
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 13, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: OntoUML Models Verification for the OpenPonk platform

 Student: Marek Bělohoubek

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

- Acquaint yourself with the OpenPonk conceptual modelling platform.
- Acquaint yourself with Unified Foundational Ontology and the OntoUML language with the respect to
meta-model rules.
- Design and implement OntoUML model syntax checking for the OpenPonk platform.
- Test your solution using unit tests, demonstrate it on a case study.
- Document and discuss your solution.

References

Will be provided by the supervisor.

Bachelor’s thesis

OntoUML Models Verification for the
OpenPonk platform

Marek Bělohoubek

Department of Software Engineering
Supervisor: doc. Ing. Robert Pergl, Ph.D.

May 14, 2019

Acknowledgements

I would like to thank doc. Ing. Robert Pergl, Ph.D., my supervisor, for
guiding me through creation of this work, and Peter Uhnák for providing me
crucial information about OpenPonk when it was most needed.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 14, 2019 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Marek Bělohoubek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Bělohoubek, Marek. OntoUML Models Verification for the OpenPonk plat-
form. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2019.

Abstrakt

Tato práce se zaměřuje na vytvoření nového frameworku, který bude pou-
žit pro verifikaci OntoUML modelů na platformě OpenPonk. Pro to je nutné
nejdříve popsat a analyzovat jazyk OntoUML a platformu OpenPonk. Na
základě této analýzy jsou následně vytvořeny dva návrhy verifikačního fra-
meworku. Dle lepšího z nich je framework následně implementován. Veškerý
nový kód je zdokumentovván a jsou pro něj vytvořeny testy. Na závěr je celý
framework demonstrován na referenčním modelu.

Klíčová slova Verifikace, OntoUML, OpenPonk, Pharo, Konceptuální mo-
del, Unified foundation ontology, Ontologický model.

vii

Abstract

This work focuses on creation of new verification framework that will be used
for verification of OntoUML model on OpenPonk platform. It is necessary to
describe and analyse OntoUML language and OpenPonk platform. Using this
analysis two designs are created for the verification framework. The better one
is then selected and implemented. All new code is documented and unit test
are created for him. Finally entire framework is demonstrated on reference
model.

Keywords Verification, OntoUML, OpenPonk, Pharo, Conceptual model,
Unified foundation ontology, Ontological model.

ix

Contents

Introduction 1

Goals 3

I Review 5

1 OntoUML 7
1.1 Basic concepts . 7
1.2 Entity stereotypes . 10
1.3 Relation stereotypes . 15

2 OpenPonk 19
2.1 Pharo . 19
2.2 Data model . 20

II Analysis and design 21

3 Analysis 23
3.1 AllowedSupertype & AllowedSubtype 23
3.2 RelationSource & RelationTarget 23
3.3 IdentityRequired . 24
3.4 CharacterizationDependency 24
3.5 PartOfGeneralizationSet . 24
3.6 RoleMediationDependency . 24
3.7 RelatorMediationDependency 24

4 Initial design 25
4.1 DesignChecker . 25

xi

4.2 OntoUML DesignChecker . 27
4.3 Problems . 30

5 Final design 31

IIIImplementation, documentation and testing 39

6 Reference model 41
6.1 Reference model design . 41
6.2 AllowedSupertype & AllowedSubtype model 41
6.3 RelationSource model . 41
6.4 RelationEnd model . 43
6.5 Characterized model . 44
6.6 PartOfGeneralizationSet model 44
6.7 IdentityRequired model . 44
6.8 RoleMediationDependency model 45
6.9 RelatorMediationDependency model 46

7 Documentation and testing 47
7.1 Documentation . 47
7.2 Testing . 48

Conclusion 49

Bibliography 51

A Acronyms 53

B Contents of enclosed CD 55

xii

List of Figures

1.1 Simplified model of all OntoUML stereotypes for entities 11

4.1 Initial design diagram . 26

5.1 Final design diagram . 32

6.1 Complete reference model . 42
6.2 Reference model for AllowedSupertype and AllowedSubtype rules . . 43
6.3 Reference model for RelationSource rule 43
6.4 Reference model for RelationEnd rule 43
6.5 Reference model for Characterized rule 44
6.6 Reference model for PartOfGeneralizationSet rule 44
6.7 Reference model for IdentityRequired rule 45
6.8 Reference model for RoleMediationDependency rule 45
6.9 Reference model for RelatorMediationDependency rule 46

7.1 Documentation for VerificationResults class 47
7.2 Unit tests for IdentityRequiredVerification class 48

xiii

Introduction

With increasing popularity of OntoUML language, demand for tools that make
conceptual modelling easier increases as well. One of this tools is OpenPonk
platform developed using Pharo programming language by Czech Technical
University in Prague.

This platform allows quick and easy creation of conceptual models, but
it didn’t contain any framework for verifying those models. With incoming
preparations to use OpenPonk for educational purposes, this became signifi-
cant problem.

Thus it was decided to create new framework, that will allow easy verifi-
cation of conceptual models created by rules of OntoUML language.

This thesis is structured to three main parts. First part is called “Review”
and it introduces reader to basic concepts of OntoUML language, and current
state of the OpenPonk platform.

Second part is called “Analysis and Design” and it focuses on analysis of
OntoUML rules and describes design of two versions of verification framework,
that were designed during work on this thesis.

Third part is called “Implementation, documentation and testing”. It fo-
cuses on tests performed on reference model and mentions both unit test and
documentation.

1

Goals

Main goal of this bachelors thesis is to analyse, design, implement, test, and
document automatic verification for OntoUML Models on the OpenPonk plat-
form.

First the analytical part consists of analysis of OntoUML language (iden-
tification of all entities and association, including all of their constraints), and
analysis of OpenPonk platform.

Second it is necessary to design new verification framework that will allow
user to perform verification on any OntoUML model. This framework has to
be easily modifiable and expandable, because both OntoUML language and
OpenPonk are being constantly developed and changed.

Third the implementation consist of verification framework itself (including
verification for all OntoUML entities and relations that can be validated), and
user interface that allows user to start and view results of the verification.

Fourth the newly implemented code will have unit tests created for it, and
entire verification framework will be tested on reference model.

Finally documentation of the verification framework will be be part of the
newly implemented code, because of the nature of both OpenPonk platform
and Pharo programming language, that allow users to customise modelling
environment to their needs.

3

Part I

Review

5

Chapter 1
OntoUML

This chapter introduces reader to the basics of OntoUML language. It starts
with basic concepts and rules. Then it continues with describing all OntoUML
stereotypes for entities and it ends with explaining all OntoUML stereotypes
for relations.

Information contained in this chapter were obtained from following
sources[1, 2, 3, 4, 5].

1.1 Basic concepts
This section describes basic concepts and rules of OntoUML language. Those
are: modal logic, identity principle, generalization, rigidity, sortals, non-sortals
and aspects.

1.1.1 Modal logic
OntoUML language is build upon modal logic, which expands predicate logic,
by adding modality to it. This allows us to model reality much more accurately
in relation to worlds, that are defined by space and time.

Because modal logic is expansion of predicate logic, it carries over all
logical operations (negation, conjunction, disjunction, implication and equiv-
alence) and quantifiers (existential and universal). It also adds two new modal
operators:

possibility operator ♢statement: statement is true in at least one world

necessity operator �statement: statement is true in all worlds

Predicate and modal operations and quantifiers can be combined together,
thus making the model more accurate. For example “All green apples are not
edible, is true in at least one world” can be represented like this:

♢(∀apple) : Green(apple) =⇒ ¬Edible(apple)

7

1. OntoUML

1.1.2 Identity principle
Identity is one of the fundamental ontological principles and every entity
mapped by conceptual model has to have unique identity. This allows us
to identify the object at any time during its existence.

Even though we can intuitively feel that particular entity has its own
identity, it can be very hard to determine what exactly defines this identity.
For example statue can be identified it by its shape, but if we then cut it in
half, then by our definition of identity, we will create two new entities and the
original statues identity will be lost.

This example shows that defining identity for entities in particular domain
can be one of the most difficult task when working on conceptual model,
because it will have severe consequences for the entire model.

1.1.3 Generalization
One of many things that OntoUML inherits from UML is generalisation. It is
used to indicate that one entity is subtype of another entity. This means that
subtype inherits all variables, methods and relations from supertype.

Multiple generalizations originating from the same supertype can be joined
into single generalization set. Each set has two additional properties called
disjoint (all subtypes in the set are mutually exclusive) and complete (set
contains all possible subtypes for generalised supertype). This allows further
specialisation of generalisation set.

1.1.4 Rigidity principle
Rigidity is ontological meta-property, that defines mutability of the type, i.e.,
it defines if instances of type are connected to the type in all worlds or not.

Here are all four types of rigidity:

1.1.4.1 Rigidity

“Type T is rigid (R+), if it applies to its instances (necessarily) in all worlds.
In another words entity doesn’t change its type in any world.”[5](translated by
author)

R + (T) = �(∀x)(T (x) =⇒ �(T (x)))

1.1.4.2 Anti-Rigidity

“Type T is anti-rigid (R−), if its possible, that every instance of entity
that this type applies to in one world, is not applied by this type in another
(possible) world.”[5](translated by author)

R − (T) = �(∀x)(T (x) =⇒ ♢(¬T (x)))

8

1.1. Basic concepts

1.1.5 Non-Rigidity

Because anti-rigidity isn’t logical negation of rigidity (it is stronger statement),
non-rigidity is defined as its logical negation, i.e., type T is non-rigid (NR),
if at least one instance that this type applies to in one world, is not applied
by this type in another (possible) world.

NR(T) = ♢(∃x)(T (x) ∧ ♢(¬T (x)))

1.1.5.1 Semi-Rigidity

“Special case is semi-rigid (R∼) type, that is rigid for some of its instances
and non-rigid for others.”[5](translated by author)

SR(T) = (∃x, y)(x ̸= y)((T (x) =⇒ �(T (x))) ∧ (♢T (y) ∧ ♢(¬T (y))))

1.1.5.2 Rigidity principle and generalization

Rigidity principle of the type has great impact on generalization as it deter-
mines possible supertypes of the type. Here is list of possible supertypes for
all rigidity types:

• Allowed supertypes for rigid type are: rigid, semi-rigid.

• Allowed supertypes for anti-rigid type are: rigid, anti-rigid, semi-rigid.

• Allowed supertypes for non-rigid type are: rigid, anti-rigid, non-rigid,
semi-rigid.

• Allowed supertype for semi-rigid is: semi-rigid.

1.1.6 Sortals and Non-Sortals

Sortals have identity principle and provide it to other entities. Sortals are
used to represent entities from modelled domain.

Non-sortals don’t have identity and thus can’t provide it to other entities.
Non-sortals are used to represent features and properties that are common for
several entities.

Sortals and non-sortals have to follow this rules for inheritance:

• Sortal can be subtype of another sortal or non-sortal.

• Non-sortal can be subtype only of another non-sortal.

9

1. OntoUML

1.1.7 Aspects
Aspects are existentially dependent entities. Object on which the aspect de-
pends is called bearer and his aspects both begin and end their existence at
the same time as him.

Aspects are used to map properties of entities. Those properties can
be either structured/measurable (quality), or non-structured/non-measurable
(mode).

Mapping property as aspect is used to highlight existence of the property,
or if the property requires some special handling.

1.2 Entity stereotypes
This section focuses on OntoUML entity stereotypes. First it shows their
structure on simplified model and then it lists all entity stereotypes.

Figure 1.1 shows simplified model of stereotype structure. This model has
been created using information from [2, 3].

1.2.0.1 Kind

Kind supplies principle of identity for its instances and it can be further spec-
ified by other rigid subtypes.

Type Rigid Sortal

Allowed supertypes Category, Mixin

Allowed subtypes Subkind, Phase, Role

Constraints Kind has no additional constraints.

Examples Car, tree, card, person.

1.2.0.2 Subkind

Subkind is used to specify other rigid sortal types. It is the only rigid sortal
that requires identity.

Type Rigid Sortal

Allowed supertypes Kind, Subkind, Collective, Quantity, Relator, Cate-
gory, Mixin

Allowed subtypes Subkind, Phase, Role

10

1.2. Entity stereotypes

Ki
nd

Su
bk

in
d

Co
lle
cti

ve
Q
ua

nti
ty

Re
la
to
r

Ph
as
e

Ro
le

Ca
te
go

ry

Ro
le
M
ix
in

M
ix
in

M
od

e
Q
ua

lit
y

Ri
gi
dS

or
ta
l

So
rt
al

N
on

So
rt
al

A
nti

Ri
gi
dS

or
ta
l

Ri
gi
dN

on
So

rt
al

A
nti

Ri
gi
dN

on
So

rt
al

Se
m
iR
ig
id
N
on

So
rt
al

En
du

ra
nt
Cl
as
s

A
sp
ec
t

N
on

Ri
gi
dN

on
So

rt
al

{d
isj

oi
nt

, c
om

pl
et

e}

{d
isj

oi
nt

, c
om

pl
et

e}
{d

isj
oi

nt
, c

om
pl

et
e}

{d
isj

oi
nt

, c
om

pl
et

e}

{d
isj

oi
nt

, c
om

pl
et

e}

{d
isj

oi
nt

, c
om

pl
et

e}

{d
isj

oi
nt

, c
om

pl
et

e}

Figure 1.1: Simplified model of all OntoUML stereotypes for entities

[2, 3](edited by author)

11

1. OntoUML

Constraints Subkind requires exactly one identity principle from
its supertypes. Identity provider type doesn’t have to
be direct supertype, but it has to exist and there has
to be only one identity provided to the subkind.

Examples Man and woman (as subkinds of person), oak (as sub-
kind of tree), Model T (as subkind of car)

1.2.0.3 Collective

Collective represents homogeneous internal structure, this means that for
whole all parts are perceived as equal.

Type Rigid Sortal

Allowed supertypes Category, Mixin

Allowed subtypes Subkind, Phase, Role

Constraints Collective has no additional constraints.

Examples Forest, array, group of tourists.

1.2.0.4 Quantity

Quantity represents uncountable objects such as sand, oil and water in maxi-
mally topologically connected amount.

Type Rigid Sortal

Allowed supertypes Category, Mixin

Allowed subtypes Subkind, Phase, Role

Constraints Quantity can have only other quantites as parts.

Examples Sand, oil, water, dirt.

1.2.0.5 Relator

Relator is used to model “truth makers”, objects that are created through
material relation and that guarantee its existence.

Type Rigid Sortal

Allowed supertypes Category, Mixin

Allowed subtypes Subkind, Phase, Role

12

1.2. Entity stereotypes

Constraints Relator must be part of at least one mediation and
total multiplicity on the other ends of all connected
mediations have to be at least two.

Examples Marriage, order, contract.

1.2.0.6 Phase

Phase represents state of the object that can change in the time.

Type Anti-rigid Sortal

Allowed supertypes Kind, Subkind, Collective, Quantity, Relator, Phase,
Mixin

Allowed subtypes Phase, Role

Constraints Phase requires exactly one identity principle from its
supertypes. Identity providing type doesn’t have to
be direct supertype, but it has to exist and there has
to be only one identity provided to the phase.
Phase has to be part of generalization set that is both
covering and disjoint.

Examples Baby, child, teenager, adult and senior.

1.2.0.7 Role

Role is used to specialise entities in relational context.

Type Anti-rigid Sortal

Allowed supertypes Kind, Subkind, Collective, Phase, Quantity, Relator,
Role, RoleMixin, Mixin

Allowed subtypes Role

Constraints Role requires exactly one identity principle from its
supertypes. Identity providing type doesn’t have to
be direct supertype, but it has to exist and there has
to be only one identity provided to the role.
Role is relationally depended, this means that the role
has to be part of at least one relation.

Examples Student, teacher and headmaster (as roles of person)

13

1. OntoUML

1.2.0.8 Category

Category is used to aggregate property (or properties) that is essential for
existence of multiple entities with different identities.

Type Rigid Non-sortal

Allowed supertypes Category, Mixin

Allowed subtypes Kind, Subkind, Collective, Quantity, Relator, Cate-
gory

Constraints Category has no additional constraints.

Examples Vehicle, object, living thing.

1.2.0.9 RoleMixin

RoleMixin aggregates multiple roles (with different identities) into single ob-
ject.

Type Anti-rigid Non-sortal

Allowed supertypes Mixin, RoleMixin

Allowed subtypes Role, RoleMixin

Constraints RoleMixin has no additional constraints.

Examples Customer (for roles “CompanyCustomer” and “Indi-
vidualCustomer”).

1.2.0.10 Mixin

Mixin represent property that is essential for existence of some objects but
optional for others.

Type Semi-rigid Non-sortal

Allowed supertypes Mixin

Allowed subtypes Subkind, Kind, Collective, Quantity, Category, Mixin,
Role, Phase, RoleMixin, Relator

Constraints Mixin has no additional constraints.

Examples Luxury goods (for phase RarePainting and kind Dia-
mond).

14

1.3. Relation stereotypes

1.2.0.11 Mode

Mode represents non-structured property of entity, that it characterizes.

Type Aspect

Allowed supertypes None

Allowed subtypes None

Constraints Mode has to be part of at least one characterization
and multiplicity on the other end must be always equal
to one.

Examples Mood, desire, ability.

1.2.0.12 Quality

Quality represents structured property of entity, that it characterizes.

Type Aspect

Allowed supertypes None

Allowed subtypes None

Constraints Quality has to be part of at least one characterization
and multiplicity on the other end must be always equal
to one.

Examples Weight, length, maximal speed, price.

1.3 Relation stereotypes
Here is list of all relation stereotypes:

1.3.0.1 Formal

This relation can be reduced to direct comparison between two entities. The
name Formal is short for Domain Comparative Formal Relation.

Allowed source types All

Allowed end types All

Examples Faster-than, stronger-than, younger-than.

15

1. OntoUML

1.3.0.2 Material

It represents relations, that have material structure. Each material relation
creates relator, which also acts as “truth maker” of the relation.

Allowed sources All

Allowed ends All

Examples Wife and husband are married, creditor and debitor
have signed contract.

1.3.0.3 Mediation

Mediations are defined between entites, that are connected with material re-
lation, and relator that acts as “truth marker” of this relation.

Allowed sources Relator

Allowed ends All

Examples Contract (relator) is signed by creditor and debitor,
marriage exist between wife and husband.

1.3.0.4 Characterization

Characterization is relation between type and its property.

Allowed sources All

Allowed ends Mode, Quality

Examples Mood characterizes person, top speed characterizes
car, width characterizes parcel.

1.3.0.5 Derivation

Derivation is used for highlighting connection between relator and material
relation in which it acts as ”truth marker“. Derivation currently isn’t fully
implemented in OpenPonk.

Allowed sources Relator

Allowed ends Material relation

Examples Marriage (relator) is connected to marriedWith (ma-
terial relation), contract (relator) is connected to con-
tractedBy (material relation).

16

1.3. Relation stereotypes

1.3.0.6 Structuration

Structuration is used for creating advanced structure for quality. Structuration
is currently not implemented in OpenPonk.

Allowed sources Quality

Allowed ends Quality, Mode

Examples Gram and pound structure weight, inch and meter
structure height.

1.3.0.7 Part-Whole

It represents relation between whole and its part. OntoUML distinguish parts
on more granular level than UML. It distinguishes between shared parts that
can be part of multiple wholes and exclusive parts that can be part of single
whole in any world.

This type of relation is not currently implemented in OpenPonk.

Allowed sources All

Allowed ends All

Examples Shared part: person is part of club.
Essential part: engine is part of car, tree is part of
forest.

1.3.0.8 ComponentOf

“Component of represents parthood relation between two complexes.”[3]

Allowed sources Kind, Subkind, Phase, Role, Category, Role-mixin,
Mixin, Mode, Quality

Allowed ends Kind, Subkind, Phase, Role, Category, Role-mixin,
Mixin, Mode, Quality

Examples Harddisk is part of computer, wheels are part of mo-
torbike.

1.3.0.9 Containment

Containment represents relation between container and its contents.

Allowed sources All

Allowed ends Quantity

Examples Milk in bottle, sand in bucket, fuel in fuel tank.

17

1. OntoUML

1.3.0.10 MemberOf

MemberOf represent relation between collective (as whole) and functional com-
plex or collective (as part).

Allowed sources Collective

Allowed ends Collective, Functional complex

Examples Band member is part of band, card is part of card
deck, tree is part of forest.

1.3.0.11 SubCollectionOf

SubCollectionOf represent relation between collection (collective) and its sub-
collection (collective).

Allowed sources Collective

Allowed ends Collective

Examples Collection of pawns is part of chess figures, collection
of oaks is part of forest, collection of aces is part of
deck.

1.3.0.12 SubQuantityOf

SubQuantityOf represent relation between two quantities.

Allowed sources Quantity

Allowed ends Quantity

Examples Sugar is part of candy, hydrogen is part of water, al-
cohol is part of beer.

18

Chapter 2
OpenPonk

This section gives reader basic information about OpenPonk platform (down-
loadable from [6]). It starts with basics of Pharo language (downloadable
from [7]) on which OpenPonk is build, then it continues with data model of
OpenPonk platform and it ends witch brief description of its editor.

2.1 Pharo

“Pharo is a pure object-oriented programming language and a powerful envi-
ronment, focused on simplicity and immediate feedback (think IDE and OS
rolled into one).”[8]

This subsection uses informations from following sources [8, 9, 10].
Pharo is open-source dialect of SmallTalk programming language. It is

purely object-oriented dynamically typed language. Object-orientation means
that every single element from basic types to UI (User Interface) elements is
an object. And dynamically typed language stands for language that checks
object types only during runtime.

One of its advantages is compact syntax, that follows its straightforward
rules. As its authors say, this syntax can be fitted on single postcard as you
can see here[10]. I would strongly recommend it for anyone that would like to
read or create code in Pharo.

Similarly to SmallTalk, Pharo is also contained within its own live envi-
ronment that acts both as its IDE and its OS. Since the environment is live,
it allows direct feedback to changes in code.

For example you can look at all instances that exist in the environment,
inspect them and send them messages. Not only that but you can write
programs that can access and edit their own source code during runtime.

19

2. OpenPonk

2.2 Data model
This subsection focuses on most important classes in the OpenPonk data
model. It starts with class representing conceptual model itself, continues
with classes corresponding with entities, relations and generalisations, and
ends with classes implementing stereotypes.

2.2.1 OPUMLElement
OPUMLElement is parent of most classes from data model, including class
OPUMLModel. It defines unified interface for all its subtypes, most impor-
tantly its two initialization methods initializeSharedGeneralizations and
initializeDirectGeneralizations that apply composition.

2.2.2 OPUMLModel
OPUMLModel represents the data part of the conceptual model itself. It holds
all other entities, relations, generalizations…

For purposes of verification framework is crucial its packagedElements
method, that returns collection of all elements stored by this model.

2.2.3 OPUMLClass
OPUMLClass represents entity in the conceptual model. By applying OntoUML
stereotypes to this class we get all OntoUML entities.

2.2.4 OPUMLAssociation
OPUMLAssoiation represents relation in the conceptual model. By applying
OntoUML stereotypes to this class we get most of OntoUML relations (Open-
Ponk doesn’t fully implement all relations at the moment).

2.2.5 OPUMLGeneralization
OPUMLGeneralization represents generalization in the conceptual model. It
contains references to all generalization sets which its part of.

It also contains references to both ends of the generalization that can be
accessed through methods: general (supertype) and specific (subtype).

2.2.6 OPUMLGeneralizationSet
OPUMLGeneralizationSet represents single generalization set in the model.
It contains references to all generalizations that are part of it.

Its two most important properties are accessible by methods named after
them: isCovering (generalizations cover all possible options) and isDisjoint
(generalizations are mutually exclusive).

20

Part II

Analysis and design

21

Chapter 3
Analysis

Previous chapters described OntoUML and OpenPonk. Notably for OntoUML
they contained lists of all stereotypes for entities and relations, including their
constraints and examples.

This chapter focuses on those constraints, because they (together with
basic OntoUML rules) will have to be transformed into verifications.

First I will focus on general constraints that are common for multiple
entities/relations and then continue with more specific ones. Those constraint
will be presented as verification rules and please note that I have chosen their
names myself, since they were created as part of this analysis, therefore there
is no official terminology.

Analysis itself won’t be delving into OpenPonk much, because OpenPonk
is main subject of design oriented chapters.

3.1 AllowedSupertype & AllowedSubtype
First two verification rules are directly connected to entity stereotypes and
generalization. Every stereotype has its own sets of possible subtypes and
supertypes.

This means that every generalization must be verified, once for the subtype
and once for the supertype. Even though it could be done by single rule, it
was decided to split them into two, to highlight importance of this rule.

3.2 RelationSource & RelationTarget
As their names suggest, these two rules are associated with relations and
entities on their ends.

Similarly to entity stereotypes, relation stereotypes define set of allowed
source types and set of allowed target types.

23

3. Analysis

Note that unlike AllowedStereotype and AllowedSubtype rules, Relation-
Source and RelationTarget aren’t parts of single rule, i.e., one particular rela-
tion can be follow RelationSource and still break RelationTarget.

3.3 IdentityRequired
Some entity stereotypes require identity, that must be provided by one of its
supertypes. Thus we need to verify that exactly one supertype (direct or
indirect) for entity requiring identity is identity provider and that there are
no loops in the generalisation structure.

Here is list of all identity providers according to official ontouml.org por-
tal[3]: kind, collective, quantity, mode, quality.

3.4 CharacterizationDependency
Stereotypes mode and quality relationally dependant on characterization rela-
tion. This relation has to have multiplicity on the opposite end (opposite to
mode/quality) equal exactly to one.

3.5 PartOfGeneralizationSet
Stereotype phase requires by its definition to be part of disjoint and complete
generalisation set. This means that all phases are mutually exclusive (disjoint)
and they cover all possible options (complete).

3.6 RoleMediationDependency
This rule is specific for stereotype role. It states that each role has to be
connected directly or indirectly (only if directly connected supertype is stereo-
typed as role/rolemixin) through at least one mediation to relator.

Lower bound of multiplicity on end opposite to role/rolemixin has to be
at least one.

3.7 RelatorMediationDependency
This rule is specific for stereotype relator. It is similar to rule RoleMedia-
tionDependency, because it requires that each relator is part of at least one
relation stereotyped as mediation.

Unlike RoleMediationDependency, this rule requires that total count of all
multipl icities on non-relator ends cannot be lower than two.

24

Chapter 4
Initial design

Verification of the conceptual mode should check, that all entities and rela-
tions in this model are created according to OntoUML rules. To fulfil this
requirement new verification framework had to be designed and implemented.

This chapter contains first of two possible designs for this framework that
were created during my work on this framework.

Initial design of verification framework was inspired by solutions that I
have seen and worked on, mainly by tool called DesignChecker that is part
of commercial software xTractor[11]. I know this tool very well, since I was
contributing to its development.

Figure 4.1 shows UML diagram summarising changes in this design.

4.1 DesignChecker
Goals of DesignChecker are same as goals of the verification framework: ver-
ify elements (rules for xTractor, entities for OpenPonk) and their relations,
identify any violations of the OntoUML rules and inform user about them.

This tool has verification methods as part of elements and relations. Those
verifications are connected directly to the properties of verified objects through
their setters. This way any time property value gets changed, its verification
is automatically called and its result is saved in the object.

Results themselves are represented as warning/error messages and they
contain reference to the verified object, name of the verified property and
short text summarizing the problem.

In addition to the verification functions themselves, every object that can
be verified has methods called HasErrors and HasWarnings. Those methods
used to check if the object has any error/warning message stored in results
collection.

DesignChecker also contains verification controller, that holds reference
for the verified model and provides interface for verifying all elements and

25

4. Initial design

V
er
ifi
ca
tio

nM
es
sa
ge

-
m

es
sa

ge
Te

xt
: S

tr
in

g
-

pr
op

er
ty

N
am

e:
 S

tr
in

g
-

ve
rifi

ed
O

bj
ec

t:
O

PU
M

LE
le

m
en

t

V
er
ifi
ca
tio

nM
es
sa
ge

W
ar
ni
ng

V
er
ifi
ca
tio

nM
es
sa
ge

Er
ro
r

O
PU

M
LE
le
m
en

t

-
ve

rifi
ca

tio
nD

ic
tio

na
ry

: D
ic

tio
na

ry
<V

er
ifi

ca
tio

n>
-

ve
rifi

ca
tio

nM
es

sa
ge

s:
 D

ic
tio

na
ry

<V
er

ifi
ca

tio
nM

es
sa

ge
>

+
ad

dV
er

ifi
ca

tio
n:

(A
ss

oc
ia

tio
n)

+
ge

tS
te

re
ot

yp
e(

):
St

er
eo

ty
pe

+
ha

sE
rr

or
s(

):
bo

ol
ea

n
+

ha
sW

ar
ni

ng
s(

):
bo

ol
ea

n
+

in
iti

al
ize

()
+

in
iti

al
ize

Ve
rifi

ca
tio

nM
es

sa
ge

s(
)

+
in

iti
al

ize
Ve

rifi
ca

tio
ns

()
+

ve
rif

y(
)

+
ve

rif
y:

(S
tr

in
g)

V
er
ifi
ca
tio

nM
es
sa
ge

O
k

V
er
ifi
ca
tio

n

-
pr

op
er

ty
N

am
e:

 S
tr

in
g

-
ve

rifi
ca

tio
nF

un
cti

on
: B

lo
ck

Cl
os

ur
e

+
cr

ea
te

Fo
r:W

ith
Ch

ec
ks

:(S
tr

in
g,

 B
lo

ck
Cl

os
ur

e)
: V

er
ifi

ca
tio

n
+

ve
rif

y:
(O

PU
M

LE
le

m
en

t)
: V

er
ifi

ca
tio

nM
es

sa
ge

O
PU

M
LC

la
ss

+
in

iti
al

ize
Ve

rifi
ca

tio
ns

()

O
PU

M
LG

en
er
al
iza

tio
n

+
in

iti
al

ize
Ve

rifi
ca

tio
ns

()

O
PU

M
LA

ss
oc
ia
tio

n

+
in

iti
al

ize
Ve

rifi
ca

tio
ns

()

Is
Re

su
ltO

f

Figure 4.1: Initial design diagram

26

4.2. OntoUML DesignChecker

relations in the model at once.
Designing verification framework similarly to the DesignChecker tool will

allow instant verification of the object, because each tim the model changes
appropriate verification will be triggered.

4.2 OntoUML DesignChecker
Similarly to solutions which inspired this design of verification framework,
main of the responsibility lies on verified classes. In this case all those classes
are subtypes of OPUMLElement (they will be responsible for starting and col-
lecting results of verifications), stereotype classes and OPUMLGeneralization.
All classes mentioned before will contain verification functions themselves.

Next five subsections describe changes that need to be done to the existing
classes and new classes that need to be added to new OPUMLVerifications
package.

First two subsections are focused on classes in OPUMLVerifications pack-
ages. Those classes are Verification and VerificationMessage (with its
subclasses VerificationMessageError, VerificationMessageWarning and
VerificationMessageOk).

Remaining three subsections describe all changes done to OPUMLElement,
OPUMLGeneralization and stereotype classes.

4.2.1 Verification
This class encapsulates each verification function and gives them all unified
interface. I will first explain variables, that this class uses to store necessary
values and then continue with its methods.

4.2.1.1 Verification variables

Here is list of Verification variables:

propertyName Instance variable, contains name of verified property.

verificationFunction Instance variable, contains function responsible for
verification itself, usually in form of BlockClosure
(lambda function).

4.2.1.2 Verification methods

Here is list of Verification methods (excluding simple getters and setters
for instance variables):

createfor:withChecks: Class method, that acts as constructor. It takes two
parameters property name and verification function,

27

4. Initial design

and returns new instance with parameters saved in its
variables.

verify: Instance method, takes verified element (entity, rela-
tion or generalization) as parameter, applies stored
verificationFunction on it and returns result.

4.2.2 VerificationMessage
This class is used to represent both positive and negative results of verifica-
tions. It stores reference to the verified object, name of verified property and
short text that describes broken rule (if there is one).

VerificationMessage doesn’t have any special methods, apart from get-
ters, setters and constructor that sets all three instance variables.

VerificationMessage has three subclasses: VerificationMessageError,
VerificationMessageWarning and VerificationMessageOk. Those sub-
classes are used to represent result and severity of the problem (Warning,
Error), in case of negative result.

4.2.3 Changes in OPUMLElement
To implement new verification framework there will be changes to both vari-
ables and methods of OPUMLElement class.

In addition to changes listed bellow, any subclass of OPUMLElement that
wishes one or more of its properties to be validated, needs to add validation
trigger to setter of those properties.

4.2.3.1 Changes to OPUMLElement variables

verificationDictionary New instance variable, that contains dictionary
with property names as keys and verifications that
can be applied to this element as values.

verificationMessages New instance variable, that contains dictionary with
property names as keys and verification results (that
are represented by VerificationMessage) as values.

4.2.3.2 Changes to OPUMLElement methods

Here is list of all changed and newly created methods (excluding simple getters
and setters for new variables):

verify New instance method, that applies all verifications
from verificationDictionary on this element and
saves all results into verificationMessages variable.

28

4.2. OntoUML DesignChecker

verify: New instance method, that takes property name as pa-
rameter. It searches its verificationDictionary for
verification associated with property name from pa-
rameter, applies it to this element and save the result
into verificationMessages.

getStereotype New instance method, that returns first stereotype
that has been applied to this element.

addVerification: New instance method, that takes association (key and
value) and saves it into verificationDictionary.

initialize Edited instance method. First it calls itself from super-
type and after that it calls initializeVerifications
and initializeVerificationMessages, that set ini-
tial values for variables verificationDictionary
and verificationMessages.

initializeVerifications New instance method, that creates dictionary and
saves it into verificationDictionary variable.
This method should be overridden in all subclasses
that wish to be verified, and add code that will fill
verificationDictionary with all necessary verifica-
tions.

initializeVerificationMessages New instance method, that creates new
dictionary and saves it into verificationMessages
variable.

hasErrors New instance method, returns if its instance variable
verificationMessages contains at least one instance
of VerificationMessageError.

hasWarnings New instance method, returns if its instance variable
verificationMessages contains at least one instance
of VerificationMessageWarning.

4.2.4 Changes in OPUMLGeneralization
Because generalisations aren’t stereotyped in OntoUML, it is necessary to
implement their verifications straight into them.

For this reason initializeVerification needs to be overridden to first call it-
self from supertype and then call initializeGeneralizationVerifications
method. This is new method, that will provide OPUMLGeneralization with
all necessary verification functions.

29

4. Initial design

4.2.5 Changes in stereotype classes
Stereotype classes are responsible for most of the verification functions them-
selves, therefore they need to implement functions for verifying subtypes, su-
pertypes, relations sources and ends…

Most of the functions will be implemented as class methods since they will
get all necessary information from elements (entities, relations or generaliza-
tions) calling them.

4.3 Problems
This design fulfilled all of the initial requirements and at the start of the
implementation it seemed, that everything worked as intended. Prototype
didn’t show any flaws in the design and so it was decided to proceed with
implementation using this design.

However shortly after first problems appeared. Not all property values
were changed using their setters (for example relation ends are stored in col-
lection, so when changing one or more ends, only getter is used). Thus it
was decided to remove automatic triggers from all properties and add new
interface for starting the verifications manually.

Next problem was flat structure of OntoUML stereotypes (OpenPonk
prefers composition over inheritance), that lead to duplicated code. This was
resolved by using Pharo traits (stateless classes containing only functional
methods).

Even with those problems, it appeared that verification framework de-
signed like this would need only few changes to work. But when I sent it to
main programmer of the OpenPonk platform Peter Uhnák to ask if it can be
implemented like this, I got response, that was the final nail in the proverbial
coffin of this design.

All stereotypes of OntoUML entities and relations with significant part of
other existing classes that would have to be edited are generated code and
as such, all changes done to them would be lost at the next update of the
platform.

Because of this it was decided to completely redesign the framework and
remove dependencies to the data model. This would also fulfil the new re-
quirements for modularity and for content separation that were added by
Peter Uhnák.

30

Chapter 5
Final design

Final design was inspired by verification/validation model[4] and it was con-
sulted with Peter Uhnák, to prevent any code being placed in the generated
classes.

Verification framework is divided into these packages:

• OntoUML-VerificationControllers,

• OntoUML-VerificationResults,

• OntoUML-VerificationMessages,

• OntoUML-VerificationTraits,

• OntoUML-Verifications,

• OntoUML-VerificationTests.

Every package contains both functional code and unit tests for this code.
Only exceptions are OntoUML-Verifications that contains only verification
classes and OntoUML-VerificationTest that contains test for those classes.
This split was done to improve implementation of VerificationController.

Figure 5.1 shows UML model of this diagram. This diagram focuses on
general design of the verification classes and thus it is slightly simplified as it
doesn’t contain all Verification and StereotypeVerification subclasses.

5.0.0.1 OntoUML-VerificationControllers

This package contains VerificationController class (and its tests), that is
used as main entrance to the verification framework. Through it all verifica-
tions are started and their results are gained.

Here is list of its methods:

31

5. Final design

V
er
ifi
ca
tio

nM
es
sa
ge

W
ar
ni
ng

V
er
ifi
ca
tio

nM
es
sa
ge

Er
ro
r

V
er
ifi
ca
tio

nM
es
sa
ge

-
m

es
sa

ge
Te

xt
: S

tr
in

g
-

ob
je

ct
Re

fe
re

nc
e:

 O
PU

M
LE

le
m

en
t

-
ve

rifi
ca

tio
n:

 V
er

ifi
ca

tio
n

V
er
ifi
ca

tio
nC

on
tr
ol
le
r

+
ge

tV
er

ifi
ca

tio
ns

():
 C

ol
le

cti
on

<V
er

ifi
ca

tio
n>

+
ge

tV
er

ifi
ed

O
bj

ec
ts

:(O
PU

M
LM

od
el

):
Co

lle
cti

on
<V

er
ifi

ca
tio

n>
+

ve
rif

y:
(O

PU
M

LM
od

el
):

Ve
rifi

ca
tio

nR
es

ul
ts

+
ve

rif
yS

in
gl

eO
bj

ec
t:W

ith
Ve

rifi
ca

tio
ns

:W
ith

M
od

el
:W

ith
Re

su
lts

:(O
PU

M
LE

le
m

en
t,

Co
lle

cti
on

<V
er

ifi
ca

tio
n>

, C
ol

le
cti

on
<O

PU
M

LE
le

m
en

t>
, V

er
ifi

ca
tio

nR
es

ul
ts

)

V
er
ifi
ca

tio
nR

es
ul
ts

-
re

su
lts

: S
et

<V
er

ifi
ca

tio
nM

es
sa

ge
>

+
ad

dR
es

ul
t:(

Ve
rifi

ca
tio

nM
es

sa
ge

)
+

ad
dR

es
ul

ts
:(C

ol
le

cti
on

<V
er

ifi
ca

tio
nM

es
sa

ge
>)

+
ge

tE
rr

or
s:

(O
PU

M
LE

le
m

en
t)

: C
ol

le
cti

on
<V

er
ifi

ca
tio

nM
es

sa
ge

>
+

ge
tW

ar
ni

ng
s:

(O
PU

M
LE

le
m

en
t)

: C
ol

le
cti

on
<V

er
ifi

ca
tio

nM
es

sa
ge

>
+

ha
sE

rr
or

s:
(O

PU
M

LE
le

m
en

t)
: b

oo
le

an
+

ha
sW

ar
ni

ng
s:

(O
PU

M
LE

le
m

en
t)

: b
oo

le
an

+
re

su
lts

():
 S

et
<V

er
ifi

ca
tio

nM
es

sa
ge

>

V
er
ifi
ca
tio

n

+
ca

nV
er

ify
:(O

PU
M

LE
Le

m
en

t)
: b

oo
le

an
+

ve
rifi

ed
Cl

as
s(

):
Cl

as
s

+
ve

rif
y:

w
ith

M
od

el
:(O

PU
M

LE
le

m
en

t,
Co

lle
cti

on
<O

PU
M

LE
le

m
en

t>
):

Co
lle

cti
on

<V
er

efi
ca

tio
nM

es
sa

ge
>

+
ve

rif
yO

bj
ec

t:w
ith

M
od

el
:(O

PU
M

LE
le

m
en

t,
Co

lle
cti

on
<O

PU
M

LE
le

m
en

t>
):

vo
id

St
er
eo

ty
pe

Ve
rifi

ca
tio

n

+
ca

nV
er

ify
:(O

PU
M

LE
Le

m
en

t)
: b

oo
le

an
+

ve
rifi

ed
St

er
eo

ty
pe

s(
):

Co
lle

cti
on

<S
te

re
ot

yp
e>

Re
la
tio

nS
ou

rc
eV

er
ifi
ca
tio

n

+
ve

rif
yO

bj
ec

t:w
ith

M
od

el
:(O

PU
M

LE
le

m
en

t,
Co

lle
cti

on
<O

PU
M

LE
le

m
en

t>
):

vo
id

Id
en

tit
yV

er
ifi
ca
tio

n

+
ve

rif
yO

bj
ec

t:w
ith

M
od

el
:(O

PU
M

LE
le

m
en

t,
Co

lle
cti

on
<O

PU
M

LE
le

m
en

t>
):

vo
id

TP
ro
fil
eG

at
he

re
r

+
ge

tA
ss

oc
ia

tio
n(

St
er

eo
ty

pe
):

O
PU

M
LE

le
m

en
t

+
ge

tE
le

m
en

t(
St

er
eo

ty
pe

):
O

PU
M

LE
le

m
en

t
+

ge
tS

te
re

ot
yp

e:
(O

PU
M

LE
le

m
en

t)
: S

te
re

ot
yp

e

ca
lls

cr
ea

te
s

cr
ea

te
s

Figure 5.1: Final design diagram

32

verify: Instance method, that takes OPUMLModel (data model)
as parameter.
First it creates new instance of VerificationResults
and calls getVerifications to load all implemented
verifications.
Then it uses getVerifiedObjects to gain collection
of all OPUMLElements (entities, relations and general-
izations) from the model.
And finally it calls verifySingleObject: on every
single OPUMLElement from last step and returns filled
instance of VerificationResults.

verifySingleObject: Instance method, its full name is in footnote1. It takes
these parameters: verified element (entity, relation or
generalization), collection of verifications, collection
of all verifiable objects from model and instance of
VerificationResults.
It applies all verifications to verified object, gathers re-
sults and saves them into VerificationResults from
parameter.

getVerifications Instance method, that returns collection containing
all verifications classes from OntoUML-Verifications
package.

getVerifiedObjects Instance method, that takes verified mode as parame-
ter and returns collection of all OPUMLElements (enti-
ties, relations and generalizations) from the model.

I would like to add few more details to the getVerifications method and
the way it gathers all verifications from OntoUML-Verifications package.

One of the defining features of Pharo is the ability to access and edit its
source code during runtime. This is used in getVerifications method to
load all classes directly from their source codes in OntoUML-Verifications
package. Verifications classes in resulting collection can have messages send
to them and therefore can be instantiated and used like any other classes.

Designing verification framework in this way allows simple and very quick
creation of new verifications. Each time new verification needs to be added
all that user has to do is to implement this class in OntoUML-Verifications
package and the rest will be done automatically.

Due to those design choices I have opted to split verifications and their
test into two packages to make both loading and creation new verifications
faster.

1verifySingleObject:WithVerifications:WithModel:WithResults:

33

5. Final design

Here you can see code from prototype implementation that was used to
check if this design would be possible to implement.

getVerifications
^(RPackageOrganizer

defaultPackageNamed:'OntoUML-Verifications')
definedClasses.

5.0.0.2 OntoUML-VerificationResults

This package contains VerificationResults class. This class stores results
of all verifications applied on one model and allows access to those results.

Here is list of its methods:

addResult: Instance method, that takes verification result (repre-
sented by VerificationMessage) as parameter and
stores it to internal collection.

addResults: Instance method, that takes collection of verification
results as parameter and adds those results into inter-
nal collection.

results: Instance method, that returns contents of internal col-
lection.

hasErrors: Instance method, that takes OPUMLElement (entity, re-
lation or generalization) as parameter and returns if
there is at least one VerificationMessageError with
reference to OPUMLElement from parameter in internal
collection.

hasWarnings: Instance method, that takes OPUMLElement (entity, re-
lation or generalization) as parameter and returns if
there is at least one VerificationMessageWarning
with reference to OPUMLElement from parameter in
internal collection.

getErrors: Instance method, that selects and returns all instances
of VerificationMessageError stored inside internal
collection.

getWarnings: Instance method, that selects and returns all instances
of VerificationMessageWarning stored inside inter-
nal collection.

34

5.0.0.3 OntoUML-VerificationMessages

This package contains VerificationMessage class and its two subclasses
VerificationMessageError and VerificationMessageWarning, that rep-
resent (negative) results of verifications.

VerificationMessage stores reference to verified object, reference to in-
stance of the verification function and short description of the OntoUML rule
that was broken.

Neither VerificationMessageError nor VerificationMessageWarning
add or override any methods right now, because their main goal right now is
representing severity of the problem. This was done in preparation for future
implementation of verification UI.

5.0.0.4 OntoUML-VerificationTraits

This package contains trait TProfileGatherer, that provides utility methods
for working with stereotypes. Here is list of those methods:

getStereotype: Class method, that takes OPUMLElement (entity or re-
lation) as parameter and returns its stereotype.

getElement: Class method, that takes stereotype as parameter and
returns OPUMLClass (entity) that it is applied to.

getAssociation: Class method, that takes stereotype as parameter and
returns OPUMLAssociation (relation) that it is ap-
plied to.

This trait is commonly used through classes in verification framework,
because most conditions check for stereotype of the entity/relation. I have
opted for this solution, because as was said earlier both stereotype classes
and OPUMLElement are generated code and therefore can’t have verifications
implemented straight into them.

5.0.0.5 OntoUML-Verifications

This package contains classes that are responsible for the verification itself.
There are two abstract classes: Verification and StereotypeVerification
that define interface provided by all verification classes. Other verification
classes are named by the rules they verify.

Verification is abstract class, that acts as supertype for all other classes
in this package and that defines basic interface. It consists of these methods:

verify: Class method, that has these parameters: verified ob-
ject and collection of verifiable object from the model.

35

5. Final design

First it calls canVerify: to check if it can be ap-
plied to verified element (entity, relation or gener-
alization). If not it returns empty collection, oth-
erwise it creates new instance and returns result of
verifyObject:withModel:.

canVerify: Class method, that takes verified object as parameter.
It checks if class of the object from parameter and
result of verifiedClass are same and returns the result.

verifiedClass Class method, that returns class that can be verified
by this verification.

verifyObject:withModel: Instance method, that has these parameters: ver-
ified object and collection of verifiable object from the
model.
Subclasses are responsible to override this method and
add code implementing the rule check itself.

Second abstract class in the package is StereotypeVerification. This
class expands interface defined by Verification class with checks for stereo-
types of verified object.

Here is list of added/changed methods:

canVerify: Class method, that has been overridden. It first calls
original version of canVerify: from its supertype,
then it looks if verifiedStereotypes contains stereo-
type of verified object. In the end it applies logical and
between values gained by those first two steps and re-
turns the result.

verifiedStereotypes Class method, that returns collection of stereotypes
that can be verified.

All other classes in this package are subclasses of Verification (either
directly or as subclasses of StereotypeVerification). They have to override
methods verifyObject:withModel:, verifiedClass and classes that have
StereotypeVerification) as parent, have to override verifiedStereotypes
too.

5.0.0.6 OntoUML-VerificationTests

This package contains only tests for classes from OntoUML-Verifications
package. Those tests are named after the classes they test (VerificationTest
for Verification…).

36

They have very similar structure as verifications themselves with one ex-
ception. On the top of the test hierarchy is AbstractVerificationTest in-
stead of VerificationTest, and it acts as parent for all other tests.

This change had to be done due to implementation of Verification class.
VerificationController calls all verifications on every object in the model
and since Verification is abstract, its verifiedClass method returns nill.
This prevents Verification from being applied to elements in the model.

This behaviour is suppressed by its subclasses, because they need to over-
ride verifiedClass method. Therefore VerificationTest needs to handle
most tests differently and using it as parent for all other classes would cause
massive duplication of code.

37

Part III

Implementation,
documentation and testing

39

Chapter 6
Reference model

This chapter demonstrates newly implemented verification framework on ref-
erence model. First it explains the model itself and then continues with de-
scribing every single broken rule.

6.1 Reference model design
As you can see on Figure 6.1 reference model consist of multiple smaller sub-
models. Each of those models break single OntoUML rule (with exception of
AllowedSupertype and AllowedSubtype rules). Together they cover all verified
rules.

Following sections focus on those submodels and explain what rule was
broken, and what should user do to repair it.

6.2 AllowedSupertype & AllowedSubtype model
Figure 6.2 shows kind “Tree” as subtype of subkind “Oak”. This breaks both
AllowedSupertype and AllowedSubtype rules, as we intuitively feel that “Oak”
is more specific that tree and not the other way around.

Fixing this problem is fairly straightforward. All that needs to be done, is
to reverse the generalization.

6.3 RelationSource model
Figure 6.3 shows kind “Bottle” as subquantity of quantity “Vine”. This breaks
RelationSource rule, because relation subQuantityOf has to have quantity as
source.

This problem is result of using incorrect relation, and should be resolved by
removing subQuantitiyOf relation and replacing it with containment relation.

41

6. Reference model

Figure 6.1: Complete reference model

42

6.4. RelationEnd model

Figure 6.2: Reference model for AllowedSupertype and AllowedSubtype rules

Figure 6.3: Reference model for RelationSource rule

6.4 RelationEnd model

Figure 6.4: Reference model for RelationEnd rule

Figure 6.4 shows Collective “Collection of aces” as subcollection of kind
“Deck of cards”. This breaks RelationEnd rule, because relation subCollec-
tionOf has to have collective as source.

Source of this problem is incorrectly selected stereotype for “Deck of
cards”, that should be stereotyped as collective.

43

6. Reference model

6.5 Characterized model

Figure 6.5: Reference model for Characterized rule

Figure 6.5 shows mode “Mood” as characterizing kind “Person”. This seems
like valid model, but closer inspection shows that Characterized rule has been
broken.

Since mode is relationally dependent stereotype, cardinality of characteri-
zation on kind “Person” end has to be equal to one.

6.6 PartOfGeneralizationSet model

Figure 6.6: Reference model for PartOfGeneralizationSet rule

Figure 6.6 shows kind “Person” with its phases “Living” and “Dead”. Rule
that was broken here is PartOfGeneralizationSet.

To fix this problem user should create new generalisation set that will
include both phases and that will be both disjoint and complete.

6.7 IdentityRequired model
Figure 6.7 shows subkind “Tiger” and its supertype subkind “Animal”. There
are no problems with AllowedSupertype and AllowedSubtype rules here, but

44

6.8. RoleMediationDependency model

Figure 6.7: Reference model for IdentityRequired rule

since there isn’t any entity that would provide them identity IdentityRequired
rule is broken.

User should either change stereotype of “Animal” to kind, or add new
entity that would provide identity of both subkinds.

6.8 RoleMediationDependency model

Figure 6.8: Reference model for RoleMediationDependency rule

Figure 6.8 shows kind “Person” its role “Employee” that is further spe-
cialised by role “Salesman”. Since “Employee” (nor “Salesman”) isn’t part of
any Mediation, RoleMediationDependency is broken.

Fix for this rule is bit more complicated. User will have to create an-
other role called “Manager”, relator called “Contract” and create mediations
between “Manager”, “Contract” and “Employee”.

45

6. Reference model

Figure 6.9: Reference model for RelatorMediationDependency rule

6.9 RelatorMediationDependency model
Figure 6.9 shows kind “Person”, relator “Marriage” and roles “Husband” and
“Wife”. Rule that was broken here is RelatorMediationDependency.

This problem is caused by missing mediation between relator “Marriage”
and role “Wife”. Adding it will resolve the problem.

46

Chapter 7
Documentation and testing

This chapter contains information about documentation and tests for the ver-
ification framework.

7.1 Documentation
Due to nature of both OpenPonk and Pharo, it was decided to put the docu-
mentation directly to the documented code.

As you can see on the figure 7.1 each class commentary includes informa-
tion about the class, its variables and its responsibilities. In addition class
comments, all methods contain description explaining their purpose.

Figure 7.1: Documentation for VerificationResults class

47

7. Documentation and testing

7.2 Testing
Final part of verification framework are its of own unit tests. They are nec-
essary for maintaining integrity of the framework during future updates and
checking that current implementation works as intended.

Since unit test should be easy to use and quick to resolve, it was necessary
to use unit test framework built in to Pharo. Fortunately this framework is
very easy to use and creating new unit test was quick process for most classes.

Only exception from this were tests for Verification and its subclasses
that are located in OntoUML-VerificationTest. I have run into few problems
with testing subclasses of Verification, because it provides interface that
cannot be directly checked in its tests, but that needs to be tested in its
subclasses, thus leading to some duplicated code.

Figure 7.2 shows tests for IdentityRequiredVerification class. Those
tests are located in IdentityRequiredVerificationTest class as its meth-
ods.

Figure 7.2: Unit tests for IdentityRequiredVerification class

As you can see there are only two prerequisites for creating unit tests:

• Test class has to be subclass of TestCase and its name has to be same
as the tested class with “Test” attached to its end.

• Names of test methods have to start with “test” and then continue with
name of tested method.

Fulfilling these two prerequisites links tests to methods of the tested class
displaying their results like semaphore lights next to tested class and its meth-
ods and allowing user to run them by simply clicking in those results.

48

Conclusion

This thesis focused on analysis, design implementation and testing of new
verification framework for OntoUML models, that was created for OpenPonk
platform.

At the start I have focused on analysis of OntoUML language and Open-
Ponk platforms. I have explained basic principles of OntoUML and then listed
all of its entities and relations.

Then I continued with designing verification framework. At the start I have
identified rules and constraints that need to be verified. With those rules in
mind, I have designed new verification framework and provided explanation
and reasoning for each of its parts.

After that I have implemented the framework in the OpenPonk platform,
with strong focus on possibility of future development of the framework.

Unit tests were created for all newly implemented code and I have created
reference model containing at least one object breaking at least one verified
rule.

In the end there was short mention of the documentation. This is part of
the attached implementation.

With this I have fulfilled all goals set for this thesis and prepared foun-
dations for future projects attached to verification. Both OntoUML language
and OpenkPonk platform are constantly developed and thus there will be con-
stant need to maintain current verification rules and add new ones based on
new specifications. There is also anti-pattern domain that deals with searching
for potential mistakes based on the patterns in the conceptual model.

49

Bibliography

1. GUIZZARDI, Giancarlo. Ontological foundations for structural concep-
tual models. Telematica Instituut / CTIT, 2005. ISBN 90-75176-81-3.
PhD thesis. University of Twente.

2. GUIZZARDI, Giancarlo; FONSECA, Claudenir M.; BENEVIDES,
Alessander Botti; ALMEIDA, João Paulo A.; PORELLO, Daniele;
SALES, Tiago Prince. Endurant Types in Ontology-Driven Conceptual
Modeling: Towards OntoUML 2.0. In: TRUJILLO, Juan C.; DAVIS,
Karen C.; DU, Xiaoyong; LI, Zhanhuai; LING, Tok Wang; LI, Guoliang;
LEE, Mong Li (eds.). Conceptual Modeling. Cham: Springer Interna-
tional Publishing, 2018, pp. 136–150. ISBN 978-3-030-00847-5.

3. ONTOUML COMMUNITY. OntoUML community portal [online]. 2017
[visited on 2019-05-09]. Available from: ontouml.org.

4. BENEVIDES, Alessander Botti. A Model-Based graphical editor for sup-
porting the creation, verification and validation of OntoUML conceptual
models. 2010. Master’s thesis. Universidade Federal do Espírito Santo.

5. KRÁL, Ondřej. Ontologická analýza změnového řízení ICT projektu.
2018. Bachelor’s thesis. České vysoké učení technické.

6. CENTRE FOR CONCEPTUAL MODELLING AND IMPLEMENTA-
TION. OpenPonk. 2010. Version 1.0.0. Available also from: https://
openponk.org/.

7. PHARO COMMUNITY. Pharo. 2019. Version 7.0. Available also from:
https://pharo.org/download.

8. PHARO COMUNITY. pharo.org [online] [visited on 2019-05-10]. Avail-
able from: https://pharo.org/.

9. PHARO COMMUNITY. Pharo wiki [online] [visited on 2019-05-10].
Available from: https://github.com/pharo-open-documentation/
pharo-wiki.

51

ontouml.org
https://openponk.org/
https://openponk.org/
https://pharo.org/download
https://pharo.org/
https://github.com/pharo-open-documentation/pharo-wiki
https://github.com/pharo-open-documentation/pharo-wiki

Bibliography

10. PHARO COMMUNITY. PharoCheatSheet [online] [visited on 2019-05-
10]. Available from: http://files.pharo.org/media/pharoCheatSheet.
pdf.

11. X-CENTER CZ. xTractor. 2019. Version 1.2.5. Available also from:
https://www.x-center.eu/cs/.

52

http://files.pharo.org/media/pharoCheatSheet.pdf
http://files.pharo.org/media/pharoCheatSheet.pdf
https://www.x-center.eu/cs/

Appendix A
Acronyms

IDE Integrated development environment

OS Operating System

UI User interface

53

Appendix B
Contents of enclosed CD

readme.txt........................The file with CD contents description
EXE The directory with executables

OpenPonk.......Directory with OpenPonk and verification framework
ReferenceModel.opp..........Reference model created in OpenPonk

TEXT.......................................The directory of source codes
BT_Assignment.pdf...................Assignment of bachelors thesis
BT_Bělohoubek_Marek_2019.pdf.....Bachelors thesis in PDF format
BT_Latex...............Directory with latex source files for the thesis

Figures............................Directory with all used figures
ModelDiagrams..............Directory with all model diagrams
OntoUML.....................Directory with OntoUML diagram
OpenPonk...........Directory with screenshots from OpenPonk
ReferenceModel.....Directory with figures for ReferenceModel

55

	Introduction
	Goals
	Review
	OntoUML
	Basic concepts
	Entity stereotypes
	Relation stereotypes

	OpenPonk
	Pharo
	Data model

	Analysis and design
	Analysis
	AllowedSupertype & AllowedSubtype
	RelationSource & RelationTarget
	IdentityRequired
	CharacterizationDependency
	PartOfGeneralizationSet
	RoleMediationDependency
	RelatorMediationDependency

	Initial design
	DesignChecker
	OntoUML DesignChecker
	Problems

	Final design

	Implementation, documentation and testing
	Reference model
	Reference model design
	AllowedSupertype & AllowedSubtype model
	RelationSource model
	RelationEnd model
	Characterized model
	PartOfGeneralizationSet model
	IdentityRequired model
	RoleMediationDependency model
	RelatorMediationDependency model

	Documentation and testing
	Documentation
	Testing

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

