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Abstrakt / Abstract

Kolaborativní filtrování je jednou
z nejúspěšnějších technik používaných
v doporučovacích systémech. Základní
algoritmy využívají historické interakce
mezi uživateli a předměty, nicméně
doporučovací systémy nasazené v pro-
dukčním prostředí mají často k dispozici
minimálně jednu další dimenzi dat –
časová razítka těchto interakcí. Tyto
okolnosti interakcí nazýváme kontex-
tem.

Tato práce využívá dosud často opo-
míjené informace v datech ke zlepšení
přesnosti doporučování. Je navrženo ně-
kolik nových přístupů k začlenění kon-
textu do tradičních metod kolaborativ-
ního filtrování. K evaluaci těchto vylep-
šení je navržen a implementován testo-
vací framework. Navržené metody jsou
rozsáhle testovány na několika datase-
tech, s různými parametry a kontexty.

Výsledky ukazují, že metody beroucí
v úvahu kontext vykazují i na převážně
statických datasetech zlepšení metriky
recall o 5–25 % oproti tradidičním algo-
ritmům kolaborativního filtrování.

Klíčová slova: doporučovací systémy,
kolaborativní filtrování, kontext, časová
dynamika

Collaborative filtering is one of the
most successful techniques used in
recommender systems. The basic al-
gorithms utilize history of interactions
between users and items. However,
recommenders deployed in production
often have at least one more dimension
of data available—timestamp of the
interaction. These interaction circum-
stances are collectively referred to as
the context.

This thesis exploits the additional
information in order to improve overall
recommender accuracy. Several novel
approaches to incorporating context
into traditional collaborative filtering
are proposed. An evaluation framework
is designed and proposed algorithms
are extensively evaluated with different
parameters and contexts on multiple
datasets.

Results show that even mostly static
datasets benefit from the proposed
context-aware approach. About 5–35%
recall increase was observed in com-
parison with traditional collaborative
filtering algorithms.

Keywords: recommender systems,
collaborative filtering, interaction con-
text, temporal dynamics
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Chapter 1
Introduction

Recommender systems play an important role in navigation on modern Internet. They
complement the palette of information retrieval tools, guiding users to content which is
interesting for them. Recommender systems help users to discover relevant items even
if they exactly do not know what they are looking for. They are of significant business
value especially for E-commerce and for content providers.

Collaborative filtering is a class of recommender algorithms utilizing the behaviour
of other users known to the system to predict some items to the target user. This
thesis focuses on two most basic, yet widely and successfully used collaborative filtering
algorithms, User k-NN and Item k-NN.

The standard versions of recommender algorithms don’t take advantage of all in-
formation available in production datasets. Often, the timestamp of an interaction
of a user with an item is known, because it can be obtained trivially and without
the explicit action from the user. For this reason, several options of exploiting the
knowledge of timestamps and incorporating it into collaborative filtering algorithms
are suggested. A framework capable of measuring the performance of the proposed
improvements with various parameters is designed and implemented. The proposed
methods are thoroughly tested under miscellaneous circumstances and combinations of
parameters using the framework.

This thesis aims to confirm the assumption that the time context plays an important
role and influences the recommendation task heavily. User preferences are known to
be dynamic and previous research has shown that time information can be used to
increase the recommendation accuracy. The thesis extends the existing attempts to
create a context-aware recommender and experiments with multiple values of model
parameters in order to find the combination leading to the greatest improvement of
chosen accuracy metrics.

As a side effect, a method of visualization of periodicity in collaborative filtering
datasets is introduced.

The contributions of this thesis over previous related research include:

. Focus on implicit datasets, for which it is generally harder to make recommendations.
Previous research often studies datasets with explicit users’ ratings of the items, but
business data usually contains only implicit ratings. Therefore, our research is more
useful for business operators of recommender systems.. Wide spectrum of parametrization options and a large number of experiments with
different parameter combinations.. Comparison of behaviour of the same algorithms on multiple datasets with different
characteristics, preventing from overfitting to a specific dataset.. An innovative method of dataset periodicity visualization.. All proposed methods are basically wrappers for the standard algorithms, allowing
extension of possibly existing implementations of collaborative filtering algorithms
easily and the modifications are not tied to a single base algorithm.
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Chapter 2, general theoretical background of recommender systems is presented.

Emphasis is put on collaborative filtering methods and two particular algorithms, User
k-NN and Item k-NN are described in detail. Chapter 3 presents the problem of tempo-
ral dynamics of user preferences and their dependence on context. Several modifications
of standard collaborative filtering algorithms are proposed in order to exploit the con-
textual information. An evaluation framework capable of measuring the influence on
recommendation accuracy is designed. In Chapter 4, an extensive set of experiments is
performed and the accuracy of the basic algorithms is compared to the improved algo-
rithms. Chapter 5 concludes the results of the experiments and assesses the suitability
of the proposed methods.

2



Chapter 2
Recommender Systems

A recommender system works with two kinds of entities—users and items. A user is
a uniquely identified person or a bot accessing a website. It may be a person registered
under an online account, or it may be a single browser session, whatever the website is
capable of collecting. The term item denotes a class of product the user can interact
with. Both users and items may have attributes of any kind (textual description, image,
numeric attributes, etc.).

A recommender system is a predictive model which tries to score each available item
for a given user. The higher the score is, the higher should be the probability of use-
fulness of the item to the user. This task is often simplified to a problem of finding
only top-n items with the highest scores and often the precise value of a score is not
even needed. This is the case for online retailers, where such system recommends a few
products the user may be interested in, with n being usually around 5–10. In later sec-
tions, only the first variant (score each item) is discussed, as the top-n recommendation
could be directly derived from a list of scored items.

Two most widely used types of recommender systems are content-based recommenda-
tion and collaborative filtering (CF). In content-based recommendation, the prediction
is based on attribute similarities between items. In collaborative filtering, the predic-
tion is based on historic interactions between users and items and doesn’t need neither
user nor item attributes at all, except for an unique id. Due to practical reasons, which
will be covered in later sections, it may be benefitial to combine these two approaches
and form a hybrid recommender system.

2.1 Content-Based Recommending
Conetnt-based recommendation builds on a hypothesis that if a user likes an item, he
will like similar items, too. This method relies on item attributes heavily. It may
involve user attributes as well.

Since attributes can be of many datatypes, there are countless similarity measures
defined between two items. The most common attribute is a textual description, which
opens possibility to use well-known algorithms od information retrieval, such as bag of
words or tf-idf [1, p. 79–81]. There is a wide range of preprocessing options, e.g. stop-
word removal, stemming, and more. Other attribute types include structured data,
which are easier to process. Numeric or ordinal attributes (price, power consump-
tion, distance to nearest shop) can be compared in terms of metric distance/similarity,
whereas other nominal attributes (category, film genre) can be compared for example
using Jaccard similarity index. Image attributes can be compared using their colour his-
tograms, SIFT features [2] or using an autoencoder artificial neural network to encode
image data into vectors and then computing a cosine similarity of those encodings.

Having constructed an appropriate similarity measure, the algorithm works as fol-
lows. In training phase, the algorithm remembers items and their attributes, possibly

3



2. Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
building a metric index for faster future retrieval. In the inference phase, the algorithm
scores each possible item by choosing k nearest neighbours (with respect to chosen
similarity function) from items with which the user has interacted in the past, and it
derives its score from known scores of these k neighbours [3] e.g. as a weighted average
of these scores.

Content-based recommenders tend to suffer from overspecialization [4, p. 1184], which
means they recommend items too similar to be useful. In practice, it is desirable to
provide more long-tail recommendations, enabling the user to discover new content
[5, p. 2].

2.2 Collaborative Filtering

To describe the algorithms precisely, it is needed to define some concepts formally.
Let U be the ordered set of all users and I be the ordered set of all items. Let R ∈
(R∪{?})|U |×|I| be a matrix with |U | rows and |I| columns, where each element is either
a real number or an artificial symbol “?”. Such matrix is called the rating matrix or the
user-item matrix. Element Ru,i contains a number expressing opinion of user u ∈ U on
item i ∈ I, where higher number means more positive relationship between user and
item. Symbol “?” denotes unknown rating.

Rating matrix R is very sparse, which means it contains mostly “?” symbols. In
a recommender system, there are usually thousands to milions of items, while a typical
user has interacted with only few, rarely with more than a hundred.

Nature of known ratings may vary from dataset to dataset. Some webpages allow
users to rate items explicitly (e.g. users of a film database may rate films by giving them
one to five stars) and this type of feedback provides the most accurate overview of user’s
taste. It may express both liking and disliking. Downside of explicit ratings is that they
require additional effort from a user and users are usually not willing to take action to
give explicit feedback [6, p. 263], thus they are not always available. Implicit ratings are
much easier to gather because no change in user’s behaviour is needed. Implicit ratings
include click-through, cart addition, purchase, time spent looking at a description, video
play etc. This data is used to estimate user’s attitude to an item. Implicit ratings are
a natural way to get feedback from users, but unfortunately, they are mostly binary
(a user either plays or doesn’t play a video), hence they fill the rating matrix only with
positive or unknown ratings, not taking negative ones into consideration.

Implicit ratings, however, often carry a lot of additional information, such as times-
tamp of an interaction, device from which the interaction has been performed, or screen
resolution. These circumstances, termed context of the interaction, are not used in tra-
ditional recommender systems. This thesis examines possibilities of incorporation of
context into collaborative filtering algorithms.

In the following sections, two prominent CF algorithms are described in detail. As
they need to do arithmetics on the rating matrix, they both assume all “?” values are
converted to zero before computation, which is a common way to deal with unknown
values, since zero expresses neutral attitude of a user to an item. There are other popular
algorithms in use, namely the family of matrix factorization methods [7, p. 113], but
they are not covered by this thesis.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Collaborative Filtering

2.2.1 User k-NN

User k-NN (k nearest neighbours), also called user-based collaborative filtering, to-
gether with Item k-NN, are the most basic yet powerful and widely used algorithms of
collaborative filtering. As the term collaborative suggests, interactions of all users are
used when predicting for a given user. User k-NN works with a hypothesis that the
user will like the same items as users who had similar preferences in the past.

When scoring an item i ∈ I for target user u ∈ U , the algorithm selects a set of
k ∈ N most similar users to user u, denoted NNk(u), according to given similarity
measure sim : I2 → R. Particular choice of the similarity function and parameter k
will be discussed later. The predicted score for user u and item i is then computed as
a weighted average [8, p. 13–16]:

pred(u, i) = Ru,∗ +
∑

v∈NNk(u) sim(u, v) · (Rv,i − Rv,∗)∑
v∈NNk(u) sim(u, v)

Symbol Ru,∗ denotes average rating of user u. If rating matrix R contains only implicit
ratings (which is the case for datasets used in experiments in Chapter 4), they can’t be
biased by user’s personal perception of rating scale, so it is not needed to reflect the
average ratings. The formula then simplifies to

pred(u, i) =
∑

v∈NNk(u) sim(u, v) · Rv,i∑
v∈NNk(u) sim(u, v)

Parameter k is called model size and affects both computational performance and
accuracy of the algorithm. Low values of k lead to overfitting and recommendation
quality is poor. For larger values of k, accuracy improves, however memory requirements
grow. Very large values of k lead to underfitting and accuracy decrease. Results of [9]
show that reasonable values of k are 20–50 and experiments conducted for purposes of
this thesis confirm these numbers.

Some common choices of similarity measure are Pearson’s correlation coefficient,
cosine similarity or Spearman’s rank correlation coefficient. For this thesis, cosine
similarity has been chosen due to its simplicity and widespreadness. More precisely,
implementation of User k-NN used in experiments in Chapter 4 uses similarity function

sim(u, v) =

∑
i∈I

Ru,i · Rv,i√∑
i∈I

R2
u,i ·

√∑
i∈I

R2
v,i

Drawbacks of User k-NN are mainly the cold-start problem and scalablity. Cold-start
problem appears when there are only a few interactions in a recommender system.
In such system, similarities between users are often zero, therefore the algorithm is
not able to find a relevant set of k most similar users, which results in poor quality
recommendation. This also happens on smaller scale when a new user or item appears
in a system. In order to deal with cold-start problem, techniques used in content-based
recommendation may be used when there is not enough information for User k-NN.
Scalability is also an issue, because |U | and |I| can easily exceed milions and searching
for k most similar users becomes computionally very expensive.

5



2. Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Item k-NN

Item k-NN is another important algorithm of collaborative filtering. It is related to
User k-NN, and we can roughly think of these two as transpositions of each other. The
fundamental assumption of Item k-NN is that if a user likes item i1 and a lot of users
who like i1 also like another item i2, then the target user will like i2, too.

The algorithm works as follows. For each item j for which there is a known rating
Ru,j ∈ R from the user u, find a set of k most similar items NNk(j). The score for
item i ∈ I is computed as an average of user’s known ratings weighted by similarities
of items i and j [10]. The items which are not present in any of the NNk(j) sets will
be scored zero. If KR(u) denotes known ratings of user u, the prediction for item i is:

pred(u, i) =



∑
i∈NNk(j)
j∈KR(u)

sim(i,j)·Ru,j

∑
i∈NNk(j)
j∈KR(u)

sim(i,j) if ∃j ∈ KR(u) : i ∈ NNk(j)

0 if ∀j ∈ KR(u) : i /∈ NNk(j)

Identically to User k-NN, there are several similarity measures available. The one
chosen for experiments in Chapter 4 is a cosine similarity, which is analogous to the
measure introduced in Section 2.2.1.

Another useful assumption Item k-NN makes is that attractivity of items don’t change
quickly over time. This opens up an opportunity to precompute similarities between
individual items in training phase and cheaply look them up during recommending,
as shown in [11, p. 149–154]. In an online system, it is then sufficient to recompute
similarities infrequently (once a day). In the training phase, a matrix M ∈ R|I|×|I| is
computed, so that

Mi,j =
{

sim(i, j) if i 6= j ∧ sim(i, j) ∈ maxk Mi

0 otherwise

Here, maxk Mi denotes a (multi)set of k largest values among values in i-th row of M.
In order to reduce impact of highly similar items with infrequent interactions, [11]

also suggest to normalize rows of M, so that ∀i ∈ I : ‖Mi‖ = 1 .
For each item i ∈ I, matrix M therefore contains similarities between i and k most

similar items different than i. With k � |I|, the matrix M is very sparse, so in
practice it takes up a reasonable amount of memory and computations with it are fast.
Experiments show that a values of k in range 5–20 are sufficient.

To score all items for a target user u ∈ U at once, there is only one vector-matrix
multiplication needed:

pred(u, i) = (M · u)i

With the precomputation possibility, Item k-NN overcomes scalability issues for many
practical purposes. However, Item k-NN suffers from cold-start problem to the same
extent as User k-NN, so additional effort must be taken when introducing new items
or users to a recommender system.

6



Chapter 3
Design of a Context-Aware Recommender

This chapter introduces proposed modifications of algorithms described in Section 2.2.1
and 2.2.2, which aim to improve recommendations using context information. In the
field of recommender systems, the context is any additional information carried with an
interaction event. The most common context information is a timestamp of interaction,
since it is trivial to obtain. Other possible context types include device, screen resolu-
tion, OS, geolocation and other data web browsers send, but it may also be obtained
from external services (e.g., weather) or explicitly from the user (mood, budget).

Let C be a tuple of contextual factors. Contextual factor is an ordered set of possible
context values. A contextual factor represents a class of contexts, from which exactly
one is effective for each interaction (e.g., contextual factor “season” contains contexts
“spring”, “summer”, “autumn” and “winter”).

The prediction function of a context-aware recommender has the form pred : U ×
I × C → R, as opposed to pred : U × I → R shown in Section 2.2. In this thesis,
tuples in C always have a length of one, which means that effect of only one contextual
factor is studied at the same time. The recommendation space will therefore always be
three-dimensional.

3.1 Related Research
Research of context-aware recommender systems could be classified into two categories.
Some try to segment the multidimensional recommendation matrix into multiple dis-
crete blocks, from which each one corresponds to a different context, and others trans-
form original interactions depending on continuous time dimension. The effect of pref-
erences changing over time is also known as temporal dynamics.

The discrete approach is discussed by [12], where a reduction-based technique of
decreasing the number of context dimensions is introduced. The recommendation space
is viewed as an OLAP cube1. When recommending for a user in a specific context (e.g.
Monday), only data coming from similar contexts (e.g. weekdays) is taken into account.
Resulting smaller cube is then flattened into 2D rating matrix using an aggregation
function.

An attempt to reduce dimensionality early in the training phase is made by [13].
A portion of items are split into multiple child-items, each of them having only interac-
tions in different context. Standard CF algorithms can then be applied to the resulting
rating matrix. This method seems to outperform the reduction-based approach when
majority of items are split. Substantial influence of context on user preferences is also
indicated by a survey taken in [14].

Temporal dynamics play an important role too, as shown by [15]. It was observed
that not only user preferences are variable, but also item popularity change over time.
1 OLAP is a business intelligence tool for multidimensional data analysis. Learn more from olap.com.
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3. Design of a Context-Aware Recommender . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
At the time of publication, the proposed algorithm, based on SVD++ algorithm1,
outperformed any previously published results on given dataset.

3.2 Proposed Algorithms
This thesis takes ideas from [13] one step further and tries to differentiate the relevance
of interactions in different contexts, while not excluding less relevant intreractions com-
pletely. The temporal dynamics is studied as well and both methods are tested on the
same set of datasets in order to be able to compare them mutually.

The common idea, supported by research mentioned in Section 3.1, is that user
preferences are depentent on the target context, denoting the context in which the
user is at the time of the recommendation. Previous interactions of the same user
made in different contexts may be less relevant to the recommendation. Furthermore,
interactions from different contexts may not even be useful in the model itself, meaning
they could be entirely or partially eliminated from the training phase. Both assumptions
will be tested individually.

With context, rating matrix described in Section 2.2 is extended by extra dimensions
in addition to the original user and item dimensions. Because the traditional CF algo-
rithms are applicable to two-dimensional rating matrices only, dimensions have to be
somehow reduced before recommendation. This is done by weighting the interactions
according to the similarity of their context to the context of the target user. More
detailed description will be provided in later sections.

This thesis studies mainly the time dimension because it can be further partitioned
in many ways (month of year, day of week, etc.) and it is often present even in datasets
coming from recommenders which aren’t context-aware.

3.2.1 Temporal Dynamics
The first studied approach to enriching a recommender system with context is tem-
poral dynamics. The hyopthesis suggests that older interactions are less relevant to
the recommendation than the contemporary ones. There are multiple phenomenons
supporting this hypothesis:

. Item popularity spikes up because of a fashion trend, or it drops because it is super-
seeded by a newer product.. User preferences change over time alongside with his age and needs.. The item has already been bought by the user and items of this sort are not interesting
for the user anymore.. The user searches the item space and is iteratively approaching the desired item—the
latest item serves as a better example od the wanted item than the previous ones.

The timeline may be either segmented into time-blocks or be used as an input of
a weighting function. Segmentation conceptually falls into category of algorithms de-
scribed in Section 3.2.2, thus it won’t be described here.

Weighting function has a signature of w : [0,∞) → R. It takes the age of an
interaction as an argument and outputs the weight of the interaction. Weighting may
be applied either to the rating matrix, to the target user vector, or both. Intuitively,
according to scenarios described earlier, weighting of both user vectors and the rating
1 SVD++ is a matrix factorization algorithm. Learn more from dl.acm.org/citation.cfm?id=1401944
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matrix should have an effect on recommendation. Both cases are tested separately in
Chapter 4.

With time dimension, the rating matrix is now 3D1. Individual ratings will be
denoted Ru,i,t for user u, item i and timestamp t. Let Tu,i be a set of timestamps
of all known interactions of user u and item i and let t0 be the time of recommendation,
which is always greater than or equal to any timestamp in R. Weighted (2D) rating
matrix R′ is computed the following way:

R′u,i =
{ ∑

t∈Tu,i

Ru,i,t · w(t0 − t) if |Tu,i| > 0

“?” if |Tu,i| = 0

Such matrix is ready to be processed by a regular CF algorithm, for which the contextual
information and weighting is transparent.

There are several options for choosing the weighting function w. The requirements
for w are not strict, but this thesis focuses on weighting functions which are decreasing,
with the range of values restricted to [0, 1] with w(0) = 1. That means the newest
interactions have 100 % significance and with increasing age, the significance decreases
towards zero.

To control the slope of w, irrespective of the particular form of the function, a pa-
rameter ψ is introduced, which expresses an analogy of half-life used in nuclear physics.
Parameter ψ expresses a number of days, after which the weight is less than or equal
to 1

2 . Unless stated othewise, the unit of ψ is a day. That puts another constraint on
weighting function w:

w(ψ) = 1
2

Exponential weighting function has already been proposed by [16, p. 1264] (λ is a
parameter controlling the slope of the function, x = t0 − t represents the age of the
interaction):

w(x) = exp
(
−x
λ

)
When reformulated with ψ, it gives the first studied weighting function:

wexp(x) = 0.5
x
ψ

Gaussian function is another studied weighting function. Compared to exponential
weighting, Gaussian weighting returns higher weights for age < ψ and nearly zero for
age > ψ, which more distinctly divides interactions between “recent” and “old”. The
formula for Gaussian weighting function is:

wgauss(x) = exp
(
x2

ψ2 · ln(0.5)
)

The last examined weighting function is linear weighting, which is a drastic alter-
native to Gaussian weighting, assigning zero to all interactions older than 2ψ. The
formula is:

wlinear(x) = max
{

0, 1− x

2ψ

}
1 Although the object is not a matrix in mathematical sense anymore, it will be referred to as a 3D

matrix in order to preserve the established terminology.

9



3. Design of a Context-Aware Recommender . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.20.2 0.40.4 0.60.6 0.80.8 11 1.21.2 1.41.4 1.61.6 1.81.8 22 2.22.2 2.42.4 2.62.6 2.82.8 33 3.23.2 3.43.4 3.63.6 3.83.8 44

0.20.2

0.40.4

0.60.6

0.80.8

11

00

Gaussian

Exponential

Linear

Figure 3.1. Three different temporal weighting functions for, all with ψ = 1

See Figure 3.1 for visual comparison of all three presented weighting functions wexp,
wgauss and wlinear. All three functions will be evaluated when applied to testing user
vectors and rating matrix individually, with multiple values of ψ in range from a few
hours to several years. An important observation not visible in the figure is that wgauss

approaches zero significantly faster than wexp for large x.
The idea of assessing the interaction importance according to the difference between

the recommendation time t0 and the interaction time t can be further extended. Most
likely, a vast majority of interactions in a dataset will have been made in the distant
past, i.e. t � t0 − ψ. As all three studied weighting functions approach zero quickly
for t0 − t > ψ, the weights of such interactions will be very small, which can be seen
in Figure 3.1. This not only blurrs the difference between valuable and unimportant
interactions, but the small values may also reach the limits of floating point number
representation in the computer.

As an improvement, the global end-of-time value t0 may be replaced with user-specific
values t0(u), u ∈ U , where t0(u) denotes the time of the most recent interaction of user
u. Rows of the rating matrix and/or the testing user vectors are weighted using the
user-specific t0(u) instead of a single global t0. The weighting function formulas remain
the same, only their argument changes from x = t0 − t to x = t0(u) − t with u being
the user who owns the interaction. This improved version of temporal weighting will
be evaluated for the same set of parameter combinations as the basic version of this
algorithm.

3.2.2 Discrete Segmentation
Discrete segmentation is another approach to transforming the input 3D rating matrix
into a 2D matrix processable with ordinary CF algorithms. It is not limited to time
context, but this thesis focuses on it due to data availability. The hypothesis behind
segmentation states that when recommending in a specific context, past interactions
within the same context are more relevant than interactions made in different contexts.

In the training phase, interactions are accumulated into a multidimensional rating
matrix, so that element Ru,i,c contains a sum of all ratings of user u ∈ U and item i ∈ I
in context c ∈ C. The recommender then works with a context-specific rating matrix
R∗,∗,c for context c, which is nothing more than a slice of R with the third dimension
equal to c. Analogous slicing can also be applied to a target user vector. Similarly
to experiments with temporal dynamics, both variants will be tested both individually
and together.

Current research mostly focuses on sigle context (the target context). For example,
when recommending in the “afternoon” context, interactions in “morning” and “night”

10
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context are completely ignored for the purpose of that particular recommendation.
Details of what “ignored” means vary between researchers. Although improvements
were observed in articles [12–13], this method has a disadvantage of completely leaving
majority of potentially valuable data out.

To fix this flaw, similarity matrix is introduced. Similarity matrix M ∈ R|C|×|C| is
a symmetric matrix whose element Mc,d represents the degree of similarity between
matrices R∗,∗,c and R∗,∗,d for all c, d ∈ C. The improved recommender is an ensem-
ble of |C| ordinary recommenders, each trained with different context-specific rating
matrix. When recommending for target user u in target context c, items are scored
independently by all |C| recommenders (or more precisely their prediction functions
pred1, . . . ,pred|C|), gaining |C| partial score predictions for each item. Final recom-
mendation is then computed as a sum of these partial predictions weighted by elements
of M corresponding to the target context:

pred(u, i) =
∑
d∈C

predd(u, i) ·Mc,d

It hasn’t yet been explained how the similarity matrix M is created. One option
is to make it an identity matrix, i.e. Mc,d = diag(1, 1, . . . , 1). In that case, the algo-
rithm degrades to a single-context recommender, taking only interactions made in the
target context into account. For comparison, experiments with identity matrix will be
condicted too, but better results are anticipated for more complex similarity matrices.

With knowledge of the recommendation domain, the similarity matrix may be hand-
crafted to represent expected similarities between individual contexts. As an example, a
handmade similarity matrix for a fictional E-commerce website with clothing is shown in
Figure 3.2. The sales are expected to be highly dependent on the outside temperature,
which goes hand in hand with the season of the year.
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Figure 3.2. Examples of a similarity matrix for “season” contextual factor: (a) identity

matrix, (b) handmade matrix for a fictional clothing online retailer

As an attempt to deduce similarity matrix from the data itself, a concept of item-
characteristics of a rating matrix is introduced. Item-characteristics of a rating matrix
R is a vector ichar(R) ∈ R|I| given as

ichar(R)i =
∑
u∈U

Ru,i
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Item-characteristics help us distinguish between best-sellers and marginal items. High
value of ichar(R)i means that users often interact with item i, whereas values close to
zero mean users hardly ever interact with it. If an item has a similar value in item-
characteristics vectors of two context-specific rating matrices, users interact with the
item equally often in both contexts. If many items share a similar value in two contexts
(i.e., the whole item-characteristics vectors are similar), users interact with similar items
in these contexts, and rating matrix of one context is relevant to the second context,
too. This leads to a method of computation of the similarity matrix based on cosine
similarity between item-characteristics vectors:

Mc,d = ichar(R∗,∗,c) · ichar(R∗,∗,d)
‖ ichar(R∗,∗,c)‖ · ‖ ichar(R∗,∗,d)‖

This method is expected to naturally capture the internal structure of the dataset.
For this reason, similarity matrix constructed via item-characteristics is also a con-
venient tool for visualisation of periodicity, or generally any context-specificity in the
dataset. Examples of real similarity matrices obtained from experimental data will be
shown in Chapter 4 along with other properties of the testing datasets.

Since for some datasets and contextual factors, differences between contexts may be
very small, it may be preferable to scale the values inside the similarity matrix, so that
the smallest value becomes zero, the largest becomes one, and the values between scale
linearly into [0, 1] interval:

∀c, d ∈ C : M′c,d = Mc,d −min M
max M−min M

This adjustment magnifies the differences while relatively preserving the original struc-
ture. Experiments involving similarity matrix will use the identity matrix, the similarity
matrix based on item-characteristics, and its variant scaled to [0, 1] interval.

3.3 Evaluation Framework
For measuring the performance of the proposed algorithms, an evaluation framework has
been designed and implemented. Details of the evaluation methodology are described in
following section. Details about the usage of the framework can be found in Appendix A.

The framework follows the typical machine learning evaluation pipeline. The data is
split into two groups—training and testing. The training set contains the bigger ratio of
the available users and the testing set contains the rest. The training set forms a rating
matrix, or a set of context-specific matrices in case of the segmentation algorithm.

As described in Section 3.2.2, when using the segmentation method, the rating matrix
may be sliced into multiple context-specific matrices. On each context-specific slice of
the rating matrix, a separate model is trained (for temporal dynamics algorithm, there
is only one ratinx matrix, thus only one model is trained). The architecture of the
framework allows to plug multiple algorithms in, so both User k-NN and Item k-NN
may be evaluated using the same common preprocessing and postprocessing steps.

The testing set contains the testing user vectors. A typical approach to the testing
phase is leave-one-out method, which sequentially “hides” one interaction from the user
vector and feeds the trained model with the remaining interactions of the user. The
model then predicts top-n items for this user. If the item of the hidden interaction
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is contained in the predicted top-n list, the prediction is considered successful, as the
hidden interaction has truly been performed by the user. This procedure is repeated
for each testing user.

As the proposed algorithm heavily exploits the time dimension of the data, leave-
one-out seems insufficient, because it demands predictions for interactions preceding
the interactions available to the recommender as an input. To maintain correct real-life
causality, a slight modification of this method, leave-last-out, is used. This method hides
only the most recent interaction, thus all past interactions are available to the model
when making a prediction. The last interaction of each testing user also determines the
target context.

When using the segmentation algorithm, the item-characteristics and a similarity
matrix are derived from the rating matrix. If the user vectors are split into several
context-specific parts, the vectors are first merged together using the weighting proce-
dure described in Section 3.2.2. For each testing user, a prediction is then generated
in the leave-last-out fashion using each trained model, resulting in a set of vectors of
scored items for each testing user. These predictions are then merged together using
the same weighting process as the user vectors.

Finally, the resulting predictions are compared to the true last interactions of the
testing users, and performance metrics are computed. The choice and properties of the
selected performance metrics are covered in Section 4.1.

The schema of the framework is outlined in Figure 3.3. The schema illustrates the
most complex variant, when both the rating matrix and the testing user vectors are
partitioned into context-specific segments. When only one or none of the two is seg-
mented, the principles of the function remain the same, only the number of models /
user vector sets is 1 and the corresponding weighting step is redundant. If only user
vectors are to be segmented, the similarity matrix is computed from the segmented
rating matrix, but the (single) model is trained from a single, compound rating matrix.

Rating
matrix Tr

ai
ni

ng

Items

2
3

Te
st

in
g

U
se

rs

User rating 
vectors 

Context

Model

1

1
2

3
Item characteristics 

Similarity matrix

Ta
rg

et
 c

on
te

xt

La
st

 it
em

Weighted user
rating vectors 

Scored items

Weighted
prediction

Weighting

To
p-
k

Compare

Coverage & Recall

Training
Scoring

Figure 3.3. Schema of the evaluation framework
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Chapter 4
Experiments

An extensive set of experiments have been conducted in order to verify the hypotheses
stated in Chapter 3. All context-aware versions of collaborative filtering algorithms
described in Section 3.2 are evaluated using the framework designed in Section 3.3 on
four datasets, which will be described in Section 4.2. Both User k-NN and Item k-NN
are used as the underlying base algorithms.

Over 12 500 different combinations of algorithm variants / parameters were computed
using a power of more than 12 cpu-months. Only a fragment of the most interesting
results are shown here, others are only briefly summarized. The file with the full set of
measured data is attached to this thesis, see Appendix A.

4.1 Performance Metrics
There is no single consensus on performance metric for measuring success rate of a rec-
ommender system. However, some are suited better for implicit datasets. Performance
metrics can be categorized into two groups—statistical accuracy metrics and decision-
support accuracy metrics. Examples of statistical accuracy are root mean squared error
(RMSE) or mean absolute error (MAE) and they measure the difference between ex-
pected rating of an item and its actual rating in a certain way. Due to this nature, they
are better suited for datasets with explicit ratings with broader range of values.

For datasets with implicit ratings and the top-n recommendation, which is the case
of datasets examined in this thesis, decision-support accuracy metrics are more suitable
[17, p. 229]. Examples of this kind of metrics is precision, recall, F-measure or ROC
curve. They focus on presence or absence of the expected item in the recommended
top-n list, regardless of the precise item ranks.

The most popular options seem to be precision and recall [18, p. 226]. Furthermore,
for implicit ratings, these two metrics behave similarly. Recall has been chosen for
experiments in Chapter 4.

A general evaluation pattern of the leave-last-out method is that for each one of the
m testing users, their last interaction is hidden. A model predicts top-n items to each
testing user, yielding m lists of n items. For recall, the ordering inside the lists is not
important, so let topu denote a set of n items recommended for user u ∈ {1, . . . ,m}.
The item of the hidden interaction of each user is then compared to the corresponding
top-n list. Let r be the number of users, for whom their hidden item is found in the
top-n list, meaning the recommender recommended a relevant item to the user.

Recall is computed as a ratio of the number of relevant recommended items to the
number of all relevant items, which in the case of leave-last-out top-n recommendation
translates into following formula:

recall = r

m
In addition, catalog coverage has been chosen as a secondary metric. Catalog coverage

measures the variety and richness of recommendation, which is a desired property of
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a recommender system [19, p. 40]. A recommender with high catalog coverage allows
users to discover a broad range of new content. It is computed as a ratio of the number
of unique recommended items to the number of all known items, which is

catalog coverage =

∣∣∣⋃u∈{1,...,m} topu

∣∣∣
|I|

4.2 Testing Datasets
The datasets chosen for the experiments are collections of data gathered from real
online retailers and content providers. They contain nothing but implicit interactions.
Each dataset contains data provided by a different company, offering a different kind
of products, so the influence of context is expected to vary between datasets.

The datasets have been preprocessed to include only interactions of users who had
performed at least two interactions. Users with one interaction (or none) don’t con-
tribute to the quality of the model and they would only distort the results. Approxi-
mately 10 % of interactions have been eliminated in this way.

The websites from which the datasets originate have already been using a recom-
mender system, thus the data may be slightly biased, because the user’s choice is influ-
enced by the recommendations (which, in fact, is the purpose of recommender systems).
In studied datasets, about 5–15 % of all user interactions have been recommended by
the existing recommender, the rest are spontaneous interactions.

The websites target users within a single time zone, so there is a clear daytime
periodicity. Afternoon and evening, which are the most frequent parts of day, receive
about 4× to 10× more traffic than morning times.

The basic properties specific to the individual datasets follow.

Furniture

This dataset contains design furniture and interior equipment of various types, from
couches and tables to lamps and flowerpots. No specific context influence is expected
a priori.

Posters

This dataset contains posters, usable as an indoor decoration. There are no other kinds
of items, thus even less contextual diversity than in Furniture dataset is expected.

Outdoor

Dataset with outdoor clothing and equipment. Popularity of such items is expected
to be highly dependent on weather, therefore season (part of the year) may play an
important role for recommending.

Streaming

Multimedial dataset, which doesn’t originate from a online retail but rather from a
content provider, more specifically a video streaming platform. This dataset is expected
to be influenced by time of day to a larger extent than usually; day of week may also
have some impact. A speciality of this dataset is that it is highly volatile over time,
and partitioning the time dimension into longer periods of time (e.g. month of a year)
doesn’t make sense, because most items are replaced faster than that.

Sizes of the rating matrices for these four datasets are presented in Table 4.1.
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Dataset Users Items Ratings Density

Furniture 190 000 12 000 1 270 000 0.059%
Posters 54 000 3 600 256 000 0.137 %

Outdoor 550 000 7 700 3 120 000 0.077 %
Streaming 550 000 10 000 31 400 000 0.586 %

Table 4.1. Rating matrix dimensions of the experimental datasets, where column “User”
corresponds to |U |, “Item” to |I|, “Ratings” stands for the number of known interactions
and “Density” expresses the ratio of known interactions to the overall number of elements

in the rating matrix

4.3 Fixed Parameters
For both User k-NN and Item k-NN, an appropriate model size k must be chosen. With
too small values of k, the model overfits and for large k, memory and computational
complexity increases.

Figure 4.1 shows the impact of manipulating model size on performance of User k-NN
and Item k-NN in Recall-Coverage plane. In case of User k-NN, there is no clear “best”
value of k. We can see that about k = 10 is the first Pareto-optimal with the highest
coverage, but increasing k leads to better recall even for high values of k. Due to this
ambiguity, experiments are performed for multiple values of k, namely 10, 25 and 100.
Nevertheless, the results are usually consistent for multiple model sizes, so for clarity
of the diagrams, usually only User 25-NN is shown.

(a) (b)
Figure 4.1. Impact of model size to recall/coverage for (a) User k-NN, (b) Item k-NN

The situation is different for Item k-NN. Both recall and catalog coverage grows
steadily until k reaches the number of recommended items, which is 5. From that
point, increasing k has minimal effect on recall and coverage. This is caused by the
fact that for each item, there is an item which has the greatest similarity score to the
first item (it is the most similar item). As the items with which the target user has
interacted in the past vote for the final recommendation, the most similar items usually
get into the top-n list. For k > n, the items beyond n simply have too low voting
weight to score their most similar item high enough to get into the top-n list. However,
to avoid overrfitting of the Item k-NN algorithm, the value of k is fixed to 10.

Another fixed parameter is the ratio of testing and training set size. Typical testing
set size used in machine learning is around 20 %, but since the testing datasets used
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for experiments are fairly large and the testing phase is computationally expensive, the
value of 10 % is used for Posters dataset and 5 % for the remaining three (they are
larger and don’t require that large testing set).

Figure 4.2 shows the measured performance of unmodified Item k-NN algorithm
with different testing set size. For the smaller datasets, very low testing/training set
size ratio leads to unstable results, whereas large testing set size leads to degraded
performance, because the training set is too small. Large datasets are more robust
against manipulation of the ratio, because even the extreme values leave enough data
in both sets. Figure 4.2 suggests that the chosen values of testing/training ratio are
sufficient.
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Figure 4.2. Impact of testing/training set size ratio on measured recall and coverage of

unmodified Item k-NN algorithm

The value n of the top-n list of recommended items to each user is set to be 5 for all
experiments. This is the usual number of items recommended in online shopping, so it
conforms to the real usage of recommender systems.

4.4 Item Significance
The distribution of best-sellers versus long-tail items is nearly exponential, as can be
seen in Figure 4.3 of Posters dataset. Distribution in other datasets is similar. In order
to reduce noise in the data when computing the similarity matrix, one option is to take
only a cetrain percentage α ∈ (0, 1] of the most popular items into consideration when
constructing the item characteristics vectors.

Both conservative values α ∈ {0.99, 0.95, 0.9} and more drastic values α ∈ {0.5,
0.1, 0.05} had led to negligible change in recall/coverage, thus this modification is not
used in further experiments.

4.5 Temporal Dynamics
First, the variant with the global t0 end-of-time is discussed. In the second part, results
of the algorithm with times t0(u) for individual users are shown. Results are presented
in a form of recall-coverage diagram with recall on x-axis and catalog coverage on y-axis.
The iterated variable is stated in the legend of the diagram. Reference values of plain
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Figure 4.3. Distribution of the items in Poster dataset based on their popularity (histogram
shown in orange, the corresponding empirical distribution function in blue)

User k-NN and Item k-NN algorithms are always drawn in grey color. For Item k-NN,
the reference value is for k = 10. For User k-NN, either a point with a specific value of
k is drawn, or a curve is drawn for multiple values of k ∈ [3, 150] due to reasons noted
in Section 4.3. For the sake of readability, some datapoints were purposely omitted,
and for User k-NN, usually only k = 25 curves are shown. The curves for k = 10 and
k = 100 follow the shape of k = 25, they are just shifted in the coverage-recall space.

4.5.1 Weighting the User Vectors by Global End-of-Time
The first set of experiments keeps the rating matrix intact and the weighting is applied
only to the testing user vectors. Weighting of the rating matrix is studied in other
sections. This set of experiments uses a global time of recommendation t0. That’s to
say, the weight of an interaction made in time t is computed as weight = w(t0 − t), t0
being a dataset-specific constant.

When comparing weighting functions wexp, wgauss and wlinear, it can be seen that
both the exponential and Gaussian weighting achieve comparable results (see Figures
4.4 and 4.5). However, the Gaussian function requires more data (larger ψ) to be
able to compete with wexp, because for t � t0 − ψ (which is the case for majority
of interactions), wgauss assigns much smaller weights than wexp. No improvement is
observed for wlinear for similar reasons. Linear weighting assigns zero weight to most
interactions, so the recommender has insufficient amount of nonzero data left to be able
to predict sensible items.

Only the tips of wlinear lines are shown as they rapidly fall down to recall = 0 for
ψ < 365, which would obscure the improvements introduced by wexp and wgauss if shown
in the same diagram.

A significant improvement can be observed on Furniture, Outdoor and Streaming
datasets using this technique. It’s not a surprise that the best results were achieved
on Streaming dataset, where the items are replaced often and users never interact with
old items (these are removed from the website, but the recommender keeps track of
them). Recall has been increased from 0.238 to 0.326 for User k-NN with exponential
weighting function and ψ = 0.5, which is a relative 37% improvement (see Figure 4.4 d).
A moderate improvement can also be observed in Furniture and Outdoor datasets,
with recall gain of 9 % and 4 % respectively. For Posters dataset, the results are too
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Figure 4.4. Different User k-NN weighting functions applied to user vectors of datasets (a)

Posters, (b) Furniture, (c) Outdoor, (d) Streaming, with t0

inconsistent to be relevant, which is possibly caused due to a rather small size of this
dataset. The weighting technique behaves similarly well when using Item k-NN as its
base algorithm (Figure 4.5).

The trend of both exponential and Gaussian weigting recall-coverage curve is the
following. Starting with the unmodified algorithm, which corresponds to ψ = ∞, the
value of ψ is decreased and the old interactions are being forgotten from the user’s
vector. This leads to an increase in recall, which supports the hypothesis that older in-
teractions are less relevant than the recent ones. At the same time, coverage increases,
too, because user preferences are more diverse when looking only at the recent inter-
actions. When ψ decreases to values of around 1 day, too much information is being
near-zeroed and the recommendation quality drops quickly. These results show that
interactions older than ∼ 2 days don’t contribute much to the recommendation.

4.5.2 Weighting the Rating Matrix by Global End-of-Time

Interestingly, weighting the interactions in the rating matrix results in no recall improve-
ment at all. The results are shown in Figure 4.6 for exponential weighting function only,
because it performed best in Section 4.5.1.

The reason why weighting of the user vectors improves recall and weighting of the
rating matrix makes it worse is probably the fact that although the old interactions are
irrelevant for extraction of users’ preferences, the relations captured by the rating matrix
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Figure 4.5. Different Item k-NN weighting functions applied to user vectors of datasets (a)

Posters, (b) Furniture, (c) Outdoor, (d) Streaming, with t0

are steady over time. Despite the user preferences are dynamic, the old interactions
are still valuable for computing user-user or item-item similarities in nearest neighbor
algorithms.

4.5.3 Weighting the User Vectors by User-Specific End-of-Time
Contrary to experiments described in Section 4.5.1 and 4.5.2, the experiments described
in this section use user-specific time of recommendation. Instead of having a constant,
dataset-specific parameter t0, which is used as a part of the input to the weighting
function, a set of |U | parameters t0(u1), t0(u2), . . . , t0(u|U |) is used, one for each user.
The value of t0(u) is the time of the most recent interaction of user u. When either
building the rating matrix or weighting the user vectors, the weight of the interaction
performed in time t by user u given a weighting function w is computed as

weight = w
(
t0(u)− t

)
Compared to the previous algorithms with a global t0 parameter, the algorithm with

user-specific last interaction times should more accurately express the dynamics of user
preferences. Rather than capturing the overall dynamics of all known users, computing
the age of the interaction as age = t0(u)− t should help to differentiate between recent
and old interactions of given user, even if all user’s interactions are relatively old with
respect to the time of recommendation. Therefore, better results are expected than
those achieved in Section 4.5.1.
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Figure 4.6. Exponential weighting applied to rating matrix of datasets (a) Posters, (b)

Furniture, (c) Outdoor, (d) Streaming, with t0

The measured values for User k-NN are shown in Figure 4.7 and for Item k-NN in
Figure 4.8.

There are two main differences between the results of this set of experiments and
the results obtained with a global t0 parameter. First, the linear weighting function
wlinear catches up with wgauss and wexp, even if it still performs the worst of these
three. Unlike the case with single global t0, where it zeroes most of the interactions
out, the version with user-specific t0(u) leaves a few nonzero interactions for every
user. The recommender has enough information to be able to compute reasonable
recommendations. The fact that the linear weighting function performs worse than
weighting functions which are above zero even for large argument indicates that it is
not wise to discard old interactions completely, even if lowering their importance has a
positive impact on recall.

Second, the point when the advantages of lowering the weight of old, irrelevant
interactions are balanced out with the disadvantages of forgetting too much information
occurs for lower values of ψ, approximately ψ = 7 (as opposed to 14–60 seen in Section
4.5.1), which is natural because the users whose all interactions are old need larger time
span when using a global t0.

The other characteristics of the measured data are similar to those obtained in pre-
vious sections, only the results for Posters dataset are more consistent and a small
improvement over the reference algorithm is visible. Recall is the highest with the ex-
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Figure 4.7. Different User k-NN weighting functions applied to user vectors of datasets (a)

Posters, (b) Furniture, (c) Outdoor, (d) Streaming, with t0(u)

ponential weighting function, just as in Section 4.5.1. However, slightly better results
were obtained using user-specific t0(u) rather than a single t0. The relative increase in
recall is 10 % for Furniture dataset, 5% for Outdoor, 38 % for Streaming and 3 % for
Posters dataset.

4.5.4 Weighting the Rating Matrix by User-Specific End-of-Time
Similarly to global end-of-time discussed in Section 4.5.2, when weighting the interac-
tions in the rating matrix and using User k-NN as a base algorithm, coverage increases
and recall decreases (after a short period of insignificant increase for User 100-NN) as
shown in Figure 4.9.

Nevertheless, the situation is different with Item k-NN (Figure 4.10). Weighting
the rating matrix with individual t0(u) actually improves the recall. For Posters and
Furniture datasets, this method even reaches the highest recall among all temporal
dynamics experiments conducted for purposes of this thesis, the recall improvement is
11 % and 12 % respectively.

In all previous experiments, User k-NN and Item k-NN responded similarly to the
proposed enhancements. However, weighting the rating matrix using a user-specific
t0(u) parameter leads to a huge difference between the behaviour of the two base algo-
rithms.

The reason why Item k-NN works better with weighting and User k-NN fails is
probably that when a large portion of interactions are weighted close to zero, the
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Figure 4.8. Different Item k-NN weighting functions applied to user vectors of datasets (a)

Posters, (b) Furniture, (c) Outdoor, (d) Streaming, with t0(u)

differences between users are increasing (there is a lower probability of overlapping
items) and it’s harder to find the set of k most similar users to the target user. On
the other hand, Item k-NN is more robust to weighting. Items usually have more
interactions than users since |U | > |I| in most datasets. Item k-NN is able to maintain
the list of k most similar items to the target item even when the interaction values are
lowered by the weighting.

This positive result hasn’t appeared with t0 parameter because most interactions
were made in time t � ψ, meaning most weights are close to zero and the similarities
between items got blurred, lowering the quality of recommendation. This didn’t happen
when using user-specific t0(u), because each user owns a few high-weighted interactions
and the relations between items remain strong enough.

This observation partially contradicts the results of experiments in Section 4.5.2,
which can be now more accurately interpreted. It shows that even the mutual sim-
ilarities between items develop over time, but focusing on the recent interactions is
benefitial only in case enough data with high weights is present.
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Figure 4.9. User k-NN with exponential weighting applied to the rating matrix of datasets

(a) Posters, (b) Furniture, (c) Outdoor, (d) Streaming, with t0(u)

4.6 Discrete Segmentation
This section describes the results of experiments with algorithm variations introduced
in Section 3.2.2. The input data is categorized into multiple classes, leading to either
multiple rating matrices and, in consequence, multiple models, which will vote for the
final prediction, or multiple sets of user vectors, which will be evaluated individually
and the final prediction will be computed as a weighted sum of these partial predictions.

The weighting coefficients are implemented by a similarity matrix M. In this section,
recall and catalog coverage is measured for different choices of M corresponding to
different contextual factors:

. Day of week – seven categories, from Monday to Sunday.. Season – Spring, Summer, Autumn and Winter, each three months long, spring
starting on 1st March.. Month – the year is sliced more finely than into seasons.. Daytime – five unequally long periods of time (morning from 5.00 to 9.00, forenoon
from 9.00 to 13.00, afternoon from 13.00 to 18.00, evening from 18.00 to 13.00, night
from 13.00 to 5.00).. Hour – finer partitioning of the day into individual hours.

To be able to compare the performance of the modified algorithms, catalog coverage
and recall of the unmodified User 25-NN and Item 10-NN algorithms are stated in
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Figure 4.10. Different Item k-NN weighting functions applied to the rating matrix of

datasets (a) Posters, (b) Furniture, (c) Outdoor, (d) Streaming, with t0(u)

User 25-NN Item 10-NN
Dataset Coverage Recall Coverage Recall

Furniture 0.49156 0.33709 0.58758 0.34635
Posters 0.46058 0.20239 0.64492 0.20074

Outdoor 0.71551 0.30261 0.77833 0.36402
Streaming 0.34350 0.23838 0.38462 0.21953

Table 4.2. Reference coverage and recall for User 25-NN and Item 10-NN

Table 4.2. Recall and coverage of the contextual algorithms will be compared to those
reference values.

This section will be further divided into subsections corresponding to the individ-
ual datasets, because the appearance of the similarity matrices—core of the discrete
segmentation methods—are highly dependent on the internal periodicity of the dataset.

It turns out that partitioning the testing user vectors into multiple context-specific
doesn’t improve recall. Since majority of the users in all examined datasets have been
active only for a short period of time, all of the the user’s interactions belong to a single
context and the vectors corresponding to other contexts are zero vectors. The context-
aware recommender then degrades to a basic collaborative filtering recommender. For
this reason, the presented results are results of experiments with multiple context-
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specific rating matrices but a single set of testing user vectors (unless explicitly specified
otherwise).

4.6.1 Furniture Dataset
Although no strong periodicity had been predicted for Furniture dataset, as the fur-
niture sales are intuitively independent of weather conditions or part of the day, two
relatively strong tendencies have been discovered for month and hour contextual factors.
The similarity matrices, expressing similarities between all pairs of contexts belonging
to a given contextual factor, are shown in Figure 4.11. It can be clearly seen that
different items are being bought from October to May than in the Summer period in
Figure 4.11 a. Figure 4.11 b shows that items bought at night differ from items bought
during the day. However, this may be simply an effect of not having enough night
interactions. The retailer is Europe-based and most people don’t order furniture from
midnight to dawn, causing random items to appear in this night period, which have
low cosine similarity to the ordinary item popularity.
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Figure 4.11. Similarity matrices of natural periodicities in Furniture dataset computed

using cosine similarity between item-characteristics of (a) month, (b) hour of a day

Similarity matrices for other contextual factors are close to all-one matrices (i.e.,
∀i, j ∈ {1, . . . , |I|} : Mi,j = 1), which means most of the items are purchased equally
often. To reveal the indistinctive periodicity even for those contextual factors, scaling
to [0, 1] interval had been applied to these similarity matrices, as mentioned in Section
3.2.2. For Furniture dataset, the scaling doesn’t improve recall much, which is a conse-
quence of the scaling being an artifitial distinguishing tool, while apparently the plain
cosine-based similarity matrix represents the relations between contexts accurately.

Measured recall and catalog coverage for all studied contextual factors can be seen
in Table 4.3. Recall of models built on the similarity matrices shown in Figure 4.11 are
highlighted and they present the largest recall improvement among the measurements
(14 % for User 25-NN with per-hour segmentation).

The identity matrix decreases recall in all cases, meaning the improvement caused
by focusing on the target context don’t compensate for the loss of the training data
(the only model which has a nonzero voting weight in the ensemble is the one trained
exclusively on the interactions within the target context).
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User 25-NN Item 10-NN
Context Similarity Coverage Recall Similarity Coverage Recall

reference 0.49156 0.33709 0.58758 0.34635
dow identity 0.49258 0.29540 identity 0.77430 0.29856
dow normalized 0.46220 0.35309 normalized 0.69414 0.36056
dow cosine 0.44575 0.36404 cosine 0.60437 0.38478

daytime identity 0.49941 0.29487 identity 0.72688 0.31814
daytime normalized 0.46878 0.36372 normalized 0.64015 0.37225
daytime cosine 0.45646 0.36814 cosine 0.60302 0.37941

hour identity 0.49485 0.28119 identity 0.81218 0.25803
hour cosine 0.41900 0.38467 cosine 0.55037 0.39215
hour normalized 0.42010 0.38467 normalized 0.55552 0.39246

season identity 0.49848 0.31193 identity 0.68402 0.32361
season normalized 0.46093 0.36141 normalized 0.61399 0.37341
season cosine 0.45368 0.36204 cosine 0.59821 0.37751
month identity 0.49570 0.31140 identity 0.75911 0.28940
month cosine 0.41951 0.37878 normalized 0.58876 0.38446
month normalized 0.42103 0.37941 cosine 0.58016 0.38509

Table 4.3. Coverage and recall of context-aware versions of User 25-NN and Item 10-NN
algorithms, Furniture dataset; the highlighted values correspond to the similarity matrices

shown in Figure 4.11

The possible reason why even the nearly all-ones similarity matrices cause a signif-
icant recall increase is discussed later in Section 4.6.5, as this phenomenon occurs in
other datasets too.

4.6.2 Posters Dataset
The monthly similarity matrix of the Posters dataset (Figure 4.12 a) shows even stricter
division of warm (March to July) and cold (August to February) months. This is
unexpected, because there is little reason for poster sales being different in cold and
warm seasons of the year. However, the border is so sharp that the cause is probably
not the weather but simply a regular change in the offer of goods taking place twice a
year.

In Figure 4.12 b, it can also be seen that the popularity of items change during the
night and in the early morning. Again, the cause may be having only a few interac-
tions in these night periods, which in combination with Posters being a small dataset
promotes the occurence of more or less random items, causing the item-characteristics
vectors being substantially different from the usual daytime item=characteristics.

The daytime and season similarity matrix resemble the appearance of the hourly and
monthly matrices, respectively. The day of week matrix is close to all-ones matrix,
having all values larger than 0.95.

Table 4.4 shows the measured coverage and recall for all studied contextual factors.
The overall character of the results is similar to that of the Furniture dataset. Normal-
ization to [0, 1] interval doesn’t perform significantly better than a basic cosine-based
similarity matrix, and algorithms using an identity matrix actually perform worse than
the unmodified User and Item k-NN.

The hour and month context improve the recall the most, 23 % in both cases. To a
lesser extent, other contextual factors increase recall too, which will be explained later.
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Figure 4.12. Similarity matrices of natural periodicities in Posters dataset computed using

cosine similarity between item-characteristics of (a) month, (b) hour of a day

User 25-NN Item 10-NN
Context Similarity Coverage Recall Similarity Coverage Recall

reference 0.46058 0.20239 0.64492 0.20074
dow identity 0.51138 0.14977 identity 0.80788 0.14977
dow normalized 0.43032 0.21049 normalized 0.70877 0.21638
dow cosine 0.40450 0.21398 cosine 0.62715 0.22815

daytime identity 0.50472 0.14315 identity 0.80316 0.16578
daytime cosine 0.41477 0.21950 normalized 0.67990 0.22484
daytime normalized 0.42449 0.21987 cosine 0.65547 0.22649

hour identity 0.52443 0.14646 identity 0.79789 0.12309
hour normalized 0.35786 0.24637 normalized 0.54386 0.23625
hour cosine 0.35702 0.24839 cosine 0.53692 0.23717

season identity 0.51610 0.18160 identity 0.78456 0.17498
season normalized 0.45142 0.21877 normalized 0.73293 0.20313
season cosine 0.42726 0.22208 cosine 0.68517 0.21674
month identity 0.51749 0.18546 identity 0.80622 0.15492
month cosine 0.36091 0.24821 normalized 0.64603 0.23091
month normalized 0.37035 0.25225 cosine 0.60744 0.23367

Table 4.4. Coverage and recall of context-aware versions of User 25-NN and Item 10-NN
algorithms, Posters dataset; the highlighted values correspond to the similarity matrices

shown in Figure 4.12

4.6.3 Outdoor Dataset

Popularity of the items in the Outdoor dataset was expected to be highly dependent on
the season of the year. This dependence is clearly projected into the month similarity
matrix, shown in Figure 4.13 a. In contrary to the Furniture and Posters datasets, where
there was a rather sharp border between Summer and Winter months, the transition is
smooth in the Outdoor dataset. The smooth appearance agrees with the assumption
that there are many season-specific items in the dataset. For instance, ski equipment
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Figure 4.13. Similarity matrices of natural month and season periodicity in Outdoor

dataset computed using cosine similarity between item-characteristics

is specific to Winter, but presumably the popularity of ski equipment already rises in
Autumn.

The hour and daytime similarity matrix of the Outdoor dataset is similar to that
of the Furniture dataset, shown in Figure 4.11 b, only the stripe of low similarities in
night hours is much less distinct, the lowest value being 0.86. The matrix for day of
week is close to an all-ones matrix.

User 25-NN Item 10-NN
Context Similarity Coverage Recall Similarity Coverage Recall

reference 0.71551 0.30261 0.77833 0.36402
dow identity 0.72654 0.22014 identity 0.93874 0.33192
dow normalized 0.66853 0.29643 normalized 0.84932 0.37293
dow cosine 0.64517 0.30312 cosine 0.77521 0.37911

daytime identity 0.72641 0.21112 identity 0.91084 0.34181
daytime normalized 0.67891 0.30588 normalized 0.80143 0.37486
daytime cosine 0.66385 0.32079 cosine 0.77210 0.37755

hour identity 0.72706 0.22370 identity 0.95419 0.30213
hour normalized 0.60091 0.38093 normalized 0.74069 0.38351
hour cosine 0.59611 0.38180 cosine 0.73576 0.38373

season identity 0.72187 0.29890 identity 0.83660 0.35639
season normalized 0.68254 0.34973 normalized 0.78559 0.37380
season cosine 0.66074 0.35722 cosine 0.75782 0.37471
month identity 0.73108 0.31301 identity 0.86295 0.33842
month cosine 0.61674 0.37690 cosine 0.73874 0.37868
month normalized 0.62713 0.37820 normalized 0.75146 0.38031

Table 4.5. Coverage and recall of context-aware versions of User 25-NN and Item 10-NN
algorithms, Outdoor dataset; the highlighted values correspond to the similarity matrices

shown in Figure 4.13
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The results of the experiments can be seen in Table 4.5, the recall achieved with the

season and month matrices is highlighted. Although both season-aware and month-
aware recommenders increase recall greatly (by 24 % for User 25-NN and month sim-
ilarity matrix), we can see that the highest recall was reached using an hour of day
as a context, even when the hourly similarity matrix is very indistinctive. It turns
out that the success of hourly similarity matrix is to a large extent a consequence of
bagging, a well known technique for improving a model’s performance by splitting the
training data into multiple parts. Bagging and its effect on experiments conducted in
this chapter will be discussed in section 4.6.5.

4.6.4 Streaming Dataset
The streaming dataset is very different from the other datasets. The first difference is
visible from the season and month matrices, shown in Figure 4.14 (the month similarity
matrix shows only months from March to December, because this dataset contains only
interactions made during the span of these nine months).
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Figure 4.14. Similarity matrices of the Streaming dataset for (a) season, (b) month of

a year

There is very little similarity in item characteristics of even two consecutive months.
It means that the offerings of the products change in very quick pace and popularity of
items older than several weeks declines to very low levels. This is also the reason why
such good results were achieved in Section 4.5.

Figure 4.15 shows the day-of-week similarity matrix in its original and scaled ver-
sion. Multimedia content consumed on Thursday and Wednesday differs from the con-
tent consumed in other days. It loosely resembles the cycle of weekend/workday, with
Monday and Tuesday being unexpectedly similar to weekend.

The hour matrix is not as clear as in the case of Furniture or Posters datasets, but
when scaling is applied to it, the shape is similar to that shown in Figure 4.12 b. An
interesting feature of this matrix is the low-valued stripe at 5 o’clock, which is dissimilar
to times from 19 pm until morning. It may be caused by cartoons present in this dataset,
which aren’t viewed late in the evening.

The measured results are shown in Table 4.6. The best result (in terms of recall
improvement), 14%, has been reached using an identity matrix and an Item 10-NN
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Figure 4.15. Day of week similarity matrices of the Streaming dataset, (a) cosine-based,

(b) scaled to [0, 1]
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Figure 4.16. Hour similarity matrices of the Streaming dataset, (a) cosine-based, (b) scaled

to [0, 1]

algorithm. The reason why identity matrices for season and month contextual factors
keep up with the more sophisticated ones is the changeability of the dataset. The
identity matrix actually causes a similar effect as temporal dynamics weighting, which
has worked very well for Streaming dataset—the identity matrix causes the model to
be trained only with the interactions made in the target month/season (in other words,
with recent interactions). This can explain the good performance of month and season
identity matrices, in contrast with their poor performance in other contextual factors
or other, more stable datasets.

Scaling has had no substantial effect on recall, despite scaling of the hour and day-of-
week similarity matrices uncovered interesting patterns in the data. It is unfortunate
that the hour similarity matrix, which is very close to all-ones matrix, performed nearly

31



4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User 25-NN Item 10-NN

Context Similarity Coverage Recall Similarity Coverage Recall
reference 0.34350 0.23838 0.38462 0.21953
daytime identity 0.36036 0.18621 identity 0.37946 0.24016
daytime normalized 0.34516 0.22863 normalized 0.33356 0.24489
daytime cosine 0.34428 0.23205 cosine 0.33044 0.24529

dow identity 0.37429 0.17217 identity 0.37420 0.23729
dow normalized 0.35052 0.22412 cosine 0.34282 0.24212
dow cosine 0.34331 0.22746 normalized 0.34662 0.24340
hour identity 0.39690 0.13623 identity 0.40928 0.22394
hour normalized 0.32255 0.22747 normalized 0.28269 0.23281
hour cosine 0.32118 0.22772 cosine 0.28182 0.23347

month identity 0.39476 0.22070 cosine 0.42701 0.23496
month cosine 0.39797 0.25271 normalized 0.42633 0.23805
month normalized 0.39846 0.25646 identity 0.45654 0.25038
season identity 0.37420 0.22154 identity 0.42711 0.23980
season cosine 0.37332 0.24660 normalized 0.41610 0.24940
season normalized 0.37644 0.25049 cosine 0.41503 0.24991

Table 4.6. Coverage and recall of context-aware versions of User 25-NN and Item 10-NN
algorithms, Streaming dataset; best recall improvement is highlighted

identically to its scaled variant, although these two matrices are very different. Again,
this will be explained in the following section.

Another oddness of this dataset is that in many cases, the recall has been increased
only when using Item k-NN as an underlying algorithm, not when User k-NN has been
used. This may be connected to another distinctive property of this dataset, which is
that users own many interactions. Approximately 2

3 of the users own more than 10
interactions each. This is unusual for the other studied datasets, in which only about
3 % of the users own more than 10 interactions.

That means that in Streaming dataset, each context-specific User k-NN model has
enough data to find a set of k most similar users to the target user, but the set can be
very different between individual partial models. When scoring the items, each model
votes for its own set of items, causing the recommendation to be less relevant. Item
k-NN is more robust to this effect, because each item usually has many interactions,
therefore the item-item similarity is more stable even when taking only a portion of the
training data (belonging to the target context) into account.

The disbalance between User k-NN and Item k-NN didn’t occur in other datasets,
because users in other datasets usually have only a few interactions, so the various
partial models often have nothing to recommend, causing only a few partial models to
dominate the recommendation while others are scoring all items zero.

4.6.5 Bagging

The experiments with segmentation did not come up to expectations. Although some of
the similarity matrices look exactly as predicted and many of them display interesting
properties of the datasets, the recall improvement does not reflect this. In some cases,
the matrices which were close to all-one matrices reached comparable or even better
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results than those which revealed some true periodicities in item popularity. The high
recall measured for these matrices has probably been caused by bagging instead.

Bagging, or by full title bootstrap aggregation, is a meta-algorithm serving as an
ensemble framework for basic algorithms such as User or Item k-NN. This method, first
introduced in [20], aims to improve stability of a model, but it may also improve the
accuracy metrics.

The idea of bagging is to generate multiple training subsets from the original training
set using bootstrapig. That’s to say, each subset contains a random sample from the
original set, with replacement. Multiple models are then trained, one on each training
subset. Their outputs are combined by voting or averaging.

As can be seen, running the segmentation algorithm with a matrix close to all-ones
matrix is a special case of bagging, where the training subsets do not overlap and each
sample is used exactly once. This causes the success of segmentation even when using
uniform similarity matrices.

To estimate the influence of bagging on the recall improvement, the measured results
can be compared to models, of which similarity matrix is an all-ones matrix. This way,
the weighting part of the algorithm is suppressed and only the influence of bagging
remains in effect. The comparison of chosen best results with their counterparts with
all-ones similarity matrix is shown in Table 4.7. Only the matrices which were expected
to reflect the periodicity of a given dataset and which produced good results on their
own are shown in the table.

User 25-NN recall Item 10-NN recall
Dataset Context Cosine All-ones Cosine All-ones

Furniture hour 0.38467 0.38551 0.39215 0.39067
Furniture month 0.37878 0.37772 0.38509 0.38151

Posters hour 0.24839 0.24729 0.23717 0.23735
Posters month 0.24821 0.24287 0.23367 0.22778

Outdoor month 0.37690 0.37391 0.37868 0.37522
Outdoor season 0.35722 0.35501 0.37471 0.37050

Streaming dow 0.22747 0.22754 0.24212 0.24282

Table 4.7. Comparison of selected recall measurements with recall of all-ones matrices; the
better of the two is highlighted

It can be deduced that although in most cases the models with cosine-based similarity
matrices still produce better results than models with all-ones matrices, the difference
between the two is far smaller than the difference between unmodified collaborative
filtering algorithm and any of the context-aware modifications. That means most of
the recall improvement can be attributed to bagging. Only about 1 % recall increase is
observed when all-ones matrices are replaced with cosine-based similarity matrices and
the improvement isn’t even guaranteed. Such improvement can’t be considered reliable
and worth implementing into contemporary recommender systems, as the comparable
results can be achieved with bagging, which is a proven and in-depth researched method.
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Chapter 5
Conclusion

The evaluation framework was successfully designed and implemented, along with
User k-NN an Item k-NN collaborative filtering algorithms. Two classes of meta-
algorithms with multiple variations and parameters were proposed and integrated into
the framework. Recall and catalog coverage were measured for thousands of combina-
tions on four real business datasets with implicit interactions. Important results were
presented and discussed.

Both temporal dynamics and the segmentation techniques were evaluated with the
time dimension of the data, although segmentation can work with any other contextual
factor as well.

Experiments have shown that taking temporal dynamics into consideration increases
recall of the recommender by 5–35 %, depending on dataset. As expected, higher im-
provements were observed on highly dynamic datasets with frequent changes in item
offering.

Exponential weighting function works the best, being closely followed by Gaussian
weighting function. Linear weighting is too drastic and results in poor recommendation.

Segmentation methods with cosine-based similarity matrix improve the recommen-
dation. Experiments with identity matrix (M = diag(1, . . . , 1)) resulted in decreased
recall, which indicates that interactions made in different context than the target con-
text are still valuable for the recommendation, even if not as much as the interactions
made in the target context.

However, the success of the proposed segmentation method is possibly to a large
extent caused by bagging, a well-known method of improving a model accuracy by
splitting the training data into multiple sets, which is an inevitable side-effect of the
proposed algorithm. Experiments with all-ones similarity matrix (∀i, j ∈ C : Mi,j = 1)
resulted in nearly as good results as the experiments with similarity matrices based on
cosine similarities of item-characteristics of various contexts.

Nevertheless, the similarity matrices derived from cosine similarities between item-
characteristics vectors turned out to be a great visualisation tool for discovering the
structure of a dataset. In many cases, the predicted features of the datasets were clearly
visible in the similarity matrices. It also helped to identify unexpected periodicities in
some datasets.

The implemented framework is ready to be used in similar experiments. Its modular
architecture allows for easy replacement of the base algorithms, opening room for ex-
periments with, e.g., matrix factorization, and also development of wrapper algorithms
similar to those used in this thesis.

The research has shown positive impact of incorporating context into collaborative
filtering methods. Weighting the interactions with respect to their age improves the
offline metrics of the recommendation. More specifically, the exponential weighting
function with small values of ψ improved recall on all four studied datasets. Provided
that there is very small computational overhead and the ease of wrapping an existing
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algorithm into this context-aware extension, the proposed method is perfectly usable
in business.

However, more research is needed for the segmentation methods. The measured
similarity matrices show that some datasets are visibly periodic and some items are
being used in a single context only, uncovering large potential for improvement of the
recommendation. Nevertheless, the weighted ensemble method presented in this thesis
seems to be insufficient to profit from the item popularity periodicity.
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Appendix A
The Evaluation Framework and Measurements

The attached media contains three directories. One contains the source code and a PDF
document with this thesis, second contains the source code of the evaluation framework
developed for the demands of this thesis, and the third contains a file with all measured
recall and catalog coverage values for various datasets and parameter combinations.

The file structure of the media is the following:

/
+- thesis/
| +- scheumar.pdf The text of the thesis
| +- scheumar.tex The main TeX source file of the thesis
| +- assignment.pdf The assignment of the thesis
| +- chapters/
| | +- ... The TeX files with the chapters of the thesis
| +- ... Other dependencies of the CTU thesis template
+- framework/
| +- main.py The main Python executable of the framework
| +- ... Other Python source code files
+- measurements/

+- measurements.db A SQLite database with the measured results
+- schema.txt SQL schema of measurements.db

A.1 The Evaluation Framework
The framework is implemented in Python 3 and it is dependent on the following external
libraries: numpy (numeric computation), scipy (sparse matrices), sqlite3 (access to
the file with results), matplotlib (drawing the plots). The optional dependencies
needed only if computing new results: sklearn (preprocessing algorithms), psycopg2
(database access), ruamel.yaml (YAML parser for scripted plots).

The usage instructions can be invoked by passing the --help option:

python3 ./main.py --help

There are several subprograms runnable by the main program. The ones which
only show the results (saved in measurements.db, which must be present in the same
directory as the main program) don’t need a source database. They are:

. results – Show recall and coverage measured for the specified attributes.. showsim – Show the similarity matrix of a model with the specified attributes.. plotcr – Show a recall/coverage plot for specified attributes. Multiple values can be
specified for an attribute, they must be delimited by a colon.. plotscript – Show a recall/coverage plot based on a preprogrammed pattern spec-
ified in plotscripts.yaml.
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Example usage (see the built-in help for options):

./main.py result --s posters -m userknn -r 0.1 -k 100 -c month

./main.py showsim -s outdoor -c month -d cosine

./main.py plotcr -s furniture -c forget_exp -a user -p psi 1:3:7:14:365

./main.py plotscript -s p_i_f_u

The other subprograms need a Postgres database connection and work with the in-
teraction data. The database must run on localhost, the connection can be configured
by shell environmental variables DB_USER (user), DB_PASSWORD (password for the user),
DB_DATABASE (database name). The table with the interactions must have userid
(unique identifier of a user), itemid (ID of an item) and timestamp (time of the inter-
action) columns.

The subprograms working with the database are:

. describe – Show basic properties of the dataset (number of users, items, etc.).. compute – Compute recall and coverage of the specified model. More attributes can
be specified at once with values delimited by colons. The computation is executed
for all possible combinations of the attributes.. ui – A very basic user interface for visual evaluation of a model.

A.2 Measurements
All measurements are saved into measurements.db file, which is an SQLite3 database
file. It should not be needed to read this file directly, as the information can be accessed
using the framework commands, but it can be practical to read the raw results when
full power of the SQL language is needed.

The database file contains two tables: measurements with recall and coverage mea-
surements and msims with similarity matrices. The columns of these tables are de-
scribed in the attached file, schema.txt.

40


	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Recommender Systems
	Content-Based Recommending
	Collaborative Filtering
	User $k$-NN
	Item $k$-NN


	Design of a Context-Aware Recommender
	Related Research
	Proposed Algorithms
	Temporal Dynamics
	Discrete Segmentation

	Evaluation Framework

	Experiments
	Performance Metrics
	Testing Datasets
	Fixed Parameters
	Item Significance
	Temporal Dynamics
	Weighting the User Vectors by Global End-of-Time
	Weighting the Rating Matrix by Global End-of-Time
	Weighting the User Vectors by User-Specific End-of-Time
	Weighting the Rating Matrix by User-Specific End-of-Time

	Discrete Segmentation
	Furniture Dataset
	Posters Dataset
	Outdoor Dataset
	Streaming Dataset
	Bagging


	Conclusion
	References
	The Evaluation Framework and Measurements
	The Evaluation Framework
	Measurements


