
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 6, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: A State Management in Multi-client Single Page Web Applications

 Student: Tomáš Bydžovský

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

Modern web applications replaced most of the desktop software. This meant more requirements on
dynamic communication with a server and quality of user experience. Users can also access an application
from multiple clients, and they expect to have smooth experience.
A goal of this thesis is to compare state management approaches in such a scenario and demonstrate them
on a google-drawings-like application.

•
 Review the state management techniques and approaches.

•
 Propose an architecture of a google-drawings-like designer using Redux and SignalR.

•
 Create a proof-of-concept open-source implementation of the proposed designer.

References

Will be provided by the supervisor.

Bachelor’s thesis

A State Management in Multi-client Single
Page Web Applications

Tomáš Bydžovský

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

May 15, 2019

Acknowledgements

I would like to thank my supervisor Ing. Marek Skotnica for his guidance and
valuable advice.

I would also like to acknowledge my colleagues, who also worked on the
project, of which this thesis is part.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 15, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Tomáš Bydžovský. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bydžovský, Tomáš. A State Management in Multi-client Single Page Web
Applications. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2019.

Abstrakt

Tato práce se zabývá správou stavu webových Single Page Aplikaćı (SPA) a
jeho synchronizaćı na v́ıce klientech.

V posledńıch letech rostoućı složitost webových aplikaćı vedla k vytvořeńı
nových systémů a návrhových vzor̊u, které se zabývaj́ı správou stavu. Přesto
nejsou koncepty správy stavu př́ılǐs známé a nab́ıdka existuj́ıćıch řešeńı může
být nepřehledná.

Tato práce popisuje koncepty správy stavu a synchronizace dat v reálném
čase. Součást́ı práce je analýza současných řešeńı a technik, zejména návrhového
vzoru Redux a jeho implementace v podobě knihovny NgRx a také protokolu
WebSocket a jeho využit́ı v knihovně SignalR. V této práci je navržen design
systému pro správu stavu webové aplikace se synchronizaćı v reálném čase
s využit́ım návrhového vzoru Redux a knihovny SignalR. Jedná se o aplikaci
podobnou aplikaci Google Drawings. Aby bylo možné demonstrovat nové kon-
cepty a možnosti takového systému, byla podle navrženého designu vytvořena
ukázková implementace ve formě prototypu.

Kĺıčová slova vývoj webových aplikaćı, správa stavu, synchronizace v reálném
čase, Redux, NgRx, Angular, SignalR, BaaS, TypeScript

vii

Abstract

The subject of this thesis is state management of web Single Page Applications
(SPA) and its synchronization on multiple clients.

In recent years the increasing complexity of modern web applications lead
to the creation of new systems and design patterns, that deals with state
management. However, concepts of state management are not yet widely
known, and a wide range of existing solutions can be confusing.

This thesis describes the concepts of state management and real-time data
synchronization. The thesis contains a review of current solutions and tech-
niques. The main focus is Redux design pattern with its implementation
NgRx, as well as WebSocket protocol and its use in the SignalR library. In
this thesis design of a state management system with real-time synchronization
for web application similar to Google Drawings using Redux design pattern
and SignalR library is proposed. To demonstrate new concepts and capability
of such system proof of concept implementation based on the proposed design
was created.

Keywords web applications development, state management, real-time syn-
chronization, Redux, NgRx, Angular, SignalR, Baas, TypeScript

viii

Contents

Introduction 1
Motivation . 1
Goal and the Objectives . 2
State of the Art . 2

1 Current state of State Management 3
1.1 State Management Introduction 3
1.2 State Management Patterns . 5
1.3 Real-Time Communication Techniques 15
1.4 Review of the State Management Solutions 19
1.5 Review of Real-Time Communication Solutions 21
1.6 Review Conclusion . 22

2 Design and Architecture 23
2.1 Design Limitations . 23
2.2 Client Architecture . 23
2.3 Server Architecture . 27

3 Proof of Concept Implementation 31
3.1 Application Description . 31
3.2 Client-side . 31
3.3 Server-side . 36
3.4 Usage . 37
3.5 Testing . 37
3.6 Future Development Recommendation 38

Conclusion 41

Bibliography 43

ix

A Acronyms 49

B Contents of enclosed CD 51

x

List of Figures

1.1 Web development growing complexity [11] 4
1.2 Rising popularity of state management [12] 4
1.3 MVC design pattern [15] . 6
1.4 MVC design pattern with a complex data flow [18] 7
1.5 MVC variations [17] . 8
1.6 Flux design pattern [1] . 9
1.7 Flux design pattern in detail [19] 10
1.8 Flux design pattern with a complex data flow [18] 10
1.9 Redux design pattern [22] . 11
1.10 Redux design pattern with middleware [22] 12
1.11 Akita design pattern [6] . 13
1.12 MobX design pattern [27] . 14
1.13 VueX design pattern [5] . 16
1.14 High level comparison of Short/Long polling and SSE [30] 17
1.15 BaaS – architecture and essential components [34] 19

2.1 UML package diagram of client-side 24
2.2 UML diagram of the data model [46] 25
2.3 UML component diagram of client-side 26
2.4 UML class diagram of client-side 28
2.5 UML sequence diagram of client-side state change caused by action

dispatched from UI component . 29
2.6 UML sequence diagram of synchronization side effects caused by

action dispatched from UI component 29
2.7 UML sequence diagram of client-side state change caused by action

received from server . 30
2.8 Client-Server bidirectional communication 30
2.9 Servers role as action hub . 30

3.1 Purpose of Angular services . 33

xi

3.2 Communication diagram showing state change cycle 35
3.3 Redux DevTools console in action 37
3.4 Synchronization between two clients opened in separate windows,

part 1 . 38
3.5 Synchronization between two clients opened in separate windows,

part 2 . 38

xii

Introduction

Motivation

Nowadays almost every web site is no longer just a collection of static pages
containing only text, but thanks to new web technologies are fully interactive
and filled with animations and other live content. Modern web sites can
provide the same functionality as typical desktop applications, e.g., email
client, spreadsheet editor, video player. The more an application can do, the
more complex it is, the more data it needs. Therefore it is usually more
challenging to manage all that data and keep them synchronized on multiple
devices.

Conclusions of the thesis will provide enough information, for anyone inter-
ested, about how to choose a solution for their project. So mostly developers,
especially front-end developers, are going to benefit from this. Besides them,
users of their application can also benefit from it, because if the app uses some
verified solution, it is less likely to be buggy.

State management as part of web software development is relatively new
and may play a significant role in the future. There are very few comprehen-
sive sources of this topic. Because of the reasons above and because of the
increasing importance of state management I have chosen this topic.

In the first part, I will describe techniques of state management and state
synchronization in detail. In the next part, I will design a solution to state
management and synchronization of the web application. The last part deals
with the implementation of the solution proposed in the previous part.

This thesis builds on the previous semestral project and is part of the
larger project. The project’s goal is to create an open-source web application
that allows the user to generate smart contracts.

1

Introduction

Goal and the Objectives

A goal of this thesis is to review state management and real-time state synchro-
nization approaches in modern web applications development and demonstrate
them on a google-drawings-like application.

The first objective involves reviewing and comparing current state man-
agement techniques and approaches.

The objective of the second part is to propose an architecture of a google-
drawings-like designer using Redux design pattern and SignalR library.

The objective of the final part is to create a proof-of-concept open-source
implementation of the proposed designer.

State of the Art

MVC is one of the oldest patterns that deal with the development of GUI
applications and state management. It was proposed in the 1970s. Many
applications still use MVCs variants.

Recently, new patterns and frameworks emerged. For example, the Flux
[1] that was developed by Facebook, because MVC does not scale well to large
application codebase. Flux is the application architecture used for building
client-side web applications. In contrast to MVC, it uses a unidirectional data
flow.

Another new pattern inspired by the Flux is Redux. Primary goals of
Redux [2] are unidirectional data flow and predictability. It helps developers
to write applications that behave consistently, run in different environments,
and are easy to test. It also allows for time-travel debugging.

Moreover, there are other state management patterns. Meiosis is a simple
state management design pattern based on the concept of streams. [3] MobX
is functional reactive style system. [4] VueX and Akita heavily inspired by
Redux pattern. [5, 6]

WebSockets [7] is a new protocol that enables two-way communication
between client and server. Using the HTTP protocol, that was not possible
before. The only solution was to use workarounds. Now we can use it to
real-time data synchronization. There are several server/client-side libraries
such as Socket.IO and SignalR that use WebSockets. [8, 9]

Backend-as-a-Service (BaaS), sometimes also called Mobile Backend-as-
a-service (MBaaS) is a quite recent development in cloud computing. BaaS
[10] provides developers with backend cloud storage and processing for their
web and mobile applications. It also offers common features such as user
management, push notifications and social networking integration.

2

Chapter 1
Current state of State

Management

This chapter deals with the theoretical side of the problem. It contains an
introduction to the state management, definitions of current design patterns
that tries to solve it, review of the solutions, which use those patterns, list of
technologies, that can be used to enable real-time synchronization and review
of their implementations.

1.1 State Management Introduction

Modern web sites evolved from simple web pages to fully functional programs
– web applications. Web application could now process user inputs, change
applications looks and composition and also communicate with server beyond
basic HTTP requests. With this evolution, a new need to manage data, state
of the application, has arisen.

In recent years many new web frameworks have been developed, and many
of them adopted a new concept of a web application - Single Page Application.
Single Page Applications use only one HTML page. Instead of requesting and
loading the new page they only re-render current page based on users input,
downloading new data and content only when needed.

These new web application composed of many components needed some
system to manage states of the components, communicate changes between
them and synchronize states across multiple clients.

The first option was obvious, to adapt patterns used in desktop application
development, mainly those based on MVC. That worked for smaller applica-
tion but proved to be difficult to scale in large applications like Facebook.

State management became an issue. There is an infamous incident involv-
ing bug in message notifications on Facebook, where Facebook would show
unread messages notification, even though all messages would be marked as

3

1. Current state of State Management

Figure 1.1: Web development growing complexity [11]
Number of usable modules in popular package managers from

www.modulecounts.com.

(a) Redux (b) NgRx

Figure 1.2: Rising popularity of state management [12]
Number of downloads of ngrx and redux packages, two of the state management
solutions on npm package manager.

read. Variation of this bug would appear again and again. That lead Face-
book to focus on state management and create Flux pattern. Flux pattern is
the first modern technique of state management.

Since then state management became a significant part of web application
development, and many more solutions and techniques appeared.

Based on [13], there are so many options now that developers may find
it difficult to choose the right solution for their project from overwhelming

4

www.modulecounts.com

1.2. State Management Patterns

choice.

1.1.1 Basic Definitions

State of an application is set of all the data in the application, not just a
data model of an application. There are many types of state, server state,
persistent state, URL and route state, client state, local UI state. Server state
is stored on the server. Persistent state is part of server state, that is stored
in some kind of persistent database. The URL and router state represents a
loaded page and some parameters (e.g., index in a list of elements). Client
state includes all data on the client. That can include data model, data not
yet persisted to the server, server responses, cached data, and UI state. Local
UI state is the state of an individual UI component, for example, the color
of a text field checked checkboxes and so on. It is, of course, a subset of the
client state. [14, 2]

State synchronization means keeping client state and server state synchro-
nized, and in case of two or more clients using shared data, also keep all their
state in sync. [14]

However, mutating state and using asynchronous actions simultaneously
can be a problem. [2]

”As the requirements for JavaScript single-page applications have become
increasingly complicated, our code must manage more state than ever before.
Managing this ever-changing state is hard. If a model can update another
model, then a view can update a model, which updates another model, and
this, in turn, might cause another view to update. At some point, you no
longer understand what happens in your app as you have lost control over
the when, why, and how of its state. When a system is opaque and non-
deterministic, it’s hard to reproduce bugs or add new features.” [2]

1.2 State Management Patterns

1.2.1 MVC pattern

Model-View-Controller and its variations like Model-View-Presenter and Model-
View-ViewModel are well-known design patterns used for the development of
applications with user interfaces for a long time. Their main goal is separate
concerns of these parts. [15]

MVC has 3 main components:

• Model

• View

• Controller [16]

5

1. Current state of State Management

The model manages applications data. It holds the data (applications
state) and business logic. An application can use more than one model, and
the model can be dependent on other models. Change in one model triggers
update in models dependent on this one. Model notifies views or controllers
(it depends on implementation) subscribed to it about an update. The model
provides an interface for updating model, that controller can use. [15, 17]

The view is composed of UI elements, which displays models data. Views
are updated after state update in the model, which they are displaying. Views
can be notified about the update by model, when using observer pattern, or
directly by the controller. Applications usually have many views.

The controller handles user input, contains application logic, manipulates
the model and can update the view. The controller receives input and process
it. Based on the input it would update the model and invoke view update.
There is a one-to-many relation between controller and view.

The main goal of MVC is a separation of concern, to separate presenta-
tion from model and view from the controller. That improves modularity,
reusability, and testability of a system. [16]

Figure 1.3: MVC design pattern [15]

MVC has few variations, most notably Model-View-Presenter (MVP) and
Model-View-ViewModel (MVVM). [16]

MVP has 3 main components:

• Model

• View

• Presenter

The model is the same as in the MVC. The view is also similar, but here it
is handling user input and invoking action in the presenter. Presenter contains
application logic, controls the view and manipulates with the model. There

6

1.2. State Management Patterns

Figure 1.4: MVC design pattern with a complex data flow [18]

is one to one mapping between view and the presenter. The view can have
a direct connection to the model, but there can also be a so-called passive
view, that is not aware of the model, and all data transfer is controlled by the
presenter. [16, 17]

MVVM has 3 main components:

• Model

• View

• ViewModel

The model is again the same as in the MVC. View handles user input and
display data. The view is not directly aware of the model. ViewModel is
a combination of Model and Presenter. It contains application logic as well
as data. View and ViewModel are connected by bidirectional data binding.
Many views can be bind to one ViewModel. [16, 17]

1.2.2 Flux

Flux is a new design pattern/application architecture. Flux was developed
to improve the scalability of huge web-based applications. Flux is enforcing
unidirectional data flow, which prevents bugs and also simplifies debugging
and testing. [1, 18]

7

1. Current state of State Management

Figure 1.5: MVC variations [17]

In Flux there are 4 basic roles:

• Actions

• Dispatcher

• Stores

• Views [18]

Actions are simple objects, which contain information on how should the
state be updated. Usually, actions consist of type and some payload. Type
declares what should be done, for example: ”ADD NEW USER” or
”DELETE ITEM.” Type is a string value. The payload contains some addi-
tional information, like ID’s, when it is needed. The payload can be any value
or object. [1, 19]

Action = {
type; // mandatory parameter
payload; // optional parameter

}

Listing 1: Action definition

The dispatcher serves as a central hub for sending data. Stores can reg-
ister its callbacks function with it. When the dispatcher receives actions, it
processes them by invoking callbacks of all of the stores registered with it.
When invoking a registered function, the dispatcher will pass the action to it,
propagating information to the stores. There is an only single dispatcher. [1,
19]

Stores contain applications data and logic. The store is a source of truth.
All views can draw data from the store. An application can use multiple

8

1.2. State Management Patterns

different stores simultaneously, every store managing piece of application state.
Stores register their function callbacks with the dispatcher. That means that a
single store can register more than one function and that more than one stores
can react to single dispatched action. These callbacks functions are used to
manipulate the state. The state can be either mutable or immutable. After
changing the state, store notifies all its subscribed views about the update.
[1, 19]

Views are implemented as controller-views. Views subscribe to stores and
listen for the state change in the stores, to which they are subscribed. When
notified by a store, the view gets a new state and re-render itself accordingly.
Based on the user input, they dispatch new actions to the dispatcher. [1, 19]

Figure 1.6: Flux design pattern [1]

Storing application state in store enables time travel debugging. That
means that when the store is updating the state, it also saves the previous
version of the state somewhere else. Then during the debugging, we can
browse the history of all states.

Besides primary roles, there can also be Action Creators. Action Creators
are helper functions, and they provide an abstraction for creating actions.
Instead of creating actions manually in view, the view can call Action Creator,
which returns created the corresponding action. [18]

Flux was designed with asynchronous calls in mind. Therefore Action
Creators can make those calls and based on the response create appropriate
action.

1.2.3 Redux

Redux is a design pattern/framework. Redux was heavily inspired by Flux,
and they share many similarities, especially enforcing unidirectional data flow.
That has the same advantages as in Flux. The main goal of Redux is to be
predictable, which means that it behaves consistently, and is easily testable.
[20, 2]

9

1. Current state of State Management

Figure 1.7: Flux design pattern in detail [19]

Figure 1.8: Flux design pattern with a complex data flow [18]

In Redux there are these basic roles:

• Actions

• Reducers

• Store

• views [21]

Actions are the same as in Flux. Reducers are pure functions. Pure
functions are functions that use only input parameters. A pure function takes

10

1.2. State Management Patterns

inputs and based only on them outputs result value. That means that they
do not have any side effects. Reducer in Redux takes two arguments, current
state, and action, from which reducer creates a new state. [21]

function reducer (currentState, action) => newState

Listing 2: Reducer function definition

Reducers are passed to the store, during store creation. There can be
multiple reducers, which is common practice, but in the end, they are usually
combined into a single reducer. [21]

The store has a similar function as in Flux. It contains application state,
but logic was moved to reducers. There can only be a single store, a single
source of truth. It contains the state of the entire application. This global state
is usually implemented as the state tree, states of all components arranged
some tree structure. The state always has to be immutable. In Redux, the
store receives action, which is then processed by the reducer. Reducer is being
passed current state and action. New state generated by reducer is saved in
the store and subscribed components are notified about the update. [21, 20]

View, same as in Flux, render itself accordingly to the current state in
store and dispatches actions to the store.

Figure 1.9: Redux design pattern [22]

Again as with the Flux, having state stored in the stores enables time
travel debugging.

Besides primary roles, there can also be Action Creators. However, in this
case, they are used solely for actions creation an initialization. That is because
in Redux there is a concept of middleware.

Middleware is a function, that is applied to every action dispatched to the
store. Because reducers are pure functions, they cannot have any side effect.

11

1. Current state of State Management

That is why Redux uses middleware, it does not change state, but it enables to
action to have side effects. That is why in some implementations middleware
is called side effect or just effects. Middleware is often applied in the store.
[20, 2]

The store can have multiple middleware functions, each applied to every
action. Middleware is used to make asynchronous API calls or to provide
advanced logging options and so on. These side effects, for example, API
calls, can result in another action being created based on results of the API
calls.

Figure 1.10: Redux design pattern with middleware [22]

1.2.4 Meiosis

Meiosis is a simple state management design pattern based on the concept
of streams — stream of updates and stream of states. To manipulate with
streams, it uses mainly JavaScript functions map and scan. [3]

1.2.5 Akita

Akita design pattern is based on Observables (Observable pattern). It draws
inspiration from existing patterns, especially Flux and Redux. It takes the
idea of multiple stores from Flux and the immutable updates from Redux and
combines them with the idea of streaming data to create so-called Observable
Data Store model. [6]

Akita is based on object-oriented design principles instead of functional
programming typical for javascript applications. Its structure provides a fixed
pattern that is hard to misuse. [23]

12

1.2. State Management Patterns

Figure 1.11: Akita design pattern [6]

Akita uses these main concepts:

• Model

• Store

• Query

• Service [24, 6]

The model represents data in the application. A store is an object which
stores model. Store manipulates with the model using Data Manipulation
Language methods (add, delete, update). The query is similar to a database
query. Responsibility of a query is to query store and other queries. Query
provides a variety of select methods to select a slice from the store. The query
can return results as observables (reactive query), as well as simple objects
(synchronize query). [6, 24]

Components should not interact with stores directly. They should use
queries to get updates and use services to manipulate with the stores. Also,
synchronous logic and server calls should be encapsulated in services and data
services. [6, 23]

1.2.6 MobX

MobX is a simple, scalable state management solution, based on functional
reactive programming. As with other patterns, MobX is heavily using Observ-
ables. MobX follows a simple, yet effective philosophy; ”Anything that can

13

1. Current state of State Management

be derived from the application state, should be derived. Automatically.” [4]
That can include UI state, data serialization or server communication. That
makes it impossible to produce an inconsistent state. [25, 4]

Many state management solutions try to restrict and control ways how
the state can be modified, usually by making state immutable. However, that
comes with its disadvantage: references to parts of a state can no longer work
properly, which means, that it is harder to use data binding for example.[25]
Core concept of the MobX:

• State

• Derivations (Computed values)

• Reactions

• Actions [26, 4]

Figure 1.12: MobX design pattern [27]

The state contains data. Derivations are any data or values, that can be
computed automatically from the current state. Derivations can be simple as
one computed value (e.g., sum) or more complex, like rendered user interface,
or serialized data. They are implemented as functions, that takes the state
as input and returns computed values as output. Reactions are similar to
derivations, but they do not produce any value. They are more like side effects.
Derivations are performed automatically after state changes to perform some
task. Usually, this is I/O related, like server calls. Actions are all the things
that change the state. Actions and only actions should be able to change
state. Every change of state is synchronously processed by the derivations
and reactions. [25, 26]

1.2.7 VueX

VueX is state management pattern. It is inspired by the Flux and by the
Redux. It uses a single store as a single source of truth. However, a state inside

14

1.3. Real-Time Communication Techniques

the store is mutable. The store is reactive, which means it uses observables.
[5, 28]

Core concept of the VueX:

• Getters

• State

• Mutations

• Actions [5]

Getters are like computed properties of the state. They are similar to
derivations from MobX and Queries from Akita because they can get a slice
of state or some data derived from the current state. The state is a state of
the entire application and its stored in the store.

Mutations are ways of mutating state. The mutation is composed of string
type and handler like events. A handler function is responsible for changing
state. Handlers cannot be called directly. Handlers are registered in the store
to their respective mutations. A handler is invoked by committing mutation
to the store. Mutations must be synchronous.

Actions are similar to mutations, their handlers are registered in the store,
but instead of mutating state, the execute asynchronous calls and then com-
mits mutations to the store. Actions are dispatched from the components. [5,
28]

1.3 Real-Time Communication Techniques

1.3.1 AJAX

AJAX stands for Asynchronous JavaScript And XML. It is the use of the
JavaScript and XMLHttpRequest object to communicate with servers. It
can send and receive information in various formats, including JSON, XML,
HTML, and text files. AJAX is asynchronous, which means it can communi-
cate with the server and exchange data in the background without interfering
with the user interface. After receiving data back, it updates the page without
having to refresh it. That makes the application faster and more responsive
to user actions. [29]

AJAX consist of a group of technologies, such as javascript, HTTP, CSS,
XML, JSON, and HTML, working together. AJAX is generally used to get
data from a server (usually by consuming REST API resources) and to push
data to a server.

AJAX is a form of one-way connection, from client to server. It uses HTTP
protocol, which is based on request-response schema, to send data. There are
a few ways to abuse AJAX to emulate two-way connection.

15

1. Current state of State Management

Figure 1.13: VueX design pattern [5]

One way is for a client to send a request to a server at regular intervals.
That is called (short)polling or heartbeat. If the server has new data ready,
it will send them. If there is no available data, the server sends a negative
response. Another solution is called long pulling. A client makes request and
server will hold the connection open until it can send data. [30, 31]

There is also a technology called Server Send Event, which is a form of
one-way asynchronous connection from server to client. However, in reality,
it is just long polling implemented in browsers to make it easier to use. [31]

1.3.2 Web Sockets

Generally, a socket is a communication channel connecting two endpoints.
The WebSocket (WS) is an application layer communication protocol for full-
duplex communication using TCP protocol. [31, 32]

The goal of this technology is to provide a mechanism for browser-based
applications that need two-way communication with servers that do not rely
on opening multiple HTTP connections (e.g., using XMLHttpRequest and
polling). [7]

Because HTTP was not meant to be used for bidirectional communica-

16

1.3. Real-Time Communication Techniques

Figure 1.14: High level comparison of Short/Long polling and SSE [30]

tion, web applications that need two-way communication between a client
and a server, had to abuse HTTP to poll the server for updates while sending
upstream notifications as distinct HTTP calls. A simpler solution would be
to use a single TCP connection for traffic in both directions. That is what
the WebSocket Protocol provides. Combined with the WebSocket API, it
provides an alternative to HTTP polling for two-way communication from a
web page to a remote server. The same technique can be used for a variety
of web applications, such as games, stock tickers, multiuser applications with
simultaneous editing, user interfaces exposing server-side services in real time.
[7]

The WebSocket Protocol is designed to replace existing bidirectional com-
munication technologies that use HTTP as a transport layer and to benefit
from existing infrastructure (proxies, filtering, authentication). The connec-
tion gets established by standard HTTP handshake. However, the protocol is
designed to allow for a future change of the handshake mechanism. The Web-
Sockets uses TCP port 80. The WebSocket also has secure version WebSocket
over SSL (WSS) using TCP port 443. [31, 7]

17

1. Current state of State Management

1.3.3 Backend as a Service

Backend-as-a-Service (BaaS) is a type of cloud service. It sits somewhere be-
tween Platform as a Service and Software as a Service. BaaS allows developers
to focus on the frontend of their application and to create backend function-
ality easily, without need to build it and maintain it. BaaS vendors provide
pre-written software for usual server functionality. [10, 33, 34, 35] Common
BaaS features

• User Authentication and Management

• Database and Data Management

• Server Scripts

• Push Notifications

• Messaging System

• Cloud Storage

• Real-time Synchronization

• Caching

• Offline and Client-server Synchronization

• Geolocation

• File and Media Management

• Analytic Tools [10, 33, 34, 36]

BaaS is composed of server part, set of APIs and optionally SDK. Server
part provides application logic and database. Application logic can be imple-
mented with server scripts. The database is generally some type on NoSQL,
but it is not a rule. API can be REST API, Query style API or some other
custom type. Purpose of the SDK is to make working with BaaS and its APIs
more comfortable. [34, 33]

Using BaaS can have benefits, like faster development, development with-
out the need for back-end developers, much better scalability, using already
provided features (e.g., Real-time Synchronization) and easier communication
with back-end when using SDK. [34, 33]

18

1.4. Review of the State Management Solutions

Figure 1.15: BaaS – architecture and essential components [34]

1.4 Review of the State Management Solutions

1.4.1 Flux

The Flux pattern has an only major implementation, the Flux library made
by Facebook. Flux was the first new state management pattern and is still
quite popular, but it has been overshadowed by other Redux like implemen-
tations. Flux, as well as other Flux implementations, are best suited to React
framework. [1]

1.4.2 Redux

Redux library or Redux state management container is original Redux im-
plementations. Redux is native to React, but there are bindings for other
frameworks, making Redux very universal. In Redux store can be bound to
a router of a SPA, changing state, based on the URL navigation. Redux also
has a very powerful debugging tool called Redux DevTools, which provide

19

1. Current state of State Management

state changes logging, state visualization, time-travel debugging, actions log-
ging and other options. Redux library is the most popular state management
solution. [2, 20]

1.4.3 NgRx

NgRx library is a container for managing state, build on RxJS library (Ob-
servables) using Redux pattern. In NgRx middleware is called effects. NgRx
can also use Redux DevTools. Same as Redux, the store can be bound to
a router, which means the state can change navigation and navigation can
change state. NgRx is part of Angular framework ecosystem, and it is the
most popular state management solution for Angular applications. NgRx
provides NgRx Entity adapter for managing record collections. The entity
provides an API to manipulate and query entity collections. [37, 21]

1.4.4 NGXS

NGXS library is Redux-like state container. It can be used only by Angular
application. It is newer and more modern than NgRx, because it uses more
TypeScript and Angular features, like decorators and dependency injection.
NGXS does not use reducers. Instead, it uses action handlers defined in
the store identified by the decorators. Action handlers themselves can be
asynchronous. To get slices of state NGXS uses selectors, like NgRx. This
schema to change and read state is inspired by the CQRS pattern. NGXS
store provides a snapshot method that creates a copy of the entire state.
NGXS requires boilerplate code than Redux and NgRx. NGXS uses plugins
to provide limited Redux DevTools support, save/load functionality for local
and session storage, router binding. [38, 39, 37]

1.4.5 Meiosis

Meiosis provides simple light-weight state management system, with minimum
boilerplate. It is meant for small applications. However, it is a small project,
with lacking documentation and examples. [3]

1.4.6 Akita

Akita library tries to be simpler than Flux and Redux implementations. It
has a moderate learning curve, and it reduces the amount of boilerplate code.
Akita is based on OOP principle, rather than on functional programming.
It was designed with Angular in mind (e.g., uses of services), but can work
independently on the framework. Akita provides support for Redux DevTools
(limited), router binding, storage persistence, and state snapshots. [37, 6]

20

1.5. Review of Real-Time Communication Solutions

1.4.7 VueX

VueX is state management library of Vue framework. It is designed with
Vue ways of efficiently updating and rendering components in mind. VueX
provides its own set of dev tools. [5]

1.4.8 MobX

MobX is not a state container like other solutions. It is more like a system of
updates. It is based on functional reactive programming principle. Its goals
are to be simple, scalable and reduce boilerplate code. MobX works best with
React, but it can be used with other frameworks with the help of adapters.
MobX provides developers with MobX DevTools. MobX is quite different
from other solutions. Its creators often use spreadsheet analogy: the state is
like a data cell, and computed values are like formulas and charts. [25, 4, 26]

1.4.9 Custom Redux implementation

There is always the option to create a custom implementation of some of these
state management pattern with the help of RxJS. However, it is unnecessary,
just like reinventing the wheel. It can be done in smaller projects, but oth-
erwise, it can introduce more problems than it solves and using dev tools is
hard or impossible. [37]

1.5 Review of Real-Time Communication
Solutions

1.5.1 SignalR

SignalR is a library that provides an abstraction for two-way communication
between server and client. It consists of two parts. One part is server-side
ASP.NET or ASP.NET Core library used on the back-end. The other part is
the client-side library. Client-side libraries are provided in several languages,
eg. Javascript/Typescript, .NET or Java. [9]

SignalR enables real-time data transfer. SignalR by default uses WebSock-
ets as the transport layer, but when that is not possible, it can also use other
options, such as ”long-polling.” SignalR provides API for remote procedure
call (RPC) to invoke functions on the client as well as methods on the server.
[40, 41]

1.5.2 Socket.IO

Socket.IO is a library for bidirectional real-time communication between server
and clients. It consists of Node.js server and JavaScript client library. The
community provides client implementations in other languages, such as Java,

21

1. Current state of State Management

.NET, Python, C++, Swift and Dart. Socket.IO is similar to SignalR. It also
uses WebSockets and long-polling as a fallback. [8]

1.5.3 Custom Web Sockets solution

Using just plain WebSockets can also be a solution, and even some of the
state management libraries provide direct support. However, that means no
fallback option, no abstraction over implementation and no utilities and extra
features.

1.5.4 Google Firebase

Firebase is a BaaS solution from Google. It provides many features and tools.
Real-time synchronization is the main focus of Firebase. Firebase has two
types of real-time NoSQL databases Realtime Database and Cloud Firestore.
Realtime Database is a JSON document storing data. Newer Cloud Firestore
is based on documents and collections of documents, where document is a set
of key-value pairs. Firebase is a truly serverless solution. It can be integrated
with other Google services and tools. Firebase is one of the most popular
BaaS solutions. [42, 43]

1.5.5 Backendless

Backendless is another BaaS solution. It uses MySQL database and all fea-
tures that relational databases have, like powerful queries, relations, option
to use ORM. Backendless provides the option to create custom REST-style
APIs. Pro version could be self-hosted. Server scripts can be created by vi-
sual programming. Since version 5 Backendless provides a real-time database,
which can be used to update data on clients. [44, 45]

1.6 Review Conclusion

In this chapter basic concepts of state management were explained, current
state management patterns and real-time synchronization techniques were de-
scribed, existing solutions using those patterns and techniques were reviewed.
Information from this chapter is used in the next chapters.

22

Chapter 2
Design and Architecture

This chapter deals with designing the state management system for web-based
SPA. It contains a description of used technologies, client-side architecture and
server-side architecture, both using techniques and solutions described in the
previous chapter.

2.1 Design Limitations

Because this thesis is part of a larger project with its specification [46], there
are some limitations. The most significant limitation is that client-side ap-
plication is using TypeScript-based Angular web framework. So client-side
code is written in TypeScript, using Angular framework. There are more
Redux pattern implementations. For example NgRx, NGXS, and Redux. Be-
cause it is beneficial to use libraries targeted to your framework, I am using
NgRx, which is the most popular Redux implementation in Angular ecosys-
tem. When using SignalR, there are two possibilities, ASP.NET or ASP.NET
Core. Because .NET Core is newer, scalable, cross-platform and because the
.NET framework does not provide any significant benefits for this application,
I have chosen ASP.NET Core version and corresponding client-side version.

2.2 Client Architecture

Client-side is part of Angular project. State management and synchronization
part consist of these elements:

• Signalr service

• State management service

• Model module

23

2. Design and Architecture

Figure 2.1: UML package diagram of client-side

2.2.1 Model module

The model represents the data layer of the application. The model consists of
data and business logic. Model is the central part of the application state.

The module is divided into two parts. First one contains definitions of all
the interfaces and the classes of the model, the other contains business logic
in the form of functions, used to manipulate with the model.

2.2.2 State Management Service

State management service provides an abstraction for state management im-
plementation in the application. Because we use Ngrx, the service communi-
cates with the Ngrx store.

There are two main functions of this service. First is to receive actions from
components and dispatch them to the store. Second is to allow components

24

2.2. Client Architecture

Figure 2.2: UML diagram of the data model [46]

to subscribe to the state changes. So it serves sort like a mediator between
store and rest of the application.

Apart from that state management service also contains other crucial com-
ponents of Redux: reducers, effects, action and action creators. Actions are
implemented as instances of a class, not as plain objects, and constructors
have the role of action creators. Action types are defined in the enumerable
object. Actions have to implement IAction interface, that enforces action to
have mandatory string type and an optional payload. Payload has to imple-
ment IActionPayload interface to ensure that any action that changes state
has its identification. Declaration of these interfaces can be seen in the listing
3.

Reducer is implemented not as function, but as a static method of
PsiContractEditorReducer class because Angular and NgRx allow it and its
cleaner, more object-oriented design.

Side effects are inside the PsiContractEditorEffects class. The primary
side effect is of course synchronization.

Application state, as defined in PsiContractEditorState class, is divided
into three distinct parts: psiContract, undoStack, redoStack. That provides

25

2. Design and Architecture

export interface IActionPayload {
actionId: Guid;

}

export interface IAction extends Action {
type: string;
payload?: IActionPayload;

}

Listing 3: Interfaces defining action and action payload

History of Changes feature, that enables undo and redo functionality. That
means that a user can travel through the previous version of a model, like
in word processor or web browser. Property psiContract is the current state
of a model, undoStack contains past states and if the user has undone a few
changes redoStack contains those undone changes.

Every psiContract has versionId property. It gets updated with every state
change. New versionId is actionId of the action that caused this change.

2.2.3 SignalR Service

This purpose of this service is to deal with communication with the server. It
is sending actions to server and is receiving actions from the server back. The
state management service uses this service. It is a crucial part of real-time
synchronization.

SignalrService is responsible for creating, configuring and establishing the
connection to the server. It is also responsible for reestablishing connection in
case it was lost. The API of this service provides the method to send actions
and to get state of the connection.

Figure 2.3: UML component diagram of client-side

26

2.3. Server Architecture

2.3 Server Architecture

Server-side is very simple ASP.NET Core server application which provides
web API to which clients can connect.

2.3.1 SignalR communication hub

The SignalR hub has a very significant role. Hub uses SignalR to communicate
with clients. Hub defines a set of methods, that can be invoked from clients,
or that can invoke a function on clients.

In the current situation, the server only resends action from one client to
others, but in the future, it can be upgraded with to have its own Redux
implementation and database persistence.

27

2. Design and Architecture

SignalrService

 - hubConnection:HubConnection
 - reconnecting:boolean
 - retryAttempt: number
 - maxRetryAttemts: number
 - connectionState: BehaviorSubject<ConnectionStateOptions>

+ sendAction(IAction): void
 + getConnectionStates$(): Observable<ConnectionStateOptions>
 - startConnection(): void
 - onConnectionStart(): void
 - onConnectionFail(Error): void
 - onDisconnect(Error): void

<<Interface>>
IAction

+ type: string

<<Interface>>
IPsiContract

+ id: Guid
+ name: string
+ versionId: Guid
+ description: string
+ actorRoles: IActorRole[]
+ transactionKinds: ITransactionKind[]
+ processes: IProcess[]
+ dataModel: IDataModel
+ actionRules IActionRule[]
+ diagrams: IDiagram[]

Store

+ dispatchAction(Action): void
+ select(Key): T

PsiContractPsiContractEditorState psiContract

undoStack

redoStack

1 1

*

**

*

ngrx/effects ngrx/store

NgRx

<<Interface>>
Action

+ type: string
+ payload: any

SignalR

StateManagerService

- actionStream$:Subject<IAction>
 - stateStream$:Observable<PsiContractEditorState>

+ dispatchAction(IAction): void
+ getState$():Observable<PsiContractEditorState>
+ getPsiContract$():Observable<IPsiContract>
+ getActorRoles$():Observable<IActorRole[]>
+ getTransactionKinds$():Observable<ITransactionKind[]>
+ getProcesses$():Observable<IProcess[]>
+ getActionRules$():Observable<IActionRule[]>
+ getDataModel$():Observable<IDataModel>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

1

1

1

1

<<Enumeration>>
ActionType

PsiContractEditorEffects

+ synchronization$: Observable<Action>
+ logging$: Observable<Action>

PsiContractEditorReducer

+ reducer(state,action): state

<<Interface>>
IPayload

+ actionId: Guid

payload
1

1

Figure 2.4: UML class diagram of client-side

28

2.3. Server Architecture

Figure 2.5: UML sequence diagram of client-side state change caused by action
dispatched from UI component

Figure 2.6: UML sequence diagram of synchronization side effects caused by
action dispatched from UI component

29

2. Design and Architecture

Figure 2.7: UML sequence diagram of client-side state change caused by action
received from server

Client Server
SignalR

Figure 2.8: Client-Server bidirectional communication

«Server»
ServerHub

«Client»
Client 5

«Client»
Client 4

«Client»
Client 3

«Client»
Client 2

«Client»
Client 1

Figure 2.9: Servers role as action hub

30

Chapter 3
Proof of Concept

Implementation

This chapter deals with implementation details of proof of concept, based on
the design proposed in the previous chapter. This chapter contains a descrip-
tion of the client-side part, description of the server-side part and description
of the usage of this system from the perspective of a developer of the applica-
tion and the perspective of a user of the application.

3.1 Application Description

The proof-of-concept of the state management system, which is this thesis
about, is part of a web application called EnterpriseDesigner. It is a web
application that provides online tools for process modeling. It consists of a
set of visual editors and designers, that enable creating BPMN and DEMO,
methodology models. The application is divided into two modules, client-side
and server-side.

3.2 Client-side

The client-side part of the application is single page web application build
using Angular framework, TypeScript, and other graphical technologies.

The application uses NgRx library to manage state. NgRx module is di-
vided into @ngrx/store and @ngrx/effect packages. SignalR client is provided
by @aspnet/signalr package.

• TypeScript version: 3.2.2

• Angular version: 7.2.0

• @ngrx/store version: 7.1.0

31

3. Proof of Concept Implementation

• @ngrx/effects version: 7.4.0

• @aspnet/signalr version: 1.1.2

3.2.1 Used Technologies

TypeScript language is a superset of JavaScript. It was created by Microsoft
and released as open-source in 2012. Since then it was adopted by many large
companies, for example, Google and Adobe. The main feature of TypeScript is
type safety, which is missing in regular JavaScript. That provides TypeScript
with IntelliSense, easy refactoring and syntax error highlighting. That allows
developers to write a larger application because the code has become more
manageable. [47]

In order to use TypeScript, the transpiler is needed. A transpiler is a
special compiler that compiles code from one language to another language.
The TypeScript compiler compiles TypeScript code to javascript code, that
can be run in browsers or Node.js. [47]

TypeScript provides modern JavaScript features, such as classes, inheri-
tance, and modules, but on top of that also static type checking, interfaces,
and generics. [47]

The angular framework is a modern JavaScript framework for creating
single page applications. It uses TypeScript. Angular is a product of Google.
[48]

Angular and NgRx both use the RxJS library extensively. RxJS (Reac-
tive extensions for JavaScript) provide Observable implementation. Observ-
able pattern, sometimes called Subscriber pattern is a system where are two
roles: Observable and Subscriber. Observable holds some data or value, that
changes over time. We can look at Observable as an asynchronous stream of
values. Subscribers, sometimes called Observers can subscribe to the Observ-
able. When value inside Observable changes, the Observable will notify all its
subscribers with a new value. Subscribers have to provide a handler, which
will be executed when the subscriber receives a notification with a new value.
Apart from that RxJS provides operators. Operators are a function which
can be applied to the observables in order to manipulate with the data flow.
For example to filter or change values or to provide time-related functions as
debounce or delay. [21]

SignalrManager and StateManager are implemented as Angular services.
Services are special classes annotated with @Injectable() decorator. That

marks them for Angular dependency injection system. The angular framework
provides its dependency injection system. Dependency injection is part of the
inversion of control (IoC) principle. Dependency injection is a coding pat-
tern in which a class does not create its dependencies, but instead, it is given
from external source. In Angular, the dependency injection system provides
declared dependencies to a class when that class is instantiated. [48]

32

3.2. Client-side

The component that uses injected service does not need to know how to
create that service. It is the job of the dependency injection system to create
and manage dependencies. The component only needs to declare dependencies
it needs. Service can be provided in the root module or any component. That
means that service injected in that component and its child components is the
same instance of that service. This enables the components to communicate
together or use a shared resource.

3.2.2 StateManagerService

StateManagerService serves as a wrapper around NgRx Store. There is a rea-
son for that. That is to provide future-proof modularity. So in the future, it
will be easier to change Store implementation, because the rest of the appli-
cation access Store via StateManagerService API, which would not change.
Also, it is easier to control the flow of actions to the store and states from the
store (e.g. using some filters).

«service»
StateManager

«Component»
ComponentC

«Component»
ComponentF

«Component»
ComponentB

«Component»
ComponentE

«Component»
ComponentG

«Component»
ComponentD

«Component»
ComponentA

«Component»
RootComponent

Figure 3.1: Purpose of Angular services

Because Angular and NgRx use RxJS, it is convenient and practical also to
use it to implement a State Management subsystem. StateManagementService
API can be divided into two parts: dispatching actions, which serves as input
and state subscription, which serves as the output.

Method dispatchAction(action: IAction) receives action and pass it
to the actionStream$ observable. Actions from this stream are dispatched to
the Store Module.

33

3. Proof of Concept Implementation

Store module provides root state as observable. Application state is or-
ganized as the state tree. Each feature or module of the application has its
branch. Method select() is used to select only one branch of the state tree
as stateStream$ observable. Output methods create slices of the state from
the state stream and return them as observables.

Each Angular component that needs to use state management has to im-
plement OnInit and OnDestroy interfaces. That ensures that component
implements ngOnInit() and ngOnDestroy() methods, which Angular calls
when creating and destroying component and in which subscribing and un-
subscribing happens. It necessary is to prevent memory leaks.

Effect and reducers for NgRx are provided in the Angular root module.
The application also uses Redux DevTools, which is a debugging tool consist-
ing of an Angular module and browser extension.[49]

@NgModule({
declarations: [],
imports: [

StoreModule.forRoot(reducers),
EffectsModule.forRoot([SignalrEffects]),
StoreDevtoolsModule.instrument({

maxAge: 10,
serialize: true

})
],
providers: [],
bootstrap: [],
entryComponents: []

})

Listing 4: NgRx module initialization in Angular root module

3.2.2.1 Effects

Effect are implemented in PsiContractEditorEffects class. It is an in-
jectable class that gets injected to Store at startup. This class has two effects,
synchronization which uses SignalrService to send action to the server, and
logging, which logs all actions dispatched to the store in the console.

3.2.2.2 Reducers

Reducer function is implemented as a static method of
PsiContractEditorReducer class. The class serves as a wrapper around pure
function. To mark the class as a static class, I used keyword abstract, that
ensures that an instance of the class can not be created.

34

3.2. Client-side

Reducer consist of a switch statement that decides based on the action
type. That is a standard form of Redux reducers.

For every action that changes state in a way that influences the history of
changes, reducer calls helper function manageHistory. The function manages
undoStack and redoStack as well as updates versionId in the model.

Because the state must be immutable, change causes state object to be
created. Creating a truly deep copy of an object is difficult in JavaScript. I
used the option that is the easiest to implement: serialize an object to JSON
and parse it back as a new object (containing the same data), with the use of
standard JavaScript functions.

All action types are defined as public static read-only string value constants
inside static class ActionType (implemented using the same trick as with
reducer wrapper class). This class is used as an Enum class.

«service»
SignalrManager

«service»
Store

«service»
StateManager

«component»
Editor

«effect»
Synchronization

«component»
TreeView

«component»
PropertyBar

1: dispatchAction(action)

1.1: dispatch(action)

1.1.1.1: applyEffects(action) 1.1.1.1.1: sendAction(action)

1.1.1.2: next(state)

1.1.1.2.1: onUpdate(state)

1.1.1: update(state, action)

1.1.1.3: next(state)

1.1.1.3.1: onUpdate(state)

using reducers

Figure 3.2: Communication diagram showing state change cycle
Dotted line represents subscription.

3.2.2.3 Model

The model consists of two parts. First part is interfaces defining data structure
and class implementing them. Classes do not implement any methods, only
constructors. This part is in the model/model.ts file. The second part consists
of a set of functions containing business logic. These functions are used to
manipulate the model. This particular model is structured like a database,
so most of these functions provide CRUD capability. There are also a few
of type guards, which are functions for runtime type checking in TypeScript.
This part is in model/utils.file.

35

3. Proof of Concept Implementation

3.2.3 SignalrService

SignalrService contains all logic that relates to the usage of the SignalR client
library. When it is created, it builds and configures a connection to the server.
To establish the connection using URI of SignalR hub on the server I imple-
mented reconnecting mechanism, that makes only single attempt to make the
connection during the startup of the application, but it tries to reconnect three
times if the connection was lost after the initial connection. There is a delay
between those reconnect attempts.

SignalrService has sendAction method, that is used by effects to invoke
the method on the server. After the connection is established, a function
that dispatches actions to the store is registered to the connection, to handle
actions incoming from the server. This service also provides information about
connection state (connected, disconnected, connecting) as public observable.

3.3 Server-side

Server-side part consist of ASP.NET Core application, build using C# and
running on .NET Core framework.

• .NET Core version: 2.2.203

• ASP.NET Core version: 2.2.0

• ASP.NET Core SignalR version: 1.1.0

The server-side code has two important parts. First is the ActionHub,
which is the SignalR hub. Hubs enable invoking methods from clients. The
DispatchAction method is used to resend action to other clients. Type of
action gets postfix "_RECEIVED" to indicate, that action will be received by
the client. The other important part is Startup.cs file containing application
settings including the setting of SignalR hub, the setting of port numbers, the
setting of a path in the URI of the hub.

public class ActionHub : Hub
{

public async Task DispatchAction(string type, string payload)
{

await Clients.Others.SendAsync("ReceiveAction",
type + "_RECEIVED", payload);

}
}

Listing 5: ActionHub - main part of server-side functionality

36

3.4. Usage

3.4 Usage

A working proof-of-concept is available at [50] and the open source code is
placed in the public git repository at [51]

I used Redux DevTool to debug the application and to demonstrate its
usefulness. The figure 3.3 depicts the Redux Devtools console during debug-
ging. State of the applications is visualized in tree-like structure and history
of processed actions is listed.

Figure 3.3: Redux DevTools console in action

When a user opens the application and edits a diagram in the modeling
area, that component is generating and dispatching action based on the user
input. The actions then cause the state to change, and that means, that other
components receive the new state and render themselves accordingly.

In this case, that means that tree view on the left side that shows the
structure of the model is always displaying the structure of a diagram in the
modeling area. Moreover, because this client is connected to the server (which
is shown by the indicator in the toolbar above), the state is synchronized.
That means that all clients have precisely the same state and are rendered
identically. This is shown in pictures 3.4 and 3.5.

3.5 Testing

One of the goals of Redux is to be easily testable. That applies to state
management.

Because all data manipulation happens only in reducer and reducer is a
pure function unit tests are easy to implement. This thesis contains a small
set of unit tests of reducer function.

Testing SignalR communication is more difficult because it requires either
to test server and client at the same time or to test one and replace the other
by mock version. It is more integration testing than unit testing.

37

3. Proof of Concept Implementation

Figure 3.4: Synchronization between two clients opened in separate windows,
part 1

Figure 3.5: Synchronization between two clients opened in separate windows,
part 2

Angular services and components right initialization can also be tested
with unit tests.

3.6 Future Development Recommendation

The application works correctly, components dispatch action and get updated
state, however further development is recommended.

The server should store application state and provide persistence, for ex-
ample in a database. The server should also use state management system

38

3.6. Future Development Recommendation

like Redux. The application should have user accounts and synchronize data
of individual users.

For implementing undo/redo feature can be used NgRx meta-reducers or
third-party library. For creating a new state in reducers, some library for
immutable objects can be used (e.g. Immer.js). For local machine persistence,
some third-party library can be used with NgRx. Creating type guards could
be automated, or runtime type checking library could be used.

Future development should also include more tests.

39

Conclusion

The goal of this thesis was to review current techniques and approaches to state
management and real-time synchronization in single page web applications and
demonstrate their usage on google-drawings-like application.

The first part consists of a description of current design patterns and tech-
nologies as well as comprehensive reviews of most of the current approaches
to this problem, using those patterns and technologies.

The second objective was to propose an architecture of state management
and synchronization solution using Redux design pattern and SignalR library.
A basic explanation of my design was shown in the implementation part of
this thesis.

Implementation of proposed client-side state management solution is part
of the DEMO methodology modeling tool available online at [50]. The full
source code is released under the MIT license and is available in the public
git repository at [51].

Because this is just proof-of-concept, in the future other features should
be added to the state management system of the application. For example, to
introduce user authentication and persistence to allow users to save their work
on the server or use real-time synchronization feature while collaborating on
a shared project.

41

Bibliography

1. FACEBOOK. Flux | Application Architecture for Building User Inter-
faces [online]. Facebook Inc. [visited on 2019-04-09]. Available from: https:
//facebook.github.io/flux/docs/in-depth-overview.html.

2. ABRAMOV, Dan et al. Motivation · Redux [online]. 2018 [visited on
2019-05-06]. Available from: https://redux.js.org/introduction/
motivation.

3. DAOUD, Fred. Meiosis - Awesome State Management for Web Applica-
tions [Awesome State Management for Web Applications] [online] [visited
on 2019-04-09]. Available from: https://meiosis.js.org/.

4. WESTSTRATE, Michel et al. Introduction | MobX [online] [visited on
2019-05-08]. Available from: https://mobx.js.org/index.html.

5. What is Vuex? | Vuex [online] [visited on 2019-05-08]. Available from:
https://vuex.vuejs.org.

6. BASAL, Netanel et al. Introduction [online]. 2018 [visited on 2019-05-08].
Available from: https://netbasal.gitbook.io/akita.

7. FETTE, I.; MELNIKOV, A. The WebSocket Protocol [Internet Requests
for Comments]. RFC Editor, 2011. ISSN 2070-1721. Available also from:
http://www.rfc-editor.org/rfc/rfc6455.txt. RFC. RFC Editor.
http://www.rfc-editor.org/rfc/rfc6455.txt.

8. Socket.IO - Overview [online]. 2019 [visited on 2019-04-09]. Available
from: https://socket.io/docs/.

9. MICROSOFT. Introduction to ASP.NET Core SignalR [online]. 2018
[visited on 2019-04-09]. Available from: https://docs.microsoft.com/
cs-cz/aspnet/core/signalr/introduction?view=aspnetcore-2.2.

10. LANE, Kin. Overview of the backend as a service (BaaS) space. API
Evangelist. 2015.

43

https://facebook.github.io/flux/docs/in-depth-overview.html
https://facebook.github.io/flux/docs/in-depth-overview.html
https://redux.js.org/introduction/motivation
https://redux.js.org/introduction/motivation
https://meiosis.js.org/
https://mobx.js.org/index.html
https://vuex.vuejs.org
https://netbasal.gitbook.io/akita
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
https://socket.io/docs/
https://docs.microsoft.com/cs-cz/aspnet/core/signalr/introduction?view=aspnetcore-2.2
https://docs.microsoft.com/cs-cz/aspnet/core/signalr/introduction?view=aspnetcore-2.2

Bibliography

11. DEBILL, Erik. Module counts [online]. 2018. Available also from: http:
//www.modulecounts.com/.

12. VORBACH, Paul. npm-stat.com [online]. Available also from: https:
//npm-stat.com/.

13. SACHA GREIF, Raphael Benitte; RAMBEAU, Michael. The State of
JavaScript 2018 [online]. 2018. Available also from: https : / / 2018 .
stateofjs.com/data-layer/overview/.

14. SAVKIN, Victor. Managing State in Angular Applications. Nrwl. 2017.
Available also from: https://blog.nrwl.io/managing- state- in-
angular-applications-22b75ef5625f.

15. MANCUSO, Sandro. MVC, Delivery Mechanism and Domain Model
[online]. 2017 [visited on 2019-04-10]. Available from: https://www.
javacodegeeks.com/2017/09/mvc- delivery- mechanism- domain-
model.html.

16. BERNARD, Borek. Prezentačńı vzory z rodiny MVC. Zdroják [online].
2009 [visited on 2019-05-08]. Available from: https://www.zdrojak.cz/
clanky/prezentacni-vzory-zrodiny-mvc.

17. LUSSIER, D’Arcy. MVVM Compared To MVC and MVP [online]. 2009
[visited on 2019-05-04]. Available from: http://geekswithblogs.net/
dlussier/archive/2009/11/21/136454.aspx.

18. MARCHAN, Flarnie. What is the Flux Application Architecture? Medium
[online]. 2014 [visited on 2019-04-10]. Available from: https://brigade.
engineering/what-is-the-flux-application-architecture-b57ebca85b9e.

19. SALCESCU, Cristian. An introduction to the Flux architectural pattern.
freeCodeCamp.org [online]. 2019 [visited on 2019-05-13]. Available from:
https://medium.freecodecamp.org/an- introduction- to- the-
flux-architectural-pattern-674ea74775c9.

20. GELMAN, Ilya; DINKEVICH, Boris. The Complete Redux Book: Every-
thing you need to build real projects with Redux. 2nd ed. Leanpub, 2018.
ISBN 9789659264209.

21. NORING, Christoffer. Architecting Angular Applications with Redux, RxJS,
and NgRx: Learn to build Redux style high-performing applications with
Angular 6. Packt Publishing Ltd, 2018. ISBN 9781787122406.

22. RIGAU, Xavi. Introduction to Redux in Flutter. Novoda blog [online].
2018 [visited on 2019-04-10]. Available from: https://blog.novoda.
com/introduction-to-redux-in-flutter/.

44

http://www.modulecounts.com/
http://www.modulecounts.com/
https://npm-stat.com/
https://npm-stat.com/
https://2018.stateofjs.com/data-layer/overview/
https://2018.stateofjs.com/data-layer/overview/
https://blog.nrwl.io/managing-state-in-angular-applications-22b75ef5625f
https://blog.nrwl.io/managing-state-in-angular-applications-22b75ef5625f
https://www.javacodegeeks.com/2017/09/mvc-delivery-mechanism-domain-model.html
https://www.javacodegeeks.com/2017/09/mvc-delivery-mechanism-domain-model.html
https://www.javacodegeeks.com/2017/09/mvc-delivery-mechanism-domain-model.html
https://www.zdrojak.cz/clanky/prezentacni-vzory-zrodiny-mvc
https://www.zdrojak.cz/clanky/prezentacni-vzory-zrodiny-mvc
http://geekswithblogs.net/dlussier/archive/2009/11/21/136454.aspx
http://geekswithblogs.net/dlussier/archive/2009/11/21/136454.aspx
https://brigade.engineering/what-is-the-flux-application-architecture-b57ebca85b9e
https://brigade.engineering/what-is-the-flux-application-architecture-b57ebca85b9e
https://medium.freecodecamp.org/an-introduction-to-the-flux-architectural-pattern-674ea74775c9
https://medium.freecodecamp.org/an-introduction-to-the-flux-architectural-pattern-674ea74775c9
https://blog.novoda.com/introduction-to-redux-in-flutter/
https://blog.novoda.com/introduction-to-redux-in-flutter/

Bibliography

23. BASAL, Netanel. Introducing Akita: A New State Management Pattern
for Angular Applications. Netanel Basal [online]. 2018 [visited on 2019-
05-08]. Available from: https://netbasal.com/introducing-akita-
a- new- state- management- pattern- for- angular- applications-
f2f0fab5a8.

24. RAM, Mohan. State Management in Angular using Akita. Angular In
Depth [online]. 2018 [visited on 2019-05-08]. Available from: https://
blog.angularindepth.com/state-management-in-angular-using-
akita-82f117d282dd.

25. MobX: Ten minute introduction to MobX and React [online] [visited on
2019-05-08]. Available from: https://mobx.js.org/getting-started.
html.

26. Concepts & Principles | MobX [online] [visited on 2019-05-08]. Available
from: https://mobx.js.org/intro/concepts.html.

27. PURNELLE, Kevin. Handling React Forms with Mobx Observables.
RisingStack Engineering [online]. 2016 [visited on 2019-05-08]. Available
from: https : / / blog . risingstack . com / handling - react - forms -
with-mobx-observables.

28. JAHR, Adam. Vuex Explained Visually. Medium [online]. 2018 [visited
on 2019-05-08]. Available from: https://medium.com/vue-mastery/
vuex-explained-visually-f17c8c76d6c4.

29. Ajax [online]. 2019 [visited on 2019-05-04]. Available from: https://
developer.mozilla.org/en-US/docs/Web/Guide/AJAX.

30. BHARATHVAJ, Ganesan. Polling vs SSE vs WebSocket— How to choose
the right one. codeburst [online]. 2018 [visited on 2019-05-04]. Available
from: https://codeburst.io/polling-vs-sse-vs-websocket-how-
to-choose-the-right-one-1859e4e13bd9.

31. SALVET, Pavel. Komunikace v reálném čase d́ıky Server-Sent Events a
Web Sockets. Interval.cz [online]. 2015 [visited on 2019-05-04]. Available
from: https://www.interval.cz/clanky/komunikace-v-realnem-
case-diky-server-sent-events-a-web-sockets.

32. The WebSocket API (WebSockets) [online]. 2019 [visited on 2019-05-04].
Available from: https://developer.mozilla.org/en-US/docs/Web/
API/WebSockets_API.

33. MÁJSKÝ, Michal. Analýza současných řešeńı Backend-as-a-Service pro
vývoj mobilńıch a webových aplikaćı. Praha, Česká republika, 2016. Mas-
ter’s thesis. České vysoké učeńı technické v Praze.

34. MÁJSKÝ, Michal. Zač́ınáme s Backend as a Service. Zdroják [online].
2016 [visited on 2019-04-10]. Available from: https://www.zdrojak.cz/
clanky/zaciname-s-backend-service/.

45

https://netbasal.com/introducing-akita-a-new-state-management-pattern-for-angular-applications-f2f0fab5a8
https://netbasal.com/introducing-akita-a-new-state-management-pattern-for-angular-applications-f2f0fab5a8
https://netbasal.com/introducing-akita-a-new-state-management-pattern-for-angular-applications-f2f0fab5a8
https://blog.angularindepth.com/state-management-in-angular-using-akita-82f117d282dd
https://blog.angularindepth.com/state-management-in-angular-using-akita-82f117d282dd
https://blog.angularindepth.com/state-management-in-angular-using-akita-82f117d282dd
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/intro/concepts.html
https://blog.risingstack.com/handling-react-forms-with-mobx-observables
https://blog.risingstack.com/handling-react-forms-with-mobx-observables
https://medium.com/vue-mastery/vuex-explained-visually-f17c8c76d6c4
https://medium.com/vue-mastery/vuex-explained-visually-f17c8c76d6c4
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://codeburst.io/polling-vs-sse-vs-websocket-how-to-choose-the-right-one-1859e4e13bd9
https://codeburst.io/polling-vs-sse-vs-websocket-how-to-choose-the-right-one-1859e4e13bd9
https://www.interval.cz/clanky/komunikace-v-realnem-case-diky-server-sent-events-a-web-sockets
https://www.interval.cz/clanky/komunikace-v-realnem-case-diky-server-sent-events-a-web-sockets
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.zdrojak.cz/clanky/zaciname-s-backend-service/
https://www.zdrojak.cz/clanky/zaciname-s-backend-service/

Bibliography

35. Backend-as-a-Service [online]. Cloudflare Inc. [visited on 2019-04-10].
Available from: https://www.cloudflare.com/learning/serverless/
glossary/backend-as-a-service-baas/.

36. Backend as a Service [online]. Backendless Corp. [visited on 2019-04-10].
Available from: https://backendless.com/platform/backend-as-a-
service/.

37. BELGIUM, Ordina. NGRX vs. NGXS vs. Akita vs. RxJS: Fight! - Orjan
De Smet [online]. 2018 [visited on 2019-05-08]. Available from: https:
//ordina-jworks.github.io/angular/2018/10/08/angular-state-
management-comparison.html.

38. WHITFELD, Mark. NGXS State Operators. Medium [online]. 2019 [vis-
ited on 2019-05-13]. Available from: https://medium.com/ngxs/ngxs-
state-operators-8b339641b220.

39. NGXS - Introduction [online]. 2019 [visited on 2019-05-13]. Available
from: https://ngxs.gitbook.io/ngxs.

40. MOHL, D. Building Web, Cloud, and Mobile Solutions with F#: Create
Scalable Apps with ASP.NET MVC 4, Azure, Web Sockets, and More.
O’Reilly Media, 2012. ISBN 9781449333720. Available also from: https:
//books.google.cz/books?id=MH3-T2jGFsEC.

41. MACKEY, A.; TULLOCH, W.S.; KRISHNAN, M. Introducing .NET
4.5. Apress, 2012. Apressus Series. ISBN 9781430243328. Available also
from: https://books.google.cz/books?id=I-dHxFjfbi8C.

42. VYAS, Rahul. Firebase Cloud Firestore v/s Firebase Realtime Database.
Medium [online]. 2017 [visited on 2019-05-14]. Available from: https:
/ / medium . com / @beingrahul / firebase - cloud - firestore - v - s -
firebase-realtime-database-931d4265d4b0.

43. MERENYCH, Sofiya. Overview of mobile backend as a service providers.
Which one will be your choice? [online]. 2019 [visited on 2019-05-14].
Available from: https://clockwise.software/blog/overview-of-
mobile-backend-as-a-service-providers.

44. ALL IN MOBILE. Backendless. Medium [online]. 2016 [visited on 2019-
05-14]. Available from: https://medium.com/all-in-mobile/backendless-
txt-a0ee1c2bf16c.

45. DANILOVA, Olga. Five things you cannot do with Firebase (but can with
Backendless) | Backend as a Service Platform [online]. 2018 [visited on
2019-05-14]. Available from: https://backendless.com/five-things-
you-cannot-do-with-firebase-but-can-with-backendless.

46. SKOTNICA, Marek. Lecture notes in Software Team Project: Functional
Specification - PSI Contract Designer. 2019.

46

https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/
https://backendless.com/platform/backend-as-a-service/
https://backendless.com/platform/backend-as-a-service/
https://ordina-jworks.github.io/angular/2018/10/08/angular-state-management-comparison.html
https://ordina-jworks.github.io/angular/2018/10/08/angular-state-management-comparison.html
https://ordina-jworks.github.io/angular/2018/10/08/angular-state-management-comparison.html
https://medium.com/ngxs/ngxs-state-operators-8b339641b220
https://medium.com/ngxs/ngxs-state-operators-8b339641b220
https://ngxs.gitbook.io/ngxs
https://books.google.cz/books?id=MH3-T2jGFsEC
https://books.google.cz/books?id=MH3-T2jGFsEC
https://books.google.cz/books?id=I-dHxFjfbi8C
https://medium.com/@beingrahul/firebase-cloud-firestore-v-s-firebase-realtime-database-931d4265d4b0
https://medium.com/@beingrahul/firebase-cloud-firestore-v-s-firebase-realtime-database-931d4265d4b0
https://medium.com/@beingrahul/firebase-cloud-firestore-v-s-firebase-realtime-database-931d4265d4b0
https://clockwise.software/blog/overview-of-mobile-backend-as-a-service-providers
https://clockwise.software/blog/overview-of-mobile-backend-as-a-service-providers
https://medium.com/all-in-mobile/backendless-txt-a0ee1c2bf16c
https://medium.com/all-in-mobile/backendless-txt-a0ee1c2bf16c
https://backendless.com/five-things-you-cannot-do-with-firebase-but-can-with-backendless
https://backendless.com/five-things-you-cannot-do-with-firebase-but-can-with-backendless

Bibliography

47. MICROSOFT. TypeScript [online]. 2019 [visited on 2019-05-13]. Avail-
able from: https://github.com/Microsoft/TypeScript.

48. GOOGLE. Angular - Architecture overview [online]. 2019 [visited on
2019-05-13]. Available from: https://angular.io/guide/architecture.

49. Extension · Redux DevTools Extension [online] [visited on 2019-05-13].
Available from: http://extension.remotedev.io/.

50. CCMI RESEARCH GROUP. Enterprise Designer [online] [visited on
2019-05-13]. Available from: https://smartcontracts.azurewebsites.
net/.

51. CCMI RESEARCH GROUP. Enterprise Designer Repository [online]
[visited on 2019-05-13]. Available from: https : / / dev . azure . com /
ccMiResearch/_git/VSContract.

47

https://github.com/Microsoft/TypeScript
https://angular.io/guide/architecture
http://extension.remotedev.io/
https://smartcontracts.azurewebsites.net/
https://smartcontracts.azurewebsites.net/
https://dev.azure.com/ccMiResearch/_git/VSContract
https://dev.azure.com/ccMiResearch/_git/VSContract

Appendix A
Acronyms

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

BaaS Backend as a Service

CQRS Command Query Responsibility Segregation

CRUD Create, read, Update and Delete

DEMO Design & Engineering Methodology for Organizations

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IoC Inversion of Control

JSON JavaScript Object Notation

MBaaS Mobile Backend as a Service

MVC Model-View-Controller

MVP Model-View-Presenter

MVVM Model-View-ViewModel

OOP Object-Oriented Programming

RCP Remote Procedure Call

REST Representational State Transfer

49

A. Acronyms

RxJS Reactive Extensions for JavaScript

SDK Software Development Kit

SQL Structured Query Language

SSE Server-Sent Events

TCP Transmission Control Protocol

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

50

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

application................................implementation sources
thesisfiles.txt . list of source code files belonging to this thesis

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

51

	Introduction
	Motivation
	Goal and the Objectives
	State of the Art

	Current state of State Management
	State Management Introduction
	State Management Patterns
	Real-Time Communication Techniques
	Review of the State Management Solutions
	Review of Real-Time Communication Solutions
	Review Conclusion

	Design and Architecture
	Design Limitations
	Client Architecture
	Server Architecture

	Proof of Concept Implementation
	Application Description
	Client-side
	Server-side
	Usage
	Testing
	Future Development Recommendation

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

