulation

• Servers

Figure 2.1 shows the structure of the project.

The controlling component is Control Console Simulation FCSIM. FCSIM
controls the start, pause, and the end of the simulation. Furthermore, FCSIM
registers all transactions in the system.

Storage network is a network of switching factories that provides communi-
cation between the hosts and the storages. The component of the network
performs zoning.

Storage is a data storage. The primary responsibility of storage is to provide
storage space to the clients. For this reason, the storage also provides the
transformation of physical space into logical storage space, splitting this log-
ical space into logical volumes, setting up access control and mounting these
volumes to hosts.

13

2. Analysis

Figure 2.1: Project architecture

Server represents server-host connected to SAN. Host is a storage client, that
consume storage resources. Host also performs management operations with
the provided storage space, examples of such operations are representing as a
local disk, then mounting file-systems and then write and riding from disk.

2.2 Simulated technologies

All technologies introduced in this section are the core of the functionality of
the simulator.

2.2.1 Storage side

Logical Unit Number - a logical entity, that represents a logical storage
space converted on storage side from a physical disk space. Such representa-
tion is accessible and usable to hosts.

Mapping volumes - the operation provides LVOL assignment for the host
LUN. The operation makes LVOL visible to the host.

Mounting volumes - The operation mounts the logical volume to the host.
After the process is complete, the host can use a LVOL, and the host OS
identifies the LVOL as a local disk.

Pool - logical space that is created by aggregate capacity from different phys-
ical sources.

14

2.3. Tools and technologies used in project

Zoning - a service that allows to set rules for access to storage resources for
each host.

World Wide Name - eight-byte unique device identifier. In Fibre Channel
networks, WWN is the equivalent of MAC address.[1]

RAID - A redundant array of independent disks is a physical disk array
management technology that improves performance or reliability, or both.[4]

Logical volume - is disk-based logical address space.

Physical Volume - (hereinafter PVOL) physical disk.

Physical Volume Group - (hereinafter PVG) is a set of physical disks.
Mostly, disks in the group have similar properties, or placement, or both.

2.2.2 Server side

Multipath - technique multipath allows to define several physical paths be-
tween server and storage. The use of the multipath provides dynamic load
sharing and automatically emergency paths changing.

File-system management - the process of creating and mounting a file
system on an unallocated disk.

2.3 Tools and technologies used in project

The section presents several external components of the project. The tech-
niques shown in the section are used in the development of the project.

2.3.1 Framework ttdrv

The framework simulates the command interface, loads, and then processes
the text from the standard input.
The utility sends and receives sockets through the UDP port. The resulting
sockets are processed by the framework, which includes the launch of the
subroutine. The choice of a specific procedure occurs in accordance with the
contents of the socket. The maximum number of predefined procedures is 256.
The first byte of the socket header is the encoded name of the communication
protocol. For each type of communication protocol, the infrastructure allows
you to temporarily register a routine. After the timeout, registration will be
canceled, provided that the other protocol socket has not arrived.
The second byte of the socket is used in the request-response services. This
type of communication is defined in such a way that it is required the request
to contain a letter in the second byte in a large register (A-Z), while the answer

15

2. Analysis

must contain the same character in a small register (in addition, the request
and the Answer must be on the same protocol).
Each supported service has a unique letter for socket headers.

2.3.2 Command Definition Utility

The Command Definition Unit is used to define the command syntax.
The CDU also generates sources for use in parsing and validating incoming
commands. In addition, the framework prepares the methods of collecting
data in incoming commands, and then presents them to routines. Another
feature of the CDU is the preparation of routines templates.

CDU ensures that the unification of the command line interfaces for project
components.

Working with CDU involves writing files with command definitions in the
command definition language, after which files with command definitions are
processed by the CDU. The output of this operation is four other files:

• unit table.c

• unit run.c

• unit cli..c

• unit cli.h

Unit Table contents information about the syntax of the command. The file
is used in parsing and checking incoming commands.

Unit Run file presents headers of routines. Routines are used for processing
incoming commands.

Files UNIT CLI provide transferring data of incoming commands to routines.
For each possible value of parameter or qualifier of incoming command, file
UNIT CLI.h contents three EXTERN variables:
i

• present

• value

• result

Present demonstrates the presence of parameter or qualifier value. This is
a useful feature in case of an optional value.
Value contents parameter or qualifier value.
File UNIT CLI.C provide setting up of that variables and then call of suitable
routine. Figure 2.2 shows the CDU use.

16

2.3. Tools and technologies used in project

Figure 2.2: CDU use

2.3.3 Commands line definition

Creation of the command definitions requires the writing command definition
files that describe commands. Command definitions consist of several parts:
verbs, parameters, qualifiers, keywords, and routines.

command definition file - a command-defining file which contains a record
of an image or routine that is called by a given command

Verb - specification of command to the following processing. On figure 1.4,
Verbs are presented in circles adjacent to the central one (called SSSU com-
mands).

Parameter - command object specification. For a parameter, it is possible
to specify the type of its value.

Qualifier - description action performed by the command. The type of the
qualifier can also be specified. Examples of such specifications are integer
values, keywords, and character strings.

Keyword – a predefined string. Keywords can be used as a value of a pa-
rameter, qualifier, or another keyword.

2.3.4 UDP

User Datagram Protocol - protocol of transport layer (OSI model). USD
provides a simple messaging service regardless of reliability, which means that
It does not perform flow control and error correction functions. UDP is the

17

2. Analysis

interface between IP and higher layer protocols. Also, the protocol requires
a relatively small size of the message head, causing a lower network load. [11]

UDP is useful if the reliability of the transport protocol is negligible. For
example, in systems where errors and flow are checked in higher layers. As in
our case, where the control and parsing of the front commands are performed
by the application.

2.3.5 Links

Link - is an object in a file system that is not a real file or folder, but link is
a reference to folder or file.

18

Chapter 3
Design

This chapter describes in detail the design of the server and storage compo-
nents as well as their functions and interaction.

3.1 Design foundations

Each component is represented by an independent process with own command
prompt window and own command line interface, which makes the viewing of
simulation processing simple and clear.

Communication between the system’s components is provided through UDP
protocol. Each component is able to interact with another independently.

Data operations will be provided directly in file-system.

Mapping volumes is simulated via creating of links in file-system.

Inserting and removing of physical disks is simulated by creating resp. remov-
ing files with information about disk.

The creation of resp. removing of logical volumes occurs in the system by cre-
ating the directories and removing them. For servers, this approach provides
abilities to create their own file-systems on supplied memory sources.

3.2 Server

The Server component is a server host with a UNIX-like OS. In the project, the
server has the role of initiator, the server begins to communicate by sending
requests to the storage. The server provides the following functions:

• Preparing for communication by connection to SAN

19

3. Design

• Port Configuration.

• Initiation of disk mounting.

• Mounting file-systems.

• Ensure simulation of multipath technique.

• Evidence of mapped and mounted disks.

• Showing information about mapped disks, disk drives, system and ports.
The server and its ports are identified by a unique WWID.

3.3 Storage

Storage - a component that represents a data storage and manages storage
resources, protects data, and also provides resources to clients.

The repository component models the elements that represent the physical
aspects of the internal structure of the storage, such as PVOL, PDG, PDG
and controllers. Also, the Storage represents the modeling of logical units,
such as LVOL, pools over groups, RAID and LUN.

Architecture is designed in such a way, that the ultimate product is a simulated
storage which includes two controllers. Each controller manages a certain set
of physical disks.
Total Storage capacity consists of aggregated capacity of connected and reg-
istered PVOL. Adding of PVOL require to specify the type and size of a disk
and to assign the disk to a controller.
PVOL can be combined in a PDG. It is possible to set the type of RAID for
each of such a group. By creation of a group, there is a creation of a new
pool. The pool’s capacity consists of the sum of the capacities of the indi-
vidual elements of the group and consumption of space, that is reserved for
data protection (depending on the type of raid and the group). There are
two default groups with RAID 0, this groups contents controllers disks. By
default, controller has its own group. Pool is a source for LVOL, which is then
assigned to a hosts LUNs. Each host has a set of LUNs At the moment LVOL
can be assigned to several LUN of different hosts. After that assignment,
LVOL becomes visible and available to mounting to host. But LVOL cannot
be mounted to more than one host at a time, exception is a cluster systems.
LVOL supports functions of the writing protection, which makes the disk read-
only. Also for each LVOL is possible to select the type of cache. The storage
architecture is presented oin the figure 3.1.

The following is a list of simulated elements also their properties:

20

3.3. Storage

Figure 3.1: Storage architecture

• Pool - Source of logical memory, that is converted from storage, physical
memory. Pool capacity is used to create logical volumes.

• PVOL - Source of physical memory. Each physical disk capacity extends
the total storage capacity.

• PDG - a group of physical disks, performs RAID determination over
disks containing a group.

• Port - Device FC port.

• LVOL - logical volume on storage.

• LUN - Logical unit number, provide presents of LVOL to host.

21

3. Design

• Mapping LVOL The mapping relationship between LVOL and Host.
The operation assigns LVOL to the LUN host, which provides the host
access to LVOL in the Storage. After mapping, the host can request the
Storage to mount LVOL.

• List of host - list of hosts connected to the storage, includes host
data such as name, WWID, FC port number, connection type, and host
compatibility with multipath. Also, there is a list of its ports for each
host.

When creating a Pool, PVOL, LVOL or LUN, the system generates and then
assigns an an identification number to the created device.

3.4 Command line interface

The design of the CLI components is based on the need to fulfill the require-
ment for the implementation of the Operations of Volume Management in the
system. Another driving factor was the knowledge from the analysis of exist-
ing solutions. Since the Server and Storage perform different activities in the
project, the CLI design consists of two phases.

3.4.1 Storage command line interface

Storage CLI allows to control the following features and functionality of the
system:

• Creating a group of physical disks, assigning disks to PDG, setting up
the type of PDG raids.

• Creating LVOL and defining its features, like size, type of cache, writing
protection, alias and changing all of these parameters

• Adding of PVOL with parameters - size, interface, and selection of disk
controller.

• Creating a PDG of physical disks, assigning disks to PDG, setting up
the type of raid in PDG .

• Registration of hosts and its ports, assigning alias to hosts.

• Mapping LVOL to hosts with specification ports that are used for map-
ping.

• Detection of active devices in the network.

22

3.5. Interaction of components

• Present to user information about elements of storage and relations with
hosts.

3.4.2 Server command line interface

The CLI server allows the user to customize the server element that affects the
simulation run and manage volumes storage space provided by the storage.
The following operations are supported:

• Initiate mounting of an available volumes.

• Initiate mapping of volumes.

• Canceling of mapping relation.

• Creating and mounting of a file-system.

• Present to user information about host LUN on storage.

• Present to user information about server elements.

• Request information about available logical volumes on storage.

• Enabling or disabling of multipath technology.

• Control of mounted or mapped volume state.

3.5 Interaction of components

Communication between components is provided by sending UDP Datagram.
To implement this type of communication, the program use functions: UP-
Dset, UPDput and UDPsend recv from io.h library, functions are presented
in figure 3.2.

UPDput provides a sending UDP Datagram to target port, that specify by
function parameters. UDPsend recv ensures the sending and receiving of a
UDP Datagram. The response Datagram is processed by the preset handler
function. Also, the function requires to set a response timeout. UPDset
provides a sending UDP Datagram handler function to certain UDP port.
That mean all input UDP Datagram are processed by that handler function.

Control console simulation manages the life cycle of each particular compo-
nent.
The beginning of the participation of each component in the simulation also
implies to the beginning of listening on UDP port. Number of UDP port and

23

3. Design

void UDPprot_set(IOhandle *this, Buffer *address, int port,
int (* handler)(IOhandle *that, Buffer *data,
Buffer *address, int port), uint8_t protocol, int timeout);

int UDPput(IOhandle *this, Buffer *data, Buffer *address,
int port);

void UDPsend_recv(IOhandle *this, Buffer *data, Buffer *address,
int port, int (* handler)(IOhandle *that, Buffer *data,
Buffer *address, int port), int timeout);

Figure 3.2: UDP function

IP address are provided by Control console simulation.
There are two commands to start Server or Storage:

create(directory, IP address, UDP port, number of FC ports) - com-
mand serves for creation of a new component. That command creates the
folder directory and opens the UDP port, which creates internal representa-
tion of a new component.

run(directory, IP address, UDP port) - command serves to restore ex-
isting component and provide the start of listening on UDP port.

After creating or running the components are available to listen to other
commands from Control console simulation:

connect(local FC port, remote FC port, remote IP, remote UDP
port) - command provide connecting of device FC port to switch FC port.
Command model connecting fibre optic cable .

disconnect(local FC port) - disconnect port of fibre. If the command is
received by the server without the multipath technologies or if after the dis-
connection there would be no path to the storage, that server provides un-
mounting of all disks.

destroy(directory) - deleting of components from program, command also
remove folder directory of component.

start() - starting simulation.

exit() - exit of program. Servers provides unmounting of all disks.

stop() - stop simulation.

Registration of ports on switch is required to connect to the network and start

24

3.5. Interaction of components

communication. For that reason the service FabricLogin was designed. Each
registered component must send its WWID, IP address, UDP port and FC
port number.

After registering ports, the server and storage update information about online
device and their FC ports in the network. In order to provide this operation,
a service called DirectoryServer exists, that returns a record of all FC ports
involved in the network and belong to the set of zones of the requesting FC
port.
For each device found, the response includes WWID of device, WWID of port,
FC port, IP address and UDP port.

Server and storage handle service response differently.
Storage saves the response as a list of online devices.
Server requests to each FC port a list of available volumes. Operation is
provided by the service VolumeInfo. The following step is to check the stored
list of mounted disks and then provide mounting of all available volumes from
that list.

All volume mapping and mounting processes are provided by storage,
the operation can begin as requested by the host or at the command of the
storage.
If running a Volume mapping for a host is initiated by storage, the operation
require entering the volume name and server name.
If the mapping is initiated by the server, request is handled by VolumeFactory
service. Processing the request consists of creating a new LVOL in the storage,
and assign that LVOL to the host LUN. In this case, the operation requires
to specify the size of LVOL, name alias and type of disk cache.
When volume mapping is processed, storage updates list of mapped volumes,
then run VolumeInfo service and synchronize information with storage.
Both the storage and the server can cancel mapping session. When canceled,
the second side is notified, and after that both parties delete the relation
record. Canceling does not take place if volume mounted to host.
Each server stores a list of volumes attached to it. When the server starts, the
VolumeMount service mounts all the volumes in this list, then the contents of
the list are updated.
Information on mounting and mapping volumes can be represented by the cor-
responding command, as well as information that the information is presented
in the file system in the form of folders and their permissions.

The server may request to mount the volume that is assigned to its LUN.
When storage receives a request to mount a volume for a server, storage
check if the volume is occupied by another host. If the volume is available to
mounted, a directory is created on the host with no read and write permissions.
Directory represents mounted, unallocated disk. If successful, the server and

25

3. Design

the repository record the relevant information about the changes.

3.6 WWID generator

The requirement to generate a WWID says that WWID for each device must
be unique and that the length of WWID must match the actual length of
WWID - 8-bytes. Algorithm djb2 was chosen for hashing In view of this
requirement, the following principle of generating WWID is proposed:
Due to the guaranteed uniqueness of the names in the project, the storage
or server WWID is generated as the 8 byte hash of device name. WWID in
PVOL consists of four digits which represents the serial number of the added
disk and WWID storage without first four digits. The WWID port consists
of WWID storage or server where the last four digits are replaced by the
port ordinal number given to be created into the system. The current ordinal
numbers of the disk and port are kept in the system info on the storage or
server.

chapter Implementation
This chapter presents the process of implementing the planned system

features.

26

Chapter 4
Implementation

This chapter presents the process of implementing the planned system fea-
tures.

4.1 Server

Simultaneously, several servers can participate in the simulation. Each server
instance works in a separate terminal window, and also has its own starting
directory. In addition, each server has its own directory tree.
The core of instance is a Server Data Object,that contains information about
all temporary and permanent elements of the server. Server component is
developed according to the Singleton pattern, its mean one instance cannot
have more than one Server Data Object.

The following is a description of all server directories:

• /dev directory content two folders. /dev/dsk a folder contains mounted
disks. Each object is a link to the corresponding LVOL.
/dev/available - a list of available storage volumes. Each entry is repre-
sented as a link to the volume information file in the repository.

• port a folder containing files representing FC ports.

• sys - directory content a system information.

• var - directory provides information of mounted disks of storage. Each
disk represented as a file, that contents storage of a disk information.

Each available volume is represented by a link to the file in the storage,
that Each mounted disk is represented as a link to the volume folder in the
storage.
Mounted disks without a file system do not have read and write permissions.
After the file system is created, the disk gets read and write permissions.

27

4. Implementation

4.2 Server commands definition

A set of special commands for the Server ensures that all planned features are
supported. The following commands are defined:

• Show - command to display system element information. The only
parameter is required and specifies the command syntax. The following
syntaxes are supported:

– PORT - presents port information.
– SYS INFO - presents system information.
– MOUNTED LVOL - shows a list of mounted volumes.
– MAPPED LVOL - shows a list of mapped volumes.

• Mount - command initiates a mounting of volume.

• Umount - command cancels a mounting.

• Map - command requests a storage to create LVOL and assign to LUN.

• Unmap - erases of host LUN of assigned volume. LVOL name is re-
quired.

• CreateFS - creating mounting of file system.

• Get volumes - command returns a list of LUN volumes assigned to the
host.

• Discovery - command updates all information about mounted and
mapped volumes.

• Set multipath - command allows multipath enabling. The parameter
specifies the feature state: ON / OFF.

4.3 Storage

Storage core is Storage Data Object. Each storage instance, cannot have more
then one Storage Data Objects.
. Each storage instance runs into separate terminal window and has own
catalog tree. In one simulation there is a participation of several storage
instances.
Core Entity contents a information about all physical and logical elements of
Storage. All changes of the system elements are immediately written to the
file representation of the changed storage element.

28

4.3. Storage

Each physical or logical element of the Storage is introduced in the form of
a file which name corresponds to the system identifier of the element. Each
such file contains information about the item.
Logical volumes presented in the form of files with information about the disk,
and directories. Figure 4.1 describes the location of LVOL and its presence in
the pool information file.

Figure 4.1: LVOL location

The following is a description of all storage directories:

• sys - directory content system information.
This folder contains the name of the storage, WWID of the storage and
the number of physical disks, ports, pools, registered hosts, volumes,
groups.This folder contains the name of the storage, WWID of the stor-
age and the number of physical disks, ports, pools, registered hosts,
volumes, groups.

29

4. Implementation

• pool - directory contents pool information.

• pdg - physical groups information.

• pvol - information about physical volumes.

• lvol - information about logical volumes.

• port - information about system FC ports.

• host - records of storage clients. Folder contents information about
every particular server in form of file. Also servers LUN are stored in
subfolder.

4.4 Storage commands definition

To implement the projected storage functionality, the following commands are
implemented.

4.4.1 Add

The command is used to add a new element in the system. The command
requires specification of the type of target and is used to add the following
element types: PVOL, LVOL, LUN, PDG, Host. The unit type is specified as
a mandatory command parameter, which will specify the command syntax.
For each command syntax, a corresponding subroutine is defined.

The following are the options for specification of command syntax:

• PDG - creation of physical disks group. Command requires two addi-
tional parameters - group name and type of raid.

• PVOL - registration of physical disk. Command requires three addi-
tional parameters, that specify disk size in GB, ID of controller which
drives the disk and disk interface (SSD, HDD, SATA, SAS or PATA).

• LVOL - creation of logical volume. The command requires specification
of name alias for disk, disk size, cash type, state write protection function
for that volume and identifier of pool, where the volume is created.

• HOST - host registration. The command requires entry of name alias,
multipath support state and host WWID.

The following code listing shows the contents of the definition command for
adding a physical group: 4.2

30

4.4. Storage commands definition

define verb ADD
parameter P1, label=OPTION, prompt="What",

value (required,type=ADD_OPTIONS)

define type ADD_OPTIONS
KEYWORD PDG, syntax=ADD_PDG
KEYWORD PVOL, syntax=ADD_PVOL
KEYWORD HOST, syntax=ADD_HOST
KEYWORD LVOL, syntax=ADD_LVOL

define syntax ADD_PDG
routine ADD_PDG

parameter P1, LABEL=OPTION,
VALUE(REQUIRED)

parameter P2, label=PDG_NAME, prompt="Name"
value(required,type=$IDENT)

parameter P3, label=RAID, prompt="RAID"
value(required,type=$RAID_KEYWORDS)

DEFINE TYPE RAID_KEYWORDS
KEYWORD RAID_0, DEFAULT
KEYWORD RAID_1,
KEYWORD RAID_01,
KEYWORD RAID_10,
KEYWORD RAID_5,
KEYWORD RAID_6

Figure 4.2: Add physical disk group, command definition

31

4. Implementation

4.4.2 Remove

The command deletes an item from the system. For all possible purposes of
adding commands, a delete command is supported that performs the deletion
of an element of the same type. It’s also defined at a type of syntax for
deleting a member of a group. Each version of the command syntax runs a
special procedure. The following syntaxes are supported:

• PDG - removal of physical disk group.

command example: REMOVE PDG testGroup

• PVOL - removal of physical disk. Command requires specification of a
disk ID.

• LVOL - removal of logical volume. Volume name is required.

• HOST - removal of host. Host name is required.

• GROUP MEMBER - removal of disk from group. Disk id and group
name are required.

4.4.3 Show

The command shows a list of all elements of the selected type. For PDG, pool,
PVOL, LVOL, host, there is an optional parameter - device identifier, that
allows to specify certain element to present. The following syntax options are
supported.

• PDG

• POOL

• PVOL

• LVOL

• HOST

• HOST LUN

• MOUNTED LVOL

• STORAGE PORT

• CLIENT PORT

• SYS INFO

command example: SHOW PDG testGroup

32

4.4. Storage commands definition

4.4.4 Set

The command performs a change to the system element. The following com-
mand syntaxes are defined.

• LVOL - command to change LVOL, syntax defines optional qualifiers
to change name, capacity, cache, write protection, and one mandatory
parameter to specify name of volume to change.
command example:
SET LVOL - -NEW NAME=myVolume - -SIZE=1024
—CACHE=WRITE BACK myDisk

• HOST - command to change host properties, syntax consists of two
optional qualifiers, which are used to change the alias and record of
multipath support state. To specify a host to change, command requires
specification of a host name.

4.4.5 Map

Command is used to assign a logical volume to host LUN. Host and volume
names are required.

command example: MAP Prague MyVolume

4.4.6 Unmap

Command is used to cancel relation between logical volume and host LUN.
Host and volume names are required.

command example: UNMAP Prague MyVolume

4.4.7 Mount

The command is used to mount lvol, that assigned to host lun, to host.

4.4.8 Umount

The command ensures the cancellation of mounting of volume, to host.

4.4.9 Extend group

Command is used to cancel relation between logical volume to host LUN. Host
name and volume name are required.

33

4. Implementation

void ADD_PDG () {

RAID_present = cli_present("RAID");
RAID_result = cli_getvalue("RAID", &RAID_value);
OPTION_present = cli_present("OPTION");
OPTION_result = cli_getvalue("OPTION", &OPTION_value);
PDG_NAME_present = cli_present("PDG_NAME");
PDG_NAME_result = cli_getvalue("PDG_NAME", &PDG_NAME_value);
ADD_PDG_run();

}

void ADD_PDG_run () {

}

Figure 4.3: ADD PDG routine

command example: EXTEND GROUP MyGroup 1111,1112,1113,1114

4.5 Routines

Written definitions of the commands were passed to CDU processing to create
the resulting command interface. After CDUs processing, functions were gen-
erated in the programming language C for all routines that were introduced
with defining the command.Then all generated routines have been comple-
mented to fulfill a purpose of the commands which have triggered them.

Figure 4.3 shows an example of generated by CDU functions.

Every service supported in program is introduced as a handler function.
Enabling of service in program means to setting up appropriate handler func-
tion to component instance UDP port. To clarify the choice of a function
handler for processing an input Datagram, each protocol has a protocol iden-
tifier. This protocol identifier is represented by a single letter and is added
to each UDP Datagram. there are three services supported In Server and
Storage parts of project:

• volumeFactory initiated by the Servers. Server sends FC frame to stor-
age, request contents a required volume parameters. Storage provides
creation of volume, then volume is assigned to server LUN.

• volumeInfo, initiated by Servers. Server sends the FC frame to stor-
age, request contents absolute address of mount point and local volume

34

4.5. Routines

ID. After storage presents information about volumes, that assigned to
server LUNs. Volumes information presents as a creation of a links on
mount point on disk information files. Storage response contents number
of volumes.

• volumeMount initiated by Servers. Server sends the FC frame to storage,
request contents absolute address of mount point and storage volume id.
Then Storage controls if volume is available to mount to this host. In
success, Storage provides a mounting of volume.

the function sending an UDP Datagram, that contents the FC frame, with
port parameters.

Control commands for manage simulation run are implemented as C language
function.

Function “create” creates a directory tree of component. The function
“create” like a function “run” opens UDP port and sets up the handler func-
tion to this port for other simulation control commands.
Connect function is setting up the port, with function input parameters, after
it provides the FabricLogin service.
Destroy function cleans up everything by each component instance memory
and remove all instance files and directories.
Function “start” provides the setting up handler function to component in-
stance UDP port for all services that supported by the component.
Function “stop” supports the cancellation for all services.

35

Chapter 5
Testing

All Tests performed successfully. The planned functions of the components
are tested and work as was expected.

5.1 Consistency

To Server and Storage components was several times sent a create and run
commands with the different number of disks and ports. Was monitored
catalog three of component, generation of WWID and storing of system infor-
mation.

5.2 Components features

Storage instance was tested by entering commands to Storage terminal was
entered a different commands, that not requires Storage to be connected.

Add, Remove, Set and Remove commands was monitoring by changing
of system information, also result of command execution was followed in the
catalog three.

Here was tested difference syntaxes types. Figure 5.1 shows examples of
commands.

Show commands was tested and then was used for monitoring of another
commands results.

5.3 Integration

The first was tested interaction with Control Command Simulation compo-
nent.

37

5. Testing

ADD PDG "testGroup" RAID_01
ADD PVOL 512 1 SSD
ADD LVOL MyDisk 1024 WRITE_THROUGH OFF˜1
ADD HOST Prague ON FC 5351879742643489˜1
REMOVE "testGroup"
show HOST

Figure 5.1: Commands examples

To Server and Storage components after creating was sent a difference se-
quences of start, stop, exit and destroy commands.
Server and Storage components are presented ability to connect to Control
component and furthermore ability to listen Control Component commands.

The second performed tested ability of Server and Storage components to
communicate with Switch components.
Was tested command connect, that provides a registration of component FC
port in Switch network. Result was controlled by entering to Switch terminal a
command switchshow, after connection record of connected port had appeared
in ports list, returned by switchshow command.

The next part of testing of Switch component interaction was command dis-
covery, that provide information about devices, that ports are connected to
network. After command had provided Server and Storage components ex-
tends a list of online devices in network and their ports.

5.4 Mapped and Mounting

The final testing group is mapping and mounting tests.
After mapping in server catolog three was appeared a links to volume infor-
mation fails.
Fyrthermore was tested mountig command, and after command providing, in
Server catalog three was appeared links to volumes, without right and write
permissions. The last one, was tested create FC operation, and after command
was provide directory of target volumes became a readable and writable.

38

Conclusion

The main purpose of the thesis was the planning and realization of the server
and storage parts of the Storage Network Command Simulator. Achievement
of the goal of the thesis included several stages.
The wide analysis was carried out of existing simulators and real world solu-
tions, also their physical and logical architecture, as well as work principles
and command interfaces.
As part of the project, there was a study of the technology that are connected
to the data storage and the storage network field.
Moreover, the study and the utilization of the programming instruments was
mastered in this project. Those instruments are the frameworks, libraries,
protocols and the command definition languages.

The data was obtained during the research was used to design of the command
line interfaces, components structures and interaction of the components of
the project.

The command definition language was used for definition of commands and
the framework CDU-CLI was used for command line parsing during the cre-
ation of the command line interfaces.
Furthermore, the ttdrv framework and the io.h library was used for the real-
ization of communication of components through the UDP Datagrams. There-
fore, the function in the CI language was written for the command execution.
During the working process there was the implementation of the possible con-
nections and communication between the Switch component and Control com-
ponent of the simulator. The implemented functionality provides representa-
tion of LUN and simulation of the data operations. Due to the creating of
Links in filesystem, there was the realization of the mechanisms that allow to
modeled the process of the mounting space storage for the Servers.

All objectives of the thesis have been achieved.

39

Conclusion

The project has the model structure which allows to add new elements and to
change the old ones with the major changes of the project.
One of the direction of the expansion of the project is the distribution of the
components of the project to the different computers and the creation of the
local network between them.
Another one of the possible direction is the extension of the support of different
types of connection and communication between the components.

40

Bibliography

[1] Petr Bouška: Fibre Channel SAN śı̌t a konfigurace na Win-
dows Server 2012. 2017, [cit. 20.04.2019]. Dostupné z: https:
//www.samuraj-cz.com/clanek/fibre-channel-san-sit-a-
konfigurace-na-windows-server-2012/

[2] Carol Sliwa: Fibre Channel switch (FC switch). 2015, [cit. 20.04.2019].
Dostupné z: https://searchstorage.techtarget.com/definition/
Fibre-Channel-switch-FC-switch

[3] IBM Knowledge Center: Switched fabric topology terminology.
[cit. 20.04.2019]. Dostupné z: https://www.ibm.com/support/
knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieag100/ieag1_
diagswfabric_terms.htm

[4] Thomas C. Jepsen: Distributed Storage Networks [Architecture, Protocols
and Management]. West Sussex: John Wiley and Sons Ltd, 2003, ISBN
0-470-85020-5, [cit. 20.04.2019].

[5] Earth Link for Abroad Networks: Storage. 2014, [cit. 20.04.2019]. Dos-
tupné z: http://www.elan-eg.com/sys-storage.html

[6] THINKMATE: RAX-VM XT24-2262V4-VSANF. [cit. 20.04.2019]. Dos-
tupné z: https://www.thinkmate.com/system/rax-vm-xt24-2262v4-
vsanf

[7] Ilya Krutov: Lenovo ThinkSystem DE2000H Hybrid Storage
Array [Product Guide]. 2019, [cit. 20.04.2019]. Dostupné z:
https://lenovopress.com/lp0881-lenovo-thinksystem-de2000h-
hybrid-storage-array

[8] QSAN Technology: XCubeSAN XS1200 (SMB). [cit. 20.04.2019]. Dos-
tupné z: https://www.qsan.com/en/product.php?act=view&id=12

41

https://www.samuraj-cz.com/clanek/fibre-channel-san-sit-a-konfigurace-na-windows-server-2012/
https://www.samuraj-cz.com/clanek/fibre-channel-san-sit-a-konfigurace-na-windows-server-2012/
https://www.samuraj-cz.com/clanek/fibre-channel-san-sit-a-konfigurace-na-windows-server-2012/
https://searchstorage.techtarget.com/definition/Fibre-Channel-switch-FC-switch
https://searchstorage.techtarget.com/definition/Fibre-Channel-switch-FC-switch
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieag100/ieag1_diagswfabric_terms.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieag100/ieag1_diagswfabric_terms.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieag100/ieag1_diagswfabric_terms.htm
http://www.elan-eg.com/sys-storage.html
https://www.thinkmate.com/system/rax-vm-xt24-2262v4-vsanf
https://www.thinkmate.com/system/rax-vm-xt24-2262v4-vsanf
https://lenovopress.com/lp0881-lenovo-thinksystem-de2000h-hybrid-storage-array
https://lenovopress.com/lp0881-lenovo-thinksystem-de2000h-hybrid-storage-array
https://www.qsan.com/en/product.php?act=view&id=12

Bibliography

[9] Dell EMC: PowerVault ME4 Series SAN/DAS Storage Spec-
ification Sheet. 2018, [cit. 20.04.2019]. Dostupné z: https:
//www.dellemc.com/resources/en-us/asset/data-sheets/h17384-
powervault-me4-series-ss.pdf

[10] Hewlett-Packard Development Company, L.P: Hewlett-Packard Stor-
age System Scripting Utility Reference. Palo Alto, California, Hewlett-
Packard Company, 2013, ISBN T5494-96594, [cit. 20.04.2019].

[11] Javvin Technologies Inc.: Network Protocols Handbook. 13485 Old
Oak Road Saratoga CA 95070 USA, 2005, ISBN 408-872-3881, [cit.
20.04.2019].

42

https://www.dellemc.com/resources/en-us/asset/data-sheets/h17384-powervault-me4-series-ss.pdf
https://www.dellemc.com/resources/en-us/asset/data-sheets/h17384-powervault-me4-series-ss.pdf
https://www.dellemc.com/resources/en-us/asset/data-sheets/h17384-powervault-me4-series-ss.pdf

Appendix A
Acronyms

FC Fibre channel

FCoE Fibre Channel over Ethernet

SAN Storage Area Network

LUN Logical unit number

WWN World Wide Name

LVOL Logical volume

SCSI Small Computer System Interface

iSCSI Internet Small Computer System Interface

Lenovo DE2000H Lenovo ThinkSystem DE2000H

QSAN XS1200 QSAN XCubeSAN XS1200 Series

Dell ME4 Dell EMC PowerVault ME4

CDU Command Definition Utility

CLI Command Language Interpreter

CT Command Table

DCL DIGITAL Command Language

PVOL Physical volume

PVG Physical Volume Group

LVG Logical Volume Group

SSSU Storage System Scripting Utility

43

Appendix B
Contents of enclosed CD

readme.txt ... Description of CD
exe .. exec file
src

impl .. application code
thesis..................................thesis text in LATEX format
thesis.pdf thesis text in PDF

45

	Introduction
	Thesis description
	Thesis’ goal
	Keyword and Shortcut definition
	Storage area network and environment
	Execution in the real world
	Existing storage area network simulators

	Analysis
	Project architecture
	Simulated technologies
	Tools and technologies used in project

	Design
	Design foundations
	Server
	Storage
	Command line interface
	Interaction of components
	WWID generator

	Implementation
	Server
	Server commands definition
	Storage
	Storage commands definition
	Routines

	Testing
	Consistency
	Components features
	Integration
	Mapped and Mounting

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

