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Abstract

Recent advancement in the communication technologies creates an opportu-
nity for the effective use of nowcasting – predicting the weather over short
periods and communicating the predictions to the public in real time. Cur-
rent nowcasting systems using weather radar images in the Czech Republic
are built on traditional algorithms and numerical weather models. The ob-
jective of this work is to research the possibilities of using neural networks
for processing of weather radar image sequences as an enhancement to the
existing nowcasting methods.

I propose and test a convolutional neural network as a solution for two tasks
– interpolation and extrapolation of a sequence of weather radar images. In
both tasks, the proposed network achieves promising results. Quantitative
comparison of my network and the currently used method COTREC ended
in favour of the proposed network. The qualitative evaluation shows multiple
benefits of my solution – the ability to capture the change of the radar echo
intensity and shape. The results of this work create space for deeper research
in this field.

Keywords weather radar images, Meteopress, image sequence interpola-
tion, image sequence extrapolation, weather nowcasting, convolutional neural
networks
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Abstrakt

V dôsledku nedávneho pokroku v komunikačných technológiách vzniká príleži-
tosť na efektívne využitie nowcastingu – poskytovanie krátkodobých pred-
povedí v reálnom čase. Súčasné nowcastingové systémy využívajúce radarové
snímky v Českej republike sú založené na tradičných algoritmoch a numer-
ických modeloch na predpovedanie počasia. Cieľom tejto práce je preskú-
mať možnosti využitia neurónových sietí na spracovanie sekvencií radarových
snímok, z pohľadu vylepšenia existujúcich nowcastingových metód.

V práci navrhujem a testujem konvolučnú neurónovú sieť ako riešenie dvoch
úloh – interpolácie a extrapolácie sekvencie radarových snímok. Navrhnutá
sieť dosahuje pre obe úlohy sľubné výsledky. Kvantitatívne porovnanie mojej
siete a metódy COTREC, ktorá sa aktuálne používa, skončilo v prospech siete.
Kvalitatívne vyhodnotenie ukazuje viaceré výhody môjho riešenia – schopnosť
zachytiť zmenu intenzity a tvaru radarového echa. Výsledky práce vytvárajú
priestor pre ďalší výskum v tejto oblasti.

Klíčová slova radarové snímky zrážok, Meteopress, interpolácia sekven-
cie snímok, extrapolácia sekvencie snímok, weather nowcasting, konvolučné
neurónové siete
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Introduction

Climate and weather as a symptom of it shape human civilization. Storms,
severe wind, floods, droughts and many others are caused by weather and
put human lives and property to risk. Weather determines how farmers will
take care of crops, how much electrical energy will solar, hydroelectric and
wind powerplants produce and affects a lot of human decisions in everyday
life. As it is not possible to change the weather as needed, it is important to
know, what will the weather be like and adapt to it.

Images of precipitation from weather radars are a popular type of weather in-
formation. They display the exact area covered by precipitation and capture
its motion in the past. The knowledge of the future precipitation motion in
a sufficient time can help to protect humans and property from storms and
heavy rainfalls, while there can still be done a lot to enhance the user expe-
rience when informing about the past development. This work uses machine
learning techniques to work with radar images, captured above the area of the
Czech Republic, as frames of a video.

Machine learning algorithms for two different sequence processing methods
will be explored in this thesis. The first method is the interpolation of the
precipitation images sequence – estimation of images between actual images
of the sequence. While the sequence obtained from weather radars is sparse,
better-looking information can be presented using this technique. The second
type of sequence processing is extrapolation – estimation of future images of
the sequence, which will be used as a prediction of the precipitation develop-
ment.

The following two chapters introduce the reader to the meteorological and
machine learning background. The interpolation and extrapolation tasks are
defined in Chapter 3 alongside the research of current state-of-the-art methods.
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Introduction

Chapter 4 describes the creation of the dataset from the weather radar images.
Machine learning models for the tasks are introduced, trained and evaluated
in Chapters 5 and 6. Chapter 6 also contains a comparison of my model and
the method COTREC for the extrapolation task.
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Thesis’s Objective

The objective of this thesis is to explore the possibilities of interpolating and
extrapolating a sequence of weather radar images as an enhancement of now-
casting methods using machine learning algorithms.

The goal of the theoretical part is to introduce the reader to the current
weather nowcasting methods and necessary machine learning concepts. This
part also covers research of the current state-of-the-art machine learning meth-
ods for image recognition in terms of their use for video frame interpolation
and extrapolation.

The practical part will begin with the creation of dataset from weather radar
images from the area above the Czech Republic. The objective of this part is to
design and implement models for interpolation and extrapolation of sequences
of weather radar images. The models will be trained and tested on the created
dataset and results are to be analysed and compared to methods that do not
use machine learning. The goal of the last part of the thesis is to outline
possible future work, how to further improve the results of interpolation and
extrapolation of weather radar image sequences.
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Chapter 1
Meteorological Background

The weather has always affected human lives. For a long time, favourable
weather was a question of survival for a society. The whole production of food
depended on it as crops, animals and nature as a whole need specific weather
conditions to prosper. Even small fluctuations in weather like heavy rainfalls
or low temperatures exposed human lives to great risks.

Much has not changed nowadays. Enough rainfall, sunshine, good tempera-
tures and no severe weather are still necessary to feed humanity. The climate
change that is one of the reasons for migration in recent years [1] is a good
example. Even though people can protect themselves from various types of
weather, it still causes many natural disasters (floods, tornadoes,…) that en-
danger human lives and damage property. In addition to these, nowadays
weather affects all types of traffic (especially air-traffic), production of electric-
ity from multiple energy sources (wind, hydroelectric and solar power plants),
planning and organisation of outdoor events, etc.

Based on local observations, humans were creating weather lore to make short-
term predictions. With the arrival of meteorology (the science of the atmo-
sphere [2]) physical quantities in the atmosphere started to be measured, and
it became possible to make longer-term and more rigorous weather forecasts.

One specific type of weather forecasting is nowcasting. It is defined in [3]
as “forecasting with local detail, by any method, over a period from the present
to 6 hours ahead, including a detailed description of the present weather”.
As described in [4], multiple challenges need to be overcome to make now-
casting effective. Firstly, there is a need for a large amount of high-density
weather information. Secondly, this information needs to be communicated to
the target group (public, military, air-traffic, …) in real time. And finally, the
target group has to adapt to the acquired information. Arise of the compu-
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1. Meteorological Background

tational power, use of mobile devices and social media in recent years answer
these challenges and make the development of nowcasting systems up-to-date
topic.

1.1 Weather Radars

Radar (from acronym RAdio (Aim) Detecting And Ranging) is a system for
detection of objects. The principle of radar operation is similar to sound-
wave reflection – an effect of hearing an echo when shouted against a sound-
reflecting object, for example in a cave. The general direction of reflecting
object can be determined from the echo, and even distance can be estimated,
given the knowledge of the speed of the sound. [5, 6]

The radar emits electromagnetic waves, which travel with the speed of light,
in a specific direction. When these waves meet an electrically leading surface,
a portion of the energy is reflected/scattered in all directions. Radar receives
the reflected energy and can calculate the distance of the reflecting object
based on the time elapsed since the emission of the pulse. Electromagnetic
waves travel in a straight line through space, so the distance and the direction
(azimuth and elevation) of transmitted pulse exactly determine the position of
the reflecting object. A signal containing this information is also called radar
echo. [5, 6]

Water and therefore, precipitation is conductive and reflects electromagnetic
waves. When measuring precipitation, radar is slowly moving in a constant
elevation. Emitted electromagnetic beams have some width and radar can
send dozens of pulses and measure reflected energy, during each degree of
rotation. To obtain a full 3D image of precipitation, these scans are run in
multiple different elevations. [7]

Important parameters of weather radars are together related wavelength ([λ] =
m) and frequency ([f ] = Hz = 1

s )

λ = c

f
, (1.1)

where c ([c] = m
s ) stands for the speed of light, which is constant. Large

wavelength pulses have low frequency and cannot detect weak precipitation,
while ones with smaller wavelength and higher frequency reflect almost all of
their energy in heavy rain or storm and cannot well detect objects behind it.
Modern radars can use dual polarisation for detecting the shape of the object
and deciding about the type of precipitation. Doppler effect [8] is used to
describe the movement of the detected object. [7]
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1.1. Weather Radars

Figure 1.1: Coverage of the CZRAD radars. Circles denote the theoretical
ranges. The other lines limit the real coverage of the radar, based on various
physical aspects. [9]

1.1.1 Radar Networks in the Czech Republic
The precipitation over the Czech Republic is monitored with two radar net-
works located inside the borders of the country. According to [7], this area
is partially covered also with German and Slovak radars.

1.1.1.1 Czech Weather Radar Network

The Czech Weather Radar Network (CZRAD) is the radar network of the
Czech Hydrometeorological Institute (CHMI). It consists of two C-band radars
with the frequency of 5 GHz. Radars with this frequency achieve good precip-
itation measurements, but the signal can interfere with WiFi networks that
are also run on 5 GHz. Each of the CZRAD radars can cover up to 256 km
range (Figure 1.1). In this case, the range is not limited by the power of
the radar but rather by the curvature of the Earth (Figure 1.2), as the most
valuable data is about the lowest parts of the atmosphere. [9, 7]

Precipitation data is obtained at locations Skalky u Protivanova and Prague-
Brdy and combined to a publicly available full volume scan every 10 minutes.
Scans are run in multiple elevations from top to bottom. The data about
precipitation just above the Earth surface is therefore as actual as possible,
while information about the top levels of the atmosphere is already a few
minutes old when delivered to users. Processed full volume images are then
published on the CHMI Nowcasting webportal1. [7]

1http://portal.chmi.cz/files/portal/docs/meteo/rad/inca-cz/short.html
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1. Meteorological Background

Figure 1.2: Effect of the Earth curvature on the radar measurements. [10]

CZRAD radars have a horizontal resolution of 1×1 km, a vertical resolution of
0.5 km and capture 256 degrees of precipitation intensity. Multiple products
are created from the data. The two most common are Radar Reflexivity
MAX Z and CAPPI. The Radar Reflexivity MAX Z images are created taking
the maximum precipitation intensity through the whole height. The CAPPI
displays precipitation in a constant height above the sea level. The number
of precipitation intensity degrees in both types of images is reduced to 16.
Published CAPPI image can be seen in Figure 1.3. [9]

1.1.1.2 Meteopress Radar Network

There is a new radar network emerging in the last decade over Central Europe.
In the last two years, the company Meteopress has placed and is operating
radars in the Czech Republic and Slovakia. They use X-band radars of their
production that are cheaper to build but with lower power output and different
parameters than the CZRAD C-band radars. Meteopress radars are operating
on the frequency around 10 GHz and therefore cannot detect well objects
behind a storm or heavy rain. They approach this challenge with more dense
radar network consisting of 6 radars with plans to add two more. [10]

The main benefit of Meteopress’s radars, when compared to CZRAD, is the
resolution. Their radars can create a scan in 1-minute interval with a hor-
izontal resolution from 150 × 150 m to 250 × 250 m. Precipitation images
are displayed at https://www.meteopress.cz/radar/ during heavy rainfalls
or storms. [10]

8
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1.2. OPERA Programme

Figure 1.3: Screenshot of CZRAD radar image of type CAPPI, published on
the CHMI Nowcasting webportal. [11]

1.2 OPERA Programme
“OPERA is the radar programme of EUMETNET”. [12] EUMETNET is the
Conference of the National Meteorological Services, formed primarily to help
cooperation and collaboration among its members. EUMETNET also repre-
sents the National Meteorological services externally.

The key achievement of the OPERA programme is a high-quality composite of
weather radar images across the majority of Europe region, produced nearly
in real time. Data from the CZRAD radar network and German and Slovak
weather radars are also included. [12]

1.3 Nowcasting in the Czech Republic
To the best of my knowledge, the only nowcasting system in the Czech Re-
public using weather radar images is the one created by the CHMI. According
to [11], a nowcasting model based on the COTREC method is used.

1.3.1 COTREC
COTREC [13] is a nowcasting method for extrapolation of the radar echo
(signal reflected back to the radar by an object). It is built on the TREC
method and improves it in two ways. [14] shows that in 2007, the CHMI im-
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1. Meteorological Background

plementation of COTREC method outperformed the numerical Aladin model
during the first 3 hours of prediction. One case where COTREC lags is that
it cannot capture well growth or decay of radar echo.

1.3.1.1 TREC Method

TREC, as explained in [15], assumes that precipitation motion stays constant
over a short period, and there is no growth or decay of the radar echo intensity.
TREC takes two consecutive weather radar images on the input and calculates
TREC vectors – “translation vectors of radar echo patterns” [15], also called
shift or wind motion vectors – from them.

The whole radar domain (area covered by the radar) is split to rectangle boxes
of the same size. For each of the boxes, a TREC vector is found shifting the box
from the second image to every possible box position in the first and finding
the one that is the most similar. Use of the Pearson correlation coefficient
as the similarity metric is proposed in the [15], but also metrics like ℓ1 or ℓ2
norms can be used.

Feature frames are synthesised pixel-by-pixel from the most recent observed
input image. Each pixel in the output image is shifted by the corresponding
motion vector backwards to obtain an originating point in the input image, and
the radar echo intensity of this point is used for the target one. It is assumed
that the TREC vector for a box corresponds to the motion vector of the point
in the middle of the box. For other points, interpolation of the TREC vectors
from four nearest boxes is used.

1.3.1.2 COTREC Improvements to TREC Method

Calculation of the TREC vectors often leads to inconsistent or noisy results
[15]. This behaviour is caused primary by ground clutter (unwanted radar
echoes reflected from the surface) or shielding of the radar beams. Proposed
solution [15] replaces incorrect vectors with the average of the neighbouring
ones. As the incorrect vectors are considered vectors with zero velocity or
the ones that deviate more than 25◦ from the direction of the mean of the
neighbouring vectors.

In the second step, the whole motion field is smoothed, with two requirements
in mind. TREC-derived motion vectors should be continuous, and the out-
come must be as similar as possible to the original motion field. The exact
process is beyond the scope of this thesis and can be found in [15].

For comparisons in Section 6 will be used the implementation of COTREC by
the company Meteopress.
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Chapter 2
Machine Learning Background

This chapter covers prerequisite concepts needed in this thesis. It is assumed
that reader is familiar with the concept of feedforward neural networks. The
topic can be studied in the first chapter of [16].

2.1 Convolutional Neural Networks

Convolutional neural networks (CNN) [17] are neural networks that expect
the input to be a 3D tensor (with dimensions width, height and depth), typ-
ically an image. Neurons of a CNN are arranged as well. CNNs proposed in
this thesis will be fully convolutional networks (FCN) and primary use the
following layers: convolutional layer, pooling layer and upsampling layer.

FCNs [18] are a special type of CNNs where every layer is a filter applied
over each region of the input according to stride. One of the benefits of such
a network is that it can naturally process the input of any size.

2.1.1 Convolutional Layer

The core of CNNs are convolutional layers [17]. The learnable parameters are
3D convolutional filters that are during the forward pass slid across the width
and height of the input tensors. At each position, a dot product of filter and
input is computed that together form a 2D activation map. Typically a set
of filters is used in a convolutional layer and activations are concatenated
along the depth dimension to output a 3D tensor. Intuitively, the filters
activate when they see some visual feature represented by the filter weights.
For example, it can be an edge in the first layer or some more complex shape
at later ones. A simple diagram of convolutional layer is in Figure 2.1.
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2. Machine Learning Background

Figure 2.1: Diagram of a convolutional layer with input dimensions [4×4×1],
filter dimensions [2 × 2 × 1] and stride of size (1, 1).

Figure 2.2: Visualization of a receptive field of two consecutive convolutional
layers with (3, 3) filter size, (2, 2) stride and zero padding of size 1. [19]

2.1.1.1 Size of the Output and Number of Trainable Parameters

Consider input to a convolutional layer with size [Wi × Hi × Di] and the layer
consisting of c filters, each with size [w×h×Di] (depth need to be same as the
one of the input). The filter is moved with a stride of (Ws, Hs).

The height of the output Ho [17] is then computed as

Ho = Hi − h + 2P

Hs
+ 1. (2.1)

The width of the output Wo is computed analogically. The input can be
padded with P zeros around the borders to make the numerator divisble by
stride. The output depth is c – the number of filters in the layer. To summa-
rize, the size of the output is [Wo × Ho × c].

The number of parameters learned by the network is w · h · Di · c.

2.1.1.2 Receptive Field

Receptive field [19] of a convolutional layer is a region in the input space that
affected a particular activation. The receptive field of the first convolutional
layer has the same size as the filter. In later layers, the receptive field is a union
of receptive fields of seen activations by the filter (Figure 2.2).

12



2.1. Convolutional Neural Networks

(a) Diagram of a max pooling layer
with (2, 2) filter and (2, 2) stride.

(b) Diagram of upsampling layer with
scale 2 and bilinear interpolation.

Figure 2.3: Diagrams of pooling and upsampling layers.

2.1.2 Pooling Layer

Pooling layer [17] is often added in-between convolutional layers to reduce the
spatial size. It forces the network to keep just the important information and
hence control the overfitting. Filter of size w×h is reduced to one number and
the filter is slid across the width and height of the input with stride (Ws, Hs).
Depth stays unchanged. The most common setting is the pooling layer with
(2, 2) filter and (2, 2) stride (Figure 2.3a).

The actual pooling operation can be realised with multiple functions. The
most used are max pooling (replacing numbers in the filter with a maximum
of them) and average pooling (replacing numbers in the filter with mean of
them). Pooling layer has no learnable parameters.

2.1.3 Upsampling Layer

Upsampling layer [20] is used to reconstruct the image from the spatially com-
pressed output of pooling layers. The input to the layer is scaled-up interpo-
lating the in-between points from the input ones (Figure 2.3b). Upsampling
layer has no learnable parameters.

2.1.4 Encoder-decoder Architecture

CNNs outputing 2D tensors [21, 22, 23, 24] often share similar architecture
(an example can be found in Figure 5.1). It consists of two parts:

1. encoder part – combination of convolutional and pooling layers is used
to extract features from the input and downscale the spatial size

2. decoder part – combination of convolutional and upsample layers is used
to reconstruct the spatial information

13



2. Machine Learning Background

2.2 Loss Functions
Loss function [16] quantifies how well a machine learning model approximates
data in the training dataset and guides the training of it.

2.2.0.1 L1 Loss

L1 loss L1, also called mean absolute error (MAE) as defined in [20], is a loss
function built on a per-pixel colour difference basis. It is built on the ℓ1 vector
norm between interpolated image Î and ground truth image I:

L1(I, Î) = 1
N

||I − Î||1, (2.2)

where N denotes the number of elements in the input tensor.

2.2.0.2 MSE Loss

Mean squared error (MSE) loss LMSE , as defined in [20], is analogically to L1
a loss function built on the squared ℓ2 vector norm:

LMSE(I, Î) = 1
N

||I − Î||22, (2.3)

where N denotes the number of elements in the input tensor.

2.2.0.3 Perceptual Loss

Perceptual loss [25] is a loss function based on a feature extractor, that is com-
paring two images based on the high-level features, rather than per-pixel. This
loss should compare the input images on a basis similar to a human compari-
son.

2.3 Improving Training
2.3.1 PReLu Activation Function
Activation functions [16] are added to the network to model nonlinearity. An
often used one, when working with images is rectified linear unit ReLU(x) =
max(0, x). The PReLU activation [20] is based on the ReLU and has following
form, where a is a learnable parameter:

PReLU(x) = max(0, x) + a · min(0, x). (2.4)

2.3.2 Residual Conections
In [26], authors propose the use of residual connections to help train deep
networks. Using these connections, the output of some layer is summed with
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the output of some previous layer with the same shape before feeding forward
the activations to the next layer. These connections were used in [21] to
maintain fine-grained image details during the decoding in an encoder-decoder
CNN.

2.3.3 Batch Normalization

During training, each mini batch is sampled from the same training set, but
they have different distributions which force the network to constantly adapt
to a new distribution. Batch normalisation layer [27] normalises, scales and
shifts the activations of the mini batch to reduce this problem. It is reported in
the paper that including batch normalisation layers both speed up the training
and reduce overfitting.

Batch normalization is applied to each dimension x(k) of the input x separately.
Firstly, the input is normalized:

x̂(k) = x(k) − E[x(k)]√
Var[x(k)]

, (2.5)

where E[·] and Var[·] respectively denotes expected value and variance over
the trainin dataset. x̂(k) is then shifted with learned parameters γ(k) and β(k):

y(k) = γ(k)x̂(k) + β(k). (2.6)

2.4 SSIM
Structural Similarity (SSIM) Index as defined in [28] is a metric that measures
the quality of an image compared to the ground truth image. It is based on the
philosophy that humans pay the most attention to the structural information
of an image when they judge about its quality. Therefore, the classical metrics
like ℓ1 norm or MSE are a little bit short-handed in image quality assessment.
An image with little shifted colours can have the same MSE as the same image
with noise instead (Figure 2.4), even though the one with noise is for humans
much more distorted.

SSIM measures the similarity of two images x and y in three separate com-
parisons: luminance, contrast and structure.
Luminance is estimated as the mean intensity of the pixels xi

µx = 1
N

N∑
i=1

xi. (2.7)
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2. Machine Learning Background

Figure 2.4: Comparison of images with various distortions, but same MSE.
The one with noise is for humans more distorted than the shifted one, which
is also shown by the SSIM value. [29]

Luminances µx and µy are compared using the function l(x, y), where C1
is a constant:

l(x, y) = 2µxµy + C1
µ2

x + µ2
y + C1

. (2.8)

Contrast is estimated as the standard deviation

σx =
( 1

N − 1

N∑
i=1

(xi − µx)2
) 1

2 (2.9)

and σx and σy are comapred with function c(x, y), where C2 is a constant:

c(x, y) = 2σxσy + C2
σ2

x + σ2
y + C2

. (2.10)

Structure comparison s(x, y) is defined as follows:

s(x, y) = σxy + C3
σxσy + C3

. (2.11)

Correlation coefficient σxy between images x and y can be estimated as:

σxy = 1
N − 1

N∑
i=1

(xi − µx)(yi − µy). (2.12)

Metrics are combined into one SSIM index as following, where C3 = C2/2:

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

.

(2.13)
Implementation of SSIM from the scikit-image2 library is later used in this
work.

2https://scikit-image.org
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Chapter 3
Image Sequence Processing and

Related Work

The review of the related work using machine learning algorithms for image se-
quence processing is done in this chapter. It will be reffered to image sequence
interpolation/extrapolation also as video frame interpolation/extrapolation in
this thesis.

3.1 Tasks Definitions
Both the image sequence interpolation and extrapolation are regression learn-
ing problems. An image I ∈ RI×J is considered as a matrix of real numbers.

3.1.1 Image Sequence Interpolation
In the image sequence interpolation problem, there is a triplet (It1 , It2 , It3) of
subsequent images capturing a scene in times (t1, t2, t3). In case of this work,
these are weather radar images of precipitation. It is assumed that time steps
∆t between images are consistent, ∆t = t2 − t1 = t3 − t2. The task is to
estimate the image Ît2 from input images It1 and It3 that will be as simillar
as possible to the real (ground truth) image It2 .

3.1.2 Image Sequence Extrapolation
The goal of image sequence extrapolation task is to estimate future images
that fit to a sequence of observed ones. The input sequence consists of N
weather radar images (It1 , It2 , . . . , ItN ), captured in times (t1, t2, . . . , tN ). The
time step ∆t is a constant ti − ti−1 = ∆t, i ∈ {2, 3, . . . , N}. The task is to
predict a sequence of M future images (IN+1, IN+2, . . . , IN+M ) with the same
∆t, so ti − ti−1 = ∆t, i ∈ {N + 1, N + 2, . . . , M}.
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(a) It1 (b) It2 (c) It3 (d) It4

Figure 3.1: Sequence of weather radar images.

3.2 Optical Flow
Optical flow, or flow in general, is a common term when talking about image
sequence interpolation/extrapolation. The optical flow [30] estimates the 2D
motion of image points between subsequent images. It is by definition the
“apparent motion of the brightness pattern.” [30] So, if lightning in the scene
changes, there will be optical flow even though there is no motion. The optical
flow from image I0 to I1 will be noted as F0 ∈ R2×I×J and it is a set of vectors
(u, v) associated with each pixel x = (x, y) of the image that captures the
motion of that point between the two images.

3.2.0.1 Frame Interpolation with Optical Flow

One of the algorithms for calculating the interpolated image from the optical
flow (frame synthesis) is described in [30]. This algorithm is used for eval-
uating optical flow estimation on the frame interpolation in the Middlebury
benchmark [30]. The algorithm has four steps:

1. Flow F0.5 at time t = 0.5 is obtained by forward-warping F0 in such
a way that:

Ft(x + t · (F0(x))) = F0(x). (3.1)

Vectors are assigned to every pixel which is in 0.5 radius from x + 0.5 ·
(F0(x)). In case that multiple vectors are assigned to one pixel, the
most fitting one, the one that minimise equation 3.2 is chosen.

|I0(x) − I1(x + F0(x)| (3.2)

2. Holes in F0.5 are filled according to a closer unspecified outside-in filling
strategy.

3. Occlusion masks O0 and O1, denoting which pixels from one image are
not visible in the other, are estimated. F1 is calculated using equation
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3.1 and O1(x) = 1 (pixel x from image I1 is not visible in I0) for every
pixel x that has no flow vector assigned in F1. The other way O0(x) = 1
for every pixel x where:

|F0(x) − F1(x + F0(x))| > 0.5. (3.3)

4. For every pixel x in the interpolated frame I0.5 the corresponding pixels
in I0 and I1 are calculated as x0 = x − 0.5 · F0.5(x) and x1 = x + 0.5 ·
F0.5(x). If according to occlusion masks both of the pixels are visible
then

I0.5(x) = 0.5 · I0(x0) + 0.5 · I1(x1). (3.4)
Otherwise, the value of visible pixel is used.

3.3 Related Work to Image Sequence Interpolation
For a long time, image sequence interpolation was taken as a problem of
estimating optical flow and synthesising interpolated frame from the optical
flow and input images. However, a lot of work on video frame interpolation
using neural networks was conducted in the last three years. First, to do
so were Long et al. [21] in 2016. An interesting method that merges optical
flow estimation and image synthesis into one step was introduced by Niklaus
et al. [22] in 2017. Liu et al. [31] described the current method of state-of-
the-art.

3.3.1 Learning Image Matching by Simply Watching Video
Long et al. were first to use a deep convolutional neural network directly for
video frame interpolation in [21]. They twisted the traditional view on the
interpolation – not estimate the optical flow to calculate interpolated frame
but rather directly estimate the interpolated frame to calculate optical flow.
The interpolated frame is estimated by a fully convolutional neural network
that is trained on triplets of consecutive frames from widely available video
data. Afterwards, based on the back-propagation, they compute for each pixel
a gradient of its value with respect to every input pixel. The pixels from input
images that affect the pixel the most are taken to calculate the motion field.

3.3.2 Video Frame Interpolation via Adaptive Separable
Convolution

In [22] Niklaus et al. merge estimation of optical flow and intermediate frame
synthesis into a single end-to-end trainable convolutional network (all param-
eters are trained simultaneously with one loss function). A pixel value at
position (x, y) of interpolated frame Î0.5 is calculated as follows:

Î0.5(x, y) = K0(x, y) ∗ P0(x, y) + K1(x, y) ∗ P1(x, y). (3.5)
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Kt(x, y) ∈ RN×N denotes a 2D convolutional kernel for pixel (x, y) in the input
frame It which is convolved with a patch Pt(x, y) from this image centered
at (x, y). To dramatically reduce amount of used memory, authors propose
to use two 1D convolutional kernels (Kt,v, Kt,h) and estimate the 2D kernel
as Kt = Kt,v ∗ Kt,h. They do not report any loss of quality compared to the
use of 2D kernels, while smaller amount of memory makes it possible to handle
larger motions with larger N and interpolate frames with higher resolution in
one pass.

Pair of 1D kernels for each pixel for both of the input frames is obtained
using a convolutional neural network that takes frames I0 and I1 as input.
Separable convolution is implemented as a layer of the network. In addition
to the traditional loss function based on ℓ1 norm, they also use perceptual loss
LF – a feature based loss function – for training. They empirically choose to
use relu4_4 layer of the VGG19 network [32] as the feature extractor ϕ.

LF = ||ϕ(I0.5) − ϕ(Î0.5)||22 (3.6)

3.3.3 Deep Video Frame Interpolation using Cyclic Frame
Generation

The state-of-the-art method is proposed by Liu et al. in [31] and is based on
the deep voxel flow method. Deep voxel flow [23] uses an end-to-end trainable
deep convolutional network that contains a voxel flow layer – “a per-pixel, 3D
optical flow vector across space and time” [23] that is used to synthesise the
interpolated image from the input ones. An advantage of this method is that
voxel flow is computed only as an intermediate layer, and it is not compared
to optical flow ground truth, which is difficult to obtain.

In [31] they improve voxel flow method with the following three components
to achieve state-of-the-art.

3.3.3.1 Cycle Consistency Loss

Comparing images with traditional functions such as ℓ1 norm and minimis-
ing loss functions built on them often leads to blurry results. They propose
a solution to use already interpolated frames as input to the model again
and predict the original input frame. More precisely, model f is used to pre-
dict 4 frames (Figure 3.2) during one run: I′

1 = f(I0, I2), I′′
1 = f(I′

0.5, I′
1.5),

I′
0.5 = f(I0, I1) and I′

1.5 = f(I1, I2). Loss function L over a batch of N triplets
is than calculated as follows:

L = Lr + Lc =
N∑

n=1
||I′

n,1 − In,1||1 + ||I′′
n,1 − In,1||1. (3.7)
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Figure 3.2: Diagram of cycle consistency loss. [31]

3.3.3.2 Motion Linearity Loss

They assume that “time interval between two consecutive frames is short
enough so that the motion is linear between the two frames” [31]. Based
on this assumption, the flow map F0→2 between I0 and I2 should be twice
as large as the flow map F0.5→1.5 between Î0.5 and Î1.5. Motion linearity loss
Lm is then used as a regularization parameter for optical flow estimation:

Lm =
N∑

n=1
||Fn,0→2 − 2 · Fn,0.5→1.5||22. (3.8)

3.3.3.3 Edge-guided Training

They have conducted experiments to show that interpolation of regions with
high number of edges is difficult. To address this problem, they compute edge
maps of input images using the HED convolutional network [33]. Edge map
is added to the input to improve interpolation by preserving edge structure.

3.4 Related Work to Image Sequence
Extrapolation

Two different approaches to the image sequence extrapolation using neural
networks are examined in this section. Villegas et al. in [34] propose a method
based on a motion of high-level features and prediction using a recurrent
neural network. A method that is currently achieving state-of-the-art results
is described by Reda et al. in [24].
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3.4.1 Learning to Generate Long-term Future
via Hierarchical Prediction

Villegas et al. [34] are describing a method for long-term future prediction.
The majority of frame extrapolation methods are predicting future frames in
a pixel-to-pixel manner. While these approaches can produce sharp results for
few time steps ahead, predicted frames contain some pixel-level noise. These
errors tend to exponentially amplify through time until they overwhelm the
video signal.

In [34], authors are predicting human movement in front of a static camera.
They propose a model for long-term frame prediction from high-level struc-
tures of previous frames. Human poses extracted from the images are used
as these high-level structures in the paper. Prediction of the future poses
is done by a LSTM [35] network. The network takes a sequence of high-level
structures p1:t as input and produces a high-level structure sequence pt+1:t+T

on the output.

Actual future frames are synthesized from predicted structures pt+1:t+T and
last observed frame xt according to the diagram in Figure 3.3. The synthesis
follows an analogy that structure pt is to pt+n as image xt is to xt+n. Their
image generator uses two convolutional encoders fimg and fpose to map images
and high-level structures respectively to a feature space, where the pose feature
transformations can be applied to synthesize features of the feature frame. The
frame is afterwards decoded using convolutional decoder fdec.

3.4.2 SDC-Net: Video prediction using spatially-displaced
convolution

Reda et al. propose in [24] method for frame sequence extrapolation that
is achieving state-of-the-art in both qualitative and quantitative evaluation
and is inspired by the use of adaptive separable convolution in [22]. They
introduce Spatially Displaced Convolution (SDC) which combines the adaptive
convolution for each pixel with frequently used motion vectors. The pixel value
in position (x, y) of first predicted frame It+1 is computed as follows:

It+1(x, y) = K(x, y) ∗ Pt(x + u, y + v), (3.9)

where K(x, y) ∈ RN×N is a 2D convolution kernel, (u, v) is a motion vector
and Pt(x + u, y + v) is a patch of size N × N from the last observed image
It with the center at (x + u, y + v). Thanks to the motion vectors they can
handle large motion and obtain the visually pleasing results from the spatially-
adaptive convolution, despite the relatively small N = 11. To further reduce
memory usage, they adopt separable convolutions from [22] where the 2D
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Figure 3.3: Diagram of image generator. [34]

kernel K(x, y) is estimated with the pair of 1D kernels as showed in Section
3.3.2.

The prediction model is formulated as:

It+1 = T (G(I1:t, F2:t), It). (3.10)

T denotes the transformation process realized with SDC and described in
equation 3.9. G is a fully convolutional network estimating parameters for T .
The network takes as input a sequence of t images I1:t and a sequence of t − 1
optical flows F2:t. Fi is defined as bacward optical flow between images Ii and
Ii−1. It should be noted that due to occlusion, predicted motion vectors (u, v)
are not the same as optical flow Fi+1.
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Chapter 4
Dataset

This chapter elaborates on the process of creating a dataset for training and
testing machine learning models for weather radar sequence interpolation and
extrapolation.

4.1 Source Images
I have chosen radar images from the area above the Czech Republic as a source
for the dataset. The data were provided by the company Meteopress from
the programme OPERA (Section 1.2). Images are composites from multiple
weather radar networks, primary from the CZRAD network (Section 1.1.1.1),
but also neighbouring radar networks may be included. The intensity of radar
echoes is displayed in 16 discrete values from 0 to 60 dBZ (metric for intensity
of the radar echo), coded by the colour space in Figure 4.2. 43776 images
from the time frame from 1. 1. 2018 to 31. 10. 2018 were used.

Images are saved in the .png file format, in RGB colourspace with dimensions
[580×294] (Figure 4.1a). The intensity of a radar echo is only one dimensional,
so there is no need to work with RGB images as they occupy more memory
than grayscale (Figure 4.1b) but do not give any more information (on the
other hand, they are way better in communicating information to humans).
To reduce the number of channels, colour of every pixel was matched with
the colourspace in Figure 4.2 and replaced with the number i × 17, where
i ∈ {0, 1, . . . , 15} is the index of intensity from 0 to 15.

4.2 Data Augmentation
Due to computational limitations, I decided to reduce the image dimensions to
[96×96]. The fact that factorization of 96 = 25 ×3 is important as used CNNs
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(a) RGB (b) grayscale

Figure 4.1: [580 × 294] weather radar image above the Czech Republic.

Figure 4.2: Colour coding of radar echo intensity.

contain pooling layers (Section 2.1.2) with (2, 2) filters and (2, 2) strides. This
work should serve rather as a test of concept than as a final solution and
therefore [96 × 96] format is fully adequate.

From each of the original images, 55 patches of size [96 × 96] were cropped,
starting in the left top corner and sliding across the image with a step of
size 48 in both of the directions. All of the patches from one position form
a new sequence of 43776 frames and are processed separately. Each sequence
is rotated (i mod 4) ∗ 90◦ clockwise, where i ∈ {0, 1, . . . , 54} is index of the
sequence, to reduce biasing. Each place on the Earth has it owns atmosphere,
and wind there blows more in some directions than the others. This operation
aims to make the dataset balanced in precipitation motion for each direction.

4.3 Dataset for Interpolation Task
The dataset (X, y); X, y ∈ RNsamples×Nchannels×96×96 has two parts, where X
contains inputs and y corresponding ground truth. Images without or with
a little precipitation have no valuable information for the dataset. Therefore,
frames with more than 95% area without a radar echo, or where the strongest
echo has only the first intensity, were removed. Each triplet of consecutive
images (I1, I2, I3) left in the sequence was split into the input and ground truth.
Input images of one sample were concatenated along the second dimension,
so they form one image with the separate ones as colour channels.

Algorithm train_test_split() from the library scikit-learn3 was used to

3https://scikit-learn.org/stable/
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Figure 4.3: Example from the interpolation dataset. Blue framed images are
the input ones and the image in the red frame is the ground truth for the
output.

split the dataset into training, validation and test set with shapes as in Table
4.1. An example from the dataset is showed in Figure 4.3.

Table 4.1: Shapes of the datasets for the interpolation task.

set X y
train [142101 × 2×, 96 × 96] [142101 × 1 × 96 × 96]

validation [35526 × 2 × 96 × 96] [35526 × 1 × 96 × 96]
test [44407 × 2 × 96 × 96] [44407 × 1 × 96 × 96]

4.4 Dataset for Extrapolation Task
As the dataset for the interpolation task, the one for the extrapolation task
(Section 3.1.2) has form (X, y); X, y ∈ RNsamples×3×96×96. Each sample con-
sists of a sequence of 6 images (I1, I2, . . . , I6). The sequence (I1, I2, I3) serves
as an input, while the rest (I4, I5, I6) as a ground truth sequence. Rest of
the process is analogic to the Section 4.3. Both of the sequences for each
sample are concatenated along the second dimension. Shapes of the datasets
after splitting to the training, validation and test set are in the Table 4.2. An
example from the dataset can be seen in Figure 4.4.

4.5 Implementation Details
Images are originally saved as .png files and it is worked with them as with
numpy arrays during the whole process. Functions imread() and imwrite()
from the library OpenCV4 were used to load them into numpy array and again

4https://opencv.org/
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Table 4.2: Shapes of the datasets for the extrapolation task.

set X y
train [67613 × 3 × 96 × 96] [67613 × 3 × 96 × 96]

validation [16904 × 3 × 96 × 96] [16904 × 3 × 96 × 96]
test [21130 × 3 × 96 × 96] [21130 × 3 × 96 × 96]

Figure 4.4: Example from the extrapolation dataset. Blue framed images form
the input sequence and the images in the red frame are the ground truth for
the output sequence.

save as .png. The final datasets are saved as numpy .npy files. The code for
individual operations can be found in tools._dataset_tools python module
and the whole process of dataset creation in dataset.ipynb jupyter notebook.
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Chapter 5
Image Sequence Interpolation

I propose and describe a method for weather radar image sequence interpola-
tion in this chapter.

5.1 Architecture

I have created a deep convolutional neural network (CNN), inspired by the
work in [21, 22]. As described in Section 4.3, input to the network is a batch
of 3D tensors with dimensions [2 × 96 × 96]. Convolutional layers consider the
information through the whole depth (number of channels) of the input tensor,
so adding more channels is one of the ways, how to input more information to
a CNN. The idea behind the network is that convolutional layers will learn to
extract high-level features from the input, describing the precipitation in the
middle of the motion between the two frames. Afterwards, the interpolated
image is synthesized using further convolutional and upsampling layers.

The overview of the CNN architecture can be seen in Figure 5.1. The basis
of the architecture are convolutional blocks – stacks of convolutional layers.
Each block consists of three convolutional layers with the kernel of size (3, 3)
and stride (1, 1). [32] indicates that using a stack of convolutional layers has
multiple benefits. The receptive field (Section 2.1.1.2) of the convolutional
block is (7, 7). Bigger receptive field means in this case that the network can
better capture bigger motion in the input (pooling layers also work to the
benefit of this). A single convolutional layer with (7, 7) kernel has the same
receptive field and 72C2 + 1 = 49C2 + 1 trainable parameters, where C is the
depth of both the input and the output and 1 is for bias. For comparison,
the stack has only 3 · (32C2 + 1) = 27C2 + 3 trainable parameters, which
should help with the regularisation, while decreasing the memory size of the
network. Moreover, the activation function will be applied multiple times,
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which can help with modelling of the nonlinearity. The exact output shapes of
the convolutional blocks are displayed in Table 5.1. Input shape is [2×96×96]
and output of the last convolutional block is also the output of the network.

Table 5.1: Output shapes of convolutional blocks.

conv32 conv64 conv128 conv256 conv256_256 deconv128 deconv64 deconv32 deconv1
depth 32 64 128 256 256 128 64 32 1
width 96 48 24 12 6 12 24 48 96
height 96 48 24 12 6 12 24 48 96

As activation function I have chosen PReLU (Section 2.3.1). The choice
is based on the ReLU activation, which is frequently used in CNNs, has low
computational complexity and is fast learning. The PReLU has an added
advantage of non-zero gradient even in case of negative input. It is used as ac-
tivation after each convolutional layer except the output one that has linear
activation.

During the downscaling, the convolutional blocks are followed by the average-
pooling layers with (2, 2) kernels to reduce dimensionality and therefore ex-
tract only the important information. Upscaling is performed by the upsam-
pling blocks consisting of an upsample layer and single convolutional layer
with the same parameters as in the convolutional blocks. The upsampling
has a scale factor of 2 and uses bilinear interpolation. The residual connec-
tions (Section 2.3.2) are included to improve fine-grained details of the output,
which are essential if the produced images are to be visually pleasing.

Last but not least, batch normalisation (Section 2.3.3) is inserted in the con-
volutional blocks before the last activation function to reduce overfitting.

5.2 Loss Function
I have experimented with multiple loss functions (Section 2.2) that were min-
imalised during the training of the network. In addition to the traditional L1
loss (it is reported in [22] that it leads to better results than LMSE loss when
comparing images), I have tried a perceptual loss.

5.2.1 VGG19 Loss
VGG19 net [32] is a deep convolutional network that achieved state-of-the-
art results on ILSVRC-14 (1st in localisation and 2nd in classification task
on ImageNet dataset [36]). In the paper, they concentrate on the effect of
stacking convolutional layers with smaller kernel sizes the same way as I do in
this work. The VGG19 (alongside with other state-of-the-art neural networks)
can be found pretrained in the pytorch library, which makes it easy to use it
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5.2. Loss Function

Figure 5.1: The architecture of the CNN.

Figure 5.2: The architecture of the convolutional and upsample block.

as a feature extractor. As the vector of extracted features F of the input
image I is taken the output ϕc(·) of some convolutional layer c of the network

F(I) = ϕc(I). (5.1)

The actual loss function LF between ground truth image I and inferred image
Î is than computed similarly to the feature reconstruction loss in [25]:

LF (I, Î) = ||ϕc(I) − ϕc(Î)||2. (5.2)

One small issue is that the VGG19 expects the input in the RGB colourspace.
To solve this problem, both of the images are concatenated three times along
the channel dimension.
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5. Image Sequence Interpolation

Figure 5.3: Architectures of the different VGG convolutional neural networks
[32]. Considered output layers of the VGG19 network are highlited red.

I have considered 4 different output layers of the VGG19 (Figure 5.3) as c
for LF . With each variant of the loss function my network was trained for 5
epochs (after training for 50 epochs with L1) and evaluated on the validation
dataset with SSIM index. The results can be seen in Table 5.2 and examples
in Figure 5.4. Based on these results, I have chosen the c = relu2_2 for
LF , as it outperforms the other options and results look empirically the most
simillar to the ground truth. From now on the LF will be considered with
c = relu2_2.

Table 5.2: Values of average SSIM index on the validation dataset for various
LF loss functions.

Loss function SSIM
LF with c = relu2_2 0.8423
LF with c = relu3_4 0.7679
LF with c = relu4_4 0.7650
LF with c = relu5_4 0.8068
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5.2. Loss Function

Figure 5.4: Examples and average SSIM of the validation dataset after training
with different variants of LF .

5.2.2 Combined Loss

Combined loss LC is a combination of L1 and LF

LC(I, Î) = L1(I, Î) + α · LF (I, Î), (5.3)

where α is a parameter to balance the effect of the two loss functions.

Values 1·10−5, 2·10−5 and 3·10−5 were tried for the parameter α. Analogically
to the previous section the network was trained for 5 epochs with these loss
functions and afterwards evaluated using the SSIM index on the validation
dataset. Table 5.3 contains the results (pure LF is included for comparison)
of validation and examples are displayed in Figure 5.5. The value α = 1 · 10−5

closely wins this comparison, while empirically looking slightly better too. It
will be referred to LC as with parameter α = 1 · 10−5.
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5. Image Sequence Interpolation

Figure 5.5: Examples and average SSIM of the validation dataset after training
with different variants of LC .

Table 5.3: Values of average SSIM index on the validation dataset for various
LC loss functions.

Loss function SSIM
LC with α = 1 · 10−5 0.8649
LC with α = 2 · 10−5 0.8614
LC with α = 3 · 10−5 0.8626

LF 0.8423

5.3 Training

The network was trained on the created dataset for the interpolation task. The
training was started with the use of L1 loss function (Figure 5.6a). I stopped
the training after 50 epochs because the value of validation loss stopped im-
proving even tough the training loss was still decreasing. I interpret this that
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5.4. Results

(a) L1 (b) LC

Figure 5.6: Plot of loss on the training and validation data sets during the
training.

the network stopped learning the problem at this point and started to learn
the exact examples in the dataset.

An output of the network after 50th epoch is displayed in Figure 5.7. It can be
noticed that the network can capture well the shape of the radar echo, but it
lacks the internal structure of radar echo (best visible in the top right corner).
This problem is addressed with further training guided by the combined loss
LC which has the exact form:

LC(I, Î) = L1(I, Î) + 1 · 10−5 · ||ϕrelu2_2(I) − ϕrelu2_2(Î)||2 (5.4)

The training with LC went on for 35 epochs. Even though the validation loss
may seem slightly decreasing, as indicated in Figure 5.6b, the improvement
over the last 15 epochs is empirically hardly noticeable, which is the reason
for finally stopping training after 85 epochs.

5.4 Results

The final trained network was tested on the test part of the dataset using
the SSIM index. It is compared to a simple Euclidean method, which will be
called mean. Using this method, each pixel of the output image is calculated
as a mean of the input pixels at that position. The performance of the final
network is not tested against a method estimating interpolated images based
on the optical flow (Section 3.2), due to a lack of suitable implementation of
the mentioned algorithm.
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5. Image Sequence Interpolation

Figure 5.7: Output of the network after 50th, 70th and 85th epoch.

Results of the testing are displayed in Table 5.4. The table shows that my
network achieves significantly better results compared to the mean method.

Table 5.4: Values of average SSIM index on the test dataset for the interpo-
lation task.

Method SSIM
Final network 0.8646

Mean 0.7469

Empirical evaluation can be done on examples displayed in Figure 5.8. In
terms of radar echo intensity, both methods perform very comparably to the
ground truth. The mean model looks good at places with small motion but
theoretically cannot handle any motion which can be seen at first of the ex-
amples, where radar echo at the new position has no overlap with the old
position at all. On the other hand, the neural network handles this motion
well and keeps the radar echo compact. The internal structure of the neural
network interpolated radar echo is less eater than the ground truth, but areas
where the precipitation intensity changes are distinguishable. In the mean
method, the outputs are noisy, which makes it hard to read the intensity of
precipitation at the target position.
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5.5. Implementation Details

Figure 5.8: Examples of image sequence interpolation. From left to right:
first input image, ground truth interpolated image, interpolated image from
my network, mean method interpolated image, second input image.

5.5 Implementation Details

The convolutional neural network is implemented using the library PyTorch5

and its code can be found in python module models.interpolation. All
of the computations took place at the machine in the Google Compute En-
gine6 with 26GB of RAM (Random Access Memory) and NVIDIA Tesla V100
GPU(Graphics Processing Unit). Training was done in the Jupyter Notebook
training_interpolation.ipynb with the help of the class Training from
the python module tools._torch_tools. The network was trained using the
PyTorch implementation of the AdaMax7 optimizer with default parameters
(learning rate 0.002, β1 = 0.9 and β2 = 0.999). The size of a mini batch is 32
samples.

5https://pytorch.org/
6https://cloud.google.com/compute
7https://pytorch.org/docs/stable/optim.html?highlight=adamax#torch.optim.Adamax
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5. Image Sequence Interpolation

The datasets are stored as a .npy files and loaded to RAM before the start of
the training. The method tools._torch_tools.Training.getBatch() is in
charge of preparing mini-batches. Each batch, when needed, is first taken
from the numpy array and afterwards sent to the GPU memory. After each
epoch the weights of the model were saved as .pth file with the torch.save()
function.
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Chapter 6
Image Sequence Extrapolation

This chapter contains the details about the method for the extrapolation task.
I have used the same network as in Chapter 5 with one minor change. The
network takes three consecutive images (I1, I2, I3) as the input instead of two
and it is trained to predict one following image Î4 after the three input ones.

6.1 Multiple-step Extrapolation
While the network is trained to predict one following image, in a real-world
scenario, it is expected to have prediction further in the future than one time
step. A solution to this is to take the output of the network Î4 and put it in
the input sequence (I1, I2, I3, Î4). Last three images of this sequence (I2, I3, Î4)
are again fed into the network to obtain prediction Î5 at next time step. Using
this technique, it is possible to predict an arbitrary number of future images.
On the other hand, any error introduced by the network will quickly scale up,
because for the following time steps it is already incorporated in the input.
In this thesis, I will work with a prediction for three steps into the future,
so always at least one of the input images is ground truth. This algorithm
is implemented in the method models.extrapolation.Model().predict().

6.2 Training
The network was trained on the created dataset for the extrapolation task
(Section 4.4), to predict the first image of the output sequence. L1 loss func-
tion was minimised for the first 40 epochs of the training and the progress
is visible in Figure 6.1a. Example of the network output after the stabili-
sation of the validation error can be found in Figure 6.2. Similarly to the
training of the network for the interpolation task (Section 5.3), the results
after minimising L1 are blurry.

39



6. Image Sequence Extrapolation

(a) L1 (b) LC

Figure 6.1: Plot of loss on the training and validation data sets during the
training.

Figure 6.2: Output of the network after 40th and 80th epoch.

For the following 40 epochs the network was trained using the same LC as in
the Section 5.3. The plot of training and validation error (Figure 6.1b) indi-
cates that the validation error stopped improving after 5th epoch, and since
then only oscillated around a constant value. The output of the network after
finally stopping the training can be seen in Figure 6.2.
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6.3. Results

6.3 Results
The SSIM index was used as a metric for quantitative evaluation of the trained
network. Results of the network are compared to the method COTREC de-
scribed in Section 1.3.1.

Results of evaluation on the test part of the dataset are displayed in Table 6.1.
Both of the methods were evaluated separately for each step of the prediction.
It is not surprising that the SSIM index is decreasing as predicting frames
further into the future.

My network outperformed the COTREC method. However, settings of this
testing were unfavourable for the COTREC. COTREC is only shifting the
signal it got on the input, which leads to black bars around the borders of
the extrapolated image. In this setting, where the input is of shape [96 × 96]
the black borders take up a massive portion of the image, which is naturally
decreasing SSIM.

Table 6.1: Values of average SSIM index on the test dataset for the extrapo-
lation task.

SSIM in a step of prediction
Method 1st 2nd 3rd

Final network 0.8383 0.7657 0.7162
COTREC 0.7663 0.6797 0.6295

Empirical observations can be done on the example in Figure 6.3. In the
ground truth sequence, the shape of the radar echo is not only shifting but
also changing its shape. COTREC extrapolation cannot capture this change
at all, while the one from the network can, even though not 100%. In terms of
the internal structure of the radar echo, images produced by COTREC seem
more realistically as they are not changing it. The network ones are blurry,
but empirically, nor of the methods can extrapolate well a local change of
precipitation intensity.
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6. Image Sequence Extrapolation

Figure 6.3: Example of extrapolation. Rows from top to bottom: input se-
quence, ground truth extrapolated sequence, COTREC extrapolated sequence,
my network extrapolated sequence.
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Conclusion

Due to recent development in communication, nowcasting as a communicating
of short-term forecasts to the target user in real time is an up-to-date topic.
In this thesis, I explored the possibilities of using machine learning algorithms
for weather radar image sequence interpolation and extrapolation.

The objectives of the theoretical part of this thesis were to introduce the
reader to the weather nowcasting, necessary machine learning concepts and
research current machine learning methods for image sequence interpolation
and extrapolation. I have completed these tasks respectively in Chapters 1, 2
and 3.

The first objective of the practical part was to create a dataset for both image
sequence interpolation and extrapolation tasks. Furthermore, models for these
tasks were to be designed, trained and evaluated, and a possible future work
should have been outlined.

I describe the process of creating the dataset in Chapter 4. Later chapters
show that the dataset is sufficient for designing and training of prototype
machine learning models, even though motion between images in a sequence
is often not very significant. I have created and trained convolutional neural
networks for both of the tasks in Chapters 5 and 6.

I have compared the results of the proposed networks to the methods that do
not use machine learning. Quantitative evaluation in both cases went in favour
of my convolutional network. Although, it has to be noted that the method for
interpolation was incomparably more simple than my network. Likewise, in
the extrapolation task, the network was compared to the COTREC method,
which is currently used, but the evaluation settings were unfavourable for the
COTREC.
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Conclusion

Based on the empirical evaluation of the results, I conclude that both of the
networks achieve good looking results. In the extrapolation task, they are
in multiple ways better than the currently used COTREC and in general
promising.

Outline of Future Work
To the best of my knowledge, machine learning was used for the first time for
the extrapolation of a sequence of weather radar images in the Czech Republic
in this thesis. The results implicate that further research should be done in
this field and that a nowcasting system containing these methods can be and
should be created.

Future steps include adjusting the methods to the whole radar domain of
the Czech Republic (instead of 96 × 96 input images) and to the domain
of the whole Europe (this will be possible thanks to the composite images
from the OPERA programme). Experimenting with both the architecture and
the input data should be done to improve the performance of the methods,
especially the quality of the internal structure of an extrapolated radar echo.
Separable convolutions, recurrent neural networks or training the network to
predict multiple time steps into the future directly will be tried. If successful,
the results of this updated method will be published in real time and received
a qualitative evaluation from the public will be used to decide if and how to
continue in developing nowcasting systems.
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Appendix A
Acronyms

CHMI The Czech Hydrometeorological Institute

CNN Convolutional Neural Network

CZRAD The Czech Weather Radar Network

FCN Fully Convolutional Network

GPU Graphics Processing Unit

MSE Mean Squared Error

RAM Random Access Memory

SDC Spatially Displaced Convolution

SSIM Structural Similarity
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Appendix B
Contents of enclosed DVD

readme.txt.......................the file with DVD contents description
src...............................the direcotry of source codes and data

data.....................the directory with weights of trained models
examples.............................the directory of example inputs
models.....................the directory with source codes of models
tools.............................the directory with python modules
dataset.ipynb ................ the notebook where dataset is created
dataset_extrapolation.zip..........the extrapolation task dataset
dataset_interpolation.zip .......... the interpolation task dataset
extrapolate.py......................python script for extrapolation
interpolate.py.......................python script for interpolation
train_extrapolation.ipynb........ the notebook for training of the
extrapolation model
train_interpolation.ipynb........ the notebook for training of the
interpolation model

text............................................ the thesis text directory
fig.........................................the directory with figures
bibliography.bib ......................... the bibliography resource
thesis.pdf............................the thesis text in PDF format
thesis.tex......................the LaTeX source code of the thesis
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Appendix C
Examples of Extrapolation of

Weather Radar Image
Sequences

This appendix contains additional examples of interpolation with both my
network and COTREC.
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C. Examples of Extrapolation of Weather Radar Image
Sequences

Figure C.1: It can be seen in this example how COTREC extrapolates the
radar echo.
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Figure C.2: COTREC has ideal conditions in this example, as the whole
precipitation cell is in the frame and its intensity is not changing much.

55



C. Examples of Extrapolation of Weather Radar Image
Sequences

Figure C.3: Note in this example disappearance of the small, low intensity
radar echoes in the left top part of the frame, in the output sequence extrap-
olated with my network.
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