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Instructions
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6) Implement the improved method and analyze achieved results.
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Abstract

In this work, we focus on suggesting and implementing a prediction pipeline
which allows us to estimate a crop yield. We explore and analyse the Landsat
remote sensing collection, extend it with indices that correlate with the vege-
tation level in order to extract cropland features. We associate these features
with the actual crop yield values which are later used for training and testing
a regression model. Google’s Earth Engine platform plays an essential role in
accessing the data and performing complex computations. As the extraction
and prediction models, we choose basic machine learning approaches like k-
means and Linear Regression with the intention of finding out if such models
are capable of a good estimation. The result of our work is a tool which pre-
dicts crop yields. We test the models on cereals and potatoes datasets. The
tests results show that Learning Vector Quantization – Support Vector Ma-
chine combination achieves the best results in the cereals dataset with Mean
Absolute Error of 0.2836 t ha−1 and Learning Vector Quantization with Linear
Regression in the potatoes dataset with Mean Absolute Error of 5.3114 t ha−1.

Keywords remote sensing, machine learning, Google Earth Engine, Land-
sat, crop yield prediction, cropland feature extraction, Slovakia
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Abstrakt

V tejto práci sa zameriavame na navrhnutie a implementáciu postupnosti kro-
kov, ktorá umožní predikciu úrody plodín. V texte popisujeme a analyzujeme
dáta pochádzajúce zo vzdialeného prieskumu Zeme, ktoré rozšírime o indexy
vystihujúce vegetačné vlastnosti danej oblasti. Z týchto dát vyberieme pod-
množinu úrodných polí. Túto podmnožinu spojíme s reálnymi dátami o úrode
a použijeme na natrénovanie a otestovanie regresných modelov. V celom pro-
cese má dôležitú úlohu platforma Google Earth Engine, ktorá okrem prístupu
k dátam umožňuje aj nad nimi vykonávať rôzne výpočty. V práci volíme zá-
kladné algoritmy strojového učenia, ako algoritmus k-means, či lineárna regre-
sia, so zámerom zistiť, či tieto základné metódy sú schopné dobrej predikcie.
Výsledkom našej práce je nástroj, ktorý umožňuje predikciu úrody. Model tes-
tujeme na predikcií úrody zemiakov a obilnín. Výsledky testovania ukazujú,
že s predikciou obilnín si lepšie poradila kombinácia algoritmov Learning Vec-
tor Quantization a Support Vector Machine s absolútnou strednou chybou na
úrovni 0.2836 t ha−1. Pre úrodu zemiakov nižšiu chybu, 5.3114 t ha−1, dosiahol
algoritmus Learning Vector Quantization s lineárnou regresiou.

Klúčové slová vzdialený prieskum Zeme, strojové učenie, Google Earth En-
gine, Landsat, predikcia úrody plodín, vyťažovanie charakteristík polí, Sloven-
sko
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Introduction

Satellite image analysis has been applied in various use cases throughout the
recent decades. It has been helpful in identifying deforestation, monitoring
changes in glacier mass, even marking places prone to famines and many
others, mostly environmental issues.

Data acquired from the space is a promising source of information on the
Earth’s properties which can be a game-changer in predicting crop yield or
monitoring crop growth. Applying data mining and machine learning tech-
niques on spatial data can lead to prediction models of high quality and ac-
curacy.

The ability to make a reliable prediction is always a considerable compet-
itive advantage. Having a piece of information, even minutes earlier than an
opponent can result in earning a large amount of money, avoiding a trouble-
some or risky situation or preparing for a series of events. This fact means
that many people in different roles could benefit from knowing an estimation
of yields before a harvest. For example, farmers could approximate their in-
comes, prepare adequate stocking places, even plan distribution and delivery
of their crops.

Those who produce goods could plan to buy the stocks and in case of poor
yields, buy the materials before the prices are affected.

The yields predictions can serve a purpose even in the business of reinsur-
ance which is an insurance for insurers. It could help in managing the risks by
giving a possibility to weight the chances of catastrophic scenarios carefully.

The main goal of our work is to propose a model that makes a crop yield
prediction for the area of the Slovak Republic. Alongside this goal, we explore
the data sources, discuss existing approaches, suggest a possible solution, eval-
uate its results and propose viable improvements of the existing model.

We organise the work in this thesis into ten chapters. It is possible that
the theoretical and the practical parts overlay with one another, but it is done
to keep thoughts in a purposeful order.
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Introduction

The theoretical part covers a brief introduction into the problem of satellite
image analysis and its history. We explain which datasets we use, why we use
them and where they come from. We also introduce Google’s satellite imagery
analysis platform and lastly focus on exploring various algorithms for feature
extraction and prediction.

In the practical part, we analyse the available data with the intention of
choosing those which contain valuable information. We introduce the predic-
tion pipeline, comment on time consumption enhancement and continue with
results analysis and suggestions on improvements.

Finally, we present our software and guidelines on how to install and use
it on a reader’s own.
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Goals

The main goal of this work is to propose and implement a set of steps (pipeline)
which analyses satellite data, extracts the desired information and predicts
a crop yield based on it.

In the theoretical part, we target at clarifying the problem of remote sens-
ing and satellite image analysis and defining all the required datasets. We also
explore existing methods and propose new approaches to predict crop yields.

In the practical part, we implement the models described in the theoretical
part using Google’s satellite image analysis tool, compare their performance
and prediction errors. Based on the analysis and performance, we propose
various improvements and finally present predictions for 2019.

3





Chapter 1
Remote sensing

Humankind’s need for information about the Earth’s characteristics led to the
first concepts of remote sensing and continuous Earth observation by a system
of satellites.

Remote sensing is a process of measuring properties of an object at the
Earth’s surface remotely. Such measurement relies on the object to reflect or
transmit a signal. It can be either acoustical, microwave or optical [1]. The
signal is captured by electromagnetic radiation sensors which are capable of
extracting data that cannot be seen by a human eye [2]. The result of this
process is a set of products called remote sensing data.

If placed on a satellite orbiting the Earth it could provide insight on short-
term and long-term changes in the environment. Schowengerdt [1] finds the
applications for remote sensing data in:

• monitoring the environment,

• defining how the Earth has changed during the last few decades,

• agriculture,

• meteorology,

• mapping,

• exploring renewable and non-renewable energy sources.

Remote sensing has become invaluable in studying biodiversity, deforestation
and food security [3].

The idea of remote sensing firstly appeared in the middle of the 19th cen-
tury, when the first images of the surface were taken from balloons, originally
in Paris, later in the USA during the American Civil War. Later on, such
images — called aerial photographs — were taken from aeroplanes. [2]

5



1. Remote sensing

Orbital remote sensing concepts started to emerge in the middle of the 20th
century on several symposiums and conferences concerning this topic, organ-
ised by the Environmental Research Institute of Michigan. This initiative
was joined by United States Geological Survey (USGS) and later by National
Aeronautics and Space Administration (NASA). These joined efforts resulted
in launching the first remote sensing dedicated satellite, named Landsat-11 in
1972. It carried two sensors — a Multi Spectral Scanner (MSS), designed for
spectral analysis and a Return Beam Vidicon (RBV) for cartographic appli-
cations. Its principal goal was to capture the remote sensing data, send it to
the Earth and offer to users in the simplest way possible. [2]

As a result of human’s creative thinking, various analysis of the remote
sensing data started to appear. So did the new and better versions of satellites
capable of remote sensing. Nowadays, owing to the gigantic technological leap,
we are provided with even more precise and frequent data than ever before
[2].

NASA itself provides evidence in the form of case studies on how its Land-
sat data has been used for viewing the speed of glaciers melting, spotting
deforestation or locating areas predisposed to flooding [4].

The remote sensing data is available in collections. A collection consists of
a time series of products. A product can be thought of as an image with pixels
containing not only red, green and blue components but also thermal and
infrared ones — we call them bands. Moreover, there are various metadata on
each product indicating cloudiness percentage, location or sensors calibration.

In an image-centred analysis, these bands are converted into a regular
image and displayed. We only need to map three optional bands onto red,
green and blue colours. This can be particularly useful in map creation [1].
Such mapping is shown in Figure 1.1, which maps shortwave infrared, near-
infrared and blue bands onto red, green and blue. On the other hand, a data-
centred analysis focuses on the actual numerical values of the bands, called
features.

1.1 Related research
In this section, we briefly describe four studies related to remote sensing,
Google Earth Engine and agriculture.

You et al.’s [5] work offers an innovative approach to the problem of crop
yield prediction by applying deep learning techniques such as Convolutional
Neural Networks and Long-Short Term Memory. On top of that, they sug-
gest “a new dimensionality reduction technique” in order to overcome the
sparseness of the training data. This technique is based on an assumption
of permutation invariance which means that the yield values do not depend

1The name was changed by NASA, the original name of this satellite was ERTS-1.
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1.1. Related research

Figure 1.1: An image-centred visualisation

much on the location of the cropland and therefore can be mapped into a his-
togram of pixel counts. They report that the results achieved by their model
outperform the baseline methods like Decision Trees or Ridge Regression by
30%.

Sabini et al. [6] build their work on You’s assumptions using the same
remote sensing data. They achieve better prediction accuracy than You by
using deeper convolutional models. An important finding of their work is that
the model can distinguish between soybean and corn croplands. The most
informative features are infrared and temperature bands and come from the
period between May and October.

A work by Sidhu et al. [7] is concerned with the remote sensing platform
Google Earth Engine (GEE). They evaluate platform’s performance capabil-
ities concerning spatial aggregations, reductions, raster and vector manipula-
tions of popular remote sensing collections. Their findings prove that GEE
is a high-performance platform which processes an average computation in
a couple of minutes. What they find challenging is generating a time-series
chart over several years (see chapter 3).

Xiong et al. [8] focus on the continent of Africa. They enumerate limi-
tations why this continent remains a challenge for agricultural mapping and
address this problem by suggesting “an automated cropland mapping algo-
rithm (AMCA)”. This algorithm is capable of automatic croplands identifica-
tion. The map of the world with croplands identified on it is available at [9].
Creating this algorithm takes three steps:

1. constructing a dataset of high-resolution imagery,

7



1. Remote sensing

2. building a reference cropland layer,

3. training a Decision Tree algorithm based on the reference from step two.

The reported overall accuracy of this model exceeds 89%.
All the works mentioned above have two common features. First one is

the Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing
collection which they use and second is the utilisation of vegetation indices.
We will use such indices in our work as well (subsection 2.1.1).

8



Chapter 2
Datasets

It will appear throughout the work that there are various data which has to
be preprocessed, combined and analysed to achieve our goals. In this chapter,
we introduce the necessary datasets and collections as well as their sources
and institutions which created them.

The most important dataset is a collection of remote sensing data. There
are three popular collections:

• Landsat,

• Moderate Resolution Imaging Spectroradiometer (MODIS),

• Sentinel.

Since Sentinel is only a recent initiative of the European Commission and
European Space Agency (ESA), it does not provide enough historical data for
our research. On the other hand, the quality and resolution of their products
are remarkable.

MODIS has been operational since 1999 and it provides the products with
either 500 m or 1 km or limited 250 m resolution [10]. Except for the raw
products it also covers land surface temperature, snow cover, even thermal
abnormalities [11]. Moreover, many researchers, including Sabini [6], You [5]
and Huete [10] use this source in their works.

The first Landsat satellite was released to the orbit in 1972 [2]. Since
then it has been improved seven times, and now there is the eighth version
of Landsat available from 2013. As well as MODIS, Landsat provides both
raw and derived collections. They differ only in the resolution. While MODIS
offers 250 m to 500 m resolution, Landsat does considerably better with the
resolution of 30 m. [11]

9



2. Datasets

2.1 Landsat collection
The Landsat collection offers the data in 8 versions, each covers a different
period, varies image quality and bands. A listing of all the Landsat versions
is available in Appendix D.

The best-suited version for our experiments is Landsat 7 [12], mainly for
these reasons. Firstly, the Landsat 7 products have been available since Jan-
uary 1999 which corresponds with the time availability of crop yield data.
Secondly, the bands present in this version can serve as predictors but also
can be used for the computation of derived values and indices.

Each data point in the collection represents a squared area huge 900 m2

and contains the following bands:

• B1, B2, B3: blue, green and red respectively

• B4: near-infrared, it is important for ecology as it is reflected by healthy
plants [13]

• B5, B7: shortwaves infrared, they are used for distinguishing between
wet and dry areas or various rocks and soils in geology [13]

• B8: panchromatic, a combination of the visible colours into one channel
[13]

• B6_VCID_1, B6_VCID_2: thermals infrared, they report the surface
temperatures

All the band values are scaled, calibrated and corrected to lower the variances
caused by atmospheric anomalies.

As mentioned before, we can use the bands for computation of other values
which describe the same area from another point of view. For our work, it
makes sense to compute vegetation indices which are a transformation of at
least two bands. Now, we will have a look at the most popular indices which
perform well in estimating the actual vegetation. [10]

2.1.1 Normalised Difference Vegetation Index
Normalised Difference Vegetation Index (NDVI) is a stable chlorophyll sen-
sitive index which allows comparison of vegetation changes on both seasonal
and annual scale for the local, regional or global environment.

Huete [10] states that NDVI’s strength lays in a ratio-based concept of
this index which lowers the multiplicative noise. As a critical weakness, Huete
considers its non-linearity and influence of various noises, especially atmo-
spheric. Nonetheless, NDVI is still one of the most popular indices to be used
in vegetation monitoring [14].

10



2.1. Landsat collection

Figure 2.1: NDVI visualisation

The NDVI index is defined by the following formula:

NDVI = ρnear-infrared − ρred

ρnear-infrared + ρred
(2.1)

where ρnear-infrared and ρred are the surface reflectances of their corresponding
Landsat bands [10].

Figure 2.1 visualises the south-western part of the Slovak Republic based
on the values of the NDVI index. White areas represent rivers or water reser-
voirs. Yellow areas are cities and green areas represent vegetation. More
accurately, dark green symbolises forests or mountains; light green stands for
woods, meadows or croplands. By a closer look, it is possible to see geometric
shapes of the croplands.

2.1.2 Enhanced Vegetation Index
The Enhanced Vegetation Index (EVI) index was developed in order to im-
prove sensitivity in the regions rich in vegetation and reduce atmospheric im-
pact [10]. Lu [14] concludes that EVI performs poorly in forests and sparsely
vegetated areas. He also states that EVI is capable of capturing the inter-
annual and seasonal changes.

Figure 2.2 depicts the same location as Figure 2.1. There are only a few
differences between these figures. EVI has a problem with distinguishing water
areas from city areas. Moreover, the forest and mountain areas are not as dark
green as in the NDVI case. These are exactly the troublesome areas mentioned
by Lu [14].
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2. Datasets

Figure 2.2: EVI visualisation

The EVI equation has the following form:

EVI = G
ρnear-infrared − ρred

ρnear-infrared + C1ρred − C2ρblue + L
(2.2)

where G is a gain factor, C1 and C2 are coefficients of atmospheric resistance
and L is an adjustment of the canopy background. Huete [10], who originally
came up with this index, suggests that the values of these coefficients should
be 2.5, 6, 7.5 and 1 respectively.

Atmospheric resistance is stability against atmospheric aerosol contrasts.
The EVI index is one of those which are well resistant to the atmospheric
contrasts. [10]

Even though there are many other vegetation indices like atmospherically
resistant vegetation index or modified normalised difference vegetation index,
we will use only the two indices mentioned above.

2.2 District borders
One of the main goals of our work is to make a prediction for each of the
districts of the Slovak Republic separately. Therefore, we need to know where
the borders of the districts lay. It is impossible for us to draw the borders on
our own. Fortunately, the Geodetic and Cartographic Institute of the Slovak
Republic provides a dataset of district administrative borders. [15]

This dataset is available in three formats, one of them is a Geodatabase
(GDB). This format is inappropriate for our use case as it contains more than

12



2.3. Past crop yield data

Figure 2.3: District borders

one file. It is much better to have only one, programmatically easily readable
file, for example, Comma Separated Values (CSV). Additionally, the Geodetic
Institute delivers a conversion service which allows us to convert the GDB
source folder into a CSV file.

The resulting CSV file has the following columns:

• DistrictNumber a unique identifier of a district

• DistrictName a name of the district (e.g. Bratislava I, Martin)

• RegionNumber a unique identifier of a region

• RegionName a name of the region (e.g. Bratislavský, Žilinský)

• Area an area of the district in m2

• Geometry a line ring polygon of geographic points marking the district
border in XML format

• Shape_Length a length of the border

• Shape_Area an exact area counted from the polygon marked by Ge-
ometry

A line ring polygon is a round polygon consisting of at least three points
which have the same point at the beginning and the end. An example of such
polygon is illustrated in Listing 2.1. As the tools which we use in our work
do not accept a geometry in this format, we have to convert the original into
GeoJSON format. This conversion is performed by a custom utility presented
in Appendix E. Listing 2.2 displays the same polygon after conversion.

2.3 Past crop yield data
It is never simple to find a dataset with the desired quality and detail. For
example, the European Statistical Office (Eurostat) provides many datasets
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2. Datasets

<Polygon>
<outerBoundaryIs>

<LinearRing>
<coordinates>

17.073486,48.174498
17.073409,48.17453
17.073739,48.174335
17.073486,48.174498

</coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

Listing 2.1: A geometry in XML format

{
"type": "Polygon",
"coordinates": [

[
[17.073486, 48.174498],
[17.073409, 48.17453],
[17.073739, 48.174335],
[17.073486, 48.174498]

]
]

}

Listing 2.2: A geometry in GeoJSON format

concerning agriculture, yet none of them contains details on regions of the
countries. The same applies to the statistics published by the United Nations
(UN).

We found the most adequate and detailed data in the database of the na-
tional statistics provider. The Statistical Office of the Slovak Republic pub-
lishes the yield data for six crops, namely grains, cereals, oil-plants, potatoes,
sugar-beat and fodders. This data currently covers the period from 1997 until
2017 and contains the yield information on national, regional and a district
level. The weight unit applied in this dataset is tons per hectare, t ha−1. [16]

As the Landsat data is not available for years 1997 and 1998, we will
ignore these years in the crop yields dataset as well. There is no remote
sensing information to make a match.

The data is publicly and freely available online through an application
called DATAcube. It is a database which contains statistics about business,
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2.4. Training points

district 1997 1998 1999 2015 2016 2017
Slovak Republic 4.39 4.06 3.86 5.08 6.43 4.86
Region of Žilina 3.04 3.37 3.13 4.37 4.95 4.58
District of Martin 3.10 3.54 3.32 4.58 5.20 4.94
District of Ružomberok 3.21 4.03 3.66 4.24 5.55 5.20
District of Žilina 2.31 2.63 2.39 3.97 5.14 4.15

Table 2.1: Cereal yields data in selected years and districts

Crop X̄n sn
Cereals 3.6814 1.2502
Potatoes 14.7897 7.0433

Table 2.2: Selected crops statistics

environment, demography, industry, regions and many others. The hectare
yield of agricultural crops is available under the sector statistics, agriculture,
forestry and fisheries tab.

Table 2.1 shows an example of the data in the hectare yields dataset. The
data is missing for eight districts in 2011, and seven districts in 2015 which
we believe is not much and this dataset can be considered a quality one.

For a future reference and comparison we define the mean value (X̄n) and
the standard deviation (sn) of potato and cereal yields in Table 2.2. Later
in the text, this will allow us to understand the predicted values and errors
better.

There are seventy-nine districts in the Slovak Republic. Nonetheless, the
past crop yield data is missing for the districts of Bratislava I – Bratislava V
and Košice I – Košice IV. Therefore, we are forced to join the five districts of
Bratislava into one for which the crop yield data is available; and similarly the
four districts of Košice and the district Košice-surroundings. This operation
results in a total number of seventy-one districts used in our work.

2.4 Training points
In addition to all the datasets mentioned above, we also need some geograph-
ical points to train our models on. For doing so, we use a set of two hundred
points, handpicked on the map of Slovakia, keeping in mind diversity of loca-
tions, soil types and altitude levels. Afterwards, we assign a variable named
type to each of these points, indicating what soil type the point is. The
options are:

• cropland,

• water,
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2. Datasets

• city,

• wood.

Each line in this dataset contains a system index which is only an in-
ternal value of GEE; land defines the land type where the point is situated
(lowland or highland); type indicates a soil type of the given point and .geo
is a GeoJSON specifying the location of the given point.

{
"system:index": "1_1_1_1_0",
"land": "lowland",
"type": "field",
".geo": {

"type": "Point",
"coordinates": [

17.288189725903294,
48.00745491289555

]
}

}

Listing 2.3: A training point
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Chapter 3
Google Earth Engine

It is impossible to carry out the computations required for this work on a sin-
gle device, even more, if it is a laptop. To work with data as enormous as
the remote sensing data undoubtedly is, we need to use an external service
that provides enough performance and gives us access to the remote sensing
repositories. Google Earth Engine (GEE) is one of those services. In this
chapter, we focus on its description, how it works and why we benefit from
using it.

Google itself calls this web-based platform as the most advanced in geospa-
tial processing. It enables large-scale computing and aggregations over an
extensive collection of remote sensing data [7].

In [11] they identify the following main components of GEE:

• datasets a public catalogue which contains petabytes of remote sensing,
weather, topographic, socio-economic and other datasets

• computational power a highly paralleled processing

• APIs JavaScript and Python interfaces for making requests to GEE
servers

• code editor a web-browser application which allows fast prototyping
and visualisations

GEE makes use of lazy computing which means that a server processes
nothing unless a user requested it. The user only composes a chain of func-
tional commands defined by the Earth Engine library which contains more
than eight hundred functions. These functions cover simple mathematical op-
erations, geostatistical aggregations, machine learning modelling and image
processing. [17]

The lazy computing model introduces confusion to the programming be-
cause the GEE objects cannot be used as regular variables in a programme
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3. Google Earth Engine

Figure 3.1: GEE code editor

as they only contain a text instruction for the server but not a real value.
Accordingly, they cannot be used in loops or conditionals on a local level.

We use this platform because it is capable of performing machine learning
operations and is free to use for everybody. Moreover, it provides a public
catalogue of the remote sensing data and a Python API. However, there is
a drawback in this approach of leaving the computations on a third party —
we are restricted to use only those algorithms they have implemented.

For more details and information on how exactly GEE works, we encourage
readers to refer to the work of Gorelick and Hancher [17].

3.1 Code editor
It is a web-based Integrated Development Environment which allows quick
visualisations into both maps and graphs. According to [11], the editor comes
with a huge bag of features like:

• code editor which support code-highlighting and syntax corrections for
JavaScript

• map for visualising geographic data

• git-based script manager

• drawing tools

• console output, task manager and map inspector

We use this web-based form mainly for testing the ideas, quick prototyping
and creating visualisations for this work.
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3.1. Code editor

Figure 3.1 illustrates how the web-based editor looks like. In the bottom,
there is a map which visualises the code, enables to draw polygons and lines
and to pick points. On the left, there is the git-based file manager; the code
editor fills the middle while console is on the right.

{
"type": "Invocation",
"arguments": {

"collection": {
"type": "Invocation",
"arguments": {

"collection": {
"type": "Invocation",
"arguments": {

"id": "LANDSAT/LE07/C01/T1"
},
"functionName": "ImageCollection.load"

},
},

},
"filter": {

"type": "Invocation",
"arguments": {

"rightField": "system:time_start",
"leftValue": {

"type": "Invocation",
"arguments": {

"start": "1999-01-01",
"end": "1999-12-31"

},
"functionName": "DateRange"

}
},
"functionName": "Filter.dateRangeContains"

}
},
"functionName": "Collection.filter"

}

Listing 3.1: A payload for GEE
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3. Google Earth Engine

3.2 Python API
Nowadays, Python is one of the most popular languages for machine learning.
Not only is it easy to use but there are also many libraries available for free
which simplify the work of a scientist significantly.

To communicate with the GEE service from a Python code, Google has
prepared an API library which is available for download from Python Package
Index under the name google-api-python-client.

The main purpose of the Python client library is to build the GEE objects,
dump these objects into JSON, send the data for computation to the servers
and await the results. An example of such JSON is displayed in Listing 3.1.
This payload corresponds to the following Python call:

ee.ImageCollection("LANDSAT/LE07/C01/T1").filterDate(
"2017-01-01", "2017-12-31"

)

Google does not provide a separate documentation for the Python library.
There is only the JavaScript documentation which is supposed to provide the
same interface as the Python one.

There is, however, a difference in the way how to evaluate the results.
According to the documentation, many objects should implement a method
called evaluate(), which takes a function as an argument, asynchronously
evaluates the object and passes the result to the provided callback function.
By evaluation, we mean the computation of the results on a Google server.
This approach does not work for the Python client for a simple reason. The
server has no means of triggering a local Python function. Therefore, the only
way how to evaluate results is a synchronous call to the getInfo() method
which is available on all objects. Full API documentation is available at [18].
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Chapter 4
Band analysis

In this chapter, we analyse values of the available bands obtained throughout
the time and districts. We also prove that the values of the same areas do not
differ much — have a small standard deviation.

As a data source for this analysis we take the handpicked data points
which are tagged; therefore we can distinguish between the areas the data
points belong to.

{
"blue": 34,
"evi": 0.496424105101188,
"green": 37,
"ndvi": 0.46849078,
"near_infrared": 86,
"red": 31,
"shortwave_infrared_1": 31,
"shortwave_infrared_2": 17,
"type": "cropland"

}

Listing 4.1: An analytic data point

As Listing 4.1 shows all the values except for NDVI and EVI are always
integers in range [0, 255] for reflective bands like RGB. Thermal bands would
be from another range, but in this work, we do not use any of those. The
integer cast is done not only for the presentation and analytic purposes but
also for the models to capture the distances better.
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Figure 4.1: NDVI and EVI histograms

NDVI X̄n sn
city 0.1099 0.0931
water 0.0252 0.2445
cropland 0.4207 0.1162
wood 0.5842 0.1513

(a) NDVI statistics

EVI X̄n sn
city 0.0955 0.0777
water 0.035 0.1864
cropland 0.3834 0.1377
wood 0.5307 0.2181

(b) EVI statistics

Table 4.1: EVI and NDVI statistics

4.1 NDVI and EVI analysis

As we mentioned earlier, NDVI and EVI are supposed to be the most promis-
ing indices for separating the areas rich in vegetation from the rest. In this
section, we examine whether this assumption is valid.

Figure 4.1 shows the histogram of the NDVI and EVI values distribution
across all the area types. The vegetation areas (croplands and woods) are well
separated from the non-vegetation ones (cities and water areas) by both the
indices. On the other hand, distinguishing between woods and croplands is
more challenging, especially for EVI as the values overlap much. Determining
the water areas is not a problem for both the indices because these values are
usually smaller than zero.

While examining the means and the standard deviations of the indices it
appears to us that NDVI performs better in this case. The means are further
from each other. Moreover, the standard deviations of NDVIs are smaller
which means that the values vary less than they do in case of EVI.
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20 40 60 80 100
Green

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

De
ns

ity

city
water
cropland
wood

(a) Green histogram

20 30 40 50 60 70 80 90
Blue

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

city
water
cropland
wood

(b) Blue histogram

20 40 60 80 100
Red

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

city
water
cropland
wood
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Figure 4.2: RGB histograms

4.2 RGB analysis

Intuitively it looks like the green component of the spectrum should describe
the vegetation very well. Yet Figure 4.2a suggests otherwise. The water areas
seem to have the values very similar to both woods and croplands. Not to
mention the city areas which get mixed in the range of [20, 40] as well.

From a brief look at the other histograms in figures, 4.2b and 4.2c we see
that none of the RGB colours can be used for area separation as it is also
a case of these two that the values of all the area types overlay too much and
have extensive value ranges. For these reasons we drop the RGB values from
the feature extraction process and use them only in the prediction making
stage.

4.3 Near and Shortwave Infrared analysis

Near-infrared is a band which is reflected by the healthy plants, more precisely,
it is the water in their leaves which scatters these waves back into the sky.

The shortwaves infrared are powerful in distinguishing between wet and
dry earth. We can approve this as the water areas obtain small number (the
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(a) Near infrared histogram
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(b) Shortwave infrared 1 histogram
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Figure 4.3: Near and Shortwave infrared histograms

mean is 9.825 with standard deviation 10.2829) while all the other areas obtain
values around three times higher (cropland’s mean is 42.68).

The water separation applies to the near-infrared histogram as well. How-
ever, the wideness of the woods range is quite worrying and overlaps of crop-
lands with cities and woods are not desirable for the feature extraction model.
Therefore we drop this band.

4.4 Summary
To sum it up, this analysis showed which bands are worth using in the feature
extraction and which are not because of their less separative nature. The
chosen bands for the feature extraction are NDVI, EVI, shortwave infrared-
1 and shortwave infrared-2. This choice does not mean that the rest of the
bands will not be used anywhere else. On the contrary, the skipped bands in
feature extraction will be used while making predictions.

We also showed that in the chosen bands the values of the same areas do
not differ much and are rather situated in a cluster.
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Chapter 5
Feature extraction

Initially, the Landsat collection contains information on both cropland and
non-cropland areas. However, we are interested only in that which represents
cropland areas. All the other data is irrelevant and can potentially cause
a higher prediction error. Therefore, we need to apply an algorithm which
filters out the unneeded information. We call this filtering a feature extraction.

As there is no tag indicating croplands on the data points the filtering
algorithm has to make use of a machine learning approach. Moreover, we
assume that the similar areas have similar remote sensing values2. So, it is
reasonable to apply algorithms which look for similarities between objects and
group them up. This approach is called learning without a tutor or unsuper-
vised learning.

The feature extraction model is trained on the dataset of the handpicked
geographical points (section 2.4). Each of the geographical points has these
bands available on it: red, blue, green, near-infrared, shortwaves infrared,
NDVI and EVI. To optimise the performance of the algorithm we need to
choose a subset of these bands to train and categorise on. The band analysis
which resulted in establishing this subset is described in chapter 4.

In this chapter, we introduce two algorithms for feature extraction which
we will use later in our work.

5.1 k-means
The k-means algorithm belongs to the family of clustering algorithms which is
a representative of unsupervised learning methods. The clustering technique
separates the given data points into categories so that the similar points are
in the same category — a cluster [19].

For a given k as the number of clusters and a set of n data points X ∈ Rd,
this algorithm separates the data into k clusters C.

2The evidence for this assumption is provided in chapter 4.
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5. Feature extraction

A data point xi is assigned to the cluster cj where the distance between xi

and a centre point (centroid) of cj is minimal. To find an optimal solution, we
choose the centroids in a way that minimises the squared distance between the
points in the same clusters and the respective centroids [20]. This is a so-called
potential function ϕ.

ϕ =
∑
x∈X

min
c∈C
∥x− c∥2 (5.1)

Finding the exact solution is an NP-hard problem [20]. k-means algorithm
minimises the value of the potential function iteratively in each step, therefore
converges into a local optimum [19] (see Algorithm 5.1).

initialise k centroids C = {c1, c2, . . . , ck};
while C changes or stopping condition is not met do

separate points of X into clusters, so that
Ci = {x ∈ X | i = arg minj ∥x− cj∥};

find the new centroids ci ← 1
|Ci|

∑
x∈Ci

|x|;
end

Algorithm 5.1: k-means

To demonstrate the k-means algorithm, we present Figure 5.1 which dis-
plays the shortwaves infrared data points from the training dataset. These
points are neither scaled nor transformed in any way. Figure 5.2 represents
the same data points after running k-means algorithm on them. Each point
has the same colour as all the other points in the same cluster. There is
a centroid displayed for each of the clusters.

There appears a question concerning initialisation of the k centroids. Stan-
dard practice is to initialise with k random points chosen from a uniform
distribution [20]. Since an unfortunate initialisation can lead to poor results,
Arthur and Vassilvitskii [20] propose “a specific way of choosing these centers”
called k-means++. Their idea lies in introducing probability to the choice of
the next centre. The probability of selecting x′ ∈ X equals to

D(x′)2∑
x∈X D(x)2 (5.2)

where D(x) represents the shortest distance from x to the already chosen
centroid.

Another effective solution for initialisation, especially of large datasets, is
called canopy algorithm. It separates the data points into overlapping subsets
— canopies. A data point is assigned to a canopy if its distance to the centre
point is under a specified threshold. This means that one data point can be
assigned to more canopies. It is crucial for the canopy distance function to be
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Figure 5.1: k-means: data points to cluster
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Figure 5.2: k-means: the result of clustering
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5. Feature extraction

cheap and only approximative. After partitioning into canopies, the algorithm
proceeds with standard k-means (or any other clustering algorithm), but this
time it computes actual distances between those points which appear in the
same canopies — they are in the distance small enough to be in a common
cluster. [21]

5.2 Learning Vector Quantization
Learning Vector Quantization (LVQ) is a representative of competitive learn-
ing neural networks. The competitiveness means that each neuron in the net-
work receives the same input, but a response is activated only on the neuron
with the highest value of the activation function. In terms of LVQ, a neuron
equals to a codebook vector mi = (µi1, µi2, . . . , µin)T ∈ Rn. This approach is
often used for detecting patterns in statistical data and approximating borders
which separate different groups of data. [22]

Let k be the number of groups (clusters). We assign a set of codebook
vectors to each of these k groups. For a vector x = (ξ1, ξ2, . . . , ξn) ∈ Rn, we
assign x to the same group as the codebook vector mc which has the smallest
Euclidean distance from x. [22]

∥x−mc∥ = min
i
∥x−mi∥ (5.3)

By training the model, we understand an iterative process in which we use
the training data points to move the codebook vectors either closer or further
from the data point [22]. This process can be supervised or unsupervised. We
will use the supervised variant to demonstrate the algorithm, although GEE
uses the unsupervised one.

5.2.1 Supervised LVQ
Let t = 1, 2, . . . be a series of training epochs. Then the supervised learning
process is defined as follows:

mc(t + 1) = mc(t) + α(t)[x(t)−mc(t)]; x ∈ Gc ∧mc ∈ Gc,

mc(t + 1) = mc(t)− α(t)[x(t)−mc(t)]; x /∈ Gc ∨mc /∈ Gc,

mi(t + 1) = mi(t); i ̸= c

(5.4)

where x is a training point, mc is a codebook vector with the shortest distance
to x and α(t) is a learning-rate factor function (usually a number from [0, 1]).
Gc is a group which both mc and x belong to. [22]

Although this is an optimisation problem of finding the decision borders
such that the misclassification rate is minimised, the real implementation is
based on an iterative approach of going over the training dataset for t epochs
and moving the closest codebook vectors.
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(d) A hundred iterations

Figure 5.3: LVQ classification process

Figure 5.3 depicts how the positions of the codebook vectors (black dia-
monds) change throughout iterations. Each data point has two colours, the
inner colour is the predicted label, and outer circle colour is the target one.

5.2.2 Unsupervised LVQ
The same iterative process as in supervised variant applies here. The main
difference is in the way how codebook vectors are moved. As we do not know
which codebook vectors and training points belong together, we only move
the closest vector codebook even closer to the training point.

mc(t + 1) = mc(t) + α(t)[x(t)−mc(t)] (5.5)
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Chapter 6
Prediction algorithms

In this chapter, we define the prediction models which we will use for making
the actual predictions from the data we receive from feature extraction. In
this case, we will be solving a regression. A problem is marked as a regression
one if the predicted variable is continuous — it can be assigned a limitless
number of values from R. A regression problem is a representative of the
supervised learning algorithms.

This chapter focuses on an introduction into two regression algorithms
used in this work.

6.1 Linear Regression
Consider x ∈ Rn a vector of n predictors and y ∈ R a continuous unknown
variable — called a response or a dependant variable. Linear Regression lets
us model a linear dependency of y on x [23]:

y = w0 + w1x1 + w2x2 + · · ·+ wnxn + ϵ (6.1)

where ϵ is a normally distributed random variable and w0 is an intercept
(a constant move in the direction of the y axis). w = (w0, w1, . . . , wn) is
a vector of the regression parameters.

For a Linear Regression prediction, we need to know what is a good esti-
mation of the vector w, noted as ŵ. Then, the prediction has the following
form:

ŷ = ŵT x (6.2)
Finding a good estimation of the values of w is the goal of a training stage.

For the best ŵ applies that the differences between the correct responses and
their predictions are the lowest possible. This intuitive idea is transferred into
an optimisation problem of minimising a residual sum of squares (RSS).

RSS(ŵ) =
p∑

i=0
(yi − ŷi)2 =

p∑
i=0

(yi − ŵT x)2 (6.3)
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6. Prediction algorithms

where p is the number of training data points, yi is the real value of the i-th
data point and ŷi is a prediction for it. [23]

We are looking for a minimum of a function consisting of n variables. One
of the possible approaches is a method called gradient descent. It is based on
a recurrent equation:

ŵ(i+1) = ŵ(i) − α∇RSS(ŵ(i)) (6.4)

This equation generates a sequence of vectors ŵ(i) which converges into either
global or local optimum. [23]
∇RSS(a) is a gradient of the function RSS in the given point a. Gradient

is a vector of partial derivations in a.

∇RSS(a) =
(

∂RSS

∂x1
(a), . . . ,

∂RSS

∂xn
(a)
)

(6.5)

By ∇RSS we understand a function which assigns a gradient to each point of
the function’s domain.

To prevent a colinearity collision which appears when the columns of X are
almost linearly dependent, we often introduce a regularisation term into the
equation in the form of penalisation [24]. There are two types of regularisation.
The first one is an L1 regularisation, also called Lasso Regression which adds
a sum of coefficients in ŵ, excluding intercept.

RSSL1(ŵ) =
p∑

i=0
(yi − ŵT x)2 + α

n∑
i=1

ŵi (6.6)

An L2 regularisation, Ridge Regression, sums the coefficients squared.

RSSL2(ŵ) =
p∑

i=0
(yi − ŵT x)2 + α

n∑
i=1

ŵ2
i (6.7)

So, while finding an optimum, we are looking for a one which has the
coefficients as small as possible. The regularisation term is always weighted
by a parameter α. If α = 0, we get the standard linear regression. [24]

6.2 Support Vector Regression
The Support Vector algorithms were originally developed for pattern recog-
nition and classification by drawing a decision boundary, called hyperplane,
between sets of data such that the margins between different sets would be
the largest possible. The data points which are closest to the boundary are
called support vectors. [25]

Support vector algorithms are capable of function estimation as well. The
idea is to find a function (not necessarily linear)

f(x) = wT x + b; w, x ∈ Rn, b ∈ R (6.8)
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6.3. Models comparison

which has at most ϵ deviation from the yi being a training data points and is
the flattest possible [26]. It means that we accept an error smaller than ϵ and
do not penalise it. The idea leads to the following loss function:

|yi − f(xi)|e = max {0, |yi − f(xi)| − ϵ} (6.9)

where f : R → R, xi ∈ R and yi ∈ R is a target value for xi. It is called an
ϵ-insensitive loss function and was firstly introduced in the ϵ-SVR algorithm
[27]. In this section, we assume only one dimensional space for simplicity.

As it is suggested that choosing a good ϵ can be a tricky task, in order
to avoid it we use an algorithm called ν-SVR which introduces a ν ∈ (0, 1)
parameter which participates on automatic computation of ϵ, hence controls
the number of errors and the number of support vectors, as well. [27]

The ν-SVR algorithm’s target is to minimise the following function τ :

τ(w, ξ, ξ∗, ϵ) = 1
2
∥w∥2 + C(νϵ + 1

ℓ

ℓ∑
i=1

(ξi + ξ∗
i )) (6.10)

subject to

(wxi + b)− yi ≤ ϵ + ξi

yi − (wxi + b) ≤ ϵ + ξ∗
i

ξi ≥ 0, ξ∗
i ≥ 0, ϵ ≥ 0

(6.11)

where w, b ∈ R are parameters of a linear function, ℓ is the number of training
points and C is a regularisation constant. [27]

The presented regression is linear. However, it is possible to generalise this
approach and turn the regression into a non-linear one. This transformation
is achieved by the so-called kernel method which maps training points into
some other feature space, Φ : X → F . [26]

The most frequently used kernel functions are:

• linear: k(x, y) = xy

• polynomial: k(x, y) = (γxy + b)degree

• Radial Basis Function (RBF): k(x, y) = exp −∥x−y∥2

γ

• hyperbolic tangent: k(x, y) = tanh (γxy + b)

where γ along with b are the kernel coefficients.

6.3 Models comparison
The plots in this section are only illustrational without connection to the rest
of the work. They show how the models work by plotting their predictions of
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Figure 6.1: Models comparison
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EVI based on NDVI. The blue crosses represent the correct values while the
orange points are the predictions.

Linear Regression (figure 6.1a) is initialised with no parameters. The green
line which lays over the prediction points is the regression line which has
a form of a linear equation y = ax + b where a is the weight from ŵ and b is
an intercept.

ν-SVR (figure 6.1b) is initialised with a RBF kernel, ν = 0.5, γ = 0.15
and C = 100. Because of the RBF kernel the predictions of ν-SVR do not lay
on a straight line but rather on exponential which is caused by the fact that
the RBF kernel maps by utilising a ex function.

As the target points also do not lay on a line, the non-linear ν-SVR predicts
these points even better than the Linear Regression model does.

6.4 Error measurement
Unlike classification which, in most cases only counts how many elements
were classified correctly, in regression modelling we need to keep in mind its
continuous nature. For exploring a regression model error, we need to count
the difference between predicted and the actual values. There are more ways
for doing it, but the most common ones are Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE) [28].

In this work, we use MAE over RMSE because Willmott et al. [28] suggest
that this measure is “unambiguous and natural measure of average error mag-
nitude”. Moreover, the RMSE value is hardly interpretable, and the results
tend to become increasingly higher than MAE. Willmott et al. [28] also state
that RMSE should not be used in a model comparison because there is no
consistent relationship between RMSE and average model error. Addition-
ally, MAE allows us to understand the results better and relate them with
a dataset’s mean and standard deviation.

MAE =
∑n

i=1 |yi − ŷi|
n

(6.12)

where yi is a target value and ŷi is a prediction for it.
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Chapter 7
The model

Now, that all the prerequisites are defined, we can present the prediction
pipeline itself. Firstly, we give a quick overview and then focus on feature
extraction, an association of the features with past crop yields and finally
making a prediction.

Let years be a given range of years. This range must not exceed the 1999
to 2017 boundary. For each of the years, we build a separate feature extraction
model which is provided with a collection of Landsat features and a subset
of the handpicked geographical points used for training. After being trained,
the feature extraction model returns a collection of features which represents
croplands in the given district. Except for the regular bands, the Landsat
feature collection is also extended by EVI and NDVI values.

Now, assume districts being a list of all districts in the Slovak Republic.
For each of them, we create a new prediction model, train it and make some
predictions. Then, we compute MAE — an estimated model error. For this
estimation to be unbiased, training data must not be the same as testing
data. Therefore, before training the very first model, we split years into
training_years and testing_years.

To present the idea of our prediction pipeline graphically, we created a di-
agram which is available in Appendix C.

7.1 Image collection

To perform an analysis, we need to acquire the data firstly. We access the
Landsat collection ee.ImageCollection("LANDSAT/LE07/C01/T1") and fil-
ter it to contain only images for a requested year. To proceed we compose the
whole ee.ImageCollection to a single ee.Image.

ee.Algorithms.Landsat.simpleComposite(collection=self.collection)
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7. The model

This algorithm applies calibrations, selects the scenes with the lowest pos-
sible cloud score and aggregates the accepted pixels.

Now, the image contains all the bands defined in section 2.1. The last
step before passing the ee.Image to the feature extraction we calculate the
vegetation indices and add them to the image.

7.2 Feature extraction
For feature extraction, we use clustering algorithms which are located in the
GEE package ee.Clusterer. The offer of algorithms consists of:

• standard k-means (wekaKMeans),

• Learning Vector Quantization (wekaLVQ),

• Cobweb clustering algorithm (wekaCobweb),

and other derivatives from these algorithms which either take the exact num-
ber of clusters to form or are capable of finding the best number of clusters
themselves during the training phase. In our work, we use the two models
described in chapter 5.

k-means algorithm instance is initialised with the number of clusters, cen-
troid initialisation method and distance function. The options for the k cen-
troids initialisation are:

• random

• k-means++

• canopy

As a distance function we can choose:

• Euclidean distance d(x, y) =
√∑p−1

i=0 (xi − yi)2,

• Manhattan distance d(x, y) =
∑p−1

i=0 |xi − yi|,

where x, y ∈ Rp. In our implementation we initialise the model with four
clusters, canopy centroids initialisation and Manhattan distance. The number
of clusters is four because there are four different area types in the training
points (section 2.4) defined.

LVQ algorithm takes these parameters:

• number of clusters,

• the learning rate,

• number of epochs,
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7.3. Feature and yield data association

• boolean which indicates if the attributes are normalised before being
used by the algorithm.

We initialise the algorithm with four clusters, for the same reason as above,
0.05 learning rate, 10 000 epochs and normalised attributes.

After training the clustering model we are able to cluster over any feature
collection or geometry. However, to filter only those features which were
clustered as croplands, we need to know the number of the croplands cluster.

To achieve that we cluster the training data. It results in having a cluster
and area type properties on each feature. Once we filter only those features
which have type equal to cropland we can iterate over them and check which
cluster number is the most frequent. This idea is presented in Listing 7.1.

def find_field_cluster_asynchronous(
field_collection: ee.FeatureCollection

) -> ee.Number:
clusters = field_collection.iterate(

lambda elem, prev: ee.List(prev).add(
elem.get("cluster")

),
ee.List([]),

)
return ee.Number(

ee.List(clusters).reduce(ee.Reducer.mode())
).int8()

Listing 7.1: Finding the cropland cluster number

7.3 Feature and yield data association
Now that we can extract cropland features we have to associate them with
the yield data.

We obtain the cropland features by clustering over the area of the given
district. The corresponding clusterer is chosen for the currently processed year.
As a response, we get a ee.FeatureCollection with features representing all
the croplands in the district.

Because we have only one yield value for each district, we perform a mean
aggregation over each band of the ee.FeatureCollection to get only one
feature for a whole year. This feature is matched with a yield value.

To demonstrate how to associate the Landsat collection with the crop yield
data, we provide a snippet with pseudocode of the idea.

This collection of associated values is an input of the prediction model.
Since it is essential to have different data for training and testing, we split the
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7. The model

input : years – a list of years
input : area – the area of a district
output: a feature collection – one feature per each year
let features be an empty list;
foreach y ∈ years do

cropland-features ← cropland features in area (use clustering);
agg-data ← mean aggregation over each band in cropland-features;
agg-data ← agg-data + correct yield for y and area;
features ← features ∪ agg-data;

end
return features

Algorithm 7.1: Creating a feature–yield collection

list of years into a training and testing one and build the association only for
those years which are present in the requested list.

7.4 Prediction
In GEE, the classification and regression algorithms are located in the package
ee.Classifier. There are fifteen different algorithms, some of them can be
used only as classifiers, others only as regressors and some of them can be
both.

Linear Regression is implemented under the name gmoLinearRegression
and SVM under the name svm. The default prediction mode for SVM is clas-
sification, but we can manually override this setting and switch to regression
by calling svm.setOutputMode("REGRESSION") method.

We initialise the Linear Regression with Lasso L1 regularisation and pa-
rameter α = 0.5. The gradient descent performs maximally two hundred
iterations, and the algorithm uses logistic loss function for the regularisation
instead of summing the coefficients.

SVM is of ν-SVR type with RBF kernel and the parameters set as follows:

• γ = 0.15,

• C = 100,

• ν = 0.5.

We create a unique prediction model for each of the districts. This model
is trained on a training feature collection and tested on a different collection.
The results achieved on the testing data are stored and returned for calcu-
lation of an overall model error. The only difference between the input to
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{
"type": "Feature",
"geometry": null,
"id": "0",
"properties": {

"blue": 27.763421292083713,
"classification": 1.7263883352279663,
"evi": 0.40007262735505134,
"green": 21.27206551410373,
"ndvi": 0.477380821225424,
"near_infrared": 50.645131938125566,
"red": 17.88535031847134,
"shortwave_infrared_1": 39.06096451319381,
"shortwave_infrared_2": 16.51410373066424,
"yield_value": 1.73

}
}

Listing 7.2: A classified feature

the classify() method and output is the property classification which
contains the predicted value.

An input training feature collection is always a district-specific and con-
tains one feature per each either training or testing year. Each feature consists
of:

• a yield value for the given year and district, taken from past crop yields
dataset,

• a mean band aggregation of all the features clustered as cropland in the
given district.

7.5 Parallelisation
To ensure the best performance possible, we try to postpone any call to the
GEE API to the last moment so that we do not have to wait for the results
to return.

The slowest part of the entire model is the prediction itself. Actually, it is
the only place where we call getInfo() method and send all the commands
to the server for evaluation. Once sent, the code execution is suspended on
the client and waits until the server returns a result. Only then the execution
is restored and proceeds to the next district. This process is repeated seventy-
one times.
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Figure 7.1: Sequential and parallel computations

As there are no dependencies between the prediction models, the whole
routine is easily parallelisable. All we need to do is running a new thread for
each of the districts. We run seventy-one threads on our local machine. Every
one sends the data to a server and waits for the response which it appends to
the results. It makes no computations and only sleeps for most of its runtime.

In Figure 7.1 we see how the two approaches differ. Both figures display the
same districts (the first and the last five) and the times when the computations
started and ended for them. The sequential computation for all seventy-one
districts took 36 min 51 s while the parallel computation lasted only 3 min 54 s
which is twelve times faster.

Listing 7.3 shows how the parallel algorithm is implemented. It uses
Python’s threading package. The func passed as a parameter to this func-
tion must take two arguments where the first argument is the district for which
to run the computation and second is a list to which the function appends
the results. There is no need for us to lock the access to the list because it is
a responsibility of Python’s list to implement the method as atomic.
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def iterate(self, func: Callable) -> List[Dict]:
return_value, threads = [], []
for region in self.regions.values():

t = threading.Thread(
target=func, args=(region, return_value)

)
t.start()
threads.append(t)

[t.join() for t in threads]
return return_value

Listing 7.3: Parallel iteration over the districts

Cereals Linear Regression SVM
k-means 0.3673 t ha−1 0.3394 t ha−1

LVQ 0.4255 t ha−1 0.2823 t ha−1

(a) Cereals
Potatoes Linear Regression SVM
k-means 5.5228 t ha−1 5.8331 t ha−1

LVQ 5.9314 t ha−1 5.7316 t ha−1

(b) Potatoes

Table 7.1: MAE scores

7.6 Measured model errors

In the previous sections and chapters, we introduced the models, the algo-
rithms and the procedures we perform in order to predict crop yield. In this
section, we discuss how well the models work.

A separate test is run for each combination of a clustering and prediction
algorithm. As we have two algorithms of each type, there are four tests in
total for each of the observed crops. A test uses the whole range of nineteen
years. This range is randomly split into training and testing years in a way
that fourteen years are used for training and five for testing. The final MAE
is computed from 355 predictions for the testing years over all the districts.

Table 7.1 presents the measured errors for each combination of clusterer
and predictor on both data sources (cereals and potatoes). The fact that
the best results are achieved by different models for the observed crops is
unexpected. For cereals the best results are achieved by LVQ–SVM with
MAE equal to 0.2823 t ha−1, and by k-means – Linear Regression for potatoes
with MAE 5.5228 t ha−1. We consider both these results as very good given
the simplicity of the models.
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Figure 7.2: The models comparison in the District of Senec

Cereals Linear Regression SVM
k-means 0.4676 t ha−1 0.4877 t ha−1

LVQ 0.5137 t ha−1 0.3348 t ha−1

(a) Cereals
Potatoes Linear Regression SVM
k-means 6.6981 t ha−1 6.8531 t ha−1

LVQ 7.0453 t ha−1 6.7526 t ha−1

(b) Potatoes

Table 7.2: RMSE scores

Figure 7.2 compares the models on the cereals dataset in the district of
Senec for the five testing years. It is clear that none of the models describes
the target values precisely, but they provide a satisfactory estimation which
differs from the target value only a little. Even though it may seem that the
k-means – Linear Regression combination estimates the target function better
than the other three it pretty well can be a case of this particular district and
LVQ–SVM outperforms it in all the other districts.

In Table 7.2 we provide RMSE as well in order to keep compatibility with
the related papers where they report the results using this loss function.

All in all, we consider the suggested prediction pipeline a success which
provides a prediction which error is well beyond the standard deviations (sec-
tion 2.3) of the observed crops.
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Chapter 8
Improvements

As we believe there is still some room for improvements left, we dedicate this
chapter to suggesting improvements that can make the prediction even more
precise. The first improvement to be mentioned has already been implemented
and has played a role in the model already presented. The other two are only
comments on which way the research could continue in the future, and the
last one is an experiment which we have implemented, and we will present the
achieved results.

8.1 EVI and NDVI computation

The first improvement which is already implemented concerns the vegetation
indices computation. Formerly, the indices were calculated from the integer
rounded values of the other bands which caused a notable error in the indices
values. It was mainly EVI where we registered the problem. The index’s
values should belong to the interval [−1, 1]. A great many of the values did
not fulfil this condition.

This issue was caused by the fact that for calculation we used integers
instead of the original float values. To fix this, we create a new composite
with enforced no integer conversion policy. We calculate the indices values on
this composite and then copy the EVI and NDVI values back to the composite
which has the band values converted to integers.

Figure 8.1 shows a series of EVI values when calculated from floats (blue)
and integers (orange). It is caused by using multiplicative coefficients in the
EVI equation (see subsection 2.1.2).

This issue does not affect NDVI index as it is only a normalised difference
of two arbitrary numbers of R with no other mathematical operations on it.

Implementing the better EVI and NDVI computation improved MAE by
more than 0.1 on k-means – Linear Regression model for cereals.
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Figure 8.1: EVI values comparison

8.2 Date range
Currently, we are taking the remote sensing data from the whole year into
account. This collection of images which starts on the 1st of January and
ends on the 31st of December is aggregated into a single image composite. By
doing this, we count in some values which are not that relevant and can affect
the resulting image in an unwanted way.

For the mentioned reason we see a potential improvement in choosing
a better date range to make the composite for. It should exclude the winter
months and probably the first spring and the last autumn month as well.
Still, this is only an assumption which would require some further research to
establish this range.

Just a quick test on cereals showed that narrowing the date range down
to 1st April – 31st October made the predictions less accurate. We achieved:

• MAE = 0.3367 for LVQ–SVM

• MAE = 0.32 for k-means – Linear Regression

8.3 Other vegetation indices
In this work we used only two vegetation indices; nonetheless, there are many
others which we have not tried. It could be worth calculating and using some
of them both in feature extraction and prediction process.
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Lu et al. [14] list some other vegetation indices which we have not men-
tioned yet:

• Soil-Adjusted Vegetation Index (SAVI)

• Green-Red Ratio Vegetation Index (GRVI)

• Generalised Difference Vegetation Index (GDVI)

Each of the indices has its strengths and weaknesses. For example, GRVI
is good at capturing seasonal differences in photosynthetic capacity, EVI per-
forms well in monitoring activity across an ecosystem and SAVI is beneficiary
if one needs to reduce the effect of soil brightness [14].

For this, it is vital to understand the indices and their capabilities to
achieve the best results possible.

8.4 Lowland–Highland clustering
The idea behind this improvement is to split the districts into two parts by
their geomorphology (if a district is situated on lowlands or highlands) and
build an individual clusterer for lowlands and highlands. We expect that this
helps the clusterer to recognise the patterns and similarities in the data better
as we believe that some values may overlap in various parts of the country.

We assign a land type to a district according to its region by the region –
land type mapping specified in Listing 8.1.

REGION_LAND_MAPPING = {
"Bratislavský": Land.Lowland,
"Trnavský": Land.Lowland,
"Nitriansky": Land.Lowland,
"Trenčiansky": Land.Highland,
"Žilinský": Land.Highland,
"Banskobystrický": Land.Highland,
"Prešovský": Land.Highland,
"Košický": Land.Lowland,

}

Listing 8.1: Region – land type mapping

For this improvement, we also created a new dataset used for training the
clustering models. It contains information on the land type of training points.

We run the experiments here in the same way as in the previous chapter.
We display MAEs of these tests in Table 8.1. By comparing these results with
the original, we see that this improvement is no breakthrough in our models
because we recorded improvement only in half of the models tested. To be
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Cereals Linear Regression SVM
k-means 0.5136 t ha−1 0.2836 t ha−1

LVQ 0.4076 t ha−1 0.3274 t ha−1

(a) Cereals
Potatoes Linear Regression SVM
k-means 6.69 t ha−1 5.7871 t ha−1

LVQ 5.3114 t ha−1 5.7572 t ha−1

(b) Potatoes

Table 8.1: Improved model’s MAE scores

exact, the two worse models from the baseline improved their MAEs and vice
versa.

What we consider a notable improvement is the one of LVQ – Linear
Regression which improved from the original 5.9314 t ha−1 to 5.3114 t ha−1 on
the potatoes dataset.
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Chapter 9
Predictions for 2019

In this chapter, we discuss and analyse the predictions for 2019. For doing
this, we use the two best models based on their MAE.

All parts (east, middle and west) of the Slovak Republic have at least one
representative district amongst the presented subset. We also keep in mind
the geomorphological variance of the selected districts.

To present predictions on a district level, we need to define the cropland
areas of the selected districts and their shares in the cereals and potatoes to-
tal areas. Of the overall 1 407 729 ha cropland area in the Slovak Republic the
selected districts apportion the areas as presented in Table 9.1 [29]. Under
the assumption that the potato and cereal croplands are uniformly distributed
amongst the districts, we calculate how much area these crops cover in a dis-
trict. It will either confirm or reject a hypothesis about the adequacy of the
predictions.

In 2017, potatoes were cultivated on an area of 7450 ha and for cereals it
was 717 471 ha [30]. If a cropland area of a district d is Sd, we calculate potato
area by the formula:

Sd-potatoes = Sd

1 407 729
7450 (9.1)

Now we use the areas described above to calculate the total yields in each
of the selected districts. The results are presented in Table 9.2. Firstly, we

District Total area Cereals area Potato area
Komárno 75 975 ha 38 722 ha 402 ha
Michalovce 48 154 ha 24 542 ha 255 ha
Poprad 11 460 ha 5841 ha 61 ha
Trnava 48 278 ha 24 606 ha 255 ha
Žilina 10 231 ha 5214 ha 54 ha

Table 9.1: Cropland areas of the selected districts
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Cereals Potatoes
Komárno 4.3371 t ha−1 16.9471 t ha−1

Michalovce 3.5754 t ha−1 15.4930 t ha−1

Poprad 3.1427 t ha−1 22.9324 t ha−1

Trnava 4.8515 t ha−1 24.7483 t ha−1

Žilina 2.7078 t ha−1 25.0665 t ha−1

(a) Per hectare yield predictions
Cereals Potatoes

Komárno 167 941 t 6813 t
Michalovce 87 747 t 3950 t
Poprad 18 357 t 1399 t
Trnava 119 376 t 6311 t
Žilina 14 118 t 1354 t

(b) Total yield prediction

Table 9.2: 2019 predictions for the selected districts

show the predicted t ha−1 values, and then we multiply these values by the
area and display the outcomes in the second table.

In order to provide a context to the predicted hectare yields, we plot
time-series of the yields during the last ten years. These graphs enable us to
conclude if the predicted yield is an average, exceptionally high or low. The
graphs show the time series for both the crops for the two districts with the
highest yields.

The cereals predictions are rather pessimistic and lower than they were
in the last years. It is better for potatoes as the prediction for Žilina is the
highest of all the yields achieved in the last ten years. Trnava was assigned an
average yield for this year. None of the values shows outlaying which would
indicate some noteworthy error in the prediction pipeline or in the methodic
approach we applied in the process.

The cereal yields hardly make anyone wondering as the results fulfil our
expectations and confirm that the predictions are realistic. That is because
the lowland districts (Komárno and Trnava) achieved higher hectare yields
and have significantly higher total yields which are caused by vaster cropland
areas. The smaller hectare yields of the mountainous districts (Poprad and
Žilina) only supports the idea of these predictions to be realistic.

What we consider unusual are the potato yields for the already mentioned
highland districts. The predictions are equal to 22.9324 t ha−1 for the Dis-
trict of Poprad and 25.0665 t ha−1 for the District of Žilina which are higher
than the lowland estimations. This peculiarity can be caused by the recent
changes in the climate which cause higher summer temperatures and consecu-
tive droughts in the south of the Slovak Republic which can cause the potatoes
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Figure 9.1: Cereals 2007–2019 time-series
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Figure 9.2: Potatoes 2007–2019 time-series

shortage and on the other hand excellent conditions for potatoes to grow in
the north.

However, we have to emphasise the fact that the predictions were created
by analysing only the first four months of the year which are not that informa-
tive as the months only to come. It would be interesting to run the prediction
models in the middle of summer when the crops are in their vegetation period.
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Chapter 10
Project environment

Our work comes with an implementation of the presented prediction pipeline.
To ease the environment installation process and the usage of the software we
guide a user through the process in this chapter.

The source code of our project is available either on GitHub (https://
github.com/ondrejpudis/crop-yield-predictor) or on the enclosed CD.

10.1 Installation
Because each of us may use a different computer, operating system and con-
figuration we decided to use the Docker technology and create an image based
on python:3.7-slim-stretch which covers all the necessary dependencies
and the only step a user is required to do is build the image. Another ad-
vantage of this approach is that no dependencies are installed into the user’s
computer; everything is isolated and virtualised. The full definition of our
image is shown in Listing 10.1.

The user is required to have a functional installation of Docker on their
machine and a copy of our project directory. If these requirements are satisfied
the user can run the build command:

docker build -t yield-predictor .

It will download all the required layers and ensemble an image which will
be tagged as yield-predictor.

After a successful build the user can create and run a new container:

docker run -i -t --name predictor yield-predictor bash

This command will create a new container named predictor and log the
user into the terminal. Here the user has to authenticate themselves against
the GEE service. It is done by running:
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10. Project environment

FROM python:3.7-slim-stretch

WORKDIR /app

ENV PACKAGE_VERSION=1.0

RUN pip install --upgrade pip && \
apt-get update && \
apt-get -y install openssl libssl-dev gcc

COPY requirements.txt /app/

RUN pip install --no-cache-dir -r requirements.txt

COPY . /app/

RUN pip install -e .

Listing 10.1: Docker image configuration

earthengine authenticate

Now the user can use the software without restrictions. The available
commands and their parameters are listed in section 10.2.

After the user exits the container it is stopped, however still exists and
can be restarted:

docker start predictor

and stopped:

docker stop predictor

For logging into the container’s bash the user can use:

docker exec -i -t predictor bash

10.2 Command-line interface
There are two commands available in our project. During the build stage, they
are installed and registered within the operating system. We can use them
as regular shell commands. Running the commands from elsewhere than
the /app folder will fail with FileNotFoundError. This happens because we
use relative paths like Path("datasets/crop_data/cereals.csv") in our
project.
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10.2. Command-line interface

test-predict command trains and tests the given combination of models
and returns an overall MAE. The options for this command are:

• -c clustering algorithm (either kmeans or lvq)

• -p prediction algorithm (either lr for Linear Regression or svm)

• --start a year to start in, must be higher or equal to 1999 (defaults to
1999)

• --end a year to end in, must be lower or equal to 2017 (defaults to 2017)

• --rmse show RMSE score along with MAE

predict command trains the given combination of models on all the pre-
vious years, predicts a yield for a given year and returns a dictionary of the
district – predicted yield pairs. The options for the command are:

• -c clustering algorithm (either kmeans or lvq)

• -p prediction algorithm (either lr for Linear Regression or svm)

• --year a year to make a prediction for, must be lower or equal to 2019
(defaults to 2019)

• --district a district name to make a prediction for, if None the pre-
diction is made for all the districts (defaults to None)

The following options are available on both the commands:

• --crop crop to run the command for (either cereals or potatoes, de-
faults to cereals)

• --split use lowland–highland split in the computation

• --force-server forces a computation to run on a server even if there
is a result of the same computation already stored offline
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Conclusion

In this work, we explored the remote sensing data and its contribution to
the environmental science. We showed that there are indices like NDVI and
EVI which help us identify the vegetation level in the data. Moreover, these
indices are capable of separating the green areas like croplands or woods from
the non-cropland once like paved areas in cities. We also enumerated various
datasets used in this work and found out that the Statistical Office and the
Geodetic Institute provide many of them with a detailed scope, in high quality
and for free.

Throughout the work, we were using Google’s geospatial platform Earth
Engine which provided us with access to the Landsat raw remote sensing
collection. Both the Python API client and the web-based interface were
a great help; even though, it was not simple to get used to the lazy computation
client-server paradigm.

To achieve the goals we had to combine information from more incom-
patible sources. It, in the majority of cases, required a preprocessing, like
a conversion from a general XML format into GeoJSON or from Microsoft
Excel files into a CSV file which is well computer readable.

Our work demonstrated a simple prediction pipeline which extracts desired
knowledge from the remote sensing data, associates this data with another
information to create an input for a mathematical prediction model. Even
though no complex neural networks were used in this work, the best-achieved
MAEs of our predictions are 0.2823 t ha−1 for cereals and 5.3114 t ha−1 for
potatoes.

Besides the results of the base pipeline, we suggested a few more improve-
ments which include better date range choice of processed satellite imagery,
usage of other vegetation indices or another data preprocessing methods like
lowland–highland split.

The lowland–highland preprocessing was implemented and tested, and it
was successful on potatoes dataset where the LVQ – Linear Regression beat the
k-means – Linear Regression model by improving MAE value by 0.2114 t ha−1.
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Conclusion

The other suggestions require additional research which is beyond the scope
of this work.

Finally, we took the best models for both potatoes and cereals and pre-
dicted the yields for 2019 which seem realistic to us, despite the fact they were
made only by analysing the first four months of the year. For example, in the
District of Trnava, we predict the yield of potatoes to 24.75 t ha−1 which is
nothing exceptional for this district if we have a look at the values from the
last ten years.
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Appendix A
Glossary

Docker A containering platform to create isolated applications which are not
dependant on the local machine architecture.

GeoJSON A format for encoding geographical data. The official specifica-
tion is available at https://tools.ietf.org/html/rfc7946.

Landsat A system of satellites maintained by a joint programme of NASA
and USGS [12].

Python Package Index A Python language software repository.
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Appendix B
Acronyms

API Application Programming Interface.

CSV Comma Separated Values.

ESA European Space Agency.

Eurostat European Statistical Office.

EVI Enhanced Vegetation Index.

GDB Geodatabase.

GEE Google Earth Engine.

GRVI Green-Red Ratio Vegetation Index.

IDE Integrated Development Environment.

JSON JavaScript Object Notation.

LVQ Learning Vector Quantization.

MAE Mean Absolute Error.

MODIS Moderate Resolution Imaging Spectroradiometer.

MSS Multi Spectral Scanner.

NASA National Aeronautics and Space Administration.

NDVI Normalised Difference Vegetation Index.
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Acronyms

RBF Radial Basis Function.

RMSE Root Mean Squared Error.

SAVI Soil-Adjusted Vegetation Index.

SVM Support Vector Machine.

UN United Nations.

USGS United States Geological Survey.

XML Extensible Markup Language.
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C. Workflow diagram

Workflow diagram
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Appendix D
Landsat versions
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D
.

Landsat
versions

Landsat version Operational years Spectral bands Thermal bands Resolution

Landsat I-V MSS

1972-1978
1975-1982
1978-1983
1982-1993
1984-2012

green, red, near infrared 1,
near infrared 2 - 60 m

30 m

Landsat IV-V TM 1982-1993
1984-2012

blue, green, red,
near infrared,
shortwave infrared

thermal infrared 30 m

Landsat 6 never reached the orbit - - -

Landsat 7 1999-present

blue, green, red,
near infrared,
shortwave infrared,
panchromatic

low-gain thermal infrared
high-gain thermal infrared

30 m
30 m
30 m
15 m

Landsat 8 2013-present

coastal aerosol,
blue, green, red,
near infrared,
shortwave infrared,
panchromatic
cirrus

thermal infrared

30 m
30 m
30 m
30 m
15 m
15 m

Table D.1: Landsat versions
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Appendix E
XML to GeoJSON conversion

import csv
import json
from pathlib import Path
import sys

from lxml import etree

csv.field_size_limit(sys.maxsize)

with open(
Path("region_borders_parsed.csv"), "w"

) as destination:
with open(Path("region_borders.csv"), "r") as source:

source_dict = csv.DictReader(source)
destination_dict = csv.DictWriter(

destination, fieldnames=source_dict.fieldnames
)
destination_dict.writeheader()
for r in source_dict:

coordinates = (
etree.fromstring(r["geometry"])
.xpath(

(
"/Polygon/outerBoundaryIs/"
"LinearRing/coordinates"

)
)[0]
.text

)
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E. XML to GeoJSON conversion

r["geometry"] = json.dumps(
{

"type": "Polygon",
"coordinates": [

list(
reversed(

[
[

float(c)
for c in pair.split(

","
)

]
for pair in coordinates
.split(

" "
)

]
)

)
],

}
)
destination_dict.writerow(r)
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Appendix F
Contents of enclosed CD

Dockerfile..........................definition of project’s Docker image
README.md ............. a project’s description and installation guidelines
requirements.in....................a list of requirements of our project
requirements.txt..compiled requirements, including their dependencies
setup.py..................................Python projec installation file
datasets....................................datasets used in the project

crop_data............................crop yields data in CSV format
geo_data.........geographical data (district borders, training points)

javascript ................. scripts used for creating GEE visualisations
json.................stored dumps of results returned from GEE servers
jupyter.............................notebooks with graph visualisations

pdf...........................exported PDFs from Jupyter notebooks
src...........................................source codes of the project
text............................................ the thesis text directory

source..................................source files of the thesis text
thesis.pdf.................................the thesis in PDF format
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