
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 30, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Comparison of software defined storage with a classical enterprise disk array

 Student: David Šebek

 Supervisor: Ing. Tomáš Vondra, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2019/20

Instructions

1) Study the conceptual difference between enterprise SAN disk arrays and software-defined storage.
Focus on the Ceph software.
2) Design a measurement methodology for comparing the performance of the two technologies of block
storage.
3) From the supplied HPE servers and SAS disks, build a software-defined storage.
4) Compare performance with the supplied HPE 3PAR disk array with the same number of drives of equal
class.
5) Discuss the strong and weak points of each system, mainly the tolerance for errors of varying magnitude
and the avalibability/durability guarantees they can offer.
6) Describe the security best practices for these two systems when deployed in a public data center.

References

Will be provided by the supervisor.

Bachelor’s thesis

Comparison of software defined storage
with a classical enterprise disk array

David Šebek

Department of Computer Systems
Supervisor: Ing. Tomáš Vondra, Ph.D.

May 15, 2019

Acknowledgements

Foremost, I want to thank my supervisor, Ing. Tomáš Vondra, Ph.D., for his
willingness to help me solve various issues that arose during my work on this
thesis, and for providing all technical equipment that was needed.

My thanks also go to everyone who has offered me the support of any
kind, either directly by reviewing my written text passages, or indirectly by
encouragement.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 15, 2019 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2019 David Šebek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Šebek, David. Comparison of software defined storage with a classical en-
terprise disk array. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2019.

Abstract

This bachelor’s thesis compares two storage approaches – SAN disk array,
represented by an HPE 3PAR device, and software-defined storage built with
Ceph software. The purpose of this comparison is to find whether a software-
defined storage cluster built with regular servers is comparable performance-
wise with a SAN disk array of similar hardware configuration.

After explaining the concepts of both types of storage and researching
benchmark procedures, the author built a small Ceph cluster and measured
its latency and throughput performance against a 3PAR disk array. The
results revealed that 3PAR performed 31× better for 4 KiB data block writes
compared to Ceph. On the contrary, Ceph cluster 1.4× surpassed 3PAR in
16 MiB large-block reads. This thesis is useful to data storage designers who
may be deciding between the two storage technologies.

Keywords storage performance comparison, software-defined storage, en-
terprise data storage, storage benchmarking, SAN disk array, Ceph, 3PAR

vii

Abstrakt

Tato bakalářská práce porovnává dva typy datových úložišť – diskové pole
SAN, reprezentováno strojem HPE 3PAR, a softwarově definované úložiště
postavené pomocí software Ceph. Cílem tohoto porovnání je zjistit, zda je
softwarově definované úložiště postavené z běžných serverů výkonově srovna-
telné s diskovým polem SAN podobné konfigurace.

Po vysvětlení konceptů obou typů úložišť a vyhledání informací k postupu
měření výkonu, autor postavil malý Ceph cluster a změřil jeho latenci a dato-
vou propustnost oproti diskovému poli 3PAR. Výsledky odhalily, že při zápisu
malých 4KiB bloků dat byl 3PAR 31× rychlejší než Ceph. Při čtení velkých
16KiB bloků dat byl naopak Ceph 1.4× rychlejší. Tato práce je užitečná pro
návrháře datových úložišť, kteří se rozhodují mezi těmito dvěma technologiemi
datového úložiště.

Klíčová slova porovnání výkonnosti úložišť, softwarově definované úložiště,
úložiště pro datová centra, měření výkonu úložišťě, SAN diskové pole, Ceph,
3PAR

viii

Contents

Introduction 1

1 Goal 3

2 Analysis of Ceph and 3PAR 5
2.1 What is 3PAR . 5
2.2 3PAR Hardware Architecture 6
2.3 How 3PAR Stores Data . 6
2.4 What is Ceph . 8
2.5 Ceph Architecture . 9
2.6 How Ceph Stores Data . 11

2.6.1 Objects . 11
2.6.2 Pools . 12
2.6.3 Object Striping . 13
2.6.4 Placement Groups . 13

2.7 Ceph Hardware Requirements 14
2.7.1 CPU . 14
2.7.2 RAM . 15
2.7.3 Data storage . 15
2.7.4 Network . 16
2.7.5 Operating System . 16

2.8 Ceph Releases . 17
2.8.1 Upstream Ceph . 17
2.8.2 Upstream Ceph Support, Upgrades 18
2.8.3 Other Ceph Solutions 18

3 Related Work 19
3.1 Approach to Benchmarking a Ceph Cluster 19
3.2 Commonly Used Benchmarking Tools and Their Parameters . . 21

ix

3.2.1 Example 1 . 21
3.2.2 Example 2 . 22
3.2.3 Example 3 . 22
3.2.4 Example 4 . 23
3.2.5 Summary of Discoveries 23
3.2.6 Existing Ceph Latency Result 24

3.3 Storage Benchmarking Tools 24
3.3.1 The dd tool . 25

3.3.1.1 Command-line Parameters 25
3.3.1.2 Examples . 26

3.3.2 IOzone . 26
3.3.2.1 Command-line Parameters 27
3.3.2.2 Example . 27
3.3.2.3 Plot Generation 27

3.3.3 fio . 27
3.3.3.1 Command-line Parameters 28
3.3.3.2 Plot Generation 29
3.3.3.3 Examples . 30
3.3.3.4 Client/Server 30
3.3.3.5 A Note on fio Benchmark Units 30

3.3.4 IOPing . 31
3.3.4.1 Examples . 31

4 Realization 33
4.1 Hardware Used for the Tests 33

4.1.1 Machine Specifications 33
4.1.2 Number of Machines Used 34
4.1.3 Hard Drives Used . 34
4.1.4 Connection and Network Topology 35

4.2 Process of Building the 3PAR Storage 36
4.2.1 Block Device Creation on 3PAR 37

4.3 Process of Building the Ceph Storage 37
4.3.1 Building the Cluster . 37
4.3.2 Block Device Creation on Ceph 38

4.4 Simulation of 3PAR RAID Levels on Ceph 38
4.5 Block Size and I/O Depth Decision 39

4.5.1 Small 4 KiB Block Size Behavior 39
4.5.2 Large 1 GiB Block Size Behavior 40
4.5.3 Device-Reported Parameters 40
4.5.4 Decision for Tests . 41

4.6 Main Measurement Methodology for Performance Comparison 41
4.6.1 Pool (CPG) and Image (Virtual Volume) Parameters . . 41
4.6.2 Read Tests Must Read Allocated Data 42
4.6.3 Sequence of Performed Tests 43

x

4.6.4 Erasing the Block Device 43
4.6.5 Sequential Access (4 MiB Blocks) 44
4.6.6 Random Access (Multiple Block Sizes) 44
4.6.7 Latency (4 KiB Blocks) 45

4.7 Additional Tests . 45
4.7.1 Sequential Access (16 MiB Blocks) 45
4.7.2 Random Access Within a Small File 46

5 Results 47
5.1 Performance of Individual Components 47

5.1.1 Ceph Network Throughput and Latency 47
5.1.2 Ceph Network – The Effect of Ethernet Bonding 48
5.1.3 Ceph Hard Drive Performance 50

5.1.3.1 Sequential Throughput 50
5.1.3.2 Random Throughput and Latency 51
5.1.3.3 Reported Ceph OSD Performance 52

5.1.4 Summary . 52
5.2 Quick Ceph vs. 3PAR Benchmark 53
5.3 Main Ceph vs. 3PAR Performance Results 55
5.4 Additional Tests . 58

5.4.1 Random Access Within a Small File 58
5.4.2 Multiple Hosts . 58
5.4.3 Ethernet Bonding – xmit_hash_policy 58

5.5 Result Discussion . 58
5.5.1 Random Access . 59
5.5.2 Sequential Access . 59

5.6 Hardware Utilization During the Tests 59
5.6.1 Storage systems . 59
5.6.2 Client Servers . 60

6 Summary 61
6.1 Strong and Weak Points of 3PAR and Ceph 61

6.1.1 Disk Failure Tolerance, Failure Domains 61
6.1.2 Tolerance for Errors of Varying Magnitude 62
6.1.3 Availability Our Systems Can Offer 63
6.1.4 Overall Easiness of Use 64
6.1.5 Addition of New Pools (CPGs) 65
6.1.6 Limitations of Ceph . 65
6.1.7 Limitations of 3PAR . 66

6.2 Recommended Security Best Practices 66
6.2.1 System User for Ceph Deployment 66
6.2.2 Communication Between Ceph Nodes 67
6.2.3 3PAR Users . 67
6.2.4 Conclusion of Security Practices 68

xi

Conclusion 69

Bibliography 71

A Acronyms 79

B Detailed Benchmark Results 81
B.1 Bonded Network Performance 81
B.2 Individual Hard Drive Block Size Performance 83
B.3 Random Access Throughput . 84

B.3.1 RAID 1 and RAID 0 . 84
B.3.2 RAID 5 . 89
B.3.3 RAID 6 . 97

B.4 Random Access Within a 10 GiB File 102
B.5 Sequential 4 MiB Access Plots 104

B.5.1 RAID 0 and RAID 1 . 105
B.5.2 RAID 5 . 107
B.5.3 RAID 6 . 111

B.6 Sequential 16 MiB Access Plots 113
B.6.1 RAID 0 and RAID 1 . 114
B.6.2 RAID 5 . 116
B.6.3 RAID 6 . 120

B.7 Multiple Hosts . 122
B.8 Effect of xmit_hash_policy Setting 124

C Contents of Enclosed SD Card 127

xii

List of Figures

2.1 Hardware components of 3PAR . 6
2.2 How data is stored in 3PAR using RAID 1 8
2.3 How data is stored in 3PAR using RAID 5 8
2.4 Architecture of Ceph . 10
2.5 How data is stored in Ceph using replication 12
2.6 How data is stored in Ceph using erasure coding 12
2.7 Hardware components of Ceph cluster with Ceph daemons 14

4.1 Topology of our servers and 3PAR device 36
4.2 Throughput plot of non-existent data read from 3PAR and Ceph . 43

5.1 Individual hard drive sequential throughput 51
5.2 Initial Ceph vs. 3PAR random access performance with multiple

block sizes . 54

B.1 Ceph vs. 3PAR – RAID 0 (1) sequential 4 MiB throughput 105
B.2 Ceph vs. 3PAR – RAID 1 (2) sequential 4 MiB throughput 105
B.3 Ceph vs. 3PAR – RAID 1 (3) sequential 4 MiB throughput 106
B.4 Ceph vs. 3PAR – RAID 1 (4) sequential 4 MiB throughput 106
B.5 Ceph vs. 3PAR – RAID 5 (2 + 1) sequential 4 MiB throughput . . 107
B.6 Ceph vs. 3PAR – RAID 5 (3 + 1) sequential 4 MiB throughput . . 107
B.7 Ceph vs. 3PAR – RAID 5 (4 + 1) 4 MiB sequential throughput . . 108
B.8 Ceph vs. 3PAR – RAID 5 (5 + 1) sequential 4 MiB throughput . . 108
B.9 Ceph vs. 3PAR – RAID 5 (6 + 1) sequential 4 MiB throughput . . 109
B.10 Ceph vs. 3PAR – RAID 5 (7 + 1) sequential 4 MiB throughput . . 109
B.11 Ceph vs. 3PAR – RAID 5 (8 + 1) sequential 4 MiB throughput . . 110
B.12 Ceph vs. 3PAR – RAID 6 (4 + 2) sequential 4 MiB throughput . . 111
B.13 Ceph vs. 3PAR – RAID 6 (6 + 2) sequential 4 MiB throughput . . 111
B.14 Ceph vs. 3PAR – RAID 6 (8 + 2) sequential 4 MiB throughput . . 112
B.15 Ceph vs. 3PAR – RAID 6 (10 + 2) sequential 4 MiB throughput . 112

xiii

B.16 Ceph vs. 3PAR – RAID 0 (1) sequential 16 MiB throughput 114
B.17 Ceph vs. 3PAR – RAID 1 (2) sequential 16 MiB throughput 114
B.18 Ceph vs. 3PAR – RAID 1 (3) sequential 16 MiB throughput 115
B.19 Ceph vs. 3PAR – RAID 1 (4) sequential 16 MiB throughput 115
B.20 Ceph vs. 3PAR – RAID 5 (2 + 1) sequential 16 MiB throughput . 116
B.21 Ceph vs. 3PAR – RAID 5 (3 + 1) sequential 16 MiB throughput . 116
B.22 Ceph vs. 3PAR – RAID 5 (4 + 1) sequential 16 MiB throughput . 117
B.23 Ceph vs. 3PAR – RAID 5 (5 + 1) sequential 16 MiB throughput . 117
B.24 Ceph vs. 3PAR – RAID 5 (6 + 1) sequential 16 MiB throughput . 118
B.25 Ceph vs. 3PAR – RAID 5 (7 + 1) sequential 16 MiB throughput . 118
B.26 Ceph vs. 3PAR – RAID 5 (8 + 1) sequential 16 MiB throughput . 119
B.27 Ceph vs. 3PAR – RAID 6 (4 + 2) sequential 16 MiB throughput . 120
B.28 Ceph vs. 3PAR – RAID 6 (6 + 2) sequential 16 MiB throughput . 120
B.29 Ceph vs. 3PAR – RAID 6 (8 + 2) sequential 16 MiB throughput . 121
B.30 Ceph vs. 3PAR – RAID 6 (10 + 2) sequential 16 MiB throughput 121
B.31 Ceph vs. 3PAR – simultaneous write access from two clients, se-

quential throughput . 122
B.32 Ceph vs. 3PAR – simultaneous read access from two clients, se-

quential throughput . 123
B.33 Ceph – effects of xmit_hash_policy network bonding setting on

sequential write throughput . 124
B.34 Ceph – effects of xmit_hash_policy network bonding setting on

sequential read throughput . 125

xiv

List of Tables

3.1 Research – Cloud latency comparison 24

4.1 Specification of our 3PAR device 34
4.2 Specification of our servers . 34
4.3 Specification of hard drives used in 3PAR 35
4.4 Specification of hard drives used for Ceph 35
4.5 Network names of our servers . 36

5.1 Network performance . 48
5.2 Individual hard drive random 4 KiB performance 52
5.3 Comparison results – RAID 0 and RAID 1 sequential throughput

and random latency . 55
5.4 Comparison results – RAID 5 sequential throughput and random

latency . 56
5.5 Comparison results – RAID 6 sequential throughput and random

latency . 57

6.1 Reference reliability of Ceph . 64

B.1 Network performance with different xmit_hash_policy settings . . 82
B.2 Sequential hard drive performance with different block sizes 83
B.3 Ceph vs. 3PAR – RAID 0 random throughput 85
B.4 Ceph vs. 3PAR – RAID 1 (2) random throughput 86
B.5 Ceph vs. 3PAR – RAID 1 (3) random throughput 87
B.6 Ceph vs. 3PAR – RAID 1 (4) random throughput 88
B.7 Ceph vs. 3PAR – RAID 5 (2 + 1) random throughput 90
B.8 Ceph vs. 3PAR – RAID 5 (3 + 1) random throughput 91
B.9 Ceph vs. 3PAR – RAID 5 (4 + 1) random throughput 92
B.10 Ceph vs. 3PAR – RAID 5 (5 + 1) random throughput 93
B.11 Ceph vs. 3PAR – RAID 5 (6 + 1) random throughput 94
B.12 Ceph vs. 3PAR – RAID 5 (7 + 1) random throughput 95

xv

List of Tables

B.13 Ceph vs. 3PAR – RAID 5 (8 + 1) random throughput 96
B.14 Ceph vs. 3PAR – RAID 6 (4 + 2) random throughput 98
B.15 Ceph vs. 3PAR – RAID 6 (6 + 2) random throughput 99
B.16 Ceph vs. 3PAR – RAID 6 (8 + 2) random throughput 100
B.17 Ceph vs. 3PAR – RAID 6 (10 + 2) random throughput 101
B.18 Ceph vs. 3PAR – Random throughput within a small file 103

xvi

Introduction

Storage requirements grow as more and more data is being produced every
day. Databases, backups, cloud storage, this all requires significant storage
capacity. Moreover, the storage capacity needs to be easily expanded as the
amount of data grows in time.

Historically, there have existed dedicated disk arrays for this purpose. One
of the examples of disk arrays can be 3PAR products. These devices are
purposely built with storage in mind. They offer redundancy and multiple
RAID settings. The customer only needs to buy one or more of these devices,
put some hard drives in them, configure the storage parameters and connect
the device to the client servers. These devices are usually connected into
a storage array network, SAN, using Fibre Channel Protocol. However, these
proprietary solutions are not easily expandable and may require expensive
licensing.

There is another approach that has emerged in recent years. It is software-
defined storage. There is no need to buy an expensive storage device. Software-
defined storage can be set up on regular servers. One of the examples is Ceph
software. Ceph is an open source technology that can turn any conventional
servers with conventional hard drives into a storage cluster. It is also designed
to offer a vast amount of redundancy, depending on the number of devices
used. The storage is also easily expandable if there is a need for adding more
disk space. Because Ceph is open-source, there is no need to worry about not
being able to use the storage after some license expires.

This thesis explores and compares these two approaches. Classical disk
array, represented by a two-node 3PAR storage device, will be compared to
a Ceph software-defined storage cluster made of two regular servers. The
comparison will take into account the performance and strong and weak points
of both systems. In order to make the comparison fair, the devices will be
equipped with very similar hardware. Both Ceph servers will be similarly
equipped as the two-node 3PAR device and will be configured to match as close
as possible.

1

Introduction

The findings of this thesis will help one cloud-providing company decide
whether to invest in Ceph storage and base some of their offered services on
software-defined storage. I chose this topic because I wanted to discover both
technologies, disk array storage and software-defined storage, more in-depth.
The documented experience and results of this work will also be beneficial to
anyone who may be deciding which storage technology fits them the best.

The structure of this thesis is separated into two major parts – theoretical
and practical. The theoretical part starts with an explanation of the architec-
ture of the two storage technologies, represented by Ceph and 3PAR. Then it
focuses on existing storage benchmarking procedures and storage benchmark-
ing tools.

In the practical part, 3PAR device will be configured, and a Ceph storage
cluster will be set up based on the researched information. The practical
part of the thesis applies some of the researched benchmarking procedures on
these two storage units. On successful completion, we will have enough data
to evaluate the real storage performance. It will be possible to decide whether
Ceph storage is a feasible option to replace 3PAR for cloud storage. The
strong and weak points of the two systems, as well as their security settings,
are mentioned.

2

Chapter 1
Goal

This thesis compares an HPE 3PAR disk array with a Ceph software-defined
data storage.

The conceptual difference between enterprise SAN disk arrays (represented
by 3PAR) and software-defined storage (Ceph) will be examined.

A measurement methodology for a performance comparison of the two
technologies of block storage will be designed.

Software-defined storage will be built using two HPE servers with hard
drives using SAS interface. Its performance will be compared to HPE 3PAR
disk array with the same number of drives of the same class using the designed
measurement technology.

Strong and weak points of each system will be discussed. These include
the tolerance of errors of varying magnitude, and availability or durability
guarantees they can offer. The best security practices will be mentioned for
each of these two systems when deployed in a public data center.

3

Chapter 2
Analysis of Ceph and 3PAR

This chapter focuses on the conceptual principles of both of these storage
concepts of two storage concepts – software-defined storage and storage area
network (SAN) disk array. Two concrete examples were chosen to demonstrate
each storage concept. Ceph software is used to represent software-defined
storage, and an HPE 3PAR StoreServ 7400c system represents the concept
of a SAN disk array. The main architectural building blocks of each storage
approach will be examined as well as the way in which the data are stored.

2.1 What is 3PAR
HPE 3PAR is a brand name of hardware SAN storage array devices. Current
models are sold under the Hewlett Packard Enterprise (HPE) brand [1].

“A SAN (storage area network) is a network of storage devices that can be
accessed by multiple servers or computers, providing a shared pool of storage
space. Each computer on the network can access storage on the SAN as though
they were local disks connected directly to the computer.” [2]

Our HPE 3PAR 7400c model supports these types of connection to the
client servers: Fibre Channel, iSCSI, and Fibre Channel over Ethernet (FCoE).
The storage device can be managed using different software tools, such as HP
3PAR Command Line Interface (CLI), or the HP 3PAR Management Con-
sole. [3]

According to the QuickSpecs document [4], HPE 3PAR 7400c device sup-
ports these RAID levels:

• RAID 0,

• RAID 1,

• RAID 5 (data to parity ratios of 2 : 1 – 8 : 1),

• and RAID 6 (data to parity ratios of 4 : 2, 6 : 2, 8 : 2, 10 : 2 and 14 : 2).

5

2. Analysis of Ceph and 3PAR

The RAID sets are arranged in rows spanning multiple hard drives, forming
RAID 10, RAID 50 or raid 60 [3].

2.2 3PAR Hardware Architecture
3PAR devices come in different hardware configurations. Hardware terminol-
ogy mentioned in this section is similar to most models [3]. Figure 2.1 shows
the hardware layout described in this section.

Physical hard drives are put in drive magazines. One magazine can hold
multiple hard drives. These drive magazines are then inserted into a drive cage.
Some 3PAR models use drive enclosures instead of drive cages. The difference
between the two is that drive cage can hold multiple-disk drive magazines,
while drive enclosure holds single-disk drive modules instead. Drive cages are
then connected to the controller nodes using SAS interface. The nodes are
then connected to the SAN, where client servers can connect to them. 3PAR
storage system usually has multiple nodes for redundancy. [3]

Node 1

Drive magazine 9

Drive cage 0

Drive magazine 8

Drive magazine 0

Drive magazine 9

Drive cage 1

Drive magazine 8

Drive magazine 0

Node 0

Figure 2.1: Hardware components of 3PAR. [3]

2.3 How 3PAR Stores Data
The HPE 3PAR storage consists of these five logical data layers, from the
lowest level to the highest. Only the last layer, virtual volumes, is exported
and visible to hosts (clients):

1. physical disks,

2. chunklets,

3. logical disks,

6

2.3. How 3PAR Stores Data

4. common provisioning groups (CPGs),

5. virtual volumes. [3]

The lowest layer, physical disks, consists of all physical hard drives con-
nected to the system. Each disk that is added to the system is automatically
divided into 256 MiB or 1 GiB units called chunklets. Chunklets from all phys-
ical disks are the building blocks for logical disks. Each logical disk is created
from a group of chunklets using some user-specified RAID technique. This
logical disk space is the base for creating virtual pools called common provi-
sioning groups, or CPGs for short. From these common provisioning groups,
individual virtual volumes can be created and exported to hosts. [3]

The only user-configurable layers are the CPGs and virtual volumes. Chun-
klets are created automatically by the 3PAR Operating System when the disk
is added to the system. Logical disks are created automatically with the cre-
ation or growth of CPGs. [3]

Virtual volumes exported to the hosts can be of two types: commonly pro-
visioned (allocated at creation, fixed size) or thinly provisioned (space is allo-
cated on demand after creation). [3]

To form a logical disk, chunklets from different hard drives are arranged
in RAID sets. These RAID types are supported by 3PAR:

• RAID 0,

• RAID 1 and 10,

• RAID 5 and 50,

• RAID Multi-parity (RAID 6).

RAID 0 offers no protection against hard drive failure, but it offers the best
performance because the data is spread across multiple hard drives. RAID 1
mirrors the data across chunklets from multiple (2–4) hard drives and can
sustain a failure of 1 or more hard drive (1–3). RAID 5 stores data across 2–8
chunklets from different hard drives, plus one chunklet with calculated parity.
It can sustain a failure of one hard drive. RAID 6 works similarly to RAID 5,
only it uses two chunklets for calculated parity and can sustain a failure of two
hard drives. Data is stored in rows across chunklets. Each chunklet is divided
into smaller parts with a configurable size of step size. [3] Simple illustrations
of RAID 1 and RAID 5 data layout are in figures 2.2 and 2.3.

Not all of the chunklets are used for logical disks. There are always several
chunklets on each drive used as spares. Additionally, 256 MiB of data on each
drive is reserved for the table of contents (TOC). This TOC is the same on
all drives. 4 MiB is reserved for diagnostic use. [3]

7

2. Analysis of Ceph and 3PAR

chunklet chunklet chunklet chunklet
A B
C D

copy(A) copy(B)
copy(D)copy(C)

set size set size
row size

Figure 2.2: This picture illustrates how “ABCD” data block is stored across 4 chun-
klets on 3PAR using RAID 1 (2 data copies). [3]

chunklet chunklet chunklet chunklet
A C

p(E,F) p(G,H)
B D

GE

set size set size
row size

chunklet
p(A,B)

F

chunklet
p(C,D)

H

Figure 2.3: This picture illustrates how “ABCDEFGH” data block is stored across
6 chunklets on 3PAR using RAID 5 (2 data, 1 parity). [3]

2.4 What is Ceph
Ceph is open-source software released under GNU Lesser General Public Li-
cense (LGPL), version 2.1 [5]. It is designed to work on Linux-based operating
systems [6]. Its source code is written mostly in C++, Python and Terra [7].

What exactly is Ceph? According to the information on the main website,
“Ceph is a unified, distributed storage system designed for excellent perfor-
mance, reliability and scalability” [8].

“Ceph provides highly scalable block and object storage in the same dis-
tributed cluster. Running on commodity hardware, it eliminates the costs of
expensive, proprietary storage hardware and licenses. Built with enterprise
use in mind, Ceph can support workloads that scale to hundreds of petabytes,
such as artificial intelligence, data lakes and large object repositories.” [9]

Ceph offers these types of storage in one unified system:

• object storage,
• block storage,
• file storage. [10]

8

2.5. Ceph Architecture

2.5 Ceph Architecture
Ceph Storage Cluster typically consists of servers called nodes. “A Ceph Node
leverages commodity hardware and intelligent daemons, and a Ceph Storage
Cluster accommodates large numbers of nodes, which communicate with each
other to replicate and redistribute data dynamically” [10].

Ceph cluster can be built without having any single point of failure, of-
fering redundancy at any level of operation. The cluster is based on Reliable
Autonomic Distributed Object Store (RADOS) and is infinitely scalable. It
consists of these two types of daemons:

• Ceph Monitors,

• Ceph OSD Daemons. [10]

According to the official documentation [11], these are the basic software
daemons running in Ceph storage cluster, with their description:

MON (Monitor, ceph-mon)
At least three monitors are usually required for redundancy. A monitor
serves this purpose:

• maintains maps of the cluster state required for the coordination
of Ceph daemons,

• and manages authentication between daemons and clients.

“Red Hat recommends deploying an odd number of monitors. An odd
number of monitors has a higher resiliency to failures than an even num-
ber of monitors. […] Summarizing, Ceph needs a majority of monitors
to be running and to be able to communicate with each other, two out of
three, three out of four, and so on.” [12]

MGR (Manager, ceph-mgr)
At least two managers are required for high availability. Their purpose
is as follows:

• keeps track of the runtime metrics and the state of the Ceph cluster
(storage utilization, load, …)

• host modules to manage and expose Cluster information (Ceph
Dashboard, REST API)

MDS (Metadata Server, ceph-mds)
Stores metadata for Ceph File System (if used). It allows basic file
system commands to be executed without a big performance impact on
the Ceph storage.

9

2. Analysis of Ceph and 3PAR

OSD (Object Storage Daemon, ceph-osd)
At least three OSDs are required for redundancy and high availability.

• Stores data,

• handles data replication, recovery and rebalancing,

• provides monitoring information to Ceph Monitors and Managers.

The documentation [10] also desribes the principles of communication be-
tween the daemons. Ceph Monitor contains a master copy of the Cluster Map.
Cluster Map contains the details about the cluster and its structure, includ-
ing location of components such as Ceph Monitors, Ceph OSD Daemons, and
other components in the cluster. The Cluster Map also contains the infor-
mation needed to calculate the data location, not the location itself. Before
each storage access, clients receive the recent copy of the cluster map from the
monitor. Each Ceph OSD Daemon and Ceph Client uses a Controlled Repli-
cation Under Scalable Hashing (CRUSH) algorithm to compute the location
of the data in the cluster and access that OSD daemon directly. There is no
central lookup table or gateway for the data access. Ceph OSD Daemons also
periodically perform data scrubbing, an activity, when they compare existing
copies of the objects and try to find any inconsistencies.

RADOS

LIBRADOS

MON

Client Servers File SharesApplications

Block Device File SystemObject Storage

Applications

C
lu

st
er

N
et

wo
rk

OSD OSD OSD

RADOSGW RBD CEPH FS

MGR

Hard disk drives

Figure 2.4: Ceph Architecture. [10], [13]

10

2.6. How Ceph Stores Data

2.6 How Ceph Stores Data
“Ceph stores data as objects within logical storage pools. Using the CRUSH
algorithm, Ceph calculates which placement group should contain the object,
and further calculates which Ceph OSD Daemon should store the placement
group. The CRUSH algorithm enables the Ceph Storage Cluster to scale,
rebalance, and recover dynamically.” [11]

I would summarize the data layers for block device storage in Ceph as:

1. physical disks,

2. Ceph OSD Daemons,

3. placement groups,

4. objects,

5. pools,

6. RBD images.

2.6.1 Objects

Ceph stores all data as objects. Ceph OSD Daemons read or write the objects
on the physical hard drives. The objects use flat namespace, not a directory
hierarchy. Each object has an identifier, which is unique across the cluster,
and contains binary data and metadata. Objects are replicated across multiple
nodes by default, which provides a fault tolerance. [10]

Ceph Clients do not have to replicate the objects themselves. This is how
a write operation is performed:

1. Client receives a copy of Cluster Map from the monitor,

2. client calculates the target OSD location and sends data to the OSD,

3. this primary OSD, which also has the Cluster Map, replicates the data
to secondary, tertiary, ... OSDs;

4. primary OSD confirms the write. [10]

For the purposes of this thesis, the RBD block device functionality of Ceph
was used. RBD stores data in objects, their size can be specified to be between
4 KiB and 32 MiB. The default object size for RBD is 4 MiB. [14]

11

2. Analysis of Ceph and 3PAR

2.6.2 Pools
Logical partitions for storing objects are called pools. Pools have a specified
size (the number of object replicas), CRUSH rule, and number of placement
groups. [10]

Ceph supports these two types of pools:

• replicated (used by default),

• erasure-coded.

In replicated pools, multiple copies of an object are stored. There is a total
of n copies of each object. Each copy is stored on a different OSD. A simple
illustration of a replicated pool is in figure 2.5. [15]

object

OSD OSD OSD
copy copy

write

Figure 2.5: Write operation into a Ceph replicated pool with a size of 3 [10]

Erasure-coded pool splits an object into k data chunks, and m coding
chunks are computed. Each of those chunks is stored on a different OSD.
The pool uses k+m OSDs, up to m of them may become unavailable for the
data to still be recoverable. Erasure-coded pools save space, but they need
higher computational power. A simple illustration of an erasure-coded pool
is in figure 2.6. [15]

OSD OSD OSD

object

chunk 1 chunk 2 coding
chunk

Figure 2.6: Ceph erasure coding (k = 2, m = 1) [10]

12

2.6. How Ceph Stores Data

2.6.3 Object Striping
Similarly to how 3PAR stripes data across chunklets, Ceph also supports the
concept of striping. In this case, objects are split into multiple stripes and the
data is stored across multiple objects across different OSDs. Striping improves
performance (similar to RAID 0) while keeping object mirroring. Note that
Ceph Object Storage, Ceph Block Device, and Ceph File System by default
do not stripe the objects, but stripe their data over the whole objects. [10]

2.6.4 Placement Groups
Perhaps one of the most confusing things when creating a pool is the number
of placement groups, which has to be specified.

Objects in the pool are grouped into placement groups, because tracking
each object in the cluster would be computationally expensive. Placement
groups are mapped to OSDs. In a replicated pool of replication size n, each
placement group stores its objects on n different OSDs. The placement groups
are mapped to OSDs dynamically by the CRUSH algorithm. One OSD is not
exclusively used by only one placement group – it can contain multiple place-
ment groups. The number of PGs impacts the data durability, object distri-
bution, and resource usage. Higher PG num results in more even data spread
across all OSDs, but selecting a number that is too high results in more I/O
operations during recovery, as there are more placement groups to move. The
documentation recommends approximately 100 PGs per OSD. The number
can be increased later, but not decreased. [16], [12]

“For instance, if there was a single placement group for ten OSDs in
a three replica pool, only three OSD would be used because CRUSH would have
no other choice. When more placement groups are available, objects are more
likely to be evenly spread among them. CRUSH also makes every effort to
evenly spread OSDs among all existing Placement Groups.” [16]

Below is a formula to calculate the number of placement groups for a single
pool. If there are multiple pools created, the number of PGs needs to be
changed accordingly.

TotalPGs = OSDs × 100
poolsize

(2.1)

Where pool size is the number of replicas for replicated pools or K+M for
erasure coded pools. The Total PGs result should be rounded up to the
nearest power of two. [16]

From my experience, the PG number adds up with the creation of multiple
pools, so one needs to know beforehand how many pools will be created to
decide the best PG number.

The recently released new version of Ceph, Nautilus, seems to address
many of these issues and supports automatic PG scaling and future decre-
menting. [17]

13

2. Analysis of Ceph and 3PAR

2.7 Ceph Hardware Requirements
Ceph requirements are decribed in detail in the official Ceph documentation
page [18]. This is a short summary compiled from the documentation infor-
mation. Note that each Ceph solution, such as Red Hat Ceph Storage or
SUSE Enterprise Storage, may have slightly different requirements or sup-
ported CPU architectures [19], [13].

From the documentation it seems that Ceph is evolving very quickly and
gaining new functionality each release. For this reason, the requirements may
change between Ceph releases.

Ceph was designed to work on comodity hardware. This means that there
is no need to buy any expensive specialized device, everything can be set up
on regular servers. There are some recommendations for achieving the best
cluster performance, such as running Ceph daemons on servers configured for
the particular type of daemon. The number of servers used for each needs to
be carefully decided based on the expected redundancy and the cost of the
hardware. The documentation also recommends leaving Ceph cluster servers
for Ceph only and using different host servers to access the data. [18]

Server 1

os

OSD OSD OSD OSD OSD OSD

MON MGR

Server 2

os

OSD OSD OSD OSD OSD OSD

Figure 2.7: Two-node Ceph cluster. Each server has 6 hard drives, and runs a Ceph
OSD Daemon for each drive. Server 1 also functions as a Ceph Monitor. This
configuration will be used in the practical part of this thesis.

2.7.1 CPU
The documentation [18] mentions the following CPU requirements for each
server running a Ceph service. Besides the CPU-intensive Ceph daemons,
regular services and other software running on the system need some compu-
tational power too.

MDS Metadata servers should have significant processing power for load re-
distribution, at least quad-core CPU is recommended.

14

2.7. Ceph Hardware Requirements

OSD OSDs run the RADOS service, calculate data placement with CRUSH,
replicate data, etc. This requires CPU power. At least dual-core CPU
is recommended.

MON Monitors are not computation-intensive, they only mantain their copy
of the cluster map.

2.7.2 RAM
In general, approximately 1 GiB of RAM per 1 TiB of data storage is recom-
mended. The memory requirements for each Ceph daemon are as follows.

MON, MGR The bigger the cluster, the more memory these daemons con-
sume. For small clusters, 1–2 GiB is sufficient. The documentation
mentions possibility of tuning the cache size use by these daemons,
namely mon_osd_cache_size and rocksdb_cache_size.

MDS Metadata server’s memory usage depends on its cache configuration.
At least 1 GiB is recommended. Ceph allows the cache size to be set
with the mds_cache_memory setting.

OSD In default configuration, each OSD requires 3–5 GiB of memory. The
target memory amount (not necessarily the real amount) consumed by
OSDs can be configured with osd_memory_target setting. Its default
value is set to 4 GiB [20]. Note that this applies only to BlueStore OSDs.
FileStore backend used in older Ceph releases behaves differently. [18]

2.7.3 Data storage
OSD OSDs are storing data. For best performance, 1 hard drive should

be used for 1 OSD. The documentation recommends hard disk size of
at least 1 TiB each, for economic reasons – larger drives are more cost-
effective. Although, with higher OSD capacity comes the need for higher
RAM capacity. As mentioned previously, approximately 1 GiB of RAM
is recommended per 1 TiB of storage.

Number of OSDs per host The throughput of all OSDs on the host should
be lower than throughput of the network connection to the client (net-
work should not be saturated). Also, a potential failure of the host
should be taken into account. If all of the OSDs were on one host and
it failed, Ceph would not be able to operate.

MON Each monitor daemon requires around 10 GiB of storage space.

MDS Each metadata server requires around 1 MiB of storage space. [18]

15

2. Analysis of Ceph and 3PAR

There will also need to be a drive where the operating system is installed.
It is not a good idea to use the same drive for multiple purposes, such as having
two OSDs on a single drive. Even though it is possible, the performance would
suffer.

One might consider using SSDs instead of HDDs for Ceph storage. The
documentation warns about potential issues, such as much higher price of
SSDs, bad performance of cheap SSD drives, and that SSDs may require some
SSD-specific precautions, such as proper partition alignment. It might be
advantageous to use an SSD as a journal for the OSDs, not for the OSD
storage itself. [18]

2.7.4 Network
The minimum bandwidth of the network depends on the number of OSDs in
each server. The total OSD throughput should not exceed the throughput
of the network. For faster data migration between cluster servers and avoid-
ing possible Denial of Service (DoS) attacks, it is advantageous to have two
networks for Ceph cluster:

• front-side network where clients can connect,

• and back-side network (disconnected from the Internet) for data migra-
tion between Ceph cluster nodes. [18]

2.7.5 Operating System
The offical documentation [6] gives the following recommendations for the
operating system:

• deploy Ceph on newer releases of Linux,

• long-term support Linux releases are recommended.

The documentation recommends stable or long-term maintenance kernels. At
least the following Linux kernel versions are recommended, older releases may
not support all CRUSH tunables:

• 4.14.z,

• 4.9.z.

The official tool for Ceph installation, ceph-deploy, is written in Python
programming language [21] and supports these Linux distributions: Ubuntu,
Debian, Fedora, Red Hat, CentOS, SUSE, Scientific Linux, and Arch Linux [22].
The GitHub repository suggests that there is also a support for ALT Linux [23].

The Ceph documentation [24] uses the upstream Ceph repository for pack-
age installation. Both deb and rpm packages of various Ceph releases for

16

2.8. Ceph Releases

various processor architectures are available there. These provided packages
support Debian, Ubuntu, RHEL, and CentOS distributions. The rpm reposi-
tory does not support openSUSE which is said to already include recent Ceph
releases in its default repositories.

Because of its open-source nature, many other Linux distributions may
already include some (not necessarily the latest) version of Ceph in their
repositories. Ceph source code can also be downloaded and then compiled
on most Linux distributions. If those distributions are not supported by the
ceph-deploy tool or any other alternative tools, it is always possible to install
Ceph manually using instructions from the Ceph documentation [25].

2.8 Ceph Releases
Ceph is open source software. There are also other, usually commercial, prod-
ucts built on Ceph. This section mentions these different Ceph distributions.

2.8.1 Upstream Ceph

The release cycle of Ceph is explained in the official documentation page [26].
The current numbering scheme is this: x.y.z, where x is the release cycle (there
is a new release every 9 months), y is the release type described below, and z
is for bug-fix point releases.

• x.0.z for development releases,

• x.1.z for release candidates,

• x.2.z for stable or bugfix releases (stable point release every 4 to 6 weeks).

Additionally, each release cycle is named after a species of cephalopod.
The name begins with x-th letter in the alphabet, where x is the release cycle
number. For example, current stable release, as of wrtiting this paragraph
(April 2019), is a newly released 14.2.0 Nautilus [17]. Before that, there was
13.2.5 Mimic.

List of currently supported Ceph release cycles with their names (as of
April 2019):

• 14.2.z Nautilus,

• 13.2.z Mimic,

• 12.2.z Luminous (soon to reach end of life [EOL]). [26]

17

2. Analysis of Ceph and 3PAR

2.8.2 Upstream Ceph Support, Upgrades
There is a stable point release every 4 to 6 weeks. Each release cycle receives
bug fixes or backports for two full release cycles (two 9-month release cycles,
18 months in total). An online upgrade can be done from the last two stable
releases or from prior stable point releases. [26]

2.8.3 Other Ceph Solutions
It is totally possible to use the upstream open-source Ceph version and set
it up by yourself. But there are multiple Ceph solutions for customers who
wish to get Ceph with some kind of professional support. They are based
on the same Ceph software and may provide additional integration tools and
support. Some of the most popular solutions are offered by SUSE and Red
Hat. [27]

• SUSE Enterprise Storage

• Red Hat Ceph Storage

Both Red Hat and SUSE are among the top Ceph contributors. These two
companies were by far the most active contributors during the Ceph Mimic
release cycle, both by number of repository commits and by lines of code. [28]

18

Chapter 3
Related Work

Before performing the actual performance measurement of our storage devices,
the measurement methodology needs to be decided. This chapter researches
some of the approaches to storage performance measurement. The emphasis
will be given to Ceph performance measurement, as well as to the comparisons
of Ceph with other types of storage. Some of the discovered approaches and
software tools will be considered for my Ceph vs. 3PAR comparison.

3.1 Approach to Benchmarking a Ceph Cluster
Ceph wiki pages contain an article [29] with some benchmarking recommenda-
tions. The article recommends starting with the measurement of each individ-
ual storage component. Based on the results, one can get an estimate of the
maximum achievable performance once the storage cluster is built. Namely,
the article recommends measuring performance of the two main components
of the Ceph infrastructure:

• disks,

• network.

As the simplest way of benchmarking hard disk drives, the article uses the
dd command with the oflag parameter to avoid disk page cache. Each hard
drive in the cluster would be tested with the following command, which will
output the transfer speed in MiB/s.
$ dd if=/dev/zero of=here bs=1G count=1 oflag=direct

To measure network throughput, the article recommends the iperf tool. This
tool needs to be run on two nodes, one instance in server mode and another
instance in client mode. It will report the maximum throughput of the network
in Mbit/s.

19

3. Related Work

$ iperf -s
$ iperf -c 192.168.1.1

Once the disks and network are benchmarked, one can get an idea of what
performance to expect from the whole Ceph cluster.

Ceph cluster performance can be measured at different levels:

• low-level benchmark of the storage cluster itself,

• higher-level benchmark of block devices, object gateways, etc.

Ceph contains a rados bench command to benchmark a RADOS storage clus-
ter. The following example commands create a pool named scbench, run
a write benchmark for 10 seconds followed by sequential read and random
read benchmarks.

$ ceph osd pool create scbench 100 100
$ rados bench -p scbench 10 write --no-cleanup
$ rados bench -p scbench 10 seq
$ rados bench -p scbench 10 rand
$ rados -p scbench cleanup

The number of concurrent reads and writes can be specified with the -t pa-
rameter, size of the object can be specified by the -b parameter. To see
how performance changes with multiple clients, it is possible to run multiple
instances of this benchmark against different pools. [29]

To benchmark Ceph block device (RBD), the article [29] suggests the
Ceph’s rbd bench command, or the fio benchmark, which also supports RA-
DOS block devices. First, they created a pool named rbdbench, and then an
image named image01 in that pool. The following example generates sequen-
tial writes to the image and measures the throughput and latency of the Ceph
block device.

$ rbd bench-write image01 --pool=rbdbench

The second mentioned way of measuring the Ceph block device performance
is through the fio benchmarking tool. Its installation contains an example
script for benchmarking RBD. The script needs to be updated with the correct
pool and image names and can be executed as:

$ fio examples/rbd.fio

The article [29] also recommends dropping all caches before subsequent
benchmark runs. The same instruction is also mentioned in the Arch Wiki [30].

$ echo 3 | sudo tee /proc/sys/vm/drop_caches && sync

20

3.2. Commonly Used Benchmarking Tools and Their Parameters

3.2 Commonly Used Benchmarking Tools and
Their Parameters

This section contains results of my research to discover some of the commonly
used software tools and practices for storage benchmarking. The findings will
reveal that most of the storage benchmarking tools usually offer (and often
require) a wide array of parameters to be specified, instructing it how to access
the storage. These options usually include

• the storage operation performed (read/write),

• sequential or random access,

• the amount of data transferred in one access request (block size),

• number of requests issued at the same time (I/O queue depth),

• the number of requests performed or the total amount of data transferred
(size),

• whether the storage should be accessed using a cache buffer of the op-
erating system or whether they should be sent to the storage directly
(buffered/direct).

For this reason, my research focused not only on the commonly used bench-
marking tools, but also which parameters are the tools run with. Some of the
benchmarking tools that might be useful for the practical part of this thesis
and their possible parameters will be described at the end of this chapter.

3.2.1 Example 1
In a Proxmox document [31], there is Ceph storage benchmarked under dif-
ferent conditions and configuration. Among other things, the authors dis-
covered that at least 10 Gbit/s network speed is needed for Ceph, 1 Gbit/s
is significantly slower. The raw result performance numbers are to no use for
us because they used different hardware, but we can at least see how they
approached the benchmarking.

They also recommend testing individual disk write performance first. They
used the following fio command to measure the write speed of individual disks
(solid-state drives in their case).
fio --ioengine=libaio --filename=/dev/sdx --direct=1 --sync=1 --rw=

write --bs=4K
--numjobs=1 --iodepth=1 --runtime=60 --time_based --group_reporting

--name=fio
--output-format=terse,json,normal --output=fio.log --bandwidth -log

21

3. Related Work

The command instructs fio to perform a sequential write with directly to
a block device. They chose to write the data in 4 KiB blocks, one by one,
without using any I/O request queue or any memory buffers of the operating
system. It also creates a bandwidth log.

• libaio I/O engine;

• a block size of 4 KiB;

• direct I/O with a queue depth of 1;

• only 1 simultaneous job;

• run time of 60 s.

Read and write benchmarks were performed using the built-in Ceph bench-
marking tools. Each test runs for 60 s and uses 16 simultaneous threads to
first write, and then read, objects of size 4 MiB.
rados bench 60 write -b 4M -t 16
rados bench 60 read -t 16 (uses 4M from write)

3.2.2 Example 2
Another example of a performed benchmark is in a Red Hat Summit video [32,
9:10]. The authors also use fio, version 2.17, with these parameters:

• libaio I/O engine;

• a block size of 4 KiB for random access;

• a block size of 1 MiB for sequential access;

• direct I/O with a queue depth range of 1–32;

• write : read ratios of 100 : 0, 50 : 50, 30 : 70, 0 : 100;

• 1–8 jobs running in parallel;

• run time of 60 s ramp, 300 s run.

3.2.3 Example 3
Third example is from one of the OpenStack videos [33, 8:04], where fio bench-
marking scripts can be seen. For latency testing, they measured

• 4 KiB random writes,

• I/O queue depth of 1,

22

3.2. Commonly Used Benchmarking Tools and Their Parameters

• direct I/O flag.

For IOPS measurement, they use

• 4 KiB random writes,

• IO queue depth of 128,

• direct I/O flag.

In both cases, aio I/O engine is used.

3.2.4 Example 4
The last example is from a cloud provider that has a tutorial [34] describing
“how to benchmark cloud servers”. To benchmark storage, they use fio and
ioping utilities. Fio is used to measure the throughput, ioping to measure the
latency.

Random read/write performance:
fio --name=randrw --ioengine=libaio --direct=1 --bs=4k --iodepth=64

--size=4G --rw=randrw --rwmixread=75 --gtod_reduce=1

Random read performance:
fio --name=randread --ioengine=libaio --direct=1 --bs=4k --iodepth

=64 --size=4G --rw=randread --gtod_reduce=1

Random write performance:
fio --name=randwrite --ioengine=libaio --direct=1 --bs=4k --iodepth

=64 --size=4G --rw=randwrite --gtod_reduce=1

Latency with ioping:
ioping -c 10 .

3.2.5 Summary of Discoveries
To sum up the findings, most researched Ceph and other storage benchmarks
use fio tool with the specification of

• the libaio I/O engine,

• direct flag,

• random read or write with block size of 4 KiB (larger block size for
sequential access),

• and I/O depth of 1 for latency measurements or larger for IOPS mea-
surement.

Storage latency can also be measured with ioping utility.

23

3. Related Work

3.2.6 Existing Ceph Latency Result
StorPool Storage presented their benchmark results at OpenStack Summit in
Berlin, 2018. During a quick demo, they used the fio tool to benchmark indi-
vidual disks. They measured storage latency using the PostgreSQL database
benchmarking tool, pgbench.

They discovered the Ceph latency to be significantly higher than the la-
tency of other storage solutions. They ran the tests on virtual machines from
different cloud providers. Each virtual machne was of these specifications:
16 vCPUs, 32 GiB of RAM. The test consisted of pgbench random read/write
(50 : 50) runs with queue depth of 1. Database size was chosen to be 4x the
size of RAM. [33] Table 3.1 contains the average measured latency [33, 15:10].

Table 3.1: Average latency running pgbench on different cloud virtual machines.
StorPool presentation at OpenStack Summit in Berlin 2018

DigitalOcean (Ceph) 1.97 ms
MCS.mail.ru (Ceph) 4.41 ms
DreamHost/DreamCompute (Ceph) 5.48 ms
AWS EBS gp2 10k 0.29 ms
StorPool NVMe/Hybrid 20k 0.14 ms

3.3 Storage Benchmarking Tools
In this section, some of the previously researched storage benchmarking soft-
ware tools will be explored more in depth. The purpose of these tools is to
measure the performance of data storage. Their simple usage will be demon-
strated, and some of their options that might be useful for the practical part of
this thesis will be briefly explained. All of the benchmarking tools mentioned
in this chapter are free, command-line programs that can be run on Linux.

These storage benchmarking tools generate load on the storage, and then
they usually report some metrics by which storage performance is described.
These metrics usually are:

• amount of data transferred per second, or throughput, (usually in KiB/s
or MiB/s);

• the number of input/output operations per second (IOPS);

• time required to transfer a block of data – latency (usually in ms).

Both IOPS and latency values depend on the amount of data transferred
during one I/O operation. For this reason, the IOPS value and latency value

24

3.3. Storage Benchmarking Tools

by themselves do not hold any information unless the size of a transfer block
is known. For example, the transfer of a single 4 KiB data block takes less
time than transfer of a 16 MiB data block (lower latency). This means that
more 4 KiB I/O operations will fit in a one second time frame compared to
16 MiB operations, resulting in higher reported operations per second (IOPS)
value.

3.3.1 The dd tool

The primary purpose of the command-line dd tool is copying files – “dd copies
a file […] with a changeable I/O block size, while optionally performing con-
versions on it” [35]. I am not aware of having used any Linux operating
system where dd was not available. For this reason, the tool can be used
as a quick measure of storage performance before installing some more sophis-
ticated benchmarking software. On the Linux operating systems that I used
during the writing of this thesis, dd command was installed as a part of the
coreutils package.

As a simple write performance test of the storage, one can copy a sequence
of zeros from the /dev/zero generator either into a file stored on the device
(for example /mountpoint/file.out), or to the device itself (for example
/dev/sda). Note that writing a sequence consisting solely of zeros does not
always yield realistic write performance results if the storage device utilizes
some form of data compression or de-duplication.

This tool can be used also as a simple test of the read speed of the storage.
In this case the data can be copied from the device and discarded immediately
afterwards (into /dev/null). Note that the data may already be cached in
the system’s memory, in which case the resulting transfer speed would not
correspond with the real transfer speed of the storage device. This can be
fixed either by flushing the system’s cache beforehand or by instructing dd to
read the data directly from the device and avoid any system cache. [30]

3.3.1.1 Command-line Parameters

The GNU coreutils documentation [35] describes many parameters and flags
that instruct dd how to access files. These parameters specify the source and
destination file and the size of the transfer:

if=filename Reads data from filename file.

of=filename Writes data to filename file.

bs=number The block size.

count=number Transfers number of blocks in total.

25

3. Related Work

Below is a short list of flags that I personally found useful for storage bench-
marking purposes. Many of the oflag output flags can also be applied
as iflag flags for input files. Not all storage technologies support all of these
flags, though.

conv=fdatasync “Synchronize output data just before finishing.” With this
option, dd uses system buffer cache and then calls sync at the end of the
transfer.

conv=fsync Similar to fdatasync, also includes metadata.

oflag=dsync “Use synchronized I/O for data.” This option uses system buffer
cache, but it forces the physical write to be performed after each data
block is written.

oflag=sync “Use synchronized I/O for both data and metadata.”

oflag=direct “Use direct I/O for data, avoiding the buffer cache.” This flag
avoids operating system’s memory subsystem and writes data directly
to the destination device. [35]

3.3.1.2 Examples

The first command is a write performance benchmark. This command writes
a total of 4 MiB of zeros to the /dev/sdc block device in 4 KiB blocks, while
avoiding buffer cache of the operating system. It overwrites any previously
stored data within the first 4 MiB of its capacity. After it finishes, it shows
the achieved transfer speed. The second command can be used as a read
performance benchmark. It is similar to the previous command, but it trans-
fers data in the opposite direction. Data is read from the block device and
discarded (not stored).
dd if=/dev/zero of=/dev/sdc bs=4k count=1000 oflag=direct
dd if=/dev/sdc of=/dev/null bs=4k count=1000 iflag=direct

3.3.2 IOzone
IOzone is another command-line tool. According to its official website, “IO-
zone is a filesystem benchmark tool” [36]. From my experience, not only IO-
zone does not come pre-installed on most major Linux distributions by default,
but some of the distributions do not provide the package in their repositories
at all. As of writing this paragraph (April 2019), current versions of Ubuntu
and openSUSE include it in their repositories, Fedora does not. However, be-
cause it is open-source software [37], the source code can be downloaded and
compiled manually.

26

3.3. Storage Benchmarking Tools

3.3.2.1 Command-line Parameters

Its documentation [38] describes all of the operations this tool supports. For
a quick performance evaluation of the storage, two command-line options are
especially useful:

-a This switch runs an automatic test. It runs all file operations supported
by IOzone (such as read, write, random read, random write, …) for file
sizes of 64 KiB to 512 MiB and record sizes of 4 KiB to 16 MiB.

-I Uses direct I/O, thus bypassing the buffer cache and reading (writing)
directly from (to) the storage device.

3.3.2.2 Example

A single automatic test can be run with this command:
$ iozone -a -I > program-output.txt

3.3.2.3 Plot Generation

There are also scripts available to generate a plot from the measured results.
These scripts can be downloaded from the IOzone source code directory on
their website [39]. These scripts may also come installed with the IOzone
package, on openSUSE they are stored in /usr/share/iozone.

• Gnuplot.txt (contains the information about the scripts)

• Generate_Graphs (main script)

• gengnuplot.sh (generates a single plot)

• gnu3d.dem (generates all plots and displays them in gnuplot)

This command will use the scripts to generate three-dimensional plots showing
the bandwidth based on file size and record size.
$./Generate_Graphs program-output.txt

3.3.3 fio
Another command-line tool is fio, which stands for flexible I/O tester. My
research results mentioned earlier in this chapter show fio to be a popular tool
for measuring storage performance.

“Fio spawns a number of threads or processes doing a particular type of I/O
action as specified by the user. fio takes a number of global parameters, each
inherited by the thread unless otherwise parameters given to them overriding
that setting is given. The typical use of fio is to write a job file matching the
I/O load one wants to simulate.” [40].

27

3. Related Work

3.3.3.1 Command-line Parameters

Fio is a complex benchmarking tool which supports many options. Some of
what I think are the most important fio options are be mentioned below. The
complete list of supported parameters can be found in the documentation [40].
Fio jobs can be specified in a text file. It is also possible to pass the options
directly on the command line. For example, the documentation mentions that
“for the job file parameter iodepth=2, the mirror command line option would
be --iodepth 2 or --iodepth=2.” On command line, jobs can be separated
with the --name option. [40]

This group of fio command-line parameters specifies the compulsory job
name and, if necessary, also specify the files or devices to perform the I/O
operations with.

--name=job_name Fio does not run without this parameter. It specifies the
name of the job to job_name. It may affect the names of output files.

--filename=file1:file2 Explicitly specifies one or more file or device names
to be used for I/O operations. If omitted, files will be generated automat-
ically by job specification and stored in the current working directory.

--directory=dirname Puts the test and output files in the dirname directory
instead of using the current working directory.

The following group of command-line parameters can be used to specify
the action to be performed with the files or devices.

--ioengine=engine Some of the useful engine values are:

psync Fio will use pread(2) or pwrite(2) calls. Default on most systems.
libaio Linux native asynchronous I/O.
posixaio POSIX asynchronous I/O.
windowsaio Windows native asynchronous I/O. Default on Windows.
rados Direct access to Ceph RADOS via librados.
rbd Direct access to Ceph Rados Block Devices (RBD) via librbd. There

is no need for a rbd driver in the kernel of the operating system.

--direct=1 or 0 Whether to use non-buffered I/O (usually O_DIRECT).

--rw=operation Type of I/O pattern. Some of the useful values of operation
are read or write for sequential access, randread or randwrite for
random access, rw or randrw for mixed reads and writes.

--rwmixread=1 or 0 or --rwmixwrite=1 or 0 Percentage of reads (writes)
in mixed read/write workloads (e.g. int=50).

28

3.3. Storage Benchmarking Tools

--end_fsync=1 or 0 Sync data after the complete write stage is finished (at
the end of the job).

--fsync_on_close=1 or 0 Sync data after every file is closed.

The following parameters specify the transfer size, block size, number of
concurrent jobs, etc. of the performed I/O operations.

--size=bytes How many bytes each fio thread will transfer. If not specified,
fio will use the full capacity of the file or device specified in a parameter,
if it exists.

--bs=bytes The block size in bytes, defaults to 4096. Separate values for
reads and writes can be specified, e.g. bs=8k,32k for 8 KiB reads and
32 KiB writes.

--iodepth=number “Number of I/O units to keep in flight against the file.”
How many requests are sent sequentially to the storage.

--numjobs=number The job is cloned int-times into separate processes or
threads.

--group_reporting if --numjobs is used, report as a whole, not per job.

--runtime=time Limits the execution time of fio to time seconds.

3.3.3.2 Plot Generation

This group of parameters instructs fio whether to save the results. It can
generate log files that can be turned into plots.

--output=filename Writes the stdout output to a filename file.

--write_bw_log=name Stores the bandwidth log in files with a name prefix.

--write_lat_log=name Stores the latency log in files with a name prefix.

--write_iops_log=name Stores the IOPS log in files with a name prefix.

--log_avg_msec=int “Setting this option makes fio average the each log entry
over the specified period of time, reducing the resolution of the log.” “By
default, fio will log an entry in the iops, latency, or bw log for every I/O
that completes.”

--log_hist_msec=int More accurate for generating completion latency his-
tograms than the previous option. [40]

29

3. Related Work

3.3.3.3 Examples

The first command measures the sequential write performance of the /dev/sdc
block device in 4 KiB blocks, while avoiding buffer cache of the operating
system. It writes 4 MiB of data in total. It overwrites any previously stored
data within the first 4 MiB of its capacity. The second command tests the
sequential read performance with the same parameters.
$ sudo fio --name=test --filename=/dev/sdc --rw=write --bs=4k --size

=4M --direct=1
$ sudo fio --name=test --filename=/dev/sdc --rw=read --bs=4k --size

=4M --direct=1

3.3.3.4 Client/Server

Fio can be run remotely from another computer. This is useful for performing
simultaneous shared storage accesses from multiple clients.

On destination machine, fio can be started in server mode using the fol-
lowing command. By default, fio will be listening on all interfaces, default
port 8765. [40]
$ fio --server

Remote fio client can connect to one or multiple fio servers. From my ex-
perience, job file had to be used instead of passing all job arguments as the
command parameters, which did not work.
$ fio <local-args> --client=<server> <remote-args> <job file(s)>

Multiple servers can be accessed simultaneously.
$ fio --client=<server1> <job file(s)> --client=<server2> <job

file(s)>

3.3.3.5 A Note on fio Benchmark Units

The output of fio version 2.2.10 displays units such as KB/s, MB/s etc. The
manual page for this program version [41] indicates that, by default, these are
base-2 units (1 KB = 210 B = 1024 B).

Current fio version, version 3.13, displays units correctly (KiB, MiB, etc.).
Input values can also be suffixed with the unit, not case sensitive. It allows
the choice between the old fio unit specification and the correct units.

--kb_base=1000 4ki equals to 4096 bytes, 4k equals to 4000 bytes.

--kb_base=1024 (default for compatibility reasons) 4k equals to 4096 bytes,
4ki equals to 4000 bytes.

30

3.3. Storage Benchmarking Tools

3.3.4 IOPing
“A tool to monitor I/O latency in real time. It shows disk latency in the same
way as ping shows network latency.” [42] Its manual page [43] describes all
parameters.

Ioping requires at least one command-line argument: the destination stor-
age location. It can be either a directory, a file, or a device. If a directory
target is specified, ioping creates a temporary file ioping.tmp and uses this
file for subsequent measurements. If a file or device is specified, it uses the
whole size of the file or device to perform measurements. For this reason,
performing write measurements are data-destructive when performed on file
or device, but not when performed on a directory. [43]

3.3.4.1 Examples

The following commands show the read I/O latency of the storage.
$ ioping /mnt/directory
$ ioping /dev/device

These commands show the write I/O latency.
$ ioping -W /mnt/directory
$ ioping -WWW /dev/device

31

Chapter 4
Realization

This chapter documents the process of a configuration and subsequent bench-
marking of two storage technologies:

• Ceph software-defined storage built on HPE DL 380 gen 9 servers (Ceph),

• HPE 3PAR StoreServ 7400c SAN disk array (3PAR).

First, the hardware specification will be introduced, both of the 3PAR and
of the servers that will be used for Ceph. After that, the process of building
a Ceph cluster will be briefly explained. The measurement methodology for
comparing both Ceph and 3PAR will be explained, as well as the decision for
using the particular benchmarking approaches and tools.

4.1 Hardware Used for the Tests
This section describes the hardware and software configuration of the devices
that were used for the performance comparison.

4.1.1 Machine Specifications

Table 4.1 summarizes the 3PAR device specification. The information was
obtained through the HP Management Console software connected to the
device and from the QuickSpec document [4].

Table 4.2 summarizes the specifications of the servers. All of the servers are
the same models with the same configuration. Two of these servers were used
for Ceph storage. Other two servers were used as clients and load-generators
for both Ceph and 3PAR storage. The standard Ubuntu kernel on the clients
was upgraded to their newer HWE kernel in order to be able to access erasure-
coded RBD images in Ceph.

33

4. Realization

Table 4.1: Specification of the HPE 3PAR storage device. Information was obtained
with the HP Management Console from the 3PAR.

Model HPE 3PAR 7400c
Number of controller nodes 2

Ea
ch

no
de

CPU 2x six-core 1800 MHz
Control memory 16 GiB
Data memory 8 GiB
SAS speed 6 Gbps
FC speed 8 Gbps
Operating system HP 3PAR OS Version 3.3.1
Battery backup Yes
Internal drive SanDisk SATA 120 GB

Table 4.2: Configuration of the servers. Two of the servers were used for the Ceph
storage, another two as clients for Ceph and 3PAR storage. Information was obtained
with lscpu and dmidecode tools run on the servers.

Model HPE DL 380 gen 9
CPU 1x octa-core 2.40 GHz, 2 threads per core
CPU model Intel Xeon E5-2630 v3
RAM 16 GiB
Battery backup No
Operating system Ubuntu 16.04 LTS
Kernel (cluster) Linux 4.4
Kernel (clients) Linux 4.15 (HWE)

4.1.2 Number of Machines Used
One HPE 3PAR 7400c storage device was chosen to represent the classical
storage array. For the comparison to be fair, Ceph storage cluster components
were chosen to resemble the 3PAR configuration as close as possible. The
3PAR device consists of two controller nodes; each of the nodes has 16 GiB
of RAM and two hexa-core processors (12 cores total). To match its 3PAR
counterpart, the Ceph storage cluster consisted of two nodes (servers). Each
server also had 16 GiB of RAM and one octa-core CPU with two threads per
core (8 cores, 16 threads total).

Another two servers were used as clients. These clients were connected
both to the 3PAR (using Fibre Channel connection) and to the Ceph cluster
(over LAN Ethernet network).

4.1.3 Hard Drives Used
Because the license on our 3PAR system did not allow for more hard drives to
be connected, the 3PAR system used a total of 12 hard drives. Ceph storage

34

4.1. Hardware Used for the Tests

also used 12 drives, 6 connected to each of the two server nodes. In addition
to the 6 hard drives dedicated to Ceph storage, each Ceph node server uses
1 hard drive for the operating system. 3PAR uses an SSD for its operating
system.

All hard drives used in 3PAR are of the same class and specification.
Similarly, all hard drives used for Ceph storage are of the same class and
specification. However, the drives used in 3PAR are not the same model
as the drives used in Ceph. Although most of their parameters are the same,
their capacity differs. The capacity of each drive used in 3PAR is 900 GB, the
capacity of drives used for Ceph is only 300 GB.

Table 4.3 shows the parameters of hard drives used in 3PAR. The param-
eters of hard drives used for Ceph are detailed in table 4.4. The information
was obtained through software tools from running systems.

Table 4.3: Specification of hard drives used for 3PAR storage. Information was
obtained with the HP Management Console from the 3PAR.

Manufacturer HITACHI
Model HCBRE0900GBAS10K
Form factor 2.5”
Capacity 900 GB (reported 819 GiB)
RPM 10,000
Interface SAS

Table 4.4: Specification of hard drives used for Ceph storage reported by various
Linux tools.

Manufacturer HP
Models EG0300FBVFL, EG0300FCVBF, EG0300FCSPH
Form factor 2.5”
Capacity 300 GB (reported 279 GiB)
RPM 10,000
Reported sector size 512 B (physical and logical)
Interface SAS (SPL-3)

4.1.4 Connection and Network Topology

All of the four servers are connected to the same TCP/IP network. Each
server is connected through two 10 Gbit/s network interfaces, with the use
of a bonding driver in Linux. The other two servers were used as clients
connected both to the Ceph storage cluster and to the 3PAR device. 3PAR
connects over a Fibre Channel SAN. Hostnames and corresponding IP ad-

35

4. Realization

dresses of the servers are detailed in table 4.5. The topology is depicted in
figure 4.1.

srv2 3PAR

Ethernet Switch Fibre Channel Fabric

srv3 srv4

Ceph

srv1

Figure 4.1: Topology of our servers and 3PAR device

Table 4.5: IP hostnames and addresses of the servers.

Hostname IP address Purpose
srv1 10.1.110.11 Ceph storage
srv2 10.1.110.12 Ceph storage
srv3 10.1.110.13 Client
srv4 10.1.110.14 Client

4.2 Process of Building the 3PAR Storage

3PAR was pre-installed with the HP 3PAR Operating System Version 3.3.1.
There was no need to install any additional software or to perform any addi-
tional configuration steps besides creating the PGs and Virtual Volumes.

3PAR has an Ethernet network configuration interface. It was possible to
ssh into the device and use the command-line interface, or use some other con-
figuration software. I was using the HP 3PAR Management Console, Version
4.7.3.2 software most of the time. Command-line interface came handy only
when modifying some system options, such as a default restriction preventing
RAID 0 or RAID 5 CPG creation.

36

4.3. Process of Building the Ceph Storage

4.2.1 Block Device Creation on 3PAR
These are the steps in the 3PAR Management Console I needed to do in order
to create a virtual volume and make it accessible to the client server. I used
the default settings whenever possible.

1. create a CPG (set its name, RAID type, set size, and possibly the avail-
ability domain and step size within a chunklet),

2. create a virtual volume (set its name, size, CPG to use for data, and
whether it should be thinly or fully provisioned),

3. export the virtual volume to the client server over Fibre Channel.

The creation was straightforward because the program uses a graphical user
interface. Once the volume is exported, it can be detected by the client server.
The client server may not detect the volume automatically. Either a reboot
of the server or a SCSI bus scan may be performed to detect the new volume.

Each of our servers used four connections to the SAN. A Device map-
per multipathing software driver was used to automatically create a single
block device from these four connections. By default, it was configured to use
a round robin algorithm to choose between the four SAN paths.

4.3 Process of Building the Ceph Storage
Two servers were used for Ceph cluster and another two servers as clients.
I followed the Ceph documentation website [25] to set up and use the Ceph
cluster.

4.3.1 Building the Cluster
Following the relevant Ceph documentation pages [44], I used the ceph-deploy
tool to create the Ceph cluster and set up the clients. The first step I took
before installing Ceph on the real hardware was to try to deploy a test Ceph
cluster on virtual machines. After getting more familiar with the setup and
configuration process, I proceeded with installation on real hardware.

Ubuntu 16.04 LTS operating system was pre-installed on all of the servers.
Following the documentation instructions, I created a cephuser user on each
of the Ceph and client servers. The ceph-deploy utility was run under this
user. I chose server srv1 to be the main administration server of the cluster.

I configured the system to use the official Ceph repository mentioned in the
manual [24] for upstream Ceph package installation and installed the ceph-
deploy tool from that repository. Then I used the tool to install the latest
available stable version of Ceph, which was version 13.2 Mimic [45] at that
time, both on Ceph servers (srv1, srv2) and on the client servers (srv3, srv4).
Server srv1 functioned as a Ceph Monitor and provided 6 OSDs, one per each

37

4. Realization

hard drive. Server srv2 had 6 OSDs, one per hard drive, and no monitor.
Because there are only two servers used for our Ceph cluster, adding Ceph
Monitor daemon to the second server would not gain any real advantage – if
there was one monitor on each of the two servers and one server failed, the
remaining one monitor would not form a majority of monitors and would not
be able to function anyway.

I left most Ceph options with their default settings, with a notable excep-
tion of the osd_memory_target OSD option. This option tells the Ceph OSD
Daemon how much RAM it should use. It was preset to 4 GiB by default.
This exceeds the total available memory of our servers. The servers use 6
OSDs and have a RAM size of 16 GiB. I set the osd_memory_target setting
of each OSD to 2 GiB instead. This way, six OSDs will consume approxi-
mately 12 GiB of RAM total, and there should be enough RAM space left for
the operating system and other daemons.

4.3.2 Block Device Creation on Ceph
The process of creating a Ceph block device, including the possible configura-
tion options, can be found in the Ceph documentation [25]. The configuration
options are spread across different documentation pages.

Ceph pools and images can be created from the admin node (in my case
srv1) using command-line ceph and rbd commands. I kept the default settings
whenever possible. One exception is the failure domain, which needed to be
set to OSD instead of the host in most cases. The process is to:

1. create a pool (specify its name, number of placement groups, whether it
is replicated or erasure-coded, and possibly the CRUSH rule or erasure-
coding profile),

2. create an RBD image (specify its size, name, pool, possibly additional
features).

Once an RBD image is created, it can be mapped using the rbd command
from within a client server and used as a block device, for example /dev/rbd0.

4.4 Simulation of 3PAR RAID Levels on Ceph
3PAR supports RAID 0, RAID 1, RAID 5, and RAID 6. Ceph supports two
types of pools: replicated and erasure-coded. This is how I imitated each
RAID level on Ceph:

• RAID 0 only spreads data across multiple disks without any redundancy.
This behavior can be achieved by a replicated Ceph pool with a replica
size of 1 (one copy of the data).

38

4.5. Block Size and I/O Depth Decision

• RAID 1 (RAID 10) keeps multiple copies of the same data block. Similar
to Ceph replication with a size of 2 or greater.

• RAID 5 (RAID 50) and RAID 6 (RAID 60) can be mimicked by an
erasure-coded k + m pool in Ceph, with m = 1 for RAID 5 or m = 2 for
RAID 6 simulation.

For example, the behavior of a RAID 5 with 5 data disks and 1 parity can be
achieved with an erasure-coded pool where k = 5 and m = 1.

Ceph does not allow an RBD image to be created directly on an erasure-
coded pool. An erasure-coded pool can be used as a data storage for an RBD
image created on a replicated pool.

4.5 Block Size and I/O Depth Decision
Benchmarking tools, in general, allow these read/write characteristics to be
specified:

• block size,

• depth of I/O queue,

• whether to use direct or buffered I/O.

To avoid any memory buffering effects in the client servers, I decided to run the
benchmarks on Ceph and 3PAR using direct I/O mode. Now a few questions
arise – how big should the block size be? How many simultaneous I/O requests
should be queued to achieve the best real-world performance? Once the I/O
requests get passed to the underlying device, will they be of the same block
size and I/O depth as I specified in the parameters of the benchmark?

To answer these questions, I created a RAID 5 (5 + 1) pool both on 3PAR
and on Ceph and used fio to access the storage from the clients with different
block size and I/O depth parameters specified. I used the output of the iostat
-x command to watch the block size and I/O queue depth of storage operations
that were performed on the storage in reality. I focused on what happens to
small-block operations (4 KiB) and large-block operations (1024 MiB) both in
buffered (--direct=0) and direct (--direct=1) mode.

4.5.1 Small 4 KiB Block Size Behavior
I discovered that in order to keep the block size of the fio requests unchanged
all the way to the storage, direct I/O needs to be used. Writing 4 KiB blocks
to the storage using buffered I/O instead resulted in 4096 KiB blocks actually
being queued and sent to the storage on our systems. The reported queue
size was around 130 in 3PAR and 65 in Ceph. Buffered read with a block size
of 4 KiB resulted in 256 KiB read requests to the device, with a queue size

39

4. Realization

of 1.5 both in Ceph and 3PAR. It is apparent that the block size sent to the
storage is not the same as the block size issued by the fio benchmark when
buffered I/O is used. The operating system seems to have merged multiple
4 KiB requests into one larger. Using direct I/O instead, the request size
reported by iostat matched the 4 KiB block size specified in fio.

Direct I/O is necessary to preserve the block size of the storage access
requests. To also specify the I/O depth of direct access to be other than 1,
libaio engine can be used. I was able to verify that when writing (or reading)
4 KiB blocks with I/O depth of 10 with fio using direct I/O and libaio engine,
iostat was indeed reporting 4 kibiB accesses to the storage and queue depth
of 10.

4.5.2 Large 1 GiB Block Size Behavior
Next, I tried to discover the block size and I/O queue depth that yields the
best performance. It was already mentioned that direct I/O is needed if one
needs to make sure that a request of exactly the requested block size and I/O
depth is passed to the underlying storage. Is there a maximum limit of block
size or I/O depth that the devices can support? To find out, a simple fio
benchmark was used to send large, 1024 MiB, requests to the Ceph and 3PAR
storage devices, both in buffered and direct I/O. During the test, iostat was
used to monitor the actual block size sent to the storage.

I discovered that there seems to be a 4 MiB block size limit for Ceph access
on our systems, both read and write. With this block size, the maximum
queue depth of about 120 for write and 170 for read was recorded. For 3PAR,
there seems to be a 16 MiB block size limit when accessing the storage. The
maximum queue depth with this block size was 60 for write and 40 for read.

4.5.3 Device-Reported Parameters
The findings can be compared with the Ceph and 3PAR block device pa-
rameters reported in /sys/block/DEVICE/queue/ directory on the connected
clients [46], [47].

Ceph reports the smallest request size (logical_block_size) of 512 B,
the maximum supported block size (max_hw_sectors_kb) is 4 MiB. The
smallest preferred I/O size (minimum_io_size) and the optimal I/O size
(optimal_io_size) are reported to also be 4 MiB. The system is config-
ured to allow the maximum request size (max_sectors_kb) of 4096 KiB. This
seems consistent with my previous findings. Moreover, the system is config-
ured to allow allocation of 128 requests (nr_requests) for read and the same
amount also for write. The automatically assigned scheduler is none.

3PAR device supports request block sizes between 512 B and 32,767 KiB.
The minimum preferred I/O size is reported to be 16 KiB, the optimal I/O
size is reported to be 16 MiB. The system is configured to allow the maximum

40

4.6. Main Measurement Methodology for Performance Comparison

request size of 16 MiB. The nr_requests value is 128. The default scheduler
was cfq.

4.5.4 Decision for Tests
Based on the buffered read findings and the parameters reported by the storage
devices, I decided to use these values for maximum sequential throughput
measurement of the storage: block size of 4 MiB and I/O depth of 128. Because
3PAR was configured to allow block sizes of up to 16 MiB, this block size was
also measured.

For random access tests, I decided to use multiple block sizes with dif-
ferent I/O depths. These include the 4 MiB and 16 MiB block sizes used for
sequential access, and also 4 KiB block size (which seems to be used very
often – based on my findings in the research part of this thesis and on the
findings in [48]) and 128 KiB (the default block size used by the cp commands
on gnu systems [49], I verified this information on my system too). I think
the queue depth of 1 (only one outstanding request at a time) is important
to test. The maximum tested queue depth would be around 128, based on
previous findings.

4.6 Main Measurement Methodology for
Performance Comparison

3PAR supports multiple RAID levels, including RAID 0, RAID 1, RAID 5, and
RAID 6. Ceph uses replication by default but can be configured to use erasure
coding. For each RAID option that 3PAR supports, a similarly configured
Ceph erasure-coded pool was created. Two characteristics were measured:
throughput and latency.

4.6.1 Pool (CPG) and Image (Virtual Volume) Parameters
For each RAID level supported by 3PAR, a CPG with that RAID setting
was created. Only one CPG was created at a time. In this pool, one virtual
volume with a size of 600 GiB was created. This size was chosen to be large
enough not to fit in any possible cache of the machines (both client and the
storage), and at the same time small enough to fit the total available hard
drive capacity at the maximum replication level (RAID 1 with a replication
of 4).

On Ceph cluster, a pool was created with settings matching the PG on
3PAR as close as possible. Again, one pool was created at a time, unless nec-
essary otherwise. The only exceptions were the erasure-coded pools matching
RAID 5 and RAID 6, which required an additional replicated pool for meta-
data storage. In such a case, one replicated pool with a size of 2 (2 replicas)

41

4. Realization

was created. An RBD image with a size of 600 GiB was created in the repli-
cated pool and instructed to use the erasure-coded pool for data storage.

Thin-provisioned volumes and images were used on both 3PAR and Ceph.
This means that the storage space was allocated on-demand as data was writ-
ten to the storage. It was the default option on both systems. On our 3PAR
device, the Management Console indicated that thin provisioning was an addi-
tional feature that was part of the system’s license. I verified that the allocated
space can easily be reclaimed after file deletion by issuing a TRIM command
on the mounted file system:

$ sudo fstrim -v /MOUNTPOINT

I was also able to erase all contents of the volume by issuing the blkdiscard
command:

$ sudo blkdiscard -v /dev/DEVICE

By issuing these commands, both virtual volume capacity usage reported by
3PAR and the RBD image allocated capacity on Ceph was reduced as ex-
pected.

4.6.2 Read Tests Must Read Allocated Data

One of the things I came across was the speed of reading non-existent data.
This may occur when attempting to read from data location that was not
written before, and thus does not hold any stored information. Reading non-
existent data blocks, especially from Ceph cluster, results in unrealistically
high throughput compared to the reading of the real stored data. My as-
sumption is that Ceph and 3PAR do not need to look up the data blocks
on physical disks if they do not exist. Figure 4.2 illustrates this scenario. It
contains throughput plots of sequential read from empty thinly-provisioned
Ceph and 3PAR volumes. The average throughput for Ceph was 9332 MiB/s,
throughput of 3PAR was 1501 MiB/s. Both values are significantly higher
than what can be achieved when reading existing data. When benchmarking
the read performance of Ceph or 3PAR storage, it is important that the data
was written there in the first place to get reliable results.

Moreover, the throughput measured on Ceph also indicates that the data
did not travel through the network at all – 9332 MiB/s far exceeds the max-
imum network bandwidth, which is 10 Gbit/s, or 1192.1 MiB/s. The Ceph
client calculates the location of data in the cluster, which probably does not
give him any result. I assume that the client does not need to look up the
data and only returns some random or zero value.

Throughput of 1501 MiB/s recorded on 3PAR suggests that this value may
be the maximum Fibre Channel throughput on our systems.

42

4.6. Main Measurement Methodology for Performance Comparison

0 20 40 600

2,048

4,096

6,144

8,192

10,240

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Throughput

Ceph
3PAR

Figure 4.2: Unrealistically high throughput when reading from empty, unallocated
3PAR and Ceph storage volume. Volume size of 100 GiB, RAID 5 (5 + 1), fio version
3.13.

4.6.3 Sequence of Performed Tests
To avoid any file system limitations, the block device was accessed directly
(the drive variable in the code snippets in this section). In case of Ceph
RBD images, it usually was /dev/rbd0 file, in case of 3PAR virtual volumes,
it was something like /dev/mapper/WWN, where WWN is the World Wide
Name string of the virtual volume.

These are the steps that were performed during the performance measure-
ment, in this order:

1. issue the discard (TRIM) command to the device;

2. sequentially write to the whole block device, generate throughput plot;

3. test read and write random access for different block sizes and I/O queue
depths;

4. measure read and write latency with ioping;

5. sequentially read the whole block device and generate throughput plot.

4.6.4 Erasing the Block Device
Before each test, the contents of the block device were discarded. The purpose
of this step was to start with a clean volume that will be filled during the
tests. This step was not necessary for newly-created volumes and images,
which already did not hold any data, but it was performed anyways.
blkdiscard -v "$drive"

43

4. Realization

4.6.5 Sequential Access (4 MiB Blocks)

Fio was used to measure sequential write throughput to the block device,
overwriting (filling) all of its space. As mentioned previously, it was important
to write data to the storage before any future read operations.

fio --name=plot --filename="$drive" --ioengine=libaio --direct=1
--rw=write --bs=4M --iodepth=128 --write_bw_log="plot-write-bw.
log" --write_lat_log="plot-write-lat.log" --write_iops_log="plot
-write-iops.log" --log_avg_msec=10000 --output="plot-write-
output.txt"

At the end of the tests, the whole block device was sequentially read.

fio --name=plot --filename="$drive" --ioengine=libaio --direct=1
--rw=read --bs=4M --iodepth=128 --write_bw_log="plot-read-bw.log
" --write_lat_log="plot-read-lat.log" --write_iops_log="plot-
read-iops.log" --log_avg_msec=10000 --output="plot-read-output.
txt"

The fio log files were saved and used to generate a plot of the sequential
throughput in time.

4.6.6 Random Access (Multiple Block Sizes)

Because I did not find a definite answer to the question which block size and
I/O depth is the best to use (described earlier in this chapter), I decided to
test multiple block sizes and I/O depths. A random write and read test was
performed for each block size and I/O depth combination for a total of 60
seconds before moving to another combination.

To make the results more accurate, the caching system of the device needs
to be bypassed. One of the possible approaches is testing a data range that
is too large to fit in the cache. Imagine a system that has 16 GiB of RAM
which might be used as a data cache. Targeting all accesses in a small 1 GiB
file may result in the contents of the file being cached in the memory, and all
subsequent accesses to this file would access this cached copy. However, if the
size of the file was larger than the size of RAM, the whole file would not fit in
the memory cache on that particular system. The system still can put some
chunks of the file in the cache, but not the whole file. Moreover, accessing the
data in random order makes any predictions almost impossible.

Fio was used to randomly access the whole 900 GiB capacity of the block
device to avoid any buffer caching on the target device. The buffer cache of
the client was not used because fio was instructed to use direct I/O. Fio was
run in random read or random write mode (operation variable value was one
of randwrite or randread) accessing the block device directly, buffer cache
was not used, each time with different block size (blocksize) and I/O depth
(iodepth) settings. Block sizes of 4 KiB, 128 KiB, 1 MiB, 4 MiB, and 16 MiB;

44

4.7. Additional Tests

I/O depth of 1, 16, 32, 64, 128, and 256 were tested. There was a maximum
time limit of 60 seconds for each run.
for blocksize in {4k,128k,1M,4M,16M}; do

for iodepth in {1,16,32,64,128,256}; do
for operation in {randwrite ,randread}; do

fio -name=test --filename="${drive}" --output="${operation}-${
blocksize}-${iodepth}.txt" --ioengine=libaio --direct=1 --
rw="$operation" --runtime="$time_limit" --bs="$blocksize"
--iodepth="$iodepth" --numjobs=1

done
done

done

4.6.7 Latency (4 KiB Blocks)
Ioping was used to measure the storage latency. By default, according to the
program output, it reads 4 KiB blocks from the specified file or location and
measures the time spent for each block. The following command performs 20
reads from a block device.
ioping -c 20 "$drive" > ioping-read.txt

It is also possible to measure the write latency. The manual page discourages
that unless it is performed on a directory, because it may overwrite the spec-
ified file. In our case, it did not matter because the block device was filled
only with random data.
ioping -c 20 -WWW "$drive" > ioping-write.txt

4.7 Additional Tests
Some additional tests were performed to measure additional parameters of the
storage or other scenarios than the one-client-one-storage.

4.7.1 Sequential Access (16 MiB Blocks)
For all RAID levels, an additional sequential write/read test was run. This
time, it measured sequential access throughput with a higher block size of
16 MiB instead of the previously used 4 MiB. The results will show whether
the performance observed on 3PAR will be higher (as mentioned earlier, 3PAR
reports the optimal block size of 16 MiB). This time the volume size was
smaller, 100 GiB instead of 600 GiB.
for operation in {write,read}; do

fio --name=plot --filename="$drive" --ioengine=libaio --direct=1
--rw="$operation" --bs=16M --iodepth=128 --write_bw_log="
bandwidth -${operation}.log" --write_lat_log="latency-${

45

4. Realization

operation}.log" --write_iops_log="iops-${operation}.log" --
log_avg_msec=1000 --output="stdout-${operation}.txt"

done

4.7.2 Random Access Within a Small File
The purpose of this test was to see the effect of data caching in the target
Ceph and 3PAR storage devices.

Both 3PAR virtual volume and Ceph image were formatted with the XFS
file system (sudo mkfs.xfs /dev/rbd0 for Ceph) and mounted. These are the
steps performed during each benchmark run:

1. before each run, the previously created test file was deleted and free
space in the volume was reclaimed. fio is the name of the fio test file
upon which the reads and writes are performed. mountpoint is the
directory where the 3PAR virtual volume or Ceph image were mounted.
rm -f "${mountpoint}/${filename}"
sync; fstrim -v "${mountpoint}"; sync

2. Fio was run in random read or random write mode (operation variable
value was one of randwrite or randread) accessing a file named fio
of size 10 GiB, each time with different block size (blocksize) and I/O
depth (iodepth) settings. Block sizes of 4 KiB, 128 KiB, 1 MiB, 4 MiB,
and 16 MiB; I/O depth of 1, 16, 32, 64, 128, and 256 were tested. There
was a maximum time limit of 60 seconds for each run.
fio -name=test --filename="${mountpoint}/${filename}" --

output="${operation}-${blocksize}-${iodepth}.txt" --
ioengine=libaio --direct=1 --rw="$operation" --size="$size"
--runtime="$time_limit" --bs="$blocksize" --iodepth="

$iodepth" --numjobs=1

One thing to note is that the fio test file was deleted before each fio run.
Because of that, fio created and allocated a new test file of the target size
before each run. Before randwrite run, the file was pre-allocated but not filled
with data. This is acceptable because the data will be written during the
benchmark run. Before randread run, however, fio created the test file and
completely filled it with some data. This is important. The read test needs
to read data that was previously written and stored in the storage.

46

Chapter 5
Results

This chapter describes the results of the benchmarking methodology described
in the previous chapter. Detailed results (tables and plots) can be found in
Appendix chapter B.

5.1 Performance of Individual Components
Ceph storage was configured on two network-connected servers. Each of these
servers was using six hard drives. To have a better idea of what performance
to expect from the completed Ceph storage, the performance of individual
server components was tested first. Particularly, the attention was paid to
these crucial components:

• hard disk drives,

• network bandwidth.

In the case of 3PAR, there does not seem to be an easy way of testing its
individual components. The hard drives could be put from the 3PAR into
a server and benchmarked there, but the owner of the system did not wish
to do so. I was not able to find reliable performance parameters of the drives
used in our 3PAR system from other sources.

5.1.1 Ceph Network Throughput and Latency
Each of the 4 servers (two servers for Ceph and two clients) is connected by
two 10 Gbps Ethernet network interfaces (ens2f0 and ens2f1) bonded together
into a bond0 interface. The default layer2 transmit hash policy was used for
this initial test. The bandwidth was measured with the iperf tool in both
directions. Response time was measured with the ping tool, and the median
value of three requests was recorded. Measured data are recorded in table 5.1.

47

5. Results

Table 5.1: Measured network characteristics between servers. (iperf version 3.0.11,
ping utility from iputils-s20121221)

From To Bandwidth Response time
srv1 srv2 9.31 Gbits/s 0.175 ms
srv2 srv1 9.31 Gbits/s 0.131 ms
srv1 srv3 9.36 Gbits/s 0.136 ms
srv3 srv1 9.40 Gbits/s 0.129 ms
srv1 srv4 9.31 Gbits/s 0.166 ms
srv4 srv1 9.40 Gbits/s 0.143 ms
srv2 srv3 9.31 Gbits/s 0.145 ms
srv3 srv2 9.40 Gbits/s 0.140 ms
srv2 srv4 9.32 Gbits/s 0.162 ms
srv4 srv2 9.40 Gbits/s 0.140 ms
srv3 srv4 9.41 Gbits/s 0.143 ms
srv4 srv3 9.40 Gbits/s 0.145 ms
srv4 srv4 53.3 Gbits/s 0.031 ms

The measured bandwidth of the network connectivity between servers
ranged from 9.31 Gbps to 9.40 Gbps. A test run against the same server,
thus bypassing its physical network interface because the network packets did
not need to leave the server, resulted in a bandwidth of 53.3 Gbps.

5.1.2 Ceph Network – The Effect of Ethernet Bonding

Each of our servers has two physical network interfaces and uses bonding.
The Linux Ethernet Bonding Driver HOWTO document [50] contains all of
the information needed to understand and configure Ethernet bonding. This
sub-section describes the gist of it.

“The Linux bonding driver provides a method for aggregating multiple net-
work interfaces into a single logical ”bonded” interface.” Bonded interface
serves mainly two purposes, depending on the specific configuration:

• hot standby,

• load balancing.

One packet can only go through one network interface. This means that
a communication between two devices will utilize only one of the network
interfaces at a time. However, if one device communicates with multiple other
devices, the bonding driver needs to decide through which interface the packets
will transmitted. The driver supports these bonding modes:

48

5.1. Performance of Individual Components

• round-robin balance-rr, where the network interfaces are selected one
by one sequentially for each packet, provides load balancing and fault
tolerance;

• active-backup uses only one network interface until it fails, then it
switches to another interface, provides fault tolerance;

• balance-xor the network interface is selected by xmit_hash_policy
option (explained below), provides load balancing and fault tolerance;

• broadcast transmits everything on all network interfaces, provides fault
tolerance;

• IEEE 802.3ad Dynamic link aggregation 802.3ad, needs to be supported
by other network devices in order to work, also uses xmit_hash_policy;

• adaptive transmit load balancing balance-tlb;

• adaptive load balancing balance-alb. [50]

Our servers and network switches are configured to use the IEEE 802.3ad
Dynamic link aggregation mode. This mode uses an xmit_hash_policy option
to choose the transmission interface. The network interface (slave) used for the
transmission is determined by a calculated hash value: slave number = hash
mod slave count. These hash value calculations are supported:

• layer2, where hash = source MAC⊕destination MAC⊕packet type ID;

• layer2+3 uses source MAC, destination MAC, packet type ID, source
IP, destination IP;

• layer3+4 uses source port, destination port, source IP, destination IP –
although “this algorithm is not fully 802.3ad compliant”. [50]

The following command was used to observe the behavior of each mode
setting on our systems. It simultaneously sends packets from the srv4 server
to srv1, srv2, and srv3 servers and measures the throughput.

sebek@srv4:~/net$ iperf3 -c 10.1.110.11 > srv1.txt & iperf3 -c
10.1.110.12 > srv2.txt & iperf3 -c 10.1.110.13 > srv3.txt &

Table B.1 contains the results. The layer2 setting seems to have used only one
network interface, as the aggregated throughput was just below 10 Gbit/s in
all measured cases. Other xmit_hash_policy settings mostly resulted in the
aggregated throughput of almost 20 Gbit/s, even though the number some-
times fell to 10 Gbit/s.

49

5. Results

5.1.3 Ceph Hard Drive Performance
There will be a total of 12 hard drives used as Ceph OSDs, 6 drives in each
of the two servers. Each hard drive is a 2.5” 10,000 rpm model connected
through a SAS interface. To get a better idea of what throughput and latency
to expect from these drives, a throughput benchmark was run on each of these
drives. Drives were benchmarked one at a time.

5.1.3.1 Sequential Throughput

First, a simple test was run using the dd tool, which is usually pre-installed
on most Linux operating systems. In this test, 1 GiB of zeros were written
directly to one of the hard drives. To achieve the most reliable and realistic
performance numbers, memory caching was avoided by using the direct out-
put flag. Variable block sizes were used to see how much the block size affect
sequential transfer speed.

I have created a script for this purpose. The script runs the following
command for various block size on a hard disk device, for example /dev/sda.
dd if=$SOURCE of=$DESTINATION bs=$BS count=$((TOTAL_SIZE/BS)) oflag=

direct

For example, the following command would be executed for a write speed test
with a block size of 1 KiB on /dev/sda device.
dd if=/dev/zero of=/dev/sda bs=1024 count=1048576 oflag=direct

Read speed would be tested by the next command.
dd if=/dev/sda of=/dev/null bs=4096 count=262144 iflag=direct

The dd test is useful as the easiest option. However, writing the pattern of
all zeros to a drive may not reflect the actual performance. It would not work
for storage devices which offer some kind of de-duplication or compression. To
verify the dd findings, the same tests were performed again, this time using
a real storage benchmarking tool, fio.
fio --name=test --filename=/dev/sda --ioengine=libaio --direct=1 --

rw=write --bs=4096 --iodepth=1 --size=1073741824
fio --name=test --filename=/dev/sda --ioengine=libaio --direct=1 --

rw=read --bs=4096 --iodepth=1 --size=1073741824

Table B.2 contains the results. There does not seem to be any significant
difference between the dd and fio results. The maximum measured read and
write throughput was around 180 MiB/s. The best write performance seems
to have been achieved for block sizes of 32 MiB and higher. Read speed has
not significantly increased from the block size of 16 KiB higher.

Block size of 512 MiB was found to be the best-performing during the
previous sequential read and write block size test. The test accessed only

50

5.1. Performance of Individual Components

a relatively small area of the hard drive space. To see how much performance
varies across the whole hard drive capacity, a sequential read and write tests
were performed across the whole capacity of the drive. All drives were tested
to detect whether they all perform similarly. Results are in figure 5.1.
for drive in sd{a,b,c,e,f,g}; do

fio --name="read-$drive" --filename=/dev/"$drive" --ioengine=
libaio --direct=1 --rw=read --bs=512M --iodepth=1 --
write_bw_log="bandwidth -${drive}-read.log" --write_lat_log="
latency-${drive}-read.log" --write_iops_log="iops-${drive}-
read.log" --log_avg_msec=10000 > "stdout-${drive}-read.txt"

fio --name="write-$drive" --filename=/dev/"$drive" --ioengine=
libaio --direct=1 --rw=write --bs=512M --iodepth=1 --
write_bw_log="bandwidth -${drive}-write.log" --write_lat_log="
latency-${drive}-write.log" --write_iops_log="iops-${drive}-
write.log" --log_avg_msec=10000 > "stdout-${drive}-write.txt"

done

0 500 1,000 1,500 2,0000

50

100

150

200

Time [sec]

T
hr

ou
gh

pu
t

[M
iB

/
se

c]

Read Throughput

(a) Sequential read

0 500 1,000 1,500 2,0000

50

100

150

200

Time [sec]

T
hr

ou
gh

pu
t

[M
iB

/
se

c]

Write Throughput

(b) Sequential write

Figure 5.1: Sequential access throughput for each individual hard drive that will
be used for Ceph. Drives were tested one by one, one plot contains all drives. Block
size of 512 MiB, Fio version 2.2.10 was used.

5.1.3.2 Random Throughput and Latency

Previous test measured the performance of sequential disk access with I/O
depth of 1. Fio can also measure random access performance. A quick bench-
mark yielded results in table 5.2.
fio --name=read4k --filename=/dev/sda --ioengine=libaio --direct=1

--rw=randread --bs=4k --iodepth=1 --size=4G
fio --name=write4k --filename=/dev/sda --ioengine=libaio --direct=1

--rw=randwrite --bs=4k --iodepth=1 --size=4G
fio --name=read4kQ32 --filename=/dev/sda --ioengine=libaio --direct

=1 --rw=randread --bs=4k --iodepth=32 --size=4G

51

5. Results

fio --name=write4kQ32 --filename=/dev/sda --ioengine=libaio --direct
=1 --rw=randwrite --bs=4k --iodepth=32 --size=4G

fio --name=read4kQ64 --filename=/dev/sda --ioengine=libaio --direct
=1 --rw=randread --bs=4k --iodepth=64 --size=4G

fio --name=write4kQ64 --filename=/dev/sda --ioengine=libaio --direct
=1 --rw=randwrite --bs=4k --iodepth=64 --size=4G

Table 5.2: Random 4 KiB disk performance (Ubuntu 16.04.6 LTS, kernel version
4.4.0-143-generic, fio version 2.2.10)

I/O depth Read throughput Read lat. Write throughput Write lat.
1 991.39 KiB/s 4.03 ms 921.750 KiB/s 4.44 ms

32 3494.3 KiB/s 36.63 ms 2557.5 KiB/s 50.04 ms
64 3610.4 KiB/s 70.90 ms 2646.4 KiB/s 96.73 ms

One thing to notice is that random read and write throughput with I/O
queue length of 1 is higher than sequential read and write measured previously
in table B.2. A quick run of fio confirmed that 4 KiB sequential throughput
is indeed slower than a 4 KiB random throughput with the same parameters.

5.1.3.3 Reported Ceph OSD Performance

Ceph has a functionality to quickly evaluate the performance of the OSDs.
The following command measured a write 1 GiB of data to each OSD using
block size of 4 MiB.

$ ceph tell osd.* bench

It found the performace of each OSD in our Ceph cluster to be between
88.9 MiB/s and 158.9 MiB/s. Another run resulted in measured throughput
of around 82 MiB to around 125 MiB. The measured values varied between
runs.

5.1.4 Summary
The following list summarizes my findings regarding the performance of indi-
vidual components.

Ceph hard drives

• Maximum sequential access throughput was achieved for block sizes
of at least 16 KiB for read, 32 MiB for write access.

• Maximum sequential access throughput ranges between 100 MiB/s
and 200 MiB/s. It is faster at the beginning of the capacity, slower
at the end.

52

5.2. Quick Ceph vs. 3PAR Benchmark

• 4 KiB random access throughput was measured to be around 990 KiB
for read, 920 KiB for write access. With higher I/O depth (32, 64),
the throughput was around 3500 KiB/s for read, and 2600 KiB/s
for write.

• 4 KiB random access latency was measured to be around 4 ms for
read access, and around 4.4 ms for write access.

Ceph network

• The measured bandwidth of one interface was between 9.3 GB/s
and 9.4 GB/s.

• The measured latency was mostly around 0.14 ms.
• Bonding in some case doubled the throughput during a commu-

nication with more than one other device, with the exception of
layer2, which did not seem to have any advantage in our setup.

Maximum data throughput Ceph
It can be concluded, that the maximum possible data throughput be-
tween Ceph storage and a client will be around 9.31 Gbps (the measured
network bandwidth), which is 1109.8 MiB/s.

Maximum data throughput 3PAR
In previous chapter, I measured the throughput of non-existent data
reads from 3PAR. The result of 1501 MiB/s suggests that this value
may be the maximum data throughput between 3PAR and a client.

5.2 Quick Ceph vs. 3PAR Benchmark
To get an idea of the Ceph and 3PAR behavior, an automatic IOzone test was
performed. In this test, 3PAR virtual volume was set to RAID 5 with a set
size of 5 data, 1 parity, availabilty set to magazine. Ceph was configured to
use erasure-coded pool with k = 5, m = 1.
$ iozone -a -I

Results in table 5.2 reveal that Ceph read performance may be slightly slower
than performance of 3PAR. Small-block write operations were significantly
slower on Ceph than they were on 3PAR. However, the difference got smaller
with increasing block size.

I assume that the slow write performance on Ceph compared to 3PAR may
be caused by the absence of a backup battery in the Ceph cluster. Because of
this, unlike 3PAR [51], Ceph cannot use write-back cache when writing to the
physical disks and has to wait for each request to be physically written to the
drives. i was not able to verify this assumption, because some of our drives
could not be switched to a write back cache mode to simulate a battery-backed

53

5. Results

enclosure scenario. Some sources agree with this assumption and recommend
using a battery-backed RAID controller for Ceph [52], [53, p. 27].

21 25 29 213
0

200

400

600

800

Record length [KiB]

R
an

do
m

re
ad

[M
iB

/
se

c]

IOzone Random Read

3PAR
Ceph

(a) Random read

21 25 29 213
0

100

200

300

Record length [KiB]

R
an

do
m

w
rit

e
[M

iB
/

se
c]

IOzone Random Write

3PAR
Ceph

(b) Random write

Figure 5.2: Automatic IOzone test. It tested random reads and writes of different
block sizes into files of different size. Each plot shows all of the file sizes at once.
The results for each file size mostly overlap, with the exception of read access, where
peaks are visible at the end of each read where record size equaled the file size. IOzone
version 3.429.

54

5.3. Main Ceph vs. 3PAR Performance Results

5.3 Main Ceph vs. 3PAR Performance Results
This section presents summary of the results of the Ceph vs. 3PAR comparison
tests. These tests were run on all RAID configurations supported by our
3PAR. The complete measured results can be found in sections B.3, B.5,
and B.6.

The following tables contain the average throughput during sequential ac-
cess and a random access latency. Table 5.3 summarizes the results for RAID 0
and RAID 1, table 5.4 summarizes RAID 5, and table 5.5 RAID 6.

RAID 6 (14 + 2) configuration could not be tested because of insufficient
number of hard drives in both systems. In this RAID configuration, data need
to be spread across 16 different hard drives. Both our Ceph cluster and 3PAR
device have only 12 hard drives available. As a result, 3PAR refuses to create
a pool with this configuration. Ceph creates a pool but reports problems with
placement group availability and the pool is unusable.

Table 5.3: Sequential throughput and random 4 KiB latency results for RAID 0 and
RAID 1 configuration.

RAID Level Read Access Write Access
Ceph 3PAR Ceph 3PAR

Sequential throughput (4 MiB blocks, queue of 128)
0 (1) 1103 MiB/s 805 MiB/s 939 MiB/s 731 MiB/s
1 (2) 1068 MiB/s 699 MiB/s 500 MiB/s 347 MiB/s
1 (3) 1103 MiB/s 703 MiB/s 324 MiB/s 259 MiB/s
1 (4) 761 MiB/s 470 MiB/s 227 MiB/s 124 MiB/s

Sequential throughput (16 MiB block size, queue of 128)
0 (1) 1184 MiB/s 1040 MiB/s 886 MiB/s 698 MiB/s
1 (2) 1050 MiB/s 701 MiB/s 408 MiB/s 330 MiB/s
1 (3) 1069 MiB/s 724 MiB/s 301 MiB/s 251 MiB/s
1 (4) 752 MiB/s 545 MiB/s 219 MiB/s 106 MiB/s

Average latency (4 KiB blocks) – ioping
0 (1) 8.25 ms 7.04 ms 7.60 ms 469.9 µs
1 (2) 7.97 ms 6.31 ms 9.46 ms 459.7 µs
1 (3) 7.01 ms 6.56 ms 11.9 ms 482.1 µs
1 (4) 7.46 ms 6.22 ms 12.8 ms 472.2 µs

Average latency (4 KiB blocks) – fio
0 (1) 7.08 ms 5.55 ms 7.78 ms 328.72 µs
1 (2) 7.99 ms 8.24 ms 11.74 ms 493.39 µs
1 (3) 7.68 ms 9.97 ms 15.29 ms 710.46 µs
1 (4) 7.98 ms 13.35 ms 18.63 ms 892.99 µs

55

5. Results

Table 5.4: Sequential throughput and random 4 KiB latency results for RAID 5
configuration.

RAID Level Read Access Write Access
Ceph 3PAR Ceph 3PAR

Sequential throughput (4 MiB blocks, queue of 128)
5 (2 + 1) 1106 MiB/s 816 MiB/s 642 MiB/s 362 MiB/s
5 (3 + 1) 800 MiB/s 492 MiB/s 426 MiB/s 255 MiB/s
5 (4 + 1) 819 MiB/s 625 MiB/s 618 MiB/s 415 MiB/s
5 (5 + 1) 690 MiB/s 757 MiB/s 545 MiB/s 541 MiB/s
5 (6 + 1) 669 MiB/s 493 MiB/s 540 MiB/s 384 MiB/s
5 (7 + 1) 669 MiB/s 481 MiB/s 464 MiB/s 459 MiB/s
5 (8 + 1) 659 MiB/s 583 MiB/s 614 MiB/s 494 MiB/s

Sequential throughput (16 MiB block size, queue of 128)
5 (2 + 1) 1106 MiB/s 1064 MiB/s 579 MiB/s 412 MiB/s
5 (3 + 1) 1023 MiB/s 841 MiB/s 387 MiB/s 310 MiB/s
5 (4 + 1) 1008 MiB/s 996 MiB/s 576 MiB/s 514 MiB/s
5 (5 + 1) 951 MiB/s 952 MiB/s 517 MiB/s 597 MiB/s
5 (6 + 1) 994 MiB/s 579 MiB/s 544 MiB/s 464 MiB/s
5 (7 + 1) 897 MiB/s 635 MiB/s 432 MiB/s 503 MiB/s
5 (8 + 1) 826 MiB/s 641 MiB/s 593 MiB/s 542 MiB/s

Average latency (4 KiB blocks) – ioping
5 (2 + 1) 12.6 ms 6.10 ms 27.8 ms 465.1 µs
5 (3 + 1) 16.4 ms 7.38 ms 31.0 ms 463.1 µs
5 (4 + 1) 14.8 ms 6.03 ms 30.4 ms 462.2 µs
5 (5 + 1) 16.7 ms 5.81 ms 38.7 ms 496.5 µs
5 (6 + 1) 30.0 ms 9.56 ms 33.5 ms 470.1 µs
5 (7 + 1) 19.9 ms 6.34 ms 45.9 ms 469.5 µs
5 (8 + 1) 40.4 ms 6.06 ms 64.1 ms 464.6 µs

Average latency (4 KiB blocks) – fio
5 (2 + 1) 7.6 ms 7.52 ms 24.47 ms 696.53 µs
5 (3 + 1) 9.34 ms 4.28 ms 27.19 ms 879.48 µs
5 (4 + 1) 9.40 ms 6.71 ms 32.55 ms 756.10 µs
5 (5 + 1) 9.56 ms 11.00 ms 32.54 ms 766.48 µs
5 (6 + 1) 10.17 ms 7.14 ms 36.44 ms 704.40 µs
5 (7 + 1) 10.63 ms 9.71 ms 37.04 ms 698.45 µs
5 (8 + 1) 10.55 ms 10.58 ms 38.59 ms 710.69 µs

56

5.3. Main Ceph vs. 3PAR Performance Results

Table 5.5: Sequential throughput and random 4 KiB latency results for RAID 6
configuration.

RAID Level Read Access Write Access
Ceph 3PAR Ceph 3PAR

Sequential throughput (4 MiB blocks, queue of 128)
6 (4 + 2) 880 MiB/s 771 MiB/s 570 MiB/s 585 MiB/s
6 (6 + 2) 716 MiB/s 482 MiB/s 425 MiB/s 483 MiB/s
6 (8 + 2) 643 MiB/s 705 MiB/s 575 MiB/s 579 MiB/s

6 (10 + 2) 566 MiB/s 875 MiB/s 380 MiB/s 567 MiB/s
Sequential throughput (16 MiB block size, queue of 128)

6 (4 + 2) 995 MiB/s 889 MiB/s 436 MiB/s 583 MiB/s
6 (6 + 2) 933 MiB/s 528 MiB/s 439 MiB/s 509 MiB/s
6 (8 + 2) 865 MiB/s 962 MiB/s 612 MiB/s 600 MiB/s

6 (10 + 2) 806 MiB/s 1161 MiB/s 393 MiB/s 629 MiB/s
Average latency (4 KiB blocks) – ioping

6 (4 + 2) 17.1 ms 6.44 ms 33.3 ms 455.6 µs
6 (6 + 2) 24.3 ms 5.04 ms 35.2 ms 469.5 µs
6 (8 + 2) 22.6 ms 6.26 ms 46.5 ms 467.2 µs

6 (10 + 2) 31.4 ms 5.42 ms 48.1 ms 448.8 µs
Average latency (4 KiB blocks) – fio

6 (4 + 2) 9.77 ms 16.44 ms 32.83 ms 985.60 µs
6 (6 + 2) 10.31 ms 16.11 ms 37.73 ms 966.84 µs
6 (8 + 2) 11.00 ms 13.64 ms 42.85 ms 930.31 µs

6 (10 + 2) 14.40 ms 15.73 ms 49.78 ms 955.00 µs

57

5. Results

5.4 Additional Tests

This section mentions the results of additional tests performed on the Ceph
and 3PAR storage systems. These tests do not test all possible RAID con-
figurations, but pick some configuration and focus on other specific scenarios
instead.

5.4.1 Random Access Within a Small File

It can be seen from the results (in section B.4) that a file of 10 GiB in size fits
in the memory cache of the 3PAR device. It is apparent especially in 3PAR
benchmark runs – the read performance is around 1500 MiB/s in most cases.
Previously I concluded that 1500 MiB/s is the maximum throughput of the
interface. One of the things that may have contributed to this phenomenon
is the fact, that the read performance of a newly created file was measured (fio
created a file and filled it with data before the read benchmark). The file was
probably written to the 3PAR’s cache, and subsequent reads were accessing
only this cache, not its hard drives.

5.4.2 Multiple Hosts

The results of a simultaneous sequential storage access from two clients are
in section B.7. The resulting plot shows that the throughput was divided
between two clients. Once one of the clients finished the data transfer from/to
the Ceph storage, the throughput on the other client almost doubled. Clients
transfer from/to 3PAR took about the same time to finish their task.

5.4.3 Ethernet Bonding – xmit_hash_policy

Setting the xmit_hash_policy to layer2+3 from layer2 did not seem to have
any significant effect on the sequential throughput of two simultaneous client
accesses, as can be seen in the results in section B.8.

5.5 Result Discussion

I will leave the interpretation of the results mostly on the reader, who will
pick the scenarios that fit them the best. In general, the presence of a battery-
backed cache on 3PAR [51] seems to have resulted in much higher write per-
formance for small blocks compared to Ceph, which was probably waiting for
data to be physically written to drives. Also the write latency of 3PAR was
under 1 ms in all RAID configurations.

58

5.6. Hardware Utilization During the Tests

5.5.1 Random Access

All observations in this subsection take only the queue depth of 1 into account.
The first observation compares the difference in performance between read and
write access observed on Ceph. On average, the read performance of Ceph
was better than its write performance – 2.3× better in 4 KiB access, and 1.8×
better in 16 MiB access.

This observation compares the read/write difference on 3PAR. Here, an
opposite phenomenon can be seen – the 4 KiB write performance was 13×
faster than the read performance. 16 MiB write performance was only 1.1×
faster than the read performance.

Finally, the performance between Ceph and 3PAR is observed. On average,
4 KiB read performance of Ceph was comparable to that of 3PAR. However,
3PAR performed 31× better in 4 KiB writes. For 16 MiB read performance,
Ceph was 1.4× faster than 3PAR, which was, in turn, 1.4× faster than Ceph
in write performance.

5.5.2 Sequential Access

Ceph storage did not see a significant difference between the average sequential
throughput with a block size of 4 MiB and 16 MiB. This might be beacuse the
storage accepts writes with a block size of 4 MiB, as it was explained earlier.
It can be seen in the plot – ceph throughput is more stable in 4 MiB plot
compared to 16 MiB, where the requests were likely split. Ceph seems to be
limited by network bandwidth during sequential read in RAID 0, RAID 1 and
RAID 5 (2 + 1) configurations, with the exception of RAID 1 (4). This can be
seen from the 4 MiB plot. The sequential performance of 3PAR was slightly
higher during the 16 MiB access compared to 4 MiB.

5.6 Hardware Utilization During the Tests
The hardware utilization of both 3PAR and Ceph cluster was monitored dur-
ing the tests. The purpose of this monitoring was to detect any possible
performance issues rising from insufficient system resources.

5.6.1 Storage systems

At the end of a RAID 6 (4 + 2) test, these load values were taken on Ceph
cluster nodes: 15-minute system load of 3.62 on srv1 and 3.86 on srv2. The
reported RAM usage on both servers was 11 GiB out of the reported 15 GiB,
with additional 3.2 GiB used as buffer/cache. Plots generated from colectd
data showed a stable RAM usage without any peaks or significant amounts of
swap space being used.

59

5. Results

The HP Management Console program reported the Control Memory us-
age of the whole 3PAR to be 18.8 GiB out of 31.3 GiB and Data Memory usage
of 12.7 GiB out of 13.8 GiB.

5.6.2 Client Servers
The observed system load was low on both client servers during the storage
access. Accessing Ceph storage was slightly more demanding with 15-minute
average system load over one-hour period of 0.27 vs. 0.16 for 3PAR. Reported
system load CPU usage was at minimum. Out of 16 GiB of RAM, client
accessing the Ceph storage used the total of 457 MiB (including the operat-
ing system), client accessing 3PAR storage reported the total RAM usage of
431 MiB. Swap space was empty in both cases all of the time.

60

Chapter 6
Summary

This chapter summarizes the strong and weak points of Ceph and 3PAR,
including the tolerance for errors of varying magnitude and availability/dura-
bility guarantees of these two systems. The security best practices for a public
data center deployment follow.

6.1 Strong and Weak Points of 3PAR and Ceph
This section discusses the strong and weak points that I discovered about
each of our systems. The tolerance for errors of both 3PAR and Ceph systems
is described first, followed by the availability and durability guarantees these
systems can offer.

6.1.1 Disk Failure Tolerance, Failure Domains
Our 3PAR model supports different RAID modes:

• RAID 0 (no disk failure tolerance);

• RAID 1 with a configurable set size of 2 (default), 3, and 4 (tolerance
of 1, 2, 3 failed disks);

• RAID 5 (tolerance of one failed disk);

• RAID 6 (tolerance of two failed disks).

Similarly, Ceph supports pools that use:

• replication with the number of replicas of 1 (no disk failure tolerance)
or higher (defaults to 3 replicas which allow for 2 disk failures);

• k + m erasure coding, where m is the number of disks that can fail (m
is settable to 0 or higher, defaults to 1).

61

6. Summary

Ceph allows a failure domain to be specified for each pool. It can be set
to osd (each object copy is stored on different OSD), host (each object copy
is stored on different cluster node), chassis, rack, etc. [54] By default, the host
failure domain was set by Ceph on our system. It could be changed in an
erasure code profile when creating an erasure-coded pool, or in a CRUSH rule
when creating a replicated pool. 3PAR offers similar configuration option for
its CPGs. The Management Console allows the specification of an availability.
On our system, it offered three options to select from: Port (Higher), Cage
(Default), or Magazine (Lower). The tooltip in the application described the
availability option this way: “[t]he layout must support the failure of one port
pair, one cage, or one drive magazine (mag)” [55].

In Ceph, each pool has configurable numeric size and min_size settings.
According to the Ceph socumentation [56], these settings are valid only for
replicated pools. The size option specifies the number of replicas of each
stored object, and min_size sets the minimum number of replicas required
for I/O operations. In other words, if the number of available object replicas
drops below min_size, the pool cannot be read from or written to as a safety
mechanism. From my experience, these settings are specified even on erasure-
coded pools. For example, an erasure-coded pool with m = 4, n = 2 has
a size of 6 and min_size settable between 4 and 6 (defaults to 5). Erasure-
coded pool with m = 5 and n = 1 has size of 6 and min_size settable
between 5 and 6 (default 6). I verified by stopping OSD daemons to simulate
OSD failure, that an m = 5, n = 1 pool becomes inaccessible (block device
access stops responding) if one OSD fails, even though there are still enough
objects available to reconstruct the data. After lowering the min_size value
it becomes operable in degraded state.

6.1.2 Tolerance for Errors of Varying Magnitude
Components on different levels of hardware hierarchy can fail. Below are
some of the possible scenarios and their expected impact on availability or
performance of Ceph and 3PAR storage.

Drive failure As explained in previous sub-section, both Ceph and 3PAR
can function in case of a hard drive failure depending on the replication
level r or the n value in erasure-coded or RAID 5 and 6 pools. I tested
that erasure-coded pool on Ceph with m = 5 and n = 1 survives a failure
of one hard drive out of 12, but, according to my expecatation, the pool
becomes inoperable if two or more drives fail.

3PAR cage failure This may happen in situations when all ports connect-
ing the cage to the 3PAR fail. Depending on the total number of disk
cages, RAID configuration, and the availability setting on CPG (how
data is spread among the cages), the result of such failure may cause
complete data inaccessibility. In our case (two cages), the only CPG

62

6.1. Strong and Weak Points of 3PAR and Ceph

configuration that can survive a complete cage failure is RAID 1 with
a set size of 2 and availability set to Cage. This way the data is mirrored
between two cages.

Ceph network interface failure There are two interfaces in total, bonded
into one virtual interface. I fone interface fails, the other interface will
take care of the traffic. It may slow data traffic down a little bit in
some scenarios when the data would otherwise travel in both interfaces
simultaneously.

3PAR Fibre Channel interface failure There is a total of 4 Fibre Chan-
nel connections to the client server, a failure of at most 3 connections to
one server may result in reduced throughput but would still work.

3PAR cage port failure There are two SAS interfaces connecting 3PAR
nodes and each drive cage. Again, one of those ports can fail without
affecting data availability.

Ceph node failure In our case, a failure of one node causes half of the hard
drives to become unavailable. This case is similar to a 3PAR drive cage
failure mentioned above. The biggest danger of running a two-node Ceph
cluster is the number of Ceph Monitor daemons in the cluster. Running
monitor daemons are crucial for cluster operation and data access. There
is one monitor in our cluster, it is located on one of the node servers. If
that server becomes unavailable, the whole cluster becomes inoperable.
However, if the other server fails instead, the cluster remains operable.
The addition of a second monitor to the second server not only does not
help, but it would make things even worse. In such case, a failure of any
one of the two node would result in the remaining monitor not forming
a majority and being unable to operate the cluster. For high availability,
I recommend at least three nodes in a Ceph cluster.

3PAR node failure Because both of our nodes are connected to both disk
cages (and each cage is connected to both nodes), in case of a failure of
one node, the remaining node should have access to all disk drives.

6.1.3 Availability Our Systems Can Offer
“Availability is the probability that an object is accesible at any point of time.
Durability is the probability that the object is not permanently lost after a fail-
ure.” [57]

HPE guarantees 6-nine (99.9999 %) availability for their 4-node 3PAR
products that are configured following their best practices. [58] This means
that the allowed unavailability can be expected to be less than 32 seconds in
a year. The availability of a 2-node 3PAR is not specified in that document,
but my expectation is that it may fall somewhere between the general 99.999 %

63

6. Summary

availability for a properly configured system, which is mentioned in the 3PAR
datasheet [51], and the previously mentioned 99.9999 % for a 4-node system.

The availability guarantee of a Ceph cluster, in general, is harder to esti-
mate because it can be built on hardware of varying quality. Also, from my
experience, Ceph allows the user to easily misconfigure the cluster configura-
tion.

A Ceph wiki page [57] contains possible reliability estimation formulas
based on combinatorial analysis. P (xi) = p is a probability that a block
is accessible after x hours of operation, q = (1−p) is a probability of a failure.
Reliability R(t) of serial connections (where all blocks need to be accessible
for proper functionality) can be calculated using formula 6.1.

R(t) = P (x1, x2, . . . , xn) = P (x1)P (x2) · · · P (xn) = pn (6.1)

Reliability of parallel configuration (where there are multiple paths to access
the block) can be calculated using the formula 6.2. This configuration may
represent the replication mode.

R(t) = P (x1 + x2 + · · · + xn) = 1 − (1 − p)(1 − p) · · · (1 − p) = 1 − qn (6.2)

Formula 6.3 can be used to analyze erasure-coded pools using a (k, m) Reed-
Solomon code, where k blocks are needed to reconstruct the object and m
failures are tolerated. In the formula, n is the sum of k and m. It is said to
work for components that are independent.

R(t) =
n∑

i=k

(
n

i

)
pi(1 − p)n−i (6.3)

Their rough estimate of reliability for various redundancy configurations is in
table 6.1.

Table 6.1: Ceph: Reference Table – Reliability values for various configurations. [57]

1 2 3 4 5 6
p, q 3-replication 4-replication 5-replication (3,6) RS (6,3) RS (10,4) RS
0.95, 0.05 3 nines 5 nines 6 nines 7 nines 3 nines 3 nines
0.98, 0.02 5 nines 6 nines 8 nines 10 nines 4 nines 5 nines
0.99, 0.01 6 nines 8 nines 10 nines 12 nines 5 nines 6 nines

6.1.4 Overall Easiness of Use
One of the advantages of 3PAR is the possibility of its configuration through
a GUI interface, such as the HP Management Console. Ceph is configured
through command-line commands, such as ceph and rbd. There is a web
GUI interface called Ceph Dashboard that can be enabled on Ceph, but in the
version of Ceph I was using, it did not seem to offer any advanced functionality

64

6.1. Strong and Weak Points of 3PAR and Ceph

besides displaying the cluster information. The new version of Ceph adds
more features to the Ceph Dashboard [59], so there is hope that one day the
Dashboard may gain some more advanced features.

Our 3PAR came as a complete, pre-configured device that was ready to
use. The only action needed was to create virtual volumes, assign FibreChan-
nel ports to connected client servers, and export the virtual volumes to the
desired client servers. Ceph, on the other hand, required much more work
to set up. This might have been caused by the fact, that I was using the
upstream Ceph and installing it on servers with a clean installation of the op-
erating system. If we purchased a complete pre-configured Ceph solution, the
experience might have been different. The Ceph documentation pages provide
enough information for advanced users but may be harder to understand for
beginners.

My biggest issue was with the ceph-deploy tool. I recommend installing the
latest version of the tool from the upstream repository instead of using some
older version packaged in a Linux distribution’s repositories. For example,
trying to build a Ceph cluster on CentOS operating system (during my tests
on virtual machines) using their packaged ceph-deploy tool resulted in an
error, when the tool seemed to have been trying to parse some error code
from an HTML page. I did not try to dig deeper into the problem and used
the current upstream Ceph and ceph-deploy, which succeeded without any
problem. And even the latest ceph-deploy version was not without its issues.
On Ubuntu, it was returning errors because of a missing python2 package that
needed to be installed to fix the problem. And other small annoyances of this
type.

6.1.5 Addition of New Pools (CPGs)
It is easier to create additional CPGs on 3PAR than it is to create additional
pools on Ceph. 3PAR automatically allocates the space needed for the new
CPG. On the other hand, each Ceph pool has a number of placement groups
(PGs) specified for each pool. This number must be manually specified and
can be increased for existing pools, but not decreased. The addition of a new
pool increases the number of PGs per OSD, which may exceed the optimal PG
count of 100 per OSD. The recently released new version of Ceph, Nautilus,
addresses this issue and enables both automatic PG count as well as a possi-
biity to decrease this number for existing pools [59].

6.1.6 Limitations of Ceph
One of the limitations of Ceph compared to 3PAR is that erasure-coded profile
cannot be modified once the pool is created. PG number can be increased, not
decreased. The other limitation I want to mention stems from the fact that
Ceph is rapidly evolving. To use the latest features, the clients need to have

65

6. Summary

recent kernel modules for Ceph access. In my case, the Linux kernel on client
servers had to be upgraded from the original 4.4 version shipped by Ubuntu
16.04 to a newer version to be able to access erasure-coded RBD images on
the cluster. I used Ubuntu’s HWE kernel version 4.15.

6.1.7 Limitations of 3PAR

In order to enable some advanced features of 3PAR, a license allowing that
functionality is required. Some features are licensed per drive, some per sys-
tem. For HP 3PAR StoreServ 7000 family of storage systems, additional li-
cense is required for functionality like data encryption, thinly-provisioned vir-
tual volumes, transferring copies of volumes between systems, creating copy-
on-write snapshots, software management suites. [4], [3]

6.2 Recommended Security Best Practices

This section describes my recommendations regarding the security practices
when deploying Ceph and 3PAR in a public data center. I will illustrate these
recommendations on the steps I performed during the build and configuration
of the storage.

6.2.1 System User for Ceph Deployment

I used the ceph-deploy tool for Ceph cluster deployment. The Ceph documen-
tation [24] recommends creating a new user on all cluster nodes specifically
for deployment with the ceph-deploy tool. This user needs to be granted
a password-less sudo access to the system. Also, private and public SSH keys
need to be generated for a password-less SSH access for this user between the
srv1 admin server and the other cluster nodes. This way, ceph-deploy is able
to install additional software and configuration files on that system without
being stopped by a password prompt. The documentation gives some other
recommendations for the user name selection, such as using the same user
name on all servers in the cluster and avoiding obvious user names that could
become a target of a brute-force password attack.

I chose the username to be cephuser. To eliminate the possibility of a pass-
word attack on the cephuser user, and because the password-based login was
no longer necessary, I locked the cephuser user account password (sudo passwd
-l cephuser). By doing this, the cephuser could no longer use the password

authentication and was not able to use the password to login to the system.
Other local user accounts with sudo access can still switch to this user using
sudo -u cephuser -i. The ceph-deploy utility was still able to remotely login
using ssh key and execute sudo commands.

66

6.2. Recommended Security Best Practices

6.2.2 Communication Between Ceph Nodes
Ceph uses its own cephx authentication protocol to authenticate client servers
and the Ceph cluster daemons. Ceph monitor authenticates clients and dis-
tributes secret keys. It uses shared secret keys, which means, that both moni-
tor and a client have a copy of the key. The key has an expiration time to avoid
attacks with old keys. If the ceph-deploy tool is used for cluster deployment, it
sets up the authentication and installs required keys by itself. [10], [60] From
my experience, even if the ceph-deploy tool installs the key on the client server,
read permissions on the key file need to be applied manually for a particular
user in order to use ceph commands without the use of sudo.

Ceph supports specification of users. By default, a client.admin user
is created. Additional users with different permissions to cluster access and
its configuration (pool creation, etc.) can be created. [61]

The network communication is authenticated, but not encrypted. The
data can be encrypted on Ceph OSDs (not enabled by default), but not during
the transfer over the network. To encrypt the transfer, the data needs to be
encrypted on the client side before being stored in the Ceph storage. [62], [63]
In our case, the RBD block device, such as /dev/rbd0 would need to be
encrypted in order to send the data encrypted over the network to the Ceph
cluster.

Also, I strongly suggest the firewall to be enabled and configured on Ceph
cluster nodes, or using some external firewall appliance, or both. Aside from
a port for a remote SSH access, the firewalls on all servers in the Ceph cluster
need to be configured to allow incoming communication from Ceph daemons
from other servers in the cluster. As per the documentation [64], these ports
are preset to:

• 6789 for Ceph Monitors;

• a range 6800–7300 for other daemons, such as OSDs.

The port numbers can be changed by the administrator.
The Ceph documentation [64] suggests using two separate networks. One

public network where clients can connect, and a separate cluster network. If
a denial of service attack (DoS) occurs from one or multiple clients congesting
the public network, the separate cluster network is still able to allow cluster
nodes to communicate and replicate data between each other. To avoid DoS
attack even to the cluster network, is important that the cluster network
is disconnected from the Internet and connects only the servers in the cluster.

6.2.3 3PAR Users
According to the Concepts Guide [3], HPE 3PAR requires a user account in
order to manage the device. User accounts are assigned a role with appropriate

67

6. Summary

permissions (e.g. to create, view or edit CPGs, virtual volumes, …). Users can
be:

• local users (Management Console, SSH),

• LDAP users,

• domain users.

6.2.4 Conclusion of Security Practices
I strongly recommend setting the firewall on the Ceph cluster nodes to reject
incoming connections on all ports except the ports assigned to Ceph daemons
and ports used for remote administration, such as ssh. Having two separate
networks for the cluster, public network and cluster network, can avoid possi-
ble denial of service attacks on the cluster. In such situation, the client access
may be limited because of congested network, but data replication between
the servers in the cluster would still be possible over the secondary network.

Strong remote login passwords should be set on 3PAR and on all servers
in a Ceph cluster. This includes the user name and password required to
connect to 3PAR from the Management Console program, and the Linux user
accounts that can be used to login to any one of the cluster servers.

User accounts for different types of storage users can be created both
on Ceph and on 3PAR. The principle of least privilege should be used. For
example, non-administrator account should not be able to delete or create new
data pools. This is especially true for the Ceph storage. In my Ceph cluster,
I was working under the default client.admin cephx account. This meant
that I could not only connect to the cluster and use the RBD block device,
but I was also able to create and delete RBD images and pools. In practice,
a regular user connecting to the cluster should use a cephx account that allows
him to connect to the storage cluster but not alter its configuration.

68

Conclusion

The goals of this thesis were to study the conceptual differences between
a 3PAR storage array and Ceph software-defined storage, build a Ceph stor-
age cluster, design a storage performance measurement methodology, and
compare the performance of a Ceph cluster with the performance of 3PAR.
After that, strong and weak points of both 3PAR and Ceph were to be dis-
cussed, as well as the security best practices for their deployment.

As the first step, I studied and described the principles of 3PAR and Ceph
architecture. The focus was put on the physical components and the logi-
cal data layers and the data layout in various RAID configurations. Having
learned the principles of the Ceph storage, I was able to build a fully functional
Ceph storage cluster. I configured the Ceph cluster and a 3PAR device to be
used from our client servers for performance tests. My measurement methodol-
ogy was based on extensive research of possible benchmarking approaches and
my observations and used free software benchmarking tools. The methodology
measured random storage throughput for requests of different sizes, as well
as the latency and sequential throughput of the storage.

After performing the performance measurement, I discussed the strong and
weak points of 3PAR and Ceph that I consider important or which I came
across during the tests. The tolerance of various errors, including failures
ranging from a failure of a hard drive, a network interface, all the way to the
failure of a storage node, was discussed. I mentioned the promised availability
and durability guarantees of 3PAR and the method of reliability calculation
for Ceph. As the last thing, I discussed my recommended security practices
for a Ceph and 3PAR deployment in a data center.

The results of the Ceph vs. 3PAR performance comparison reveal that my
Ceph cluster performed better during data reads with larger block sizes, while
the battery-backed 3PAR excelled in small-block data writes. This thesis
meets all requirements of the assignment and contains relevant information
for a decision whether to a Ceph cluster can replace a 3PAR device for cloud
storage.

69

Bibliography

1. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP. HPE 3PAR
StoreServ Storage [online]. © 2019 [visited on 2019-05-06]. Available from:
https://www.hpe.com/cz/en/storage/3par.html.

2. VMWARE, INC. Storage Area Network (SAN) [online]. © 2019 [visited
on 2019-05-06]. Available from: https://www.vmware.com/topics/
glossary/content/storage-area-network-san.

3. HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. HP 3PAR
StoreServ Storage Concepts Guide: HP 3PAR OS 3.1.2 MU2 [Product
manual]. 2013. QR482-96384. Available also from: https://support.
hpe.com/hpsc/doc/public/display?docId=emr_na- c03606434&
lang=en-us&cc=us.

4. HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. HP 3PAR
StoreServ 7000 Storage: QuickSpecs [Product manual]. 2015. C04164476
— DA – 14433 Worldwide — Version 35. Available also from: https://
h20195.www2.hpe.com/V2/Getdocument.aspx?docname=c04164476&
ver=35.

5. COPYING file. In: GitHub [Software repository]. 2018 [visited on 2019-
04-06]. Available from: https://github.com/ceph/ceph/blob/master/
COPYING. Ceph component licenses.

6. RED HAT, INC, AND CONTRIBUTORS. OS Recommendations. Ceph
Documentation [online]. © 2016 [visited on 2019-04-06]. Available from:
http://docs.ceph.com/docs/master/start/os-recommendations/.

7. ceph/ceph. In: GitHub [Software repository] [visited on 2019-04-06]. Avail-
able from: https://github.com/ceph/ceph.

8. Ceph Homepage [online]. Red Hat, Inc., © 2019 [visited on 2019-04-06].
Available from: https://ceph.com/.

71

https://www.hpe.com/cz/en/storage/3par.html
https://www.vmware.com/topics/glossary/content/storage-area-network-san
https://www.vmware.com/topics/glossary/content/storage-area-network-san
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c03606434&lang=en-us&cc=us
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c03606434&lang=en-us&cc=us
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c03606434&lang=en-us&cc=us
https://h20195.www2.hpe.com/V2/Getdocument.aspx?docname=c04164476&ver=35
https://h20195.www2.hpe.com/V2/Getdocument.aspx?docname=c04164476&ver=35
https://h20195.www2.hpe.com/V2/Getdocument.aspx?docname=c04164476&ver=35
https://github.com/ceph/ceph/blob/master/COPYING
https://github.com/ceph/ceph/blob/master/COPYING
http://docs.ceph.com/docs/master/start/os-recommendations/
https://github.com/ceph/ceph
https://ceph.com/

Bibliography

9. WILLIAMS, Philip. Maximize the Performance of Your Ceph Storage
Solution [online]. 2018 [visited on 2019-04-19]. Available from: https:
/ / blog . rackspace . com / maximize - performance - ceph - storage -
solution.

10. RED HAT, INC, AND CONTRIBUTORS. Architecture. Ceph Docu-
mentation [online]. © 2016 [visited on 2019-04-06]. Available from: http:
//docs.ceph.com/docs/master/architecture/.

11. RED HAT, INC, AND CONTRIBUTORS. Intro to Ceph. Ceph Docu-
mentation [online]. © 2016 [visited on 2019-04-03]. Available from: http:
//docs.ceph.com/docs/master/start/intro/.

12. RED HAT, INC. Chapter 1. Managing the storage cluster size. Red Hat
ceph Storage 3 Operations Guide [online]. © 2019 [visited on 2019-04-08].
Available from: https://access.redhat.com/documentation/en-
us/red_hat_ceph_storage/3/html/operations_guide/managing-
the-storage-cluster-size.

13. SUSE. SUSE Enterprise Storage. SUSE [online]. © 2019 [visited on 2019-
04-25]. Available from: https : / / www . suse . com / products / suse -
enterprise-storage/.

14. RED HAT, INC, AND CONTRIBUTORS. rbd – manage rados block
device (RBD) images. Ceph Documentation [online]. © 2016 [visited on
2019-05-11]. Available from: http://docs.ceph.com/docs/mimic/man/
8/rbd/.

15. RED HAT, Inc. Storage Strategies Guide: Creating storage strategies for
Red Hat Ceph Storage clusters [online]. © 2019 [visited on 2019-04-08].
Available from: https://access.redhat.com/documentation/en-
us/red_hat_ceph_storage/3/html-single/storage_strategies_
guide/index.

16. RED HAT, INC, AND CONTRIBUTORS. Placement Groups. Ceph
Documentation [online]. © 2016 [visited on 2019-05-11]. Available from:
http://docs.ceph.com/docs/mimic/rados/operations/placement-
groups/.

17. ABHISHEKL. v14.2.0 Nautilus released. The Ceph Blog [online]. 2019
[visited on 2019-04-06]. Available from: https://ceph.com/releases/
v14-2-0-nautilus-released/.

18. RED HAT, INC, AND CONTRIBUTORS. Hardware Recommendations.
Ceph Documentation [online]. © 2016 [visited on 2019-04-06]. Available
from: http : / / docs . ceph . com / docs / master / start / hardware -
recommendations/.

72

https://blog.rackspace.com/maximize-performance-ceph-storage-solution
https://blog.rackspace.com/maximize-performance-ceph-storage-solution
https://blog.rackspace.com/maximize-performance-ceph-storage-solution
http://docs.ceph.com/docs/master/architecture/
http://docs.ceph.com/docs/master/architecture/
http://docs.ceph.com/docs/master/start/intro/
http://docs.ceph.com/docs/master/start/intro/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/operations_guide/managing-the-storage-cluster-size
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/operations_guide/managing-the-storage-cluster-size
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/operations_guide/managing-the-storage-cluster-size
https://www.suse.com/products/suse-enterprise-storage/
https://www.suse.com/products/suse-enterprise-storage/
http://docs.ceph.com/docs/mimic/man/8/rbd/
http://docs.ceph.com/docs/mimic/man/8/rbd/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/index
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/index
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html-single/storage_strategies_guide/index
http://docs.ceph.com/docs/mimic/rados/operations/placement-groups/
http://docs.ceph.com/docs/mimic/rados/operations/placement-groups/
https://ceph.com/releases/v14-2-0-nautilus-released/
https://ceph.com/releases/v14-2-0-nautilus-released/
http://docs.ceph.com/docs/master/start/hardware-recommendations/
http://docs.ceph.com/docs/master/start/hardware-recommendations/

Bibliography

19. RED HAT CEPH STORAGE DOCUMENTATION TEAM. Chapter 6.
Recommended Minimum Hardware. Red Hat Ceph Storage Hardware
Selection Guide [online]. 2019 [visited on 2019-04-25]. Available from:
https://access.redhat.com/documentation/en-us/red_hat_ceph_
storage / 3 / html / red _ hat _ ceph _ storage _ hardware _ selection _
guide/ceph-hardware-min-recommend.

20. RED HAT, INC, AND CONTRIBUTORS. BlueStore Config Reference.
Ceph Documentation [online]. © 2016 [visited on 2019-04-25]. Available
from: http://docs.ceph.com/docs/mimic/rados/configuration/
bluestore-config-ref/.

21. ceph/ceph-deploy. In: GitHub [Software repository] [visited on 2019-04-
06]. Available from: https://github.com/ceph/ceph-deploy.

22. INKTANK. install. ceph-deploy 2.0.2 documentation [online]. © 2013 [vis-
ited on 2019-04-06]. Available from: http://docs.ceph.com/ceph-
deploy/docs/install.html.

23. ceph/ceph-deploy: hosts directory. In: GitHub [Software repository]. 2018
[visited on 2019-04-06]. Available from: https://github.com/ceph/
ceph-deploy/tree/master/ceph_deploy/hosts.

24. RED HAT, INC, AND CONTRIBUTORS. Preflight Checklist. Ceph
Documentation [online]. © 2016 [visited on 2019-04-06]. Available from:
http://docs.ceph.com/docs/master/start/quick-start-preflight/.

25. RED HAT, INC, AND CONTRIBUTORS. Ceph Documentation [online].
© 2016 [visited on 2019-05-05]. Available from: http://docs.ceph.com/
docs/master/.

26. RED HAT, INC, AND CONTRIBUTORS. Ceph Releases. Ceph Docu-
mentation [online]. © 2016 [visited on 2019-04-06]. Available from: http:
//docs.ceph.com/docs/master/releases/schedule/.

27. SUSE LLC. Choosing a Ceph Solution [online]. 2016. 261-002574-001
[visited on 2019-04-06]. Storage Solution Flyer. Available from: https:
//www.suse.com/media/flyer/choosing_a_ceph_solution_flyer.
pdf.

28. ABHISHEKL. Ceph Mimic contributor credits. The Ceph Blog [online].
2018 [visited on 2019-04-06]. Available from: https://ceph.com/community/
mimic-contributor-credits/.

29. Benchmark Ceph Cluster Performance. Ceph Wiki [online]. 2015 [visited
on 2019-04-19]. Available from: https://tracker.ceph.com/projects/
ceph/wiki/Benchmark_Ceph_Cluster_Performance.

30. Benchmarking. ArchWiki [online]. 2019 [visited on 2019-04-19]. Available
from: https://wiki.archlinux.org/index.php/benchmarking.

73

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/red_hat_ceph_storage_hardware_selection_guide/ceph-hardware-min-recommend
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/red_hat_ceph_storage_hardware_selection_guide/ceph-hardware-min-recommend
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/red_hat_ceph_storage_hardware_selection_guide/ceph-hardware-min-recommend
http://docs.ceph.com/docs/mimic/rados/configuration/bluestore-config-ref/
http://docs.ceph.com/docs/mimic/rados/configuration/bluestore-config-ref/
https://github.com/ceph/ceph-deploy
http://docs.ceph.com/ceph-deploy/docs/install.html
http://docs.ceph.com/ceph-deploy/docs/install.html
https://github.com/ceph/ceph-deploy/tree/master/ceph_deploy/hosts
https://github.com/ceph/ceph-deploy/tree/master/ceph_deploy/hosts
http://docs.ceph.com/docs/master/start/quick-start-preflight/
http://docs.ceph.com/docs/master/
http://docs.ceph.com/docs/master/
http://docs.ceph.com/docs/master/releases/schedule/
http://docs.ceph.com/docs/master/releases/schedule/
https://www.suse.com/media/flyer/choosing_a_ceph_solution_flyer.pdf
https://www.suse.com/media/flyer/choosing_a_ceph_solution_flyer.pdf
https://www.suse.com/media/flyer/choosing_a_ceph_solution_flyer.pdf
https://ceph.com/community/mimic-contributor-credits/
https://ceph.com/community/mimic-contributor-credits/
https://tracker.ceph.com/projects/ceph/wiki/Benchmark_Ceph_Cluster_Performance
https://tracker.ceph.com/projects/ceph/wiki/Benchmark_Ceph_Cluster_Performance
https://wiki.archlinux.org/index.php/benchmarking

Bibliography

31. PROXMOX SERVER SOLUTIONS GMBH. Ceph Benchmark: Hyper-
converged infrastructure with Proxmox VE virtualization platform and
integrated Ceph Storage. [online]. 2018 [visited on 2019-04-20]. Available
from: https://www.proxmox.com/en/downloads/item/proxmox-ve-
ceph-benchmark.

32. RED HAT SUMMIT. Tuning High Performance Ceph for Hyper-converged
infastructures, including NFVi. In: Youtube [online]. 2018 [visited on
2019-04-19]. Available from: https://www.youtube.com/watch?v=
wOkpfjmpiv4.

33. STORPOOL STORAGE. Latency: #1 Metric for your cloud - StorPool
at OpenStack Summit Berlin 2018. In: Youtube [online]. 2018 [visited
on 2019-04-08]. Available from: https://www.youtube.com/watch?v=
shDenVLd9Kc. StorPool Storage.

34. RUOSTEMAA, Janne. How to benchmark cloud servers. Community
Tutorials [online]. © 2018 [visited on 2019-04-25]. Available from: https:
//upcloud.com/community/tutorials/how-to-benchmark-cloud-
servers/.

35. MACKENZIE, David et al. GNU Coreutils: Core GNU utilities [online].
For version 8.31. 2019 [visited on 2019-04-19]. Available from: https:
//www.gnu.org/software/coreutils/manual/coreutils.pdf.

36. IOzone Filesystem Benchmark [online]. 2016 [visited on 2019-04-14]. Avail-
able from: http://iozone.org/.

37. Iozone License [online] [visited on 2019-04-14]. Available from: http:
//www.iozone.org/docs/Iozone_License.txt.

38. Iozone Filesystem Benchmark [online] [visited on 2019-04-14]. Available
from: http://www.iozone.org/docs/IOzone_msword_98.pdf.

39. IOzone Filesystem Benchmark [online]. 2016 [visited on 2019-04-14]. Avail-
able from: http://iozone.org/ Path: Download Source; Latest files.

40. AXBOE, Jens. fio Documentation [online]. Release 3.13-4-g7114-dirty.
2019 [visited on 2019-04-14]. Available from: https://fio.readthedocs.
io/en/latest/ PDF version available at https://buildmedia.readthedocs.
org/media/pdf/fio/latest/fio.pdf.

41. CARROLL, Aaron. fio(1) User Manual [Linux man page]. 2004 [vis-
ited on 2019-04-07]. Available from: https://manpages.ubuntu.com/
manpages/xenial/en/man1/fio.1.html. fio_2.2.10-1ubuntu1_amd64.deb
package.

42. README.md. In: GitHub koct9i/ioping [Software repository]. 2018 [vis-
ited on 2019-05-07]. Available from: https://github.com/koct9i/
ioping.

74

https://www.proxmox.com/en/downloads/item/proxmox-ve-ceph-benchmark
https://www.proxmox.com/en/downloads/item/proxmox-ve-ceph-benchmark
https://www.youtube.com/watch?v=wOkpfjmpiv4
https://www.youtube.com/watch?v=wOkpfjmpiv4
https://www.youtube.com/watch?v=shDenVLd9Kc
https://www.youtube.com/watch?v=shDenVLd9Kc
https://upcloud.com/community/tutorials/how-to-benchmark-cloud-servers/
https://upcloud.com/community/tutorials/how-to-benchmark-cloud-servers/
https://upcloud.com/community/tutorials/how-to-benchmark-cloud-servers/
https://www.gnu.org/software/coreutils/manual/coreutils.pdf
https://www.gnu.org/software/coreutils/manual/coreutils.pdf
http://iozone.org/
http://www.iozone.org/docs/Iozone_License.txt
http://www.iozone.org/docs/Iozone_License.txt
http://www.iozone.org/docs/IOzone_msword_98.pdf
http://iozone.org/
https://fio.readthedocs.io/en/latest/
https://fio.readthedocs.io/en/latest/
https://buildmedia.readthedocs.org/media/pdf/fio/latest/fio.pdf
https://buildmedia.readthedocs.org/media/pdf/fio/latest/fio.pdf
https://manpages.ubuntu.com/manpages/xenial/en/man1/fio.1.html
https://manpages.ubuntu.com/manpages/xenial/en/man1/fio.1.html
https://github.com/koct9i/ioping
https://github.com/koct9i/ioping

Bibliography

43. ioping.1. In: GitHub koct9i/ioping [Software repository]. 2018 [visited on
2019-05-07]. Available from: https://github.com/koct9i/ioping.

44. RED HAT, INC, AND CONTRIBUTORS. Installation (ceph-deploy).
Ceph Documentation [online]. © 2016 [visited on 2019-05-05]. Available
from: http://docs.ceph.com/docs/master/start/.

45. ABHISHEKL. 13.2.4 Mimic released. The Ceph Blog [online]. 2019 [vis-
ited on 2019-05-10]. Available from: https://ceph.com/releases/13-
2-4-mimic-released/.

46. SUCHÁNEK, Marek; NAVRÁTIL, Milan; BAILEY, Laura, et al. 8.4.
Configuration Tools. Performance Tuning Guide [online]. 2019 [visited on
2019-05-12]. Available from: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/7/html/performance_tuning_
guide / sect - red _ hat _ enterprise _ linux - performance _ tuning _
guide-storage_and_file_systems-configuration_tools.

47. AXBOE, Jens. Queue sysfs files [online]. 2009 [visited on 2019-05-12].
Available from: https://www.kernel.org/doc/Documentation/block/
queue-sysfs.txt.

48. ADAMSON, David. Storage performance benchmarks are useful – if
you read them carefully. Hewlett Packard Enterprise Community [on-
line]. 2018 [visited on 2019-05-12]. Available from: https://community.
hpe.com/t5/Around- the- Storage- Block/Storage- performance-
benchmarks-are-useful-if-you-read-them/ba-p/7000599.

49. Efficient File Copying On Linux. Evan Klitzke’s web log [online]. 2017
[visited on 2019-05-12]. Available from: https://eklitzke.org/efficient-
file-copying-on-linux.

50. DAVIS, Thomas; TARREAU, Willy; GAVRILOV, Constantine, et al.
Linux Ethernet Bonding Driver HOWTO [online]. 2011 [visited on 2019-
04-08]. Available from: https://www.kernel.org/doc/Documentation/
networking/bonding.txt.

51. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP. HPE 3PAR
StoreServ Storage: designed for mission-critical high availability [on-
line]. 2015. 4AA3-8316ENW, Rev. 6 [visited on 2019-05-13]. Available
from: https://www.optiodata.com/documents/spec/HPE- 3PAR-
StoreServ-storage-datasheet.pdf.

52. POAT, M D; LAURET, J. Achieving cost/performance balance ratio us-
ing tiered storage caching techniques: A case study with CephFS. Journal
of Physics: Conference Series. 2017, vol. 898, pp. 062022. Available from
DOI: 10.1088/1742-6596/898/6/062022.

53. FISK, N. Mastering Ceph: Infrastructure storage solutions with the latest
Ceph release, 2nd Edition. Packt Publishing, 2019. ISBN 9781789615104.
Available also from: https://books.google.cz/books?id=vuiLDwAAQBAJ.

75

https://github.com/koct9i/ioping
http://docs.ceph.com/docs/master/start/
https://ceph.com/releases/13-2-4-mimic-released/
https://ceph.com/releases/13-2-4-mimic-released/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-storage_and_file_systems-configuration_tools
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-storage_and_file_systems-configuration_tools
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-storage_and_file_systems-configuration_tools
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-storage_and_file_systems-configuration_tools
https://www.kernel.org/doc/Documentation/block/queue-sysfs.txt
https://www.kernel.org/doc/Documentation/block/queue-sysfs.txt
https://community.hpe.com/t5/Around-the-Storage-Block/Storage-performance-benchmarks-are-useful-if-you-read-them/ba-p/7000599
https://community.hpe.com/t5/Around-the-Storage-Block/Storage-performance-benchmarks-are-useful-if-you-read-them/ba-p/7000599
https://community.hpe.com/t5/Around-the-Storage-Block/Storage-performance-benchmarks-are-useful-if-you-read-them/ba-p/7000599
https://eklitzke.org/efficient-file-copying-on-linux
https://eklitzke.org/efficient-file-copying-on-linux
https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.optiodata.com/documents/spec/HPE-3PAR-StoreServ-storage-datasheet.pdf
https://www.optiodata.com/documents/spec/HPE-3PAR-StoreServ-storage-datasheet.pdf
http://dx.doi.org/10.1088/1742-6596/898/6/062022
https://books.google.cz/books?id=vuiLDwAAQBAJ

Bibliography

54. RED HAT, INC, AND CONTRIBUTORS. Manually editing a CRUSH
Map. Ceph Documentation [online]. © 2016 [visited on 2019-05-12]. Avail-
able from: http://docs.ceph.com/docs/mimic/rados/operations/
crush-map-edits/.

55. HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. HP 3PAR
Management Console. Version 4.7.3.2 [software]. © 2016.

56. RED HAT, INC, AND CONTRIBUTORS. Pools. Ceph Documentation
[online]. © 2016 [visited on 2019-05-10]. Available from: http://docs.
ceph.com/docs/mimic/rados/operations/pools/.

57. GALINANES, Veronica Estrada. Final report. Ceph Wiki – Reliability
model [online]. 2015 [visited on 2019-05-13]. Available from: https://
tracker.ceph.com/projects/ceph/wiki/Final_report.

58. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP. 99.9999
percent data availability [online]. 2016. 4AA5-2846ENW, Rev. 3 [visited
on 2019-05-13]. Available from: https://cdn.cnetcontent.com/1f/
38/1f3804de-d8af-4def-a202-5b0e97f9b355.pdf.

59. RED HAT, INC, AND CONTRIBUTORS. v14.2.1 Nautilus. Ceph Docu-
mentation [online]. © 2016 [visited on 2019-05-06]. Available from: http:
//docs.ceph.com/docs/master/releases/nautilus/.

60. RED HAT, INC, AND CONTRIBUTORS. Cephx Config Reference.
Ceph Documentation [online]. © 2016 [visited on 2019-05-10]. Available
from: http://docs.ceph.com/docs/mimic/rados/configuration/
auth-config-ref/.

61. RED HAT, INC, AND CONTRIBUTORS. User Management. Ceph
Documentation [online]. © 2016 [visited on 2019-05-10]. Available from:
http : / / docs . ceph . com / docs / mimic / rados / operations / user -
management/.

62. RED HAT, INC, AND CONTRIBUTORS. Encryption. Ceph Documen-
tation [online]. © 2016 [visited on 2019-05-10]. Available from: http :
//docs.ceph.com/docs/master/radosgw/encryption/.

63. RED HAT CEPH STORAGE DOCUMENTATION TEAM. Chapter 3.
Encryption and Key Management. Data Security and Hardening Guide
[online]. © 2019 [visited on 2019-05-10]. Available from: https://access.
redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/
data_security_and_hardening_guide/assembly-encryption-and-
key-management.

64. RED HAT, INC, AND CONTRIBUTORS. Network Configuration Ref-
erence. Ceph Documentation [online]. © 2016 [visited on 2019-05-11].
Available from: http://docs.ceph.com/docs/mimic/rados/configuration/
network-config-ref/.

76

http://docs.ceph.com/docs/mimic/rados/operations/crush-map-edits/
http://docs.ceph.com/docs/mimic/rados/operations/crush-map-edits/
http://docs.ceph.com/docs/mimic/rados/operations/pools/
http://docs.ceph.com/docs/mimic/rados/operations/pools/
https://tracker.ceph.com/projects/ceph/wiki/Final_report
https://tracker.ceph.com/projects/ceph/wiki/Final_report
https://cdn.cnetcontent.com/1f/38/1f3804de-d8af-4def-a202-5b0e97f9b355.pdf
https://cdn.cnetcontent.com/1f/38/1f3804de-d8af-4def-a202-5b0e97f9b355.pdf
http://docs.ceph.com/docs/master/releases/nautilus/
http://docs.ceph.com/docs/master/releases/nautilus/
http://docs.ceph.com/docs/mimic/rados/configuration/auth-config-ref/
http://docs.ceph.com/docs/mimic/rados/configuration/auth-config-ref/
http://docs.ceph.com/docs/mimic/rados/operations/user-management/
http://docs.ceph.com/docs/mimic/rados/operations/user-management/
http://docs.ceph.com/docs/master/radosgw/encryption/
http://docs.ceph.com/docs/master/radosgw/encryption/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/data_security_and_hardening_guide/assembly-encryption-and-key-management
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/data_security_and_hardening_guide/assembly-encryption-and-key-management
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/data_security_and_hardening_guide/assembly-encryption-and-key-management
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/data_security_and_hardening_guide/assembly-encryption-and-key-management
http://docs.ceph.com/docs/mimic/rados/configuration/network-config-ref/
http://docs.ceph.com/docs/mimic/rados/configuration/network-config-ref/

Bibliography

77

Appendix A
Acronyms

CPG Common Provisioning Group (3PAR).

CRUSH Controlled Replication Under Scalable Hashing.

DoS Denial of Service.

HPE Hewlett Packard Enterprise.

I/O input/output.

IOPS input/output operations per second.

LGPL GNU Lesser General Public License.

PG Placement Group (Ceph).

RADOS Reliable Autonomic Distributed Object Store.

RAID Redundant Array of Independent Disks.

RAID 0 (1) RAID 0 (or replication) with 1 data block (1 replica).

RAID 1 (r) RAID 1 (or replication) with r data blocks (r replicas).

RAID 5 (m + 1) RAID 5 (or erasure coding) with m data blocks and 1
parity block.

RAID 6 (m + 2) RAID 6 (or erasure coding) with m data blocks and 2
parity blocks.

RBD RADOS Block Device.

SAN storage area network.

79

Appendix B
Detailed Benchmark Results

This chapter presents detailed results of benchmarks performed in the prac-
tical part of this thesis. It contains mostly tables and plots that were not
included in the text because of their size.

B.1 Bonded Network Performance
This section contains measured network performance data.

81

B
.

D
etailed

B
enchm

ark
R

esults

Table B.1: Comparison of different IEEE 802.3ad Dynamic link aggregation xmit_hash_policy settings. In this test, srv4 uploaded
data to all of the other servers (srv1, srv2, srv3) simultaneously. Three bandwidth measurements (not necessarily consequent) were
recorded. (iperf version 3.0.11)

xmit_hash_policy From To Bandwidth (test 1) Bandwidth (test 2) Bandwidth (test 3)

layer2 (default) srv4
srv1 3.14 Gbits/sec 2.36 Gbits/sec 2.36 Gbits/sec
srv2 3.14 Gbits/sec 4.71 Gbits/sec 2.36 Gbits/sec
srv3 3.14 Gbits/sec 2.36 Gbits/sec 4.71 Gbits/sec

layer2+3 srv4
srv1 9.40 Gbits/sec 9.35 Gbits/sec 9.40 Gbits/sec
srv2 4.71 Gbits/sec 97.2 Mbits/sec 4.71 Gbits/sec
srv3 4.71 Gbits/sec 97.6 Mbits/sec 4.71 Gbits/sec

layer3+4 srv4
srv1 4.71 Gbits/sec 3.14 Gbits/sec 4.71 Gbits/sec
srv2 9.40 Gbits/sec 3.14 Gbits/sec 4.71 Gbits/sec
srv3 4.70 Gbits/sec 3.14 Gbits/sec 9.40 Gbits/sec

encap2+3 srv4
srv1 9.40 Gbits/sec 9.40 Gbits/sec 9.40 Gbits/sec
srv2 4.71 Gbits/sec 4.71 Gbits/sec 4.72 Gbits/sec
srv3 4.71 Gbits/sec 4.71 Gbits/sec 4.71 Gbits/sec

encap3+4 srv4
srv1 9.40 Gbits/sec 3.14 Gbits/sec 4.71 Gbits/sec
srv2 4.71 Gbits/sec 3.14 Gbits/sec 9.40 Gbits/sec
srv3 4.71 Gbits/sec 3.14 Gbits/sec 4.71 Gbits/sec

82

B.2. Individual Hard Drive Block Size Performance

B.2 Individual Hard Drive Block Size Performance
Detailed individual hard drive performance results are in this section.

Table B.2: Disk transfer speed by write block size measured on the same single
hard drive. Ubuntu 16.04.6 LTS, kernel version 4.4.0-143-generic, dd (coreutils) 8.25,
fio-2.2.10.

Block size Sequential write Sequential read
dd fio dd fio

512 B 82.75 KiB/s 82.75 KiB/s 12.32 MiB/s 11.09 MiB/s
1 KiB 165.39 KiB/s 165.36 KiB/s 22.79 MiB/s 21.36 MiB/s
2 KiB 330.5 KiB/s 330.72 KiB/s 43.58 MiB/s 40.81 MiB/s
4 KiB 659.74 KiB/s 659.13 KiB/s 80.44 MiB/s 75.39 MiB/s
8 KiB 1315.26 KiB/s 1317.3 KiB/s 136.99 MiB/s 123.97 MiB/s

16 KiB 2.55 MiB/s 2.55 MiB/s 184.38 MiB/s 180.25 MiB/s
32 KiB 5.03 MiB/s 5.05 MiB/s 184.27 MiB/s 184.14 MiB/s
64 KiB 9.75 MiB/s 9.85 MiB/s 184.3 MiB/s 184.27 MiB/s

128 KiB 18.64 MiB/s 18.72 MiB/s 184.34 MiB/s 184.21 MiB/s
256 KiB 33.67 MiB/s 33.95 MiB/s 182.74 MiB/s 184.27 MiB/s
512 KiB 56.66 MiB/s 57.4 MiB/s 184.24 MiB/s 184.31 MiB/s

1 MiB 85.93 MiB/s 87.55 MiB/s 184.3 MiB/s 184.17 MiB/s
2 MiB 116.64 MiB/s 118.59 MiB/s 184.19 MiB/s 184.34 MiB/s
4 MiB 142.07 MiB/s 144.1 MiB/s 184.17 MiB/s 184.31 MiB/s
8 MiB 158.15 MiB/s 161.62 MiB/s 184.27 MiB/s 183.88 MiB/s

16 MiB 167.1 MiB/s 172.22 MiB/s 183.38 MiB/s 183.84 MiB/s
32 MiB 170.02 MiB/s 177.93 MiB/s 184.36 MiB/s 184.17 MiB/s
64 MiB 173.39 MiB/s 178.77 MiB/s 183.95 MiB/s 184.24 MiB/s

128 MiB 174.92 MiB/s 180.95 MiB/s 183.99 MiB/s 184.07 MiB/s
256 MiB 175.79 MiB/s 182.08 MiB/s 184.08 MiB/s 184.01 MiB/s
512 MiB 175.63 MiB/s 182.43 MiB/s 184.13 MiB/s 184.21 MiB/s

83

B. Detailed Benchmark Results

B.3 Random Access Throughput
This section presents the most important measured data from my Ceph vs.
3PAR performance comparison. The following tables show the random access
throughput measured for storage accesses of different block size and I/O depth.

B.3.1 RAID 1 and RAID 0
The following tables show the results obtained on RAID 0 and RAID 1 3PAR
and corresponding Ceph configurations.

84

B.3.
R

andom
A

ccess
T

hroughput

Table B.3: RAID 0 (1 replica). Random access performance for requests of different block size and I/O depth. Accesses were performed
across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 564 KiB/s 5474 KiB/s 8230 KiB/s 9.96 MiB/s 10.8 MiB/s 11.6 MiB/s
rand. write 514 KiB/s 2896 KiB/s 4155 KiB/s 5823 KiB/s 8449 KiB/s 8451 KiB/s

128 KiB rand. read 17.8 MiB/s 181 MiB/s 254 MiB/s 313 MiB/s 351 MiB/s 361 MiB/s
rand. write 7902 KiB/s 84.8 MiB/s 133 MiB/s 190 MiB/s 265 MiB/s 267 MiB/s

1 MiB rand. read 61.9 MiB/s 611 MiB/s 811 MiB/s 915 MiB/s 923 MiB/s 962 MiB/s
rand. write 39.9 MiB/s 396 MiB/s 576 MiB/s 739 MiB/s 898 MiB/s 880 MiB/s

4 MiB rand. read 85.5 MiB/s 796 MiB/s 1010 MiB/s 1096 MiB/s 1104 MiB/s 1107 MiB/s
rand. write 69.6 MiB/s 553 MiB/s 731 MiB/s 862 MiB/s 863 MiB/s 869 MiB/s

16 MiB rand. read 224 MiB/s 1049 MiB/s 1107 MiB/s 1117 MiB/s 1117 MiB/s 1116 MiB/s
rand. write 178 MiB/s 741 MiB/s 850 MiB/s 848 MiB/s 852 MiB/s 850 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 720 KiB/s 6118 KiB/s 12.8 MiB/s 22.4 MiB/s 35.4 MiB/s 48.4 MiB/s
rand. write 11.8 MiB/s 16.4 MiB/s 16.5 MiB/s 16.5 MiB/s 16.5 MiB/s 16.5 MiB/s

128 KiB rand. read 15.4 MiB/s 134 MiB/s 302 MiB/s 324 MiB/s 339 MiB/s 326 MiB/s
rand. write 155 MiB/s 278 MiB/s 279 MiB/s 280 MiB/s 279 MiB/s 278 MiB/s

1 MiB rand. read 69.2 MiB/s 449 MiB/s 492 MiB/s 565 MiB/s 584 MiB/s 583 MiB/s
rand. write 279 MiB/s 518 MiB/s 516 MiB/s 518 MiB/s 518 MiB/s 506 MiB/s

4 MiB rand. read 139 MiB/s 707 MiB/s 688 MiB/s 706 MiB/s 705 MiB/s 706 MiB/s
rand. write 303 MiB/s 612 MiB/s 605 MiB/s 591 MiB/s 581 MiB/s 563 MiB/s

16 MiB rand. read 199 MiB/s 849 MiB/s 805 MiB/s 823 MiB/s 826 MiB/s 828 MiB/s
rand. write 302 MiB/s 640 MiB/s 631 MiB/s 619 MiB/s 596 MiB/s 598 MiB/s

85

B
.

D
etailed

B
enchm

ark
R

esults

Table B.4: RAID 1 (2 replicas). Random access performance for requests of different block size and I/O depth. Accesses were performed
across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 500 KiB/s 5303 KiB/s 9673 KiB/s 11.0 MiB/s 12.2 MiB/s 14.1 MiB/s
rand. write 341 KiB/s 1586 KiB/s 2241 KiB/s 3388 KiB/s 4885 KiB/s 4779 KiB/s

128 KiB rand. read 16.0 MiB/s 168 MiB/s 219 MiB/s 243 MiB/s 257 MiB/s 261 MiB/s
rand. write 6292 KiB/s 58.0 MiB/s 84.1 MiB/s 118 MiB/s 161 MiB/s 171 MiB/s

1 MiB rand. read 58.3 MiB/s 539 MiB/s 671 MiB/s 746 MiB/s 801 MiB/s 790 MiB/s
rand. write 34.9 MiB/s 271 MiB/s 365 MiB/s 414 MiB/s 527 MiB/s 487 MiB/s

4 MiB rand. read 87.5 MiB/s 770 MiB/s 970 MiB/s 1055 MiB/s 1076 MiB/s 1074 MiB/s
rand. write 65.7 MiB/s 354 MiB/s 441 MiB/s 471 MiB/s 478 MiB/s 479 MiB/s

16 MiB rand. read 228 MiB/s 1013 MiB/s 1097 MiB/s 1115 MiB/s 1115 MiB/s 1100 MiB/s
rand. write 130 MiB/s 439 MiB/s 450 MiB/s 449 MiB/s 452 MiB/s 455 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 485 KiB/s 5366 KiB/s 10.9 MiB/s 20.3 MiB/s 31.4 MiB/s 42.3 MiB/s
rand. write 8054 KiB/s 8429 KiB/s 8440 KiB/s 8423 KiB/s 8429 KiB/s 8433 KiB/s

128 KiB rand. read 14.4 MiB/s 123 MiB/s 295 MiB/s 215 MiB/s 449 MiB/s 277 MiB/s
rand. write 131 MiB/s 135 MiB/s 135 MiB/s 135 MiB/s 135 MiB/s 134 MiB/s

1 MiB rand. read 70.6 MiB/s 437 MiB/s 469 MiB/s 532 MiB/s 549 MiB/s 553 MiB/s
rand. write 253 MiB/s 258 MiB/s 255 MiB/s 255 MiB/s 253 MiB/s 254 MiB/s

4 MiB rand. read 131 MiB/s 636 MiB/s 598 MiB/s 617 MiB/s 620 MiB/s 601 MiB/s
rand. write 274 MiB/s 276 MiB/s 282 MiB/s 283 MiB/s 283 MiB/s 272 MiB/s

16 MiB rand. read 171 MiB/s 712 MiB/s 646 MiB/s 674 MiB/s 679 MiB/s 682 MiB/s
rand. write 247 MiB/s 286 MiB/s 290 MiB/s 302 MiB/s 282 MiB/s 287 MiB/s

86

B.3.
R

andom
A

ccess
T

hroughput

Table B.5: RAID 1 (3 replicas). Random access performance for requests of different block size and I/O depth. Accesses were performed
across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 520 KiB/s 5125 KiB/s 9.79 MiB/s 13.3 MiB/s 14.4 MiB/s 15.2 MiB/s
rand. write 262 KiB/s 1075 KiB/s 1657 KiB/s 2340 KiB/s 3386 KiB/s 3423 KiB/s

128 KiB rand. read 15.4 MiB/s 160 MiB/s 215 MiB/s 253 MiB/s 264 MiB/s 277 MiB/s
rand. write 5934 KiB/s 46.5 MiB/s 67.6 MiB/s 91.8 MiB/s 115 MiB/s 122 MiB/s

1 MiB rand. read 56.2 MiB/s 512 MiB/s 669 MiB/s 743 MiB/s 750 MiB/s 723 MiB/s
rand. write 32.9 MiB/s 200 MiB/s 261 MiB/s 303 MiB/s 318 MiB/s 317 MiB/s

4 MiB rand. read 77.8 MiB/s 706 MiB/s 909 MiB/s 1002 MiB/s 1020 MiB/s 1016 MiB/s
rand. write 51.5 MiB/s 241 MiB/s 288 MiB/s 301 MiB/s 303 MiB/s 299 MiB/s

16 MiB rand. read 210 MiB/s 1008 MiB/s 1080 MiB/s 1109 MiB/s 1109 MiB/s 1109 MiB/s
rand. write 102 MiB/s 289 MiB/s 289 MiB/s 289 MiB/s 287 MiB/s 287 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 401 KiB/s 4092 KiB/s 8988 KiB/s 15.5 MiB/s 23.9 MiB/s 32.3 MiB/s
rand. write 5604 KiB/s 5795 KiB/s 5814 KiB/s 5771 KiB/s 5811 KiB/s 5655 KiB/s

128 KiB rand. read 13.8 MiB/s 123 MiB/s 290 MiB/s 200 MiB/s 418 MiB/s 245 MiB/s
rand. write 79.8 MiB/s 84.0 MiB/s 84.7 MiB/s 84.0 MiB/s 84.9 MiB/s 85.5 MiB/s

1 MiB rand. read 66.6 MiB/s 414 MiB/s 437 MiB/s 488 MiB/s 488 MiB/s 496 MiB/s
rand. write 155 MiB/s 159 MiB/s 155 MiB/s 154 MiB/s 154 MiB/s 153 MiB/s

4 MiB rand. read 126 MiB/s 604 MiB/s 552 MiB/s 565 MiB/s 562 MiB/s 566 MiB/s
rand. write 175 MiB/s 181 MiB/s 180 MiB/s 179 MiB/s 178 MiB/s 177 MiB/s

16 MiB rand. read 171 MiB/s 682 MiB/s 586 MiB/s 603 MiB/s 626 MiB/s 622 MiB/s
rand. write 191 MiB/s 187 MiB/s 189 MiB/s 193 MiB/s 158 MiB/s 156 MiB/s

87

B
.

D
etailed

B
enchm

ark
R

esults

Table B.6: RAID 1 (4 replicas). Random access performance for requests of different block size and I/O depth. Accesses were performed
across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 501 KiB/s 4721 KiB/s 9106 KiB/s 12.7 MiB/s 13.7 MiB/s 14.7 MiB/s
rand. write 215 KiB/s 833 KiB/s 1257 KiB/s 1863 KiB/s 2485 KiB/s 2589 KiB/s

128 KiB rand. read 13.0 MiB/s 150 MiB/s 187 MiB/s 198 MiB/s 200 MiB/s 197 MiB/s
rand. write 5839 KiB/s 41.3 MiB/s 58.7 MiB/s 77.7 MiB/s 90.8 MiB/s 87.2 MiB/s

1 MiB rand. read 48.4 MiB/s 410 MiB/s 470 MiB/s 472 MiB/s 465 MiB/s 470 MiB/s
rand. write 27.7 MiB/s 126 MiB/s 154 MiB/s 175 MiB/s 175 MiB/s 176 MiB/s

4 MiB rand. read 69.9 MiB/s 608 MiB/s 654 MiB/s 658 MiB/s 651 MiB/s 656 MiB/s
rand. write 45.5 MiB/s 166 MiB/s 175 MiB/s 160 MiB/s 176 MiB/s 176 MiB/s

16 MiB rand. read 195 MiB/s 689 MiB/s 704 MiB/s 702 MiB/s 701 MiB/s 701 MiB/s
rand. write 83.4 MiB/s 177 MiB/s 174 MiB/s 172 MiB/s 174 MiB/s 172 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 299 KiB/s 3679 KiB/s 8055 KiB/s 12.9 MiB/s 19.9 MiB/s 26.8 MiB/s
rand. write 4463 KiB/s 4651 KiB/s 4657 KiB/s 4652 KiB/s 4640 KiB/s 4426 KiB/s

128 KiB rand. read 12.6 MiB/s 119 MiB/s 275 MiB/s 189 MiB/s 405 MiB/s 227 MiB/s
rand. write 57.7 MiB/s 62.6 MiB/s 62.9 MiB/s 62.8 MiB/s 63.3 MiB/s 63.3 MiB/s

1 MiB rand. read 59.5 MiB/s 422 MiB/s 445 MiB/s 495 MiB/s 499 MiB/s 507 MiB/s
rand. write 117 MiB/s 117 MiB/s 117 MiB/s 117 MiB/s 115 MiB/s 115 MiB/s

4 MiB rand. read 104 MiB/s 585 MiB/s 550 MiB/s 550 MiB/s 558 MiB/s 547 MiB/s
rand. write 125 MiB/s 124 MiB/s 126 MiB/s 123 MiB/s 123 MiB/s 123 MiB/s

16 MiB rand. read 130 MiB/s 653 MiB/s 582 MiB/s 611 MiB/s 629 MiB/s 616 MiB/s
rand. write 114 MiB/s 128 MiB/s 128 MiB/s 131 MiB/s 110 MiB/s 118 MiB/s

88

B.3. Random Access Throughput

B.3.2 RAID 5
The following tables show the results obtained on RAID 5 3PAR and corre-
sponding Ceph configuration.

89

B
.

D
etailed

B
enchm

ark
R

esults

Table B.7: RAID 5 (2 data, 1 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 521 KiB/s 4123 KiB/s 7156 KiB/s 9714 KiB/s 10.4 MiB/s 11.5 MiB/s
rand. write 163 KiB/s 1183 KiB/s 2691 KiB/s 4134 KiB/s 6073 KiB/s 5426 KiB/s

128 KiB rand. read 13.9 MiB/s 81.2 MiB/s 110 MiB/s 129 MiB/s 139 MiB/s 150 MiB/s
rand. write 5356 KiB/s 42.0 MiB/s 64.4 MiB/s 87.5 MiB/s 110 MiB/s 113 MiB/s

1 MiB rand. read 54.4 MiB/s 413 MiB/s 485 MiB/s 544 MiB/s 568 MiB/s 565 MiB/s
rand. write 32.0 MiB/s 209 MiB/s 259 MiB/s 297 MiB/s 320 MiB/s 313 MiB/s

4 MiB rand. read 112 MiB/s 770 MiB/s 918 MiB/s 995 MiB/s 1031 MiB/s 1049 MiB/s
rand. write 80.4 MiB/s 428 MiB/s 508 MiB/s 526 MiB/s 543 MiB/s 622 MiB/s

16 MiB rand. read 267 MiB/s 1041 MiB/s 1105 MiB/s 1113 MiB/s 1113 MiB/s 1113 MiB/s
rand. write 178 MiB/s 507 MiB/s 636 MiB/s 634 MiB/s 645 MiB/s 609 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 532 KiB/s 5299 KiB/s 12.5 MiB/s 22.7 MiB/s 35.5 MiB/s 48.9 MiB/s
rand. write 5715 KiB/s 6245 KiB/s 6254 KiB/s 6261 KiB/s 6151 KiB/s 6053 KiB/s

128 KiB rand. read 15.6 MiB/s 140 MiB/s 327 MiB/s 254 MiB/s 290 MiB/s 288 MiB/s
rand. write 81.3 MiB/s 85.4 MiB/s 85.6 MiB/s 85.9 MiB/s 85.4 MiB/s 85.8 MiB/s

1 MiB rand. read 80.7 MiB/s 429 MiB/s 437 MiB/s 475 MiB/s 487 MiB/s 482 MiB/s
rand. write 208 MiB/s 209 MiB/s 209 MiB/s 209 MiB/s 209 MiB/s 207 MiB/s

4 MiB rand. read 138 MiB/s 645 MiB/s 599 MiB/s 617 MiB/s 619 MiB/s 608 MiB/s
rand. write 256 MiB/s 255 MiB/s 255 MiB/s 251 MiB/s 249 MiB/s 237 MiB/s

16 MiB rand. read 191 MiB/s 774 MiB/s 693 MiB/s 696 MiB/s 703 MiB/s 704 MiB/s
rand. write 233 MiB/s 260 MiB/s 244 MiB/s 242 MiB/s 247 MiB/s 242 MiB/s

90

B.3.
R

andom
A

ccess
T

hroughput

Table B.8: RAID 5 (3 data, 1 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 428 KiB/s 2625 KiB/s 4044 KiB/s 5605 KiB/s 5923 KiB/s 6410 KiB/s
rand. write 147 KiB/s 894 KiB/s 1943 KiB/s 2836 KiB/s 4627 KiB/s 4234 KiB/s

128 KiB rand. read 12.1 MiB/s 53.7 MiB/s 61.7 MiB/s 69.0 MiB/s 69.0 MiB/s 70.7 MiB/s
rand. write 3754 KiB/s 22.2 MiB/s 27.0 MiB/s 35.0 MiB/s 38.5 MiB/s 40.8 MiB/s

1 MiB rand. read 53.8 MiB/s 306 MiB/s 355 MiB/s 372 MiB/s 380 MiB/s 360 MiB/s
rand. write 24.1 MiB/s 129 MiB/s 162 MiB/s 173 MiB/s 181 MiB/s 174 MiB/s

4 MiB rand. read 135 MiB/s 713 MiB/s 803 MiB/s 830 MiB/s 840 MiB/s 839 MiB/s
rand. write 95.7 MiB/s 366 MiB/s 402 MiB/s 414 MiB/s 444 MiB/s 444 MiB/s

16 MiB rand. read 296 MiB/s 886 MiB/s 924 MiB/s 932 MiB/s 930 MiB/s 929 MiB/s
rand. write 143 MiB/s 396 MiB/s 418 MiB/s 421 MiB/s 418 MiB/s 420 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 934 KiB/s 4337 KiB/s 9872 KiB/s 16.4 MiB/s 25.2 MiB/s 34.1 MiB/s
rand. write 4531 KiB/s 5374 KiB/s 5402 KiB/s 5383 KiB/s 5383 KiB/s 5110 KiB/s

128 KiB rand. read 13.3 MiB/s 109 MiB/s 253 MiB/s 188 MiB/s 382 MiB/s 212 MiB/s
rand. write 63.4 MiB/s 68.7 MiB/s 68.6 MiB/s 68.8 MiB/s 68.7 MiB/s 68.8 MiB/s

1 MiB rand. read 66.2 MiB/s 399 MiB/s 408 MiB/s 430 MiB/s 441 MiB/s 436 MiB/s
rand. write 163 MiB/s 168 MiB/s 168 MiB/s 168 MiB/s 166 MiB/s 166 MiB/s

4 MiB rand. read 120 MiB/s 585 MiB/s 528 MiB/s 547 MiB/s 551 MiB/s 540 MiB/s
rand. write 193 MiB/s 197 MiB/s 194 MiB/s 196 MiB/s 190 MiB/s 191 MiB/s

16 MiB rand. read 143 MiB/s 658 MiB/s 604 MiB/s 616 MiB/s 633 MiB/s 631 MiB/s
rand. write 178 MiB/s 205 MiB/s 199 MiB/s 194 MiB/s 169 MiB/s 157 MiB/s

91

B
.

D
etailed

B
enchm

ark
R

esults

Table B.9: RAID 5 (4 data, 1 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 425 KiB/s 2238 KiB/s 3560 KiB/s 4576 KiB/s 4772 KiB/s 4816 KiB/s
rand. write 123 KiB/s 772 KiB/s 1619 KiB/s 2428 KiB/s 3734 KiB/s 3621 KiB/s

128 KiB rand. read 13.2 MiB/s 52.0 MiB/s 67.1 MiB/s 81.1 MiB/s 89.9 MiB/s 90.1 MiB/s
rand. write 6332 KiB/s 29.9 MiB/s 44.8 MiB/s 64.7 MiB/s 85.4 MiB/s 77.4 MiB/s

1 MiB rand. read 61.8 MiB/s 330 MiB/s 399 MiB/s 414 MiB/s 425 MiB/s 427 MiB/s
rand. write 36.6 MiB/s 200 MiB/s 252 MiB/s 282 MiB/s 300 MiB/s 281 MiB/s

4 MiB rand. read 137 MiB/s 756 MiB/s 852 MiB/s 890 MiB/s 920 MiB/s 921 MiB/s
rand. write 99.8 MiB/s 479 MiB/s 564 MiB/s 607 MiB/s 639 MiB/s 621 MiB/s

16 MiB rand. read 292 MiB/s 790 MiB/s 949 MiB/s 963 MiB/s 968 MiB/s 960 MiB/s
rand. write 179 MiB/s 529 MiB/s 605 MiB/s 569 MiB/s 612 MiB/s 614 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 596 KiB/s 4505 KiB/s 10.2 MiB/s 17.7 MiB/s 27.1 MiB/s 36.5 MiB/s
rand. write 5267 KiB/s 5501 KiB/s 5481 KiB/s 5443 KiB/s 5485 KiB/s 5264 KiB/s

128 KiB rand. read 13.4 MiB/s 114 MiB/s 265 MiB/s 198 MiB/s 402 MiB/s 221 MiB/s
rand. write 65.8 MiB/s 71.5 MiB/s 71.4 MiB/s 71.3 MiB/s 72.2 MiB/s 72.0 MiB/s

1 MiB rand. read 68.3 MiB/s 392 MiB/s 400 MiB/s 425 MiB/s 426 MiB/s 426 MiB/s
rand. write 178 MiB/s 182 MiB/s 181 MiB/s 179 MiB/s 176 MiB/s 177 MiB/s

4 MiB rand. read 125 MiB/s 582 MiB/s 522 MiB/s 533 MiB/s 549 MiB/s 545 MiB/s
rand. write 208 MiB/s 219 MiB/s 220 MiB/s 216 MiB/s 212 MiB/s 211 MiB/s

16 MiB rand. read 159 MiB/s 676 MiB/s 607 MiB/s 619 MiB/s 632 MiB/s 629 MiB/s
rand. write 189 MiB/s 224 MiB/s 220 MiB/s 211 MiB/s 212 MiB/s 203 MiB/s

92

B.3.
R

andom
A

ccess
T

hroughput

Table B.10: RAID 5 (5 data, 1 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 418 KiB/s 2005 KiB/s 3082 KiB/s 3749 KiB/s 3887 KiB/s 2982 KiB/s
rand. write 123 KiB/s 706 KiB/s 1405 KiB/s 2164 KiB/s 3078 KiB/s 3087 KiB/s

128 KiB rand. read 11.0 MiB/s 38.6 MiB/s 42.3 MiB/s 52.7 MiB/s 53.3 MiB/s 53.6 MiB/s
rand. write 3734 KiB/s 17.8 MiB/s 25.9 MiB/s 31.3 MiB/s 28.6 MiB/s 27.4 MiB/s

1 MiB rand. read 54.9 MiB/s 238 MiB/s 278 MiB/s 288 MiB/s 280 MiB/s 301 MiB/s
rand. write 21.2 MiB/s 93.8 MiB/s 123 MiB/s 135 MiB/s 126 MiB/s 139 MiB/s

4 MiB rand. read 152 MiB/s 705 MiB/s 789 MiB/s 817 MiB/s 816 MiB/s 818 MiB/s
rand. write 108 MiB/s 438 MiB/s 515 MiB/s 540 MiB/s 544 MiB/s 514 MiB/s

16 MiB rand. read 287 MiB/s 733 MiB/s 775 MiB/s 786 MiB/s 793 MiB/s 796 MiB/s
rand. write 172 MiB/s 491 MiB/s 534 MiB/s 540 MiB/s 621 MiB/s 600 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 363 KiB/s 4140 KiB/s 9748 KiB/s 16.6 MiB/s 25.8 MiB/s 35.1 MiB/s
rand. write 5196 KiB/s 5390 KiB/s 5384 KiB/s 5388 KiB/s 5396 KiB/s 5233 KiB/s

128 KiB rand. read 12.2 MiB/s 105 MiB/s 249 MiB/s 188 MiB/s 387 MiB/s 218 MiB/s
rand. write 59.6 MiB/s 64.1 MiB/s 62.9 MiB/s 64.3 MiB/s 64.4 MiB/s 64.3 MiB/s

1 MiB rand. read 61.6 MiB/s 360 MiB/s 371 MiB/s 395 MiB/s 399 MiB/s 398 MiB/s
rand. write 142 MiB/s 146 MiB/s 148 MiB/s 148 MiB/s 145 MiB/s 145 MiB/s

4 MiB rand. read 124 MiB/s 566 MiB/s 499 MiB/s 505 MiB/s 510 MiB/s 504 MiB/s
rand. write 170 MiB/s 173 MiB/s 177 MiB/s 176 MiB/s 171 MiB/s 174 MiB/s

16 MiB rand. read 164 MiB/s 678 MiB/s 590 MiB/s 611 MiB/s 620 MiB/s 625 MiB/s
rand. write 186 MiB/s 204 MiB/s 199 MiB/s 190 MiB/s 186 MiB/s 184 MiB/s

93

B
.

D
etailed

B
enchm

ark
R

esults

Table B.11: RAID 5 (6 data, 1 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 393 KiB/s 1687 KiB/s 2514 KiB/s 2969 KiB/s 2807 KiB/s 2718 KiB/s
rand. write 110 KiB/s 636 KiB/s 1290 KiB/s 2064 KiB/s 2868 KiB/s 2749 KiB/s

128 KiB rand. read 11.2 MiB/s 34.8 MiB/s 46.6 MiB/s 49.7 MiB/s 51.7 MiB/s 53.4 MiB/s
rand. write 3335 KiB/s 16.8 MiB/s 30.7 MiB/s 32.1 MiB/s 38.7 MiB/s 30.5 MiB/s

1 MiB rand. read 53.3 MiB/s 197 MiB/s 244 MiB/s 261 MiB/s 266 MiB/s 261 MiB/s
rand. write 22.7 MiB/s 92.9 MiB/s 122 MiB/s 146 MiB/s 160 MiB/s 154 MiB/s

4 MiB rand. read 140 MiB/s 615 MiB/s 679 MiB/s 720 MiB/s 710 MiB/s 710 MiB/s
rand. write 101 MiB/s 389 MiB/s 474 MiB/s 542 MiB/s 549 MiB/s 555 MiB/s

16 MiB rand. read 265 MiB/s 698 MiB/s 744 MiB/s 743 MiB/s 708 MiB/s 756 MiB/s
rand. write 166 MiB/s 499 MiB/s 564 MiB/s 573 MiB/s 555 MiB/s 575 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 560 KiB/s 4600 KiB/s 10.4 MiB/s 18.2 MiB/s 28.3 MiB/s 38.5 MiB/s
rand. write 5652 KiB/s 5918 KiB/s 5881 KiB/s 5910 KiB/s 5874 KiB/s 5786 KiB/s

128 KiB rand. read 13.4 MiB/s 115 MiB/s 272 MiB/s 204 MiB/s 420 MiB/s 238 MiB/s
rand. write 75.6 MiB/s 78.5 MiB/s 79.2 MiB/s 78.6 MiB/s 79.4 MiB/s 79.2 MiB/s

1 MiB rand. read 64.5 MiB/s 357 MiB/s 365 MiB/s 408 MiB/s 423 MiB/s 423 MiB/s
rand. write 173 MiB/s 177 MiB/s 177 MiB/s 179 MiB/s 175 MiB/s 174 MiB/s

4 MiB rand. read 135 MiB/s 572 MiB/s 506 MiB/s 514 MiB/s 533 MiB/s 530 MiB/s
rand. write 212 MiB/s 221 MiB/s 219 MiB/s 218 MiB/s 210 MiB/s 204 MiB/s

16 MiB rand. read 179 MiB/s 688 MiB/s 601 MiB/s 614 MiB/s 631 MiB/s 622 MiB/s
rand. write 210 MiB/s 251 MiB/s 247 MiB/s 239 MiB/s 230 MiB/s 231 MiB/s

94

B.3.
R

andom
A

ccess
T

hroughput

Table B.12: RAID 5 (7 data, 1 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 376 KiB/s 1200 KiB/s 1821 KiB/s 2251 KiB/s 2378 KiB/s 2454 KiB/s
rand. write 108 KiB/s 566 KiB/s 1212 KiB/s 1869 KiB/s 2284 KiB/s 2367 KiB/s

128 KiB rand. read 11.3 MiB/s 33.7 MiB/s 42.6 MiB/s 43.9 MiB/s 49.1 MiB/s 48.9 MiB/s
rand. write 3170 KiB/s 16.2 MiB/s 26.3 MiB/s 26.3 MiB/s 33.5 MiB/s 23.5 MiB/s

1 MiB rand. read 54.8 MiB/s 200 MiB/s 221 MiB/s 227 MiB/s 216 MiB/s 233 MiB/s
rand. write 18.2 MiB/s 80.3 MiB/s 99.4 MiB/s 118 MiB/s 122 MiB/s 127 MiB/s

4 MiB rand. read 147 MiB/s 604 MiB/s 640 MiB/s 646 MiB/s 634 MiB/s 642 MiB/s
rand. write 91.3 MiB/s 333 MiB/s 396 MiB/s 430 MiB/s 408 MiB/s 406 MiB/s

16 MiB rand. read 259 MiB/s 618 MiB/s 678 MiB/s 689 MiB/s 694 MiB/s 694 MiB/s
rand. write 125 MiB/s 363 MiB/s 389 MiB/s 406 MiB/s 403 MiB/s 407 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 412 KiB/s 4387 KiB/s 10.3 MiB/s 18.3 MiB/s 28.5 MiB/s 38.6 MiB/s
rand. write 5699 KiB/s 5912 KiB/s 5917 KiB/s 5922 KiB/s 5897 KiB/s 5866 KiB/s

128 KiB rand. read 13.6 MiB/s 114 MiB/s 267 MiB/s 202 MiB/s 412 MiB/s 241 MiB/s
rand. write 64.1 MiB/s 68.0 MiB/s 67.1 MiB/s 66.1 MiB/s 65.7 MiB/s 66.1 MiB/s

1 MiB rand. read 58.2 MiB/s 333 MiB/s 350 MiB/s 399 MiB/s 403 MiB/s 405 MiB/s
rand. write 174 MiB/s 176 MiB/s 175 MiB/s 172 MiB/s 172 MiB/s 172 MiB/s

4 MiB rand. read 127 MiB/s 531 MiB/s 465 MiB/s 473 MiB/s 477 MiB/s 482 MiB/s
rand. write 208 MiB/s 217 MiB/s 215 MiB/s 213 MiB/s 209 MiB/s 208 MiB/s

16 MiB rand. read 183 MiB/s 670 MiB/s 569 MiB/s 576 MiB/s 576 MiB/s 582 MiB/s
rand. write 213 MiB/s 244 MiB/s 235 MiB/s 228 MiB/s 221 MiB/s 216 MiB/s

95

B
.

D
etailed

B
enchm

ark
R

esults

Table B.13: RAID 5 (8 data, 1 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 379 KiB/s 1363 KiB/s 1986 KiB/s 2262 KiB/s 2336 KiB/s 2388 KiB/s
rand. write 104 KiB/s 544 KiB/s 1156 KiB/s 1905 KiB/s 2281 KiB/s 2205 KiB/s

128 KiB rand. read 11.5 MiB/s 34.5 MiB/s 45.4 MiB/s 57.1 MiB/s 60.0 MiB/s 69.1 MiB/s
rand. write 4309 KiB/s 19.5 MiB/s 35.7 MiB/s 55.5 MiB/s 58.0 MiB/s 68.4 MiB/s

1 MiB rand. read 63.8 MiB/s 260 MiB/s 301 MiB/s 334 MiB/s 348 MiB/s 344 MiB/s
rand. write 37.3 MiB/s 183 MiB/s 234 MiB/s 271 MiB/s 296 MiB/s 295 MiB/s

4 MiB rand. read 144 MiB/s 612 MiB/s 654 MiB/s 680 MiB/s 673 MiB/s 669 MiB/s
rand. write 108 MiB/s 426 MiB/s 510 MiB/s 553 MiB/s 583 MiB/s 571 MiB/s

16 MiB rand. read 268 MiB/s 634 MiB/s 675 MiB/s 686 MiB/s 689 MiB/s 692 MiB/s
rand. write 136 MiB/s 460 MiB/s 554 MiB/s 554 MiB/s 564 MiB/s 568 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 378 KiB/s 4072 KiB/s 9346 KiB/s 16.4 MiB/s 26.1 MiB/s 35.0 MiB/s
rand. write 5601 KiB/s 5783 KiB/s 5815 KiB/s 5804 KiB/s 5800 KiB/s 5626 KiB/s

128 KiB rand. read 13.7 MiB/s 109 MiB/s 257 MiB/s 195 MiB/s 406 MiB/s 232 MiB/s
rand. write 68.6 MiB/s 75.6 MiB/s 76.1 MiB/s 76.5 MiB/s 76.9 MiB/s 75.9 MiB/s

1 MiB rand. read 62.9 MiB/s 325 MiB/s 329 MiB/s 373 MiB/s 389 MiB/s 392 MiB/s
rand. write 188 MiB/s 192 MiB/s 194 MiB/s 193 MiB/s 192 MiB/s 190 MiB/s

4 MiB rand. read 135 MiB/s 535 MiB/s 464 MiB/s 470 MiB/s 475 MiB/s 477 MiB/s
rand. write 225 MiB/s 247 MiB/s 245 MiB/s 243 MiB/s 237 MiB/s 235 MiB/s

16 MiB rand. read 196 MiB/s 668 MiB/s 567 MiB/s 578 MiB/s 582 MiB/s 582 MiB/s
rand. write 224 MiB/s 275 MiB/s 272 MiB/s 265 MiB/s 258 MiB/s 257 MiB/s

96

B.3. Random Access Throughput

B.3.3 RAID 6
The following tables show the results obtained on RAID 6 3PAR and corre-
sponding Ceph configuration.

97

B
.

D
etailed

B
enchm

ark
R

esults

Table B.14: RAID 6 (4 data, 2 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 409 KiB/s 2331 KiB/s 3806 KiB/s 4888 KiB/s 5452 KiB/s 6016 KiB/s
rand. write 122 KiB/s 720 KiB/s 1438 KiB/s 2271 KiB/s 3165 KiB/s 3225 KiB/s

128 KiB rand. read 12.8 MiB/s 50.4 MiB/s 67.9 MiB/s 81.0 MiB/s 98.0 MiB/s 96.0 MiB/s
rand. write 5188 KiB/s 23.0 MiB/s 41.3 MiB/s 58.1 MiB/s 82.9 MiB/s 73.5 MiB/s

1 MiB rand. read 60.7 MiB/s 330 MiB/s 379 MiB/s 411 MiB/s 426 MiB/s 431 MiB/s
rand. write 35.1 MiB/s 184 MiB/s 244 MiB/s 242 MiB/s 278 MiB/s 288 MiB/s

4 MiB rand. read 137 MiB/s 746 MiB/s 855 MiB/s 895 MiB/s 909 MiB/s 921 MiB/s
rand. write 95.9 MiB/s 432 MiB/s 509 MiB/s 552 MiB/s 571 MiB/s 573 MiB/s

16 MiB rand. read 292 MiB/s 899 MiB/s 979 MiB/s 998 MiB/s 1001 MiB/s 963 MiB/s
rand. write 168 MiB/s 464 MiB/s 539 MiB/s 557 MiB/s 558 MiB/s 508 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 243 KiB/s 3545 KiB/s 7749 KiB/s 13.4 MiB/s 21.6 MiB/s 30.1 MiB/s
rand. write 4044 KiB/s 4145 KiB/s 4150 KiB/s 4089 KiB/s 3985 KiB/s 3772 KiB/s

128 KiB rand. read 13.2 MiB/s 118 MiB/s 272 MiB/s 215 MiB/s 392 MiB/s 243 MiB/s
rand. write 37.7 MiB/s 44.6 MiB/s 44.1 MiB/s 44.5 MiB/s 44.6 MiB/s 44.7 MiB/s

1 MiB rand. read 66.9 MiB/s 423 MiB/s 456 MiB/s 515 MiB/s 532 MiB/s 532 MiB/s
rand. write 120 MiB/s 124 MiB/s 125 MiB/s 124 MiB/s 123 MiB/s 122 MiB/s

4 MiB rand. read 128 MiB/s 632 MiB/s 588 MiB/s 595 MiB/s 611 MiB/s 599 MiB/s
rand. write 150 MiB/s 150 MiB/s 151 MiB/s 151 MiB/s 148 MiB/s 149 MiB/s

16 MiB rand. read 176 MiB/s 737 MiB/s 646 MiB/s 662 MiB/s 691 MiB/s 684 MiB/s
rand. write 184 MiB/s 184 MiB/s 176 MiB/s 174 MiB/s 132 MiB/s 160 MiB/s

98

B.3.
R

andom
A

ccess
T

hroughput

Table B.15: RAID 6 (6 data, 2 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 388 KiB/s 1611 KiB/s 2488 KiB/s 3008 KiB/s 3221 KiB/s 3457 KiB/s
rand. write 106 KiB/s 581 KiB/s 1218 KiB/s 2001 KiB/s 2439 KiB/s 2495 KiB/s

128 KiB rand. read 11.8 MiB/s 35.8 MiB/s 45.5 MiB/s 48.8 MiB/s 55.8 MiB/s 53.0 MiB/s
rand. write 3184 KiB/s 16.6 MiB/s 26.4 MiB/s 29.1 MiB/s 39.4 MiB/s 28.6 MiB/s

1 MiB rand. read 55.7 MiB/s 220 MiB/s 245 MiB/s 259 MiB/s 260 MiB/s 257 MiB/s
rand. write 21.7 MiB/s 90.5 MiB/s 112 MiB/s 140 MiB/s 144 MiB/s 146 MiB/s

4 MiB rand. read 137 MiB/s 592 MiB/s 658 MiB/s 682 MiB/s 685 MiB/s 694 MiB/s
rand. write 92.1 MiB/s 361 MiB/s 432 MiB/s 470 MiB/s 498 MiB/s 504 MiB/s

16 MiB rand. read 263 MiB/s 639 MiB/s 720 MiB/s 737 MiB/s 742 MiB/s 740 MiB/s
rand. write 151 MiB/s 429 MiB/s 438 MiB/s 481 MiB/s 483 MiB/s 484 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 248 KiB/s 3060 KiB/s 7024 KiB/s 11.0 MiB/s 19.8 MiB/s 27.0 MiB/s
rand. write 4122 KiB/s 4188 KiB/s 4148 KiB/s 4122 KiB/s 4046 KiB/s 3953 KiB/s

128 KiB rand. read 12.6 MiB/s 106 MiB/s 240 MiB/s 179 MiB/s 375 MiB/s 215 MiB/s
rand. write 27.9 MiB/s 35.6 MiB/s 36.3 MiB/s 36.4 MiB/s 36.4 MiB/s 36.7 MiB/s

1 MiB rand. read 66.8 MiB/s 366 MiB/s 378 MiB/s 425 MiB/s 445 MiB/s 448 MiB/s
rand. write 115 MiB/s 116 MiB/s 115 MiB/s 114 MiB/s 112 MiB/s 111 MiB/s

4 MiB rand. read 133 MiB/s 569 MiB/s 489 MiB/s 493 MiB/s 517 MiB/s 509 MiB/s
rand. write 149 MiB/s 148 MiB/s 145 MiB/s 143 MiB/s 140 MiB/s 138 MiB/s

16 MiB rand. read 187 MiB/s 678 MiB/s 574 MiB/s 582 MiB/s 593 MiB/s 589 MiB/s
rand. write 179 MiB/s 188 MiB/s 176 MiB/s 164 MiB/s 136 MiB/s 139 MiB/s

99

B
.

D
etailed

B
enchm

ark
R

esults

Table B.16: RAID 6 (8 data, 2 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 363 KiB/s 1311 KiB/s 1911 KiB/s 2248 KiB/s 2448 KiB/s 2546 KiB/s
rand. write 93.3 KiB/s 518 KiB/s 1082 KiB/s 1655 KiB/s 1806 KiB/s 1989 KiB/s

128 KiB rand. read 11.2 MiB/s 33.0 MiB/s 43.5 MiB/s 55.0 MiB/s 55.5 MiB/s 65.1 MiB/s
rand. write 4380 KiB/s 19.2 MiB/s 30.8 MiB/s 46.5 MiB/s 51.7 MiB/s 59.9 MiB/s

1 MiB rand. read 63.2 MiB/s 254 MiB/s 309 MiB/s 338 MiB/s 331 MiB/s 321 MiB/s
rand. write 36.9 MiB/s 180 MiB/s 240 MiB/s 276 MiB/s 271 MiB/s 268 MiB/s

4 MiB rand. read 128 MiB/s 589 MiB/s 652 MiB/s 685 MiB/s 687 MiB/s 685 MiB/s
rand. write 100 MiB/s 390 MiB/s 497 MiB/s 548 MiB/s 571 MiB/s 581 MiB/s

16 MiB rand. read 259 MiB/s 642 MiB/s 687 MiB/s 697 MiB/s 693 MiB/s 692 MiB/s
rand. write 160 MiB/s 467 MiB/s 529 MiB/s 524 MiB/s 517 MiB/s 515 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 293 KiB/s 3866 KiB/s 8452 KiB/s 14.1 MiB/s 22.4 MiB/s 31.1 MiB/s
rand. write 4284 KiB/s 4420 KiB/s 4416 KiB/s 4406 KiB/s 4373 KiB/s 4130 KiB/s

128 KiB rand. read 13.4 MiB/s 118 MiB/s 275 MiB/s 213 MiB/s 398 MiB/s 249 MiB/s
rand. write 33.6 MiB/s 39.1 MiB/s 38.8 MiB/s 39.0 MiB/s 39.5 MiB/s 39.5 MiB/s

1 MiB rand. read 69.4 MiB/s 418 MiB/s 443 MiB/s 516 MiB/s 564 MiB/s 567 MiB/s
rand. write 102 MiB/s 103 MiB/s 102 MiB/s 101 MiB/s 100 MiB/s 98.5 MiB/s

4 MiB rand. read 140 MiB/s 629 MiB/s 586 MiB/s 604 MiB/s 609 MiB/s 619 MiB/s
rand. write 138 MiB/s 134 MiB/s 129 MiB/s 128 MiB/s 126 MiB/s 124 MiB/s

16 MiB rand. read 209 MiB/s 747 MiB/s 667 MiB/s 673 MiB/s 693 MiB/s 683 MiB/s
rand. write 179 MiB/s 176 MiB/s 164 MiB/s 151 MiB/s 118 MiB/s 112 MiB/s

100

B.3.
R

andom
A

ccess
T

hroughput

Table B.17: RAID 6 (10 data, 2 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (600 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 278 KiB/s 976 KiB/s 1377 KiB/s 1680 KiB/s 1838 KiB/s 1959 KiB/s
rand. write 80.3 KiB/s 493 KiB/s 984 KiB/s 1093 KiB/s 1649 KiB/s 1779 KiB/s

128 KiB rand. read 10.5 MiB/s 26.4 MiB/s 38.4 MiB/s 38.9 MiB/s 43.2 MiB/s 44.5 MiB/s
rand. write 2830 KiB/s 13.0 MiB/s 27.0 MiB/s 21.6 MiB/s 29.6 MiB/s 21.2 MiB/s

1 MiB rand. read 51.1 MiB/s 153 MiB/s 169 MiB/s 179 MiB/s 182 MiB/s 170 MiB/s
rand. write 16.4 MiB/s 56.7 MiB/s 70.8 MiB/s 86.8 MiB/s 93.9 MiB/s 87.9 MiB/s

4 MiB rand. read 138 MiB/s 489 MiB/s 512 MiB/s 523 MiB/s 528 MiB/s 530 MiB/s
rand. write 74.0 MiB/s 270 MiB/s 306 MiB/s 324 MiB/s 332 MiB/s 249 MiB/s

16 MiB rand. read 240 MiB/s 508 MiB/s 566 MiB/s 580 MiB/s 582 MiB/s 584 MiB/s
rand. write 95.5 MiB/s 269 MiB/s 288 MiB/s 314 MiB/s 280 MiB/s 316 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 254 KiB/s 3340 KiB/s 7249 KiB/s 12.3 MiB/s 19.6 MiB/s 27.1 MiB/s
rand. write 4173 KiB/s 4233 KiB/s 4232 KiB/s 4200 KiB/s 4236 KiB/s 4028 KiB/s

128 KiB rand. read 13.0 MiB/s 111 MiB/s 254 MiB/s 198 MiB/s 397 MiB/s 243 MiB/s
rand. write 24.9 MiB/s 27.9 MiB/s 29.5 MiB/s 30.1 MiB/s 28.0 MiB/s 28.4 MiB/s

1 MiB rand. read 65.9 MiB/s 409 MiB/s 436 MiB/s 523 MiB/s 581 MiB/s 571 MiB/s
rand. write 86.1 MiB/s 87.1 MiB/s 86.0 MiB/s 86.3 MiB/s 84.8 MiB/s 85.9 MiB/s

4 MiB rand. read 141 MiB/s 636 MiB/s 604 MiB/s 639 MiB/s 641 MiB/s 643 MiB/s
rand. write 118 MiB/s 112 MiB/s 110 MiB/s 110 MiB/s 106 MiB/s 106 MiB/s

16 MiB rand. read 218 MiB/s 757 MiB/s 700 MiB/s 704 MiB/s 707 MiB/s 702 MiB/s
rand. write 167 MiB/s 161 MiB/s 145 MiB/s 132 MiB/s 94.4 MiB/s 103 MiB/s

101

B. Detailed Benchmark Results

B.4 Random Access Within a 10 GiB File
This section contains results of an additional random access measurement per-
formed on Ceph and 3PAR storage. Previous measurements were performed
on the whole size of the block device. This time, the block device was for-
matted with an XFS file system and the measurements targeted one 10 GiB
file. The effects of caching on the Ceph and 3PAR devices is obvious when
compared with previous results.

102

B.4.
R

andom
A

ccess
W

ithin
a

10G
iB

File

Table B.18: RAID 5 (5 data, 1 parity). Random access performance for requests of different block size and I/O depth. Accesses were
performed across the whole drive (100 GiB) with fio version 3.13.

(a) Ceph RBD image.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 343 KiB/s 1614 KiB/s 1828 KiB/s 2039 KiB/s 2172 KiB/s 2188 KiB/s
rand. write 112 KiB/s 483 KiB/s 651 KiB/s 792 KiB/s 1012 KiB/s 1014 KiB/s

128 KiB rand. read 9875 KiB/s 44.4 MiB/s 50.6 MiB/s 56.3 MiB/s 58.6 MiB/s 55.5 MiB/s
rand. write 3381 KiB/s 13.2 MiB/s 17.5 MiB/s 21.6 MiB/s 24.4 MiB/s 25.1 MiB/s

1 MiB rand. read 53.7 MiB/s 209 MiB/s 243 MiB/s 254 MiB/s 265 MiB/s 250 MiB/s
rand. write 22.5 MiB/s 85.4 MiB/s 114 MiB/s 126 MiB/s 140 MiB/s 140 MiB/s

4 MiB rand. read 115 MiB/s 359 MiB/s 398 MiB/s 404 MiB/s 409 MiB/s 406 MiB/s
rand. write 68.6 MiB/s 250 MiB/s 298 MiB/s 333 MiB/s 348 MiB/s 349 MiB/s

16 MiB rand. read 218 MiB/s 367 MiB/s 400 MiB/s 419 MiB/s 429 MiB/s 419 MiB/s
rand. write 119 MiB/s 346 MiB/s 329 MiB/s 363 MiB/s 372 MiB/s 369 MiB/s

(b) 3PAR virtual volume.

Block size Operation I/O Depth
1 16 32 64 128 256

4 KiB rand. read 23.6 MiB/s 208 MiB/s 475 MiB/s 532 MiB/s 536 MiB/s 474 MiB/s
rand. write 9602 KiB/s 21.0 MiB/s 21.0 MiB/s 20.3 MiB/s 20.0 MiB/s 18.5 MiB/s

128 KiB rand. read 245 MiB/s 1571 MiB/s 1571 MiB/s 1573 MiB/s 1573 MiB/s 1573 MiB/s
rand. write 131 MiB/s 165 MiB/s 180 MiB/s 183 MiB/s 182 MiB/s 181 MiB/s

1 MiB rand. read 406 MiB/s 1532 MiB/s 1543 MiB/s 1531 MiB/s 1531 MiB/s 1574 MiB/s
rand. write 239 MiB/s 426 MiB/s 435 MiB/s 430 MiB/s 441 MiB/s 412 MiB/s

4 MiB rand. read 451 MiB/s 1501 MiB/s 1504 MiB/s 1506 MiB/s 1506 MiB/s 1567 MiB/s
rand. write 250 MiB/s 526 MiB/s 540 MiB/s 545 MiB/s 544 MiB/s 530 MiB/s

16 MiB rand. read 497 MiB/s 1493 MiB/s 1489 MiB/s 1500 MiB/s 1500 MiB/s 1528 MiB/s
rand. write 240 MiB/s 551 MiB/s 551 MiB/s 582 MiB/s 578 MiB/s 580 MiB/s

103

B. Detailed Benchmark Results

B.5 Sequential 4 MiB Access Plots
This section contains throughput plots of sequential Ceph and 3PAR access
of a block size of 4 MiB.

104

B.5. Sequential 4 MiB Access Plots

B.5.1 RAID 0 and RAID 1

0 200 400 600 8000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 200 400 600 8000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.1: RAID 0 (1 replica) volume with a capacity of 600 GiB. Sequential
access throughput (fio version 3.13).

0 500 1,000 1,5000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 200 400 600 8000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.2: RAID 1 (2 replicas) volume with a capacity of 600 GiB. Sequential
access throughput (fio version 3.13).

105

B. Detailed Benchmark Results

0 1,000 2,0000

100

200

300

400

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 200 400 600 8000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.3: RAID 1 (3 replicas) volume with a capacity of 600 GiB. Sequential
access throughput (fio version 3.13).

0 2,000 4,0000

100

200

300

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 500 1,0000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.4: RAID 1 (4 replicas) volume with a capacity of 600 GiB. Sequential
access throughput (fio version 3.13).

106

B.5. Sequential 4 MiB Access Plots

B.5.2 RAID 5

0 500 1,000 1,5000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 200 400 600 8000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.5: RAID 5 (2 data, 1 parity) volume with a capacity of 600 GiB. Sequential
access throughput (fio version 3.13).

0 1,000 2,0000

200

400

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 500 1,0000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.6: RAID 5 (3 data, 1 parity) volume with a capacity of 600 GiB. Sequential
access throughput (fio version 3.13).

107

B. Detailed Benchmark Results

0 500 1,000 1,5000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 500 1,0000

200

400

600

800

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.7: RAID 5 (4 data, 1 parity) volume with a capacity of 600 GiB. Sequential
access throughput (fio version 3.13).

0 500 1,0000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 200 400 600 8000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.8: RAID 5 (5 data, 1 parity) volume with a capacity of 600 GiB. Sequential
access throughput (fio version 3.13).

108

B.5. Sequential 4 MiB Access Plots

0 500 1,000 1,5000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 500 1,0000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.9: RAID 5 (6 data, 1 parity) volume with a capacity of 600 GiB. Sequential
access throughput (fio version 3.13).

0 500 1,0000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 500 1,0000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.10: RAID 5 (7 data, 1 parity) volume with a capacity of 600 GiB. Se-
quential access throughput (fio version 3.13).

109

B. Detailed Benchmark Results

0 500 1,0000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 500 1,0000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.11: RAID 5 (8 data, 1 parity) volume with a capacity of 600 GiB. Se-
quential access throughput (fio version 3.13).

110

B.5. Sequential 4 MiB Access Plots

B.5.3 RAID 6

0 500 1,0000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 200 400 600 8000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.12: RAID 6 (4 data, 2 parity) volume with a capacity of 600 GiB. Se-
quential access throughput (fio version 3.13).

0 500 1,000 1,5000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 500 1,0000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.13: RAID 6 (6 data, 2 parity) volume with a capacity of 600 GiB. Se-
quential access throughput (fio version 3.13).

111

B. Detailed Benchmark Results

0 500 1,0000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 200 400 600 800 1,0000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.14: RAID 6 (8 data, 2 parity) volume with a capacity of 600 GiB. Se-
quential access throughput (fio version 3.13).

0 500 1,000 1,5000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of 4 MiB,
I/O depth of 128 requests.

0 500 1,0000

200

400

600

800

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 4 MiB,
I/O depth of 128 requests.

Figure B.15: RAID 6 (10 data, 2 parity) volume with a capacity of 600 GiB. Se-
quential access throughput (fio version 3.13).

112

B.6. Sequential 16 MiB Access Plots

B.6 Sequential 16 MiB Access Plots
This section contains throughput plots of sequential Ceph and 3PAR access
of a block size of 16 MiB.

113

B. Detailed Benchmark Results

B.6.1 RAID 0 and RAID 1

0 50 100 1500

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 1000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.16: RAID 0 (1 data) volume with a capacity of 100 GiB. Sequential access
throughput (fio version 3.13).

0 100 200 3000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 100 1500

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.17: RAID 1 (2 data) volume with a capacity of 100 GiB. Sequential access
throughput (fio version 3.13).

114

B.6. Sequential 16 MiB Access Plots

0 100 200 300 4000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 100 1500

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.18: RAID 1 (3 data) volume with a capacity of 100 GiB. Sequential access
throughput (fio version 3.13).

0 200 400 600 800 1,0000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 100 150 2000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.19: RAID 1 (4 data) volume with a capacity of 100 GiB. Sequential access
throughput (fio version 3.13).

115

B. Detailed Benchmark Results

B.6.2 RAID 5

0 100 2000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 20 40 60 80 1000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.20: RAID 5 (2 data, 1 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

0 100 200 3000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 1000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.21: RAID 5 (3 data, 1 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

116

B.6. Sequential 16 MiB Access Plots

0 50 100 150 2000

200

400

600

800

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 1000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.22: RAID 5 (4 data, 1 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

0 50 100 150 2000

200

400

600

800

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 1000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.23: RAID 5 (5 data, 1 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

117

B. Detailed Benchmark Results

0 100 2000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 100 1500

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.24: RAID 5 (6 data, 1 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

0 100 2000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 100 1500

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.25: RAID 5 (7 data, 1 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

118

B.6. Sequential 16 MiB Access Plots

0 50 100 150 2000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 100 1500

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.26: RAID 5 (8 data, 1 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

119

B. Detailed Benchmark Results

B.6.3 RAID 6

0 100 2000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 1000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.27: RAID 6 (4 data, 2 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

0 100 2000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 100 150 2000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.28: RAID 6 (6 data, 2 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

120

B.6. Sequential 16 MiB Access Plots

0 50 100 1500

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 1000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.29: RAID 6 (8 data, 2 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

0 100 2000

500

1,000

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth

Ceph
3PAR

(a) Sequential write. Block size of
16 MiB, I/O depth of 128 requests.

0 50 1000

500

1,000

1,500

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth

Ceph
3PAR

(b) Sequential read. Block size of 16 MiB,
I/O depth of 128 requests.

Figure B.30: RAID 6 (10 data, 2 parity) volume with a capacity of 100 GiB. Se-
quential access throughput (fio version 3.13).

121

B. Detailed Benchmark Results

B.7 Multiple Hosts

0 1,000 2,0000

200

400

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth (srv3)

Ceph
3PAR

(a) RAID 6 sequential write. Block size
of 4 MiB, I/O depth of 128 requests.

0 1,000 2,0000

200

400

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth (srv4)

Ceph
3PAR

(b) RAID 5 sequential write. Block size
of 4 MiB, I/O depth of 128 requests.

Figure B.31: Two volumes were simultaneously written to from two different client
servers: RAID 6 (6 data, 2 parity) volume from srv3, RAID 5 (5 data, 1 parity) volume
from srv4. Both volumes had a capacity of 600 GiB. Sequential access throughput
(fio version 3.13).

122

B.7. Multiple Hosts

0 500 1,000 1,5000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth (srv3)

Ceph
3PAR

(a) RAID 6 sequential read. Block size
of 4 MiB, I/O depth of 128 requests.

0 500 1,000 1,5000

200

400

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth (srv4)

Ceph
3PAR

(b) RAID 5 sequential read. Block size
of 4 MiB, I/O depth of 128 requests.

Figure B.32: Two volumes were simultaneously read from from two different servers:
RAID 6 (6 data, 2 parity) volume from srv3, RAID 5 (5 data, 1 parity) volume from
srv4. Both volumes had a capacity of 600 GiB. Sequential access throughput (fio
version 3.13).

123

B. Detailed Benchmark Results

B.8 Effect of xmit_hash_policy Setting

0 1,000 2,0000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth (srv3)

layer2
layer2+3

(a) RAID 6 sequential write to Ceph.
Block size of 4 MiB, I/O depth of 128 re-
quests.

0 500 1,000 1,5000

200

400

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Write Bandwidth (srv4)

layer2
layer2+3

(b) RAID 5 sequential write to Ceph.
Block size of 4 MiB, I/O depth of 128 re-
quests.

Figure B.33: Different xmit_hash_policy settings on bonded network interfaces
on all servers. Two volumes were simultaneously written to from two different client
servers: RAID 6 (6 data, 2 parity) volume from srv3, RAID 5 (5 data, 1 parity) volume
from srv4. Both volumes had a capacity of 600 GiB. Sequential access throughput
(fio version 3.13).

124

B.8. Effect of xmit_hash_policy Setting

0 500 1,000 1,5000

200

400

600

800

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/
s]

Read Bandwidth (srv3)

layer2
layer2+3

(a) RAID 6 sequential read from Ceph.
Block size of 4 MiB, I/O depth of 128 re-
quests.

0 500 1,000 1,5000

200

400

600

Time [s]

T
hr

ou
gh

pu
t

[M
iB

/s
]

Read Bandwidth (srv4)

layer2
layer2+3

(b) RAID 5 sequential read from Ceph.
Block size of 4 MiB, I/O depth of 128 re-
quests.

Figure B.34: Different xmit_hash_policy settings on bonded network interfaces on
all servers. Two volumes were simultaneously read from from two different servers:
RAID 6 (6 data, 2 parity) volume from srv3, RAID 5 (5 data, 1 parity) volume from
srv4. Both volumes had a capacity of 600 GiB. Sequential access throughput (fio
version 3.13).

125

Appendix C
Contents of Enclosed SD Card

attachments......a directory with various files collected during the tests
benchmark-logs...........an assorted raw benchmark data directory
configuration-notes an assorted configuration notes directory

src...the directory of source codes
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
BP_Sebek_David_2019.pdf the thesis text in PDF format

127

	Introduction
	Goal
	Analysis of Ceph and 3PAR
	What is 3PAR
	3PAR Hardware Architecture
	How 3PAR Stores Data
	What is Ceph
	Ceph Architecture
	How Ceph Stores Data
	Objects
	Pools
	Object Striping
	Placement Groups

	Ceph Hardware Requirements
	CPU
	RAM
	Data storage
	Network
	Operating System

	Ceph Releases
	Upstream Ceph
	Upstream Ceph Support, Upgrades
	Other Ceph Solutions

	Related Work
	Approach to Benchmarking a Ceph Cluster
	Commonly Used Benchmarking Tools and Their Parameters
	Example 1
	Example 2
	Example 3
	Example 4
	Summary of Discoveries
	Existing Ceph Latency Result

	Storage Benchmarking Tools
	The dd tool
	Command-line Parameters
	Examples

	IOzone
	Command-line Parameters
	Example
	Plot Generation

	fio
	Command-line Parameters
	Plot Generation
	Examples
	Client/Server
	A Note on fio Benchmark Units

	IOPing
	Examples

	Realization
	Hardware Used for the Tests
	Machine Specifications
	Number of Machines Used
	Hard Drives Used
	Connection and Network Topology

	Process of Building the 3PAR Storage
	Block Device Creation on 3PAR

	Process of Building the Ceph Storage
	Building the Cluster
	Block Device Creation on Ceph

	Simulation of 3PAR RAID Levels on Ceph
	Block Size and I/O Depth Decision
	Small 4 KiB Block Size Behavior
	Large 1 GiB Block Size Behavior
	Device-Reported Parameters
	Decision for Tests

	Main Measurement Methodology for Performance Comparison
	Pool (CPG) and Image (Virtual Volume) Parameters
	Read Tests Must Read Allocated Data
	Sequence of Performed Tests
	Erasing the Block Device
	Sequential Access (4 MiB Blocks)
	Random Access (Multiple Block Sizes)
	Latency (4 KiB Blocks)

	Additional Tests
	Sequential Access (16 MiB Blocks)
	Random Access Within a Small File

	Results
	Performance of Individual Components
	Ceph Network Throughput and Latency
	Ceph Network – The Effect of Ethernet Bonding
	Ceph Hard Drive Performance
	Sequential Throughput
	Random Throughput and Latency
	Reported Ceph OSD Performance

	Summary

	Quick Ceph vs. 3PAR Benchmark
	Main Ceph vs. 3PAR Performance Results
	Additional Tests
	Random Access Within a Small File
	Multiple Hosts
	Ethernet Bonding – xmit_hash_policy

	Result Discussion
	Random Access
	Sequential Access

	Hardware Utilization During the Tests
	Storage systems
	Client Servers

	Summary
	Strong and Weak Points of 3PAR and Ceph
	Disk Failure Tolerance, Failure Domains
	Tolerance for Errors of Varying Magnitude
	Availability Our Systems Can Offer
	Overall Easiness of Use
	Addition of New Pools (CPGs)
	Limitations of Ceph
	Limitations of 3PAR

	Recommended Security Best Practices
	System User for Ceph Deployment
	Communication Between Ceph Nodes
	3PAR Users
	Conclusion of Security Practices

	Conclusion
	Bibliography
	Acronyms
	Detailed Benchmark Results
	Bonded Network Performance
	Individual Hard Drive Block Size Performance
	Random Access Throughput
	RAID 1 and RAID 0
	RAID 5
	RAID 6

	Random Access Within a 10 GiB File
	Sequential 4 MiB Access Plots
	RAID 0 and RAID 1
	RAID 5
	RAID 6

	Sequential 16 MiB Access Plots
	RAID 0 and RAID 1
	RAID 5
	RAID 6

	Multiple Hosts
	Effect of xmit_hash_policy Setting

	Contents of Enclosed SD Card

