
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 14, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: RFID communication eavesdropping

 Student: Jan Havránek

 Supervisor: Ing. Jiří Buček, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2019/20

Instructions

Study the topic of contactless chip card communication in accordance with ISO / IEC 14443, especially Type
A.
Survey existing solutions for eavesdropping of communication between a contactless chip card and its
reader.
Study the architecture and functionality of the Proxmark3 device with an emphasis on the parts of its
design that implement eavesdropping (sniffing).
Expand the functionality of Proxmark3 so that you can transfer sniffed data to your PC or mobile phone in
real time.
Program or expand an existing application to receive and view data from the device.
The application will perform at least basic decoding of the transmitted frames (frame type determination).
Test the solution on a number of different readers and contactless cards and determine possible
throughput bottlenecks.

References

Will be provided by the supervisor.

Bachelor’s thesis

RFID communication eavesdropping

Jan Havránek

Department of Computer Systems
Supervisor: Ing. Jiří Buček, Ph.D.

May 16, 2019

Acknowledgements

I would like to thank my supervisor, Ing. Jiří Buček, Ph.D., for his valuable
advice, guidance and feedback. Next, I want to thank the lecturers of the
course BI-DPR for helpful tips regarding typography and the overall thesis
structure, and lastly, I want to thank my family and friends for their support
during my work on this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 16, 2019 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Jan Havránek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Havránek, Jan. RFID communication eavesdropping. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2019.

Abstract

This thesis summarizes the principles of ISO/IEC 14443 type A communica-
tion. Next, it researches existing devices for eavesdropping and analysis of
RFID communication, analyzes the capabilities of the Proxmark3 hardware
device and extends its functionality in the area of eavesdropping RFID com-
munication according to the ISO/IEC 14443A standard. The extension allows
for real time eavesdropping of the communication along with a mobile appli-
cation for the Android operating system that enables the user to view the
eavesdropped data and its basic analysis.

Keywords mobile application, Proxmark3, Android, RFID, eavesdropping,
sniffing, ISO/IEC 14443

vii

Abstrakt

Tato práce se zabývá shrnutím fungování komunikace typu A dle standardu
ISO/IEC 14443. Dále se zabývá rešerší existujících zařízení pro odposlou-
chávání a analýzu RFID komunikace, analýzou fungování hardwarového pří-
pravku Proxmark3 a rozšiřuje jeho funkcionalitu v oblasti odposlouchávání
RFID komunikace dle standardu ISO/IEC 14443A. Rozšíření přípravku umož-
ňuje odposlech RFID komunikace v reálném čase. Součástí implementace je
mobilní aplikace pro operační systém Android umožňující zobrazit odposlech-
nutá data a jejich základní analýzu.

Klíčová slova mobilní aplikace, Proxmark3, Android, RFID, odposlech,
ISO/IEC 14443

viii

Contents

Introduction 1

1 The ISO/IEC 14443 standard 3
1.1 Signal interface . 3
1.2 Initialization and anticollision 6
1.3 ISO/IEC 14443-4 block types 8

2 Existing solutions 11
2.1 Oscilloscope . 11
2.2 NFC protocol analyzers . 13
2.3 Software defined radio . 14
2.4 Open source devices . 14

3 Proxmark3 in detail 17
3.1 Architecture . 17
3.2 Capabilities . 20
3.3 ISO14443A eavesdropping implementation 21
3.4 Existing Android clients . 22

4 Design and implementation 25
4.1 Real time eavesdropping functionality design 25
4.2 Proxmark3 firmware modifications 26
4.3 Android client application . 28

5 Testing 33
5.1 Equipment and approach . 33
5.2 Results . 36
5.3 Summary . 39

Conclusion 41

ix

Bibliography 43

A Acronyms 47

B Contents of enclosed CD 49

x

List of Figures

1.1 Waveform of the carrier frequency 3
1.2 Sequences for type A reader to tag communication 4
1.3 Example communication signals . 6
1.4 Short frame . 7
1.5 Standard frame . 7

2.1 Oscilloscope setup . 12
2.2 Oscilloscope eavesdropped communication from reader to tag . . . 13
2.3 Oscilloscope eavesdropped communication from tag to reader . . . 13

3.1 Proxmark3 . 19

4.1 Proxmark3 eavesdropping data flow diagram 27
4.2 Android client application with example eavesdropped data 28
4.3 Application’s data flow diagram . 29

5.1 Testing setup . 36

xi

List of Tables

3.1 UsbCommand structure . 19

4.1 Format of real time trace data . 27

5.1 Nexus 5X and Motorola E4P DMA buffer utilization statistics . . 37
5.2 Nexus 5 failed test runs statistics 37
5.3 Characteristics of test data exchanges 38
5.4 Percentages of DMA buffer utilization 38

xiii

List of Listings

5.1 Python testing script for GemCombiXpresso 35

xv

Introduction

Smart cards, and contactless smart cards in particular, play a significant role
in today’s modern society. The two most prominent use cases of contactless
smart cards are payment and authentication, both of which carry critical
importance to the users. Therefore, it is vital that the cards are secure and
their security is thoroughly tested.

The importance of payment security is quite obvious as it is a financially
attractive target for attackers. In the case of authentication and access con-
trol, an attacker can impersonate the user (e.g. an employee), access restricted
areas and perform malicious activities on his behalf, potentially causing dam-
age to the company and causing trouble for the user.

Smart cards often utilise proprietary communication protocols although
there is also a number of open protocols used. Nonetheless, it is important
to question and analyze the security of such protocols. One way of perform-
ing such analysis is to eavesdrop the RFID communication and subsequently
decode and examine the data in detail, which is the topic that this thesis
addresses.

Goal of the analytic part of this thesis is to review the principles of con-
tactless chip card communication in accordance with ISO/IEC 14443A, and to
survey existing solutions for eavesdropping of communication between a con-
tactless chip card and the reader. Specifically, the aim is to study the func-
tionality of the Proxmark3 RFID research device with an emphasis on the
parts of its design that implement eavesdropping.

Goal of the practical part of this thesis is to expand the eavesdropping
functionality of Proxmark3 and develop or expand existing client application
to enable user to view the sniffed data in real time. Further aim is to implement
basic decoding of the received data in the client application. Last goal of the
thesis is to test the implemented solution on a number of different readers and
contactless cards and determine possible throughput bottlenecks.

The first chapter, The ISO/IEC 14443 standard, is concerned with the
details of type A RFID communication per the mentioned standard. It de-

1

Introduction

scribes the physical layer of the communication, its modulation sequences, bit
and byte formats, and also with the higher layer commands and anticollision
procedure. The chapter also briefly summarizes the types of communication
frames described in 4th parth of ISO14443.

Chapter Existing solutions discusses the already existing solutions, devices
and approaches to eavesdropping RFID communication. It mentions how the
communication can be “sniffed” using an oscilloscope, mentions specialized
NFC analysis devices and lastly examines specialized open source devices for
RFID research.

Chapter Proxmark3 in detail focuses on one specific open source RFID
device, Proxmark3. The chapter describes its architecture, capabilities with
emphasis on the parts related to its RFID eavesdropping functionality and,
consistently with the thesis’ goals, further focuses on the existing Android
client applications for Proxmark3.

Design and implementation, as the name implies, deals with designing
the implementation goals of this thesis – a Proxmark3 firmware modification
for real time RFID sniffing and a companion Android client application for
receiving and decoding the data.

Chapter Testing proposes a testing approach for the implementation dis-
cussed in previous chapter and applies it to properly test the solution.

2

Chapter 1
The ISO/IEC 14443 standard

This thesis focuses on the part of the ISO/IEC 14443 standard that describes
the type A RFID communication with bitrate of fc

128 (~106 kbit/s) where fc
(carrier frequency) is the frequency of the RF operating field of 13.56 MHz ±
7 kHz as defined in part 2 of the standard [1]. The waveform of the carrier
frequency with its period measured is shown in Figure 1.1.

1.1 Signal interface
This section decribes the details of the signal interface (i.e. physical layer) of
the ISO14443A communication per part 2 of the standard [1].

1.1.1 Reader to tag communication
The initiating side of the communication is always the reader. It generates
a HF (high frequency) alternating magnetic field which delivers power and

ΔX = 73.75ns

Figure 1.1: Waveform of the carrier frequency (1
∆X ≈ 13.56 MHz)

3

1. The ISO/IEC 14443 standard

Figure 1.2: Sequences for type A reader to tag communication [1]

clock to the tag through inductive coupling and is subsequently modulated to
transfer data. The tag is in most cases entirely powered by the reader’s field
as the tags are not required to have a power supply of their own.

The data transmission from the reader to the tag is ensured by 100%
ASK (amplitude shift keying) modulation of the reader’s field with modified
Miller coding. The standard defines the following modulation sequences:

• sequence X: a PauseA follows after half of a bit duration (tx);

• sequence Y: no modulation for the full bit duration (tb);

• sequence Z: a PauseA occurs at the beginning of the bit duration (tb).

PauseA is defined as the reader modulation pause of type A communi-
cation. Apart from parameter t1 (length of PauseA), another three timing
parameters are defined for the bitrate of fc

128 : t2, t3 and t4. These parameters
determine how the reader’s field should behave during the modulation pause
(field rise time, etc.) Details of the PauseA modulation are not important for
the purposes of this thesis and are therefore ommited.

The parameters tb, tx and t1 for bitrate fc
128 are defined as follows:

• tb = 128
fc ≈ 9.44µs;

• tx = 64
fc ≈ 4.72µs;

• 28
fc ≤ t1 ≤ 40.5

fc ≈ 2.06µs ≤ t1 ≤ 2.99µs.

The standard uses sequences shown in Figure 1.2 to code data using mod-
ified Miller coding in the following manner:

• start of communication: sequence Z;

• end of communication: logic 0 followed by sequence Y;

4

1.1. Signal interface

• logic 0: sequence Z with an exception in case a contigous sequence of
0s does not immediately follow a start of communication, sequence Y
is used for the first 0;

• logic 1: sequence X;

• no information: at least two sequences Y.

Example of a reader to tag communication utilizing the modified Miller
coding is shown in Figure 1.3.

1.1.2 Tag to reader communication
As mentioned before, the initiating side of the communication is the reader
which activates the RFID tag through inductive coupling after the tag is placed
in the operating field of the reader. The inductive coupling on the tag’s side
is typically ensured by a large area antenna coil typically with 3–6 windings
of wire [2].

Transmission of data from the tag to the reader is achieved through load
modulation and Manchester coding. The carrier frequency is loaded by the
tag with a subcarrier frequency, fs, for different halves of the bit duration.
The subcarrier frequency for the bitrate of fc

128 is defined as fc
16 (~848 kHz).

The subcarrier is generated by switching a load in the tag. The standard
defines the following modulation sequences:

• sequence D: the carrier is modulated for the first half of the bit duration;

• sequence E: the carrier is modulated for the second half of the bit dura-
tion;

• sequence F: the carrier is not modulated for one bit duration.

The standard utilizes the mentioned sequences for coding information
as follows:

• start of communication: sequence D;

• end of communication: sequence F;

• logic 0: sequence E;

• logic 1: sequence D;

• no information: no subcarrier.

Example of a tag to reader communication utilizing the Manchester coding
is shown in Figure 1.3.

5

1. The ISO/IEC 14443 standard

1 1 0 00110

Figure 1.3: Example communication signals – reader to tag (modified Miller,
left) and tag to reader (Manchester, right)

1.2 Initialization and anticollision
This section addresses the initialization and anticollision process of ISO14443
type A communication and summarizes the details of bit trasmission, byte
format, frame format and basic commands that are important for the initial-
ization and anticollision procedure and further communication per part 3 of
the standard [3].

1.2.1 Initialization
The reader is by default in an idle state where it generates the HF operating
field and alternates between type A and type B modulation until it detects
a tag in the field and starts communicating with it. The selected type is kept
for the whole communication session until the reader deactivates the tag or
the tag is removed from the operating field.

The initial step in the communication is the exposure of the tag to the
reader’s operating field. The tag gets powered by the reader’s operating field,
activates and silently waits for commands from the reader.

1.2.2 Anticollision
The anticollision procedure is used to detect whether there is more than one
tag in the reader’s operating field and subsequently select only a single one of
the present tags to communicate with.

For the purposes of the anticollision procedure and further communica-
tion, the standard declares that the communication shall be transferred in

6

1.2. Initialization and anticollision

pairs, reader to tag followed by tag to reader. First the reader frame is trans-
ferred, after which a reader frame delay time (FDT) occurs, then the tag frame
is transferred back to the readers and a tag delay time occurs. For the values
of the FDTs see [3].

There are three types of frames defined for the fc
128 bitrate:

• short frame;

• standard frame;

• bit oriented anticollision frame.

Short frame consists of a start of communication (S), 7 bits of data LSB
(least significant bit) first and an end of communication (E). There is no parity
bit in short frame.

S E

LSB

b1 b2 b3 b4 b5 b6 b7

MSB

Figure 1.4: Short frame, adapted from [1]

Standard frame consists of a start of communication, n data bytes (8 bits
LSB first) each followed by an odd parity bit (P) and an end of communication.
The odd parity bit is set to a value such that the number of ones in the data
byte along with the parity bit (9 bits total) is odd. For fc

128 bitrate the format
of standard frame is identical for both reader and tag. There is an exception
for tag’s standard frame in case the frame is transmitted with a bitrate higher
than the one mentioned. In that case, the last parity bit is inverted.

S E

LSB

b1 b2 b3 b4 b5 b6 b7 b8

MSB

P

1st byte 2nd byte

P ...

Nth byte

Pb1 ... b8 b1 ... b8

Figure 1.5: Standard frame, adapted from [1]

Bit oriented anticollision frame is only used during the anticollision loop.
Structure of the frame is the same as the structure of a standard frame with
the difference that it can be split on the bit level into two parts in case there
is a collision.

A collision occurs when two or more tags transmit different bit values at
the same time and the field is load modulated for the whole bit duration which
is detected by the reader.

7

1. The ISO/IEC 14443 standard

During the anticollision process, the reader utilizes the following com-
mands to communicate information with the tag:

• REQA, WUPA (short frame) – type A request, type A wakeup

• ANTICOLLISION (bit oriented anticollision frame)

• SELECT (standard frame)

• HLTA (standard frame) – type A halt

In the beginning of the anticollision procedure, the reader probes its oper-
ating field for type A tags by repeatedly sending the REQA request command.
If the tag is presented in the reader’s field it activates and responds with an
ATQA command. In ATQA, the tag signals the size of its UID (unique iden-
tifier). The UID can consist of four, seven or ten bytes, called single, double
or triple UID respectively. Size of the UID determines the needed level of
cascade loop (CLn) that needs to be executed for the reader to obtain the
whole UID of the tag.

During the first cascade level (CL1), the reader requests the UID of the
tag using an ANTICOLLISION command. The tag responds with 4 bytes of
its UID and a BCC (block check character) byte. The BCC byte is calculated
as bitwise exclusive or (XOR) of the preceding 4 bytes. If a collision occurs,
the reader sends another ANTICOLLISION command in which it repeats
the bits of the UID that it received before the collision occured and appends
a single chosen bit (value depends on the reader implementation). Now only
the tags whose UID begins with the given bit sequence respond. This process
is repeated until no collision occurs. At that point, the reader received part
of the UID for CL1 and issues the SELECT command. The tag ackowledges
the selection by a SAK command and signals if the complete UID of the tag
was transmitted. The anticollision loop for single size UID tags ends here and
the tag signals that the UID si complete in SAK. In case the tag has double
or triple UID size, the same anticollision loop continues for CL2 and CL3
respectively until the tag’s full UID is communicated to the reader.

The remaining commands – HLTA and WUPA – are used for suspending
and waking up the tag, respectively. In case the reader needs to communicate
with another tag, it can halt the currently selected tag and eventually wake
it up later with these two commands.

1.3 ISO/IEC 14443-4 block types
The last message in the anticollision procecure is SAK, which apart from the
UID completion also denotes if the given tag is compliant with 4th part of
the ISO14443 standard which describes a public transmission protocol for the

8

1.3. ISO/IEC 14443-4 block types

communication. Some tags are not compliant with it and can further operate
using a proprietary protocol.

In case the tag is compliant, the anticollision procedure is followed by
the tag receiving the RATS (request for answer to select) command from
the reader and responding with ATS (answer to select) command in which
it denotes various parameters for further communication. Next, the com-
munication itself begins. For the purposes of this thesis, only the types of
blocks that are further transmitted are important, therefore other details of
the communication are ommited.

Type of the transmitted block is determined by the two most significant
bits of the first byte field, the protocol control byte. There are three types of
blocks defined in the standard:

• I-block: used to transfer information for the application layer (e.g. an
application protocol data unit – APDU – per ISO/IEC 7816);

• R-block: contains positive or negative acknowledgement messages that
relate to last received block;

• S-block: used to exchange control information between the reader and
the tag.

9

Chapter 2
Existing solutions

This chapter discusses existing solutions and approaches for eavesdropping
RFID communication. This includes a basic analysis with an oscilloscope and
a proper probe, dedicated NFC analyzers and lastly specialized open source
devices.

2.1 Oscilloscope
First of the researched methods of RFID eavesdropping is the usage of an oscil-
loscope. This method is very dependent on the technical parameters of given
device. Oscilloscopes without any RFID analysis capabilities are suitable for
analysis of physical characteristics of the radio communication (field strength,
timings, etc.) but unfit for intercepting and decoding larger amounts of data
that is sent between the card and the reader. That is caused by the limited size
of the scope’s memory and because the oscilloscope captures a large amount
of samples. This fact enables the user to examine the waveform of the reader’s
RF field in great detail but limits the length of the communication that can
be captured.

While working on this thesis, I had access to Agilent MSO6104A [4] oscil-
loscope and the RF-R 400-1 probe [5]. Although the scope does not have any
NFC related functionality, I was able to capture a small part of communica-
tion between the reader (ACR122 [6]) and the tag (ISIC card) using the pulse
width triggering with the pause length set to the value of parameter t1 (see
section 1.1.1). Thanks to the beginning sequence (sequence Z) which includes
a pause, this triggering method was sufficient. The oscilloscope setup is shown
in figure 2.1.

The captured communication is shown in Figures 2.2 and 2.3. Figure 2.2
shows the initial request from the reader (REQA) and the corresponding re-
sponse from the tag (ATQA). The value of the tag’s response (4403 in hex-
adecimal) corresponds with the ATQA for Mifare Desfire EV1 [7], the type

11

2. Existing solutions

Figure 2.1: Oscilloscope setup

of card used at CTU (Czech Technical University in Prague). Decoded bits
are in the LSB first order as defined in [3]. Letters in the figures have the
following meaning:

S start of communication

E end of communication

P odd parity bit

Example of a device with RFID analysis functionality is the Keysight’s
InfiniiVision 4000 X-Series oscilloscope. Specifically, the oscilloscope is capable
of utilizing software for NFC analysis and automated tests. According to
Keysight’s website [8], the device software’s capabilities are NFC triggering
and automated testing of NFC-A among others. Demonstration of the NFC
analysis functionality can be seen in videos [9] and [10].

Disadvantage of the oscilloscope eavesdropping method is its costliness
as oscilloscopes are expensive devices in comparison to some single purpose
devices intended to be used specifically for NFC or RFID analysis.

12

2.2. NFC protocol analyzers

S 0 1 1 0 0 1 0 E

0x26

Figure 2.2: Example of oscilloscope eavesdropped communication from reader
to tag (short frame, LSB first, REQA)

S 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 E

P P0x030x44

Figure 2.3: Example of oscilloscope eavesdropped communication from tag to
reader (standard frame, LSB first, ATQA)

2.2 NFC protocol analyzers

Another option for intercepting RFID communication is the usage of special-
ized devices for analyzing such communication. Example of one such device
is the ComProbe® NFC Protocol Analyzer [11] which is a proprietary single
purpose device for capturing and analyzing NFC traffic. The vendor includes
a companion software for the device which allows for live capture and decoding
of NFC communication [12].

As I did not find any official price while working on the thesis, the following
is only a speculation and my opinion on the matter. Although the analyzers
might be more affordable than high end oscilloscopes, they might be also quite

13

2. Existing solutions

costly mainly due to the added support and services from the vendors.
Apart from the price, their another big disadvantage is the fact that they

are proprietary and therefore not easily expandable.

2.3 Software defined radio
Software defined radio (SDR) is a radio communication system where tra-
ditionally hardware components (e.g. filters, amplifiers, etc.) are instead
implemented in software on a computer or embedded system [13]. The signal
is therefore converted from analog to digital as soon as possible and further
processing is done in software. This allows for the usage of SDR in RFID
sniffing.

Cheap USB dongles meant for reception of multiple ranges of radio signals
– mostly DVB-T (digital video broadcasting — terrestrial), DAB (digital au-
dio broadcasting) and FM (frequency modulation) radio – can be often used
as SDR. This is possible thanks to the manufacturers using a software tunable
chip (e.g. RTL2832U).

The lower tunable range of such DVB-T dongles often ends at 20 MHz,
therefore they are not able to tune down to the NFC frequency of 13.56 MHz.

The author of [14] used one such DVB-T dongle and managed to overcome
the frequency limitation by applying a software patch to the SDR driver.
As mentioned in the blog post, a second solution to overcoming the limitation
would be to tune the dongle to the second or third harmonic frequencies of
NFC (respectively 27,12 MHz; 40,68 MHz).

Subsequently, the author was able to demodulate and decode the reader’s
side of communication in the GNURadio software and therefore eavesdrop one
way of the NFC communication using an SDR.

The reader’s side of communication is easier to eavesdrop due to the big
differences in field strength in ASK modulation. On the other hand, the
communication from the tag is ensured by load modulation of the reader’s
operating field which is harder to capture. The author of aforementioned
post did not continue his research on whether he could sniff the tag’s side
of communication and as of making of this thesis, I did not find any other
research on this topic.

2.4 Open source devices
Last researched option for RFID eavesdropping are three specialized open
source devices. Both their hardware and software are open source. Open
source hardware (OSH) enables anyone with proper equipment and hardware
skills to build the device and use it while the open source software (OSS)
offers the users an option to alter the source code and amend the devices’
functionality to their liking. The openness of the devices also allows anyone

14

2.4. Open source devices

to build and sell the devices. That leads to many options when looking to
buy such a device in case the user does not have the time, skills or resources
to build the device himself. On the other hand, the openness may also lead
to fragmentation and confusion between different hardware revisions, clones,
etc. which can be viewed as a slight disadvantage.

2.4.1 ChameleonMini
ChameleonMini [15] is a device focused on work with the high frequency (HF,
13.56 MHz) RFID. It can read as well as emulate a wide range of tags and
is also capable of sniffing both ways of the communication. For list of sup-
ported tags and procotols, see [15]. ChameleonMini was previously able to
only sniff one way of the communication – from the reader to tag. As of
today, ChameleonMini supposedly can sniff even the tag’s side of communica-
tion as well [16]. Unfortunately, I did not have access to the device, therefore
I could not test the device’s capabilities myself.

2.4.2 HydraNFC
HydraNFC [17] is an expansion shield hardware for high frequency RFID
research. It is originally designed to be used as an expansion of HydraBus [18]
– an another piece of open source hardware for embedded research – but due
to its open source nature and public specifications, anyone can create a piece
of hardware that supports this shield.

Similarly to ChameleonMini, HydraNFC in conjunction with HydraBus
can read UIDs from various tags, emulate them and also eavesdrop on both
sides of ISO14443A communication. The sniffing feature works in real time
and overcomes the transmission speed challenges by utilizing two USB ports
of the user’s computer – one for the configuration of the sniffer and the other
for transmission of the sniffed data to the computer.

2.4.3 Proxmark3
Proxmark3 [19] is a very versatile tool specifically designed for RFID research.
In contrast with the aforementioned open source devices, it is capable of work-
ing with both low frequency (LF, 125 kHz) and high frequency (HF, 13.56
MHz) tags and among other things can read most available RFID tags.

Reason I chose this device to work on is the fact that it is open source,
relatively easily expandable and it was already available to me during work
on this thesis as opposed to the other devices.

There is also a new revision of the device available, called Proxmark3
RDV4 [20], based on a fork of the original design.

Chapter 3 examines the architecture and capabilitites of Proxmark3 and
tools surrounding it in more detail.

15

Chapter 3
Proxmark3 in detail

Proxmark3 is a powerful general purpose RFID tool, originally developed
by Jonathan Westhues and released under the terms of the GPL license in
2009 [21]. It it further maintained and improved by a community of RFID
researchers and enthusiasts. This thesis deals with the original hardware re-
vision of the device and current version of software corresponding with the
project’s GitHub repository [22].

3.1 Architecture
This chapter discusses details of the Proxmark3 device. It describes its overall
architecture and operation.

3.1.1 Hardware
The six main parts of the Proxmark3 hardware are:

• antenna connector;

• analog antenna circuits;

• analog to digital converter (ADC) – Texas Instruments TLC5540;

• field-programmable gate array (FPGA) – Xilinx Spartan-II XC2S30;

• microcontroller (MCU) – Atmel AT91SAM7S512;

• mini USB port.

The antenna connector allows for easy exchangeability of antennas. It
utilizes a single 4-pin Hirose connector where two of the four pins are used for
the LF antenna and two for the HF antenna. An alternative for homemade
antennas is soldering the their wires directly onto the test pads placed around

17

3. Proxmark3 in detail

the connector on the Proxmark’s PCB (printer circuit board). The fact that
each antenna uses different pair of pins or pads allows for connecting both of
the antennas (LF and HF) at the same time.

The device’s PCB includes two separate analog antenna circuits, one for
LF and one for HF signal, that can be used independently. Output of these
circuits is routed into the ADC which digitizes the analog signal to an 8-bit
value that represents voltage on the antenna. The ADC output is connected
to eight parallel input pins of the FPGA.

The FPGA preprocesses the raw digitized signal and sends it to the mi-
crocontroller which performs the higher level logic on the signal depending on
current mode of operation.

Proxmark3 connects to the user’s computer or mobile phone using a single
USB interface. It presents itself as a single serial device (e.g. /dev/ttyACM0
in Linux) that can be opened, read from and written to. This allows for
easy integration with alternative clients, such as the Python client or Android
mobile application implemented in the practical part of this thesis.

The PCB includes a single mini USB port connected directly to the Atmel
microcontroller which includes a USB controller right on the chip. Thanks
to this, Proxmark3 does not need any additional controller hardware for the
USB communication.

For development purposes, there is also a single JTAG connector included
on the PCB. This connector is mainly used for debugging and for flashing
the microcontroller’s firmware for the first time. It is also needed in case the
bootrom (discussed in the next section) gets corrupted and cannot be used
for flashing through USB anymore.

3.1.2 Firmware
Firmware of Proxmark3 has two parts – a bootrom and the control software
itself. The bootrom’s main purpose is to allow for easy flashing of the micro-
controller through USB without the need to use the aforementioned JTAG
connector.

When powered on, the microcontroller performs two key operations:

1. depending on the current mode (LF or HF), it flashes the FPGA with
the corresponding hardware description image (the HF image is loaded
is by default);

2. begins listening for USB commands in an endless loop (more on USB
commands in section 3.1.3).

Both the microcontroller firmware and the client are written in the C
programming language. The hardware configuration of the FPGA is described
in Verilog, a hardware description language.

18

3.1. Architecture

JTAG

Button

Figure 3.1: Proxmark3

3.1.3 Command structure
The operation of Proxmark3 is controlled from the user’s device using a single
USB port. The communication is ensured by sending a UsbCommand structure
back and forth. The structure consists of four 8 byte fields – the type of
command and three command arguments – and one 512 byte array for data
of the command. Total size of this structure is 544 bytes and it is sent every
time. Therefore, both sides (computer/phone, Proxmark3) always check the
communication channel and if there is any data available, they start receiving
until they receive full 544 bytes of data before they take any action based on
the received data.

Illustration of the command structure can be seen in Table 3.1. This
information is important later in the thesis as the practical part deals with
the limitations that this design of communication introduces.

Field Size
Command type 8 bytes
Parameter 1 8 bytes
Parameter 2 8 bytes
Parameter 3 8 bytes
Data 512 bytes

Table 3.1: UsbCommand structure

19

3. Proxmark3 in detail

3.1.4 Default PC client
The default C client that is included in the Proxmark3 repository is a simple
command line interface for interacting with the device. It includes a help
text for each command with explanation of the command’s parameters and
features a history of recently used commands.

Similarly to the main loop of the microcontroller the PC client includes
a loop that is checking the USB communication channel and is ready to re-
ceive a UsbCommand structure. Communication from Proxmark3 to the client
is mainly utilized when the client wants to download data from the device or
Proxmark3 itself sends debug messages to the client. This loop is implemented
in a background thread while the main thread of the application is handling
the user’s input for the command line interface.

The client also allows for scriping in Lua which means that if a user wants
to expand or implement a new functionality, he is not necessarily required
to directly modify the C source code of the client and Proxmark but can
utilize and combine existing already implemented functionalities. The offi-
cial repository currently includes 27 Lua scripts. An example of such script
is mifare_autopwn.lua which aims to automate attacks on Mifare Classic HF
tags.

3.2 Capabilities
As mentioned, Proxmark3 is a very versatile device, that can be used for
a wide range of reasearch tasks regarding RFID, including both LF and HF.
It can work in a total of three modes – reader, tag and sniffer.

In the reader mode, Proxmark3 can read the UIDs of most available RFID
tags. On top of that, it can read more information from the tag, such as the
memory contents of Mifare Classic tags. The following list shows some of the
tags that Proxmark3 can work with:

• Low frequency tags:

– EM410x – read only
– EM4x05 – read/write

• High frequency tags:

– Mifare Classic
– Mifare Ultralight
– NTAG 203, 213, 215, 216

For tags that Proxmark3 does not directly support in current version, there
is an option to send raw arbitrary bytes to an ISO14443 tag. This adds an

20

3.3. ISO14443A eavesdropping implementation

effective support for any tag and allows for free experimentation with standard
and non-standard commands.

As a tag, the device can simulate a number of different RFID tag types.
Concrete examples are EM410x (very often used instead of keys for opening
apartment building doors in Czech Republic), Jablotron and Visa2000 tags
from the LF group and Mifare and iClass from the HF group.

In the sniffer mode, Proxmark3 can eavesdrop on a few different types of
RFID communication:

• ISO14443 – both type A and type B (HF)

• iClass (HF)

• Hitag (LF)

This thesis is only concerned about the ISO14443A eavesdropping feature,
discussed in section 3.3 and details about the other sniffing commands are
therefore not mentioned in this work.

3.3 ISO14443A eavesdropping implementation
Proxmark3 already has the eavesdropping capability for ISO14443A communi-
cation implemented. This section focuses on and describes this functionality,
its limitations and disadvantages.

As already mentioned in section 3.1.1, the whole data flow of the eaves-
dropping process – similarly to other tasks – begins with the device’s antenna.
The signal from the antenna travels through the HF peak detection circuit,
is converted by the ADC to an 8-bit value which is then received by the
FPGA. The FPGA preprocesses the signal and transforms it into a single bit
stream of samples which represent state of the reader’s field (modulated/not
modulated). This bit stream is then sent to the microcontroller through its
synchronous serial port (SSP).

The main function in the MCU’s firmware which deals with the eaves-
dropping is called SnoopIso14443a. In the beginning of its operation, it sets
up a circullar direct memory access (DMA) buffer, where the bits that are
received through the synchronous serial port (SSP) are saved automatically
without any action taken by the MCU. The buffer’s size in current imple-
mentation is 128 bytes. The function then runs in a loop and calls functions
MillerDecoding and ManchesterDecoding. These two functions, as their
names imply, are crucial for finding the modulation patterns of modified Miller
and Manchester coding and extracting the encoded data bits.

After the functions mentioned above decode a whole data frame either
from the reader or from the tag, the LogTrace function gets called. This
functions saves the decoded frame (also called trace) into a trace buffer. Data

21

3. Proxmark3 in detail

from this buffer can later be extracted by the client application by issuing
a corresponding command. Diagram of the described data flow is shown in
Figure 4.1.

The eavesdropping loop is stopped by the user by pressing the Proxmark3
button.

Both the DMA buffer and the trace buffer are stored in a 40 kilobyte
memory chunk called BigBuf. This buffer is mainly used for saving the traces
(at low addresses) and also for allocating memory (at high addresses) for the
needs of Proxmark3 operation, utilizing the BigBuf_malloc function.

Main limitation of the current implementation is the inability of the user
to review the eavesdropped traffic in real time. It requires the user to start
the process using the Proxmark3 command shell, perform the communication
he wishes to examine, and finally use the command shell again to download
the traffic from the device and review it. This presents a hassle in case there
are errors in the sniffing process that the user cannot immediately see. Im-
provement of this limit is presented in the practical part of this thesis.

3.4 Existing Android clients
Apart from the option of performing RFID eavesdropping in real time, this
thesis’ motivation is also to simplify the usage of the eavesdropping func-
tionality without the need to carry a laptop. Therefore, only Android client
applications are further discussed. According to [23], for the use of Proxmark3
with a mobile device, there already exist four Android client applications:

• Proxdroid;

• angelsl;

• Walrus;

• AndProx.

Proxdroid and angelsl’s client utilize a cross-compiled Proxmark3 client
with modifications that allow them to be built as a standalone Android appli-
cations using Android NDK (native development kit). Unfortunately, these
two applications require direct access to protected files of the Android operat-
ing system, namely the serial device of Proxmark3 in the /dev directory. To
access this device, the user has to apply modifications to the phone’s operating
system and either “root” the OS – i.e. allow root (linux superuser) access to
the system – or at the very least, modify the access permissions of the system
files. On top of that, the applications are no longer maintained and therefore
are not further discussed in this thesis.

On the other hand, AndProx and Walrus utilize the Android USB API and
do not require any modifications to the operating system itself. The following
sections introduce the applications and compare them.

22

3.4. Existing Android clients

3.4.1 Walrus
Walrus [24] is an application designed for physical security assessments. It
provides the user with a unified interface for various RFID card cloning devices
and allows for reading and saving the cards’ UIDs along with the GPS location
where the card was acquired.

Along with Proxmark3, it currently supports ChameleonMini and accord-
ing to the project’s website, the developers plan to add support for more
devices in the future.

As mentioned, this application is focused on the card cloning aspect of
Proxmark3 and therefore cannot utilize other funtionalities of the device, e.g.
eavesdropping of the RFID communication.

3.4.2 AndProx
In contrast with Walrus, AndProx [25] aims to provide a fully featured com-
mand shell for Proxmark3 with the same functionality as the default PC client.

Similarly to Proxdroid, it utilizes the existing C Proxmark3 client, but
does not require any elevated access to the Android system files and devices.
It employs the Android USB API to connect to Proxmark3 and wraps the Java
serial port so that the original Proxmark C client can utilize it. This allows the
application to effectively reuse the existing C client implementation without
significant changes and avoids the mentioned OS modifications.

23

Chapter 4
Design and implementation

This section describes the practical part of this thesis. It discusses its design
and individual parts.

Goal of the implementation is to allow Proxmark3 to sniff RFID com-
munication and transfer the eavesdropped data to a mobile application in
real time. The solution consists of a modification to the existing Proxmark3
firmware and an implementation of a new Android application.

4.1 Real time eavesdropping functionality design

Important part of the implementation design was a certain level of exper-
imentation with different approaches to transferring the eavesdropped data
and testing if the reception speed is sufficient so that the Proxmark’s inter-
nal DMA buffer does not overflow. While designing the solution, I utilized
a simple proof of concept Python client, that helped me test the different
approaches and their effectiveness.

The first and most naive approach tried was to send the data as part
of already implemented debug messages where each eavesdropped frame was
sent in one message. These messages respect the usb command architecture
mentioned in section 3.1.3. Because of this, the data of the traces utilized
only a part of the UsbCommand data array and the remaining bytes were filled
with zero bytes. This inefficiency is most obvious in the case of short frames
(e.g. REQA) where only the command type, first parameter (message length)
and one byte of the data field in UsbCommand structure were used and the rest
(527 bytes) wasted.

To respect the usb command architecture while not wasting throughput
by transferring zero bytes, the potential solution would have to wait until the
data field of UsbCommand structure was filled and send it then. This would lead
to a state where the short messages and data exchanges that do not exceed the

25

4. Design and implementation

512 byte boundary would not be sent immediately and the transfer effectively
would not be performed in real time.

Due to the reasons mentioned before, I decided not to adhere to the usb
command protocol in place. The only field conserved from the UsbCommand
is the command type field to determine which type of message is sent to the
client.

Initial approach was to just prepend the eavesdropped data with the com-
mand type field. This turned out as too slow because the client had to read
each field (such as timestamp, duration, etc. discussed in the next section)
one by one which introduced large delay times and caused the DMA buffer to
overflow in the meantime. Solution to this problem was to include an another
2 byte field which denotes the total length of the whole trace message. This
allowed the client to read only the first two fields one by one and then read the
rest of the message at once and parse it later which significantly reduced the
reception delay, therefore this approach was chosen to be used in conjunction
with the application discussed later.

4.2 Proxmark3 firmware modifications
The modifications made to the Proxmark3 firmware are quite minimal and aim
to achieve the goal without significant changes to the existing implementation.

Firstly, the size of the DMA buffer had to be increased as the access to
the serial device through operating system APIs in Android is much slower
than direct access to the serial device (e.g. /dev/ttyACM0) using the afore-
mentioned Python client. The DMA buffer was enlarged to 16 kilobytes.
Normally, this would not be desired because the memory space for saving of
traces would be severely reduced but in case of the real time snoop function,
the traces are not saved in memory, therefore it is not a complication.

The SnoopIso14443a function has a one single byte parameter in which
two of the eight bits are used for existing flag parameters. The real time
sniffing mode uses the third bit as a flag declaring if the eavesdropping should
be performed in real time. Depending on the parameter, a logging function
is selected using a function pointer (either the default function or the real time
logging function). Further, if the real time flag is set, the function sends a 2
byte status message to signalize its end to the real time client application.

To make the existing and the new real time logging functions interchange-
able, I avoided modifying the current function – LogTrace – and instead added
a new fuction – LogTraceRealtime. The new real time function is very similar
to the original LogTrace function but instead of saving the traces to the inter-
nal trace buffer, it sends the data over USB to the client application directly
and omits saving the traces to the memory.

Format of the data sent over USB is described in Table 4.1. The newly
added command type is called CMD_ISO_14443A_REALTIME_TRACE.

26

4.2. Proxmark3 firmware modifications

Field Size
Command type 2 bytes
Total following trace length 2 bytes
Timestamp 4 bytes
Duration of the frame 2 bytes
Length of data 2 bytes
Data n bytes
Parity data (one byte per 8 bytes of data) m bytes

Table 4.1: Format of real time trace data

Figure 4.1 shows the data flow of the eavesdropping functionality described
in section 3.3 along with the new firmware additions marked by gray color.

Proxmark3

Antenna
circuit

ADCFPGA

Realtime?LogTrace

Miller and Manchester decoding

LogTraceRealtime

Yes

No

DMA
buffer

Trace
buffer

Internal memory

SnoopIso14443a

Analog signal8-bit samples

Microcontroller

SSP

Hirose
antenna

connector

Client application

USB

Tag

Reader

Figure 4.1: Proxmark3 eavesdropping data flow diagram

The data is received, further processed and shown to the user in the An-
droid application discussed in the next section.

27

4. Design and implementation

4.3 Android client application
The Android client application, called RT Client (i.e. RealTime Client), acts
as a simple frontend to the newly implemented real time eavesdropping func-
tionality. It receives the sniffed data, annotates the individual frames in ac-
cordance with ISO14443 and shows the data to the user in a list. The list
interface aims to be clear and easily readable. It distinguishes between the
reader and tag frames by utilizing two different colors along with a small icon
at the beginning of every row of the list. It also clearly marks frames where
parity errors has occured by and exclamation mark and a red warning sign.

Appearance of the application is shown in Figure 4.2.

Figure 4.2: Android client application with eavesdropped anticollision and
ISO14443-4 communication (left) and example of parity error (right)

The application consists of four main parts:

• Proxmark3 connection handled by main activity;
• data receiver thread;
• parser thread;
• trace list.

28

4.3. Android client application

Main activity connects to Proxmark3, passes the connection to data re-
ceiver thread which downloads the traces from the device and further sends
it to the parser thread. The parser thread processes the data and sends it
back to the main activity. The data is added to the dataset of the adapter
and shown in the list with proper annotations in accordance with ISO14443.
Simplified data flow of the application is shown in Figure 4.3.

Proxmark3

Android client application

GUI
list

Parser
thread

Data receiver
thread

Piped
streamList adapter

USB

Figure 4.3: Application’s data flow diagram

The individual components of the application are discussed in more detail
in the following chapters.

4.3.1 Proxmark3 connection

The physical connection of Proxmark3 to the mobile phone is realized by one
additional piece of hardware – a USB On-The-Go (OTG) adapter – which
allows for connecting full size USB connector to the phone.

An existing OSS library called usb-serial-for-android [26] is employed
for realizing the USB connection part. It simplifies work with USB serial
hardware on Android, such as Arduino or, for the purposes of this thesis,
Proxmark3. In contrast with some other mentioned Proxmark client applica-
tions, the library utilizes the Android USB host API and therefore does not
require any Android OS modifications.

After the user starts the sniffing by pressing the start button, the main ac-
tivity of the application searches the available USB devices using UsbManager
system service. If it finds the Proxmark3 device using its USB identifiers
(vendor and product ID), it checks if the user has granted the application
a permission to use the device. If he did not, the user is asked to provide the
permission. After obtaining it, the application passes a reference to the device
to the serial library mentioned above and opens its serial port.

29

4. Design and implementation

The reference to the opened serial port is further passed to the data receiver
thread, discussed in the next section.

4.3.2 Data receiver thread
It is vital for the real time client to receive the eavesdropped data from Prox-
mark3 as fast as possible to avoid overflowing the circular DMA buffer where
the device holds the incoming preprocessed data from the FPGA.

As the name suggests, the DataReceiver thread has exactly this purpose.
Its goals are:

1. send UsbCommand with properly set parameter (mentioned in section 4.2)
that signals Proxmark3 to start the eavesdropping loop;

2. read the data from Proxmark3 as fast as possible – to achieve that, the
thread has its priority set to a maximum value;

3. send the received data to the parser thread.

The thread holds a reference to a UsbSerialPort object (provided by the
usb-serial-for-android library) which represents the serial port of Prox-
mark3. It reads bytes from the serial port and immediately sends them to
parser thread using a PipedOutputStream.

4.3.3 Parser thread
The parser thread receives the bytes from the receiver thread by reading from
a PipedInputStream connected to a PipedOutputStream of the data receiver
thread.

The thread recognizes a total of three types of incoming messages:

• debug messages with statistics sent by Proxmark3 at the end of the
snoop function;

• end status message which signals an end of the sniffing loop to the ap-
plication;

• real time trace message which contains the actual eavesdropped com-
munication frames.

The debug messages are simply read and shown to the user as an Android
toast (a small popup message).

End status message signals that the user ended the sniffing by the Prox-
mark3 button to the application which can subsequently stop both of the
threads and update the inner state of the application accordingly.

The real time trace message is read and its bytes are passed to the construc-
tor of Trace class (a wrapper class for one data frame). The constructor parses

30

4.3. Android client application

the individual byte fields, described in section 4.2, using Java’s ByteBuffer
class. The thread then takes the newly created Trace object and sends it
back to the main activity which adds it to the existing dataset of the trace
list adapter.

4.3.4 Trace list
The list of traces (frames) is the main part of the application’s graphical inter-
face. The instance of TraceListAdapter class holds a dataset (ArrayList)
of Trace objects and handles how the individual rows are filled with data.

Depending on the direction of communication a given frame was transmit-
ted (either reader to tag or tag to reader), it sets the background color and
icon of the list row.

Then a specialized function handles the basic annotation of frames. It can
annotate frames that are part of the anticollision procedure and frames that
are compliant with the 4th part of ISO14443 standard.

For reader to tag anticollision communication, the annotation function
checks the value of frame bytes and selects appropriate annotation text (e.g.
REQA, SELECT, etc.). For tag to reader anticollision communication, it
checks the last reader frame and, depending on its type, identifies the type of
the tag frame.

ISO14443-4 frames are annotated using a bit mask which checks the two
most significant bits of the first byte in a given frame and determines the
frame type (I/R/S-block) based on the masked result.

The adapter then fills the text field with hexadecimal representation of
the eavesdropped data and finally it checks if there are parity errors in the
frame data and marks the row with the aforementioned warning sign if there
are any.

31

Chapter 5
Testing

This chapter discusses how the solution implemented in the practical part of
this thesis was tested.

5.1 Equipment and approach
Multiple different tags were used for the testing:

• Mifare Classic 1K;

• Mifare Desfire EV1;

• GemCombiXpresso R4 72K;

• NXP NTAG213.

For reading the tags, multiple NFC readers were used:

• ACR122

– Plug and play USB smartcard reader
– CCID and PC/SC compliant
– NXP PN532 NFC controller

• Nexus 5 (N5)

– Released in November 2013
– 2 GB RAM
– Qualcomm MSM8974 Snapdragon 800 (Quad-core 2.3 GHz) [27]
– Android 7.1.2 (LineageOS 14.1 – a custom Android ROM)
– Broadcom BCM20793M NFC controller [28]

33

5. Testing

• Nexus 5X (N5X)

– Released in October 2015
– 2 GB RAM
– Qualcomm MSM8992 Snapdragon 808 (Hexa-core 4x1.4 GHz Cortex-

A53 and 2x1.8 GHz Cortex-A57) [29]
– Android 8.1.0 (LineageOS 15.1)
– NXP PN548 NFC Controller [30]

• Motorola E4 Plus (ME4P)

– Released in June 2017
– 3 GB RAM
– Mediatek MT6737 (Quad-core 1.3 GHz Cortex-A53) [31]
– Android 7.1.1 (OEM)
– Probably NXP NFC controller (supports Mifare Classic)

As the main stress test, the GemCombiXpresso smart card with an “echo”
application (so called applet) was used. This applet as its name implies does
a single thing – receives data sent by the reader and echoes it back. This
applet allowed me to send very large amounts of data very fast and test if the
DMA buffer does not overflow with increasing amount of data transferred.

I primarily tracked the utilization of the DMA buffer as it tells me if
the data transfer can keep up with the speed that the eavesdropped data
is coming to the device. The Python script in Listing 5.1 utilizes the pyscard
Python library to interface with the ACR122 reader, selects the applet by its
ID and then repeatedly sends 128 bytes of data to the card in a loop with
500 iterations. On its output, the status words signaling result of the data
exchange are shown.

As secondary tests, the phones’ NFC capabilities were utilized for reading
the various types of tags using NFC TagInfo application (v4.24.4) by NXP, the
manufacturer of Mifare tags. For full functionality, the application requires an
NXP NFC controller. Apart from performing the anticollision and reading the
tag’s UID, the application supports more advanced operations – reading whole
Mifare Classic 1K memory, listing applications present on Mifare Desfire EV1
tag and reading NTAG213 memory.

This communication was then eavesdropped with Proxmark3 in conjunc-
tion with the real time Android client application to test eavesdropping on
various types of traffic.

Unfortunately, the Nexus 5’s NFC reader is unusable for the testing pur-
poses as a reader, because its NFC field is very weak. The phone has difficulties
regularly reading a tag placed directly on its back and with the Proxmark’s

34

5.1. Equipment and approach

#!/usr/bin/env python3

from smartcard.System import readers
from smartcard.util import toHexString

AID = [0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x08, 0x09]
SELECT = [0x00, 0xA4, 0x04, 0x00, 0x08] + AID
ECHO = [0x80, 0x10, 0x00, 0x00, 0x80] + \

[0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88] * 16

r = readers()
print(r)
conn = r[0].createConnection()
conn.connect()

data, sw1, sw2, = conn.transmit(SELECT)
print("SELECT: {:02x} {:02x}".format(sw1, sw2))

for i in range(500):
data, sw1, sw2, = conn.transmit(ECHO)
print("ECHO: {:2}: {:02x} {:02x}".format(i, sw1, sw2))

Listing 5.1: Python testing script for GemCombiXpresso

antenna placed between the two, the phone cannot read the tag at all. Sec-
ondly, it does not support Mifare Classic tags due to its Broadcomm NFC
controller. Therefore the Nexus 5 was only used for testing of the Android
real time client application.

While working on the thesis, I figured out that the eavesdropping is most
reliable and performing without errors when the Proxmark’s antenna is placed
directly on the reader and the tag is circa half a centimeter away from the
reader. I found that a small piece of cardboard (shown in Figure 5.1) works
well for this purpose.

Utilizing the mentioned testing setup with a spacer, the Proxmark3 eaves-
dropping functionality itself worked reliably without any reception errors (par-
ity errors, etc.).

Nexus 5 and Motorola E4P worked with the OTG adapter alone but Nexus
5X needed to be used in conjunction with a powered USB hub due to the phone
probably not delivering enough power for Proxmark3 to function.

The connection to Proxmark3 through Android’s USB API and subsequent
real time eavesdropping worked without any problems with all three phones.

35

5. Testing

GemCombiXpresso

Nexus 5

USB OTG
cableProxmark3

Cardboard spacer

ACR122 reader

Proxmark's antenna

Figure 5.1: Testing setup with ACR122 as reader, Nexus 5 as client and
GemCombiXpresso tag

5.2 Results

This section presents the results of previously proposed tests.

5.2.1 Stress test

As mentioned before, the main stress test of the implementation was the con-
tinuous communication between the echo applet installed on the GemCom-
biXpresso card and the ACR122 reader. The total number of messages sent
by the reader is 500. The reader sends the 128 bytes message to the tag and
the tag simply echoes the message back without any changes. This generates
very large and fast traffic between the reader and the tag which allows for
proper testing of robustness of the implementation.

The phones – N5, N5X and ME4P – are, in the scope of this test, used
as client devices for Proxmark3 and the newly implemented Android applica-
tion is utilized and tested as well.

One run of the test takes a total of is 73.5 seconds and the total amount
of data generated is approximately 146.5 kB. Therefore the average commu-
nication speed is 146.5

73.5 ≈ 2 kB/s. The test was run 10 times with each phone.

36

5.2. Results

The Nexus 5X and Motorola E4P completed the test without a problem.
The statistics of DMA buffer utilization are shown in Table 5.1.

Client phone Min Max Avg
Nexus 5X 1581 B ≈ 10 % 3634 B ≈ 22 % 2170 B ≈ 13 %
Motorola E4P 4625 B ≈ 28 % 10339 B ≈ 63 % 7992 B ≈ 49 %

Table 5.1: Nexus 5X and Motorola E4P DMA buffer utilization statistics

Nexus 5X had the best buffer utilization out of the three phones. Motorola
had overall higher utilization of the DMA buffer than N5X, but the maximum
was 63 % so there is still a solid reserve.

Unfortunately, Nexus 5 on the other hand, failed 8 of the 10 tests by
overflowing the DMA buffer. Only two of the tests were completed until the
end. Table 5.2 shows statistics of the 8 failed attempts of Nexus 5.

Min Max Avg
Time 12.2 s 37 s 23.1 s
Bytes sniffed 22564 B 72929 B 44489 B
Percent of data sniffed 15 % 50 % 30 %

Table 5.2: Nexus 5 failed test runs statistics

In the long test run, Nexus 5 could not keep up with the transmission speed
and the buffer overflowed. Earliest buffer overflow occured 12.2 seconds after
start of the test. Altough, it is very early in the test run, usage out of scope
of this test probably would not require sniffing continuous communication for
more than 5 seconds.

The N5’s failed test runs are probably caused by the phone being quite
outdated and not as powerful. There is probably also a number of other factors
such as the Android operating system thread scheduling, number of processes
running in the background, etc.

5.2.2 Secondary tests
The secondary test data exchanges that were performed using the NFC en-
abled phones and various tags are:

1. Mifare Classic 1K read with NXP TagInfo on Nexus 5X;
2. Mifare Classic 1K read with NXP TagInfo on Motorola E4 Plus;
3. Mifare Desfire EV1 read with NXP TagInfo on Nexus 5X;
4. Mifare Desfire EV1 read with NXP TagInfo on Motorola E4 Plus;
5. NTAG 213 read with NXP TagInfo on Nexus 5X;

37

5. Testing

6. NTAG 213 read with NXP TagInfo on Motorola E4 Plus.

Tests are further referenced by the numbers listed above. Parameters of
each data exchange are summarized in Table 5.3 below. It shows that Motorola
E4P reads the tags much slower than Nexus 5X, sometimes even twice as long.

Data transferred Time Transfer peed
1 2.7 kB 2.5 s 1.1 kB/s
2 2.7 kB 7.5 s 0.4 kB/s
3 2.2 kB 2.4 s 0.9 kB/s
4 2.2 kB 6.1 s 0.4 kB/s
5 1.3 kB 1.9 s 0.7 kB/s
6 1.3 kB 3.5 s 0.4 kB/s

Table 5.3: Characteristics of test data exchanges

Table 5.4 shows results of the individual tests, numbered from 1 to 6
as mentioned before. Each row represents a single client phone where the real
time client application was tested. The values in the table represent maximum
percentage of DMA buffer utilization (% out of the 16 kB) during the sniffing.
Each test was performed 10 times and the DMA buffer utilization averaged.

Client 1 2 3 4 5 6
Nexus 5 9 % 75 % 14 % 35 % 7 % 64 %
Nexus 5X — 14 % — 37 % — 16 %
Motorola E4P 10 % — 15 % — 11 % —

Table 5.4: Percentages of DMA buffer utilization

The DMA buffer utilization in the other tests behaves contrary to ex-
pectations. It is lowest during the fastest transactions on the least powerful
phone. My current guess is that it is dependent on the Android’s schedul-
ing mechanisms and thread priority management and that the data exchange
is done before the data receiver thread has its priority lowered or is slowed
down somehow else. Please note that this is just a speculation and I currently
do not have any evidence to back it up and do not have enough time to test
this claim further.

During the testing, I also found out that timestamps of the received data
frames are sometimes incorrect. Unfortunately, due to not having enough
time to investigate this issue, I was not able to debug and fix it. This finding
fortunately is not a big problem for the thesis’ goal as the application’s current
purpose revolves around showing only the received bytes of data (which are

38

5.3. Summary

not affected by this issue) and the timestamps are not utilized and not shown
to the user.

5.3 Summary
The testing showed that the reception speed of the real time eavesdropped
data is directly dependent on the phone’s performance. Older phones, such
as Nexus 5, might have occasional problems with the DMA buffer overflowing
but not while eavesdropping short data exchanges (e.g. anticollision, single
memory read, etc.). Newer and more powerful phones, such as Nexus 5X
and Motorola E4 Plus, do not have any problems receiving the data con-
tinuously for a long time. In conclusion, the implemented solution for real
time eavesdropping with Proxmark3 and a companion Android mobile device
is functioning well.

39

Conclusion

The goals of the thesis were to research the workings of type A RFID communi-
cation in accordance with the ISO/IEC 14443 standard, review the principles
of eavesdropping of such communication and explore existing solutions, de-
vices and approaches that enable users to do so. Subsequently, aim of the
practical part was to improve the eavesdropping capability of Proxmark3 and
implement a companion Android client application to allow users to eavesdrop
RFID communication in real time with immediate feedback on results of the
process and basic decoding of the traffic without the need to carry a laptop.

The thesis explores the ISO/IEC 14443 standard and reviews the workings
of type A RFID communication. It reviews the current state of existing solu-
tions and devices that allow for eavesdropping of the RFID communication.
The explored eavesdropping options include the usage of an oscilloscope, ded-
icated RFID or NFC protocol analyzers and open source hardware devices,
mainly Proxmark3, which is subsequently the focus of practical part of the
thesis.

The practical part successfully builds upon and improves the eavesdrop-
ping capabilities of the Proxmark3 device by adding an option to transfer the
data to user’s device in real time. Further, it includes an implementation of
a new Android client application which acts as a client to the real time eaves-
dropping process, downloads the data from the Proxmark3 device in real time
and performs basic decoding.

The goals outlined in the beginning were fulfilled and therefore the assign-
ment as well. The thesis lays ground work for further development of real
time eavesdropping Proxmark3 clients.

41

Bibliography

1. BS ISO/IEC 14443-2:2016. Identification cards — Contactless integrated
circuit cards — Proximity cards: Radio frequency power and signal inter-
face. The British Standards Institution, 2016. ISBN 978-0-580-86386-8.

2. FINKENZELLER, Klaus. RFID Handbook: Fundamentals and Applica-
tions in Contactless Smart Cards, Radio Frequency Identification and
Near-Field Communication. Third Edition. Trans. by MÜLLER, Dörte.
John Wiley & Sons, Ltd., 2010. ISBN 978-0-470-69506-7.

3. BS ISO/IEC 14443-3:2016+A1:2016. Identification cards — Contactless
integrated circuit cards — Proximity cards: Initialization and anticolli-
sion. The British Standards Institution, 2016. ISBN 978-0-580-94402-4.

4. MSO6104A Mixed Signal Oscilloscope: 1 GHz, 4 Analog Plus 16 Digital
Channels [Discontinued] [online]. Keysight Technologies, 2019 [visited
on 2019-05-15]. Available from: https://www.keysight.com/en/pdx-
x202252 - pn - MSO6104A / mixed - signal - oscilloscope - 1 - ghz - 4 -
analog-plus-16-digital-channels.

5. RF-R 400-1: H-Field Probe 30 MHz up to 3 GHz [online]. Langer EMV-
Technik, 2019 [visited on 2019-05-05]. Available from: https://www.
langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf-r-
400-1-h-field-probe-30-mhz-up-to-3-ghz/13.

6. ACR122: USB NFC Reader [online]. Advanced Card Systems Ltd., 2016
[visited on 2019-05-06]. Available from: http://www.acr122.com/.

7. MIFARE DESFire EV1 [online]. NXP Semiconductors Austria GmbH
Styria, 2019 [visited on 2019-05-06]. Available from: https : / / www .
mifare.net/en/products/chip-card-ics/mifare-desfire/mifare-
desfire-ev1/.

43

https://www.keysight.com/en/pdx-x202252-pn-MSO6104A/mixed-signal-oscilloscope-1-ghz-4-analog-plus-16-digital-channels
https://www.keysight.com/en/pdx-x202252-pn-MSO6104A/mixed-signal-oscilloscope-1-ghz-4-analog-plus-16-digital-channels
https://www.keysight.com/en/pdx-x202252-pn-MSO6104A/mixed-signal-oscilloscope-1-ghz-4-analog-plus-16-digital-channels
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf-r-400-1-h-field-probe-30-mhz-up-to-3-ghz/13
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf-r-400-1-h-field-probe-30-mhz-up-to-3-ghz/13
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf-r-400-1-h-field-probe-30-mhz-up-to-3-ghz/13
http://www.acr122.com/
https://www.mifare.net/en/products/chip-card-ics/mifare-desfire/mifare-desfire-ev1/
https://www.mifare.net/en/products/chip-card-ics/mifare-desfire/mifare-desfire-ev1/
https://www.mifare.net/en/products/chip-card-ics/mifare-desfire/mifare-desfire-ev1/

Bibliography

8. DSOX4NFC NFC Automated PC-based Test Software and NFC Trig-
gering for 4000 X-Series Oscilloscopes [online]. Keysight Technologies,
2019 [visited on 2019-05-05]. Available from: https://www.keysight.
com/en/pd-2712765-pn-DSOX4NFC/nfc-automated-pc-based-test-
software-and-nfc-triggering-for-4000-x-series-oscilloscopes.

9. NFC Testing Using an Oscilloscope Part 1: Benchtop R&D Measure-
ments [online]. Keysight Labs, 2016 [visited on 2019-04-23]. Available
from: https://www.youtube.com/watch?v=RAw4i9aWl-o.

10. NFC Testing Using an Oscilloscope Part 2: Automated Measurements [on-
line]. Keysight Labs, 2016 [visited on 2019-04-23]. Available from: https:
//www.youtube.com/watch?v=dCa6y6Mp-64.

11. ComProbe® NFC Protocol Analyzer: NFC-A, NFC-B and NFC-F [on-
line]. 2019 [visited on 2019-04-24]. Available from: http://www.fte.
com/products/NFC.aspx.

12. NFC-A, NFC-B and NFC-F Protocol Analyzer datasheet [online]. 2017
[visited on 2019-04-24]. Available from: http://www.fte.com/docs/
datasheet_nfc.pdf.

13. DILLINGER, Markus; MADANI, Kambiz; ALONISTIOTI, Nancy. Soft-
ware Defined Radio: Architectures, Systems and Functions. Wiley & Sons,
2003. ISBN 0-470-85164-3.

14. RONA, Jean-Christophe. Sniffing and decoding NFC with a DVB-T stick
(RTL-SDR) and GNURadio [online]. 2017 [visited on 2019-05-05]. Avail-
able from: http://blog.rona.fr/post/2017/10/15/Sniffing-and-
decoding-NFC-with-a-DVB-T-stick-rtl-sdr-and-GNURadio.

15. ChameleonMini official repository [online]. 2019 [visited on 2019-04-21].
Available from: https://github.com/emsec/ChameleonMini.

16. Sniff Both Way 14443 by gypsophlia - Pull Request #180 [online]. 2018
[visited on 2019-05-06]. Available from: https://github.com/emsec/
ChameleonMini/pull/180.

17. HydraNFC 1.0 Specifications [online]. 2019 [visited on 2019-05-07]. Avail-
able from: https://hydrabus.com/hydranfc-1-0-specifications/.

18. HydraBus 1.0 Specifications [online]. 2019 [visited on 2019-05-07]. Avail-
able from: https://hydrabus.com/hydrabus-1-0-specifications/.

19. PROXMARK.org - radio frequency identification tool [online]. 2016 [vis-
ited on 2019-05-07]. Available from: http://www.proxmark.org/.

20. Proxmark3 RDV4.0 Dedicated Github [online]. 2019 [visited on 2019-
05-07]. Available from: https://github.com/RfidResearchGroup/
proxmark3.

21. A Test Instrument for HF/LF RFID [online]. 2009 [visited on 2019-05-
07]. Available from: http://cq.cx/proxmark3.pl.

44

https://www.keysight.com/en/pd-2712765-pn-DSOX4NFC/nfc-automated-pc-based-test-software-and-nfc-triggering-for-4000-x-series-oscilloscopes
https://www.keysight.com/en/pd-2712765-pn-DSOX4NFC/nfc-automated-pc-based-test-software-and-nfc-triggering-for-4000-x-series-oscilloscopes
https://www.keysight.com/en/pd-2712765-pn-DSOX4NFC/nfc-automated-pc-based-test-software-and-nfc-triggering-for-4000-x-series-oscilloscopes
https://www.youtube.com/watch?v=RAw4i9aWl-o
https://www.youtube.com/watch?v=dCa6y6Mp-64
https://www.youtube.com/watch?v=dCa6y6Mp-64
http://www.fte.com/products/NFC.aspx
http://www.fte.com/products/NFC.aspx
http://www.fte.com/docs/datasheet_nfc.pdf
http://www.fte.com/docs/datasheet_nfc.pdf
http://blog.rona.fr/post/2017/10/15/Sniffing-and-decoding-NFC-with-a-DVB-T-stick-rtl-sdr-and-GNURadio
http://blog.rona.fr/post/2017/10/15/Sniffing-and-decoding-NFC-with-a-DVB-T-stick-rtl-sdr-and-GNURadio
https://github.com/emsec/ChameleonMini
https://github.com/emsec/ChameleonMini/pull/180
https://github.com/emsec/ChameleonMini/pull/180
https://hydrabus.com/hydranfc-1-0-specifications/
https://hydrabus.com/hydrabus-1-0-specifications/
http://www.proxmark.org/
https://github.com/RfidResearchGroup/proxmark3
https://github.com/RfidResearchGroup/proxmark3
http://cq.cx/proxmark3.pl

Bibliography

22. Proxmark3 official repository [online]. 2019 [visited on 2019-04-21]. Avail-
able from: https://github.com/Proxmark/proxmark3.

23. Proxmark3: Android [online]. 2019 [visited on 2019-05-08]. Available from:
https://github.com/Proxmark/proxmark3/wiki/android.

24. Walrus: Make the most of your card cloning devices. [online]. 2019 [visited
on 2019-05-08]. Available from: https://walrus.app/.

25. AndProx repository [online]. 2019 [visited on 2019-05-08]. Available from:
https://github.com/AndProx/AndProx.

26. usb-serial-for-android repository [online]. 2016 [visited on 2019-05-09].
Available from: https : / / github . com / mik3y / usb - serial - for -
android.

27. LG Nexus 5: Full phone specifications [online]. GSMArena.com, 2013
[visited on 2019-05-13]. Available from: https://www.gsmarena.com/
lg_nexus_5-5705.php.

28. Nexus 5 Teardown [online]. 2013 [visited on 2019-05-13]. Available from:
https://www.ifixit.com/Teardown/Nexus+5+Teardown/19016.

29. LG Nexus 5X: Full phone specifications [online]. GSMArena.com, 2015
[visited on 2019-05-13]. Available from: https://www.gsmarena.com/
lg_nexus_5x-7556.php.

30. Nexus 5X Teardown [online]. 2015 [visited on 2019-05-13]. Available from:
https://www.ifixit.com/Teardown/Nexus+5X+Teardown/51318.

31. Motorola Moto E4 Plus: Full phone specifications [online]. GSMArena.com,
2017 [visited on 2019-05-13]. Available from: https://www.gsmarena.
com/motorola_moto_e4_plus-8722.php.

45

https://github.com/Proxmark/proxmark3
https://github.com/Proxmark/proxmark3/wiki/android
https://walrus.app/
https://github.com/AndProx/AndProx
https://github.com/mik3y/usb-serial-for-android
https://github.com/mik3y/usb-serial-for-android
https://www.gsmarena.com/lg_nexus_5-5705.php
https://www.gsmarena.com/lg_nexus_5-5705.php
https://www.ifixit.com/Teardown/Nexus+5+Teardown/19016
https://www.gsmarena.com/lg_nexus_5x-7556.php
https://www.gsmarena.com/lg_nexus_5x-7556.php
https://www.ifixit.com/Teardown/Nexus+5X+Teardown/51318
https://www.gsmarena.com/motorola_moto_e4_plus-8722.php
https://www.gsmarena.com/motorola_moto_e4_plus-8722.php

Appendix A
Acronyms

ADC analog to digital converter

ASK amplitude shift keying

ATQA answer to request, type A

fc carrier frequency (13.56 MHz)

CTU Czech Technical University in Prague

DAB digital audio broadcasting

DVB-T digital video broadcasting — terrestrial

EOC end of communication

FDT frame delay time

FM frequency modulation

FPGA field-programmable gate array

GPL GNU General Public License

GPS global positioning system

HF high frequency

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JNI Java native interface

LF low frequency

47

A. Acronyms

MCU microcontroller unit

ME4P Motorola E4 Plus

MSB most significant bit

N5 Nexus 5

N5X Nexus 5X

NFC near-field communication

OSH open-source hardware

OSS open-source software

OTG On-The-Go

PCB printed circuit board

PCD proximity coupling device

PICC proximity integrated circuit card

REQA request command, type A

RF radio frequency

RFID radio frequency identification

SOC start of communication

SSP synchronous serial port

UID unique identifier

48

Appendix B
Contents of enclosed CD

readme.txtCD contents description
apk

rtclient.apk..............built APK of rtclient Android application
src....................................source files of the implementation

proxmark3.............................modified Proxmark3 firmware
rtclient.........................Android real time client application
rtclient.py......................Python real time client application
stress-test.py...........................implementation stress test

text.. the thesis text directory
BP_Havranek_Jan_2019.pdf........... the thesis text in PDF format
BP_Havranek_Jan_2019.tex..........LATEX source code of the thesis
FITthesis.cls.................................thesis LATEX template
materialsdirectory with materials used in this thesis

49

	Introduction
	The ISO/IEC 14443 standard
	Signal interface
	Initialization and anticollision
	ISO/IEC 14443-4 block types

	Existing solutions
	Oscilloscope
	NFC protocol analyzers
	Software defined radio
	Open source devices

	Proxmark3 in detail
	Architecture
	Capabilities
	ISO14443A eavesdropping implementation
	Existing Android clients

	Design and implementation
	Real time eavesdropping functionality design
	Proxmark3 firmware modifications
	Android client application

	Testing
	Equipment and approach
	Results
	Summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

