
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Microelectronics

Verification component implementation -
Model of NFC

Bc. Ján Jendrušák

Supervisor: doc. Ing. Jiří Jakovenko, Ph.D.
Field of study: Electronics and Communications
Subfield: Electronics
May 2019

ii

iv

Acknowledgements
I would like to thank my supervisor doc.
Ing. Jiří Jakovenko, Ph.D. for his guid-
ance and useful advice everytime I needed
one. I would also like to thank ASICen-
trum company for the great opportunity
to work on this master’s thesis for their
team, especially Ing. Luboš Hradecký
for arranging the whole cooperation, Ing.
Martin Jäger and Bc. Henrique Hellini for
consultations about the testbench devel-
opment, and Ing. Jan Bičák, Ph.D. and
Ing. Tomáš Novák for help with the NFC
Type 2 Tag Platform specification and the
DUT incorporation into the UVC.

Declaration
I hereby declare that the presented work
was carried out independently and that
I have listed all information sources used
in accordance with the Methodical Guide-
lines on Maintaining Ethical Principles
During the Preparation of Higher Educa-
tion Theses. Furthermore, I declare that
the borrowing and publishing of my thesis
or part of it is allowed with the agreement
of department.

In Prague, 22. May 2019

v

Abstract
To design digital circuits is a complex
process, which involves verification of de-
sign behaviour before it is actually imple-
mented. Universal Verification Methodol-
ogy (UVM) promises an efficient way of
verifying digital designs with any major
simulation platform.

Using UVM is demonstrated in this pa-
per to build a verification component for
NFC Type 2 Tag Platform, the opera-
tional specification for wireless tags in
high frequency band. Completely func-
tioning UVC together with prepared veri-
fication plan ensures that the Device Un-
der Test (DUT) complies with NFC Type
2 Tag Platform on logical level.

Keywords: verification, Universal
Verification Methodology, Near Field
Communication, SystemVerilog, tag

Supervisor: doc. Ing. Jiří Jakovenko,
Ph.D.

Abstrakt
Návrh digitálnych obvodov je komplexný
proces, ktorý zahŕňa verifikáciu chovania
návrhu predtým, ako je na záver imple-
mentovaný. Universal Verification Metho-
dology (UVM) je prísľubom efektívneho
spôsobu verifikovania digitálnych návrhov
s ktoroukoľvek simulačnou platformou.

Použitie UVM je demonštrované v tejto
diplomovej práci návrhom verifikačného
komponentu pre NFC Type 2 Tag Plat-
form, špecifikácie pre bezdrôtové tagy vo
vysokom frekvenčnom pásme. Kompletne
funkčný verifikačný komponent spolu s
predpripraveným verifikačným plánom by
malo zaručiť, že digitálny návrh splňuje
požiadavky protokolu na logickej úrovni.

Kľúčové slová: verifikácia, Universal
Verification Methodology, Near Field
Communication, SystemVerilog, tag

Preklad názvu: Implementácia
verifikačného komponentu – modelu NFC
prijímača

vi

Contents
0.1 List of Abbreviations 1

1 Introduction 3

Part I
Theoretical Part

2 Near Field Communication 7

2.1 Type 2 Tag Platform 7

2.1.1 Memory structure 8

2.1.2 Sequence schemes 8

2.1.3 Bit level coding 10

2.1.4 Frame format 10

2.1.5 Commands and responses . . . 11

2.1.6 Timing requirements 12

2.1.7 NFC Data exchange format -
NDEF . 13

2.1.8 Anticollision 14

3 Digital design verification and
UVM 15

3.1 UVM testbench basics 16

3.2 UVM Factory 17

3.3 UVM Configuration Database . . 17

3.4 UVM Phases 17

3.5 UVM Environment 18

3.5.1 UVM Sequencer and Sequences 18

3.5.2 UVM Scoreboard 18

3.5.3 UVM Driver 18

3.5.4 UVM Monitor 18

3.5.5 UVM Agent 19

3.6 SystemVerilog Coverage 19

Part II
Practical Part

4 Verification plan 23

4.1 Requirements 23

4.1.1 Physical layer requirements . . 23

4.1.2 Timing requirements 25

4.1.3 Tag state requirements 26

4.1.4 Commands requirements 26

4.1.5 Negative scenarios 30

4.2 Verification strategy 30

4.3 Tools . 31

4.4 Checkers implementation 31

4.5 Coverage implementation 31

4.6 Test cases implementation 32

4.7 UVM usage 32

5 Implementation of UVC for NFC
Type 2 Tag 33

5.1 Command and response items . . 33

5.1.1 nfc2_base_cmd class fields . . 34

5.1.2 nfc2_base_res class fields . . . 35

5.2 System-level design of the
testbench . 36

5.2.1 Configuration objects 37

5.2.2 nfc2_r2t_agent and
nfc2_sequencer 37

5.2.3 nfc2_driver 38

5.2.4 nfc2_r2t_monitor 38

vii

5.2.5 nfc2_t2r_agent and
nfc2_t2r_monitor 39

5.2.6 nfc2_tag_model 39

5.2.7 nfc2_scoreboard 40

6 Implemented UVC
demonstration 41

6.1 Creating and starting sequence . 41

6.2 Example testcases 42

6.2.1 Transition to ACTIVE_A state
and reading the whole memory . . 42

6.2.2 Transition to ACTIVE_A state
and writing data to Data blocks . 44

6.2.3 Transition to ACTIVE_A state
and testing lock bits 45

6.2.4 SLEEP_REQ command
execution . 46

6.2.5 SECTOR SELECT command
packets 1 and 2 47

6.2.6 SDD_REQ for all valid
NFCID1 and SEL_PAR
combinations 48

6.2.7 Negative scenarios 48

6.3 Coverage sampling 50

6.4 DUT error detection 50

7 Conclusions 53

Appendices

A Bibliography 57

viii

Figures
2.1 Modified Miller with 100 % ASK
[1]. 9

2.2 Manchester coding with OOK [1]. 9

4.1 Type 2 Tag Platform State
Machine [1]. 27

5.1 System level of implemented
testbench. 36

6.1 Transition to ACTIVE_A state
and first READ command. 43

6.2 Issuing READ with higher block
number . 43

6.3 Captured NACK response 43

6.4 Predicted NACK response 44

6.5 Scorebord validation UVM info. 44

6.6 Successful WRITE command to
block 7. 44

6.7 Validation of the previous WRITE
command with the READ
command. 45

6.8 Issuing WRITE with higher block
number . 45

6.9 Issuing WRITE with block number
0. 46

6.10 Issuing WRITE for previously
locked block. 47

6.11 Issuing logic 0 for irreversible
static lock bit. 47

6.12 SLEEP_REQ command
verification. 47

6.13 SECTOR SELECT command
packets verification. 48

6.14 SEL_REQ without CRC16. . . . 48

6.15 SEL_REQ with invalid CRC16. 49

6.16 SDD_REQ with invalid parity
bits. 49

6.17 SDD_REQ issued before allowed
FDTP OLL,A time. 49

6.18 Code coverage report after the
current set of the test cases. 50

6.19 Functional coverage report after
the current set of the test cases. . . 50

6.20 DUT error detection in
SDD_RES . 51

ix

Tables
2.1 NFC Type 2 Commands [1] [2] . 11

2.2 FDTP OLL,A,MAX values for
READ, WRITE and SECTOR
SELECT [1] 13

4.1 Requirements - physical layer . . 24

4.2 Requirements - Timing
specifications 25

4.3 Requirements - Commands
coverage and scenarios 28

x

................................. 0.1. List of Abbreviations

0.1 List of Abbreviations

ACK Acknowledgement

ASIC Application Specific Integrated Circuit

ASK Amplitude Shift Keying

CC Capability Container

CRC Cyclic Redundancy Check

CDV Coverage Driven Verification

DUT Device Under Test

EoF End of Frame

FDT Frame Delay Time

GUI Graphics User Interface

ISO International Organization for Standardization

MDV Metric Driven Verification

NACK Negative Acknowledgement

NDEF NFC Data Exchange Format

NFC Near Field Communication

FPGA Field Programmable Gate Array

OOK On/Off Keying

RFU Reserved for Future Use

RTL Register Transfer Level

SoF Start of Frame

TB Testbench

UVC Universal Verification Component

UVM Universal Verification Methodology

1

2

Chapter 1

Introduction

Designing digital circuits is a process with many steps on different level
of abstraction. In the beginning the whole scope of work must be defined.
Project team has to choose a target technology - whether Field Programmable
Gate Array (FPGA) or Application Specific Integrated Circuit (ASIC) will be
used. Also other aspects of the project are specified, like required features, way
of their implementation, supply voltage, design interface and other factors.

After the specification is complete, a team of digital designers creates
Register Transfer Level (RTL) code according to the specification, mostly
in VHDL or Verilog hardware description language. The correct behaviour
of the design should be verified from the beginning of RTL code creation in
order to detect as many bugs as possible. To achieve this, RTL design is
inserted into testbench environment, where the set of various test cases is
performed.

Latest major verification methodology used for digital designs is called
Universal Verification Methodology (UVM), which should be suitable for
every type of digital circuit. Using UVM promises efficient way of verifying
digital designs independently of simulation platform.

This master’s thesis describes all important steps during the design of
complete verification solution in cooperation with ASICentrum company,
design center of EM Microelectronic and part of the Swatch Group. EM
Microelectronic focuses on ultra-low power ASICs for industry use, traceability,
logictics and wearables. One of the implemented wireless communication
protocols is NFC, namely NFC Type 2 Tag Platform specification, and this
paper deals with this particular protocol.

The main goal is to develop Universal Verification Component (UVC) for

3

1. Introduction
NFC Type 2 Tag Platform using UVM library. That way the verification
component will be compliant with the latest ASICentrum verification flow
and could be inserted into new testbenches to verify new digital designs.
Besides that, the understanding of technical documentation together with
practical UVC implementation is a great practice for the future verification
engineer position.

Created UVC will be evaluated by testing already designed and verified
NFC Type 2 Tag logic core from ASICentrum. In order to fullfill this task,
all of the necessary information is gathered, therefore the first two chapters
cover teoretical background of given task - characteristics of NFC Type 2 Tag
Platform and UVM library fundamentals.

The next chapters describe the proposed verification plan for the NFC
Type 2 Tag Platform, created verification environment and each UVM com-
ponent inside the environment. UVC functionality is then demonstrated with
ASICentrum logic core with the set of constrained-random written test cases
and designed UVC is evaluated.

4

Part I

Theoretical Part

5

6

Chapter 2

Near Field Communication

Wireless comunnication is a major technological trend mainly due to the
ability to enable more comfortable connections between electronic devices.
One of already well established technologies is Near Field Communication
(NFC). NFC is promoted by non-profit association - The NFC Forum, and
provides short-range and secure comunnication between NFC Devices, which
may operate in 3 modes [3] [4].

The first mode is called Card emulation mode. NFC Device in Card
emulation mode acts as a smart card, thus permitting payments for services
and goods through communication with an external reader [4]. Another mode
is Peer-to-Peer Mode, enabling NFC devices to exchange various data, for
example contact information or WiFi passwords. The last mode’s name is
Reader/Writer Mode, in which one NFC Device’s (labeled as reader) role is
to read information from the passive NFC Devices - NFC Tags [3].

NFC Forum specifies 5 different types of NFC Tags, each of them is suited
for a specific purpose and price range [5]. Main goal of this thesis is to create
verification component for Type 2 Tag Platform, therefore only this NFC
Forum Platform is described in more detail .

2.1 Type 2 Tag Platform

Type 2 Tag uses a particular technology subset of NFC-A Technology including
anticollision and it is based on ISO 14443-3 A standard. [6] The device that
starts the communication - NFC Forum Device in Poll Mode, transmits
elecromagnetic field of frequency 13.56 MHz (fc). NFC Tag (also named
NFC Forum Device in Listen Mode) detects this field and responds to NFC

7

2. Near Field Communication...............................
Commands according to its own internal state. Both the reader and the tag
communicate with each other using the same bitrate 106 kbaud/s and the
period of one bit is therefore [1]

perbit = 128
fc

= 128
13.56 MHz

∼= 9.44 µs.

2.1.1 Memory structure

Type 2 Tag memory structure depends on the memory size of the tag. If
the memory size is equal to 64 bytes, a static memory structure is used.
Otherwise, if the memory size is bigger than 64 bytes, a dynamic memory
structure is appplied to Tag memory.

Both structures are divided into blocks and each block contains 4 bytes.
Static and dynamic structure also share basic memory fields:

. Internal: reserved for manufacturer use. Lock: static lock bytes, their purpose is to switch between READ/WRITE
and READ-ONLY States. CC : Capability Container, manages the information of the Type 2 Tag
Platform. Data: available area for information storage. TLV blocks may be stored
here - block of 1 to 3 fields. One byte T field specifies a type of TLV,
one or three bytes long L field defines the size in bytes of the value field,
and V field may store values. If the L field is equal to 00h or there is no
L field, the V field is not present.

Dynamic memory structure also has dynamic lock bytes and reserved bytes,
located between or at the end of the data. Complete description of the
memory structure can be found in [2].

2.1.2 Sequence schemes

NFC Reader issues a command to NFC Tag by pausing the carrier transmission
for a defined time t1 = 2−3.4µs, also called V2. This way 3 particular patterns
are created, (see Figure 2.1). Pattern X has V2 after the half duration of one
bit, pattern Y has no modulation throughout the bit duration and in pattern

8

................................. 2.1. Type 2 Tag Platform

Z V2 must occur at the beginning of current bit. This mechanism is known
as Modified Miller coding with Amplitude Shift Keying (ASK) 100 % [1] [7].

Figure 2.1: Modified Miller with 100 % ASK [1].

NFC Tag - Device in Listen mode, modulates the analog signal by Manch-
ester coding with On/Off Keying (OOK) subcarrier modulation (see Figure
2.2). With OOK modulating subcarrier (subcarrier frequency fc/16) 3 pat-
terns are defined - D, E and F. In pattern D the subcarrier modulates the
carrier for the first half of the bit duration, while in the second half modulation
must not occur. Pattern E has a modulated carrier by the subcarrier for the
second half of the bit duration and pattern F has no subcarrier modulation
during its whole bit duration [1].

Figure 2.2: Manchester coding with OOK [1].

9

2. Near Field Communication...............................
2.1.3 Bit level coding

Patterns mentioned in Section 2.1.2 are used to code two logical levels - logic
0 and logic 1. NFC Forum Device uses these patterns as it is stated here

pattern X logic 1,

pattern Y logic 0,

pattern Z during two or more contiguous logic 0, pattern Z is used from
the second logic 0, pattern Z is also used as Start of Frame (SoF, see
2.1.4) [1].

NFC Type 2 Tag codes his response as follows:

pattern D logic 1, SoF

pattern E logic 0 [1].

2.1.4 Frame format

Commands and responses of NFC Devices are encapsulated within the frames,
which group data bits together with addition of SoF and End of Frame (EoF).
NFC-A Technology defines three types of frames - short frame, standard
frame, and bit-oriented SDD frame [1] [8].

The short frame is used for initiating the communication. It consists of
SoF, maximum of 7 data bits, and EoF. The short frame does not use parity
protection [1].

The standard frame sends more than one data bytes and adds odd parity
protection at the end of each one. Data bytes are limited from the start with
SoF and with EoF at the end [1].

The bit-oriented SDD frame is used for solving collision. It is derived from
the standard frame with 7 data bytes split up into 2 parts. Part 1 is sent
by NFC Device in Poll Mode and part 2 by NFC device in Listen Mode.
Complete description of this frame is located in [1].

10

................................. 2.1. Type 2 Tag Platform

2.1.5 Commands and responses

Table 2.1 lists all the commands available for NFC Forum Type Tag 2 Platform.
For each command additional information are stated - command code and
the frame type.

NFC Type 2
Command

Command
code

Response Frame Type
cmd/res

SENS_REQ 26h SENS_RES short/standard
ALL_REQ 52h SENS_RES short/standard
SEL_REQ 9xh SEL_RES standard
SDD_REQ 9xh SDD_RES bit oriented
SLEEP_REQ 50h 00h - standard

READ 30h
READ/NACK
response

standard

WRITE A2h
ACK/NACK
response

standard

SECTOR
SELECT

C2h
ACK/passive
ACK/NACK

standard

Table 2.1: NFC Type 2 Commands [1] [2]

SENS_REQ and ALL_REQ commands are used for detecting NFC Forum
Type 2 Devices in Listen Mode. Difference between these commands is Type
2 Tag responds to ALL_REQ in SLEEP_A state (see Figure 4.1) [1] [6].

SDD_REQ is used for resolving the collision (whether more than one
device is in Operating Field of NFC Forum Device in Poll Mode). SDD_REQ
also serves for obtaining NFCID1 of an NFC Forum Device in Listen Mode
[1] [6].

SEL_REQ selects the NFC Forum Device in Listen Mode according to
sent NFCID1 of length 4 bytes. These 4 bytes are additionally protected with
BCC byte - calculated as exclusive-or checksum [1] [6].

Issued SLEEP_REQ command puts NFC Forum Device in Listen Mode
to SLEEP_A state. NFC Forum Device in Listen Mode must not respond to
this command and NFC Forum Device in Poll mode must always consider
this command to be executed properly [1] [6].

READ command consists of the command code 30h and one parameter -
block number (BNo). Response from the NFC Type 2 Tag Platform is 16

11

2. Near Field Communication...............................
bytes long payload of data, which means 4 concurrent blocks are returned
to NFC Forum Device in Poll Mode. In case of error, Type 2 Tag Platform
responds with NACK response [2].

NFC Forum Device in Poll Mode may also write data to Type 2 Tag
Platform by issuing WRITE command. Only the whole block is written with
one WRITE command,. If the WRITE command is executed successfully, the
Acknowledgement (ACK) response is returned to NFC Device in Poll Mode.
Otherwise, the Negative Acknowledgement (NACK) response is returned [2].

The last command in command set of this platform is SECTOR SELECT,
which is designated for physical memories bigger than 1 KB - is used to switch
between 1 KB big sectors. The SECTOR SELECT command is issued with 2
separated packets. The goal of the first packet is to get information whether
memory is actually bigger than 1 KB. In that case ACK response is issued
by the Type 2 Tag Platform. If the memory is smaller, NACK response is
returned. After ACK response the second packet is transmitted with specific
sector number and three Reservedf for Future Use (RFU) bytes (00h). If the
sector number is inside the available memory, no further response is issued -
this is called passive ACK Response. If the sector number is outside of the
available memory, NACK response is sent back to NFC Forum in Poll Mode
[2].

2.1.6 Timing requirements

When it comes to meeting the timing requirements, three important time
constants must be fullfilled for NFC Type 2 Tag platform communication.
The first one is The Frame Delay Time Poll → Listen, defining the interval in
which Listen Frame is allowed to be sent by values FDTA,LIST EN,MIN and
FDTA,LIST EN,MAX [1].

If sent command is ALL_REQ, SENS_REQ, SDD_REQ or SEL_REQ,
FDTA,LIST EN,MIN equals FDTA,LIST EN,MAX and Listen Frame has to be
sent at specific point in time. FDTA,LIST EN,MIN value depends on the logic
value of the last data bit - on the position of the last V2 pulse. FDTA,LIST EN

then takes values according to:

FDTA,LIST EN = n ∗ 128/fc + x/fc,

where x depends on the last logic bit and n depends on the command, which

12

................................. 2.1. Type 2 Tag Platform

Parameter Value
FDTT 2T,READ,MAX 5 ms
FDTT 2T,W RIT E,MAX 10 ms
FDTT 2T,SL,MAX 1 ms

Table 2.2: FDTP OLL,A,MAX values for READ, WRITE and SECTOR SELECT
[1]

is being sent - for previously mentioned groups of commands (ALL_REQ,
SENS_REQ, SDD_REQ and SEL_REQ) its value is 9, for all other com-
mands it is equal or bigger than 9 [1]. FDTA,LIST EN must be respected by
Tag with tolerance from −1/fc to 0.4 µs+ 1/fc [1] [6]. READ, WRITE and
SECTOR SELECT commands have their own defined FDTA,LIST EN,MAX

values, listed in Table 2.2 [1].

FDTA,LIST EN time also contains two smaller time intervals, both with its
own meaning. From the end of the Poll Frame (beginning of the FDTA,LIST EN

time), NFC Forum Device must ignore any response from NFC Device in
Listen mode during a time FDTA,LIST EN,MIN − 128/fc. Also NFC Device
in Listen Mode cannot produce any disturbance before sending a response in
time for at least [1]

tnn,min = FDTA,LIST EN − (FDTA,LIST EN,MIN − 128/fc).

NFC Forum Device in Poll Mode after the reception of a Listen Frame
has to wait certain time, before it sends a new Poll Frame. This time is
FDTA,P OLL,MIN , and it depends on the logic value of the last data bit. That
means FDTA,P OLL measurement starts from the end of subcarrier’s last
modulation. This time constant value is not divided into discrete values as
FDTA,LIST EN is, it is limited from one side only and the minimum value is
1172/fc.

The last requirement is applied to NFC Forum Device in Listen Mode, which
must be able to receive initiating commands ALL_REQ or SENS_REQ after
so-called guard time GTA of unmodulated carrier. Value of this parameter
for NFC-A Technology is 5ms [1].

2.1.7 NFC Data exchange format - NDEF

NFC Data Exchange Format (NDEF) is lightweight binary message format
for encapsulation of one or more payloads with arbitrary size and type into

13

2. Near Field Communication...............................
one message construct. NDEF Message is located in Data Area of Memory
Structure, more specifically in NDEF Message TLV block (TLV block with
03h T field value, see Section 2.1.1) [9] [10].

Options of managing NDEF Message are obtained by reading Capability
Container (CC). The CC is located in the block 3 of the memory structure
(both static and dynamic). The CC can also be written with WRITE
command. Using this command the current content of the CC is bit-wise
"OR-ed" with 4 data bytes from WRITE command. By this mechanism if a
bit is set to logic 1, a change to logic 0 is not possible [2].

Every CC byte has its specific use. Byte 0 should be equal to E1h (so-
called magic number), indicating NFC Forum defined data is stored in data
area. Byte 1 determines the version number of NFC Type 2 Tag Operation
Specification document. Byte 2 specifies memory size in number of 8 bytes
and byte 3 indicates read and write access capability of data and CC area [2].

Based on values in the CC and correct presence of NDEF Message TLV in
data area (for example L field value is equal to 0), NFC Forum Device might
detect the NDEF presence, read the NDEF message using READ command
or write NDEF message inside NDEF Message TLV with WRITE command.
If the data to be read or written exceeds the current sector, switch to another
sector shall be made with SECTOR SELECT command [2].

2.1.8 Anticollision

At first, to be able to handle the situation like the collision, it has to be
defined as a phenomenom. Collision happens in case, when more than one
NFC Type 2 Tag are responding to SDD_REQ command. In that case, the
data part of SDD_RES response will differ at some point and anticollision
loop should be applied. In general concept is simple - sending SDD_REQ
command with the part of NFCID1 that was already successfully received
until the complete NFCID1 is stored in NFC Forum Device. After the whole
NFCID1 reception that NFC Type 2 Tag is put to sleep with SLEEP_REQ
and NFC Forum Device tries to get NFCID1 from another NFC Type 2 Tag
in the field [11].

14

Chapter 3

Digital design verification and UVM

In general the goal of verification process is to make sure the simulated device
completes its task according to the specification. Digital verification has been
evolving very quickly together with digital circuits design and because of
rapid design complexity, the growth of digital verification has to keep up.
Modern hardware verification language needs to model structures also at
higher abstraction levels and more similar approach like software programming
can be used, because verification modules do not have to be synthesizable
[12] [13].

At around 15 years ago, many languages were used for digital circuits verifi-
cation, like Vera and e, but currently the most used language is SystemVerilog.
SystemVerilog is based upon Verilog with addition of objected-oriented pro-
gramming constructs and is IEEE standard since 2005 [12].

First of all, to make the job for verification engineers the most intuitive
and their results reusable, each main EDA vendor developed their own
methodology for customers using their own tools. The first widely used
methodology named Verification Methodology Manual (VMM) had been
created by Synopsis, later Mentor Graphics and Cadence introduced Open
Verification Methodology (OVM) [13] [14].

These standards along with many others had formed a strong foundation of
knowledge and experience, which eventually led to the creation of Universal
Verification Methodology (UVM). UVM is derived mostly from OVM, but
also uses elements from other standards. Its development is in charge of
Accelera Systems - a nonprofit independent organization composed of EDA
vendors such as Cadence, Mentor, Synopsis etc [15].

Therefore UVM as an open-source library is widely supported by every

15

3. Digital design verification and UVM...........................
major simulation software and is aiming to be the methodology suited for
every type of digital design, in regards of size, target technology and design
type orientation. However, to reach an efficient level of verifying logic designs,
small subset of UVM is really needed. The most important parts are described
in the following subsections [16] [13]. At the end of this chapter in Section
3.6 term coverage is defined, so it could be used later in creating complete
verification component.

3.1 UVM testbench basics

UVM Testbench is constructed in layered, object-oriented way, which empow-
ers division of work to be done. Modular architecture specifies functions each
component is responsible for and that also enables easy reusability [13].

The lowest layer is RTL (or gate-level) description of a Device Under Test
(DUT), which communicates with transactor layer through pin-level activity
on one or more virtual interfaces. Transactor layer contains monitors and
drivers and serves as a conversion layer between the pin-level signals and the
transactions. These transactions are then passed on to testbench layer above,
which controls the flow of the test and generates input stimulus [13].

All the modules are connected between themselves and encapsulated within
one UVM Environment, which is configured and built in UVM Test. UVM
Test is therefore the starting point for the build process and apart from
the building and configuring environment its job is to specify and apply the
constrained-random stimulus [13].

UVM Components in UVM Testbench are instances of UVM Classes, which
are derived from uvm_component class. These components are part of the
testbench hierarchy for the whole duration of the test, while sequences are
not (they are extended from uvm_sequence class). UVM also implements a
lot of other classes and macros, for example useful UVM messaging system,
which displays messages in consistent format inside UVM testbench, and
much more (see [17]).

16

.................................... 3.2. UVM Factory

3.2 UVM Factory

The UVM Factory creates UVM objects and components and enables to
substitute them by derived objects and components without changing the
testbench structure. This way the change of sequence behaviour can be
changed, or component might be replaced by its newer version [13] [18].

Proper coding must be followed to ensure factory functionality. Firstly,
components and object are registrated with corresponding registration macros
‘uvm_component_utils and ‘uvm_object_utils. The next step is to use a
factory constructor with constructor defaults. Subsequently, components are
created during the build phase with create() method [13] [18].

3.3 UVM Configuration Database

Components and objects may share resources between themselves (by resource
is meant any piece of information), and recommended way do to that is
uvm_config_db. uvm_config_db accesses resource database by using two
simple methods - uvm_config_db::set and uvm_config_db::get. There are
no limitations on the type of information, and classic examples of using
uvm_config_db are passing virtual interfaces from DUT domain to the test
and passing configuration objects through the testbench hierarchy [17] [13].

3.4 UVM Phases

UVM uses phases to ensure consistent execution flow, and they can be divided
into three main groups. UVM phase execution starts by calling run_test()
method usually from the inside of the top module block. The job of the first
group of phases - build phases, is to construct, configure and connect the
testbench component hierarchy.

After build phases follow run time phases, in which stimulus is generated
and applied to DUT. There are also parallel run-time phases, which are
executed together with run phase and allow to specify task execution in time
more precisely. In the end information from scoreboards need to be extracted
and evaluated, and this task is reserved for clean up phases. During the clean
up phases no simulation time need to be used, therefore they are implemented

17

3. Digital design verification and UVM...........................
as functions [13].

3.5 UVM Environment

UVM Environment encapsulates all the verification components targeting the
DUT, usually they are configurable through data passed from uvm_config_db
[17].

3.5.1 UVM Sequencer and Sequences

The UVM Sequencer works at testbench layer and controls the flow of UVM
Sequence items generated by one or more UVM Sequences to UVM Driver.
Sequences are objects that have necessary information for generating stimulus.
Unlike the UVM Sequencer, there are not part of the testbench hierarchy, and
can be described as a transient object. This means after sequence execution
it can be discarded and testbench moves on to next step of UVM Test [13].

3.5.2 UVM Scoreboard

The UVM Scoreboard collects the input and output sequences of DUT through
the UVM Agents analysis ports and checks if the DUT behaviour is correct.
The check is done by comparison of DUT response and expected output
generated by a reference model implemented in the testbench [17].

3.5.3 UVM Driver

Inputs to DUT are on a pin-level basis, that means the transactions passed
from the UVM Sequencer must be converted to be able to communicate with
DUT via a virtual interface. Drive can also act as a "responder" - it reacts
to pin-level activity in the virtual interface and passes the information to
the sequence, which then sends a response transaction back to the driver to
complete the communication [17] [13].

3.5.4 UVM Monitor

The UVM Monitor has a reverse task as a driver in the testbench - it converts
pin-level activity back to transactions. Homewer, the monitor behaviour

18

................................3.6. SystemVerilog Coverage

should be passive only and cannot affect the DUT in any way. A monitor
just samples the DUT activity and passes the recognized transactions to the
other parts of the testbench. To do so, a monitor must implement protocol
rules and look for recognizable patterns in the virtual interface [13].

3.5.5 UVM Agent

All UVM Components dedicated to one logical interface (for example USB)
are grouped within one hierarchical component - the UVM Agent. A common
UVM Agent consists of an UVM Driver, an UVM Monitor and an UVM
Sequencer, but might also contain some other components, for example
coverage collector [17].

3.6 SystemVerilog Coverage

Coverage should be the part of designed Universal Verification Component
(UVC), therefore it is important to explain its purpose. It can be defined as
percentage of verification objectives that have been covered. Basically, the
coverage measures tested and untested parts of the design [19].

Two types of coverage may be used. The first one is called code coverage,
which measures amount of the code in the design (blocks, lines, state machines)
that is tested. Code coverage is measured by simulator and the collection
needs to be turned on during the configuration of simulation run [19].

Functional coverage is manually implemented by verification engineer and
measures the amount of design specification that is already tested. [20]
[19]. Functional coverage uses SystemVerilog covergroup construct and can
be collected using one common component in the testbench or inside the
component where the data are present.

Coverage is used as a central part of CDV - Coverage Driven Methodology.
This approach uses test cases only to steer the contrained random sequences
toward 100 % coverage. The coverage is therefore the main measure of
successful execution of the verification plan, which results in better traceability
[21]. CDV approach was later improved by Cadence and labeled by name
Metric Driven Verification (MDV). It is based on metrics collections and can
be divided into 4 steps executed continuosly until the verification is complete
[22].

19

3. Digital design verification and UVM...........................
These 4 steps are:

plan creation of the verification plan, a document specifying the requiere-
ments and way of verifying them,

construct implementation of the verification environment,

execute all the test cases are run and results are checked,

measure and analyze coverage data are mapped to the verification plan
and results are analyzed. Cadence has its own tool called vManager,
which can fire the regression and directly correlate results with the
verification plan [22] [23].

20

Part II

Practical Part

21

22

Chapter 4

Verification plan

Verification plan proposal is the first step in creating well structured and
reliable verification component. In the following sections of this chapter each
aspect of UVC preparation will be described. As it was previously stated,
verification component is implemented by using SystemVerilog language and
Universal Verification Methodology.

4.1 Requirements

List of requirements has to include all the rules from the design and standards
specifications that should be covered by verification. Well written require-
ments list is therefore an essential part of verification process. Requirements
for covering NFC Type 2 Tag platform are based on all NFC specifications
[1] [7] [2] [11] together with original ISO 14443 standards, namely [8] and [6].

Requirements are divided into 5 main groups, each requirement has its
own description, origin, priority and method, which is used for covering the
requirement. This can be done by checker, test case, coverage points or by
their combination.

4.1.1 Physical layer requirements

First group of requirements Table 4.1 covers physical aspects of communi-
cation, which DUT must follow. This group is solely covered by assertions
in nfc2_t2r_monitor component, which decodes the response from DUT.
Physical layer has the highest priority to be verified.

23

4. Verification plan

Requirement Specification Priority

Checkers/
Coverage/
Scenario
(CH/CV/SC)

HF_PHY_T2R_1

NFC Digital 4.1.2
NFC Digital 4.1.4
NFC Digital 4.2.2
NFC Digital 4.

1 CH

HF_PHY_T2R_2

Digital 4.1.2
NFC Digital 4.1.4
NFC Digital 4.2.2
NFC Digital 4.

1 CH

HF_PHY_T2R_3

NFC Digital 4.1.2
NFC Digital 4.1.4
NFC Digital 4.2.2
NFC Digital 4.

1 CH

Table 4.1: Requirements - physical layer

HF_PHY_T2R_1

Verify that for each response DUT uses OOK fs subcarrier modulation with
Manchester coding, with fs = fc/16 ∼= 847.5kHz [1].

HF_PHY_T2R_2

Verify that each DUT response frame starts with SoF sequence and ends with
EoF sequence [1].

HF_PHY_T2R_3

Verify that standard and bit oriented SDD frames contain correct odd parity
and particular responses (SEL_RES, READ_RES) have valid end of data
field (EoD - CRC16) [1].

24

.................................... 4.1. Requirements

4.1.2 Timing requirements

Another aspect of DUT behaviour is following timing specifications from
Table 4.2. These rules also have the highest priority and each is covered by
checkers.

Requirement Specification Priority

Checkers/
Coverage/
Scenario
CH/CV/SC

HF_PHY_T2R_4 NFC Digital 4.10 1 CH
HF_PHY_T2R_5 NFC Digital 4.10 1 CH
HF_PHY_T2R_6 NFC Digital 9.9 1 CH
HF_PHY_T2R_7 NFC Digital 9.9 1 CH
HF_PHY_T2R_8 NFC Digital 9.9 1 CH

Table 4.2: Requirements - Timing specifications

HF_PHY_T2R_4

DUT shall not produce any disturbance during at least tnnmin time to tnn
time before the response start. Value of tnnmin differs for possible last bits
[1]. Detectable disturbance is not defined in this standard, but for digital
output signal of DUT is no change on output allowed besides DUT response
to command. That is why this requirement is covered by nfc2_r2t_monitor
structure, which does not allow any unknown patterns and always tries to
create a nfc2_base_res item, otherwise it reports ‘uvm_error.

HF_PHY_T2R_5

DUT shall send the response at time FDTA,LIST EN,MIN time or after - this
depends on the type of command and last V2 modulation. For group of
commands - ALL_REQ, SENS_REQ„ SDD_REQ, SEL_REQ response
must be sent at specific point in time equal to FDTA,LIST EN,MIN with
tolerance of −1/fcto(0.4µs+ 1/fc), where

FDTA,LIST EN,MIN,log,0 = n ∗ (128/fc) + 20/fc = 1172/fc, wheren = 9,
FDTA,LIST EN,MIN,log,1 = n ∗ (128/fc) + 84/fc = 1236/fc, wheren = 9.

Correct FDTA,LIST EN time for each command is verified by checkers in

25

4. Verification plan
nfc2_scoreboard.

HF_PHY_T2R_6

For READ command response must be sent after FDTA,LIST EN,MIN from
HF_PHY_T2R_5 and at least 5 ms from the last V2 mod, while n must
be integer value equal or higher than 9. This requirement is verified with
checker inside nfc2_scoreboard.

HF_PHY_T2R_7

For WRITE command response must be sent after FDTA,LIST EN,MIN from
HF_PHY_T2R_5 and at least 10 ms from the last V2 mod, while n must
be integer value equal or higher than 9. This requirement is verified with
checker inside nfc2_scoreboard.

HF_PHY_T2R_8

SECTOR SELECT response must be sent after FDTA,LIST EN,MIN from
HF_PHY_T2R_5 and at least 1 ms from the last V2 mod, while n must
be integer value equal or higher than 9. This requirement is verified with
checker inside nfc2_scoreboard.

4.1.3 Tag state requirements

Third group defines DUT behaviour in each state from NFC Type 2 Tag
Platform State Machine. For verification of this group combination of cross
coverage and directed test cases shall be used. These requirements have
priority 2, which means they should be verified, but will be implemented
after priority 1 requirements. Due to the larger required space, the table for
these requirements is omitted, but all requirements are derived from Figure
4.1 and each Tag state has its own requirement [2].

4.1.4 Commands requirements

Response of DUT for each command needs to be verified from logical stand-
point. This is implemented by modeling Tag behaviour and predicting the re-
sponse according to the current state of the Tag derived from Figure 4.1. This

26

.................................... 4.1. Requirements

Figure 4.1: Type 2 Tag Platform State Machine [1].

predicted item is later compared to captured item from nfc2_t2r_monitor in
the nfc2_scoreboard by using checkers.

Every command has one requirement, in which correct response has to
be verified in the proper state. These requirements are not present in Table
4.3. The requirements in Table 4.3 cover command variable fields and special
scenarios.

HF_SDD_REQ_2

Verify DUT response for each valid combination of SEL_PAR, NFCID1 and
CL fields in SDD_REQ command.

HF_SDD_REQ_3

Verify that DUT ignores SDD_REQ command with invalid combination of
SEL_PAR and NFCID1 fields and transitions to IDLE/SLEEP_A state.

27

4. Verification plan

Requirement Specification Priority

Checkers/
Coverage/
Scenario
CH/CV/SC

HF_SDD_REQ_2 NFC Digital 4.7 2 CV/SC
HF_SDD_REQ_3 NFC Digital 4.7 2 SC
HF_SDD_REQ_4 NFC Digital 4.7 2 SC
HF_SEL_REQ_2 NFC Digital 4.8 2 SC
HF_SEL_REQ_3 NFC Digital 4.8 2 SC
HF_SLP_REQ_1 NFC Digital 4.9 2 SC

HF_READ_2
NFC Type 2 Op.
Spec. 5.1, 5.4

2 CV/SC

HF_WRITE_2
NFC Type 2 Op.
Spec. 5.2, 5.4

2 SC

HF_WRITE_3
NFC Type 2 Op.
Spec. 5.2, 5.4

2 SC

HF_WRITE_4
NFC Type 2 Op.
Spec. 5.2, 5.4

2 SC

HF_SEC_S_1
NFC Type 2 Op.
Spec. 5.3, 5.4

2 CH

HF_SEC_S_2
NFC Type 2 Op.
Spec. 5.3, 5.4

2 SC

Table 4.3: Requirements - Commands coverage and scenarios

HF_SDD_REQ_4

Verify that DUT ignores SDD_REQ command with higher CL field than it
actually contains and transitions to IDLE/SLEEP_A state.

HF_SEL_REQ_2

Verify that DUT ignores SEL_REQ command with higher CL field than it
actually contains and transitions to IDLE/SLEEP_A state.

28

.................................... 4.1. Requirements

HF_SEL_REQ_3

Verify that DUT ignores SEL_REQ command with incorrect NFCID1 field
for each CL field and transitions to IDLE/SLEEP_A state.

HF_SLP_REQ_1

Verify successfull SLP_REQ command execution by issuing SENS_REQ
and ALL_REQ sequence. DUT shall not respond to SENS_REQ but shall
respond to ALL_REQ and shall transition to READY_A* state.

HF_READ_2

Verify that DUT sends NACK response for READ command with block
number out of memory space and transitions to IDLE/SLEEP_A state.

HF_WRITE_2

Verify that DUT sends NACK response for WRITE command with block
number out of memory space and for blocks 0 and 1 (read-only blocks) and
transitions to IDLE/SLEEP_A state.

HF_WRITE_3

Verify that DUT locks correct Data blocks from Static Memory Structure
after WRITE command to block 2.

HF_WRITE_4

Verify that blocks 2 and 3 are irreversible after WRITE command - after the
write of logic 1 cannot be changed back to logic 0.

HF_SEC_S_1

Verify that DUT issues NACK response after SECTOR SELECT command
packet 1 in ACTIVE_A/CARD_EMULATOR_A/ACTIVE_A*/
CARD_EMULATOR_A* states and transitions to IDLE/SLEEP_A state.

29

4. Verification plan
HF_SEC_S_2

Verify that DUT ignoresSECTOR SELECT command packet 2 and transitions
to IDLE/SLEEP_A state.

4.1.5 Negative scenarios

Cases labeled as negative scenarios drive the DUT with purposely invalid
transactions. Types of invalid injections, which will be verified are sending
command before allowed FDTA,P OLL time, invalid parity bits, CRC, or
completely missing these fields. These requirements should be implemented
with their own directed test cases and have priority 3 - could be verified, if
the schedule allows it.

4.2 Verification strategy

Verification uses constraint random verification approach and DUT is accessed
as a black-box. This way the UVC shall be easily reusable and independent
of actual RTL design.

Completeness should be measured by number of requirements implemented
and covered. Implemented requirement means that it is linked to all selected
items - functional coverage, checker and test cases. Covered requirement has
100 % coverage from all corresponding items.

Test cases should be implemented in two ways - as a constrained random
tests with minimum constraints to reach coverage goals faster, or directed
approach can be used for specific scenarios. All the test cases are shared for
RTL and gate-level simulation.

UVC to be designed should be implemented in the most customizable way.
Testbench environment and its components should have their configuration
files, where their functions could be turned off.

The goal of verification is to achieve 100 % code coverage and functional
coverage with all test cases without any reported error.

30

.. 4.3. Tools

4.3 Tools

Main software used for simulations is Cadence Incisive 15.20-s009 For viewing
coverage extracted data Cadence Integrated Metrics Center 15.20-s009 is
used.

Cadence Incisive is called by user-written Perl script compile_script, which
has as a parameter -t test case which will be run. This script passes all
the necessary arguments (e.g. enables coverage collection, Graphics User
Interface - GUI, and specifies UVM message level) to common irun command
that parses and executes them.

4.4 Checkers implementation

All checkers are implemented as immediate assertions located in passive
components, i.e. nfc2_t2r_monitor and nfc2_scoreboard. Assertions shall
be exclusively labeled and use this template:

assert_<unique_name> : assert(<condi t ion >) begin
//Pass message
‘uvm_info(get_type_name () , $sformatf ("%m :
In format ion %d" , data) , <verbos i ty >)

end
else begin

‘uvm_error(" get_type_name () " , $sformatf ("%m :
In format ion : %d" , data))

end

4.5 Coverage implementation

Functional coverage is implemented inside relevant components with coverage
groups containing cover points and cross coverage. For each covergroup this
template is used:

31

4. Verification plan
covergroup cov_grp_<unique_name>;

cov_<unique_name> : coverpoint <item_name> {
//Bins are crea t ed au t oma t i c a l l y or manually

}
cross_<unique_items_name> : cross <item_name_1>,
<item_name_2> {

// I f needed , some b ins may be ignored
ignore_bins ignore_these_<items> =
binsof(<item_name_1>) intersect {<va l_ l i s t 1 >} | |
binsof(<item_name_2>) intersect {<va l_ l i s t 2 >};

}
endgroup

4.6 Test cases implementation

Test cases shall be derived from nfc2_test_base class, which creates the
nfc2_env verification environment, nfc2_env_cfg environment configuration
object instance and initializes it. Derived test case modifies the properties in
configuration and starts a sequence.

4.7 UVM usage

Designed UVC uses the set of UVM macros and classes described in, namely:

. all UVC components are derived from the most suitable UVM class and
use their inherited methods,. uvm_config_db database is used for passing necessary objects between
components,. UVM report macros ‘uvm_info, ‘uvm_warning, ‘uvm_error and ‘uvm_
fatal are used most of the time for reporting. Message verbosity is altered
by "+UVM_VERBOSITY=: option and can be set to UVM_DEBUG,
UVM_FULL, UVM_HIGH, UVM_MEDIUM, UVM_LOW or
UVM_NONE.

32

Chapter 5

Implementation of UVC for NFC Type 2
Tag

Designing UVC for NFC Type 2 Tag Platform is the next task after prepara-
tion of verification plan, whom content needed to be taken into consideration.
Before starting to write the code, it is better to divide the particular tasks
and propose a system-level design of solution.

As it was previously mentioned, the main goal of the UVC is to verify DUT’s
full functionality according to NFC Type 2 Tag Platform. Required UVC
should therefore support all protocol commands and corresponding responses
and know how to modulate and demodulate communication channels from
DUT interface. In the verification plan there are also requirements, which
need invalid sequences or valid command in incorrect time. Thus it is essential
not only be able to communicate with DUT using the protocol correctly,
but also to inject the protocol errors. This is achieved by properly written
command classes and compatible driver.

This chapter will describe UVM components and objects that take care of
driving the connected DUT, collecting the functional coverage, and predicting
and verifying the DUT responses. Base classes of NFC commands and
responses will be described before the UVC analysis on a system level, so one
can understand the conception of how they are used in the UVC.

5.1 Command and response items

Both NFC command and response classes inherit fields and methods from their
respective base classes, and carry all the basic properties. If the command or

33

5. Implementation of UVC for NFC Type 2 Tag
response is more complex, additional fields or methods are implemented.

5.1.1 nfc2_base_cmd class fields

Base item class for commands nfc2_base_cmd extends uvm_sequnce_item
class and contains these fields:

class nfc2_base_cmd extends uvm_sequence_item ;
// f i e l d s
rand bit crc_present ;
rand bit cmd_len_valid ;
rand bit crc_va l id ;
rand bit parity_ok ;
rand bit so f_present ;
rand bit eo f_present ;
rand nfc2_frame_format_e nfc2_frame_format_i ;
rand nfc2_bit_rate_e nfc2_bit_rate_i ;
rand bit [6 : 0] nfc2_pause_a_len ;
rand bit [7 : 0] n fc id1_len ;
rand nfc2_wait_after_res_e nfc2_wait_after_res_i ;
nfc2_byte_stream_q tx_stream ;
nfc2_command_e nfc2_command_i ;
int res_max_wait_time ;
bit [7 : 0] cmd_code ;
bit [1 5 : 0] crc_i ;
time cmd_end_time ;
// . . .

endclass : nfc2_base_cmd

Unusual datatypes from the field declaration are defined in the common
SystemVerilog file together with all required constants and datatypes used
in the test bench. nfc2_byte_stream_q is a queue of bytes and holds the
payload that driver processes based on the other fields. nfc2_command_e is
enumerative type of all supported NFC commands, nfc2_frame_format_e
similarly holds the possible frame formats, nfc2_bit_rate_e bit rates and
nfc2_wait_after_res_e options for issuing another command before or after
allowed FDTP OLL,MIN or GTA time (see Section 2.1.6).

All rand fields are properly constrained by using soft construct, so in case

34

............................. 5.1. Command and response items

of negative scenario the constraint might be violated.

nfc2_base_cmd class also implements basic functions for randomization,
computing CRC16, converting queue to transaction and vice versa and printing
functions for reporting in simulators console. Another characteristics are later
implemented in classes for specific commands.

5.1.2 nfc2_base_res class fields

Base item class for Tag responses nfc2_base_res is also extented from
uvm_sequnce_item class and contains these common fields:

class nfc2_base_res extends uvm_sequence_item ;
// f i e l d s
rand bit crc_va l id ;
rand bit crc_present ;
rand bit parity_ok ;
rand bit res_len_val id ;
rand nfc2_frame_format_e nfc2_frame_format_i ;
rand nfc2_bit_rate_e nfc2_bit_rate_i ;
rand bit [7 : 0] n fc id1_len ;
time res_start_time ;
int unsigned time_res ;
nfc2_command_e nfc2_command_i ;
nfc2_response_e nfc2_response_i ;
nfc2_byte_stream_q rx_stream ;
bit [1 5 : 0] crc_i ;
// . . .

endclass : nfc2_base_res

These fields are very similar to nfc2_base_cmd fields, but apart from
that there is information about the type of response in nfc2_response_e
enumerative type and response start time for validating timing.

nfc2_base_res class also implements basic functions for randomization,
computing CRC16, converting rx_stream queue to transaction and vice versa,
printing functions for reporting in simulator console and checking correct
length of response.

35

5. Implementation of UVC for NFC Type 2 Tag
5.2 System-level design of the testbench

Division of the testbench (TB) to modules is displayed on Figure 5.1. Names
of the modules all start with shortcut nfc2_. In the nfc2_tb_top module
selected testcase together with DUT module are created, also virtual interface
connecting DUT to the testbench is created and passed into the nfc2_env
environment.

Figure 5.1: System level of implemented testbench.

After that the selected test case is launched and build of the nfc2_env and
nfc2_env_cfg begins. This environment contains 4 components:

. 2 agents designated for transmitting and receiving logic signals from the
interface,. nfc2_tag_model modeling DUT NFC Type 2 Tag behaviour and pre-
dicting the Tag response,. nfc2_scoreboard verifying DUT response by comparing it to nfc2_tag_
model predicted item.

Environment nfc2_env also has to connect these components during con-
nect_phase and for that uses uvm_analysis_port #(<item_name>). In this

36

.......................... 5.2. System-level design of the testbench

instance three analysis ports are needed. Analysis port cmd_aport exports
captured command from nfc2_r2t_monitor to nfc2_tag_model, analysis
port res_aport passes captured DUT response from nfc2_t2r_monitor to
nfc2_scoreboard and the last analysis port res_p_aport transports predicted
response from nfc2_tag_model to nfc2_scoreboard.

5.2.1 Configuration objects

Object nfc2_env_cfg holds all configurable settings of the UVC. Inside this
object another three configuration files are created - one for each agent and
one configuring specific DUT parameters for nfc2_tag_model. These objects
are passed on to uvm_config_db and relevant components can access them
by using get method.

Configuration objects for the agents specify if the checkers inside its moni-
tors are applied and whether the component is active or passive.

Object nfc2_tag_cfg configures all the DUT properties needed for the
implemented test bench, which includes:

. number of Data memory blocks,. response for SENS_REQ and ALL_REQ commands,.maximum cascade level,.mask for SEL_RES response,. information about where the NFCID1 is stored in memory,. coverage enabling bit.

5.2.2 nfc2_r2t_agent and nfc2_sequencer

nfc2_r2t_agent encapsulates three components: nfc2_sequencer, nfc2_driver
and nfc2_r2t_monitor. Its main task is to instantiate, create and connect
them in corresponding phases. Besides that it gets the virtual interface from
the uvm_config_db and assigns it to nfc2_driver.

nfc2_sequencer code is very simple, it just needs to register itself within
the UVM factory, all the other methods are inherited from uvm_sequencer
class. The sequences for driving are given from the test case and are requested
by nfc2_driver to process them.

37

5. Implementation of UVC for NFC Type 2 Tag
5.2.3 nfc2_driver

Driver nfc2_driver has 2 main roles during the run_phase, and that is
generating the fc clock and processing the items given by nfc2_sequencer and
driving the DUT with that item after the conversion to logical level according
to Modified Miller coding from Section 2.1.2. These tasks are done in parallel
by using SystemVerilog fork construct:

fork
clock_gen (fc_hal f_per) ;
forever begin

seq_item_port . get_next_item (seq_req_inst) ;
process_item (seq_req_inst) ;
detect_res_end (seq_req_inst . res_max_wait_time ,
seq_req_inst . nfc2_wait_after_res_i) ;
seq_item_port . item_done () ;

end
join

Implemented nfc2_driver uses the relevant item fields (e.g. parity_ok,
pause_a_len) during the whole command processing. It has separate func-
tions for each NFC frame format, and adds parity bits if necessary. nfc2_driver
component uses set of functions for modulating the DUT input port, which
are based on fc clock cycles.

Method detect_res_end after process_item() implements basic detec-
tion of the DUT response end, and sets time delay according to item
field nfc2_wait_after_res_i. Delay can be smaller than mandatory time
FDT_POLL,MIN , always minimal or randomly generated.

5.2.4 nfc2_r2t_monitor

Component monitoring DUT input port was implemented, so each component
is independent. That way if now used nfc2_driver is disconnected, another
module can drive the DUT. Also this nfc2_r2t_monitor checks and validates
nfc2_driver functionality. Main task of nfc2_r2t_monitor is running in
forever loop, where it detects SoF sequence, captures the data bits until
the EoF sequence occurs. Command recognition starts after this process,
nfc2_r2t_monitor first checks amount of bits captured, and looks for the

38

.......................... 5.2. System-level design of the testbench

command code match. Based on captured command, CRC16 field might
be checked, and correct method to validate command lenght is used. If the
frame format is not short, nfc2_r2t_monitor also checks parity bits. For
timing validation purposes nfc2_r2t_monitor stores last modulation time
to item. In the end nfc2_r2t_monitor writes captured item to analysis port
cmd_aport and looks for another command SoF.

5.2.5 nfc2_t2r_agent and nfc2_t2r_monitor

Agent nfc2_t2r_agent incorporates only the Tag monitor nfc2_t2r_monitor,
so its duties are to create it, get virtual interface from uvm_config_db and
pass it to the nfc2_t2r_monitor.

Tag monitor validates the physical layer of Tag responses alongside the
response detection. It works on the same concept as nfc2_r2t_monitor. That
means detecting the start of frame, catching and decoding the response until
the end of response frame sequence appears. nfc2_t2r_monitor always tries to
recognize the response, but sometimes it is not possible, because information
about issued NFC command is needed for definite decision. Nevertheless the
parity bits are checked in case of standard or bit oriented SDD frame and
data validation is left up to nfc2_scoreboard.

5.2.6 nfc2_tag_model

Predictor model implements NFC Type 2 Tag Platform behaviour like DUT,
but in SystemVerilog language. To do that, nfc2_tag_model includes models
of behaviour for each supported NFC command and has its own memory
model. Memory model is initialized by the same input file as DUT memory,
and implements all the features of NFC Type 2 Tag Platform Static Memory
Structure. Read and write operations are executed by using write_block() and
read_blocks() functions. At the end of the write_block() execution change in
static locks settings by check_static_locks() function and particular blocks
are locked if necessary. The memory model also supports irreversible bits.

Tag predictor reacts to incoming item from nfc2_r2t_monitor, and proceeds
to response prediction according to nfc2_command_i field. At first type of
response is predicted by command model. nfc2_tag_model stores its own
internal state from Tag State Machine and evaluates whether it shall generate
the response or ignore the command. Next tag state is also predicted following

39

5. Implementation of UVC for NFC Type 2 Tag
Type 2 Tag Platform State Machine [2]. Afterwards the correct response
is generated and written to res_p_aport analysis port. If the command is
ignored, no item is sent through analysis port. nfc2_tag_model also in some
cases predicts the correct time in which the DUT response has to come. This
is done for SENS_REQ, ALL_REQ, SDD_REQ and SEL_REQ commands,
because they shall be sent at particular time slot. For the rest of the NFC
commands computation is carried out in nfc2_scoreboard.

5.2.7 nfc2_scoreboard

nfc2_scoreboard receives captured and predicted nfc2_base_res item and has
to compare them. Implemented scoreboard uses simple 1 bit synchronization
mechanism, because nfc2_tag_model always predicts Tag response before
the DUT issues its own response. In case of two consecutive replies from
the same source ‘uvm_error() is executed. If the synchronization is intact,
nfc2_scoreboard compares frame format, payload and validates the timing. If
any mismatch occurs, assertion is raised.

40

Chapter 6

Implemented UVC demonstration

Designed verification component will now be tested with written test case
examples. To verify correct functionality of the implemented UVC, already
verified and implemented design of HF logic core was provided by ASICentrum
company.

6.1 Creating and starting sequence

Sequences are essential part of each test and determine course of the test case.
Here is ALL_REQ command example of how sequence in test case should be
created, built, randomized and run:

class test_example extends nfc2_test_base ;

‘uvm_component_utils(test_example)

nfc2_cmd_all_req_seq example_seq ;

function new(string name = " test_example " ,
uvm_component parent = nu l l) ;

super .new(name , parent) ;
example_seq = new ;

endfunction : new

virtual function void build_phase (uvm_phase
phase) ;

41

6. Implemented UVC demonstration
super . build_phase (phase) ;
example_seq = nfc2_cmd_all_req_seq : :
type_id : : c r e a t e (" example_seq " , t h i s) ;

assert (example_seq . randomize () with{
nfc2_wait_after_res_i == RANDOM_E;

}) ;
endfunction : build_phase

virtual task run_phase (uvm_phase phase) ;
phase . r a i s e_ob j e c t i on (t h i s) ;
example_seq . start (nfc2_env_inst .
nfc2_r2t_agent_inst . nfc2_sequencer_inst) ;
phase . drop_object ion (t h i s) ;

endtask
endclass : test_example

6.2 Example testcases

Multiple constrained-random test cases with original scenarios were written
and executed to prove UVC correct functionality. Each of these test cases
finished with 0 raised assertions and zero ‘uvm_warning, ‘uvm_error and
‘uvm_fatal messages.

In the following figures from the simulator it can be seen the UVC
detection of commands in internal signals cmd_<name>_detected from
nfc2_t2r_monitor and the current state of nfc2_tag_model with name
m_state, while curr_state_main is internal signal from the DUT. The first
three waveforms are DUT inputs and outputs - carrier being the fc clock,
r2t being input commands from the UVC and t2r DUT responses.

6.2.1 Transition to ACTIVE_A state and reading the whole
memory

First test case and Figure 6.1 illustrates transition to ACTIVE_A state
by using SENS_REQ command and after that SEL_REQ command twice,
because DUT is configured for 2 cascade levels. Correct NFCID1 is read
from the UVC memory model, which is created inside nfc2_test_base class.

42

.................................. 6.2. Example testcases

Figure 6.1 together with the rest of the simulation waveform also displays
the Tag model functionality. After each issued command in r2t signal m_state
changes exactly in the moment, while the DUT makes the change afterwards.

Figure 6.1: Transition to ACTIVE_A state and first READ command.

In the end of the test case READ command with block number out of
memory space is issued (see Figure 6.2). DUT shall respond with NACK
response and test case is complete.

Figure 6.2: Issuing READ with higher block number

Example of the validation reporting shows item from nfc2_t2r_monitor in
Figure 6.3 and item from nfc2_tag_model in Figure 6.4.

Figure 6.3: Captured NACK response

Scoreboard compares the items and reports its results like in Figure 6.5.

43

6. Implemented UVC demonstration

Figure 6.4: Predicted NACK response

Figure 6.5: Scorebord validation UVM info.

6.2.2 Transition to ACTIVE_A state and writing data to
Data blocks

In the second test case WRITE command are issued with random data for
each Data block. Wheter the data are written correctly is checked by the
following READ commands. That way the same run of the memory model and
DUT memory is proven. The correct write procedure to the memory model
is displayed for one block in Figure 6.6 and match with the DUT memory
is shown in responses to READ command in Figure 6.7. It is important to
notice that byte order in the command and the output of the memory model
is reversed.

Figure 6.6: Successful WRITE command to block 7.

In the end of the test case WRITE command with random block number

44

.................................. 6.2. Example testcases

Figure 6.7: Validation of the previous WRITE command with the READ
command.

out of memory space is issued (see Figure 6.8). DUT shall respond with
NACK response and transition to IDLE state.

Figure 6.8: Issuing WRITE with higher block number

6.2.3 Transition to ACTIVE_A state and testing lock bits

This testcase proves that memory model is compliant with Static Memory
Data Structure. First sequence is issuing WRITE command to block 0 with
random data in ACTIVE_A state. Block 0 is reserved for manufacturer use
and shall be read-only, therefore Tag shall issue NACK response. The DUT
follows this rule and Figure 6.9 shows that the data in memory model are
not changed and NACK response is predicted correctly.

The test case continues with locking one block of data by changing one

45

6. Implemented UVC demonstration

Figure 6.9: Issuing WRITE with block number 0.

static lock bit to logic 1. After successful lock the WRITE command to
that block is performed. Figure 6.10 demonstrates no change of data in the
memory model and correctly predicted NACK response.

Lock bit already set to logic 1 cannot be changed back to logic 0. This
property is tested by trying to write logic 0 back to that bit. Output from
the console in Figure 6.11 informs that there was an attempt to change
irreversible bit and the value of the lock bit stays at logic 1. Again, the byte
order for the labeled data is reversed.

6.2.4 SLEEP_REQ command execution

At first transition to ACTIVE_A has to be made, then SLEEP_REQ has to
be executed. After that follows SLEEP_REQ, SENS_REQ and ALL_REQ,
and as it is in Figure 6.12, DUT behaves correctly and after SLEEP_REQ
responds only to ALL_REQ.

46

.................................. 6.2. Example testcases

Figure 6.10: Issuing WRITE for previously locked block.

Figure 6.11: Issuing logic 0 for irreversible static lock bit.

Figure 6.12: SLEEP_REQ command verification.

6.2.5 SECTOR SELECT command packets 1 and 2

SECTOR SELECT switches to another memory sectors, however DUT con-
tains only 1 memory sector. It follows that to SECTOR SELECT command
packet 1 DUT shall respond with NACK response and DUT shall ignore the

47

6. Implemented UVC demonstration
SECTOR SELECT command packet 2 and transition to IDLE state, which
Figure 6.13 confirms.

Figure 6.13: SECTOR SELECT command packets verification.

6.2.6 SDD_REQ for all valid NFCID1 and SEL_PAR
combinations

The test case shows the usage of SDD_REQ command with all the valid
combinations of SEL_PAR and NFCID1 fields. Bit oriented SDD frame
recognition and validation was tested this way and UVC finished the DUT
testing with 0 errors.

6.2.7 Negative scenarios

In all of these scenarios Tag shall ignore the invalid command and transition to
IDLE state. First case is Figure 6.14 where SEL_REQ is issued in READY_A
state with all valid fields except CRC16. CRC16 is mandatory, but in this
sequence it is omitted and Tag together with the UVC ignores this command.

Figure 6.14: SEL_REQ without CRC16.

The second example in Figure 6.15 is very similar, but this time the
SEL_REQ has CRC16 with invalid value. Simulation result is the same.

48

.................................. 6.2. Example testcases

Figure 6.15: SEL_REQ with invalid CRC16.

Another sequence in Figure 6.16 consists of transition to READY_A state
and SDD_REQ command with invalid parity bits. Tag and UVC again
ignore the command and go to IDLE state.

Figure 6.16: SDD_REQ with invalid parity bits.

Last example displays option of issuing command before FDTP OLL,A time.
Simulation waveforms show correct reaction of the DUT and UVC, which
both ignore this command.

Figure 6.17: SDD_REQ issued before allowed FDTP OLL,A time.

49

6. Implemented UVC demonstration
6.3 Coverage sampling

The described test cases from Section 6.2 were also used as an example for
collecting code and functional coverage. Integrated Metrics Center report
of code coverage in Figure 6.18 shows 62.28 % overall coverage of the DUT
source code. The functional coverage inside nfc2_tag_model is according
to Figure 6.19 covered from 86.7 %. Figure 6.19 also displays percentage of
coverpoints, that are covered. To declare the DUT as successfully verified,
both percentage for code and functional coverage has to be at 100 %. That
can be achieved by completing the list of the test cases.

Figure 6.18: Code coverage report after the current set of the test cases.

Figure 6.19: Functional coverage report after the current set of the test cases.

6.4 DUT error detection

Main reason for developing verification environment in general is to detect
hidden errors inside the DUT. To show the capability of implemented UVC
of detecting bugs, known error was inserted into DUT.

50

................................. 6.4. DUT error detection

Figure 6.20: DUT error detection in SDD_RES

Simulation output in Figure 6.20 shows immediate assertion in the nfc2_
scoreboard raised, when unexpected response from DUT occured. Buffer for
response creation for SDD_REQ command was inverted and read from the
DUT memory was therefore incorrect, while the nfc2_tag_model predicted
valid response with the same input memory file.

51

52

Chapter 7

Conclusions

This master’s thesis’s aim was to implement a solution for NFC Type 2 Tag
Platform DUT digital verification. At first groundwork for the implementation
is set by fundamentals of used standards and software tools. Implemented
NFC Type 2 Tag Platform is described, and the next chapter focuses on
methods of digital verification, especially UVM library.

The second part moves to more practical part of the job. The verification
plan in Chapter 4 outlines the whole process and sums up all the requirements
that UVC has to cover. UVC was later designed according to the verification
plan and its functionality is demonstrated in Chapter 6 with already functional
DUT from ASICentrum company.

All commands from NFC Type 2 Tag Operation Specification are supported,
having their own classes and may be easily randomized. UVC implements
its own behaviour of Type 2 Tag together with memory model of Static
Memory Structure, which may be extended to Dynamic Memory Structure
by adding dynamic lock bits in the future. DUT properties may be changed
through access to configuration files directly in the test case, and the memory
model is initialized from the file. Besides these properties UVC is able to
collect functional coverage of all variable commands fields and combination
of commands and DUT internal states.

This verification component also collects simulation time data and verifies
timing aspects of DUT responses according to issued NFC command. Any
mismatch with expected response triggers UVM error message and verification
engineer knows immediately about DUT bug, which was displayed in Section
6.4. Apart from this example all the written test cases passed with zero raised
assertions and zero UVM error messages, which validates UVC functionality.

53

7. Conclusions
UVC was designed with emphasis on automatic response validation, possible

configuration changes, easy future extensions and insertion into larger verifi-
cation environments. It is compliant with Universal Verification Methodolody
and fully uses its benefits, thus is compatible with latest digital verifica-
tion trends and might be used for validating new digital designs. With the
complete set of testcases this UVC should be able to cover 100 % of the re-
quirements for NFC Type 2 Operation Specification. The implemented UVC
should also be made reset-aware in the future. In conclusion this master’s
thesis was a very valuable lesson and a great preparation for the future digital
verification challenges.

54

Appendices

55

56

Appendix A

Bibliography

[1] NFC Forum. Digital protocol, May 2017. Available at https://members.
nfc-forum.org//specs/.

[2] NFC Forum. Type 2 tag operation specification, May 2011. Available at
https://members.nfc-forum.org//specs/.

[3] NFC Forum. What is nfc?, 2019. Available at https://nfc-forum.org/
what-is-nfc/.

[4] Vedat Coskun, Busra Ozdenizci, and Kerem Ok. The survey on near
field communication. Sensors, 15:13348–13405, June 2015. Available at
https://www.researchgate.net/publication/278030190.

[5] Archit Dua. Nfc standards and nfc forum, July 2017. Available at
https://rfid4u.com/nfc-standards-nfc-forum/.

[6] Iso/iec 14443-3, April 2011. Available at https://www.iso.org/
standard/50942.html.

[7] NFC Forum. Analog, May 2011. Available at https://members.
nfc-forum.org//specs/.

[8] Iso/iec 14443-2, September 2010. Available at https://www.iso.org/
standard/50941.html.

[9] Limor Fried. About the ndef format, May 2015. Available at https:
//learn.adafruit.com/adafruit-pn532-rfid-nfc/ndef.

[10] NFC Forum. Ndef, May 2011. Available at https://members.
nfc-forum.org//specs/.

57

https://members.nfc-forum.org//specs/
https://members.nfc-forum.org//specs/
https://members.nfc-forum.org//specs/
https://nfc-forum.org/what-is-nfc/
https://nfc-forum.org/what-is-nfc/
https://www.researchgate.net/publication/278030190
https://rfid4u.com/nfc-standards-nfc-forum/
https://www.iso.org/standard/50942.html
https://www.iso.org/standard/50942.html
https://members.nfc-forum.org//specs/
https://members.nfc-forum.org//specs/
https://www.iso.org/standard/50941.html
https://www.iso.org/standard/50941.html
https://learn.adafruit.com/adafruit-pn532-rfid-nfc/ndef
https://learn.adafruit.com/adafruit-pn532-rfid-nfc/ndef
https://members.nfc-forum.org//specs/
https://members.nfc-forum.org//specs/

A. Bibliography.....................................
[11] NFC Forum. Activity, May 2011. Available at https://members.

nfc-forum.org//specs/.

[12] Chris Spear. SystemVerilog for Verification: A Guide to Learning the
Testbench Language Features. Springer, 2006.

[13] Mentor. UVM Cookbook. Mentor, 2018. Available at https://
verificationacademy.com/cookbook/uvm.

[14] Stuart Sutherland and Tom Fitzpatrick. Uvm rapid
adoption: A practical subset of uvm. DVCon,
March 2015. Available at https://s3.amazonaws.com/
verificationacademy-news/DVCon2015/Papers/dvcon-2015_
UVM-Rapid-Adoption-A-Practical-Subset-of-UVM-Paper.pdf.

[15] Uvm (universal verification methodology), 2019. Available at https:
//www.accellera.org/downloads/standards/uvm.

[16] Doulos. The universal verification methodology, 2019. Available at
https://www.doulos.com/knowhow/sysverilog/uvm/.

[17] Universal verification methodology (uvm) 1.2 user’s guide, October 2015.
Available at https://accellera.org/images/downloads/standards/
uvm/uvm_users_guide_1.2.pdf.

[18] Uvm factory, 2019. Available at https://verificationacademy.
com/verification-methodology-reference/uvm/docs_1.1a/html/
files/base/uvm_factory-svh.html.

[19] About systemverilog coverage, 2016-2019. Available at https://www.
verificationguide.com/p/systemverilog-coverage.html.

[20] Systemverilog functional coverage, 2016-2019. Avail-
able at https://www.chipverify.com/systemverilog/
systemverilog-functional-coverage.

[21] Coverage-driven verification methodology, 2005-2019. Available
at https://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_
guidelines/coverage-driven/.

[22] Sini Balakrishnan. A glimpse on metric driven verifica-
tion methodology, 2016. Available at http://vlsi.pro/
a-glimpse-on-metric-driven-verification-methodology/.

58

https://members.nfc-forum.org//specs/
https://members.nfc-forum.org//specs/
https://verificationacademy.com/cookbook/uvm
https://verificationacademy.com/cookbook/uvm
https://s3.amazonaws.com/verificationacademy-news/DVCon2015/Papers/dvcon-2015_UVM-Rapid-Adoption-A-Practical-Subset-of-UVM-Paper.pdf
https://s3.amazonaws.com/verificationacademy-news/DVCon2015/Papers/dvcon-2015_UVM-Rapid-Adoption-A-Practical-Subset-of-UVM-Paper.pdf
https://s3.amazonaws.com/verificationacademy-news/DVCon2015/Papers/dvcon-2015_UVM-Rapid-Adoption-A-Practical-Subset-of-UVM-Paper.pdf
https://www.accellera.org/downloads/standards/uvm
https://www.accellera.org/downloads/standards/uvm
https://www.doulos.com/knowhow/sysverilog/uvm/
https://accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/base/uvm_factory-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/base/uvm_factory-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1a/html/files/base/uvm_factory-svh.html
https://www.verificationguide.com/p/systemverilog-coverage.html
https://www.verificationguide.com/p/systemverilog-coverage.html
https://www.chipverify.com/systemverilog/systemverilog-functional-coverage
https://www.chipverify.com/systemverilog/systemverilog-functional-coverage
https://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/coverage-driven/
https://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/coverage-driven/
http://vlsi.pro/a-glimpse-on-metric-driven-verification-methodology/
http://vlsi.pro/a-glimpse-on-metric-driven-verification-methodology/

..................................... A. Bibliography

[23] Metric driven verification, 2016-2019. Available at https:
//www.aldec.com/en/solutions/functional_verification/
metric_driven_verification.

59

https://www.aldec.com/en/solutions/functional_verification/metric_driven_verification
https://www.aldec.com/en/solutions/functional_verification/metric_driven_verification
https://www.aldec.com/en/solutions/functional_verification/metric_driven_verification

	List of Abbreviations
	Introduction
	Theoretical Part
	Near Field Communication
	Type 2 Tag Platform
	Memory structure
	Sequence schemes
	Bit level coding
	Frame format
	Commands and responses
	Timing requirements
	NFC Data exchange format - NDEF
	Anticollision

	Digital design verification and UVM
	UVM testbench basics
	UVM Factory
	UVM Configuration Database
	UVM Phases
	UVM Environment
	UVM Sequencer and Sequences
	UVM Scoreboard
	UVM Driver
	UVM Monitor
	UVM Agent

	SystemVerilog Coverage

	Practical Part
	Verification plan
	Requirements
	Physical layer requirements
	Timing requirements
	Tag state requirements
	Commands requirements
	Negative scenarios

	Verification strategy
	Tools
	Checkers implementation
	Coverage implementation
	Test cases implementation
	UVM usage

	Implementation of UVC for NFC Type 2 Tag
	Command and response items
	nfc2_base_cmd class fields
	nfc2_base_res class fields

	System-level design of the testbench
	Configuration objects
	nfc2_r2t_agent and nfc2_sequencer
	nfc2_driver
	nfc2_r2t_monitor
	nfc2_t2r_agent and nfc2_t2r_monitor
	nfc2_tag_model
	nfc2_scoreboard

	Implemented UVC demonstration
	Creating and starting sequence
	Example testcases
	Transition to ACTIVE_A state and reading the whole memory
	Transition to ACTIVE_A state and writing data to Data blocks
	Transition to ACTIVE_A state and testing lock bits
	SLEEP_REQ command execution
	SECTOR SELECT command packets 1 and 2
	SDD_REQ for all valid NFCID1 and SEL_PAR combinations
	Negative scenarios

	Coverage sampling
	DUT error detection

	Conclusions

	Appendices
	Bibliography

