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Abstrakt

Tato prace detailné zkouma tradi¢ni a moderni metody zpracovani prirozeného
jazyka. Zvlastni duiraz je kladen na jazyky s rozmanitou morfologii.
Nejmodernéjsi metody jsou pak aplikovany riznymi zpusoby na cesky jazyk
s cilem rozlisit jednotlivé vyznamy slov na zdkladé priklada jejich uziti ve
vétach. Dulezitou soucasti prace je vyhodnoceni téchto experimenta.

Klicova slova zpracovani prirozeného jazyka, strojové uceni, ¢esky jazyk,
rozliSeni jednotlivych vyznamt slova, neuronova sit
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Abstract

The thesis surveys traditional and state-of-the-art methods of natural
language processing. Particular importance is placed on languages with rich
morphology. The state-of-the-art methods are then applied in various ways
on the Czech language in order to differentiate between distinct word senses
based on their usage in a sentence. Evaluation of these experiments is an
important part of the thesis.

Keywords natural language processing, machine learning, Czech, word
sense disambiguation, neural network
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CHAPTER ].

Introduction

Natural language as the primary form of interaction between humans is crucial
to be understood by computers in order to achieve human-like software user
experience. The vision of getting rid of conventional input devices such as
mouse or keyboard as well as the current user experience which is provided
almost entirely by a graphical interface has been pushing natural language
processing technologies fast forward in the recent years. The general idea has
been to replace the current computer interface with a more natural way of
intuitive voice communication between the user and the software.

Accurate voice recognition algorithms have already become a standard and
a critical feature of artificial voice assistants which have been making their
way to phones, houses or automobiles. However, merely transcribing voice
instructions to text ones is far from knowing what the user wants. As a
consequence, many machine learning algorithms from the field of natural
language processing focused on understanding the meaning of sentences or
even long conversations have been introduced lately.

In natural language, a word can have multiple meanings. Disambiguation
between different meanings of a word is a challenging problem not only for
computers but in some cases for humans as well. Machine learning algorithms
capable of differentiating between distinct word meanings (so-called word
disambiguation task) have been proposed just recently. It must be seen that
this task is very hard to be attacked by computers and even the state-of-the-art
machine learning algorithms are far from being perfect.

The word sense disambiguation task can be approached in supervised
and unsupervised manners. Unfortunately, context differences between
distinct word senses sometimes tend to be very small making it hard to use
unsupervised algorithms. To use supervised algorithms on the word sense



1. INTRODUCTION

disambiguation task, a vast amount of usage examples of a word in a sentence
must be manually created by humans. Moreover, while creating such dataset,
it can be challenging to decide on the level of word sense separation (in some
dictionaries “storm” in colloquial language and “storm” in scientific writings
are of different meanings — which is probably not what a typical human would

say).

The goal of this thesis is to survey the state-of-the-art methods attacking the
word sense disambiguation task and natural language processing in general,
try to apply them on Czech and German language and evaluate the results.
I will first introduce the major challenges in natural language processing to the
reader and explain linguistic characteristics of fusional languages (such as the
Czech language). Afterwards, I will survey the traditional and state-of-the-art
machine learning algorithms used in the field of NLP. Finally, I will apply the
introduced methods to Czech a German language and evaluate the results.



CHAPTER 2

Natural language processing
(NLP)

Natural language is often hard to be correctly understood by computers.
Although it is, in fact, a symbolic signalling system [1lf], it may use prefixes as
well as suffixes to generate situation-specific versions of words or it might even
use character-level word deviations to express further subjective feelingsH.

Moreover, many times full information or some parts of it are not expressed
in the sentence at all, and it is up to the reader to figure them out based
on the contextf. Often a certain language symbol (word) can be assigned
to multiple word meaningsH which is also making it harder for computers to
understand the sentence since a simple dictionary of words and their meanings
is not sufficient.

In this chapter, the basic concepts from linguistics which are important to be
understood for later usage in machine learning algorithms will be introduced.
Furthermore, the traditional, as well as the modern statistical approach to
language modelling, will be presented.

2.1 Levels of natural language comprehension

As it has been already mentioned, natural language is hard to be approached
mostly due to its ambiguousness and its relation to the particular situation,
medium or even the speaker’s characteristic. To build a computer system able

'For example if something is “huuuuuge” it probably means it is bigger than just “huge”.

2Typical example is when the subject of a sentence has been left out since it has been
mentioned in some of the previous sentences. Sometimes, it is not expressed at all (i.e., It
is raining.).

3Symbol “bank” can be the financial institution as well as the area by a river.

3



2. NATURAL LANGUAGE PROCESSING (NLP)

to understand human language sufficiently, the input data (text) needs to be
analysed on multiple levels, each dealing with a different linguistic analysis
task. The following categorisation has been inspired by [L].

2.1.1 Morphological analysis of natural language

Sentences are composed of basic units — words. Boundaries between distinct
words in natural language are sometimes hard to be defined — for example
in a phonetically represented sentence, defining these boundaries can be
challenging since words might directly follow each other. In some languages,
words can be distinguished by their vowel’s harmony (i.e., Turkish). More
often, a morphological attitude (which can also be applied to written textual
data) is used. If the symbol (substring from the analysed string - spaces
do not matter) in a sentence comply with the three following rules, it is
considered to be a stand-alone word: positional mobility (symbol can be
moved to a different position of the sentence), uninterruptability (no other
extraneous information can be positioned between individual morphemes of
the symbol), internal stability: there is a fixed order of morphemes inside of
the symbol’s structure. [2]

However, in most languages, words can also be compositions of other words,
suffixes or prefixes - so-called morphemest. From this point of view, natural
languages are divided into two categories: analytical (isolating) and synthetic
ones. [2]. Being able to correctly analyze individual morphemes of a word is
important to understand the word itself and also its context.

2.1.1.1 Analytical languages

Analytical (isolating) languages are the simplest ones as the composition of
words goes. Words are made of one or more free morphemest and no bound
morphemest. No morphemes are expressing, for example, the tense (i.e.,
future) or the grammatical number (i.e., plural). [4] The sentence “John has
not bought the apples” would be expressed as “John not buy apple” in an
analytical language. Mandarin Chinese is an example of such a language.

2.1.1.2 Synthetic languages

Synthetic languages construct words consisting of free as well as bound
morphemes. Bound morphemes (prefixes, suffixes) add information about the

4«Morpheme is the smallest unit of language that conveys some meaning.”[3]

5Free morphemes are ones which can be used as stand-alone words. For example
“unhappiness” is made of three morphemes: “un”, “happy” and “ness”. The morpheme
“happy” is the free morpheme.

Bound morphemes are opposites of free morphemes. Bound morphemes are not
stand-alone words on their own. For example, in the word "unhappiness” morphemes "un”
and "ness” are bound morphemes.

4



2.1. Levels of natural language comprehension

tense, grammatical number or for example the gender to the word. Synthetic
languages are categorised in three groups based on the level of variety and
complexity of their morphemes: agglutinative, fusional and polysynthetic
languages. [2]

Words in agglutinative languages may consist of one or more morphemes.
However, boundaries between distinct morphemes are easy to be found. Each
morpheme represents single meaning, and they do not fall loosely together.
Example of such language is Turkish. [2]

Fusional languages have words constructed of one or more morphemes.
However, unlike agglutinative languages, their morphemes can express
multiple pieces of grammatical information each. [2] Moreover, distinct
morphemes might fall loosely together or end up in a new morphemel.
As a consequence, distinguishing between individual morphemes can be a
complicated task. Slavic languages are typical examples from this category.

Polysynthetic languages usually tend to build long words containing many
morphemes of distinct meanings. They also use many prefixes and postfixes
and might contain multiple stemsH in a single word. West Greenlandic is an
example of such a language. [2]

2.1.2 Syntactic analysis of natural language

Having already analysed character-level deviations and morphological
constructions of words, the focus can move to the word level analysis. The
syntactic analysis examines the order of words in sentences, their relations
(structure) and syntactic meaning (parts of speech). Dependency trees are
usually used as a visualisation of syntactic analysis results. There exist
multiple syntactic dependency tree datasets for supervised NLP tasks such
as the famous Penn Treebank dataset [5].

2.1.3 Semantic analysis of natural language

The goal of the semantic analysis is to use results from previous layers and
understand the true meaning of phrases or even whole articles. Since natural
languages are ambiguous and widely context dependent, semantic analysis
algorithms are still in the early stages of development, and their results are
still far from perfect.

Moreover, not all the information is always kept in the input sentence.
Sometimes it might be necessary for the algorithm to be familiar with the

"For example in the Czech language concatenation of morphemes “ne” and “je” results
in “neni”.
8Part of a word which is common to all its inflexions.
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real world’s facts to understand its input. In this work, algorithms designed
for semantic analysis will be introduced.

2.1.4 Further discourse processing

As it has been already pointed out, further information which is needed to
understand a particular sentence or an article might be stored somewhere else
than the input text itself. This information might be some general knowledge
data (i.e., water is drinkable), cultural awareness (i.e., The Good Soldier Svejk
has been written by Jaroslav HaSek), the speaker’s background, emotions or
even the situation where the sentence/article has been used. It is uncertain if
this information can even be completely described by computers. As a result,
this level of language understanding is here mentioned as a future outlook.

2.2 The evolution of natural language processing

In the early stages of natural language processing, the first and foremost
attitude used to understand the structure of the language was utilising
rule-based systems. Such attitude was often using context-free grammars or
regular expressions to model constituency? between words in sentences [f].
Rules of these systems were manually created by linguists and to build a
reasonably robust solution a massive number of different rules had to be
created. This also made the systems hardly scalable and their sets of rules
(which were accumulating in multiple levels on the top of other) chaotic.
As a consequence, such development was getting exceedingly expensive and
also the results were not that satisfying as the systems could not gracefully
transfer to a different textual domain®.

As a result, the statistical approach (language modelling@) to language
analysis has been proposed. This “observational” attitude has not needed
that many human resources since instead of applying human-designed rules
it has learned to analyse the language from a vast amount of textual data,
which are easy to be acquired (i.e., web sites, books), itself. However, today’s
solutions usually combine the traditional rule-based system approach with
the statistical one to achieve state-of-the-art accuracy.

9Grouping words which go together.

OFor example, rule-based systems built on academic-style language were not suitable for
colloquial ones.

1T anguage models learn a probability distribution over a sequence of symbols/words of
a particular language.

6



2.2. The evolution of natural language processing

2.2.1 Statistical language model

Traditional statistical language models use localist representation k4 of a word
based on a discrete dictionary. Their general goal is to assign a probability of
the occurrence of a particular word sequence:

P(wq, we, w3, wy) = P(wy)P(wa|wy) P(ws|wiwsy) P(ws|wiwews),

where wy, we, w3, wy are words. [[7] To get the probability of the presence of a
certain word sequence A conditioned by previous context sequence B a simple
frequency attitude can be used:

count(A) + count(B)
count(B)

P(A|B) =

However, full estimation based on the whole sentence or even an article (for
a broader context) can be computationally very expensive. Moreover, such
an %titude shows its downsides when the word counts in the text are rather
lowt. [§]

One of the possible solutions to the full estimation problems is called the
n-gram model which is based on the Markov chain stochastic model. [9] It
generally assumes that to determine the probability of a word occurrence
based on its context, only the previous n — ¢ words need to be taken into
account.

The simplest example of the n-gram model is the uni-gram model (n = 1)
which takes into account only the current word and does not look at the
preceding sequence at all. That makes it just counting the probabilities of
each word’s occurrence

count(wy)

P(wi|wy..qwi—1) ~ P(w;) = m’

where wy, wo, ..., w; are words and @ is an array of all the words except the
word w;. [§]

However, in practice n-gram models of n > 1 are used:

P(wi|w1...wz~_1) ~ P(wi]wi_l...wi_n).

12Fach word is represented by its position in the dictionary. Localist representation is
usually implemented by a vector which contains all zeros except a one at the position of the
particular word in the dictionary (one-hot vector encoding).

13For example, having the only training dataset sentences “John was born in Prague.”
and “John got lost in Brno” results in a zero probability of the presence of the word “Brno”
conditioned by context “John was born in”.
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Such n-gram models are usable for simple language analysis tasks mostly on
analytical (or close to analytical) languages or textual data which has been
preprocessed by some stemmer or lemmatiser=3.

Another problem with the traditional statistical approach to language
processing is related to the words which have not been included in the
training dataset and yet appear in later input textual data. Therefore their
probability would always be zero. A possible solution is to add one to
the occurrence count of each word (Laplace-smoothed n-grams) making it
possible to take into account new words. [L(]

2.2.2 Neural language model

The above-explained traditional statistical language model has at least one
serious issue: because of the localist word representation, it lacks the notion of
the word. Therefore, there is no information about the relationships between
the words encoded in their representations.

However, to correctly analyse natural language, the model should be able to
recognise at least some similarity between words (i.e., a car and an automobile
are closer together than a car and a cat). There could be two possible solutions
— one would be using a human-made dictionary containing synonyms and
homonyms, but as it has been already discussed in this work, such attitude is
not easy to implement and to maintain.

As a consequence, a representation of a word which already encapsulates
the notion of the word has been proposed. Such word vectors are dense,
their dimension is usually a hyper-parameter of the model, and they allow to
inherently measure distances between particular words.

These dense vectors (called word embeddings) distribute the meaning of the
word over the whole space of word embeddings. As a consequence, each
dense vector must be good at predicting other words’ vectors in its context.
Moreover, changing the context means the particular word embedding changes
as well. [11]

Dense word embeddings are learned by neural networks. There are multiple
ways to learn these embeddings, but generally, two attitudes take place. One
is based on predicting the centre word according to the known context. The
other one does the exact opposite — it predicts the word’s context. Both
the attitudes are unsupervised, so they take advantage of the vast amount of
textual data available.

1T emma, of a word is its dictionary form.



2.3. The Czech language processing

2.3 The Czech language processing

Czech as a flexible fusional language is challenging to be approached by
computers. There are multiple properties of the language which make it
hard. First of all, Czech language contains seven grammatical case inflexions
which indicate the use of a particular noun in a sentence. Moreover, since the
grammatical function of the word is already encoded in its form, the language
in its colloquial style can use the words in multiple orders and still maintain
the same meaning®d. Affixes (word prefixes and suffixes) in the Czech language
contain information about the word’s context, and they are not usually easy
to be separated since they tend to fall loosely together.

Nevertheless, Czech is a pronoun dropping language which means it can
leave out a pronoun if it is obvious from the context®d. These and other
more detailed deviations make the Czech language hard to be understood by
computers. [12]

A few institutions are trying to bring the Czech language digital dictionaries,
corpora, traditional language processing tools as well as natural language
machine learninﬁbased tools to the public. For example, the Institute of the
Czech Language™! has already introduced multiple on-line Czech explanatory
dictionaries, corpora and many specific smaller dictionaries — such as the
dictionary of Czech affixes. However, these dictionaries are usually only a
digital copy of the printed version which means they are not well-suitable for
automated processing by a computer. Another institution which significantly
contributes to the research of the Czech language is the Natural Languaée
Processing Centre at the Faculty of Informatics, Masaryk University, Brno.
This institution has released multiple computer processable lexical databases
(e.g., Czech WordNet, Czech Lexical Database) as well as multiple tools for
Czech language parsing and syntactic and semantic analysis. They are also
trying to take usage of machine learning applied to the Czech language. The
Czech National Corpus [13] published by Faculty of Arts at Charles University
in Prague is one the biggest Czech corpora containing more than 10 million
words and including parallel corpora to with translations from or to 30+
languages.

” W

15Sentences “Martin vypil napoj.”, “Napoj vypil Martin.” and “Martin napoj vypil.
mean the same (Martin has drunk a beverage.) although the order of words is different.
16§ e., “Martin vypil ndpoj. Uz nem4 zizen.” The first sentence says “Martin has drunk
the beverage”, but the second sentence completely leaves out the Martin’s or any pronoun
describing Martin, although it is related to Martin (“He is not thirsty anymore.”).
Thttp://www.ujc.cas.cz

8https://nlp.fi.muni.cz/en/NLPCentre

”
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Finally, the Institute of Formal and Applied Linguistics@ whose tool and
corpus will be used later in this work, has already introduced a vast amount
of tools for syntactic and semantic analysis, machine translation, lexicons or
text processing. It also regularly publishes updated Czech language corpora.

2.3.1 MorphoDiTa tool

MorphoDiTa is a state-of-the-art open-source natural language processing
tool focusing merely on languages with very rich morphology introduced by
the Institute of Formal and Applied Linguistics at Faculty of Mathematics
and Physics, Charles University in Prague [14]. The following description of
this tool is based on the paper [14] by which the tool has been presented.
The tool performs lemmatizationtd, mm@hological analysised, morphological
generationtd, tokenizationtd and tagging=3.

Under the hood of the tool is an extraordinarily efficient combination of
existing NLP algorithms. Since it focuses mainly on fusional languages, it
uses an efficient way to deal with a large number of word endings per each
lemma by introducing so-called “morphological templates”. These templates
are created in unsupervised manners without any linguistic knowledge about
the particular language. They use special tree structures (“tries” [15]) where
each node corresponds to a character and descendants of each node share the
same prefix to find common templates as the suffixes of words go.

The main idea is to split the words into individual characters, build a “trie”
of them and then find sub-trees which are as deep as possible (the longer the
prefix is the better since the algorithm is looking for a prefixes which will be
common to most word forms possible) as long as their sub-trees’ lengths are
smaller than N (which is a hyper-parameter of the model, the suggestion is
that suffixes are usually short). An example of such a tree is visualised in
Figure @

Representation of different word inflexions by the templates explained in
the previous paragraph makes the algorithm very efficient in terms of
computational complexity as well as computer memory requirements. All
the possible lemmas from the “tries” are then passed to the next layer

Yhttps://ufal.mff.cuni.cz/

20Generating a sequence of word lemmas based on the input sentence. For example
the Czech sentence “Staroceské knihy jsou ¢tivé.” would result in a sequence of lemmas
[“starocesky”, “kniha”, “byt”, “ctivy”].

2! Analysis of the way the word was created from individual morphemes.

22 A tool which generates a word form based on a lemma and description of the demanded
form.

238plitting sentences into an array of word and symbols.

4By tagging individual words of the sentence, additional information such as the
part-of-speech, word form or other contextual information are added to each word.

10
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2.3. The Czech language processing

Figure 2.1: So-called “tries” which are built inside of the MorphoDiTa tool.
On the left, there is a character level decomposition of the Czech word “hrad”
(castle) based on its different forms which occurred in the training corpus. On
the right two lemmas sharing the same way of creating inflexions (“template”).
Figure taken from [14].

of MorphoDiTa which is a supervised POS@ tagger implemented as an
averaged perceptron [16]. Lastly, the supervised named entity recognizer
based on [14] is applied.

MorphoDiTa comes with robust pre-trained language models. However, users
can train their own models on any language. The tool is implemented in C++
and offers bindings to Python, Java and Perl. For users who do not want to
run it locally, an online version, as well as REST service API, are available.
The tool itself is computationally very efficient and can handle to process
a vast amount of data in a short period.

25Part-of-speech.

26 Analysis of entities in a sentence. For example, in the sentence “Martin bought products
from Apple yesterday.” the analysis would find out that “Martin” is a person, “Apple” is a
company and “yesterday” is the time of the action.

11






CHAPTER 3

Theoretical background

In this chapter, the essential machine learning algorithms that need to be
known for a later explanation of the state-of-the-art methods for distinguishing
word senses will be presented.

3.1 Recurrent neural network (RNN)

In the natural language, a word can have multiple meanings depending on
its context and use in a sentence. To be able to recognise the sense of the
particular word in a sentence the whole sentence has to be taken into account.
A sentence can be seen as a sequence of words and the general idea behind
understanding the word’s context is to create word vectors which encapsulate
words occurring before as well as after the particular words in the right order.

To learn a word representation while taking into account also a sequence of
preceding and following words a traditional feedforward neural network cannot
be used. For each input into a basic feedforward neural network, an output
completely independent on previous inputs is generated. For this reason,
basic feedforward neural networks are not suitable for sequence modelling.
As a consequence, recurrent neural networks [[17] has been proposed addressing
this problem.

The objective _of the recurrent cell in the recurrent neural network
(see Figure El]) is to generate an output based on the input at the
current time step of a sequence influenced by the inputs from previous time
steps. In the recurrent neural network, this is achieved by maintaining a
hidden state vector which “summarises” previously processed inputs. The
recurrent cell passes the hidden state vector back to itself together with the
input at a given time step of the sequence. Therefore, the recurrent cell
takes two inputs at each time step t: input vector at time step ¢ and the
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3. THEORETICAL BACKGROUND

Figure 3.1: Compact visualisation of the recurrent neural network is on the
left. Over time unrolled visualisation for a better understanding of the flow of
the recurrent neural network is on the right. R is a recurrent cell with weight
matrix W, hi,ho,...h; are hidden state vectors at each time step ¢, hg is the
hidden state initialisation vector and xz1,xs,...x; are input vectors at each time
step t. Image created by the author of this thesis.

r'} X 7'} : A

hidden state from the previous time step ¢t — 1. The output of this cell is the
hidden state at time step ¢ which can be further transformed depending on a
particular task or nothing but passed again to the recurrent cell along with
next time step input.

Let s, be a fixed size of the hidden state vector (user-defined) and sy a
fixed dimension of the input encoding. Recurrent cell is a single perceptron.
Inside of the recurrent cell at each time step ¢ a sum of the input vector and
the previous hidden state vector both weighted by corresponding weighting
matrix is passed into a non-linear hyperbolic tangent function. Mathematical
expression of the new hidden state computation:

hi = tanh(Wphi—1 + Wz, + b),

where h;_1 € R®m is the hidden state vector at time step t, Wj, € R*»*r and
W, € R%r:%4 are learned weight matrices and x; € R?®d is the input vector at
time step t and b € R*" is a bias. Weight matrices contain the same values for
all the time steps. If the hidden state at time step ¢ is also used as the output
of the network, further transformation can be applied

Yt = Wyht7

where W, € R*»*h is the learned weighting matrix. This transformation can
be used for example for classification task (predicting class based on hidden
state vector continuous values).

Recurrent neural networks can be used in multiple ways (Figure @) based
on the way of handling their input and output. “One to many” model takes
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3.1. Recurrent neural network (RNN)

Figure 3.2: Different usages of the recurrent neural network. a: one to many
(e.g., generating captions of a picture), b: many to one (e.g., sentiment
analysis), ¢: many to many after receiving complete input sentence (e.g.,
machine translation), d: many to many in “real time” (e.g., video frames
captioning) Visualisation borrowed from [18§].
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the input only at the first time step and generates an output_sequence of the
desired size. This is often used for the image captioning task&d.

On the other hand, “many to one” model generates just one output based on
a sequence of inputs. Sentiment analysised is a typical use of this model since
the hidden state vector of the last time step encapsulates to some extent the
previously received inputs.

“Many to many” models both receive the inputs at each time step and both
use the hidden state vector at each time step to generate their output. One
model generates an output at each time step of the input sequence — this
can be used for video classification based on individual frames. The other
one waits for generating the output sequence until the entire input sequence is
passed. This makes the model capable of understanding the input sequence as

2"Image captioning task is about describing visual content (images) by a sequence of
words which can be more easily processed by search engines. For example given an image of
a cat sitting on a desk the objective of the image captioning model is to predict a sequence
of words “cat_sitting on a desk”. Google achieved excellent results in this task using neural
networks in [19].

28Gentiment analysis is a task from the NLP field which tries to extract subjective
information from the text. It can be used for example to gain data about customers’
satisfaction with the product by analysing their comments regarding the product on social
media.
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3. THEORETICAL BACKGROUND

a whole. The output sequence of a variable length is then generated. Machine
translation® is a typical use of this architecture.

3.1.1 Long short-term memory network (LSTM)

Unfortunately, traditional recurrent neural networks tend to “forget”
information over a long period. Although, in theory, RNNs can learn long
term dependencies, in practice they almost cannot. This issue has been
addressed mostly to problems with vanishing gradients during the training
process [21].

The idea behind the solution to the problem of RNNs forgetting long term
dependencies is inspired by the way a human brain processes information.
Humans do not “store” everything they perceive directly in their brains [22]; on
the contrary, they pick out the critical information out of it and store just this.
A similar approach to information processing in recurrent neural networks has
been proposed in [23] and the resulting neural network architecture has been
named Long short-term memory network (LSTM).

Long short-term memory network presents a new recurrent neural network
cell (Figure @) with so-called gates enabling the cell to decide which new
information should it learn and which of already learned information should
be forgotten. Whereas in traditional simple RNN cell one perceptron is found,
in LSTM cell there are four of them formed in three “gate layers”. In addition
to the RNN cell, the LSTM cell maintains its inner cell state at time step t
as the vector ¢;. Crucial information is stored in this vector as well as the no
longer important one is removed from it. Other than that, the hidden state
vector, input vectors and the overall flow of the basic RNN network remains
the same with LSTM.

In the first, so-called “forget gate layer” the LSTM cell decides which
information of its cell state vector ¢; should be forgotten. This is done
by running previous hidden state vector h;—; and current input vector xy
through a perceptron with a sigmoid activation function. The “forget gate
layer” output vector is f:

ft = O'(thht_1 + mea:t + bf),

29Machine translation (MT) algorithms try to understand multiple languages and perform
translations between them without the help of a human. Traditional MT algorithms
were based on training data consisting of the same text written in different languages.
However, current state-of-the-art methods [20] learn from independent text training data
per each language and try to understand them. This leads to creating “inter-language”
representations of sentences using encoder-decoder architectures. Unfortunately, it still has
not been shown if a universal language representation (applicable for every natural language)
can be created.
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3.1. Recurrent neural network (RNN)

Figure 3.3: Visualisation of the internal implementation of the recurrent
LSTM cell. Individual “gate layers” are coloured differently. Yellow rectangle
highlights “forget gate layer”. Pink rectangle displays “input gate layer”. Blue
rectangle shows “output gate layer”. Original visualisation borrowed from [24],
edited for this work by the author of this thesis.
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where Wy, € R¥% and Wy, € R*"%@ are learned weighting matrices, h; 1 €
R%? is the hidden state vector at time step ¢, x; € R%¢ is the input vector at
time step ¢ and by is a bias. An intuitive example of the forget gate layer
usage in NLP is when the gender of the subject of the sentence changes — in
that case, the LSTM cell should forget about the old one.

The “second gate layer” is formed by two perceptrons - one with a sigmoid
activation function and the other one with a hyperbolic tangent activation
function. Using the perceptron with a hyperbolic tangent activation function
a vector of so-called “candidate values” ¢ is computed. “Candidate values”
determine which of the newly received information might be good to remember
by the cell state:

Ct = tanh(vvchhtfl + Wepry + bC)

W, € R%% and W, € R*»% are learned weighting matrices and b, is a bias.
The “candidate values” vector picks the important parts of the information;
however, it does not decide how much the particular part of the information
is important. As a result, the “second gate layer” computes vector i; using
the perceptron with a sigmoid activation function which decides on how much
the specific part of the information is important:

iy = o(Winhi—1 + Wigzy + b;).

Wi, € R*w5h and W, € R%% are learned weighting matrices and b; is a
bias.
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3. THEORETICAL BACKGROUND

The general idea behind the “second gate layer” is to pick important parts of
the information including expressing the level of their importance and adding
those parts to the cell state vector. Example from the field of NLP: if the
gender in a sentence changes, the second gate layer should pick out the new
gender and store information about it in the cell state.

In the next steps the LSTM cell updates the current cell state vector ¢; using
the f;, iy and & vectors computed in the first two gate layers and the previous
cell state vector c;_14:

c=fOc1+1i O

With the cell state vector updated, the cell can now produce an output. The
final output hidden state h; is a filtered version of the cell state (pushed
between -1 and 1 by a hyperbolic tangent function) based on current input
and previous hidden state:

or = 0(Wophi—1 + Wogy + by),

ht = o; ® tanh(c),

where W, € R*»%h and W, € R»% are learned weighting matrices and b,
is a bias.

For the sake of simplicity, all the transformations have been shown with input
batch size equal to one. In real-world usage, the batch size s, would be bigger,
and input, hidden state and inner state vectors would become matrices with
sp columns.

3.1.2 Multi-layer RNN

As it has been shown in other fields of machine learning (e.g., computer
vision [25]), deep neural networks tend to perform better on various tasks
— due to their higher ability to adapt to the data. Unlike feedforward
neural networks, recurrent ones can be already considered deep [26] by their
definition. If the recurrent neural network gets unrolled in time, it consists
of multiple perceptron applications stacked on top of each other. However,
there exist ways to make recurrent neural networks deep in different manners.

Multi-layer stacked recurrent neural networks have shown superior results to
the single layer ones in the field of NLP [27]. Multi-layer recurrent neural
network architectures, often used in language models which will be introduced
later in this work, use simple passing of the hidden state to the next layer
(Figure @) The hidden state of the first layer is passed as the input to the

39Operation ® is defined as an element-wise multiplication.
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3.2. Convolutional neural network (CNN)

Figure 3.4: Visualisation of the multi-layer recurrent neural network.
Source: [18§].
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second layer cell at each time step. This goes for as many layers as required,
and the final output is the output from the last layer at each time step. The
multi-layer model architecture can be used with traditional RNNs as well as
with more advanced LSTMs. However, in contrast with feedforward neural
networks, only a small number of layers (usually two or three) is used in
multi-layer recurrent neural networks in the field of NLP [27].

3.2 Convolutional neural network (CNN)

University | Convolutional neural networks are mostly known from the
field of computer vision. They have achieved excellent results [25] in computer
vision tasks such as object detection and object classification. The general idea
behind convolutional neural networks is to learn to focus on certain important
features of the input matrix (i.e., the image) and create a new set of higher level
features in each of the following layers. Intuitively, if the CNN is processing
an image of a car, it might learn to recognise lines which correspond with the
car body panels in the first layer and then in the next one it might learn to
recognise wheels. In the further layers, it could learn to recognise the car’s
headlights or, for example, doors.

The followir@ explanation is inspired by computer vision course at Stanford
]

The architecture of the convolutional neural network consists of three types
of layers: convolutional layer, pooling layer and fully connected layer. CNN
architectures tend to be very deep since every new convolutional layer makes
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3. THEORETICAL BACKGROUND

it possible to recognise a new higher level set of features. However, for this
work and the NLP algorithms which will be introduced later, explanation of
a network with only a single convolutional layer and with input in the form
of a simple two-dimensional matrix of real numbers will be provided.

3.2.1 Convolutional layer

The convolutional layer uses so-called filters to recognize important regions
of the input matrix. Filters are learned weight matrices and their dimensions
are hyper-parameters of the model.

Doing a convolution means sliding the filter matrix over the input matrix while
calculating dot products of overlaying values of these two matrices along the
way. Let for example F; € R?? be a filter, I; € R>® be the input matrix and
ss = 1 hyper-parameter called stride. Starting with top left corners of both
matrices aligned on top of each other, the algorithm will be moving the filter’s
top left corner always by s, positions at first in the horizontal direction and
after reaching the end of the row it will move the filter to the beginning of
the row which is ss positions away from the current row and continue there
as long as the whole filter matrix fits inside of the input matrix boundaries.
This convolution will end up creating a new matrix O; € R** consisting of
the calculated dot products called the activation map (Figure B.5).

The activation map shows how much in each filter sized region of the input
matrix are the data similar to the learned filter weights. If this was a computer
vision task, the filters could be learned to recognise for example vertical lines.
Parts of the input image where there were vertical lines would result in higher
values in the activation map.

Generally, having the input matrix I € R%m:%n_ filter matrix F € R%fm:5in
and stride sy (ss, Sym and sp, are hyper-parameters) results in activation
map matrix O € R%m % where

Som = (Sim - Sfm)/ss +1

and
Son = (Sin - an)/ss +1

after doing the convolution. Let f,; be the value in a-th row, b-th
column of the matrix F. First step of the convolution is to place I and F
(Sfm < Sim and sp, < Sip is assumed) on top of each other so that i;; and
f1,1 values are overlaying. Then the filter matrix F is moved over the matrix
I from left to right by ss positions and at each step the activation value is
calculated and stored into resulting activation map O. At each step all the
values of filter matrix F must be overlaying with corresponding values of I.
If f1,s;, does not overlay any value from I the filter matrix F is moved along
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3.2. Convolutional neural network (CNN)

Figure 3.5: Visualisation of a convolution example: a) first step of creating
activation map O using filter F1, b) second step of creating activation map
O; using filter Fy, c) fourth step of creating activation map O; using filter
Fy, d) first step of creating another activation map Oz using a different filter
F5. Image created by the author of this thesis.
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3. THEORETICAL BACKGROUND

the I to the beginning of I row r = current_row + ss. If fs, 1 does not
overlay any value from I the algorithm stops. Activation value at each time

step is calculated as
Sfm Sfn

Z ZFkJIki,lia

k=11=1

where k; and [; are corresponding positions to k and [ in the under-laying
matrix I.

In the case when the stride and filter size parameters would be set so it would
be impossible to move the filter matrix across all values in the input matrix,
so-called padding would be applied. Padding means adding values around the
input matrix to make it bigger and to enable the algorithm to run convolution
over it. Typically zeros are added around the input matrix which is called
zero-padding.

3.2.2 Pooling layer

In the deep convolutional networks used in the field of computer vision,
typically many convolutional filters are applied at each convolutional
layer. That tends the activation maps to be deep. As a consequence, the
computational complexity gets higher with more applied filters.

Pooling layers are designed to downsample the activation maps spatially but
to keep their depth. The activation map gets downsampled by running a
“pooling window” over the activation map matrix and calculating a certain
function value over the currently “highlighted” input matrix values and saving
these results into a new downsampled activation map. “Pooling window” size
and the stride are hyper-parameters — in practice 2 by 2 “windows” with a
stride of 2 are often used (resulting activation map is half the original size
spatially). Commonly used functions to calculate a new single value from the
whole currently “highlighted window” are maximum and average of the values.

Pooling layers are placed between convolutional layers. They proved to be
efficient in terms of reducing computational complexity and can be seen
as regularization elements in the network to prevent it from over-fitting.
However, in the algorithms introduced later in this work, only an effortless
max operation will be used in the convolutional network instead of the
complex one which uses the previously described sliding “windows”.

3.2.3 Non-linearity layer

Although the pooling layer acts as a non-linearity in the network, the
convolutional neural network might use a separate non-linearity layer. It
takes the activation map from the previous convolutional layer as the input
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3.2. Convolutional neural network (CNN)

Figure 3.6: Visualisation of an example of the pooling layer with 2 by 2 sized
“windows” and stride of 2. Input is the activation map from the previous
layer. In this example there are two types of pooling layers: a) max pooling
layer and b) average pooling layer. An image by the author of this work.
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and applies a non-linearity individually to every value of the map. Often
a rectified linear unit (ReLU) is used in convolutional networks. This
non-linearity makes every negative number zero which leads to forgetting
information (activations) which are not that important.

3.2.4 Fully connected layer (FC)

Although fully connected layers will not be used in any of the language
modelling algorithms introduced later in this work, they should be briefly
described to the reader to complete the explanation of basic convolutional
neural networks.

Neurons in the convolutional layers are always connected to a specific area
of the input matrix. As a consequence, they cannot be used to describe the
input matrix (i.e., image) as a wholet=.

To make it possible to make decisions (i.e., classify object in an image) about
the entire input matrix, fully connected layers have been introduced. Neurons
of these layers are connected to all values (activations) from the previous
layer. Fully connected layers are equivalents to hidden layers in basic neural
networks.

31 Assuming the filter is smaller than the input matrix. If the convolutional filter would
be the same size as the input, the convolutional layer would become fully connected. As a
consequence, the convolutional layer can be converted to a fully connected one. Moreover,
the fully connected layer can also be transformed into a convolutional layer resulting in a
large matrix with mostly zeros.
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3. THEORETICAL BACKGROUND

The fully connected layer is usually used as the last layer of convolutional
neural network architecture, so it can take high level extracted features as
its inputs and output class predictions (typically by utilising the softmax
activation function). state-of-the-art convolutional neural networks [25, 29]
from the field of computer vision often use more fully connected layers at the
end of their architectures.

3.3 Highway network

Deep neural networks suffer from vanishing gradient related problems since
the activation function used in neurons of a deep neural network squishes
the values into a small number range (e.g., the sigmoid’s range of values is
between 0 and 1). As the network gets deeper, these activation function output
values tend to get small (vanishing gradient) or big (exploding gradient).
Exploding gradient can be solved by multiple proposed methods (e.g., [30]).
The vanishing gradient cannot be solved once it happens; the network has
to be prevented from it. Moreover, due to the computer representation of
floating point numbers, these small values can become zeros.

As a result, a significant change in the input generates only a small change in
the activation functions down the stream. Calculating gradients from these
very small or zero values may end-up in zero gradients making it hard to train
the network. Unlike exploding gradients which can be prevented by applying,
for example, so-called “gradient clipping” (proposed in [30]) to the network,
vanishing gradients are harder to be dealt with.

One of the possible solutions to this problem which has been proposed in [31]
is called the Highway network, and its overall idea is similar to the gating
mechanism used in already explained Long short-term memory networks [23].

In a layer of a simple neural network is applied a non-linear transformation

Yn — H(WHZ‘ + bH),

where H is a non-linear function (e.g., sigmoid), vector y,, € R™ is the output
of the layer, W € R™" is a learned weighting matrix, the vector by € R™
are learned biases and x € R"” is a single vector input to the layer.
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3.3. Highway network

Highway networks enable each layer to learn which parts of the information
are important and keep those without further unnecessary transformation — a
parallel with the gating mechanism in the LSTM. Highway networks introduce
additional so-called “transform gate” non-linear transformation

yr = T(Wrx + br)

where 7T is a non-linear function, W € R™" is a learned weighting matrix
and by € R"™ are learned biases. The output vector yr decides how much a
certain part of the input information should be transformed. On contrary, the
so-called “carry gate”

yo=QQ-yr)ow

is the exact opposite of the “transform gate” and decides how much the input
information will be passed without further transforming. Here 1 € R" is a
vector of ones.

The output from the highway network’s layer is defined by putting carry and
transform gates together so

Yy=yr+yc =

= T(WT$ + bT) + (1 — T(WT.Z‘ + bT)) Oz
=T(Wrz+br)+2—-T(Wrx +br) © .

Although the main usage of the highway network takes place in very deep
networks to prevent them from issues related to the vanishing gradient, in one
of the machine learning algorithms explained later in this work a single layer
of the highway network will be used in a shallow neural network, to make it
able to learn additional information from the input [32].
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CHAPTER 4

State-of-the-art methods of
natural language processing

In this chapter, the state-of-the-art methods for natural language processing
with a significant focus on modelling polysemy will be presented. Some later
explained models may not be used on their own and need to be implemented
as a part of a bigger language model — these models will be mentioned
bellow so the reader can get familiar with individual parts of the resulting
state-of-the-art models. General introduction of this chapter has been
inspired by a great review of recently proposed methods in [27].

As the amount of textual data available on the Internet has grown, new
sophisticated and robust language models learning probability distributions
over particular languages on huge corpora has been proposed. Today’s
state-of-the-art language models are much more capable than just predicting
the next word in a sentence.

They can predict which sentences would be grammatically correct, however,
unlikely to appear given the context. Furthermore, they can understand long
term dependencies between words4 as well as understand the text itself so
well they can correctly answer questions asked in natural language based on
the input text.

Most of the modern language models are based on dense vector word
representations and neural networks, especially the recurrent neural networks
in their long short-term memory form. Long short-term memory networks

32 An example of a long term dependency in an article could be a situation when there
is a subject mentioned at the beginning of the article and at multiple following positions in
the article some attributes are given to the subject. A modern and well-trained language
model should be able to encapsulate all these attributes to the word representation.
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4. STATE-OF-THE-ART METHODS OF NATURAL LANGUAGE PROCESSING

bring the capability of remembering complex information about a particular
subject in the sentence. Also, recurrent neural networks, in general, are an
intuitive way to learn information from sequential data such as sentences of
natural language.

4.1 Character level convolutional neural network

Neural language models usually use word embeddings as their inputs.
However, this might be an issue in languages with a rich morphology
(e.g., Czech) since each morphological word form would be represented by
a distinct word embedding (there could be tens of word forms per each
lemma). As a consequence, the later neural network would be dealing with
high-dimensional data which would lead to worse performance. Furthermore,
the neural network probably would not be able to understand the similarity
between rare word forms which are based on the same lemma. This issue
is usually solved by applying a morphological analysis to the input words.
However, a new more general and inherently unsupervised approach based
on convolutional neural networks has been proposed in [32]. The following
explanation of the approach is based on this paper.

The proposed solution is connected to the input of a neural language model
as a word preprocessor (from words to embeddings). It uses character-level
input and creates word embeddings of a fixed dimension which is determined
by the number of filters used in the under-laying convolutional network. The
solution enables modelling information about morphemes in a word without
any linguistic knowledge. It is also very robust when processing misspelt
words.

First of all the vocabulary of all possible characters as well as their character
embeddings of the dimension d must be created. The character embeddings
can be fixed (for example one-hot encoded) vectors or can be learned as
low dimensional dense vectors. The authors of the paper suggest using low
dimensional dense vectors (learned along with the rest of the model) as the
embeddings which have shown to perform slightly better according to the

paper.

Having established the character embeddings, the algorithm splits the input
sentences into individual words and then, again, splits these words into
separate characters. FEach character is then represented by its embedding
vector created in the previous step. These character embedding vectors of
each word are concatenated together which results in a matrix C € R®%!
(Figure [1!) where d is the dimension of the character embeddings and [ is
the length of the longest word in the corpus per each word. For words shorter
than [, zero padding is used.
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4.1. Character level convolutional neural network

Figure 4.1: An example of the possible embeddings of characters. C7 uses a
one-hot encoding and thus d; is equal to the number of distinct characters
in the language. On the contrary, C uses learned dense vector character
encoding which results, in this case, in ds = 3. The results of both should be
similar. However, the authors of [32] suggest that using dense representation
performs slightly better. Therefore, only the dense representation will be
taken into account in the later explanation. In this particular example, there
is not a longer word than “hello” in the language. This visualisation has been
created by the author of this thesis.
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One of the model’s hyper-parameters is the number of convolutional filters h
to be learned during the training process. These filters can be of different sizes,
their widths w1, we, ...wy, are hyper-parameters of the model as well, and their
heights are always equal to the dimensionality of the character embeddings d.

All the learned convolutional filters Hy, Ho, ..., H;, € R%¥ are applied to the
character embeddings matrix C using a narrow convolution (without zero
padding, stride is one). As a result, h activation vectors aj,as,...,a, are
calculated, and a non-linearity is applied individually to their values. Length
of each of these vectors depends on the width of the particular convolutional
filter (example in Figure @) A filter of the width w is responsible for an
activation vector h of the length [ — w + 1. Intuitively, in this process the
convolution picks some n-gram (n = w) of the input word and calculates
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4. STATE-OF-THE-ART METHODS OF NATURAL LANGUAGE PROCESSING

Figure 4.2: An example of the character-level convolutional network
processing the input word “hello”. In a: first step of the convolution using
the filter Hy, in b: completed convolution using the first filter H; and first
step of the convolution using the second filter Hs. C' is the input character
embeddings matrix, ai,as are the activation vectors created by applying a
convolution using the filters H; and Hs to the input matrix and then applying
a non-linearity o (in this case a sigmoid) to the results, w3 =3, wo =2,1=5
and d = 3 are given hyper-parameters. This visualisation has been created by
the author of this thesis.
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4.2. Context-dependent bi-directional language model

Figure 4.3: This visualisation follows Figure @ It shows the extraction of
maximal values from the activation vectors. According to the example, the
activation vector a; chooses the tri-gram “ell” as the most important one and
similarly the activation the activation vector as does pick the bi-gram “lo”; y
is the final feature vector. This visualisation has been created by the author
of this thesis.

a, = Rl—wl+1 a, = Rl—wz+1 y € Rh

0.76 0.77 0.57 0.58 0.64 0.58 0.78 |0.77 0.78

feature value of it this; can be seen as assigning importance to the particular
n-gramed,

Lastly, a max value of each of the activation vectors a1, as, ..., ap is taken and
put into a resulting feature vector y € R" (Figure .3). Again, this intuitively
means picking the most important (interesting) n-grams of each word. As
a result, this character-level convolutional neural network can recognise the
lemmas of words without any morphological knowledge about the language.
Weights of the mentioned convolutional filters are trained together with the
downstream language model using stochastic gradient descent and for example
Hierarchical softmax [33] (word-level predictions).

4.2 Context-dependent bi-directional language
model

A good language model should be able to precisely compute the probability
of a sentence appearing in the input text. The general approach is to use
the chain rule. That means to simply calculate the conditional probability of
each word w; where i € 1,2, ...,n occurring in the sentence (i.e., a sequence of
words w1, wa, ..., wy) based on the previous words already seen in the sentence
and then multiply these conditional probabilities:

n
p(’wl,UJQ, ,’U)N) — H p(wk|w17w25 ceey wk‘—l)-
k=1

However, since essential dependencies in natural language can occur in both
directions from the target word, it is intuitive to model the conditional

33For example if the word on the input would be “heeeeeeello” and the algorithm would
be using filters of width w = 3, the “hee”, “ell”, “llo” should be triggering more attention to
the convolutional filter then n-gram “eee” which does not carry much useful information.
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probabilities in the right to left pass through the sentence as well:

n
p(w17w27"'7wN) == Hp(wklwk+17wk+27"‘7wk—1)' [@]
k=1

Because textual data are of a sequential type, the recurrent neural networks
are an inherent solution to this problem. The long short-memory networks
(LSTM), which are capable of remembering reasonably complicated
dependencies over long sequences of data has shown great results in the field
of natural language modelling as well.

Figure 4.4: Visualisation of the bi-directional language model using LSTM
networks in both directions according to [34]; I, ..., l4 are hidden state vectors
of the forward LSTM network (green), r1,...,r4 are hidden state vectors of
the backward LSTM network (blue), w is any word from the dictionary
or <start>/<end> tokens (placeholders expressing the start/end of the
sentence). Figure created by the author of this thesis.

p(w|cat drinks milk) p(w | milk)
p(w|The cat drinks milk) * p(w | drinks milk) *

: To
A
The cat drinks miIk
v
m

p(w|The)

H p(w|The cat drinks)
p(w|The cat) p(w|The cat drinks milk)

Modern bi-directional language models use two LSTMs — one for the forward
(from left to right) and one for the backward (from right to left) pass through
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the sentence. At every word position w; the LSTM outputs the hidden state of
the step t corresponding to one of the directions. By using those two LSTMs
each in a different direction, two hidden states are computed at each step t.
These two hidden states encapsulate information about the left as well as the
right context of the word w; (Figure @)

Different models use different techniques to create single vector word
representation of the two direction-dependent ones, but most often a simple
concatenation of the vectors is used resulting in a single vector word
representation encapsulating the word itself as well as its context in both
directions. A Softmax layer is used to predict the next/previous word based
of the hidden state of the LSTM at each step.

4.3 Word2vec

Word2vec neural language model which has been introduced by the paper [35]
in 2013 is probably the most frequently used one even today. It has come up
with an efficient way to learn distributed word representations. Furthermore,
it has shown that by applying simple algebraic operations to the learned word
representations, surprisingly complex meaning-based relationships between
words can be modelled. Although Word2vec cannot deal with polysemy, it
will be quickly explained in this thesis as a requirement for the understanding
of the more advanced models. The following description is based on [35].

First of all, the Word2vec model prepares a dictionary of all the possible
words in the training data. The input to the model is then positionally
encoded (one-hot encoding). There are two possible architectures of this
model: the Continuous Bag-of-Words model and the Continuous Skip-gram
model (Figure @)

The Continuous Bag-of-Words model (CBOW) architecture utilizes a single
hidden layer of linear neurons and a Softmax output layer. The objective
of the model during training is to predict the centre word based on the
continuously distributed representation of the centre word’s context.E2 The
context is limited in size by a fixed window taking into account only some
number of the centre word’s neighbours in both directions. Since it is a “bag”
of words, the surrounding context words are not ordered. This architecture
has shown better results on smaller datasets due to its ability to smooth over
the context information (the whole context is encoded in one representation,
rare or misspelt words might be smoothed out).

34For example if the sentence in the training dataset would be “My dog is very fat”, at
some point the Bag-of-Words model would be trying to predict the word “very” based on

the context words “dog”, “my”, “is” and “fat”.
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Figure 4.5: A visualisation of the Word2vec architectures. CBOW
model architecture on the left, Skip-gram model architecture on the right.
Visualisation borrowed from [35].
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On the contrary, the objective of the Skip-gram model architecture is to predict
the context given the centre word. The model tries to predict the surrounding
words within a fixed range during the training. It has been shown in the
paper that predicting broader context improves the quality of the learned word
vectors but increases the computational complexity. To model the fact that
more distant words are usually less important to the centre word, weighting
can be applied during the training process.

Both the models mentioned above are used in the same manner. When the
model is trained (to predict the centre words or the contexts), its hidden
layer weights are extracted. Since the input, as well as the labels, are one-hot
encoded, it means the weights of each linear neuron in the hidden layer are
corresponding to particular words in the same order they were represented
by the one-hot vector. As a result, in each of the linear neuron, there are
v weights (v is the size of the vocabulary). By concatenating weights from all
of the neurons of the hidden layer a matrix W € R%¢ where d is the number
of neurons is obtained. In this matrix, each row is a word embedding of the
positionally corresponding word in the vocabulary.
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Word2vec learned word embedding vectors have shown great results in
terms of modelling similarity between words. By simply applying basic
algebraic operations to them, surprisingly precise and deep relationships can
be discovered. For example

vector(Berlin) = vector(Paris) — vector(France) + vector(Germany) or

vector(smallest) = vector(biggest) — vector(big) + vector(small).

4.4 Context2vec

The Word2vec model presented in the previous section has shown good results
on the language modelling task. However, there are few serious drawbacks
with this model. Due to its fixed word representation where each word is
assigned a single dense vector, it is not capable of modelling different senses
of the same word based on the context (polysemy). Moreover, the fixed size
window region of words around the target word which are analysed during the
training process may lead to bad understanding of the context, since important
words (i.e., subject of the sentence) can be placed further away from the target
word outside of the fixed window region. Also, representing words surrounding
the target as an unordered set of equally relevant words cannot understand
the context deeply. One of the possible solutions to these problems has been
introduced in [36] as a so-called Context2vec model. The following description
is based on this paper.

The Context2vec model is heavily inspired by Word2vec’s CBOW model. It
uses almost the same architecture (see comparison in Figure §.6), negative
sampling [35] and the same way of training as Word2vec. However, it replaces
the part where Word2vec uses fixed size window to encapsulate information
about the context surrounding the target word into a single vector by a
much more advanced bi-directional recurrent long short-term memory network
(presented in the Theoretical background chapter of this thesis). Using long
short-term memory network to gain knowledge about the word’s context
inherently leads to a much deeper understanding of complex dependencies
in the sentence in comparison with the simple approach used in Word2vec.

It is important to mention that Context2vec uses the bi-directional recurrent
neural network in a rather unusual way in comparison with other language
modelling algorithms. It splits the input sentence into two parts by the target
word resulting in a sequence of words [ before and a sequence of words r after
the target word. The target word itself is not passed to the recurrent neural
network at all. For the sequence [ the hidden state of the last word from this
sequence computed by forward (left-to-right) pass through the LSTM over the
sequence [ is produced. The same goes for the sequence r, however, in this
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Figure 4.6: A comparison of the Word2vec (a) and Context2vec (b) models.

Visualisation borrowed from [36].
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case, it produces the hidden state of the first word in the r sequence computed
by the backward pass (right-to-left) throught the LSTM over the r sequence.
As a result, two hidden state vectors each describing one of the two directions
of the context are produced.

36
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To fit the architecture used in the Word2vec model, the Context2vec model
utilises a multilayer perceptron to pick important features from the left and the
right context vector representations produced by the bi-directional LSTM. In
the result, a single sentential context embedding is produced. This embedding
is used in the training phase in the same manners as the averaged context
embedding in the Word2vec model.

After training, the weights of the multilayer perceptron are frozen and used for
predictions of context embeddings of new sentences which is the objective of
the Context2vec model. Of course, based on the context embeddings the most
probable word occurring in the context can be predicted by using a Softmax
layer.

The Context2vec model is capable of modelling contextual dependencies
as well as modelling polysemy (which is important for the objective of
this thesis). Unfortunately, this model is hardly usable for languages with
a rich morphology since it does not use any module for morphological
analysis. Overall, the Context2vec model has shown good results on sentence
completion, lexical substitution and word sense disambiguation task according
to the paper.

4.5 Deep contextualised word representations
(ELMo)

Embeddings from Language Models (ELMo) which have been presented in [34]
have been one of the most important innovations in the field of natural
language processing. Not only that the model which has been introduced this
study is capable of state-of-the-art accuracy language modelling, but it also
brings transfer learning to the NLP. However, for this thesis, the essential
property of the model behind ELMo is its ability to inherently distinguish
between distinct word senses (it is capable of modelling polysemy). This
section is based on [34]. The architecture of the model behind the Embeddings
from Language Models will be called for simplicity “ELMo” in this thesis from
now on.

The general idea behind ELMo is to train a sophisticated language model on a
large corpus and then allow the downstream task developers to fit the robust
and complex ELMo word embeddings to the needs of their supervised models
without the necessity to do the computationally expensive language model
training from scratch on their own. This has brought the transfer-learning
into the field of natural language processing, making it possible for smaller
developers without the access to an adequate computational power or
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in-depth knowledge of machine learning to implement state-of-the-art
language processing techniques into their applications.

ELMo works remarkably well even on languages with rich morphology. It
does not use any morphological analysis tool or a human-made dictionary
of morphemes. Instead, ELMo takes use of the character level convolutional
neural network (charCNN) which has been previously presented in this
chapter. The input words are split into individual characters and passed to
the charCNN which computes context-independent word embeddings. These
embeddings represent words based on the same lemma close to each other in
the vector space and do not get confused by misspelt words.

In the next step, ELMo passes the context-independent character-level
word embeddings through the 2-layer highway network (explained in the
Theoretical background chapter of this thesis) where interactions between
different n-grams of the word can be captured. The output of the 2-layer
highway network is used as an input to the bi-directional language model.

The bi-directional language model utilised in ELMo consists of two layers bd of
LSTM network in both directions. The inputs to the first layer of the LSTM
network are the context-independent word embeddings from the character
level convolutional neural network. For each word, four hidden states of the
LSTM network are computed — two from both-directional passes of the first
bottom layer and the other two similarly from both directions of the second
upper layer. It has been shown in the paper that the bottom layer of the
network models syntactic dependencies whereas the upper layer focuses more
on semantic aspects of the context.

Where ELMo differs from previous studies is the way it handles the output
(hidden state) vectors from the bi-directional language model. At first, ELMo
concatenates forward and backward pass hidden states at each time step and
in each layer into a single vector. As a result, two concatenated vectors (one
vector per layer of the LSTM network) are computed per each word. The
concatenated vector mi from the first layer has shown to describe the syntactic
level information whereas the concatenated vector mo from the second layer
of the LSTM focuses on the semantic meaning of the whole context. To
add sub-word character-level information ELMo takes the output from the
character level convolutional neural network and concatenates it with itself
(to get a vector of the size of my or msg) into a single vector my.

The three vectors mg, m1, mo are the outputs of the bi-directional language
model for a particular word of the input sentence. To create a task specific

35The output from the first layer is passed as an input to the second layer of the LSTM
network at each time step.
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Figure 4.7:  Visualisation of the architecture of the model behind
the Embeddings from Language Models (ELMo): sg,s1,s2 are learned
softmax-normalised weights and v € R is a learned weight involved for
optimisation purposes. This visualisation has been created by the author
of this thesis.

A A A

ELMO,peading = 7 ™ (Sommg + s1my + 5,1m5)

A A A

: HlHEEE " HHEEEE " EEENEN
 IEENEE 7 EEESEE 7 SRS
m HHEEEEE ~ HHEEEE 7 BN

A A A

bi-directional language model

2-layer 2-layer 2-layer
highway network highway network highway network

éuTéé éé éﬁ@&

Lemons are yellow.

39



4. STATE-OF-THE-ART METHODS OF NATURAL LANGUAGE PROCESSING

ELMo word embeddings, the downstream task developer uses a linear
combination of the three vectors

ELMoembedding = 7 * (Somo + s1m1 + sama),

where sq, $1, s2 are learned softmax-normalised weights and v € R is a learned
weight involved for optimisation purposes; mg,mi,ms € R", where h is
number of filters in the character level convolutional network, are ELMo
vectors.

To sum it up, the bi-directional language model in ELMo is trained on a huge
language corpus. Afterwards, its hidden state vectors are frozen. Downstream
task developers initialize their ELMo model with the language corresponding
frozen weights. As a result, they receive three word describing vectors per each
word in a sentence. Although these vectors could be used on their own, to
take full advantage of ELMo, a linear combination of these vectors is trained
alongside with the downstream supervised model to compute the ELMo word
embeddings. Such embeddings are capable of fitting to individual needs of the
downstream task by using the right amount of character-level, syntactic and
semantic information.
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CHAPTER 5

Realisation

The objective of this thesis is to apply the state-of-the-art methods introduced
above on the Czech word sense disambiguation task. The model should be
able to decide if two use cases of a word with the same lemma are expressing
the same meaning (word sense) or not. Furthermore, unsupervised clustering
approach could be theoretically able to find all the word sense classes existing
in an input textual data. In this chapter, different possible approaches to
this task will be presented, and their results will be analysed. Moreover,
the essential process to acquire relevant Czech language training data will be
described.

5.1 Acquiring relevant Czech textual data

There are two different types of Czech language textual datasets which
will be used in this thesis. To use supervised methods to disambiguate
between different word senses a labelled dataset of words including the class
identification of the particular word sense must be acquired. On the other
hand, to train a language model, a huge language corpus must be used. In
this section, the used methods for obtaining and processing these data will
be described.

5.1.1 Czech language corpus

There are multiple Czech language corpora available for free for educational
purposes. They differ in quality and the source of the data. Some use the
publicly available data from the internet (sometimes including comments,
captions and other textual data from social networks) and some are
solely based on printed publications. In this thesis, I have been using the
SYN2015 [37] corpus published by the Institute of the Czech National Corpus,
Charles University in Prague.
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5. REALISATION

lemma sense_id example

bank 1 I have got much money in the bank.

bank 2 These animals live on the banks of the river.
car 3 Volkswagen Beetle is the ultimate car!

bank 1 To buy a Beetle, we need to rob the bank!

Table 5.1: An example of the desired word sense disambiguation dataset
format. The field sense_id contains the word sense identification according
to the particular example.

The SYN2015 corpus contains 100 million words in 8 004 732 sentences
extracted from 3 376 printed publications from 2010 to 2014 only. Sentences
from these publications are shuffled in the corpus due to the copyright law.
However, every sentence is assigned to its original publication. The corpus
contains almost equally text from three following categories: newspapers
and magazines, fictions and non-fiction. For each word, the corpus contains
a lemmatised version of it and adds a rich morphological as well as a
syntactical annotation. Unfortunately, it does not offer a sufficient amount
of information in terms of word sense classification. Hence it will be used
only as a training corpus for a language model in this thesis. [37]

The corpus comes in a huge 10GB XML formatted file. To use the corpus for
the training of a language model, individual sentences need to be extracted
from this XML file. Due to its enormous size, conventional XML parsing
libraries for Python could not be used without further modifications. As a
result, I have written a Python script (syn2015/parser.py) implementing a
simple automaton to parse out individual words and concatenate them into
sentences. A much smaller data file (less than 700MB) containing a sentence
per each line has been produced by running this code on the SYN2015 corpus.
Such data file can be easily used for training of a language model.

5.1.2 Czech word sense disambiguation dataset

At the time of the creation of this thesis, there were no explicit word sense
disambiguation datasets for the Czech language available. Such dataset should
contain a large amount of distinct word lemmas each provided with multiple
examples of different usages in a sentence with the additional information
about the word sense class used in the particular example (see Table Ell)

Because of the missing Czech dataset, I have had to create custom dataset
based on available online Czech dictionaries. However, most of the online
Czech dictionaries do not offer enough examples of different word sense usages
or do not have the examples at all.
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5.1.  Acquiring relevant Czech textual data

The first Czech online dictionary that have come to my mind is the Internetovd
jazykovd prirucka [38] by Czech Language Institute of the Czech Academy of
Sciences which contains some word usage examples, but does not describe the
individual word senses at all, hence is not usable for this task.

Slovnik spisovného jazyka ceského [39] is another online dictionary published
by the same institution. This dictionary contains most of the data which
are needed for the supervised word sense disambiguation model training, but
unfortunately, it is hardly processable by a computer. The format of this
dictionary is the same as the one used in the printed version of the dictionary.
To save space it uses many abbreviations in the notations as well as in the
example sentences. Processing such a dictionary by a computer would be
really hard and probably not accurate.

Another Czech online dictionary worth mentioning is The Valency Lexicon
of Czech Verbs with Complex Syntactic-Semantic Annotation (valex) [40]
developed at the Institute of Formal and Applied Linguistics, Faculty of
Mathematics and Physics, Charles University, Prague. This dictionary would
be quite useful in this thesis if it was larger and was not containing only
verbs. The other “officially” published dictionaries available on the internet
usually do not contain the data necessary for this task or their format is not
easily processable by a computer (for example Prirucni slovnik jazyka ceského
(1935-1957) [A1] which returns digitalised printed dictionary image data).

Fortunately, the open community online dictionary Wiktionary [42] contains
all the information needed to create a word sense disambiguation dataset
for the Czech language. Although, this dictionary contains many mistakes
(misspelt words, incorrect example sentences), it is still the best available
source of these data online.

The whole Wiktionary (including 238 languages, 110 237 keywords) can be
downloaded as an SQL import script or as an XML file. Since there was
no easily readable documentation of the database scheme available, I decided
to use the XML dump file. Sadly this XML file is not well structured, and
Wiktionary itself says that it is not meant to be processed by a computer.
The XML file contains all the relevant information inside a single XML tag
as a plain text which was created by humans, so it tends to be corrupted.

I have come up with another script (wiktionary/wiktionary_parser.py)
implementing an automaton processing the Wiktionary XML dump. This
script takes the input XML file and for each Czech word finds all the possible
meanings in the plain text data as well as all the examples of usages in
sentences which are available. As a result, a tabular dataset corresponding to
the format in Table EI has been generated.
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There has been 12 789 different Czech substantive and 6 926 adjective
in-sentence usage examples found in the Wiktionary XML dump file. It is
important to have at least two different word senses per word with at least
one sense containing at least two different in-sentence usage examples to be
able to learn to understand which usages are referring to the same meaning
of the word and which are not.

Therefore I have created a dataset corresponding with the description
above. This dataset contains only 2066 examples (includes adjectives and
substantives) which means that most of the Wiktionary data are not suitable
for achieving the goal of this thesis. Furthermore, I have found out that
a lot of these examples are rude ones and not suitable for the academic
environment at all (people were probably getting creative about words they
found entertaining in some ways). However, since there are not better Czech
word sense disambiguation data available, this dataset will be used from now
on in this thesis.

5.2 Using the Context2vec model

The Context2vec model is not a widely used one and therefore it is hard to
find good pretrained models for languages other than English. At the time
of the creation of this thesis there was no pretrained model for the Czech
language publicly available.

As a result, I have trained my Context2vec model from scratch using the
implementation [43] from the author of the original paper [36]. I have
decided to use the SYN2015 corpus as a training dataset for this model.
Unfortunately, Context2vec model is very expensive to be trained in terms of
the computational power as well as the memory, so I was not able to train it
on the whole corpus.

I have been using Google Cloud to run these computations, and the
bottleneck was the power of individual CPU cores while the Context2vec
training algorithm was not able to use efficiently two or more cores in parallel.
Although it could be much faster to train the model on a GPUs, the pricing
of GPU cloud instances with a sufficient amount of RAM was not suitable
for me, and sadly the university could not provide me with the needed
computational power as well.

In the result, I was forced to make the corpus smaller by leaving out most of
the sentences. In order to make the model trainable in my conditions, I have
had to make the corpus about 100 times smaller than the original one resulting
in a one million words dataset. Training the Context2vec model for 50 epochs
using the one million words dataset took me more than a week of constant
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sent. a sent. b sent. c

inscenaci (inscenation) vSechny (all) smeCce  (gang)
metodé  (method) nékteré (some) bali (Bali)
knizete (prince) koupani (bathing) tenise (tenis)
médium  (medium) ucitelky (teachers)  remize  (tie)

hry (games) nastavajici (oncoming) vyzvé (challenge)

Table 5.2: Examples of the top five target word predictions by the
Context2vec model.  The target word position is annotated as “#”.
sentence a: “Po celou dobu studia gymnézia jsem se snazil mit co
nejlepsi znamky, protoze jsem doufal, Zze by mi to mohlo pomoci pfi
nasledném studiu na prazské # skole” (“Throughout my studies at the
grammar school, I was trying to get the best grades possible because I was
hoping it would help me in my subsequent studies at a # in Prague”)
sentence b: “Koupil jsem si ojety # znacky Skoda a zpétné musim
rict, ze to byla dobrd koupé a to i presto, ze mé puvodné vsichni
odrazovali od onoho litrového tiivdlce” (“I have bought a used Skoda
# and I have to say that it was a good purchase, despite the fact
that I was initially discouraged by the one-liter three-cylinder engine.”)
sentence c: “Neddvno jsem se prochazel po # a kochal jsem se vanoc¢ni
vyzdobou.” (“I was recently walking around the # and enjoying the Christmas
decorations.”)

computation on a Google Cloud instance (4 virtual cores of the Intel Xeon
processors, 32GB of RAM, the algorithm was effectively using only 2 cores
at a time and no more than 12GB of memory). The resulting model can be
found in context2vec/syn2015_model_1Mwords_50epochs.zip.

Since I was not able to train the contex2vec language model on a large corpus
which is especially crucial for the Czech language as a fusional one, I could
not get good prediction accuracy from the trained Context2vec model. It
has not learned to model the Czech language in a sufficient way resulting in
bad accuracy on predicting the centre word given its context (see example in
Table ), and as a result, it has shown to be unusable for different word
sense disambiguation task.

5.3 Using the ELMo model

Unlike Context2vec, ELMo has become popular in the NLP community
resulting in multiple pretrained models publicly available on the internet.
Since the “official” implementation of the ELMo model created by the
authors of the original paper [34] uses ASCII like character encoding, it is
not suitable for language using special characters (i.e., Czech). Fortunately,
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so-called ELMoForManyLangs implementation of the ELMo model which
is using Unicode character encoding has been introduced [44]. Along with
this implementation, pre-trained models for many languages (including
Czech and German) has been published [45]. In the publicly available
ELMoForManyLangs repository is no information about the license of these
models — only citation [44] information are provided. I am including these
models and the ELMoForManyLangs algorithm in the attached medium since
the algorithm need to be configured before use.

The Czech ELMo model has been trained on 20 million words data randomly
sampled from the Czech Wikipedia@ and other publicly accessible internet
pages in the Czech language. According to the authors of this model, the
training took them about three days using the powerful NVIDIA Tesla P100
GPU. [44]

I have been using the ELMoForManyLangs programmatically via the
Embedder Python object. This object has allowed me to easily obtain ELMo
vector word representations for each word of a particular sentence by simply
passing an array of sentences where a sentence is an array of strings (words)
to the sents2elmo() method of the object. By passing the output_layer
parameter to the method I have been able to choose in which ELMo layers
am I interested in (average of all the three layers, the context-independent
character level convolutional network layer, the first layer of the bi-directional
LSTM (syntactic dependencies), the second layer of the bi-directional LSTM
(semantic meaning) or all the layers at once). The sents2elmo ()| method
returns an array of Numpy arrays (sentences) of word embeddings (each
embedding consists of 1024 values in this model).

Thanks to the existing model pre-trained on a large Czech textual dataset
and the ability to pick different layers of ELMo each representing a slightly
different notion of the word, ELMo along with this pre-trained model will be
used for the classification and clustering algorithms in this thesis.

5.4 Word sense binary classification

To turn the word sense disambiguation task into a classification one, I have
specified the task definition as follows: “For each two pairs of the word
usage examples in a sentence where the paired words are always based on
the same lemma determine whether they express the same meaning or not.”
This specification turns the problem into a binary classification. I have been
pairing only words based on the same lemma to avoid an enormous confusion
which would occur if comparing totally different words (i.e., “house” and “to

3%https://cs.wikipedia.org/
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5.4. Word sense binary classification

word sense__id example

hlavni 3 Hlavni pri¢inou nasi porazky byly chyby v obrané.
hlavni 4 Hlavni mésto Spanélska je Madrid.

ruze 5 Dostala jsem tri nadherné rudé ruze.

ruze 6 Ruze, odborné erysipel, se projevuje na kuzi

(ohrajicené zanétlivé lozisko, jazykovité se Sifici do
okoli — pali, svédi) a celkové (vysoka horecka, zimnice,
bolest hlavy, nevolnost).

rize 7 Na tvafi jesté méla zbytky ruze.

nadrazi 8 Vlak vjizdél zvolna do nadrazi.

nadrazi 9 Jede ndm to v pét z autobusového nadrazi.

byt 10 'Je’ Btih? Je viibec na svété néjaka spravedlnost?
byt 10 Dédecek uz tu ”’neni”’.

byt 10 7'Byt”’, ¢i”’nebyt”’? To je, o¢ tu bézi”

Table 5.3: A preview of the dataset based on the Czech Wiktionary XML
dump restricted to adjectives, substantives and verbs.

be”) to find if they express the same meaning or not. “Expressing the same
meaning” means being in the same sense_id class of the dataset (Table p.1)).

5.4.1 Preparation of the classification dataset

I have decided to use only the substantives, adjectives and verbs for the
classification dataset, since other categories of words usually do not occur in
multiple senses in Czech or are not stand-alone words at all (e.g., prepositions).

After loading the complete Czech adjective, substantive and verbs dataset
(based on the Wiktionary XML dump) corresponding to the specification
described above (example in Table ET) the first step was to remove words
with only one example usage in a sentence. Such words would not be useful
for this dataset while no pairs containing them could be created. This has
resulted in a dataset containing 12021 sentence usage examples of 4099 unique
words (on_average ~ 2.93 examples per word). See a preview of this dataset
in Table @

In the next step I have filtered out words which were assigned to only one
word sense class as well as words which were not assigned to any word sense
class containing more than two examples of usage in a sentence. The reason
for this filter is to select only words based on which a complex word sense
comparison dataset can be created (the dataset must contain at least the
following tuples per each word: different words of the same meaning, different
words of a different meaning). I have written a script which applies such filter
and generates a labelled (1 if the word meanings are the same, 0 otherwise)
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word sentence__a sentence__ b are__equal
voda praskla trubka a vSude nalej  mi, prosim, True
se rozlila voda sklenici vody
voda nalej  mi, prosim, plodova voda False
sklenici vody
slovo dal mu své slovo mél slovo na tvod False
slovo véty se skladaji ze slov  to slovo jsem nikdy True
neslysel

Table 5.4: A preview of the coupled words classification dataset.

dataset containing unique couples of words. The script has also made all the
example sentences and words lower-cased. See a preview of the output dataset
in Table @

However, there is an issue with the generated coupled word examples dataset.
In most cases it does not say which word in the example sentence is the target
one (the word which the example focuses on — i.e., the word bank in a couple
of sentences “the river and its banks” and “I’ve got money in the bank”). It
would be useful to have some kind of annotation to highlight the target word.
I have chosen to annotate such word by adding “@” before and after it to the
sentence (bank — @bank@).

Unfortunately, it is not so simple to find all the occurrences of the target
word in a Czech sentence due to its morphological variability. A solution to
this issue would be to use a lemmatiser or a stemmer on the whole example
sentence, but there are almost no reasonably good ones for Czech. One of
the few is a part of the MorphoDiTa tool introduced in the first chapter of
this thesis. MorphoDiTa tool offers a very precise lemmatiser, but since it is
primarily implemented in C and the Python binding is poorly documented,
I have decided to use the online MorphoDiTa tool B4, T have created a script
which has generated all the distinct sentences from the coupled examples
dataset created above, and I have manually generated a lemmatised version of
these sentences using the MorphoDiTa online tool. Afterwards, I have loaded
the lemmatised versions of the sentences back to the Python code and have
created a dictionary where keys have been the original sentences and values
have been the lemmatised version.

To add annotations around the target words in the example sentences, a simple
lookup of the position of the target word in the lemmatised sentence and
annotating the word at the same position in the original example sentence
has been used. This, of course, presumes that by lemmatising a sentence, the

3"http://lindat.mff.cuni.cz/services/morphodita/
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word sentence__a sentence_ b are__equal

voda praskla trubka a vSude nalej  mi, prosim, True
se rozlila @Qvoda@ sklenici @Qvody@

voda nalej  mi, prosim, plodova @voda@ False
sklenici @vody@

slovo dal mu své @slovo@ mél @slovo@ na tvod False

slovo véty se skladaji ze to @slovo@ jsem nikdy True
@slov@ neslysel

Table 5.5: A preview of the annotated coupled words classification dataset.
The preview is based on Table p.4.

order of words would not change and no words would disappear. If the lemma
of the word was consisting of more than one part (i.e., “rozbéhnout se”, “sejit
se”) I have used the longer word as a lookup keyword — and it has shown that
for the Czech language this solution works quite well. See a preview of the

annotated dataset in Table .

The last step of creating the binary classification dataset is to compute
the word embeddings from the Czech ELMo model for each annotated
word given its context (the surrounding sentence). I have used the
mentioned ELMoForManyLangs Czech pre-trained model and generated
word embeddings by passing the example sentences one by one to the model
and then selecting the word embedding vectors at the positions corresponding
to the positions of the annotated words from the output of the ELMo model.

Each row of the final dataset consists of the lemmatised word form, a couple
of example usages of the word in a sentence (for debugging and analysis
purpose), three word embedding vectors (each of size 1024) from the ELMo
model per sentence (in total 6 word embedding vectors for two sentences),
the sense equality label as well as the cosine similarity and Euclidean distance
(feature engineering) of each two corresponding word vectors. This dataset
has 6190 examples, however, it is very unbalanced in terms of positive and
negative examples. According to the way this dataset has been created, it is
logical that negative examples will occur much more frequently than positive
ones. Specifically, the dataset contains 4914 negative examples and only
1277 positive ones. I have balanced the dataset in order to make it behave
correctly in the binary classification task. The final size of the balanced ELMo
Czech dataset is 2554 examples formed by 487 unique words (on average
~ 5.24 examples per word). All the transformations above can be found in
the classification/classification_dataset_preparator.ipynb Jupyter
notebook.
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5.4.2 Application of different classifiers

There are multiple ways of using the data from the dataset created in the
previous section as an input to a classification algorithm. I have focused on
following input data selections:

1. using all the ELMo output vectors (6 - 1024 values),
2. using a certain selection of ELMo layer vectors (each layer 2-1024 values),

3. using the feature engineered values (cosine similarity or Euclidean
distance) which are of much lower dimension.

Moreover, multiple classifiers can be used as well. In the following sections,
individual classifiers with various inputs will be analysed.

5.4.2.1 Train, validation and test dataset split

Since the dataset contains multiple sentence examples per each word and the
example sentences can be repeated per each word, a simple train, validation,
test split cannot be used. For this reason, I have implemented a custom
dataset split function (in classification/word_sense_classifier.ipynb
Jupyter notebook) which does the split based on the particular words rather
than examples. I have applied this function twice (first on the whole dataset,
then on the test part) on the dataset to obtain train, validation and test
datasets. The final train dataset contains 1653 examples; validation one
contains 675 examples and, finally, the test dataset consists of 226 examples.

5.4.2.2 Logistic regression

The simplest classification algorithm used in this thesis is the logistic
regression. When used with the cosine similarity of the three ELMo vectors
it has not been able to fit the data at all. The same has applied for the
Euclidean distance between the ELMo vectors. On the other hand, when the
raw ELMo vectors have been passed to Logistic regression, it has over-fitted
itself during the training process and failed on the validation dataset. See
Table @ for the results.

5.4.2.3 k-nearest neighbors classifier

I have tried to apply the kNN classifier on the dataset, but the results have
not been satisfying. It has not been able to fit or predict the data at all.
I have been _using multiple values of the parameter k varying from 1 up to 30.
See Table @ for the results.
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cos. sim. Eucl. all ELMo1 ELMo 2
dist. ELMo

log. r. train 0.53 0.56 0.99 0.98 0.99
log. r. val. 0.47 0.48 0.53 0.52 0.54
kNN train 0.6 0.63 0.76 0.73 0.76

(k=19) (k=19) (k=5) (k=6) (k=5)
kNN val. 0.55 0.53 0.52 0.57 0.51
Ada. train 0.67 0.77 0.76 0.75 0.74
Ada. val. 0.51 0.52 0.54 0.57 0.53

Table 5.6: Table of accuracies achieved by logistic regression (log. r.), kNN
and Adaboost classifiers on the ELMo classification dataset (cosine similarity,
Euclidean distance, all the three vectors from ELMo, individual vectors from
the ELMo’s bi-directional language model).

5.4.2.4 AdaBoost classifier

I have been using the ensemble Adaboost classifier with various hyperparameters
(number of estimators and learning-rate). However, I have not been able
to get a good result with any of the hyperparameter settings. The results
presented in Table have been achieved by setting the number of estimators
to 1000 and learning rate to 1.

5.4.2.5 Deep neural network

Finally, I have applied various modifications of a deep neural network on the
classification dataset. The size of the input layer has always corresponded with
the size of the input dataset (i.e., 3 for cosine similarity dataset, 6144 for the
dataset containing all the ELMo vectors), whereas the last, fully connected
layer has always consisted of a single neuron with a sigmoid activation
function. However, I have been playing around with the intermediate hidden
layers. The binary cross-entropy loss along with Adam optimiser has been
used in all experiments.

At first, I have focused on a classification based on all of the ELMo vectors.
I have created a deep neural network model containing 3 hidden layers, each
made of 1024 (the size of one ELMo vector) neurons with ReLU activation
functions and a batch size of 125. This model has been able to fit the data
perfectly almost instantly after start leading to a quick over-fitting of the
model. The training accuracy of this model architecture after 25 epochs was
0.99 and the validation accuracy was about 0.58. As a result, I have dropped
the two hidden state layers, leaving the model with a single layer of 1024
neurons. However, it has still converged very quickly. I have tried another
two smaller models, one with just a smaller batch size and the other one

51



5. REALISATION

Figure 5.1: A graph visualising the training process of the
deep neural network wused for word sense binary classification.
The architecture of the model a: 3 hidden layers each containing 1024 neurons,
batch size 125; the architecture of the model b: 1 hidden layer containing
1024 neurons, batch size 125; the architecture of the model c¢: 1 hidden
layer containing 64 neurons, batch size 30; the architecture of the model
d: 1 hidden layer containing 3 neurons, batch size 30; the architecture of the
model e: 1 hidden layer containing 32 neurons, batch size 100.
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training epochs

with much a smaller hidden layer (64 neurons) but they all performed very
similarly. The best result I have been able to reach with the neural network
on this dataset has been achieved by utilising a single hidden layer containing
32 neurons with the batch size of 100 trained for 20 epochs. The accuracy of
this setup has been 0.99 on the training dataset and 0.61 on the validation
dataset. See Figure EI for the visualisation of the first 20 epochs of the
training process of the mentioned neural network architectures.

When applying the above mentioned neural network architectures to the
datasets consisting of particular ELMo layer vectors, the network has behaved
very similarly, and the results have also been very close to the ones mentioned
in the previous paragraph. Also, the best results have been achieved on the
same model architecture resulting in ~ 0.98 accuracy on the training dataset
and ~ 0.59 accuracy on the validation dataset. Furthermore, I have tried
to use the neural network on the engineered features (cosine similarity and
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Euclidean distance of the ELMo vectors) but it was not able to even fit the
training data.

5.4.3 Classification conclusion

Overall, I have achieved the best results on the validation dataset by using
one hidden layer (32 neurons) neural network described above with the batch
size of 100 and by passing all the word vectors from ELMo to the model.
This architecture has achieved 0.63 accuracy on the final test dataset. This
result is not the supreme one considering the fact that the task is a binary
classification.

However, it must be seen that the dataset is very small and the dimensions of
the ELMo vectors are relatively large. Moreover, the dataset contains many
wrong examples (misspelt words, bad usages of the particular word sense in
a sentence). Sometimes it has been hard for me as a Czech native speaker to
correctly decide if the two sentences in the dataset correspond to the same
word sense or not. Furthermore, the dataset tends to differentiate between
small nuances for example based on the speaker (“the weather is nice” (general
meaning) and “to predict the weather, we use a sophisticated model” (expert
meaning) would be marked as two different word senses).

From the results of the application of different classifiers to the data in
previous sections, it is evident that the engineered features (cosine similarity
and Euclidean distance) do not carry any useful information about the sense
of the word. On the other hand, using all the three vectors (character-level
word representation, the first layer of the bi-directional LSTM representation,
the second layer of the bi-directional LSTM representation) has shown to
be the most accurate way to disambiguate between different word senses.
However, using the vectors from the first layer of the bi-directional LSTM
has been reasonably successful as well. With slightly worse performance, the
vectors from the second layer of the LSTM could also be used for this task.
This corresponds to the fact that the character-level word representation
from the convolutional neural network does not say almost anything about
the particular word sense.

5.5 Word sense clustering

Another way to approach the word sense disambiguation task is by using a
clustering algorithm. Fortunately, this approach is unsupervised, so there is
no need for hard-to-acquire labelled data (although the labelled data will be
used to evaluate the accuracy of the clustering algorithm and to weight the
ELMo vectors).
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5.5.1 Preparation of the clustering evaluation dataset

The preparation of the evaluation dataset for a clustering algorithm is much
easier than for the classification one. Starting with the dataset corresponding
to the format shown in Table @, annotations of the target words and their
ELMo word embeddings have to be computed in the same way as they were
the section . However, in this case, the examples will not be coupled.
The word sense class identification column (sense_id) will be kept intact so
that it can be used for evaluation of the clustering algorithm results. The final
dataset consists of three ELMo layer vectors (3 - 1024 values) and the (sense_
id) label. The dataset preparation script can be found in clustering/
clustering_dataset_preparator.ipynb.

5.5.2 Evaluation of the clustering approach

I have used the k-means clustering algorithm since it has made the most sense
for this task. Thanks to the sense_id column, I have been able to evaluate the
accuracy of the clustering results easily. I have chosen to use the V-measure
score [46] which is a combination of the homogeneity and completeness
scores for comparing the predicted clusters with the labels. Essentially, the
V-measure is a classification accuracy metric which is independent of the
absolute values of the labels (the k-means clustering algorithm can name each
class in numerous different ways). The following experiments can be found
implemented in clustering/word_sense_clustering.ipynb.

I have applied the k-means algorithm to the whole dataset with the number
of clusters k equal to the actual number of clusters in the dataset (the ground
truth) given to it. The results have been very compelling; the accuracy
(measured by the V-measure) has reached 0.94 which is an excellent result.

Unfortunately, determining the right number of clusters k based on the data
has shown to be a problem. There are a few ways to find a suitable value
for k. I have decided to go with the analysis of inertia values and Silhouette
scores.

The inertia value is a within-cluster sum of squared distances between
individual data points and mean of the particular cluster. This value is not
normalised, but the lower the value, the less distant are individual elements of
the cluster from each other. If the number of clusters is equal to the number
of data points, the inertia value would be zero. [47]

To determine the right number of clusters k£ using the inertia value, an “elbow”
must be found in the graph visualising the inertia values over the number of
clusters k. This “elbow” corresponds the fact that before the optimal value k
the within-clusters distances were greater than after reaching this value.
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5.5. Word sense clustering

Figure 5.2: A plot visualising the inertial values based on the number of
clusters of the k-means clustering algorithm. Yellow data point is the optimal
ground truth number of k£ clusters.
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Figure 5.3: A plot visualising the average Silhouette scores (average of
Silhouette scores of elements from the dataset) based on the number of clusters
of the k-means clustering algorithm. Yellow data point is the optimal ground
truth number of k clusters. Red data point (best one) is the the point with
the highest average Silhouette score.
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Due to the high computational complexity of the calculation of the k-means
clusters on such high-dimensional dataset, I have been using a sample of
1 000 examples from the original dataset (647 sense classes) to obtain the
inertia values for the different number of clusters k. As it can be seen from
the plotted inertial values in Figure p.2, there is no noticeable “elbow” in the
plot. This might be due to the fact that the data are high-dimensional, noisy
and almost evenly distributed in the vector space. Using the inertial value has
not shown any useful results in terms of determining the number of k& clusters.

The other approach uses so-called Silhouette scores [@] The Silhouette score
basically shows how similar is the element to its own cluster in a comparison
with all the other clusters. The value ranges from —1 to 1. The higher the
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value the better is the element matched to its own cluster (it is similar to its
own cluster and dissimilar to neighbouring clusters).

I have used, again due to computational complexity, a sample of
1 000 examples (647 sense classes) from the dataset to determine number of
k clusters by the Silhouette score. The results are visualised in Figure @
I have achieved better results in obtaining the number of k£ clusters by the
Silhouette scores than by the inertial values. However, it can be seen from the
Silhouette average scores plot that in none of the clusters are the examples
well matched to their cluster. This shows that the input data are vague and
noisy.

5.5.3 Weighting ELMo vectors for clustering

Until now, I have been using all the three ELMo vectors equally for the
clustering algorithm. As a reminder, the first vector mg corresponds to
character level information, the second vector m; is the hidden state of the first
layer of LSTM which matches to syntactic information and the third vector
my is the hidden state of the second’s layer of LSTM which corresponds to
semantic and syntactic information. All the following experiments will be
using the true number of clusters in the dataset.

The paper which has introduced ELMo [34] suggests using a linear
combination of the three vectors

ELMoembedding = S0mo + S11m1 + s2ma,

where sg, s1,s2 are softmax-normalised weights and mg, m1, me are ELMo
vectors. Applying a linear combination of the original vectors would end
up in lower dimensional input (one vector instead of three) to the k-means,
highlighting the most important features and possibly better results.

Since the clustering results on the not weighted ELMo vectors dataset has
been promising so far, I have decided to just randomly try a vast amount
of possible weights sg, s1, s2 to get the notion of which layers of the ELMo
language model are essential for the word disambiguation task. First of all,
I have split the dataset into a train and a test one. Then I have been generating
random values (uniformly distributed) in the range from -1 to 1 of s, s1, $2
for 100 iterations. After each triple of weights sg, s1,s2 has got generated,
I have evaluated the training accuracy of the ELMo dataset weighted by these
weights.

The best result, I have been able to achieve with accuracy 0.96, has been

obtained by applying weights s = 0.69, s; = 0.082, s = 0.26 on the
dataset. This means that the character level information has been the most
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word sense__id example

Karotte 50882 Karotten putzen

Donner 21752 ein ferner D.

Ausbringung 78758 Ausbringung der Aerosole durch Hubschrauber

Ausbringung 78758 die Ausbringung von Kléarschlamm verbieten

Ausbringung 78758 die Ausbringung von Diingemitteln

Inspiration 50328 Inspiration holt sich der italienische Regisseur stets
aus dem eigenen Leben.

Inspiration 50329 Bei der Inspiration ohne Gerét braucht er Unterdruck
in der Lunge.

Inspiration 50328 kiinstlerische, dichterische, musikalische Inspirationen

Inspiration 50328 die Inspiration eines Erfinders, eines Dichters

Table 5.7: Randomly chosen examples from the German dataset [49]. sense_
id is a word sense class identification.

important (probably for determining whether the words are of the same lemma
or not), the syntactic information has not helped a lot in the word sense
disambiguation task and the semantic information (which is important for
determining individual word senses) has been reasonably taken into account.
The test accuracy of this setup has been 0.97.

5.6 Application of the proposed methods on the
German language

German is somewhere between Czech and English in terms of the complexity
of its morphology. Thus the application of the previously proposed methods
on the German language could result in slightly better overall accuracy. The
supervisor of this thesis provided me with an additional German language
word sense disambiguation dataset [49] containing substantives and adjectives
(see an example from this dataset in Table 5.7. This dataset contains word
lemmas, their examples of usage in a sentence and their word sense class’ ids.
In this section, I will apply the methods which have already been applied to
the Czech language above on the German language as well.

Unfortunately, due to copyright reasons, I cannot include the German dataset
in the attached medium. As a consequence, the intermediate generated
datasets which contain words, and their usage examples will not be included,
too. However, the clustering and classification datasets containing only ELMo
word embeddings will be included in the attached medium (it is impossible
or at lest very hard to obtain the original sentence example based on ELMo
word embeddings of the target word).
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5.6.1 Preparation of the German dataset

The German dataset [49] I have been working with is much bigger
(120 060 examples, 38 258 processable examples with at lest one sense
containing at least two example sentences) and more accurate in comparison
with the Czech dataset I have obtained from Wiktionary. However, there
are still some issues with this dataset. First of all, the examples sometimes
contain abbreviations of the target words. For example for the target word
“Jungtier” there is an example sentence “die Aufzucht der J-e” where “J-e”
stands for “Jungtiere”. Fortunately, these abbreviations can be easily found
and turned back into full word representation.

The second minor problem about this dataset is that is might use general word
ideas instead of explicitly expressing them (for example “He has bought the
obj.” where “obj” stands for any object). These sentences will not be used for
the creation of the ELMo embeddings dataset.

Other than that, the dataset is well structured and does not contain many
misspelt words or incorrect examples. However, in my opinion, it tends to
recognise too much of a word meaning details which results in placing two
words which would an average person say are of the same meaning into
two different word sense classes — which has been a problem with the Czech
Wiktionary dataset as well.

The following operations over the original German dataset can be found
implemented in german/german_elmo_dataset_preparator.ipynb Jupyter
notebook.

In the first step, I have replaced the abbreviations in example sentences with
the original word forms. The original German dataset does not contain word
annotations which means that I am not able to determine which of the words
in the example sentence corresponds to the target word. Since German is not
morphologically as rich as Czech, I have decided to find words based on the
particular lemma by simply finding words which start with the lemma using
a regular expression. This method has proved to work for most of the words
in the dataset.

I will not be going into much detail with the further transformations which
have been applied to this dataset since they have been almost the same as
the ones for the Czech language explained in previous sections. I have used
the German pretrained ELMo model [44] to create both classification and
clustering ELMo word embedding datasets.
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5.6. Application of the proposed methods on the German language

5.6.2 German word sense binary classification

In this section, I will evaluate the results of the binary word sense classification
applied to the German dataset. The algorithms and architecture of the models
will be the same as the ones used for the Czech language in Section .

The cosine similarity of the corresponding ELMo vectors has not, again,
shown to be carrying any important information in terms of word sense
disambiguation task. Logistic regression and Adaboost classifier were not
even able to fit the training data resulting in train accuracy ~ 0.55 and
validation accuracy slightly lower. The same goes for the neural network
classifier (one hidden layer of 64 neurons with ReLU activation function and
single neuron output layer with sigmoid activation function) which achieved
only 0.56 training accuracy (testing accuracy 0.53). Practically the same
results have been obtained while using the Euclidean distances between
corresponding ELMo vectors.

I have been focusing mostly on the neural network classifier using the original
three ELMo vectors as its input, while this combination has led to the
most promising results in the case of the Czech language dataset. Since
the German dataset is much larger than the Czech one, the neural network
has not converged that quickly. As a consequence, I was capable of taking
advantage of multiple hidden layers of the neural network and a higher
number of neurons in each of them.

Unfortunately, I have not been able to achieve higher validation accuracy
than ~ 0.6 (using the ELMo vectors from the second layer of the language
model). Even if the training process curve looked promising, in the end, the
model has not been able to differentiate between word senses with reasonable
accuracy. All the neural network based classifier has been able to fit the data
(from 0.85 to 0.97 training accuracy), but the result accuracy on the validation
dataset has not been better than 0.6. The best results have been achieved
by utilising a double hidden layer neural network with 512 neurons (ReLU
activation function) in each hidden layer and a single neuron output layer with
the sigmoid activation function. The classification algorithm for the German
dataset can be found in german/german_word_sense_classifier.ipynb.

5.6.3 German word sense clustering

The clustering ELMo dataset contains 38 258 in-sentence usage examples
of 15 608 distinct word senses. When taking into account also the high
dimension of the three ELMo embedding vectors (3 - 1024 values), it is
evident that computing k-means clusters with & = 15 608 (the ground
truth k) will be computationally very expensive. The following experiments
can be found implemented in the german/word_sense_clustering.ipynb
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Jupyter notebook. Accuracy of the following results has been calculated
using V-measure.

I have first applied the k-means algorithm to the whole dataset providing it
with k equal to the actual number of distinct word sense classes in the dataset.
This has resulted in overall 0.952 accuracy which might seem like a worse result
than on the Czech dataset, however if we look closer at the data, we find out
that in this dataset there are often many examples per word sense (in the
Czech dataset, there has been usually one or two examples per word sense).
The Czech clustering dataset has contained on average 1.43 examples per word
sense; the German one contains on average 2.45 examples per word sense and
the clustering accuracy has been roughly the same. This means that this
time the clustering algorithm was more capable of accurate disambiguation
between different word senses.

However, the problem with determining the number k of clusters to be found
using the k-means algorithm stays the same even with the German dataset.
For the following examples, I have used a much smaller sample from the
dataset containing 1 000 word sense examples of 385 individual word senses.
Using the Silhouette score has not shown any good results and performed
worse than on the Czech dataset (almost for every k except the highest ones
the average Silhouette score was a negative number). There has been no
“elbow” visible in the plotted inertia values as well. Overall, the clustering
algorithm has shown decent results on the German dataset. However, I have
not been able to find a way to determine the desired number of clusters to be
found accurately.

5.6.4 Weighting ELMo vectors using the German dataset

As it has been already stated in the Section , a linear combination
of the three original ELMo word embedding vectors should be used in the
downstream task. As a remainder, the linear combination of the original
ELMo word embedding vectors is calculated as

ELMoembedding = Somo + $1m1 + s2ma,

where sg, s1, s2 are softmax-normalised weights and mg, m1, me are ELMo
vectors.

Due to the size of the dataset, I have been forced to do the following
experiments on the smaller dataset sample (1 000 examples, 385 individual
word senses) from the previous section. On the sampled dataset I have
achieved the highest clustering accuracy (measured by V-measure) of 0.91 by
placing so = 0.79, s; = 0.02 and so = 0.1. This corresponds to the fact
that in the clustering task the algorithm first needs to differentiate between

60
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individual word lemmas and their possible morphological variations and
after that, it can focus on the semantic information to disambiguate between
individual word senses.
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CHAPTER 6

Conclusion

The goal of this thesis was to get familiar with the linguistic methods used
in language modelling with the focus on languages with rich morphology and
survey the state-of-the-art machine learning algorithms for natural language
processing. Finally, I was to apply the state-of-the-art methods on the Czech
and German language word sense disambiguation task and evaluate the
results.

In the first part of this thesis, I have made an introduction to the field of
linguistics and have explained some of the most relevant concepts in this area.
Later, I have used these concepts to describe traditional as well as modern
approaches to natural language processing.

Before I have dived into the state-of-the-art language processing methods,
I have made an in-depth survey of the currently used machine learning
algorithms which are utilised in the modern language processing models.
At the end of the theoretical part of this thesis, I have described the
modern natural language processing methods focused on the word sense
disambiguation capabilities.

Lastly, I have acquired the necessary Czech and German word sense
disambiguation datasets and have applied the most advanced natural language
processing model (ELMo) up to date in terms of the capability of modelling
polysemy on them. Afterwards, I have used the supervised classification
along with the unsupervised clustering algorithms to disambiguate between
different word senses.

The word sense disambiguation task is extremely hard to be accurately
approached by machines. The Czech language as a fusional one is very
dynamic and needs to be processed by algorithms which can work with
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morphological analysis in some way. Even though the German language does
not have that rich morphology, it certainly is not an analytical language with
no morphological derivations as well.

An issue I have come across was the lack of a reliable dataset of a decent size for
the Czech language. Moreover, the Czech dataset obtained from Wiktionary
contains a lot of misspelt words and incorrect word sense examples. For the
German language, I have been provided with a lot better dataset containing
sufficient amount of examples needed for the word sense disambiguation task
by the supervisor of this thesis.

Unfortunately, both these datasets are sometimes going into much detailed
classification in terms of “intuitive” word sense disambiguation (by “intuitive”
I mean that the algorithm should be able to understand meanings of words on
the human speaker level, not on the academic level). For example the word
“alkohol” (“alcohol”) referrers to different word senses in sentences “Alkohol
podévany v malych davkdach neskodi v jakémkoliv mnozstvi” (alcohol in
colloquial language, translated: “Small doses of alcohol do not harm in any
amount.”) and “Na sténé visel zdkaz prodeje alkoholu mladistvym a lidem v
podnapilém stavu.” (beverage, translated: “There was a ban on selling alcohol
to juveniles and people in a drunken state.”) according to the Czech dataset.
These two different word sense examples would be, in my opinion, classified
as a single word sense by a native speaker.

Similarly, the same issue occurs in the German dataset as well. It is not that
frequent as in the Czech dataset, but by randomly going through it, I was able
to find such an example. For example, the word “Metronom” (“metronome”)
is classified into two separate word sense classes in examples “Das Metronom
kann man schneller und langsamer einstellen.” (“The metronome can be set
faster and slower.”) and “Das Metronom gibt ein gleichméfiges Tempo durch
gleichméBiges Anschlagen von Notenwerten vor.” (“The metronome provides
a steady tempo by evenly striking note values.”). I think that in this case,
the authors of the dictionary were thinking of a metronome in two ways — a
general metronome (the first sentence) and a metronome used by musicians
(the second sentence). However, based solely on the example, I think that a
native speaker would classify these as belonging to the same word sense class.

In my opinion, the word sense disambiguation task would be useful if it
could understand word senses in the same way as an average human native
speaker would. The detailed level of differentiating between distinct word
senses presented in formal dictionaries is not that useful for everyday use
(i.e., controlling computer by having a natural voice conversation with
it). Therefore I think, that for the supervised approach to word sense
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disambiguation and evaluation of unsupervised algorithms used to attack this
task a good dataset based on everyday language must be created.

First of all, I have tried to approach the word sense disambiguation task by
a binary classification. The general idea behind using classification methods
was that usually these perform better (due to their discrete characteristics)
than other methods on various tasks. The only reasonable way to fit the word
disambiguation task into a classification one I have been able to find has been
comparing each two word sense examples and determining whether they are
of the same meaning or not.

To avoid a massive amount of couples of words which are not even based
on the same lemma (and thus in most cases, they are of different meanings)
I have been comparing only words derived from the same lemma. However,
the resulting dataset was unbalanced, and I have been forced to get rid of
many negative (examples are not of the same meaning) examples.

The results of the binary classification approach to the word sense
disambiguation task have not been auspicious so far. The best binary
classification accuracy 0.63 has been achieved on the Czech dataset. In my
opinion, the biggest issue with this approach is that it is very prone to making
many mistakes if the input dataset is not perfect. Moreover, word senses can
be similar or dissimilar with some distance from each other, and this distance
may vary on the particular word — such thing might be challenging to be
correctly approached using a binary classification algorithm.

The second approach I have tried has been utilising an unsupervised clustering
algorithm k-means, and the results have been evaluated compared to the
labelled dataset by using V-measure. Overall, the clustering approach has
shown to be much more accurate than the binary classification one resulting in
the best accuracy 0.97 on the whole dataset (using the ground truth number of
cluster obtained from the dataset), measured by V-measure. However, I have
not been able to successfully determine a suitable number of clusters to be
used in the k-means algorithm.

Although the results of the application of the state-of-the-art language
processing models on the Czech language dataset have not been that positive,
I have realised the problems causing the lower accuracy behind the results.
However, a solution to these problems would require a manual creation
of a massive appropriate dataset and training individually different parts
of the state-of-the-art natural language processing models which would be
computationally very expensive.

From my personal point of view, I have deeply understood a series of advanced
machine learning algorithms (varying from convolutional neural networks up
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to encoder-decoder alike complex models) from the field of natural language
processing as well as understood the basic concepts of linguistics. This work
has motivated me in further research in the field of study.
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APPENDIX A

Acronyms

NN Neural network

CNN Convolutional neural network

RNN Recurrent neural network

LSTM network Long short-term memory network

biLSTM network bi-directional Long short-term memory network

LM Language model
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APPENDIX B

Contents of enclosed DVD

readme.tXt....covviiiiiiiinnn, the file with DVD contents description
classification.................. the directory of classification methods
| datasets.......o..ooni.. the directory of cached temporary datasets
clustering.........coovvvniiniinnn.. the directory of clustering methods
| datasets.......o..ooon.i.. the directory of cached temporary datasets
CONTEXLAVEC . ittt et the directory of Context2vec model
ELIMO + ittt e the directory of ELMo models
german .... the directory of German classification and clustering methods
| datasets................. the directory of cached temporary datasets
syn2015..... ... the directory of SYN2015 corpus and its parser
wiktionary............. the directory of Wiktionary dump and its parser
requirements.txt .......... the Python 3 environment requirements list
thesis.pdf ........oooiiiiiiiiiiiL the thesis text in PDF format
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